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Abstract

The CMS Collaboration conducted a month-long data-taking exercise known as the
Cosmic Run At Four Tesla in late 2008 in order to complete the commissioning of the
experiment for extended operation. The operational lessons resulting from this ex-
ercise were addressed in the subsequent shutdown to better prepare CMS for LHC
beams in 2009. The cosmic data collected have been invaluable to study the perfor-
mance of the detectors, to commission the alignment and calibration techniques, and
to make several cosmic ray measurements. The experimental setup, conditions, and
principal achievements from this data-taking exercise are described along with a re-
view of the preceding integration activities.

∗See Appendix A for the list of collaboration members
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1 Introduction
The primary goal of the Compact Muon Solenoid (CMS) experiment [1] is to explore particle
physics at the TeV energy scale, exploiting the proton-proton collisions delivered by the Large
Hadron Collider (LHC) at CERN [2]. The complexity of CMS, like that of the other LHC exper-
iments, is unprecedented. Therefore, a focused and comprehensive programme over several
years, beginning with the commissioning of individual detector subsystems and transition-
ing to the commissioning of experiment-wide operations, was pursued to bring CMS into full
readiness for the first LHC beams in September 2008. After the short period of beam operation
the CMS Collaboration conducted a month-long data-taking exercise known as the Cosmic
Run At Four Tesla (CRAFT) in late 2008. In addition to commissioning the experiment opera-
tionally for an extended period, the cosmic muon dataset collected during CRAFT has proven
invaluable for understanding the performance of the CMS experiment as a whole.

The objectives of the CRAFT exercise were the following:

• Test the solenoid magnet at its operating field (3.8 T), with the CMS experiment in
its final configuration underground;

• Gain experience operating CMS continuously for one month;

• Collect approximately 300 million cosmic triggers for performance studies of the
CMS subdetectors.

The CRAFT exercise took place from October 13 until November 11, 2008, and these goals were
successfully met.

This paper is organized as follows. Section 2 describes the detectors comprising CMS while
Section 3 describes the installation and global commissioning programme prior to CRAFT. The
experimental setup for CRAFT and the operations conducted are described in Sections 4 and
5, respectively, and some of the analyses made possible by the CRAFT dataset are described in
Section 6.

2 Detector Description
A detailed description of the CMS experiment, illustrated in Fig. 1, can be found elsewhere [1].
The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diame-
ter, 13 m length, and designed to operate at up to a field of 4 T. The magnetic flux generated by
the solenoid is returned via the surrounding steel return yoke—approximately 1.5 m thick, 22 m
long, and 14 m in diameter—arranged as a 12-sided cylinder closed at each end by endcaps.
To facilitate pre-assembly of the yoke and the installation and subsequent maintenance of the
detector systems, the barrel yoke is subdivided into five wheels (YB0, YB±1, and YB±2, as la-
beled in Fig. 1) and each endcap yoke is subdivided into three disks (YE±1, YE±2, and YE±3).
Within the field volume are the silicon pixel and strip trackers, the lead tungstate crystal electro-
magnetic calorimeter (ECAL), and the brass-scintillator hadronic calorimeter (HCAL). Muons
emerging from the calorimeter system are measured in gas-ionization detectors embedded in
the return yoke.

CMS uses a right-handed coordinate system, with the origin at the nominal interaction point,
the x-axis pointing to the centre of the LHC, the y-axis pointing up (perpendicular to the LHC
plane), and the z-axis along the anticlockwise-beam direction. The polar angle, θ, is measured
from the positive z-axis, and the pseudorapidity η is defined as η = − ln tan (θ/2). The az-
imuthal angle, φ, is measured in the x-y plane.
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Figure 1: General view of the CMS detector. The major detector components are indicated,
together with the acronyms for the various CMS construction modules.

Charged particles are tracked within the pseudorapidity range |η| < 2.5. The silicon pixel
tracker consists of 1440 sensor modules containing a total of 66 million 100× 150 µm2 pixels.
It is arranged into three 53.3 cm long barrel layers and two endcap disks at each end. The
innermost barrel layer has a radius of 4.4 cm, while the other two layers are located at radii
of 7.3 cm and 10.2 cm. The endcap disks extend in radius from about 6 cm to 15 cm and are
located at ±34.5 cm and ±46.5 cm from the interaction point along the beam axis. The silicon
strip tracker consists of 15 148 sensor modules containing a total of 9.3 million strips with a
pitch between 80 and 180 µm. It is 5.5 m long and 2.4 m in diameter, with a total silicon surface
area of 198 m2. It is constructed from six subassemblies: a four-layer inner barrel (TIB), two
sets of inner disks (TID) comprising three disks each, a six-layer outer barrel (TOB), and two
endcaps (TEC) of nine disks each.

The ECAL is a fine grained hermetic calorimeter consisting of 75 848 lead tungstate (PbWO4)
crystals that provide fast response, radiation tolerance, and excellent energy resolution. The
detector consists of a barrel region, constructed from 36 individual supermodules (18 in az-
imuth per half-barrel), extending to |η| = 1.48, and two endcaps, which provide coverage up
to |η| = 3.0. The crystals in the barrel have a transverse cross-sectional area at the rear of
2.6× 2.6 cm2, corresponding to ∆η × ∆φ = 0.0174× 0.0174, and a longitudinal length of 25.8
radiation lengths. The crystals in the endcap have a transverse area of 3× 3 cm2 at the rear and
a longitudinal length of 24.7 radiation lengths. Scintillation light from the crystals is detected
by avalanche photodetectors in the barrel region and by vacuum phototriodes (VPT) in the
endcaps. A preshower detector comprising two consecutive sets of lead radiator followed by
silicon strip sensors was mounted in front of the endcaps in 2009, after the CRAFT period, and
has a thickness of three radiation lengths.

