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Abstract

In this paper, the H∞ filtering problem is investigated for a class of nonlinear systems with randomly occurring incomplete
information. The considered incomplete information includes both the sensor saturations and the missing measurements. A
new phenomenon of sensor saturation, namely, randomly occurring sensor saturation (ROSS), is put forward in order to better
reflect the reality in a networked environment such as sensor networks. A novel sensor model is then established to account for
both the ROSS and missing measurement in a unified representation by using two sets of Bernoulli distributed white sequences
with known conditional probabilities. Based on this sensor model, a regional H∞ filter with a certain ellipsoid constraint is
designed such that the filtering error dynamics is locally mean-square asymptotically stable and the H∞-norm requirement is
satisfied. Note that the regional l2 gain filtering feature is specifically developed for the random saturation nonlinearity. The
characterization of the desired filter gains is derived in terms of the solution to a convex optimization problem that can be
easily solved by using the semi-definite programme method. Finally, a simulation example is employed to show the effectiveness
of the filtering scheme proposed in this paper.

Key words: Randomly occurring sensor saturations; missing measurements; nonlinear systems; regional H∞ filters; random
incomplete information.

1 Introduction

The past few decades have witnessed an ever increasing
research interest in the filtering or state estimation prob-
lems that are fundamental to control and signal process-
ing areas. For example, the renowned Kalman filtering
theory serves as an essential part of the development of
space and military technology [4]. A variety of perfor-
mance requirements have been proposed in the literature
for the filter design, such as the H∞ specification, the
minimum variance requirement, the distributed collab-
orative behavior and the so-called admissible variance
constraint. For example, the extended Kalman filters
have been designed in [11] for nonlinear deterministic
systems and in [17] for nonlinear stochastic systems. The
robust filtering problems have been extensively studied
in [19, 22] for systems with norm-bounded uncertain-
ties and in [9, 15] for uncertain systems with integral
quadratic constraint. The filters with error variance con-
straints have been exploited in [19,22] for systems which
are subject to the noises with known statistics. The hy-
brid filtering problems have been investigated in [24] by
using Markov chain approaches. The optimal filters have
been designed in [1,2] for polynomial systems. Moreover,
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the H∞ filtering problems have recently received much
research attention by using the linear matrix inequality
(LMI) approach, see e.g. [6, 13, 16, 20].

Most filter design approaches available rely on the ideal
assumption that there is a continuous flow of mea-
surement signals with unlimited amplitudes. However,
perfect communication is not always possible in many
engineering systems especially in a networked environ-
ment. For example, due to sensor temporal failure or
network transmission delay/loss [6, 18, 19], at certain
time points, the system measurement may contain noise
only, which means the real signal is missing. Filtering
problem with missing measurements has gained consid-
erable research attention and many results have been
reported in the literature, see [12, 19]. A common way
for handling the missing measurement is to utilize the
Bernoulli distributed (binary switching) white sequence
specified by a conditional probability distribution in
the output equation. Such kind of “binary” description
has been employed in many papers such as [7,12,19,25]
for filtering problems of linear/nonlinear systems with
probabilistic measurement losses. It is worth mentioning
that, comparing to large amount of results for missing
measurements, the corresponding filter design problem
for signals with limited amplitudes or saturation has
received much less focus of research despite the fact
that sensor saturations occur very often in practical
engineering.

