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Abstract 

Evolvable Hardware (EHW) is a promising area in electronics today. Evolutionary 

Algorithms (EA), together with a circuit simulation tool or real hardware, automatically 

designs a circuit for a given problem. The circuits evolved may have unconventional 

designs and be less dependent on the personal knowledge of a designer. Nowadays, EA 

are represented by Genetic Algorithms (GA), Genetic Programming (GP) and 

Evolutionary Strategy (ES). While GA is definitely the most popular tool, GP has 

rapidly developed in recent years and is notable by its outstanding results. However, to 

date the use of ES for analogue circuit synthesis has been limited to a few applications. 

This work is devoted to exploring the potential of ES to create novel analogue 

designs. The narrative of the thesis starts with a framework of an ES-based system 

generating simple circuits, such as low pass filters. Then it continues with a step-by-step 

progression to increasingly sophisticated designs that require additional strength from 

the system. Finally, it describes the modernization of the system using novel techniques 

that enable the synthesis of complex multi-pin circuits that are newly evolved. 

It has been discovered that ES has strong power to synthesize analogue circuits. The 

circuits evolved in the first part of the thesis exceed similar results made previously 

using other techniques in a component economy, in the better functioning of the evolved 

circuits and in the computing power spent to reach the results. The target circuits for 

evolution in the second half are chosen by the author to challenge the capability of the 

developed system. By functioning, they do not belong to the conventional analogue 

domain but to applications that are usually adopted by digital circuits. To solve the 

design tasks, the system has been gradually developed to support the ability of evolving 

increasingly complex circuits. 

As a final result, a state-of-the-art ES-based system has been developed that 

possesses a novel mutation paradigm, with an ability to create, store and reuse 

substructures, to adapt the mutation, selection parameters and population size, utilize 
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automatic incremental evolution and use the power of parallel computing. It has been 

discovered that with the ability to synthesis the most up-to-date multi-pin complex 

analogue circuits that have ever been automatically synthesized before, the system is 

capable of synthesizing circuits that are problematic for conventional design with 

application domains that lay beyond the conventional application domain for analogue 

circuits.  
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Chapter 1. Introduction 

This chapter aims to state the goal of the whole thesis and to describe the thesis‘ 

overall structure, emphasizing its objectives and its contributions to the EHW field.  

1.1 Background 

The importance of analogue circuit design cannot be overestimated. Analogue 

components are the building blocks of all digital circuits. With analogue designs 

becoming more complex, there is increasing need for analogue circuit design 

automation. In a digital circuit design, the methodologies have been changing from gate-

level design through hardware description language to a system-level design. By 

contrast, the methodologies of analogue circuit design have not been automated to a 

great extent so far, and have not changed from the early days of integrated circuit 

technology [1].  

The main reason for the above difference comes from the fact that digital circuit 

design is ruled by discrete variables of Boolean logic, while analogue design is based on 

continuous variables of conductor/semiconductor physics. Therefore, with analogue 

circuit design it has been thought that it requires experience and the inspiration of human 

designers [1]. There are also several other differences in digital and analogue design 

methodologies [2].  

The automated analogue circuit synthesis methodology can be broadly classified 

according three approaches. The first approach is that of knowledge-based synthesis 

([4]-[7]), with broad utility of known substructures. The second approach is the sizing-

based approach ([8]-[11] and [16]) and the third one is the sized topology generation 

approach ([2], [12]-[15], [17] and [18]). The works on automated analogue circuit 

synthesis - including both topological and numerical optimization with a minimum 

knowledge about circuit topologies - started to appear more than a decade ago. It has 
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been called Evolvable Hardware (EHW) when the synthesis strategies started to be 

combined with Evolutionary Algorithms (EA) and the idea to represent the analogue 

circuit in the form of code. EHW is the name of such systems, which use artificial 

evolution as a synthesis method of electronic circuits. Recent remarkable progress in 

processor speed enabled the heuristic approach to be taken for synthesize analogue 

circuits automatically [22].  