The HCAL barrel (HB) and endcaps (HE) are sampling calorimeters composed of brass and
scintillator plates with coverage |η| < 3.0. Their thickness varies from 7 to 11 interaction
lengths depending on η; a scintillator “tail catcher” placed outside of the coil at the inner-
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most muon detector extends the instrumented thickness to more than 10 interaction lengths
everywhere. In the HB, the tower size is ∆η × ∆φ = 0.087× 0.087. Each HB and HE tower
has 17 scintillator layers except near the interface of HB and HE. The scintillation light is con-
verted by wavelength-shifting fibres embedded into the scintillator tiles, and is then channeled
to hybrid photodiodes (HPD) via clear optical fibres. Each HPD collects signals from up to 18
different HCAL towers. The Hadron Outer (HO) calorimeter comprises layers of scintillators
placed outside the solenoid cryostat to catch the energy leaking out of the HB. Its readout is
identical to that of the HB and HE. Quartz fibre and iron forward calorimeters (HF), read out
by photomultipliers, cover the |η| range between 3.0 and 5.0, which corresponds to the conical
central bore of each endcap yoke.

Three technologies are used for the detection of muons: drift-tubes (DT) in the central region
(|η| < 1.2), cathode strip chambers (CSC) in the endcaps (0.9 < |η| < 2.4), and resistive plate
chambers (RPC) throughout barrel and endcap (|η| < 1.6). The DT system comprises 250
chambers mounted onto the five wheels of the barrel yoke and arranged into four concentric
“stations” interleaved with the steel yoke plates. Each chamber is built from a sandwich of
12 layers of drift tubes with 4.2 cm pitch, and is read out with multiple hit capability. Eight
layers have wires along z and measure the φ coordinate; four layers have wires perpendicular
to the z-axis and measure z (except for the outermost DT station where there are no z mea-
suring layers). The CSC system is made of 468 chambers mounted on the faces of the endcap
disks, so as to give four stations perpendicular to the beam pipe in each endcap. Each cham-
ber has six cathode planes segmented into narrow trapezoidal strips projecting radially from
the beam line, and anode wires aligned perpendicularly to the strips (wires for the highest |η|
chambers on YE±1 are tilted by 25◦ to compensate for the Lorentz angle). The barrel RPC
system is mounted in the same pockets in the yoke wheels as the DT system, but with six con-
centric layers of chambers. Each endcap RPC system consists of three layers mounted on the
faces of the yoke disks. Each RPC chamber contains two gas gaps of 2 mm thickness, between
which are sandwiched readout strips that measure the φ coordinate. The gaps work in sat-
urated avalanche mode. The relative positions of the different elements of the muon system
and their relation to reference elements mounted on the silicon strip tracker are monitored by
a sophisticated alignment system.

A system of beam radiation monitors installed along the beam line gives online feedback about
the beam structure and about radiation conditions within the experimental cavern [3, 4]. The
main components are radio frequency (RF) pickups located ±175 m from the interaction point,
segmented scintillator rings mounted on both faces of the HF calorimeters, and diamond sen-
sors installed very close to the beam pipe at distances of ±1.8 m and ±14.4 m. Signals from the
diamond beam condition monitors are used to protect the tracking detectors from potentially
dangerous beam backgrounds. In severe pathological conditions, they are capable of triggering
an abort of the LHC beams.

Only two trigger levels are employed in CMS. The Level-1 trigger is implemented using custom
hardware processors and is designed to reduce the event rate to at most 100 kHz during LHC
operation using coarse information from the calorimeters, muon detectors, and beam moni-
toring system. It operates with negligible deadtime and synchronously with the LHC bunch
crossing frequency of 40 MHz. The High Level Trigger (HLT) is implemented across a large
cluster of the order of a thousand commercial computers, referred to as the event filter farm
[5], and provides further rate reduction to O(100)Hz using filtering software applied to the
full granularity data acquired from all detectors. Complete events for the HLT are assembled
from the fragments sent from each detector front-end module through a complex of switched
networks and “builder units” also residing in the event filter farm. The event filter farm is
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configured into several “slices”, where each slice has an independent data logging element
(“storage manager”) for the storage of accepted events.

3 CMS Installation and Commissioning Programme prior to CRAFT
The strategy for building the CMS detector is unique among the four major experiments for the
LHC at CERN. The collaboration decided from the beginning that assembling the large units
of the detector would take place in a surface hall before lowering complete sections into the
underground experimental cavern. This philosophy allowed the CMS construction effort to be
completed on time despite delivery of the underground cavern late in the schedule, as a result
of civil-engineering works that were complicated by the geology of the terrain. Another goal
was to minimize underground assembly operations which would inevitably have taken more
time and would have been more complex and risky in the confined space of the cavern. Future
access to the inner parts of the detector is also made easier. As construction and assembly pro-
gressed above ground, it became clear that there would be a valuable opportunity for system
integration and commissioning on the surface.

3.1 The 2006 Magnet Test and Cosmic Challenge

The large solenoid of CMS was first fully tested while it was in the surface assembly hall during
August–November 2006. This provided the opportunity to test the integration of major com-
ponents of the experiment before lowering them into the underground experimental cavern,
and slices of the major detector subsystems were prepared to record data concurrently with
this test. The exercise, called the Magnet Test and Cosmic Challenge (MTCC), provided impor-
tant commissioning and operational experience, and was the precursor of the CRAFT exercise
described in this paper. The magnetic field was increased progressively up to its maximum
operating value of 4.0 T, and fast discharges were commissioned such that 95% of the operat-
ing current of 19 140 A (corresponding to 2.6 GJ of stored energy) could be dumped in a time
span of about 10 minutes. Distortions of the yoke during the testing were monitored by the
muon alignment system [6], which was installed in one endcap and in an azimuthal slice of the
barrel across all wheels. After the successful completion of testing in the surface hall in 2006,
the magnet and its main ancillary systems were moved to their final positions in the service
and experimental caverns and nearby surface installations.

Concurrently with the first phase of the 2006 magnet test, about 7% of the muon detection sys-
tems, 22% of HCAL, 5% of ECAL, a pilot silicon strip tracker (about 1% of the scale of the com-
plete tracker), and the global trigger and data acquisition were successfully operated together
for purposes of globally commissioning the experiment and for collecting data to ascertain the
detector performance. For the second phase of the exercise, the ECAL and pilot tracker were
removed and the central magnetic field was mapped with a precision of better than 0.1%, us-
ing a specially designed mapping carriage employing Hall probes mounted on a rotating arm
[7], for several operating fields of the magnet. These maps are now used in the offline simula-
tion and reconstruction software. In total, approximately 200 million cosmic muon events were
recorded for purposes of calibration, alignment, and detector performance studies using this
slice of the experiment while on the surface. The conclusion of MTCC coincided with the start
of the installation into the underground cavern.