In reality, the obstacles in delivering the high perfor-
mance promises of traditional filter theories are often
due to the physical limitations of system components, of
which the most commonly encountered one stems from
the saturation that occurs in any actuators, sensors, or
certain system components. Saturation brings in nonlin-
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ear characteristics that can severely restrict the amount
of deployable filter scheme. Such a characteristic not
only limits the filtering performance that can otherwise
be achieved without saturation, it may also lead to un-
desirable oscillatory behavior or, even worse, instability.
Therefore, the control problem for systems under actu-
ator/sensor saturations have attracted considerable re-
search interest (see e.g. [3, 8, 26]) and the related filter-
ing problem has also gained some scattered research at-
tention [21,23]. It should be pointed out that, in almost
all relevant literature, the saturation is implicitly as-
sumed to occur already. However, in networked environ-
ments such as wireless sensor networks, the sensor satu-
ration itself may be subject to random abrupt changes,
for example, random sensor failures leading to inter-
mittent saturation, sensor aging resulting in changeable
saturation level, repairs of partial components, changes
in the interconnections of subsystems, sudden environ-
ment changes, modification of the operating point of a
linearized model of a nonlinear systems, etc. In other
words, the sensor saturations may occur in a probabilis-
tic way and are randomly changeable in terms of their
types and/or intensity. Such a phenomenon of sensor
saturation, namely, randomly occurring sensor satura-
tion (ROSS), has been largely overlooked in the area.
It is, therefore, the main purpose of this paper to bring
the issue of ROSS to the readers’ attention in order to
better reflect the random nature of sensor saturations
in large-scale networked systems such as wireless sensor
networks.

In this paper, we aim to deal with theH∞ filtering prob-
lem for a class of nonlinear systems with randomly oc-
curring incomplete information. The considered incom-
plete information includes both the sensor saturations
and themissingmeasurements. A regionalH∞ filter with
a certain ellipsoid constraint is designed such that the
filtering error dynamics is locally mean-square asymp-
totically stable and the H∞-norm requirement is satis-
fied. Here, the regional l2 gain filtering feature is specif-
ically developed for addressing the random saturation
nonlinearity. The characterization of the desired filter
gains is derived in terms of the solution to a convex opti-
mization problem that can be easily solved by using the
semi-definite programme method. A simulation exam-
ple is employed to show the effectiveness of the filtering
scheme proposed. The main novelty lies in three aspects:
1) the phenomenon of ROSS that typically exists in net-
worked environments is put forward for investigation;
2) a novel sensor model is established to take both the
ROSS and missing measurement into account; and 3) a
new notion of domain of attraction in the mean square
sense is introduced and a certain ellipsoid constraint is
imposed on the desired H∞ filter in the presence of ran-
dom saturation nonlinearity.

Notation The notation used here is fairly standard
except where otherwise stated. R

n denotes the n di-
mensional Euclidean space. ‖A‖ refers to the norm of

a matrix A defined by ‖A‖ =
√

trace(ATA). The no-
tation X ≥ Y (respectively, X > Y ), where X and Y
are real symmetric matrices, means that X − Y is pos-
itive semi-definite (respectively, positive definite). MT

represents the transpose of the matrix M . I denotes
the identity matrix of compatible dimension. diag{· · · }
stands for a block-diagonal matrix and the notation

diagn{•} is employed to stand for diag{
n

︷ ︸︸ ︷•, · · · , •}. E{x}
stands for the expectation of the stochastic variable x.
Prob{·} means the occurrence probability of the event
“·”. L2([0,∞),Rn) is the space of square summable
n-dimensional vector-valued functions. In symmetric
block matrices, “∗” is used as an ellipsis for terms in-
duced by symmetry. Matrices, if they are not explicitly
specified, are assumed to have compatible dimensions.

2 Problem Formulation and Preliminaries

Consider a nonlinear discrete-time system
{
xk+1 = f(xk) +Bwk

zk = Mxk
(1)

and m sensors with both saturation and missing mea-
surements

yik = αi
kσ(Cixk) + (1 − αi

k)β
i
kCixk +Div

i
k, (2)

i = 1, 2, . . . ,m, where xk ∈ R
n is the state vector,

zk ∈ R
r is the output vector to be estimated, yik ∈ R

is the measurement received by sensor i, wk ∈ R
p and

vik ∈ R represent, respectively, the process noise belong-
ing to L2([0,∞),Rp) and the measurement noise for sen-
sor i belonging to L2([0,∞),R). f : Rn → R

n is a con-
tinuously vector-valued function. B, M , Ci, and Di are
known matrices with appropriate dimensions.

The saturation function σ: R → R is defined as [3,21,23]:

σ(v) = sign(v)min{1, |v|} (3)

where the notation of “sign” denotes the signum func-
tion. Note that, without loss of generality, the saturation
level is taken as unity here.

