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Abstract This paper concerns the testing of a system
with physically distributed interfaces, called ports, at

which it interacts with its environment. We place a

tester at each port and the tester at port p observes

events at p only. This can lead to controllability prob-

lems, where the observations made by the tester at a
port p are not sufficient for it to be able to know when

to send an input. It is known that there are test ob-

jectives, such as executing a particular transition, that

cannot be achieved if we restrict attention to test cases
that have no controllability problems. This has led to

interest in schemes where the testers at the individ-

ual ports send coordination messages to one another

through an external communications network in order

to overcome controllability problems. However, such ap-
proaches have largely been studied in the context of

testing from a deterministic finite state machine. This

paper investigates the use of coordination messages to

overcome controllability problems when testing from an
input output transition system and gives an algorithm

for introducing sufficient messages. It also proves that

the problem of minimising the number of coordination

messages used is NP-hard.
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1 Introduction

It is widely accepted that testing is a crucial part of

the software development process but also that manual
testing is typically expensive and error prone. This has

led to significant interest in approaches to test automa-

tion including model-based testing (MBT) in which test-

ing is based on a model of the system under test (SUT)
or the aspect of the SUT that is being tested [2,6,12–14,

18].

In distributed testing there is a tester at each port

(interface) of the SUT and each tester observes only the

events at its port. It is known that this introduces con-

trollability and observability problems. Controllability
problems occur when a tester cannot know when to ap-

ply an input. Consider, for example, the test case illus-

trated in Figure 1 in which the vertical lines represent

time, which progresses as we move down, and there are
two ports U and L. Here the tester at U starts the test

case by supplying input ?iU , the response of the SUT

should be the sending of !oU to U and the tester at L

should then send input ?iL. The problem here is that

the tester at L does not observe the previous input and
output and so cannot know when to send ?iL.

An observability problem occurs if the global trace

(sequence of inputs and outputs) is not one contained in

the specification but is indistinguishable from a global

trace in the specification as a result of the testers ob-
serving only the local projections (local traces). Let us

suppose, for example, that the specified response to in-

put sequence ?iU?iU is !oU at U and !oL at L in response

to the first input and just !oU (at U) in response to the
second input. Then the tester at U expects to observe

?iU !oU?iU !oU and the tester at L expects to observe

!oL. This is still the case if the response to ?iU is !oU
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Fig. 1 A controllability problem

at U only and the response to the second input is !oU
at U and !oL at L.

Controllability problems lead to the situation in which

we do not know whether the intended input sequence

was received by the SUT. In contrast, observability

problems can lead to fault masking: a specified global
trace did not occur but the set of local observations is

consistent with a specified global trace.

There has been significant interest in controllabil-

ity and observability problems in distributed testing

when testing from a deterministic finite state machine

(DFSM) [4,5,7,10,11,21,28,30,31,35,36,38,39]. There
has been work that aims to produce test sequences

that achieve particular objectives, such as executing a

given transition, and that do not have controllability

problems and/or observability problems. However, it is

known that for a given DFSM and objective, there may
be no test case that achieves the objective and does not

have controllability problems. As a result, a number of

approaches that overcome controllability problems have

been devised and these rely on the sending of coordina-
tion messages between the testers [5,7,16,28,31].

While there has been interest in controllability and
observability problems for DFSMs, distributed systems

are often non-deterministic and so the restriction to de-

terministic models is a significant limitation. In addi-

tion, in FSMs we have that inputs and outputs alter-

nate. While FSMs are highly suitable for some classes of
system, sometimes we need more general models such

as input output transition systems (IOTSs). As a re-

sult, there has been recent interest in distributed test-

ing from an IOTS [20,19] but, while controllability has
been examined in this context [19], very little previous

work has explored methods for overcoming controllabil-

ity problems.

It is important to note that the work on distributed

testing from an IOTS has defined new implementation

relations that require the distributed observations made

regarding the SUT to be consistent with the specifica-

tion [20,19]. These implementation relations remove the
concern regarding observability problems: if the global

trace σ occurred in testing and we cannot distinguish

between this and an allowed global trace in the specifi-

cation then we consider σ to be acceptable since users
would also not be able to distinguish between σ and an

allowed behaviour. Interestingly, this observation has

also been made in the context of refinement in CSP

[22]. There is also work in which a transition can be

triggered by multiple inputs [15,3] but the work in this
context has assumed that global observations are made.

Some previous work has used coordination messages

to overcome controllability problems in distributed test-

ing from an IOTS. An approach has been devised for
distributing a global test case to produce a set of local

test cases whose testing is controllable [23]. This work

uses an agent, called an Election Service, that controls

the testing process. However, communications between

the testers and the Election Service is synchronous and
each event in testing involves the sending and receiving

of multiple coordination messages between the testers

and the Election Service; instead we would like a scheme

that requires relatively few such messages. There are at
least two reasons for this. The first is that the require-

ment to send many coordination messages may lead to

the need for a faster and more expensive external net-

work. In addition, if the testers communicate through a

network shared with the SUT then this communication
can change the behaviour of the SUT. While it has been

observed that the scalability issues can be reduced by

using a tree structure for connecting distributed testers

[9], it is still desirable to use relatively few coordination
messages.

An alternative approach is to synchronise the testers

through message exchange. This can solve the control-

lability problems and is similar to the approach given

in [23]. Where it is feasible to use mechanisms to syn-
chronise the testers, this approach has the benefit of

simplicity and also potentially allows the testers to ob-

serve the global trace that occurred. However, similar to

the discussion above, this approach may require many

messages to be sent between the testers and there are
scenarios, such as the testers and the SUT sharing a

communications network, in which this is problematic.

Note that in this paper we do not consider test cases

that contain timing requirements. Since coordination
messages introduce (potentially unpredictable) latency,

it seems likely that when there are timing constraints

we will wish to limit the number of coordination mes-
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sages used but also that we will need schemes that take

into account the particular timing requirements that

are present.

Some related issues have been explored in the con-

text of Message Sequence Charts (MSCs). Specifically,
the notion of a controllability problem in testing is sim-

ilar to those of race and non-local choice in MSCs. An

MSC contains a race if the order of certain events is

specified in the MSC but this order cannot be ensured
[1]. The local choice assumption is that each process

only observes the events it is involved in and so a non-

local choice occurs when an MSC requires a process to

behave in a manner that breaks the local choice assump-

tion [1]. The problem of adding messages to overcome
such problems has been explored [29]. However, this

previous work only considered a single basic MSC1. In

addition, in testing we have a restriction: we can only

add messages between testers. In contrast, the work on
adding messages to MSCs allowed messages to be added

between any two processes. As a result, approaches de-

vised for MSCs cannot be applied.

This paper makes the following contributions. First,
it discusses the use of coordination messages and how

these can be added to test cases for use in testing from

an IOTS. It transpires that there are choices to be made

here and particularly whether one includes both the

sending and receiving of a coordination message in a
test case. It also gives an algorithm for deciding whether

a global test case is controllable and for characterising

the set of controllability problems. This algorithm re-

quires the test case to have a finite set of states but
does not require it to allow only finitely many traces.

It gives an algorithm for adding coordination messages

to a global test case in order to overcome controllabil-

ity problems. This second algorithm requires that there

are only finitely many controllability problems. Both al-
gorithms have polynomial time complexity. Finally, it

shows that the problem of finding a minimal set of coor-

dination messages to overcome controllability problems

is NP-hard, even if we restrict attention to test cases
that are in the form of trees.

In this paper we make several assumptions. First,

we do not consider IOTSs that contain infinite paths

with only outputs and internal actions. This is a lit-

tle like outlawing live-locks. We also restrict attention
to specifications and implementations that are input-

enabled2; this simplifies the exposition but it should

be straightforward to remove this restriction since we

analyse test cases and not implementations or speci-
fications. Importantly, we have to make assumptions

1 A basic MSC defines one scenario.
2 A process is input enabled if for every input ?i and state

q of the process there is a transition from q with label ?i.

regarding the nature of the communications between

the testers since different options/assumptions lead to

slightly different methods. First, we assume that quies-

cence3 can be observed locally in testing and that the

observation of quiescence is preceded by the arrival of
all coordination messages previously sent. Since quies-

cence is usually observed through there being no events

for a sufficiently long time, this assumption requires us

to have information, such as upper bounds, regarding
the time it takes a coordination message to reach its

destination. However, we show how this restriction can

be removed. In addition, we assume that if a global

test case contains a coordination message from p to q

before an input ?iq at q then the tester at q waits to
receive this coordination message before sending ?iq.

We make this assumption because the only reason for a

tester to send a coordination message to another tester

is to provide them with information that helps them to
determine when to apply an input. Again, we explain

how the method can be changed to remove this assump-

tion. Finally, we assume that communications between

the testers is asynchronous but that between a tester

and the SUT is synchronous. This corresponds to the
situation in which the SUT has physically distributed

interfaces at which it interacts with its environment but

that at each interface the tester interacts directly with

the SUT. If communications between testers and the
SUT is asynchronous then we can apply the standard

approach in which we see testing as synchronous com-

munications between the tester(s) and a system that

includes the communications channels [23,34].

The paper is structured as follows. Section 2 de-

fines the notation used, multi-port IOTSs and global

test cases. Section 3 discusses controllable testing and
Section 4 gives an algorithm for determining whether a

global test case is controllable. Section 5 describes co-

ordination messages and introduces notation for adding

these to global test cases. Section 6 shows how we can
analyse traces of a test case that has had coordina-

tion messages added. Section 7 then gives an algorithm

that adds coordination messages to a global test case

in order to overcome controllability problems. Section 8

proves that the problem of finding a smallest set of coor-
dination messages to overcome controllability problems

is NP-hard, even if we restrict attention to test cases

that are in the form of trees. Finally, Section 9 draws

conclusions and discusses possible future work.