The MTCC was an opportunity to uncover issues associated with operating the experiment
with the magnetic field at its design value. One effect seen was the susceptibility of the hybrid
photodetectors (HPD) used to read out the scintillation light from the HCAL: the noise rate
from these devices depends on the magnetic field, and is maximal in the range 1–2 T. At the
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design value of 4 T the noise rate was found to be acceptable for the barrel and endcap com-
partments of HCAL; but for the Hadron Outer “tail catcher” in the barrel, whose HPDs are
mounted in pockets in the return yoke where the magnitude of the field is lower, the noise rate
was unacceptably high and the tubes had to be repositioned.

3.2 Installation of CMS Components Underground

The heavy elements of CMS began to be lowered into the experimental cavern in November
2006, starting with the forward calorimeters and continuing shortly thereafter with the +z
endcap disks and barrel wheels, complete with muon detectors and services. The central yoke
wheel (YB0), which houses the cryostat, was lowered in February 2007, and by January 2008
the last heavy elements of the −z endcap were successfully lowered into the cavern.

The campaign to connect services for the detectors within the central portion of CMS included
the installation of more than 200 km of cables and optical fibres (about 6000 cables). Addition-
ally, more than 20 km of cooling pipes (about 1000 pipes) were installed. The whole enterprise
took place over a 5 month period and required more than 50 000 man-hours of effort. The
cabling of the silicon strip tracker was completed in March 2008, and its cooling was opera-
tional by June 2008. In the same month, the central beam pipe, which is made of beryllium,
was installed and baked out (heated to above 200 ◦C while under vacuum for approximately a
week).

The silicon pixel tracking system and the endcaps of the ECAL were the last components to
be installed, in August 2008. The mechanics and the cabling of the pixel system have been
designed to allow relatively easy access or replacement if needed. The preshower detector for
the endcap electromagnetic calorimeter was the only major subsystem not installed prior to the
2008 LHC run and the CRAFT exercise. It was installed in March 2009.

3.3 Global Run Commissioning Programme

A series of global commissioning exercises using the final detectors and electronics installed in
the underground caverns, each lasting 3–10 days and occurring monthly or bimonthly, com-
menced in May 2007 and lasted until the experiment was prepared for LHC beams, by the
end of August 2008. These “global runs” balanced the need to continue installation and ex-
tensive detector subsystem commissioning with the need for global system tests. The scale of
the global runs is illustrated in Fig. 2, which shows, as a function of time, the effective frac-
tion of each of the seven major detector systems participating in the run (excluding the ECAL
preshower system). Generally, the availability of power, cooling, and gas limited the initial
scope of the commissioning exercises; by the time of the November 2007 global run, however,
these services were widely available.

Many detector subsystems were available in their entirety for global commissioning by May
2008, and thus a series of four week-long exercises, each known as a Cosmic RUn at ZEro Tesla
(CRUZET), were conducted to accumulate sizable samples of cosmic muon events from which
to study the overall detector performance. Notable for the third CRUZET exercise, in July 2008,
was the introduction of the silicon strip tracker into the data-taking (with about 75% of the
front-end modules). In the fourth CRUZET exercise, in August 2008, the complete silicon pixel
tracker was introduced, along with the endcaps of the ECAL. In addition to the operational
experience of the exercises and the ability to address more subtle detector performance issues
with larger event samples, the data were critical for deriving zero-field alignment constants
for the inner tracking systems. Several detector studies using CRAFT data also made use of
these CRUZET data samples. The total accumulated cosmic triggers at zero field exceeded 300
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Figure 2: Effective fraction of the CMS experiment participating in the 2007 and 2008 global
run campaigns as a function of time. The fraction of each of the seven major detector systems
is represented by a bar with a length of up to 1

7 ·100%. Only one RPC endcap was missing by
September 2008.

million, including the triggers recorded in September 2008 when the experiment was live for
the first LHC beams.

These global runs regularly exercised the full data flow from the data acquisition system at the
experimental site to the reconstruction facility at the CERN IT centre (called the Tier-0 centre),
followed by the subsequent transfer of the reconstructed data to all seven of the CMS Tier-1
centres and to some selected Tier-2 centres [8].

3.4 Final Closing of CMS

The final sequence of closing the steel yoke and preparing CMS for collisions was completed
on August 25, 2008 (see Fig. 3). This was followed by several tests of the solenoid in the
underground cavern for the first time, up to a field of 3 T, as described further in Section 5.2.
The final test at the operating field was postponed until CRAFT due to the imminent arrival of
beam at the beginning of September and the necessity of keeping the solenoid off for the initial
commissioning phase of the LHC.

3.5 LHC Beam Operations in 2008

The CMS experiment was operational and recorded triggers associated with activity from the
first LHC beams in September 2008. This activity included single shots of the beam onto a col-
limator 150 m upstream of CMS, which yielded sprays (so-called “beam splashes”) containing
O(105) muons crossing the cavern synchronously, and beam-halo particles associated with the
first captured orbits of the beam on September 10 and 11.

The configuration of the experiment for LHC beam operations was nearly the same as that for



7

Figure 3: The CMS experiment in its final, closed configuration in the underground experi-
mental cavern.

CRAFT. The exceptions were that the silicon pixel and strip tracking systems were powered off
for safety reasons, time delays in the readout electronics between the top and bottom halves
of the experiment were removed, and the Level-1 trigger menu was set for synchronous beam
triggers.

The first “beam splash” events were used to synchronize the beam triggers, including those
from the RF beam pick-ups, the beam scintillation counters surrounding the beam pipe, the for-
ward hadron calorimeters, and the CSC muon system. The diamond beam condition monitors
were also commissioned with beam, providing online diagnostics of the beam timing, bunch
structure, and beam-halo. The data collected from the “beam splash” events also proved useful
for adjusting the inter-channel timing of the ECAL [9] and HCAL [10] readout channels, as the
synchronous wave of crossing muons has a characteristic time-of-flight signature.

In total, CMS recorded nearly 1 million beam-halo triggered events during the 2008 beam op-
erations.