For every i (1 ≤ i ≤ m), αi
k ∈ R and βi

k ∈ R are
Bernoulli distributed white sequences taking values on
0 and 1 with
{
Prob{αi

k = 1} = µi

Prob{αi
k = 0} = 1− µi

and

{
Prob{βi

k = 1} = νi

Prob{βi
k = 0} = 1− νi

,

respectively, where µi, νi ∈ [0, 1] are known constants.
Throughout the paper, the stochastic variables αi

k and
βi
k are independent mutually in all i (1 ≤ i ≤ m).

Remark 1 The sensor saturation is one of the most im-
portant issues in control community that has received an
increasing amount of research attention, see e.g. [3, 8,
21,23,26]. In practical engineering especially networked
control systems, the sensor saturation often occurs in a
probabilistic way due to the random abrupt changes. For
example, it has been shown in [5] that the battery recovery
effect exhibited in wireless sensor networks is subject to
the saturation threshold dependent on the random sens-
ing activities, and a Markov chain model has been estab-
lished to capture the random sensor saturations and fur-
ther study the effectiveness of duty cycling and buffering.
In [10], the problem of distributed average consensus has
been investigated for sensor networks with quantized data
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and random link failures leading to random sensor satu-
rations, and the quantizer parameters have then been de-
signed based partially on the desired probability of satura-
tion occurrence. In [14], the transmission of a noisy sig-
nal by sensor devices has been analyzed where the sensor
devices are linear for small inputs and saturate at large
inputs. It has been shown in [14] that large information-
carrying signals can be randomly saturated (distorted) in
their transmission because of the addition of noise.
Remark 2 Another network-induced phenomenon,
probabilistic missing measurements, is also inevitable in
a networked environment due to the limited bandwidth
of the channels for signal transmission. The newly pro-
posed sensor model (2) is capable of accounting for both
the phenomena in a unified representation. Specifically,
if αi

k = 1, it can be seen that the sensor i is subject to
saturation only; if αi

k = 0 and βi
k = 1, it means that the

sensor iworks normally; if αi
k = 0 and βi

k = 0, the sensor
i receives the noise only, implying that the information
transmitted from system (1) to sensor i is missing.
Assumption 1 The nonlinear function f satisfies the
following sector-bounded conditions:

[f(x)− U1x]
T [f(x)− U2x] ≤ 0, ∀x ∈ R

n (4)

where U1, U2 ∈ R
n×n are real matrices of appropriate

dimensions and U = U1 − U2 is a symmetric positive
definite matrix.
For notational brevity, we set

ỹk =
[

y1k y2k . . . ymk

]T

,Λαk
= diag{α1

k, α
2
k, . . . , α

m
k },

ṽk =
[

v1k v2k . . . vmk

]T

,Λβk
= diag{β1

k, β
2
k, . . . , β

m
k },

Λ̄α = diag{µ1, µ2, . . . , µm}, Λ̄β = diag{ν1, ν2, . . . , νm},

C̃ =
[

CT
1 CT

2 . . . CT
m

]T

, D̃ = diag{D1, D2, . . . , Dm}.

Then, the sensor model (2) can be expressed in the fol-
lowing compact form:

ỹk =Λαk
σ(C̃xk) + (I − Λαk

)Λβk
C̃xk + D̃ṽk

where σ(C̃xk) :=
[

σ(C1xk) σ(C2xk) . . . σ(Cmxk)
]T

.

Here, the notation σ has been slightly abused to denote
both the scalar-valued and the vector-valued saturation
functions.
In this paper, a full-order filter is adopted that is of the
following structure:

{
x̂k+1 = Af x̂k +Bf ỹk

ẑk = Mx̂k
(5)

where x̂k ∈ R
n is the state estimate, ẑk ∈ R

r is an esti-
mate of the output zk, and Af and Bf are filter param-
eters to be determined.