3 A system is quiescent if it cannot produce output without
first receiving input and this situation is usually observed in
practice through the use of timers.
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2 Preliminaries

2.1 Notation

In this paper we will let I denote the set of inputs that

the SUT can receive and O denote the set of outputs

that it can produce. Typically, we will precede the name

of an input with ? and precede the name of an output
with !. We will call a sequence of inputs and outputs a

trace and given a trace σ, pref(σ) will denote the set of

prefixes of σ. Thus, pref(σ) = {σ′|∃σ′′.σ = σ′σ′′}.

A relation r on a set A is a subset of A × A. Re-

lation r on set A defines a directed graph (digraph)

G(r); each element of A is represented by a vertex and
there is an edge from the vertex representing a1 ∈ A

to the vertex representing a2 ∈ A if and only if we

have that (a1, a2) ∈ r. Relation r is a (strict) partial

order if it is irreflexive, antisymmetric, and transitive

and then (A, r) is a partially ordered set (poset). Clearly
the transitive closure of an irreflexive relation r is a

partial order if and only if G(r) is acyclic. A sequence

σ = a1 . . . an is a linearisation of poset (A, r), |A| = n,

if A = {a1, . . . , an} and for all 1 ≤ i, j ≤ n we have that
if (ai, aj) ∈ r then i < j. Thus, a sequence is a lineari-

sation of (A,<) if it is a permutation of the elements

of A and it is consistent with the partial order.

2.2 Input Output Transition Systems

An input output transition system (IOTS ) is a model

in which there are states and transitions between the

states. Each transition has a label, which is either an in-
put, an output or τ (to denote an unobservable event).

An IOTS is essentially a labelled transition system in

which we differentiate between input and output. For

the purpose of testing it is important to distinguish be-
tween input and output since the environment controls

the input while the SUT controls the output. Usually it

is assumed that the environment does not block output

from the SUT and the SUT does not block input [33]

and so we also make this assumption.

Definition 1 An input-output transition system s is

defined by (Q, I,O, T, q0) in which Q is a countable set
of states, q0 ∈ Q is the initial state, I is a countable

set of inputs, O is a countable set of outputs, and T ⊆

Q× (I ∪O∪{τ})×Q is the transition relation. If there

is a transition (q, a, q′) ∈ T then it is possible to move

from state q to state q′ with action a ∈ I ∪O∪{τ}. We
let IOTS(I, O) denote the set of IOTSs with input set

I and output set O.

State q ∈ Q is quiescent if from q it is not possible

to produce output without first receiving input. We can

extend T to Tδ by adding (q, δ, q) for each quiescent

state q. We let Act = I ∪ O ∪ {δ} denote the set of

observable actions and so τ /∈ Act. We say that process

s is input-enabled if for all q ∈ Q and ?i ∈ I there exists

q′ ∈ Q such that (q, ?i, q′) ∈ T . s is output-divergent if
it can reach a state from which there is an infinite path

that contains outputs and internal actions only.

In this paper we assume that processes are not output-

divergent. In addition, specifications and implementa-

tions are assumed to be input-enabled but test cases
need not be. When testing from an IOTS it is nor-

mal to assume that quiescence is observable [33] and

we make this assumption. In practice quiescence is ob-

served through a timeout: it is assumed that if the SUT
produces no output for a given predefined time then it

is in a quiescent state. The approach described in this

paper also works in cases where quiescence is not con-

sidered to be observable.

The following notation is typically used when dis-

cussing testing from an IOTS.

Definition 2 Let s = (Q, I,O, T, q0) be an IOTS.

1. If (q, a, q′) ∈ Tδ, for a ∈ Act ∪ {τ}, then we write

q a−−→ q′.

2. We write q
ǫ

==⇒ q′ if there exist states q1, . . . , qm ∈

Q, for m ≥ 1, such that q = q1, q
′ = qm, q1

τ−−→
q2, . . . , qm−1

τ−−→ qm.

3. We write q
a

==⇒ q′, for a ∈ Act, if there exist states

q1, q2 ∈ Q such that q
ǫ

==⇒ q1, q1
a−−→ q2, and

q2
ǫ

==⇒ q′.
4. We write q

σ
==⇒ q′ for σ = a1 . . . am ∈ Act∗ if there

exist states q0, . . . , qm ∈ Q, q = q0, q
′ = qm such

that for all 0 ≤ i < m we have that qi
ai+1

===⇒ qi+1.

5. We write s
σ

==⇒ if there exists a state q′ ∈ Q such

that q0
σ

==⇒ q′ and we say that σ is a trace of s. We

let T r(s) denote the set of traces of s.

Process s is deterministic if for all σ ∈ Act∗, we

have that there is at most one output !o such that σ!o
is a trace of s.

The elements of T r(s) are often called suspension

traces since they contain quiescence. However, we sim-

ply call them traces since they are the only type of trace

that we consider.

In this paper we will use some results regarding fi-

nite automata. A finite automaton is an IOTS in which

there is a finite set of states, we do not differentiate be-

tween input and output, alphabet X is finite, and there
is a set of final states.

Definition 3 A finite automaton (FA) A is defined by

a tuple (Q, q0, X, h, F ) in which Q is a finite set of
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states, q0 ∈ Q is the initial state, X is the finite al-

phabet, h is the transition relation and F is the set of

final states. The transition relation h has type Q×(X∪

{τ}) × Q, where τ represents empty (internal) moves

that do not have associated observations.

The FA A = (Q, q0, X, h, F ) defines the language

L(A) of traces that can take A from q0 to a final state

in F . Note that the sequences in L(A) do not contain

instances of τ since these do not appear in traces. While
we will not use FA to define processes, test cases will

have a finite number of states and so can be seen as FA.

This will allow us to use standard methods and results

for FA.

2.3 Multi-port Input Output Transition Systems

The notion of an IOTS has been extended to the situa-

tion in which there are multiple interfaces, called ports.

In this paper we consider the case where there are n > 1
ports and let P = {1, . . . , n} denote the set of names

of the ports. We assume that the sets of inputs and

outputs can be partitioned into those that can be ob-

served at the separate ports. Thus, we partition I into

sets I1, . . . , In of inputs, where for p ∈ P we have that
Ip denotes the set of inputs that can be received at

p. Similarly, we partition O into sets O1, . . . , On. We

assume that quiescence is observed locally: each tester

observes quiescence. When testing single port systems
quiescence is observed through using a timeout: it is

assumed that there is a known upper bound on the

time it takes for the SUT to produce output. For dis-

tributed testing it seems likely that each local tester

will need such information but also additional infor-
mation regarding the test case but the observation of

quiescence is not a topic that we will consider in detail.

The method given in this paper also works in situations

where we do not observe quiescence. Note that if the
same values can be sent as input or received as output

at different ports then we can ensure that I1, . . . , In and

O1, . . . , On partition I and O respectively by adding la-

bels.

Some work has considered an alternative approach,

in which the output can be a tuple (an output for each
port) but restricting outputs to single values simplifies

the analysis. We let Actp = Ip ∪Op ∪ {δ}, which is the

set of observations that can be made at port p. We will

typically label inputs and outputs to make their port

clear. For example, ?i1 is an input at port 1 and !o2 is
an output at port 2.

The traces of an IOTS are sequences in Act∗ and a

global tester can observe such traces. We call elements

of Act∗ global traces in order to distinguish them from

the traces observed at a single port. A global test case

observes global traces. In contrast, a local test case con-

tains a local tester at each port and the local tester at

port p observes a local trace in Act∗p. It is straightfor-

ward to construct a local trace from a global trace by
simply removing all inputs and outputs observed at dif-

ferent ports [20]. In this paper, given a sequence σ of

elements from a set A and a subset A′ of A we will let

σ ↓A′ denote the sequence formed from σ by removing
all elements not in A′. If Z contains a set of sequences

then we let Z ↓A′ denote the set of projections of these

sequences: Z ↓A′= {σ ↓A′ |σ ∈ Z}.

Given global traces σ, σ′ ∈ Act∗ we write σ ∼ σ′ if

for all p ∈ P we have that σ ↓Actp= σ′ ↓Actp . Here we
have that if σ ∼ σ′ then we cannot distinguish between

σ and σ′ when only local traces are observed.

2.4 Test cases for distributed testing

Let us suppose that we are testing from a specifica-

tion s ∈ IOTS(I, O). A global test case t is a process
that interacts with the SUT by synchronising on com-

mon actions. As usual, we also restrict the alphabet

of a global test case to be that of the SUT, and so

t ∈ IOTS(I, O ∪ {δ}). We also assume that global test
cases have a finite number of states and cannot block

output by the SUT: until testing terminates it must

always be able to react to any possible output. In addi-

tion, we make the normal assumption that a test case

is deterministic as defined below; test cases are usually
deterministic and this restriction does not eliminate the

possibility of adaptive testing [17,26].

Definition 4 Given s ∈ IOTS(I, O), a global test case

is a process t ∈ IOTS(I, O∪{δ}) that has a finite num-

ber of states some of which represent the termination

of testing (⊥), has no transitions with label τ , and that
satisfies the following properties.

1. If t
σ

==⇒ t′ for some σ ∈ Act∗ and t′ that does not

represent termination then for all !o ∈ O ∪ {δ} we

have that t′ !o−−→ .

2. If t
σ

==⇒ t′ for some σ ∈ Act∗ then there is at most

one ?i ∈ I such that t′ ?i−−→ .
3. If t

σ
==⇒ t′ and t

σ
==⇒ t′′ for some σ ∈ Act∗ then

t′ = t′′.