EA refers to the heuristic techniques based on the principles of natural evolution. It 

was in the 1960s when American and European researchers independently developed 

stochastic search methods inspired by Darwinian evolution theory. The main techniques 

that represent EA are Genetic Algorithms (GA) [19], Genetic Programming (GP) [21] 

and Evolution Strategies (ES) [22], which nowadays are well-known optimization 

methods in realizations of EHW. The operations involved and the structure of the 

individuals in the population made the techniques different: 

 Genetic algorithms – the solution of a problem is in the form of strings of numbers 

(traditionally binary), virtually always applying recombination operators in addition 

to selection and mutation [19];  

 Genetic programming - the solutions are of computer programs, structured in the 

form of trees [21], [66], [46];  

 Evolutionary strategy - works with vectors of real numbers as representations of 

solutions and does not have a crossover (recombination) procedure [22], [64].  

All of them are similar in spirit, but differ in the details of their implementation and 

the nature of the particular problem to which they have been applied. The basic idea of 

an EHW system, adapted for the evolution of circuits, is illustrated in Figure 1-1. The 

synthesis strategy of EHW is based on a combination of EA and the concept process into 

an instance, called the phenotype [72]. According to [20], the phenotype is ―any 

observable characteristic or trait of an organism: such as its morphology, development, 

biochemical or physiological properties, behaviour and products of behaviour‖ and by 

coding the phenotype can be transformed into a genotype [72]. The last one represents 
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the targeted circuit in the form of code, which makes it possible to process candidate 

solutions by mean of computers. Being packed into the population, the multitude of 

candidate solutions - named chromosomes - are managed by EA. A fitness value for each 

individual is assigned by a fitness function (FF) during an evaluation operation. During 

evaluation, the genotype is decoded into a phonotype and tested by means of simulation 

software or real hardware. The fitness value characterizes how the particular 

chromosome fits the target by its current intrinsic and extrinsic features. The best-ranked 

individuals are selected to the next generation of the iterative process. The last one starts 

from reproduction (or cloning) accompanied by the action of genetic operators that are 

intended to mimic the process of mutation. These operations are between the 

evolutionary part and the reconfigurable HW/SW (i.e. providing circuit configurations 

and circuit response, the last iteratively so) that over time the "quality" of the individuals 

persisting in the population tends to increase until the HW/SW is able to provide the 

circuits that satisfy the requirements.  

 

 

Figure 1-1. The conceptual scheme of functioning of EHW. 
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1.2 Motivations, Aims, Objectives and the Scope of the Work 

The following four events before the start of this research mostly contributed to 

inspire, stimulate and drive the work presented in this thesis: 

1. In 1996, Adrian Thompson evolved an analogue circuit that utilized ten times 

fewer components than the conventionally designed circuits required to solve the 

same task (voice discriminator) [38].  

2. In 1999, Hugo de Garis claimed that the ―killer application‖ of EHW is urgently 

needed and would soon appear [3]. 

3. In June 2001, Dr. Steve Zornetzer, Director of NASA Ames Information Systems 

and Technology, made a strong statement in a speech at the Second NASA/DoD 

Workshop on EHW: "Maybe NASA's future will depend on Evolvable 

Hardware" [73].  At the same workshop, Nikzad Toomarian from JPL stated that 

―EHW is needed for deep space exploration in extreme environments‖ [73]. For 

example, Pluto express - with a flight time of 8-9 years - and other interstellar 

missions need to emphasize long-term survivability. Moreover, JPL needs future 

space systems based on EHW that can adapt in seconds and survive for over 100 

years with low power and high intelligence [73]. 

4. In the 2003 issue of the IEEE Intelligent Systems journal, EA were regarded as 

one of the major achievements of AI in the 21st century [88].  

The first event may easily inspire someone to devote himself/herself to EHW, 

because it seeds the hope that you have a chance to take part in the next technological 

revolution. It comes not just from the fact of the evolution of analogue circuits based on 

digital-purposed FPGA, but due to the fact that the evolved frequency discriminator is 

the first analogue circuit from the application domain that is ―problematic for 

conventional design‖ [38]. It also indicates the direction of the research which should be 

done: 
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 Evolution of analogue circuits, 

 Unconstrained open-ended evolution,  

 Fine-grained or component level evolution. 

As a result, you should get super-compact untrustworthy analogue circuits with 

unconventional designs. 

The second event inspires in two ways. On one hand, the idea of EHW is met by high 

demand from the commercial market. On the other hand, EHW researchers have the 

appropriate tools and know-how that enables the bringing of the technology of EHW to a 

wide application very soon.  

The third event raises similar thoughts as the previous events, together with 

additional details on the direction of the research. It confirms that analogue open-ended 

unconstrained EHW has significant potential to result in the real world devices 

anticipated by NASA.  