By introducing a new vector ηk =
[

xT
k x̂T

k

]T

and letting

filtering error be z̃k = zk − ẑk, an augmented system is

obtained as follows:







ηk+1 =f̄(ηk) + Āσ(C̃Hηk) + D̄w̄k

+

m∑

i=1

(αi
k − µi)B̄iσ(C̃Hηk)

+
m∑

i=1

(
(1− αi

k)β
i
k − (1− µi)νi

)
B̄iC̃Hηk

z̃k =M̄ηk

(6)

where

f̄(ηk) =

[

f(xk)

Bf (I − Λ̄α)Λ̄βC̃xk +Af x̂k

]

,

Ā =

[

0

Bf Λ̄α

]

, B̄i =

[

0

BfEi

]

, D̄ =

[

B 0

0 Bf D̃

]

,

w̄k =

[

wk

ṽk

]

, H =
[

I 0
]

, M̄ =
[

M −M
]

,

Ei = diag{0, . . . , 0
︸ ︷︷ ︸

i−1

, 1, 0 . . . , 0
︸ ︷︷ ︸

m−i

}.

(7)

Denote by ηk,η0,w̄ the state trajectory of the augmented
system (6) starting from the initial value η0. The notion
of “domain of attraction in the mean square sense” is
introduced in the following definition.

Definition 1 The set

D = {η0 ∈ R
2n : lim

k→∞

E‖ηk,η0,0‖2 = 0}

is said to be the mean-square domain of attraction of the
origin of the augmented system (6).

Define an ellipsoid Ω(P, ρ) as follows:

Ω(P, ρ) = {η ∈ R
2n : ηTPη ≤ ρ}

whereP ∈ R
2n×2n is a positive definite matrix and ρ ∈ R

is a positive scalar.

The purpose of this paper is to design an H∞ filter of
form (5) for the nonlinear system (1) and the sensors (2)
with incomplete information (ROSSs and missing mea-
surements). More specifically, we are interested in look-
ing for the filter parameters Af and Bf and determining
the ellipsoid parameters P and ρ such that the following
requirements are met simultaneously:

a) The zero-solution of the augmented system (6) with
w̄k = 0 is locally mean-square asymptotically stable,
and the ellipsoid Ω(P, ρ) is contained in its mean-
square domain of attraction D .

b) Under the zero-initial condition, if ηk ∈ Ω(P, ρ) for all
k ∈ [0,∞), the filtering error z̃k satisfies

∞∑

k=0

E{‖z̃k‖2} ≤ γ2
∞∑

k=0

‖w̄k‖2 (8)
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for all nonzero w̄k, where γ > 0 is a given disturbance
attenuation level.

3 Main Results

Let us start with tackling the saturation function σ. Ac-
cording to the definition of the saturation function (3),
it is easily known that the nonlinear function σ satisfies
[σ(vi) − aivi][σ(vi)− vi] ≤ 0 and |vi| ≤ a−1

i where ai is
a positive scalar satisfying 0 < ai < 1.
Set Λ = diag{a1, a2, . . . , am} and define

L (ΛC̃H) = {η ∈ R
2n : |aiCiHη| ≤ 1, i = 1, 2, . . . ,m}.

Then, it can be verified that the diagonal matrix Λ sat-
isfies

0 < Λ < I (9)

and the nonlinear function σ(C̃Hη) satisfies

[σ(C̃Hη)− ΛC̃Hη]T [σ(C̃Hη)− C̃Hη] ≤ 0, (10)

for each η ∈ L (ΛC̃H).
For the convenience of manipulation, in what follows,
the ellipsoid matrix is taken as P = diag{Q1, Q2}. Then,
a sufficient condition is provided in the following theo-
rem which guarantees that the augmented system (6) is
locally mean-square asymptotically stable and the ellip-
soid Ω(P, ρ) is contained in its mean-square domain of
attraction.
Theorem 1 Let the filter parameters Af and Bf

be given. If there exist a positive definite matrix
P = diag{Q1, Q2}, a diagonal matrix Λ satisfying (9),
and positive scalars ρ, ε1, and ε2 such that