The notion of deterministic used here is a little dif-

ferent from that defined for IOTSs. This is because the

input ?i corresponds to an output for a test case and

outputs are received by the test case and not sent by
the test case.

A global test case t for s is said to be reduced if for

all σ?i ∈ T r(t) such that ?i ∈ I we have that σ ∈ T r(s).
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This says that a reduced global test case will not supply

an input after there has been a failure (a trace not in

T r(s)). Test cases are normally reduced and we will

restrict attention to reduced test cases since it simplifies

some of the notation.

A global test case t is said to be tree-like if for all

σ1, σ2 ∈ T r(t) with σ1 6= σ2, we have that t
σ1

==⇒ t1 and

t
σ2

==⇒ t2 implies that t1 6= t2.

When designing a test case to achieve a particular

objective it is often desirable to consider global test

cases since test objectives are often stated at this level.
However, in distributed testing we actually use a local

test case in which there is one tester at each port. The

tester at port p is in IOTS(Ip, Op∪{δ}). Given a global

test case t, we can produce a corresponding local test
case by taking the projection of t at each port p [20].

In this paper we are concerned with producing global

test cases that are controllable and so will not have to

consider local test cases.

Next we define the parallel composition of a system

and a global test case.

Definition 5 Given s ∈ IOTS(I, O) and a global test

case t for s we define s||t ∈ IOTS(I, O) to be the ap-
plication of global test case t to s. The system s||t is

formed from s and t by synchronising on actions be-

longing to Act. We can therefore define the behaviour

of s||t in the following way.

– If s a−−→ s′ and t a−−→ t′ for a ∈ Act then s||t a−−→

s′||t′.

– If s τ−−→ s′ then s||t τ−−→ s′||t.

We let T r(s, t) denote the set of traces that can result

from s||t.

This simply says that the synchronous composition

of a process and a test case can only proceed through

a ∈ Act if both the test case and the process take tran-
sitions with label a. Naturally, the process s can always

take a transition with label τ since such transitions are

not observed by the test case. Given a global test case

t for s we clearly have that T r(s, t) = T r(s) ∩ T r(t).

The definition of s||t corresponds to synchronous

communications between the tester and the SUT. Natu-

rally, in practice communications may be asynchronous.
However, this need not be a significant limitation since

the tester might be able to choose to wait for a given pe-

riod of time before supplying an input or may be sent an

acknowledgement of the message having been received.
It has been observed that where this is not appropri-

ate, asynchronous communications can be represented

through adding models of the communications channels
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Fig. 2 Global Test Case t0

[23]. This essentially corresponds to the testers interact-

ing synchronously with a system composed of the SUT
and the communications channels.

Consider, for example, the global test case shown

in Figure 2, that will be called t0 throughout this pa-

per. Here there are two ports, 1 and 2, and the SUT
is a system that allows data to be stored, accessed and

deleted. The test case t0 represents a scenario in which

the tester at port 1 sends a message to add content to

the SUT (?update1) and waits for an acknowledgement
(!ok1). The tester at port 2 then attempts to delete this

content (?delete2). There is a possibility of this fail-

ing (!fail2) or succeeding (!ok2). The tester makes at

most two attempts; if one leads to output !ok2 then the

tester at port 1 should send a message ?in1 to deter-
mine whether the item is in the SUT and should receive

a response !no1 that states that it is not. For each state

q, that is not a leaf, and output !o such that there is

no transition from q with label !o, there is an implicit
transition that takes t0 to a state where it terminates

and produces a fail verdict.

If we take the projections of t0 we obtain the local
testers shown in Figures 3 and 4 in which we have kept

τ transitions. We can remove the transitions with label

τ using standard algorithms that transform a finite au-
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Fig. 3 Local Test Case for Port 1

tomaton with empty transitions to form one that has

no empty transitions. This leads to the test cases in
Figures 5 and 6.

We can use graph terminology when discussing global

test cases. In particular, we will talk about a path ρ of

a global test case t: this is a sequence of consecutive

transitions of t starting at its initial state. A path ρ has
a label : the sequence of observable events on ρ. For ex-

ample, t0 has the path ρ = (q0, !update1, q1)(q1, !ok1, q2)

that has label !update1!ok1.

3 Controllable testing

In distributed testing a tester at port p ∈ P observes

only the local trace that occurs at p. As a result, the

tester at p can only use the observations it has made in

deciding when to supply an input. Traditionally, a con-
trollability problem occurs in a test case when testing

can lead to a situation in which the tester at a port p

does not know whether to supply an input. If such con-

trollability problems occur then there are races in the
set of possible interactions between the test case and

the specification and the wrong input may be supplied

during testing. Ideally we only use test cases that have

?>=<89:;q0

τ

��?>=<89:;q1

τ

��?>=<89:;q2

?delete2

��?>=<89:;q3

!fail2
~~||

||
||

|
!ok2

!!
CC

CC
CC

C

?>=<89:;q4

?delete2

��

GFED@ABCq10

τ

��?>=<89:;q5

!fail2
~~||

||
||

|
!ok2

  
BB

BB
BB

B
GFED@ABCq11

τ

��?>=<89:;q6 ?>=<89:;q7

τ

��

GFED@ABCq12

?>=<89:;q8

τ

��?>=<89:;q9

Fig. 4 Local Test Case for Port 2
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Fig. 5 Local Test Case for Port 1 without τ transitions

no such controllability problems and this has motivated

much of the work in the area of distributed testing [4,
5,7,11,19,28,30,31,35,38,39].

It is straightforward to see that t0 is not controllable

since, for example, the tester at port 2 cannot know

when to send input ?delete2. Naturally, if there is the
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Fig. 6 Local Test Case for Port 2 without τ transitions

possibility that ?delete2 arrives before ?update1 then it

is also possible that the SUT behaves as required and

yet the output in response to ?in1 is different from that

expected: this happens if we try to delete the element
before adding it. As a result, a correct implementation

might produce an unexpected output.

When testing from a deterministic FSM (DFSM) a

test case is typically an input sequence and this defines
a global trace. Since there is only one possible global

trace for a given input sequence, it is straightforward to

give a condition under which an input sequence is con-

trollable. Specifically, if input sequence x1, . . . , xk leads
to trace x1/y1, . . . , xk/yk then this input sequence is

controllable if and only if for all 1 < i ≤ k we have

that the input xi is at a port p such that the previous

input/output pair xi−1/yi−1 contains at least one ob-

servation (input or output) at port p. The idea here is
that if the tester at p observes either input or output

in the previous transition (xi−1/yi−1) then it simply

sends input xi after observing this; otherwise it cannot

know when to send its input. Notice here that in an
FSM there is an atomicity assumption regarding an in-

put/output pair: if the FSM responds to input x with

output y then it is not possible to apply another input

after x and before the FSM sends output y.

When testing from an IOTS we need a rather dif-
ferent definition of what it means for a test case to

be controllable since input and output need not alter-

nate, a process can be non-deterministic, and test cases

need not be input sequences. However, the intuition is
similar: we need each tester to make observations that

allow it to decide when to apply an input. The follow-

ing defines what it means for a global test case to be

controllable [19].

Definition 6 A global test case t is controllable for

IOTS s if there does not exist port p ∈ P , σ1, σ2 ∈

T r(s, t) and ?ip ∈ Ip with σ1?ip ∈ T r(s, t), σ2?ip 6∈

T r(s, t) and σ1 ↓Actp= σ2 ↓Actp .

An alternative way of defining this is to say that for

all σ1, σ2 ∈ T r(s, t) with the same projections at port
p, if there is an input ?ip ∈ Ip such that σ1?ip ∈ T r(s, t)

then we must have that σ2?ip ∈ T r(s, t).

The definition has to mention the specification since,

for any test case t that includes inputs at more than

one port, there is some behaviour (global trace) that

will lead to a race between inputs at two ports4.

Proposition 1 below, which was previously proved

[19], tells us that if a test case is controllable then each

input is supplied by a local tester at the point specified

in the test case. One slight caveat is that, as explained
above, this need only be the case when the behaviour

that occurs is consistent with the specification.

Proposition 1 Let us suppose that we are testing i ∈
IOTS(I, O) with local test cases produced from a global

test case t that is controllable for s ∈ IOTS(I, O). If an

input ?i is supplied after σ ∈ T r(s, t) then σ?i ∈ T r(t).

4 Deciding whether a test case is controllable

In this section we show how we can decide whether
a global test case t, that does not contain coordina-

tion messages, is controllable. We also show how, if t is

not controllable, we can characterise the controllability

problems.

Recall that a global test case t is an IOTS and so

can define an infinite set of traces. As a result, we need

to examine sets of traces rather than individual traces.
Let us suppose that ?ip ∈ Ip. We will show how one can

decide whether there are circumstances in which the

input of ?ip can cause a controllability problem in t. In

order to do this, we will define the following languages.

1. LT (?ip, t): the set of traces of t that can be followed

by ?ip in t.

2. LF (?ip, t): the set of traces of t that cannot be fol-

lowed by ?ip in t.

It is straightforward to define finite automata with

these languages by defining appropriate sets of final
states for t. For LT (?ip, t) we simply take t and make

the final states be those from which there are transitions

4 To see that this must be the case, let us suppose that t

can send input ?ip at p ∈ P after the local trace σp is observed
at p and t can send input ?iq at q after the local trace σq is
observed at port q (q 6= p). A race occurs if the SUT produces
any trace σ such that σ ↓Actp= σp and σ ↓Actq= σq .
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with label ?ip and let tT (?ip) denote this FA. In con-

trast, for LF (?ip, t) we take t and make the final states

be those from which there are no transitions with label

?ip and let tF (?ip) denote this FA. This approach works

because we require test cases to be deterministic: for a
trace σ ∈ T r(t) there cannot be more than one path of

t that has label σ.