Finally, the fourth event insures that EA-based techniques - including EHW - are 

highly likely to become widely needed by humans.  

Thus, in brief, the main motivation for this work is the open-ended unconstrained 

evolution of commercial application oriented unconventional analogue circuits.  

From the literature review, EHW is alluring because it is able to create designs that 

may outperform man-made circuits [92], and this fact definitely is an additional motive 

for exploring EHW. EHW has three competitive advantages over the conventional 

design approach:  

 First of all, evolution is able to search a larger solution space for designs that 

better utilize the available resources than could be found by a human designer. 

EHW is able to synthesise circuits that are not constrained by human design 
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methods. For example, in [92] the range of the post-2000 patented circuits was 

reinvented with the help of GP and the evolved circuits significantly 

outperformed the conventionally designed ones.  

 EHW is able to produce circuits that cannot be fully specified in advance, but 

where the required behaviour is known. Therefore, EHW suggests an opportunity 

of synthesizing circuits that are able to adapt to circumstances that cannot be 

foreseen. This feature is widely exploited in evolutionary robotics [60]. 

 Since parallelism and asynchronism are inherent features of analogue 

unconstrained EHW, it enables the full exploitation of the physical medium, 

ignoring constraints introduced by the human designer that prevent the physical 

features of the hardware from being exploited. For instance, in [38] evolution 

exploited the analogue properties of a digital device (FPGA). 

Inspired and motivated by the above, intuition suggests that there is need for work 

that will explore the potential capabilities of unconstrained analogue EHW that will 

answer the question: how far could the system reach in the evolution of complex 

unconventional circuits? Now the overall aim of the thesis can be stated as: 

To develop an evolutionary system for the design of analogue circuits and to 

challenge it with complex tasks that are problematic for conventional design. 

The meaning of ―problematic for conventional design‖ is the same as in [38] claimed 

by A. Thompson. The term was not defined clearly, but the circuit related to this notion 

was described as follows:  

―The task was intended as a first step into the domains of pattern recognition and 

signal processing… Such a circuit could be used to demodulate frequency-modulated 

binary data received over a telephone line… Conventional design would require 1-2 

orders of magnitude more silicon area to achieve the same performance, and even then it 

would be difficult.‖  
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From this quotation it can be clearly understood that the problematic area for human 

designed analogue circuits is that: 

 regarded as difficult to design, i.e. the design method is not foreseen in 

advance by an expert with substantial experience and who claims that the 

design of the circuit with purely analogue parts is meaningless due to the 

enormous efforts and time required; 

 but, at the same time, the purposed circuit function could be designed with 

the help of digital logic. 

   The last term uncovers the reason why such analogue circuits are needed: it may 

replace and make redundant the number of digital circuits, such as those that are too 

bulky (clocks, oscillators), or too power consuming (ADC/DAC) or too expensive 

(microprocessors, microcontrollers), etc., in up-to-date commercial devices. This 

concept is in common with System-on-a-chip (SOC) in digital electronics in that like 

digital SOC it integrates all the components, necessary circuits and parts for a proposed 

electronic system into a single integrated circuit (IC) [59], but processes purely analogue 

signals.  

Being problematic for design, the application domain of such unconventional circuits 

is also unconventional and - thus - such circuits can be called analogue circuits for 

unconventional applications.  

In targeting the overall aim, the following intermediate objectives have been set up: 

1. The evolved LCR circuits by the proposed system should exceed the 

previously evolved LCR circuits by component economy and functionality 

with fewer computer resources spent, 
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2. The evolved LCRQQ
1
 circuits of the proposed system should exceed the 

previously evolved LCR circuits by component economy and functionality 

with fewer computer resources spent, 

3. The proposed system should be able to successfully evolve complex analogue 

circuits for unconventional applications. 

Thus, the scope of the thesis can now be clearly stated: the work should be focused 

on the system that is capable of reaching the three objectives listed above. That is, the 

(framework) system should be created from scratch (Chapter 3), where motivating 

features - like unconstrained evolution, analogue fined-grained evolution, etc. (Section 

2.3) - should be established, along with the basic system parts, such as representation, 

mutation, evaluation, etc. (Section 2.2).  