Ω(P, ρ) ⊂ L (ΛC̃H) (11)

and

Φ =






Υ11 −ε1Ũ2 F̃TQ2Bf Λ̄α − ε2Ṽ2

∗ Q1 − ε1I 0

∗ ∗ Υ33




 < 0 (12)

where

Υ11 = F̃TQ2F̃ − P − ε1Ũ1 − ε2Ṽ1

+
m∑

i=1

(δi + ςi)H
T C̃TEiB

T
f Q2BfEiC̃H,

Υ33 = Λ̄αB
T
f Q2Bf Λ̄α − ε2I

+
m∑

i=1

(̺i + ςi)EiB
T
f Q2BfEi, (13)

Ũ1 = HT (UT
1 U2 + UT

2 U1)H/2, Ṽ1 = HT C̃TΛC̃H,

Ũ2 = −HT (UT
1 + UT

2 )/2, Ṽ2 = −HT C̃T (Λ + I)/2,

F̃ =
[

Bf (I − Λ̄α)Λ̄βC̃ Af

]

, ̺i = µi(1− µi),

δi = (1− µi)νi − (1− µi)
2ν2i , ςi = (1− µi)µiνi,

then the zero-solution of the augmented system (6) with
w̄k = 0 is locally mean-square asymptotically stable and
the ellipsoid Ω(P, ρ) is contained in the mean-square do-
main of attraction D .
Proof: Let the Lyapunov function candidate be

V (ηk) = ηTk Pηk

and the difference of the Lyapunov function be defined
by

∆V (ηk) = E{V (ηk+1)|ηk} − V (ηk).

By noting P = diag{Q1, Q2} together with (7), the dif-
ference of V (ηk) along the system (6) with w̄k = 0 can
be calculated as follows:

E{∆V (ηk)}
=E{V (ηk+1)− V (ηk)}
=E

{

fT (xk)Q1f(xk) + ηTk F̃
TQ2F̃ ηk

+ σT (C̃Hηk)Λ̄αB
T
f Q2Bf Λ̄ασ(C̃Hηk)

+

m∑

i=1

̺iσ
T (C̃Hηk)EiB

T
f Q2BfEiσ(C̃Hηk)

+
m∑

i=1

δiη
T
k H

T C̃TEiB
T
f Q2BfEiC̃Hηk

+ 2ηTk F̃
TQ2Bf Λ̄ασ(C̃Hηk)− ηTk Pηk

− 2

m∑

i=1

ςiσ
T (C̃Hηk)EiB

T
f Q2BfEiC̃Hηk

}

.

Then, it follows from the inequality

− 2σT (C̃Hηk)EiB
T
f Q2BfEiC̃Hηk

≤σT (C̃Hηk)EiB
T
f Q2BfEiσ(C̃Hηk)

+ ηTk H
T C̃TEiB

T
f Q2BfEiC̃Hηk

(14)

that E{∆V (ηk)} ≤ E{ζTk Φ̄ζk} where

ζk =
[

ηTk fT (xk) σT (C̃Hηk)
]T

,

Φ̄ =






Ῡ11 0 F̃TQ2Bf Λ̄α

∗ Q1 0

∗ ∗ Ῡ33




 ,

Ῡ11 = F̃TQ2F̃ − P (15)

+

m∑

i=1

(δi + ςi)H
T C̃TEiB

T
f Q2BfEiC̃H,

Ῡ33 = Λ̄αB
T
f Q2Bf Λ̄α +

m∑

i=1

(̺i + ςi)EiB
T
f Q2BfEi.

For each ηk ∈ Ω(P, ρ), it can be obtained from (11) that

ηk ∈ L (ΛC̃H). Moreover, it follows from (4) and (10)
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that

E{∆V (ηk)}
≤E

{
ζTk Φ̄ζk − ε1[f(xk)− U1xk]

T [f(xk)− U2xk]

− ε2[σ(C̃Hηk)− ΛC̃Hηk]
T [σ(C̃Hηk)− C̃Hηk]

}

=E{ζTk Φζk}.

From (12), we have E{∆V (ηk)} < 0 for ηk 6= 0, which
means that ηk ∈ D (see [8] for details). It follows imme-
diately that Ω(P, ρ) ⊂ D , which completes the proof.

Next, we are ready to deal with the regionalH∞ index. In
the following theorem, a sufficient condition is given that
guarantees the local mean-square asymptotical stability
as well as the regional H∞ performance constraint for
the filtering error dynamics.