We can now take the projections at p of these lan-

guages LT (?ip, t) and LF (?ip, t) to form Lp
T (?ip, t) and

Lp
F (?ip, t) respectively. We do this by making every

transition whose label is not in Actp have an empty

label τ . Let the associated FA be tpT (?ip) and tpF (?ip)

respectively. Finally, there is a controllability problem

associated with ?ip if and only if the intersection of
Lp
T (?ip, t) and Lp

F (?ip, t) is non-empty. We can decide

this by taking the product automaton P (tpT (?ip), t
p
F (?ip))

of tpT (?ip) and tpF (?ip) defined as follows.

Definition 7 Let A = (Q1, q01, X, h1, F1) and B =

(Q2, q02, X, h2, F2) be finite automata with the same

alphabets. Then the product automaton P (A,B) is the

finite automaton (Q1 × Q2, (q01, q02), X, h, F1 × F2) in

which h is defined by the following.

1. If (q1, a, q
′
1) ∈ h1 and (q2, a, q

′
2) ∈ h2 then we have

that ((q1, q2), a, (q
′
1, q

′
2)) ∈ h.

2. If (q1, τ, q
′
1) ∈ h1 then ((q1, q2), τ, (q

′
1, q2)) ∈ h for all

q2 ∈ Q2.

3. If (q2, τ, q
′
2) ∈ h2 then ((q1, q2), τ, (q1, q

′
2)) ∈ h for all

q1 ∈ Q1.

The intersection of Lp
T (?ip, t) and Lp

F (?ip, t) is the

language defined by the FA P (tpT (?ip), t
p
F (?ip)). The ap-

proach is summarised in Algorithm 1. If there are con-
trollability problems then the algorithm returns False

and also the set C that contains tuples of the form

(L, ?ip) in which L contains the set of projections, at

p, of traces in T r(t) that are associated with controlla-

bility problems. Specifically, L contains the set of σp ∈
Act∗p where there exist σ1, σ2 ∈ T r(t) such that σp =

σ1 ↓Actp= σ2 ↓Actp , in t we have that σ1 can be followed

by ?ip and in t we cannot follow σ2 by ?ip.

It is clear that tpT (?ip) and tpF (?ip) can be produced
in linear time. In addition, P (tpT (?ip), t

p
F (?ip)) can be

produced in time that is quadratic in terms of the size

of t. We can decide whether P (tpT (?ip), t
p
F (?ip)) defines

the empty language by applying a depth-first search to

determine whether any of the final state are reachable.
This depth-first search operates in time that is linear

in terms of the size of P (tpT (?ip), t
p
F (?ip)) [32] and so

quadratic in the size of t. Thus, Algorithm 1 operates

in time that is quadratic in the size of t and linear in
the size of I.

Given the set C, we can now define the set of con-

trollability problems caused by t: the set of (σ1, σ2, ?ip),

Algorithm 1 Finding controllability problems
Input global test case t.
Output whether t is controllable and a characterisation of
any controllability problems.
Let ans = True.
Let C = ∅
for all p ∈ P and ?ip ∈ Ip do

Produce the FA t
p
T
(?ip) and t

p
F
(?ip).

Produce P (tp
T
(?ip), t

p
F
(?ip)).

if The language L = L(P (tp
T
(?ip), t

p
F
(?ip))) is non-empty

then

ans = False.
C = C ∪ {(L, ?ip)}.

end if

end for

Output ans and C

?ip ∈ Ip, where σ1 ↓Actp= σ2 ↓Actp , in t we have that

σ1 can be followed by ?ip and in t we cannot follow σ2

by ?ip. We will call this Ctr(t) and we now show how

Ctr(t) can be produced if it is finite; naturally, Ctr(t)

is guaranteed to be finite in the important case where

T r(t) is finite.

Let us suppose that Algorithm 1 returns a non-

empty set C and that (L, ?ip) is an element of C for

finite L. We will show how we can produce the corre-

sponding elements of Ctr(t). Let σp = a1 . . . ak be an

element of L. Then we generate the following sets in
which L(σp) is the language (Act \ Actp)

∗{a1}(Act \

Actp)
∗{a2} . . . {ak}(Act \ Actp)

∗ of sequences in Act∗

whose projection at p is σp.

1. L1(t, σp, ?ip) = LT (?ip, t) ∩ L(σp): the set of traces

of t that can be followed by ?ip and whose projection

at p is σp.

2. L2(t, σp, ?ip) = LF (?ip, t) ∩ L(σp): the set of traces
of t that cannot be followed by ?ip and whose pro-

jection at p is σp.

Then we simply add to Ctr the set of (σ1, σ2, ?ip)
such that σ1 ∈ L1(t, σp, ?ip) and σ2 ∈ L2(t, σp, ?ip).

Clearly, this process takes time that is polynomial in

the sizes of t and the resultant set of controllability

problems (the sum of the sizes of the traces in tuples in
Ctr(t)).

In Section 7 we will show how controllability prob-

lems in Ctr(t) can be overcome if Ctr(t) is finite. The

algorithm will be iterative: in each iteration it will add

a coordination message to overcome a controllability
problem in Ctr(t) and then remove from Ctr(t) all

controllability problems resolved by this. In order to

achieve this last step, we will need to be able to decide

whether an element of Ctr(t) is still a controllability
problem even though coordination messages have al-

ready been added. Thus, before we give the algorithm

in Section 7 we show how coordination messages can be
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Fig. 7 Resolving a controllability problem

added to a test case in Section 5 and then, in Section

6, we show how we can decide whether an element of
Ctr(t) has been resolved by the coordination messages

that have been added to t.

5 Adding coordination messages

5.1 Introduction

Work on testing from a DFSM has shown how coordi-

nation messages, sent between the testers, can be used

to overcome controllability problems [5,16,36,35]. Con-
sider, for example, the situation shown in Figure 1. Here

there is a controllability problem because the tester at

L does not know when to send input ?iL. In order to

overcome this it is sufficient for the tester at U to send a

message to the tester at L after it has observed output
!oU . This is shown in Figure 7 in which the coordination

message from U to L is not given a label.

It is straightforward to generalise this approach to

overcome controllability problems in any test sequence
for a DFSM. This can be achieved in the following way

when applying an input sequence x1, . . . , xk such that

the specification contains the trace x1/y1, . . . , xk/yk:

for all 1 ≤ i < k, if the input xi+1 is at a port p ∈ P

such that xiyi ↓Actp= ǫ then we determine which port
q is such that xi ∈ Xq and have the tester at q send a

coordination message to the tester at p after it sends

xi. Then, the tester at p knows to send xi+1 once it

receives this coordination message.
As explained in Section 2, the conditions for a test

case being controllable are quite different when testing

against an IOTS. In addition, typically a test case will

not be a single sequence. In this section we first intro-

duce notation for coordination messages and for adding

these to a global test case.

5.2 Coordination messages

Coordination messages are sent between testers in or-
der to help overcome controllability problems. In previ-

ous work on testing from a DFSM, a coordination mes-

sage contains no additional information: when a tester

observes a coordination message all they know is the

identity of the tester that sent this message (see, for
example, [5]). In contrast, some previous work [23] al-

lows these messages to include additional information.

Let us suppose that we are using coordination mes-

sages that contain no content and we wish to apply the

test case t1 shown in Figure 8 in which p 6= q. Here

there are two sources of controllability problems:

1. the tester at p does not observe the events before it

is meant to apply its inputs and so does not know

when to send an input; and

2. the choice of input to be sent at p depends on the

output produced at q but the tester at p cannot
observe the output.

As a result of the first issue identified, in order to

make t1 controllable we have to add coordination mes-

sages from q to p after both !oq and !o′q. However, in

order to overcome the second issue the tester at p has
to differentiate between these two cases and cannot do

so on the basis of the coordination messages since they

both come from q and contain no additional content. In

addition, if q tries to overcome this by sending differ-
ent numbers of messages after !oq and !o′q, say n1 and

n2, then there is a new controllability problem: after

receiving min{n1, n2} coordination messages the tester

at p does not know whether to send an input or wait

for additional coordination messages. Thus, we cannot
use coordination messages, that have no additional con-

tent, to overcome the controllability problems in t1. We

therefore allow coordination messages to have labels.

5.3 Adding messages to test cases

In a global test case we will represent a coordination
message with label l from tester p to tester q by mpq(l)

and so a global tester contains instances of mpq(l). We

assume that a tester will not send a coordination mes-

sage to itself since such messages cannot help the testers
to overcome controllability problems. We let L denote

the set of labels and we let M denote the set of coor-

dination messages and so M = {mpq(l)|p, q ∈ P ∧ p 6=
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Fig. 8 Test case t1

q ∧ l ∈ L}. We will let Mp denote the set of coordina-

tion messages that can be sent by the tester at p and

so Mp = {mpq(l)|q ∈ P \ {p} ∧ l ∈ L}.

Definition 8 Given s ∈ IOTS(I, O) and set M of

coordination messages, a global test case is a process

t ∈ IOTS(I ∪M, O ∪ {δ}) that has a finite number of

states, some of which represent termination (⊥), has no
transitions with label τ , and that satisfies the following

properties.

1. If t
σ

==⇒ t′ for σ ∈ (Act ∪ M)∗ and t′ does not

represent termination then for all !o ∈ O ∪ {δ} we

have that t′ !o−−→ .