4 Experiment Setup for CRAFT
4.1 Detector Components

All installed detector systems were available for testing during CRAFT. The silicon pixel tracker
and the ECAL endcaps were the last major systems to be installed and thus were still being
commissioned and tuned even after the start of CRAFT. Furthermore, the commissioning of
the RPC system had been delayed by the late delivery of power supplies; and by the time of
CRAFT the RPC endcap disks were not yet commissioned for operation.
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4.2 Trigger and Data Acquisition

The typical Level-1 trigger rate during CRAFT was 600 Hz. This rate is well below the 100 kHz
design limit for the central data acquisition (DAQ) system and is composed of about 300 Hz
of cosmic triggers using all three muon systems, 200 Hz of low threshold triggers from the
calorimeters, and 100 Hz of calibration triggers used to pulse the front-end electronics or to
illuminate the optical readout paths of the calorimeters. The cosmic muon triggers were more
permissive than what would be used during collisions, with only loose requirements for the
muon to point to the interaction region of the experiment. The rate of triggered cosmic muons
crossing the silicon strip tracker region was O(10)Hz. As CMS is located 100 m below the
surface of the Earth, the cosmic muon rate relative to that at the surface is suppressed by ap-
proximately two orders of magnitude. The time-of-flight of cosmic muons to cross from the
top to the bottom of the experiment was accounted for by introducing coarse delays of the
muon trigger signals in the top half such that they are in rough coincidence with the bottom
half (a two bunch crossing difference for the barrel, and one for the endcaps, where one bunch
crossing corresponds to 25 ns). The calorimeter triggers were configured with low thresholds
selecting mostly detector noise. Further details on the configuration and performance of the
Level-1 trigger during CRAFT can be found in Ref. [11].

The event filter farm was configured into four “slices”. There were 275 builder units that as-
sembled the data fragments into complete events, and 825 filter units for HLT processing. The
average size of an event built by the DAQ during CRAFT is about 700 kB. The HLT primarily
applied only pass-through triggers with no filtering, in order to efficiently record cosmic ray
events selected by the Level-1 trigger, although additional complex filters were phased in for
physics selection, alignment and calibration of the detector, and diagnostics [12]. At the end
of CRAFT, a DAQ configuration with eight slices and nearly 4500 filter units was successfully
tested.

5 Operations
5.1 Control Room Operations and Tools

Control room operations for CMS, as executed during CRAFT, are carried out by a five-person
central shift crew responsible for the global data-taking of the experiment, and 10–14 subsys-
tem shifters responsible for the detailed monitoring and control of specific detector systems
during this commissioning period. These operations are in general conducted continuously,
necessitating three shift crews daily.

The central shift crew is composed of a shift leader, a detector safety and operation shifter, a
DAQ operator, a trigger control operator, and a data quality monitoring (DQM) shifter. The
shift leader is responsible for the overall safety of the experiment and personnel, and for the
implementation of the run plan as set by the run coordinators.

The DAQ operator issues the sequence of commands for initializing the detector readout elec-
tronics and controls the data-taking state via the run control system. Several displays are de-
voted to monitoring the state of the DAQ system and for detailed diagnostics. The trigger
operator is responsible for the monitoring of the Level-1 trigger system and for configuring the
system with the desired settings (the participating trigger components, delays, etc.).

The central DQM shifter in the control room uses the CMS-wide DQM services [8], monitor-
ing event data to assess the quality of the data collected during a run. The DQM shifter is
responsible for certifying runs for data analysis purposes. This information is entered into a
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“run registry” database (which also contains configuration information about the run), and
forms the first step in a chain that assigns quality flags on a subsystem-by-subsystem basis.
The information was used to select event samples, such as those used in the studies of the de-
tector performance during CRAFT. The control room DQM shifter is assisted by another shifter
located at one of the remote operations centres (Fermilab and DESY).

Additional information available to the central and detector shifters to assess the detector status
includes the notification of any alarm triggered by the detector safety system, such as cooling
or power failures, and monitoring data from the Detector Control System (DCS) such as tem-
perature readings from the detector and electronic components, the status of the cooling plants,
the status of the high and low voltage power, etc. The DCS system is accessible from within
the online network, and graphical interfaces have been developed for use in the control room.
As the detector status data are stored in a database, a set of software tools, known as Web-
Based Monitoring (WBM), was also designed to extract and display the information inside and
outside the control room network. Both real-time status data and historical displays are pro-
vided. Example WBM applications are: Run Summary (detailed information about the runs
taken), DCS information (current condition and past history of each subdetector component),
magnet variables, and trigger rates. These WBM applications were used extensively during the
CRAFT data-taking operation as well as during the subsequent analysis stage to understand
the data-taking configurations and conditions.

5.2 Magnet Operations

The operating current for the solenoid was set to 18 160 A (B = 3.8 T), although the magnet has
been successfully tested to its design current of 19 140 A (B = 4.0 T) as noted in Section 3.1. This
choice for the initial operating phase of the experiment was made to have an additional safety
margin, with little impact on physics measurements, in view of the long period of operation
that is expected to exceed 10 years.

The magnet operated successfully for the duration of CRAFT. Nominal performance was a-
chieved in the control racks, safety system, cryogenic system, and passive protection system.
Apart from a ramp-down to allow access to the experimental cavern during the LHC inaugu-
ration, the only interruptions of the magnet were due to water cooling interlocks caused by an
incorrectly adjusted leak-detection threshold.

The magnet was at its operating current for the CRAFT exercise for a total of 19 days, between
October 16 and November 8, 2008, as illustrated in Fig. 4. Ramping tests indicate a nominal
time of 220 minutes for magnet rampings (up or down), keeping the magnet at a temperature
of 4.5 K. Distortions of the yoke during ramps were measured by the muon alignment systems
(Section 5.4.5).

Shortly after the CRAFT data-taking exercise at 3.8 T ended, a final ramp was made to 4.0 T on
November 14 to ensure the magnet stability margin. After bringing the field back to 3.8 T, a
fast discharge was triggered, which took only 10 minutes. The final average temperature of the
magnet after a fast discharge is 66 K, requiring at least three days to reestablish the operating
temperature.

5.3 Infrastructure

The infrastructure and services met the demands of running the experiment continuously for
one month, although the exercise indicated areas needing further improvement. No particu-
lar problem or malfunction of the electrical and gas distribution systems for the experiment
occurred during CRAFT. Likewise, the nitrogen inerting and dry air systems, intended to pre-
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Figure 4: History of the magnitude of the central magnetic field during CRAFT. The ramp-
down on October 20 was needed to allow open access to the experimental cavern. The last two
ramp-ups in November were further tests of the magnet after CRAFT data-taking.

vent fire and guarantee a dry atmosphere in humidity sensitive detectors, operated stably. The
detector safety and control systems performed as expected, but further functionality and test-
ing took place after CRAFT.