Theorem 2 For the given filter parameters Af and Bf ,
if there exist a positive definite matrix P = diag{Q1, Q2},
a diagonal matrix Λ satisfying (9), and positive scalars
ρ, ε1, and ε2 such that

Ω(P, ρ) ⊂ L (ΛC̃H) (16)

and

Ψ=









Υ̃11 −ε1Ũ2 F̃TQ2Bf Λ̄α − ε2Ṽ2 F̃TQ2B̃2

∗ Q1 − ε1I 0 Q1B̃1

∗ ∗ Υ33 Λ̄αB
T
f Q2B̃2

∗ ∗ ∗ Υ44









< 0 (17)

where

Υ̃11 = F̃TQ2F̃ +

m∑

i=1

(δi + ςi)H
T C̃TEiB

T
f Q2BfEiC̃H

−P + M̄T M̄ − ε1Ũ1 − ε2Ṽ1, B̃1 =
[

B 0
]

,

Υ44 = −γ2I + D̄TPD̄, B̃2 =
[

0 Bf D̃
]

, (18)

and Ũ1, Ũ2, Ṽ1, Ṽ2, F̃ , and Υ33 are defined in (13), then
the zero-solution of the augmented system (6) with w̄k =
0 is locally mean-square asymptotically stable with the
ellipsoid Ω(P, ρ) contained in the mean-square domain of
attraction D , and the filtering error satisfies the regional
H∞ performance requirement (8).

Proof: First, it is easily shown from Theorem 1 that the
zero-solution of the system (6) with w̄k = 0 is locally
asymptotically stable in the mean square, and the ellip-
soid Ω(P, ρ) is contained in the mean-square domain of
attraction since the inequality (12) is implied by (17).
It remains to show that, under zero-initial condition,
the filtering error z̃k satisfies the H∞ performance con-
straints (8) if ηk ∈ Ω(P, ρ) for all k ∈ [0,∞). Choosing
the Lyapunov function similar to one in the proof of The-
orem 1 and using the inequality (14), we can calculate

that

E{∆V (ηk)}+ E{‖z̃k‖2} − γ2‖w̄k‖2

≤E

{

fT (xk)Q1f(xk) + ηTk F̃
TQ2F̃ ηk + w̄T

k D̄
TPD̄w̄k

+ σT (C̃Hηk)Λ̄αB
T
f Q2Bf Λ̄ασ(C̃Hηk)− ηTk Pηk

+
m∑

i=1

(̺i + ςi)σ
T (C̃Hηk)EiB

T
f Q2BfEiσ(C̃Hηk)

+

m∑

i=1

(δi + ςi)η
T
k H

T C̃TEiB
T
f Q2BfEiC̃Hηk

+ 2fT (xk)Q1B̃1w̄k + 2ηTk F̃
TQ2Bf Λ̄ασ(C̃Hηk)

+ 2σT (C̃Hηk)Λ̄αB
T
f Q2B̃2w̄k + 2ηTk F̃

TQ2B̃2w̄k

+ ηTk M̄
T M̄ηk − γ2‖w̄k‖2

}

=E{ξTk Ψ̄ξk}

where

ξk =
[

ηTk fT (xk) σT (C̃Hηk) w̄T
k

]T

,

Ψ̄ =









Υ̌11 0 F̃TQ2Bf Λ̄α F̃TQ2B̃2

∗ Q1 0 Q1B̃1

∗ ∗ Ῡ33 Λ̄αB
T
f Q2B̃2

∗ ∗ ∗ Υ44









,

Υ̌11 = F̃TQ2F̃ − P + M̄T M̄

+
m∑

i=1

(δi + ςi)H
T C̃TEiB

T
f Q2BfEiC̃H,

and Ῡ33 and Υ44 are defined in (15) and (18), respec-
tively.