2. If t
σ

==⇒ t′ for σ ∈ (Act∪M)∗ then there is at most

one a ∈ I ∪M such that t′ a−−→ .
3. If t

σ
==⇒ t′ and t

σ
==⇒ t′′ for σ ∈ (Act ∪M)∗ then

t′ = t′′.

We assume that a label l used in a coordination mes-
sage from the tester at p to the tester at q is not reused:

for all p, q ∈ P and l ∈ L, a global test case t does not

have σ ∈ T r(t) that contains more than one instance

of mpq(l). This assumption simplifies the analysis and

fits with the algorithms we give for adding coordination
messages to overcome controllability problems5.

Let us suppose that global test case t does not con-

tain coordination messages and that global test case t′

does. We will say that t′ has been produced from t by
adding coordination messages if T r(t′) ↓Act= T r(t).

In this paper we will show how coordination mes-

sages can be added to a global test case t in order to

overcome controllability problems and we will achieve

this by identifying (local) traces after which a partic-
ular coordination message must be sent. In order to

5 It simplifies the analysis by eliminating the issue of
whether there can be degeneracy, as described in work on
MSCs [1]. Here there is degeneracy if two messages with la-
bel l sent from a process p to process q do not arrive in the
order in which they were sent.

represent the resultant global test case t′, we might ei-

ther transform t or produce a representation that has t

and information regarding when coordination messages

must be sent. The former produces a single global test

case and might be achieved in the following way, when
adding a coordination message m to t after a trace σ.

First, we transform t so that there is an acyclic path

with label σ from the initial state and no other transi-

tions to the states before the end of this path; this can
be achieved by copying states where necessary. Next,

if the last transition of this path is (s, a, s′) then we

introduce a new state s′′, remove (s, a, s′), and add

transitions (s, a, s′′) and (s′′,m, s′). This can increase

the number of states of t but this increase is bounded
above by one plus the length of σ. An alternative, which

is likely to be more efficient, is to record when coordi-

nation messages must be sent: if coordination message

m is to be sent by the tester at p after it has observed
σp then we store this pair (σp,m) along with t. Here the

resultant global test case t′ is implicitly defined but it is

straightforward, for example, to define T r(t′). However,

the choices regarding how to represent such a global

test case t′ is not an issue we will investigate further:
we will only be concerned with deciding when to send

coordination messages and will assume that T r(t′) is

defined.

Since communications between testers is asynchronous,
the point at which a coordination message from p to q

is sent does not define the point at which it arrives at q.

We might therefore have included both the sending and

arrival of coordination messages in a global test case.

However, this approach has a practical problem: there
may be many points in a global test case at which a co-

ordination message could arrive and so if this arrival is

explicitly represented then effectively we have to branch

on when it arrives. This could lead to an exponential
(in the number of coordination messages) increase in

the size of the global test case. Thus, we only include

the sending of a coordination message in a global test

case.

As only the sending of a coordination message is
explicitly represented as an event in a global test case,

there is a need to specify the causality introduced by a

coordination message. Let us suppose, for example, that

in σ ∈ T r(t′) there is a coordination message mpq(l)

and later there is an input ?iq at q. The question is: does
the tester at q wait to receive the coordination message

mpq(l) before sending ?iq. The tester at p sends a coor-

dination message to the tester at q in order to provide

information that will be used in order to decide when
to send future input. Thus, in this paper we assume

that in such cases the tester at q does wait for the co-

ordination message to arrive; later we discuss how the
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proposed approach can be adapted to work with differ-

ent assumptions. As mentioned earlier, we also assume

that whenever quiescence is observed all coordination

messages that have been sent are received; this cor-

responds to the system formed from the SUT and its
communications channels being quiescent.

Assumption 1 In a global test case t, if σ ∈ T r(t)

includes an event a ∈ Iq∪Mq then the tester at q should

not send a until all coordination messages previously

sent to q in σ arrive.

Assumption 2 In testing, all coordination messages
that have been sent are received before quiescence is ob-

served.

We now introduce notation for the events associated
with a global trace that involves coordination messages.

A coordination message leads to two events: the sending

of the message and the arrival of the message. In a

trace we will represent the sending of mpq(l) (by the
tester at p) by event espq(l) and we will represent the

receiving of mpq(l) (by the tester at q) by event erpq(l).

We will let Es
p (p ∈ P) denote the set of events that

are the sending of a coordination message by the tester

at p and so Es
p = {espq(l)|q ∈ P \ {p} ∧ l ∈ L}. We

will also let Er
p denote the set of events that involve

the tester at p receiving a coordination message and so

Er
p = {erqp(l)|q ∈ P\{p}∧l ∈ L}. Similarly, for p ∈ P we

let Ep = Es
p ∪ Er

p and we also let Es denote the union,
over p ∈ P , of the Es

p and Er denote the union, over

p ∈ P , of the Er
p . Finally, we let E = Es ∪ Er.

We now explore properties of global test cases that

contain coordination messages and show how we can

decide whether controllability problems have been re-
solve by the addition of these coordination messages.

6 Examining traces that have coordination

messages

In Section 7 we will give an algorithm for adding coordi-

nation messages in order to overcome the controllability
problems in a global test case t that contains a finite

number of such controllability problems. The algorithm

will be iterative: in each iteration a coordination mes-

sage will be added in order to overcome a particular

controllability problem in Ctr(t). The algorithm will
then examine the remaining elements in Ctr(t) in order

to determine whether they have also been resolved. In

this section we therefore show how we can decide, given

a global test case t and (σ1, σ2, ?ip) ∈ Ctr(t), whether
the tuple (σ1, σ2, ?ip) still corresponds to a controlla-

bility problem in a global test case t′ formed from t by

adding coordination messages.

Given the trace σ of a global test case t′, that pos-

sibly contains coordination messages, σ defines a set of

events such as the sending of an input or the recep-

tion of a coordination message. We let E(σ) denote the

events associated with σ, with labels added if an obser-
vation is repeated. A coordination messagempq(l) leads

to two events: the sending of the message (espq(l)) and

the arrival of the message (erpq(l)). In contrast, each in-

put, output or observation of quiescence in σ has one
corresponding event in E(σ). We let Ep(σ) denote the

set of events from E(σ) that are observed at p: input at

p, output or quiescence observed at p, the sending of a

coordination message by the tester at p and the tester

at p receiving a coordination message.

Given trace σ, there might be several alternative

orders in which the events in E(σ) can occur since, for

example, a coordination message sent from port p to

port q might arrive either before or after an output !oq
is observed at q. We will show how we can represent
these alternative events using a partial order on E(σ).

At port p the sequence of events, ignoring coordination

messages, must be σ ↓Actp . In addition, our assump-

tions regarding coordination messages (Assumptions 1
and 2) introduce further constraints and we know that a

coordination message is received after it is sent. We can

bring together all of these constraints to define a (strict)

partial order<σ on E(σ) that defines the causalities be-

tween these events. In order to simplify the definition
we let input, output or quiescence ai in σ be represented

by event ai.

Definition 9 Given σ = a1, . . . , ak ∈ (Act ∪M)∗, we

let<σ be the transitive closure of the following relations
on E(σ).

1. Inputs, outputs, and quiescence observed at p must

occur in the order specified in σ: if ai, aj ∈ Actp for

some p ∈ P , i < j, then we have that ai <σ aj .
2. An input at q will not be sent until all coordination

messages already sent to q have arrived (Assump-

tion 1): if ai = mpq(l) and aj ∈ Iq with i < j then

erpq(l) <σ aj .
3. The tester at p will not send a coordination message

until all earlier events at p have occurred and all

coordination messages already sent to p have arrived

(Assumption 1):

(a) if ai ∈ Actp and aj = mpq(l) with i < j then
ai <σ espq(l);

(b) if ai = mp′p(l
′) and aj = mpq(l) with i < j then

erp′p(l
′) <σ espq(l).

4. A coordination message is received after it is sent:
if ai = mpq(l) then espq(l) <σ erpq(l).

5. The observation of quiescence must be after the re-

ception of all previously sent coordination messages
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(Assumption 2): if ai = mpq(l) and aj = δ, i < j,

then erpq(l) <σ aj.

Given port p ∈ P , we let <p
σ denote <σ restricted

to Ep(σ).

For a trace σ ∈ (Act ∪ M)∗ we have that <σ is

a strict partial order and so (E(σ), <σ) is a partially
ordered set (poset). We will let L(E(σ), <σ) denote

the set of linearisations of (E(σ), <σ). Since <σ de-

fines the causalities between events in E(σ), we have

that L(E(σ), <σ) contains the set of all traces that can

occur if each tester sees a sequence of events that is
consistent with σ.

Consider, for example, σ =?i1!o1?i2. This has three

events: ?i1, !o1, and ?i2. In addition, ?i1 <σ!o1 (the first

rule) but the other pairs of events are unrelated under
<σ. Thus, there are several orders: the event ?i2 might

have occurred before ?i1, between ?i1 and !o1, or after

!o1.

Now consider σ =?i1!o1m12?i2. This has five events:
?i1, !o1, es12, er12, and ?i2. In addition, we have that

?i1 <σ!o1 (the first rule); !o1 <σ es12 (the third rule);

es12 <σ er12 (the fourth rule); and er12 <σ?i2 (the second

rule). Thus, there is only one order in which the events
can occur.

We now consider the situation in which (σ1, σ2, ?ip) ∈

Ctr(t) and t′ is a global test case formed from adding

coordination messages to t: we wish to determine whether
(σ1, σ2, ?ip) corresponds to a controllability problem in

t′. First we define what it means for (σ1, σ2, ?ip) ∈

Ctr(t) to correspond to a controllability problem in t′.