Several cooling failures did occur, and this resulted in the shutdown of some equipment during
CRAFT. One circulating pump failed due to a faulty installation. Leaks were detected on the
barrel yoke circuit for wheels YB−2 and YB−1. As noted earlier, the leak detection system on
one of the cooling circuits fired a few times resulting in three separate automatic slow dumps
of the magnet (leading to at least 8 hours loss at 3.8 T). The threshold has been subsequently
raised to make the system more robust.

The cooling plants for the silicon strip tracker suffered a few trips, leading to about 6 hours
down-time during CRAFT. The leak rate of the system was also higher than expected. In the
shutdown after CRAFT, the cooling plants and piping were significantly refurbished to elimi-
nate these leaks.

In total, about 70 hours of downtime were caused by general infrastructure related incidents,
about 10% of the duration of CRAFT. This time was dominated by the downtime of the magnet.

5.4 Detector Operations

The operational performance of the detector subsystems during CRAFT is reported in detail in
Refs. [13]–[19]. All detector systems functioned as intended in the 3.8 T magnetic field. Here
we summarize the principal operations conducted during CRAFT and the main observations.

5.4.1 Tracker

The silicon strip tracker [13] was live 95% of the running time during CRAFT, with 98% of the
channels active. Signals were collected via a 50 ns CR-RC shaper, sampled and stored in an
analog pipeline by the APV25 front-end chip [20]. The APV25 chip also contains a deconvolu-
tion circuit, not used during CRAFT, to reduce the signal width (but increasing the noise) that
can be switched on at high LHC luminosity, when pile-up becomes an issue. The tracker read-
out was synchronized to triggers delivered by the muon detectors. A few issues not identified
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during the previous commissioning of the detector, such as some swapped cables and incor-
rect fibre length assumptions used in the latency calculations, were quickly identified by offline
analysis of the cosmic data and corrected either during operation or the subsequent shutdown.
Data were zero suppressed during the entire exercise. The signal-to-noise ratio was excellent,
ranging from 25 to more than 30 depending on the partition, after final synchronization adjust-
ments.

The silicon pixel tracker [14] was live 97% of the running time. In the barrel pixel system, 99%
of the channels were active, whereas in the forward pixel system 94% were active. The 6%
inactive channels in the latter were mostly due to identified shorts in the power supply ca-
bles, which were repaired during the subsequent shutdown. Zero suppression was performed
on the detector, with conservative thresholds of about 3700 electrons chosen to ensure stable
and efficient operations during CRAFT. The pixels were mostly immune to noise, with a noisy
channel fraction of less than 0.5× 10−5. The mean noise from the front-end readout chips in
the barrel and forward detectors is 141 and 85 electrons, respectively, well below the operating
thresholds.

5.4.2 ECAL

For the ECAL [15], the fraction of channels that were operational during CRAFT was 98.5% in
the barrel and 99.5% in the endcaps. A large part of the barrel inefficiency was due to a cut
power cable that has since been repaired. In the barrel, approximately 60% of the dataset was
recorded with nominal front-end electronics gain while the other 40% was recorded with the
gain increased by a factor of 4, to enhance the muon signal.

The response of the ECAL electronics, both in the barrel and in the endcap, was monitored
using pulse injections at the preamplifier, showing no significant changes due to the magnetic
field. Noise levels were generally consistent with the values measured during construction,
aside from a small increase for 1/4 of the barrel that is believed to be low frequency pickup
noise associated with the operation of other CMS subdetectors and that is mostly filtered by
the amplitude reconstruction algorithm.

The temperature of the ECAL is required to be stable at the level of 0.05 ◦C in the barrel and
0.1 ◦C in the endcaps in order to ensure that temperature fluctuations remain a negligible con-
tribution to the energy resolution (both crystal light yield and barrel front-end gain are tem-
perature dependent). The stability provided by the temperature control system during CRAFT
was measured to be about 0.01 ◦C for the barrel and 0.05 ◦C in the endcaps, with almost all
measurements better than the required specifications.

The ECAL barrel high voltage should also be kept stable at the level of a few tens of mV due to
the strong gain dependence of the photodetector on the absolute voltage value (3% per volt).
The average fluctuation of the high voltage is measured to be 2.1 mV (RMS), with all channels
within 10 mV.

A laser monitoring system is critical for maintaining the stability of the constant term of the
energy resolution at high luminosities. Its main purpose is to measure transparency changes
for each crystal at the 0.2% level, with one measurement every 20–30 minutes. During CRAFT, a
total of approximately 500 sequences of laser monitoring data were taken, with each sequence
injecting 600 laser pulses per crystal. These data were collected using a calibration trigger
issued in the LHC abort gap at a rate of typically 100 Hz. The measured stability was better
than the 0.2% requirement for 99.9% of the barrel and 99% of the endcap crystals.

To stabilise the response of the endcap VPTs, which have a rate-dependent gain (5–20% vari-



12 5 Operations

ation in the absence of magnetic field, and significantly reduced at 3.8 T [15]), an LED pulsing
system was designed to continuously pulse the VPTs with a rate of at least 100 Hz. This sys-
tem was successfully tested during CRAFT on a small subset of channels, and LED data were
acquired in different configurations.

5.4.3 HCAL

HCAL participated in the CRAFT data-taking with all components: barrel (HB), endcap (HE),
forward (HF) and outer (HO) calorimeters [16]. The fraction of non-operational channels over-
all for HB, HE and HF was 0.7% (0.5% due to noisy HPDs in HB and HE, and 0.2% to electronics
failures), while for HO it was about 4.5% (3.3% due to noisy HPDs and 1.2% to electronics) at
the start of CRAFT and increased to 13% due to HPD failures as noted below.