For each ηk ∈ Ω(P, ρ), it can be easily obtained that

ηk ∈ L (ΛC̃H) by noting the inclusion (11). Along the
similar line in the proof of Theorem 1, we have

E{∆V (ηk)}+ E{‖z̃k‖2} − γ2‖w̄k‖2

≤E
{
ξTk Ψ̄ξk − ε1[f(xk)− U1xk]

T [f(xk)− U2xk]

− ε2[σ(C̃Hηk)− ΛC̃Hηk]
T [σ(C̃Hηk)− C̃Hηk]

}

=E{ξTk Ψξk}

which, from (17), implies that

E{∆V (ηk)}+ E{‖z̃k‖2} − γ2‖w̄k‖2 < 0

for all nonzero w̄k. By considering the zero-initial value,
it follows from the above inequality that (8) holds for
each ηk ∈ Ω(P, ρ) and k ∈ [0,∞). The proof of this
theorem is now complete.

According to the regionalH∞ performance analysis con-
ducted in Theorem 2, a solution to the regional H∞ fil-
tering problem with both ROSSs and missing measure-
ments is obtained in the following theorem.
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Theorem 3 For the nonlinear system (1) and sensors
(2) with both ROSSs and missing measurements, the ad-
dressed regional H∞ filtering problem is solvable if there
exist a positive definite matrix P = diag{Q1, Q2}, a di-
agonal matrix Z = diag{z1, z2, . . . , zm}, matrices X and
Y , and positive scalars π, ε1, and ε2 such that

0 < Z < ε2I, (19)
[

−P ziH
TCT

i

∗ −π

]

≤ 0, i = 1, 2, . . . ,m, (20)









Π1 Π2 Π3 Π4

∗ −Q2 0 0

∗ ∗ −Q̃2 0

∗ ∗ ∗ −Q̃2









< 0, (21)

where

Π1 =











Σ −ε1Ũ2 HT C̃T (Z + ε2I)/2

∗ Q1 − ε1I 0

∗ ∗ −ε2I

∗ ∗ ∗
∗ ∗ ∗

0 0

Q1B 0

0 0

−γ2I +BTQ1B 0

∗ −γ2I











,

Π2 =
[

~F 0 Y Λ̄α 0 Y D̃
]T

, Q̃2 = diagm{Q2},

Π3 =
[

~S1C̃H 0 0 0 0
]T

, Π4 =
[

0 0 ~S2 0 0
]T

,

Σ = −P + M̄T M̄ − ε1Ũ1 −HT C̃TZC̃H,

~S1 =
[√

δ1 + ς1E1Y
T . . .

√
δm + ςmEmY T

]T

,

~S2 =
[√

̺1 + ς1E1Y
T . . .

√
̺m + ςmEmY T

]T

,

~F =
[

Y (I − Λ̄α)Λ̄βC̃ X
]

,

and Ũ1 and Ũ2 are defined in (13). Furthermore, if the
LMIs (19)-(21) are feasible, the desired filter and ellip-
soid parameters are given as

Af = Q−1
2 X, Bf = Q−1

2 Y,

P = diag{Q1, Q2}, ρ = ε22π
−1.

(22)

Proof: Setting Z = ε2Λ, one immediately obtains that
0 < Λ < I from (19). By using the well-known Schur
Complement Lemma and noting the relation of ρπ = ε22,
the condition (11) is also easily guaranteed by (20). We

now consider the inequality (17). Set

S̃1 =
[√

δ1 + ς1E1B
T
f . . .

√
δm + ςmEmBT

f

]T

,

S̃2 =
[√

̺1 + ς1E1B
T
f . . .

√
̺m + ςmEmBT

f

]T

.

Then, based on Theorem 2, we only need to show that
(17) (i.e. Ψ < 0) holds. Ψ can be rewritten as follows:

Ψ = Π̄1 + Π̄2Q2Π̄
T
2 + Π̄3Q̃2Π̄

T
3 + Π̄4Q̃2Π̄

T
4

where

Π̄1 =











−P + M̄TM̄ − ε1Ũ1 − ε2Ṽ1 −ε1Ũ2

∗ Q1 − ε1I

∗ ∗
∗ ∗
∗ ∗

−ε2Ṽ2 0 0

0 Q1B 0

−ε2I 0 0

∗ −γ2I +BTQ1B 0

∗ ∗ −γ2I











,

Π̄2 =
[

F̃ 0 Bf Λ̄α 0 Bf D̃
]T

, Π̄4 =
[

0 0 S̃2 0 0
]T

,

Π̄3 =
[

S̃1C̃H 0 0 0 0
]T

.