In the next section we show how coordination mes-
sages can be added to a test case to overcome control-

lability problems. An important point is that a tester

should be able to know when to send an input on the

basis of the observations it has made, rather than on

the basis of observations it has yet to make but might
later make. Let us suppose that we wish to use coordi-

nation messages to overcome a controllability problem

in which the tester at port p should send input after

σ1 and not after σ2. Then we need that the tester at
p makes an observation, a local trace, after which it

knows that it should send the input. This would not be

the case if, for example, the tester should send the in-

put after σ but not after σerqp(l) since in this situation

after observing σ the tester does not know whether to
send the input or wait for eeqp(l). Thus, after coordi-

nation messages are added the local traces at p should

be different and not through there being extra coordi-

nation messages at the end of the trace corresponding
to σ2. By definition, coordination messages that might

arrive at p at the end of a trace must have been sent

after the last input at p and the last observation of qui-

escence. We therefore have the following definition of

what it means for a pair of traces to correspond to a

controllability problem.

Definition 10 Let us suppose that (σ1, σ2, ?ip) ∈ Ctr(t)
and t′ is a global test case formed from t by adding

coordination messages. Then (σ1, σ2, ?ip) ∈ Ctr(t) cor-

responds to a controllability problem in t′ if there exist

traces σ2
1 , σ

2
2 such that the following hold.

1. σ2
1?ip ∈ T r(t′) and there exists σ′ ∈ T r(t′) such

that σ2
2 is formed from σ′ by removing coordina-

tion messages sent to p in σ′ that are not in σ2
1 and

that are sent after the last input at p and the last

observation of quiescence;

2. σ2
1 ↓Act= σ1 and σ2

2 ↓Act= σ2;
3. There exist linearisations σ′

1 and σ′
2 of (E(σ2

1), <σ2
1
)

and (E(σ2
2), <σ2

2
) respectively such that σ′

1 ↓Actp∪Ep
=

σ′
2 ↓Actp∪Ep

.

We also say that σ2
1 and σ2

2 implement (σ1, σ2, ?ip).

This definition requires that there are traces σ2
1 and

σ2
2 that correspond to σ1 and σ2 in the sense that if

we remove the coordination messages from σ2
1 and σ2

2

then we obtain σ1 and σ2. The first condition allows us

to remove coordination messages, to form σ2
2 , if these

are sent to p but might arrive at the end of the trace;

this avoids the possibility of the tester at p having to
decide to send ?ip on the basis of not observing such

coordination message. The last part requires that there

are possible traces in L(E(σ2
1), <σ2

1
) and L(E(σ2

2), <σ2
2
),

that look identical to the tester at p.

Note that for some such (σ1, σ2, ?ip) ∈ Ctr(t) and t′,

there is only one choice of σ2
1 when finding σ2

1 and σ2
2

that implement (σ1, σ2, ?ip). This is because a global

test case is deterministic and so cannot have a state

from which it is possible to either send a coordination

message or supply input. There may be several choices

of σ′ but it does not matter which is used since the
resultant σ2

2 all have the same sets of events at p and

the same partial order defined on these events.

We will not want to generate the sets of linearisa-

tions of (E(σ1), <σ1) and (E(σ2), <σ2) since these sets

may contain exponentially many sequence. We now de-

fine a predicate Ctr(σ1, σ2, ?ip, t
′) and below we prove

that this is true if and only if (σ1, σ2, ?ip) ∈ Ctr(t)

corresponds to a controllability problem in t′.

Definition 11 Given s ∈ IOTS(I, O), global test case

t ∈ IOTS(I ∪M, O ∪ {δ}), (σ1, σ2, ?ip) ∈ Ctr(t), and
t′ formed from t by adding coordination messages, we

let Ctr(σ1, σ2, ?ip, t
′) be true if and only if there exist

σ2
1 , σ

2
2 with σ2

1?ip ∈ T r(t′) such that the following hold:
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1. There exists σ′ ∈ T r(t′) such that σ2
2 can be pro-

duced from σ′ by removing coordination messages

to p that are not in σ2
1 and that are sent after the last

input at p and the last observation of quiescence;

2. σ2
1 ↓Act= σ1 and σ2

2 ↓Act= σ2;
3. σ2

1 ↓Actp∪Mp
= σ2

2 ↓Actp∪Mp
;

4. σ2
1 and σ2

2 contain the same sets of coordination mes-

sages sent to p; and

5. G(<p

σ2
1
∪ <p

σ2
2
) is acyclic.

Notice here that we need to define <p

σ2
1
and <p

σ2
2
on

the same set of events at p; these correspond to ver-

tices of G(<p

σ2
1
∪ <p

σ2
2
). However, this is straightforward

since:

1. σ2
1 ↓Actp∪Mp

= σ2
2 ↓Actp∪Mp

and so we give corre-

sponding events in σ2
1 ↓Actp∪Mp

and σ2
2 ↓Actp∪Mp

the same name.
2. Labels of coordination messages are not repeated so

for every coordination message mqq′(l) that is in σ2
1

and σ2
2 we use the same names for the events that

involve esqq′(l) and we use the same names for the
events that involve erqq′ (l).

Before proving that Ctr(σ1, σ2, ?ip, t
′) is the predi-

cate we require we prove a result regarding posets.

Lemma 1 Let us suppose that (A,<) is a poset, A is

finite and A′ is a subset of A. If σ′ is a linearisation

of (A′, <) then there exists a linearisation σ of (A,<)

such that σ′ = σ ↓A′ .

Proof We will use proof by induction on the size of

A. The result clearly holds in the base case where A

is empty. Now assume that the result holds whenever
A has fewer than k > 0 elements and consider a case

where A has k elements.

The result holds immediately if σ′ has length 1 or

less so we will assume that σ′ has length at least 2. We
can rewrite σ′ as σ′

1a and know that a is not before

any element of σ′
1 under <. Now define the set A1 that

contains all elements of A that are in σ′
1 or are before

elements of σ′
1 under <. Clearly A1 does not contain a.

Let A2 = A \A1.

Since σ′ has length at least two we know that A1 and

A2 are both non-empty. From the inductive hypothe-

sis we know that there are linearisations σ1 and σ2 of

(A1, <) and (A2, <) respectively such that σ1 ↓A′= σ′
1

and σ2 ↓A′= a. In addition, we cannot have a1 ∈ A1 and

a2 ∈ A2 such that a2 < a1. Thus, σ = σ1σ2 is a lineari-

sation of (A,<) and σ ↓A′= σ1 ↓A′ σ2 ↓A′= σ′
1a = σ′

as required. The result therefore holds.

We now prove that Ctr(σ1, σ2, ?ip, t
′) is the predi-

cate we require.

Proposition 2 Let us suppose that σ1, σ2 ∈ Ctr(t)

and that t′ has been formed by adding coordination mes-

sages to t. Then (σ1, σ2, ?ip) corresponds to a control-

lability problem in t′ if and only if Ctr(σ1, σ2, ?ip, t
′) is

true.

Proof First assume that (σ1, σ2, ?ip) corresponds to a

controllability problem in t′. Thus, there exist traces

σ2
1 , σ

2
2 as in Definition 10 with σ2

1 ↓Act= σ1 and σ2
2 ↓Act=

σ2, and σ2
1?ip ∈ T r(t′) such that there exist linearisa-

tions σ′
1 and σ′

2 of (E(σ2
1), <σ2

1
) and (E(σ2

2), <σ2
2
) re-

spectively with σ′
1 ↓Actp∪Ep

= σ′
2 ↓Actp∪Ep

. Clearly, we

must therefore have that σ2
1 ↓Actp∪Mp

= σ2
2 ↓Actp∪Mp

and that σ2
1 and σ2

2 contain the same sets of coor-

dination messages sent to p and so it is sufficient to

prove that G(<p

σ2
1

∪ <p

σ2
2
) is acyclic. Let σ′′ denote

σ′
1 ↓(Actp∪Ep). Thus σ

′′ is consistent with both <p

σ2
1
and

<p

σ2
2
and so G(<p

σ2
1
∪ <p

σ2
2
) is acyclic as required.

Now assume that Ctr(σ1, σ2, ?ip, t
′) is true. Thus,

there exist σ2
1 , σ

2
2 as in Definition 11 with σ2

1?ip ∈ T r(t′)

such that σ2
1 ↓Act= σ1 and σ2

2 ↓Act= σ2; σ
2
1 ↓Actp∪Mp

=
σ2
2 ↓Actp∪Mp

; σ2
1 and σ2

2 contain the same sets of co-

ordination messages sent to p; and G(<p

σ2
1
∪ <p

σ2
2
) is

acyclic. Consider these σ2
1 , σ

2
2 and it is sufficient to prove

that there exist linearisations σ′
1 and σ′

2 of (E(σ2
1), <σ2

1
)

and (E(σ2
2), <σ2

2
) respectively such that σ′

1 ↓Actp∪Ep
=

σ′
2 ↓Actp∪Ep

.

Since G(<p

σ2
1
∪ <p

σ2
2
) is acyclic, there must be some

σ′′ that is a sequence of the events in Ep(σ
2
1) and Ep(σ

2
2)

that is a linearisation under both <p

σ2
1
and <p

σ2
2
and so

also under <σ2
1
and <σ2

2
. In addition, the sets of events

in Ep(σ
2
1) and Ep(σ

2
2) are identical. Thus, by Lemma

1, there exist linearisations σ′
1 and σ′

2 of (E(σ2
1), <σ2

1
)

and (E(σ2
1), <σ2

1
) respectively such that σ′

1 ↓(Actp∪Ep)=

σ′′ = σ′
2 ↓(Actp∪Ep) as required.