As found during the MTCC exercise, the HPD noise rate depends on the magnetic field. There-
fore, the behaviour of all HPDs was carefully monitored during CRAFT to identify those HPDs
that failed, or were likely to fail, at 3.8 T in order to target them for replacement. Noise data
from HB and HE were collected using a trigger with a threshold of 50 fC that is approximately
equivalent to 10 GeV of energy. Based on individual HPD discharge rates, the high voltage
to four HPDs on HB and HE (out of 288 total) was reduced during CRAFT from 7.5 to 6.0 kV
(which lowers the gain by approximately 30%), in addition to two HPDs that were completely
turned off. At 3.8 T the resulting measured trigger rate from 286 HPDs in HB and HE was ap-
proximately 170 Hz, which can be compared to the rate at zero field of about 130 Hz. The HPDs
of HB and HE showed no signs of increased noise rates during CRAFT.

The HO HPDs servicing the central wheel (YB0) operate in a fringe field of 0.02 T (when the
central field of the magnet is 3.8 T) while those on the outer wheels (YB±1, YB±2) experience
a magnetic field above 0.2 T. While no HPDs on YB0 showed any significant discharge rate,
it was expected from the MTCC experience that several HPDs on the outer wheels would,
and this was observed. Twenty HPDs installed on the outer wheels at the start of CRAFT
showed significant increase in the noise rates at 3.8 T with respect to the noise rates at 0 T. The
high voltage was turned off for the four HPDs with the highest noise rate increases, and was
lowered to 7 kV for the others. The HO HPDs located on the outer wheels showed clear signs
of increased discharge rates during CRAFT. As the number of discharging HPDs continued to
increase, the high voltage on all HPDs servicing the outer wheels was further lowered to 6.5 kV
midway into CRAFT. By the end of the run, a total of 14 HPDs were turned off out of 132 for
all of HO.

During the winter 2008/09 shutdown, after CRAFT, the problematic channels were fixed, in-
cluding replacing HPDs with anomalously high noise rates or low gains. A total of 19 HPDs
were replaced in HB and HE, and another 19 in the HO outer wheels. As of November 2009, af-
ter additional tests with the magnetic field, all of the HB, HE, and HF channels were operational
while the number of non-operational channels in HO was at the level of 4%.

5.4.4 Muon Detectors

The DT system had all 250 chambers installed, commissioned and equipped with readout and
trigger electronics for CRAFT, and 98.8% of the channels were active. The DT trigger was
operated in a configuration requiring the coincidence of at least two nearby chambers without
requiring that the muon trajectory points to the nominal interaction point. The cosmic trigger
rate for this configuration was stable at about 240 Hz. The performance of the DT trigger is
described in more detail in Ref. [17].

The DT system demonstrated high reliability and stability. Some noise was observed sporad-
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ically during the period when the field was on. In particular, synchronous noise produced
huge events, with high occupancy in the detectors comprising the wheels on one side of the
experiment, at the level of 0.1–1 Hz. Noise sources are under investigation.

The RPC system participated in CRAFT with the entire barrel and a small fraction of the end-
caps [18], which at the time were at an early stage of commissioning. For the barrel part,
the CRAFT operation was important to ascertain the system stability, debug the hardware,
synchronize the electronics, and ultimately obtain a preliminary measurement of the detector
performance. About 99% of the barrel electronic channels were active during the data taking,
while the remaining 1% were masked due to a high counting rate. The average cosmic muon
RPC trigger rate was about 140 Hz for the barrel, largely coincident with the DT triggers, with
some spikes in rate as noted below.

The main RPC monitoring tasks ran smoothly during the entire period, which allowed a careful
analysis of system stability. The average current drawn by the barrel chambers (each having
a 12 m2 single gap surface) was stable below 1.5 µA, with very few cases above 3 µA. A study
of the chamber efficiency as a function of the operating voltage was possible for about 70% of
the barrel chambers, giving a preliminary estimate of the average intrinsic detector efficiency
of about 90%. This study also indicated a few hardware failures and cable map errors that were
later fixed.

Sporadic RPC trigger spikes related to noise pick-up from external sources were also detected.
The sensitivity of the system to these sources is under investigation. However, preliminary
studies have demonstrated that the trigger rate is almost unaffected when the standard trigger
algorithm for LHC collisions is applied.

The CSC system operated with more than 96% of the readout channels active and for about
80% of the CRAFT running period [19]. The rate of trigger primitive segments in the CSCs
from cosmic-ray muons underground was about 60 Hz, distributed over the two endcaps. The
CSC trigger was configured to pass each of these trigger segments, without a coincidence re-
quirement, as muon candidates to the Level-1 Global Trigger.

The long running period under stable conditions provided by CRAFT exposed a few issues
that had not yet been encountered during the commissioning of the CSCs. These effects in-
clude a very low corruption rate of the non-volatile memories used to program some FPGAs
distributed in the system, and unstable communication with the low voltage power supplies.
Actions taken after CRAFT to address these issues included periodic refreshing of the memo-
ries and a replacement of the control signal cables to the power supplies, respectively.

5.4.5 Muon Alignment System

The complete muon alignment system was tested during CRAFT [21]. It is organized into three
main components: two local systems to monitor the relative positions of the DT and CSC muon
detectors separately, and a “link system” that relates the muon chambers and central tracker
and allows simultaneous monitoring of the barrel and endcap. All components are designed
to provide continuous monitoring of the muon chambers in the entire magnetic field range
between 0 T and 4 T. The acquisition of data from these systems is separate from the central
DAQ used to collect normal event data.

Each DT chamber is equipped with LEDs as light sources, and about 600 video cameras mount-
ed on rigid carbon-fibre structures observe the motions of the chambers. During the CRAFT
data taking period, as well as the periods just before and after, over 100 measurement cycles
were recorded. Compression of the barrel wheels in z with the magnet at 3.8 T was observed at
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the level of 1–2 mm depending on azimuth, and with an uncertainty of 0.3 mm, in agreement
with previous measurements made during MTCC.

The acquisition of endcap alignment data was robust, and 99.4% of the sensors were opera-
tional. The sensors monitor displacements from reference laser beams across each endcap disk,
and provide positioning information on 1/6 of the endcap chambers. This allows adequate
monitoring of the yoke disk deformations due to strong magnetic forces. The measurements
with the magnet at 3.8 T indicate deformations of all disks towards the interaction point by
about 10–12 mm for chambers close to the beam line and by about 5 mm for chambers further
away. These results are consistent with earlier MTCC measurements.