By using the Schur Complement Lemma again, Ψ < 0
is equivalent to









Π̄1 Π̄2Q2 Π̄3Q̃2 Π̄4Q̃2

∗ −Q2 0 0

∗ ∗ −Q̃2 0

∗ ∗ ∗ −Q̃2









< 0. (23)

By considering (21) and the relations Z = ε2Λ, X =
Q2Af and Y = Q2Bf , (23) is true and then the rest of
the proof follows from Theorem 2 easily.

Remark 3 According to Theorem 3, a regional H∞ fil-
ter with an ellipsoid Ω(P, ρ) can be designed for a class
of nonlinear systems subject to both ROSSs and missing
measurements in terms of the solution to a set of LMIs.
As mentioned in [3], in the presence of saturation, it is
difficult to design a controller (or filter) such that the cor-
responding controlled system (or the filtering error sys-
tem) is stable and satisfies a desired H∞ performance
requirement in the global sense. A natural yet interesting
issue is, therefore, to enlarge the ellipsoid region Ω(P, ρ)
under the premise that the specified H∞ performance re-
quirement is guaranteed. Such a problem has been well
investigated by using the method of introducing a refer-
ence set, see [3,8] for more details.
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4 An Illustrative Example

Consider a nonlinear discrete-time system described by
(1) with the matrix parameters

B =
[

0.5 0.1 0.1
]T

, M =

[

0.2 0 0.15

0 0.1 0.2

]

and the nonlinear function

f(xk) =







−0.7x1,k + 0.05x2,k + 0.05x3,k

−0.05x1,k + 0.85x2,k

−0.05x1,k − 0.475x3,k +
x3,k sin x1,k√
x2

1,k
+x2

2,k
+20






.

It is not difficult to verify that the above nonlinear func-
tion f satisfies (4) with

U1 =






−0.5 0.1 0

0 0.9 0

−0.1 0 −0.2




 , U2 =






−0.9 0 0.1

−0.1 0.8 0

0 0 −0.75




 .

The concerned sensors with both ROSSs and missing
measurements are modeled by (2) with the following pa-
rameters:

C1 =
[

1 0 1
]

, C2 =
[

1 1 0
]

, D1 = 1, D2 = 1.

In this example, the probabilities are taken as µ1 = 0.7,
µ2 = 0.6, ν1 = 0.7, and ν2 = 0.75. The disturbance at-
tenuation level is given as γ = 1.5. By using the Mat-
lab (with YALMIP 3.0 and SeDuMi 1.1), we solve LMIs
(19)-(21) and then, according to (22), the desired filter
parameters can be designed as

Af =






0.2165 0.0014 0.0081

−0.0004 0.1459 −0.0010

0.0548 0.0060 0.1954




 ,

Bf =






0.1035 −0.0096

0.0000 0.0000

−0.0102 0.0204




 ,

and the ellipsoid parameters are given as

P =













1.0895 −0.0362 −0.3883 0 0 0

−0.0362 1.1292 0.0189 0 0 0

−0.3883 0.0189 2.7617 0 0 0

0 0 0 9.1896 0.0019 −0.4682

0 0 0 0.0019 4.5653 0.0041

0 0 0 −0.4682 0.0041 5.1266














,

ρ = 0.2228.
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Fig. 1. Filtering error z̃1
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Fig. 2. Filtering error z̃2

In the simulation, the exogenous disturbance inputs are

selected as wk = 8 sin(0.5k)
k+1 , v1k = 2 cos(0.3k)

5(k+1) , and v2k =
2 cos(0.3k)
5(k+1) . The initial values of the state of the system

and its estimate are chosen as x0 =
[

0.3 0.3 0.1
]T

and

x̂0 =
[

0 0 0
]T

from the ellipsoid Ω(P, ρ). Simulation re-

sults are shown in Figs. 1-2, where the filtering errors are
presented. The simulation results have confirmed that
the designed regional H∞ filter performs very well.
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