It is clear that we can decide whether predicate

Ctr(σ1, σ2, ?ip, t
′) holds in polynomial time. In the next

section we use this predicate in an iterative algorithm
that adds coordination messages to a test case in order

to overcome controllability problems.

In this paper we have assumed that when quies-
cence is observed then all coordination messages that

have been sent are received. If we wished to relax this

assumption then, for a trace σ, we would obtain a dif-

ferent definition of <σ but otherwise the method would
remain the same. If we do not require a tester to wait

to receive coordination messages then again we obtain

a slightly different definition of <σ.
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7 Using coordination messages to overcome

controllability problems

This section explores the use of coordination messages

to make a global test case t controllable and gives an al-

gorithm for adding such coordination messages. We re-

strict attention to the case where there are only finitely
many controllability problems in the set Ctr(t). When

there are no coordination messages, controllability prob-

lems occur if the tester at port p should supply an input

?ip after a global trace σ1 but not after a global trace
σ2 with σ1 ↓Actp= σ2 ↓Actp . However, if another tester

q observes a difference then there is the potential for it

to send a coordination message to p so that the tester

at p can differentiate between σ1 and σ2.

First we explore some pathological situations where
we cannot expect to be able to overcome controllability

problems. Let us suppose that the tester at p should

send an input after σ1 but not after σ2 and σ1 ∼ σ2.

Then we have a problem: no tester observes a difference.
These global traces are, to the environment, equivalent

and so we should expect a global test case t to con-

sider them to be equivalent. Further, let us suppose

that we want to send input ?i2 after !o1!o2 but not

after !o1!o1!o2. In order to differentiate between these
cases we need to send a coordination message from the

tester at port 1 to the tester at port 2 after !o1!o1 but

after observing !o2 the tester at port 2 does not know

whether to wait for this coordination message.
The problem in the second example is that the tester

at port 2 needs to make a decision based on the absence

of an observation (the message from the tester at port 1)

rather than on the basis of an observation made. More

generally, we have a problem if for every port q 6= p we
have that σ1 ↓Actq∪Mq

is a prefix of σ2 ↓Actq∪Mq
and

the tester at p should send input ?ip after σ1 but not af-

ter σ2. To overcome such a situation with coordination

messages from q to p, the tester at q would have to send
a message if the extra observations after σ1 ↓Actq∪Mq

are made and so we would require the tester at p to send

its input based on not observing such (asynchronous)

coordination messages. We will not consider such sit-

uations: the idea is that the tester should be able to
make a decision to send an input or coordination mes-

sage on the basis of observations it has made, rather

than observations it has not made yet but might still

make.

Definition 12 A global test case t, that has no coordi-

nation messages, is strongly uncontrollable for IOTS s

if there exists σ1, σ2 ∈ T r(s, t) and input ?ip ∈ Ip with
σ1?ip ∈ T r(s, t), σ2?ip 6∈ T r(s, t), σ1 ↓Actp= σ2 ↓Actp

such that σ1 ↓Actq is a prefix of σ2 ↓Actq for all q ∈

P \ {p}.

We therefore assume that any global test case to be

used is not strongly uncontrollable. Below we give an

algorithm that adds coordination messages to a global

test case that is not strongly uncontrollable. This op-

erates by identifying all of the controllability problems,
using Algorithm 1, and then resolving these one at a

time.

We now show how we can resolve one controllability

problem using coordination messages. In the following

we consider two cases for some c = (σ1, σ2, ?ip) ∈ Ctr(t)

that corresponds to a controllability problem in test
case t′ formed by adding coordination messages to t.

Let σ2
1 and σ2

2 be traces of t′ that implement c. Let

σq
1 = σ2

1 ↓Actq∪Mq
and σq

2 = σ2
q ↓Actq∪Mq

for some port

q such that σ2
1 ↓Actq∪Mq

is not a prefix of σ2
2 ↓Actq∪Mq

.

Since we only consider test cases that are not strongly
uncontrollable, there must be some such q. In the first

case, σq
2 is a proper prefix of σq

1 . Thus, if the tester at

q observes σq
1 and then sends a message to the tester

at p then the tester at p is able to distinguish between
these two traces (σ2

1 and σ2
2) through receiving the co-

ordination message and so this controllability problem

is resolved.

In the second case, σq
2 is not a prefix of σq

1 . However,

there must be some longest common prefix of σq
1 and

σq
2 and we call this σq. Further, there must be some

a ∈ Act ∪ M such that σqa is a prefix of σq
1 . Thus, it

is sufficient for the tester at q to send a coordination

message to the tester at p after it observes σqa since

this allows the tester at p to distinguish between σ2
1

and σ2
2 .

Note that in both cases we must have that the tester

at q sends the coordination message added whenever it

observes the preceding sequence of events (σq
1 or σqa),

even as part of other traces; otherwise the sending of

this coordination message introduces a controllability

problem.

Proposition 3 Let us suppose that s ∈ IOTS(I, O),

t is a global test case that is not strongly uncontrol-
lable and t′ is a global test case that has been formed

by adding coordination messages to t. Further, assume

that the sending of coordination messages in t′ can-

not lead to controllability problems. Let us suppose that
c = (σ1, σ2, ?ip) ∈ Ctr(t) corresponds to a controllabil-

ity problem in t′ and that σ2
1 and σ2

2 implement c. Let

q be a port such that σq
1 = σ2

1 ↓Actq∪Mq
is not a prefix

of σq
2 = σ2

2 ↓Actq∪Mq
. Let t′′ be the global test case pro-

duced from t′ by applying one of the following using a
label l not used in coordination messages in t′.

1. Case 1: σq
2 is a proper prefix of σq

1. Form t′′ by

adding to t′ the coordination message mqp(l) after

every minimal trace σ′′ of t′ such that σ′′ ↓Actq∪Mq
=
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σq
1 . Here minimality means that no proper prefix of

σ′′ has projection σq
1 on q.

2. Case 2: σq
2 is not a prefix of σq

1. Let σ
q denote the

longest common prefix of σq
1 and σq

2. Define a ∈

Act ∪ M such that σqa ∈ pref(σq
1) and form t′′ by

adding to t′ the coordination message mqp(l) after

every minimal trace σ′′ of t′ such that σ′′ ↓Actq∪Mq
=

σqa.

Then c does not correspond to a controllability problem
in t′′.

Proof Since the sending of coordination messages in t′

does not cause controllability problems, a coordination
message from a port p′ must have been added in a con-

sistent manner: if it is sent after a trace σ′ then it must

be sent after all σ′′ with σ′′ ↓Actp′
= σ′ ↓Actp′

. Thus,

while there may be several choices of σ2
2 , we have that

if σ2
2 ↓Actq is a prefix of σ2

1 ↓Actq for one choice then it

is a prefix for all such choices since the choices can only

differ in coordination messages. Thus, the choice of σ2
2

is not important.

There are two cases. In the first case a coordination

message is sent to p after q observes σq
1 and this occurs

if the test case follows the path with label σ2
1 but not if

it follows the path with label σ2
2 and so the result holds.

Similarly, in the second case a coordination message

is sent to p after q observes σqa and this occurs if the

test case follows the path with label σ2
1 but not if it

follows the path with label σ2
2 and so the result holds.

Algorithm 2 Adding coordination messages to global

test case t
Input global test case t for s and finite set C = Ctr(t) of
controllability problems.
Let t′ = t.
while C 6= ∅ do

Choose some c = (σ1, σ2, ?ip) ∈ C such that there is no
c′ = (σ′

1, σ
′
2, ?i

′
p) ∈ C with σ′

1 a proper prefix of σ1.
Choose σ2

1 and σ2
2 that implement c in t′.

Choose a port q 6= p such that σ
q
1 = σ2

1 ↓Actq∪Mq
is not

a prefix of σq
2 = σ2

2 ↓Actq∪Mq
.

Choose a label l that has not been previously used.
if σ

q
2 is a prefix of σq

1 then

Add to t′ the coordination message mqp(l) after every
minimal trace σ such that σ ↓Actq∪Mq

= σ
q
1.

else

Let σq denote the longest common prefix of σ
q
1 and

σ
q
2.

Define a ∈ Act ∪M such that σqa ∈ pref(σq
1).

Add to t′ the coordination message mqp(l) after every
minimal trace σ such that σ ↓Actq∪Mq

= σqa.
end if

Remove from C all tuples that do not correspond to con-
trollability problems in t′.

end while

Return t′

Theorem 1 If Algorithm 2 is given a global test case

t that is not strongly uncontrollable then it returns a

controllable global test case.

Proof The algorithm adds coordination messages in a

way that cannot introduce controllability problems. As

noted earlier, for a given c and t′ there is only one choice

of σ2
1 . Further, the coordination message added distin-

guishes between σ2
1 and all of the σ2

2 such that σ2
1 and

σ2
2 implement c. Thus, by Proposition 3, an iteration

of the algorithm overcomes all controllability problems

associated with pairs of traces that implement c. As a

result, the algorithm must terminate and does so once
the current global test case has no controllability prob-

lems and so the result follows.

The number of iterations of Algorithm 2 is bounded
above by the size of Ctr(t) (the sum of the lengths of

the sequences in this set) and each iteration takes time

that is polynomial in terms of the size of Ctr(t) and

the size of t. Thus, Algorithm 2 operates in time that

is polynomial in terms of the size of Ctr(t) and the size
of t.