It was encouraging and exciting on the one hand (but naive on the other), to think 

that the framework system - even unconstrained to the maximum - would be able to 

tackle all the objectives simultaneously. However, and being designed, the LCR-focused 

and then the LCRQQ-focused system (described in Chapter 3) were able to reach only 

the first objective while only approaching a successful solution to the second one 

(Experiment 8). Therefore, it was necessary at the second stage of the research (Chapter 

4) to explore some known enhancing techniques (Section 2.4) and novel methods that 

became feasible during the first stage‘s development (Sections 3.5 and 3.9). However, 

the author wonders if these techniques, even with novel methods, have failed to reach 

the third objective (Section 5.2.4). Therefore, in Chapter 5 the level of the novelty of the 

additional techniques has been significantly increased. As a result, the parallel 

incremental technique was developed and utilized. After that, all of the objectives - as 

well as the overall aim - were reached. 

Within each version of the system, some local system developments were described, 

where each sub-version was tested again, and if the experiment results were not 

                                                 
1 LCRQQ is a circuit composed of inductors, capacitors, resistors and two types of transistors. 
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satisfactory or the current version was unable to tackle the problem, new local 

developments took place.  

The further analysis of works of Thompson et al. [38], [51], [55], [82], [29], [36], 

[93] and the JPL research group [28], [39], [40], [56], [59], [71], [77], [94], [73], [149], 

[165] gives the following milestones for the proposed research: 

 The evolved unconventional and untrustworthy circuits could be robust [55], 

[28], [59]; 

 The untrustworthiness of the evolved circuits is not a problem for their 

exploitation; 

 Evolution may prefer another environment than that of FPGA [165], because 

another substrate could suggest more freedom of interconnections, and thus 

more space of unconventional solutions. 

The assessment criteria for the success of the research undertaken demand that two 

main values are established that estimate the performance of the evolutionary system and 

the resulting design:  

1. The relative comparison of computational efforts spent (number of 

individuals evaluated) in the current approach and the ones undertaken 

before;  

2. The relative comparison of the number of components in the evolved 

solution and the solutions evolved or designed by some way previously.  
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1.3 Thesis Achievements & Contributions 

The main contribution of this dissertation is the discovery of the fact that with the 

help of evolution it is possible to design analogue circuits with applications that lie 

beyond the conventional application domain of analogue circuits. 

The following features of the developed system are the accompanying achievements 

and contributions to the area of research: 

1. The ability of the developed evolutionary system to simultaneous synthesise the 

topology and parameters of the large analogue circuits. In this work, the largest 

circuits developed reach 87 and 138 components after pruning; to the author‘s 

knowledge these circuits have the greatest number of functional components in 

the area of EHW. 

2. The ability to develop an evolutionary system to synthesise circuits with a 

multitude of inputs/outputs. Circuits with 9 and 5 pins are synthesized.  

 

3. Contrary to doubts about Evolutionary Strategy (ES) as a method for 

topologically open-ended analogue circuit design [23], this work has shown that 

ES, along with GA and GP, could be regarded as an effective tool in the domain 

of analogue circuit synthesis. This fact has been proven with every example 

described in the work. The evolvability of different functions has been 

investigated and several techniques were proposed that significantly improved 

the scalability of the existing ES-based evolutionary system. The comparison of 

the results with ones produced by GP and GA shows the fast speed of evolution, 

the economy in the components of the resulting solutions and the highest 

precision of the functions performed by the evolved circuits.  

4. The novel automatic incremental evolution technique for analogue circuits has 

been proposed for the synthesis of analogue multi- input/output large scale 

circuits. 
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5. Based on the state-of-the-art concept virtual mutation, the novel adaptive 

individual-level mutation technique called the differentiated mutation technique 

has been proposed, the application of which significantly improves the speed and 

convergence of the designs targeted.  

6. The new ES-based parallel island-model strategy called Winner-Dominates-

Winner-Cooperates (WDWC) has been proposed. Together with the 

differentiated mutation technique, the new approach composes a novel Very 

Narrow Focused Evolution (VNFE) with extremely small selection rates. The 

VNFE is able to synthesize large scale circuits, demonstrating the sustainability, 

scalability and reliability of the system for a sustainable evolutionary search.  

7. Due to the power of the system developed in this work, the scope of potential 

solutions to be discovered by analogue EHW is considerably widened. This 

enables the synthesis of circuits which have applications that may lie outside of 

the conventional application domain of analogue circuits. For example, as has 

been shown, the system enables the design of analogue circuits with functions 

that are performed by digital circuits in commercial applications. 