The link system comprises amorphous silicon position detectors placed around the muon spec-
trometer and connected by laser lines. The complete system was implemented for CRAFT, and
98% operational efficiency was obtained. Unfortunately, the closing of the YE−1 disk outside
of its tolerance created a conflict with some of the alignment components, making the laser
system for this part of the detector effectively unusable during CRAFT. The disk could not be
repositioned given the limited remaining time to prepare CMS for LHC beams in 2008. Con-
sequently, full reconstruction of the link system data was possible only for the +z side of the
detector. During CRAFT, data were recorded at stable 0 T and 3.8 T field values, as well as dur-
ing magnet ramps. Information from the link system was used to align CSCs on YE±1. Both
the endcap alignment and the link system detected disk bending, and CSC tilts were measured
at full field.

5.5 Data Operations

The average data-taking run length during CRAFT was slightly more than 3 hours, and four
runs exceeded 15 hours without interruption (one run exceeded 24 hours). Reasons for stop-
ping a run included the desire to change the detector configuration, a hardware-related issue
with a detector subsystem (e.g. loss of power), some part of the readout electronics entering an
irrecoverable busy state, or other irrecoverable DAQ system errors. Aside from the 10% down-
time due to infrastructure related problems, the typical data collection efficiency of CMS was
about 70% during CRAFT, including periods used to conduct detector calibrations, pedestal
runs, and diagnostics to further advance the commissioning of the experiment. The break-
down of the total number of collected events passing quality criteria for the detector systems
or combination of systems, but not necessarily with a cosmic muon within its fiducial volume,
is listed in Table 1. Figure 5 shows the accumulated number of cosmic ray triggered events
as a function of time with the magnet at its operating central field of 3.8 T, where the minimal
configuration of the silicon strip tracker and the DT muon system delivering data certified for
further offline analysis was required. It was not required to keep the other systems in the con-
figuration. A total of 270 million such events were collected. The effective change in slope after
day 18 is principally due to downtime to further improve the synchronization of the silicon
strip tracker and an unplanned ramp-down of the magnet.

Data were promptly reconstructed at the Tier-0 computing centre at CERN to create high-level
physics objects with a job latency of about 8 hours, but with a broad distribution. These data
were transferred to the CMS Analysis Facility (CAF) at the CERN Meyrin site and to several
Tier-1 and Tier-2 centres worldwide for prompt analysis by teams of physicists. The average
export rate from the Tier-0 centre to the Tier-1 centres during CRAFT was 240 MB/s, and the
total volume transferred was about 600 TB. Data quality monitoring of the Tier-0 reconstruc-
tion output in addition to the standard online monitoring at the control room was provided.
Specialized data selections for detector calibration and alignment purposes also were created
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Table 1: The number of cosmic ray triggered events collected during CRAFT with the magnetic
field at its operating axial value of 3.8 T and with the listed detector system (or combination
of systems) operating nominally and passing offline quality criteria. The minimum configu-
ration required for data-taking was at least one muon system and the strip tracker. The other
subdetectors were allowed to go out of data-taking for tests.

Detector Events (millions)
Pixel Tracker 290
Strip Tracker 270
ECAL 230
HCAL 290
RPC 270
CSC 275
DT 310
DT+Strip 270
All 130
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Figure 5: The accumulated number of good (see text) cosmic ray triggered events with the
magnet at 3.8 T as a function of days into CRAFT, beginning October 16, 2008.
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from the Tier-0 processing, and they were processed on the CAF to update the alignment and
calibration constants. Several reprocessings of the CRAFT datasets took place at the Tier-1 cen-
tres using the refined calibration and alignment constants after the CRAFT data taking period.
For ease of offline analyses, several primary datasets were produced that were derived from
dedicated HLT filters. Some datasets were further reduced, selecting for example events en-
riched in the fraction of cosmic muons pointing to the inner tracking region of the experiment.
Further details on the offline processing workflows applied to the CRAFT data are described
in Ref. [8].

5.6 Lessons

The extended running period of CRAFT led to the identification of some areas needing atten-
tion for future operations. As noted in a few instances already, some repairs or replacements
of detector subsystem components were required, such as the repair of several power cables to
the pixel tracker, the replacement of some HPDs for the HCAL, and the replacement of some
muon electronics on the detector. The cooling plants for the silicon tracking systems were re-
furbished to eliminate leaks in the piping, and improved water leak detection was added to
the barrel yoke. Based partly on the experience of CRAFT, the complexity of the HLT menu to
be used for initial LHC operations was reduced and some algorithms were improved for better
CPU and memory usage performance.

In order to measure the efficiency of data-taking automatically and to systematically track the
most significant problems, a tool was developed after CRAFT to monitor the down-times dur-
ing data-taking and the general reasons for each instance (as selected by the shift leader). In
an effort to improve the efficiency, further centralization of operations and additional alarm
capability were added to the detector control and safety systems. More stringent change-
control policies on hardware interventions, firmware revisions, and software updates were also
enacted during subsequent global-taking periods in order to further limit any unannounced
changes.

Many CRAFT detector analyses successfully used the computing facilities of the CAF, but to the
extent that it became clear afterward that the disk and CPU usage policies needed refinement.
One unexpected outcome from the CRAFT analyses was the identification of a problem in the
initial calculation of the magnetic field in the steel yoke for the barrel that became evident when
studying cosmic muons recorded during CRAFT (see Section 6).

6 Detector Performance Studies
The data collected during CRAFT, with CMS in its final configuration and the magnet ener-
gized, facilitated a wide range of analyses on the performance of the CMS subdetectors, the
magnitude of the magnetic field in the return yoke, as well as the calibration and alignment
of sensors in preparation for physics measurements. Figure 6 shows a transverse view of the
CMS experiment with the calorimeter energy deposits and tracking hits indicated from one cos-
mic muon traversing the central region during CRAFT. It also shows the results of the muon
trajectory reconstruction.