Algorithm 2 restricts the order in which elements

of Ctr(s, t) are considered: we do not choose some c =

(σ1, σ2, ?ip) ∈ C if there exists c′ = (σ′
1, σ

′
2, ?i

′
p) ∈ C

with σ′
1 a proper prefix of σ1. This is because in such

a situation there is the potential for the coordination
message added to overcome the controllability prob-

lem identified by c′ to also overcome the controllabil-

ity problem identified by c but the converse is not the

case. However, there may still be choices and the po-
tential to make a suboptimal choice. Let us suppose,

for example, that we wish to apply a global test case

t that has a trace !o1!o2?i3. We might identify two el-

ements of Ctr(s, t): (!o1!o2, ǫ, ?i3) and (!o1!o2, !o1, ?i3).

If we first consider (!o1!o2, ǫ, ?i3) then we could add the
message m13(l) after !o1 for some label l. We then have

to add a coordination message for the second element of

Ctr(s, t). In contrast, if we first consider (!o1!o2, !o1, ?i3)

then we add the message m23(l) after !o1!o2 for some
label l and this resolves both controllability problems.

Further optimisations are a topic for future work but

below we prove that the optimisaton problem is NP-

hard.

Now let us suppose that we apply Algorithm 2 to t0.

In t0, controllability problems are caused by the input of
the first ?delete2 and by each of the instance of ?in1. Al-

gorithm 2 might start with (?update1!ok1, ǫ, ?delete2).

This would be resolved by adding a coordination mes-

sage m12(l1) after ?update1!ok1. It might then consider
traces ?update1!ok1m12(l1)?delete2!ok2 and ?update1!ok1
m12(l1)?delete2 and input ?in1 and add m21(l2) after

?update1!ok1m12(l1)?delete2!ok2. Finally, it might con-
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Fig. 9 Global Test Case t0 With Coordination Messages
Added

sider traces ?update1!ok1m12(l1)?delete2!fail2?delete2
!ok2 and ?update1!ok1m12(l1)?delete2!fail2?delete2 and

input ?in1 and add message m21(l3) after ?update1

!ok1m12(l1)?delete2!fail2?delete2!ok2. This leads to the

controllable test case shown in Figure 9.

In this example, it was sufficient to use three co-
ordination messages for a test case that contained 12

events. In contrast, the approach of [23] requires sev-

eral coordination messages for each event.

8 The complexity of the optimisation problem

We have described an algorithm that overcomes con-

trollability problems in a test case by adding coordi-

nation messages. However, the order in which the con-
trollability problems are considered can vary and this

might affect the number of coordination messages used.

It is natural to ask how we can minimise the number

of coordination messages used and we will prove that

this optimisation problem is NP-hard even if we restrict

attention to tree-like global test cases. We will do this

by showing that an instance of the Hitting Set Problem

can be encoded as an instance of our problem.

Definition 13 The Hitting Set Problem is: given a uni-
verse U and a set of subsets S1, . . . , Sz of U , find a

smallest subset S of U such that for all 1 ≤ i ≤ z we

have that S contains an element of Si.

The following result has been proved [24].

Theorem 2 The Hitting Set Problem is NP-complete.

It is now possible to prove that the problem of find-
ing an optimal (minimal) set of coordination messages

to add is NP-hard.

Theorem 3 The problem of adding a minimum num-

ber of coordination messages to a global test case in

order to make it controllable is NP-hard and this is the
case even if we restrict attention to tree-like global test

cases.

Proof We will assume that we have an instance of the

Hitting Set Problem defined by sets S1, . . . , Sz and U =

{x1, . . . , xk}. We will also assume that U = S1∪. . .∪Sz;
if this is not the case then we simply remove elements

from U to ensure that this property holds. The proof

will proceed by producing a global test case t such that

a smallest set of coordination messages, whose inclusion
overcomes the controllability problems in t, defines a

solution to this instance of the Hitting Set Problem.

We will use k+2 ports and form a global test case t

that starts by branching on outputs !o1, . . . , !ok at port

k+1. For each 1 ≤ i ≤ k+2 we let !oi denote an output
at port i. The controllability problems will be caused

by input ?i at port k + 2 and for 1 ≤ i ≤ k we will use

the traces in t that start with !oi to introduce controlla-

bility problems that can be solved using a coordination

message sent from port p to port k + 2 if and only if
xp ∈ Si. We achieve this in the following way.

Let p1, . . . , pr be such that xp ∈ Si if and only if

p ∈ {p1, . . . , pr} and so these indices define the set Si. In

t we follow !oi by two paths and so t branches after !oi.

One path has label !op1 . . .!opr
!ok+2?i while the other

path has label !ok+2. The application of ?i causes a

controllability problem since the labels of these paths

have the same projection at port k + 2. In addition,

we can resolve this controllability problem by adding a
coordination message from port p to port k + 2 if and

only if p ∈ {p1, . . . , pr} and the tester at p sends the

coordination message after observing !op.
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We have defined a global test case t such that each

transition involving the sending of ?i leads to a control-

lability problem. In addition, since these are the only

inputs, there are no additional controllability problems

in t. Further, for the instance of ?i on the branch of t
that starts with !oi we have that the sending of a coor-

dination message from port p can only help overcome

the controllability problem if xp ∈ Si. Since such a co-

ordination message from the tester at p to the tester at
k+2 can be used to overcome this controllability prob-

lem, and we are interested in minimising the number of

coordination messages used, we can assume that all co-

ordination messages used are sent to port k + 2. Thus,

we have that a coordination message can overcome this
controllability problem if and only if it is sent from port

p to port k + 2 after !op is observed and we have that

xp ∈ Si.

Now let us assume that we have found a smallest

set C of such coordination messages that can be added

to t in order to overcome the controllability problems.

Each coordination message in C involves the tester at

a port p sending a coordination message to the tester
at port k+ 2 after observing !op. Let C

′ denote the set

of such p. For all Si, 1 ≤ i ≤ z, we must have that C′

contains some such p with xp ∈ Si and so C′ defines

a hitting set. Further, every hitting set defines some
such set of coordination messages that overcomes the

controllability problems in t. Thus, C defines a solution

to the instance of the Hitting Set Problem. Finally, note

that we can generate t in polynomial time and so the

result follows from Theorem 2.

For tree-like test cases the problem is in NP. To see

this note that we can place a polynomial upper bound

on the number of coordination messages required. Thus,
we can reduce the problem to that of deciding, for k,

whether the controllability problems can be resolved

using k coordination messages. This is in NP since we

can decide in polynomial time whether a global test
case with k coordination messages is controllable.

While the Hitting Set Problem is NP-complete, it

is the dual of the Set Cover Problem and it is known

that greedy algorithms are effective in solving the Set
Cover Problem. Specifically, a greedy algorithm has an

approximation ratio in the order of the log of the size of

the largest set [8,27]. Thus, it seems likely that greedy

algorithms will be effective in producing controllable
test cases with relatively few coordination messages but

the performance of such algorithms in practice is a

problem for future work.

9 Conclusions

When testing a system that has physically distributed

interfaces, called ports, it is normal to place one tester

at each port. The tester at port p observes only the
events at p. This can lead to controllability problems

since the tester at p can only decide when to send input

based on events observed at p. This has led to interest

in approaches that overcome controllability problems

by the sending of coordination messages between the
testers. However, almost all previous work in this area

has considered testing from a deterministic finite state

machine.

This paper investigated the addition of coordina-

tion messages to a test case for use in testing against

an input output transition system (IOTS). We intro-

duced notation for such coordination messages and de-
fined what it means for a test case with coordination

messages to be controllable. Despite controllability be-

ing defined in terms of a potentially infinite number of

traces, we gave a polynomial time algorithm that de-

cides whether a test case is controllable. The algorithm
also returned a characterisation of the set of controlla-

bility problem.

We then considered the problem of overcoming con-
trollability problems in a test case. We restricted at-

tention to test cases that have only a finite number

of controllability problems. We gave an algorithm that

adds coordination messages to a test case in order to
overcome controllability problems. This algorithm op-

erated in time that is polynomial in terms of the size

of the set of controllability problems (the sum of the

lengths of the traces in this set) and the size of the test

case. Finally, we proved that the problem of produc-
ing a minimal sufficient set of coordination messages is

NP-hard, even if we restrict attention to tree-like test

cases.

In this paper we have assumed that all coordination

messages that have been sent will arrive before quies-

cence is observed. We also assume that if a path in a

test case includes the sending of a coordination message
from the tester at p to the tester at q before an input

?iq at q then the tester at q will not supply input ?iq
until the coordination message has arrived. An alter-

native would be to allow the tester to indicate which

inputs have this property or even for a given input to
not be sent until certain coordination messages have

been received. However, it is straightforward to adapt

the approach to different assumptions. Essentially, dif-

ferent assumptions lead to slightly different definitions
of the set of traces that can result when testing using

a global test case t. These changes would require us to

make small changes to the algorithms.
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There are several lines of future research. First, while

we have shown how coordination messages can be used

to overcome controllability problems, it would be in-

teresting to develop heuristics that are effective in re-

ducing the number of messages used. There is also the
problem of minimising the number of labels required in

messages between testers. The motivation for minimis-

ing the number of labels used is that using fewer labels

can lead to shorter messages. There may also be scope
to use similar approaches with models where a transi-

tion can have multiple inputs and outputs [15,3]. Some

previous work on overcoming controllability problems

when testing from a deterministic finite state machine

has considered timing properties [25] and it would be
interesting to consider such properties in the context

of testing from an IOTS. There is also the problem of

making a test case controllable when there are infinitely

many controllability problems. However, it should be
possible to directly extend the method to an important

situation: the test case is used for stress testing and is

a cycle containing an acyclic test case t. Here we can

create a test case t′ that involves repeating t a suffi-

cient number of times; we can then apply the method
to t′. However, there is a need to determine the required

number of repetitions of t to use. Finally, there is a need

to integrate this and similar approaches into test lan-

guages such as TTCN-3 [37] and to carry out real-world
case studies.
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