Alignment of the silicon strip and pixel sensor modules was improved significantly from initial
survey measurements by applying sophisticated track-based alignment techniques to the data
recorded from approximately 3.2 million tracks selected to cross the sensitive tracking region
(with 110 000 tracks having at least one pixel hit). The precision achieved for the positions of the
detector modules with respect to particle trajectories, derived from the distribution of the me-
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2008-Oct-20 04:52:41.749892 GMT: Run 66748, Event 8868341, LS 160, Orbit 166856666, BX 2633

DT

HCAL

ECAL

Strip Tracker
Pixel Tracker

Figure 6: Display of a cosmic muon recorded during CRAFT which enters and exits through
the DT muon system, leaves measurable minimum ionizing deposits in the HCAL and ECAL,
and crosses the silicon strip and pixel tracking systems. Reconstruction of the trajectory is also
indicated.
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dian of the cosmic muon track residuals, is 3–4 µm in the barrel and 3–14 µm in the endcaps for
the coordinate in the bending plane [22]. Other silicon tracking measurements [13] performed
with the CRAFT data include calibration of the absolute energy loss in silicon strip sensors,
Lorentz angle measurements, hit efficiencies and position resolutions, track reconstruction ef-
ficiencies, and track parameter resolutions. The efficiency of reconstructing cosmic ray tracks,
for example, is greater than 99% for muons passing completely through the detector and close
to the beam line.

Track-based alignment techniques using cosmic muons were also applied to align the DT muon
detectors in the barrel region of the experiment. An alignment precision of better than 700
µm was achieved along the higher precision coordinate direction (approximately φ) for the
first three DT stations as estimated by a cross-check of extrapolating muon segments from one
detector to the next [23]. A local alignment precision of 270 µm was achieved within each ring
of CSCs using LHC beam-halo muons recorded during beam operations in 2008.

Studies of the resolution and efficiency of hit reconstruction in the DT [24] and CSC [19] muon
chambers were performed. The resolution of a single reconstructed hit in a DT layer is of
the order of 300 µm, and the efficiency of reconstructing high quality local track segments built
from several layers in the DT chambers is approximately 99%. Likewise, the position resolution
of local track segments in a CSC is of the order of 200 µm (50 µm for the highest |η| chambers
on YE±1). The performance of the muon track reconstruction algorithms on CRAFT data was
studied [25] using the muon system alone and using the muon system combined with the
inner tracker. The requirement on the distance of closest approach to the beam line must be
relaxed relative to that used for muons from collisions. The resolution of the track parameters
can be determined by splitting a single cosmic ray signal into upper and lower tracks and
comparing the results of the separate fits. For example, the pT resolution for tracks passing
close to the beam line with a sufficient number of hits in the silicon pixel and strip tracking
detectors is measured to be of the order of 1% for pT = 10 GeV/c, increasing to 8% for pT of
about 500 GeV/c. The latter is limited by the accuracy of the alignment of the inner tracker and
the muon system, and should improve to 5% when perfectly aligned.

Measurements of the cosmic muon energy loss, dE/dx, in the ECAL and HCAL barrel com-
partments validated the initial calibration of individual channels obtained prior to CRAFT (the
endcap studies suffer from small sample sizes). In a study of 40% of the ECAL barrel chan-
nels, the obtained spread in detector response has an RMS of about 1.1%, consistent with the
combined statistical and systematic uncertainties [15]. Additionally, the measured dE/dx as a
function of muon momentum agrees well with a first-principles calculation [26]. For the HCAL
barrel and endcap, CRAFT confirmed the brightening of scintillators with magnetic field first
measured during MTCC, which leads to about a 9% increase in response. The response to cos-
mic muons recorded during CRAFT was used to adjust the intercalibration constants of the
barrel, and the residual RMS spread is at the level of a few percent [16]. The absolute response
to cosmic muons with a momentum of 150 GeV/c agrees well with earlier test beam measure-
ments.

The accuracy of the calculated magnetic field map in the barrel steel yoke, used in muon recon-
struction, was obtained by a comparison of the muon bending measured by DT chambers with
the bending predicted by extrapolating the track parameters measured by the inner tracking
system (where the magnetic field is known very precisely). During CRAFT a discrepancy was
noted, and this was later traced to boundary conditions that had been set too restrictively in
the field map calculation. The analysis also suggested improving the treatment of asymmetric
features in the map. An updated field map was produced based on these results. Residual
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differences between data and the calculation are reduced to about 4.5% in the middle station of
the barrel yoke and 8.5% in the outer station, and are corrected using the CRAFT measurements
[27].

7 Summary
The CRAFT exercise in 2008 provided invaluable experience in commissioning and operating
the CMS experiment and, from analyses performed on the data recorded, in understanding the
performance of its detectors. It represented a milestone in a global commissioning programme
marked by a series of global data-taking periods with progressively larger fractions of the in-
stalled detectors participating, culminating in all installed systems read out in their entirety
or nearly so. Over the course of 23 days during October and November 2008, the experiment
collected 270 million cosmic ray triggered events with the solenoid at its operating central field
of 3.8 T and with at least the silicon strip tracker and drift tube muon system participating and
operating at nominal conditions. These data were processed by the offline data handling sys-
tem, and then analyzed by teams dedicated to the calibration, alignment, and characterization
of the detector subsystems. The precision achieved of detector calibrations and alignments, as
well as operational experience of running the experiment for an extended period of time, give
confidence that the CMS experiment is ready for LHC beam operations.
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E. Tuominen, J. Tuominiemi, D. Ungaro, L. Wendland

Lappeenranta University of Technology, Lappeenranta, Finland
K. Banzuzi, A. Korpela, T. Tuuva

Laboratoire d’Annecy-le-Vieux de Physique des Particules, IN2P3-CNRS, Annecy-le-Vieux,
France
P. Nedelec, D. Sillou

DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France
M. Besancon, R. Chipaux, M. Dejardin, D. Denegri, J. Descamps, B. Fabbro, J.L. Faure, F. Ferri,
S. Ganjour, F.X. Gentit, A. Givernaud, P. Gras, G. Hamel de Monchenault, P. Jarry, M.C. Lemaire,
E. Locci, J. Malcles, M. Marionneau, L. Millischer, J. Rander, A. Rosowsky, D. Rousseau,
M. Titov, P. Verrecchia

Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France
S. Baffioni, L. Bianchini, M. Bluj3, P. Busson, C. Charlot, L. Dobrzynski, R. Granier de Cas-
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L. Malgeri, M. Mannelli, L. Masetti, F. Meijers, P. Meridiani, S. Mersi, E. Meschi, A. Meynet
Cordonnier, R. Moser, M. Mulders, J. Mulon, M. Noy, A. Oh, G. Olesen, A. Onnela, T. Orimoto,
L. Orsini, E. Perez, G. Perinic, J.F. Pernot, P. Petagna, P. Petiot, A. Petrilli, A. Pfeiffer, M. Pierini,
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