1.4 Organization of the Dissertation 

The rest of the dissertation is organized into six chapters. 

Chapter 2 describes the background of the field of EHW and EA, emphasizing the 

current issues and techniques available to tackle these issues. The crossroads in the field 

of evolutionary analogue circuit synthesis are shown with the analysis of choices 

preferred. The chapter suggests discussions on different options to choose from, if one 

builds an evolutionary system, such as: untrustworthiness vs. untrustworthy, digital vs. 

analogue, etc.  

Chapter 3 is devoted to the specification of all the details of the actual 

implementation of the framework system with the details of each mutation procedure 
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and other genetic operators. The chapter consists of 13 sections that follow the historical 

development of the system from the basic ideas behind EHW to the techniques that 

sharpened the system to the level at which the synthesis of the initial level of complexity 

of circuits with excellent functionality and economic resources becomes feasible. This 

chapter experimentally presents the answers to some basic questions, such as what is the 

potential of constrained or unconstrained evolution, and what kind of varying strategy is 

better: incremental length genotypes (ILG) or oscillating length genotypes (OLG)? Each 

version of the system has been challenged by the design problem. A comparison of each 

solution evolved with those previously made by others is given in order to define which 

future direction to follow. The chapter ends with an encounter with a problem during an 

experiment with the evolution of the cube root circuit. The narration steps forward to the 

next chapter, continuing to follow the further development of the proposed system. 

The target of Chapter 4 is to describe the essence of the differentiated mutation 

approach in evolutionary analogue circuit synthesis. At first it introduces the 

Substructure Reuse Mutation (SRM) technique with testing experiments. The mutation 

procedure in this chapter has been united and generalized towards the novel mutation 

approach in analogue circuit synthesis. The chapter finishes with the evolution of 

circuits that significantly exceed the ones evolved before by functionality, component 

economy and computing efforts spent. In the last experiment of the chapter, the 

developed system could evolve the circuit with five input/output pins that has never been 

done before in the area of the automatic synthesis of analogue circuits. This circuit is 

problematic for conventional design and belongs to the unconventional application 

domain.  

Moving towards increasing the complexity of the evolutionary targets, further 

upgrades of the evolutionary system are required. In Chapter 5, the incremental 

technique for analogue circuits is proposed. A new evolutionary tool is used to approach 

the challenging task of evolving a circuit with a total of nine pins and which belongs to 

the unconventional application domain. However, even with the incremental technique 

the developed system was unable to successfully finish the task. Therefore, in the second 

part of the chapter, the parallel evolution technique is applied to the second phase of the 
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9-pin circuit and the evolution succeeded with the circuit where the number of 

components reached 158 and the number of pins reached nine. In the last theoretical part 

of the chapter, the parallel evolution methodology is renewed with a novel strategy 

called Winner-Dominates-Winner-Cooperates (WDWC). Being modernized, the new 

system becomes very narrowly focused during evolution due to extremely small 

selection rates, which has been called Very Narrow Focused Evolution (VNFE). Next, 

the new system is tested on a new target, the analogue circuit that combines a number of 

digital circuits in its functionality inside the up-to-date device.  

Chapter 6 summarizes and evaluates the work presented and the limitations of the 

approach, going on to discuss the issues and insights that have been discovered and 

whether or not the aims and objectives have been achieved. It briefly considers some 

further questions that are relevant to the proposed approach but which could not be 

addressed in the context of this thesis and should instead be addressed to future work. 

The perspectives that this research opens up and its applications are also discussed. 

The diagram on the remaining page of this chapter gives a schematic overview of the 

thesis along with the experiments made. The diagram is meant to be used as a reference 

during the reading, assisting in the comprehension of the structure of the thesis, in the 

placing of each subject in the global context, and in the understanding of the relations 

between the different parts of the thesis. The rectangles with a dark background refer to 

the milestone versions of the developing system, whereas the white rectangles detail the 

particular modifications made towards the system, with the horizontal links providing 

either a further level of detail about particular subtopics or the corresponding 

experiment.  
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Figure 1-2. The structure of the thesis along with the circuits evolved. The techniques in bold 

inside the rectangles with a dark background refer to the main system modifications.  
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Chapter 2. Evolvable Hardware 

This chapter describes evolvable hardware from its beginnings to some techniques 

that are necessary for the evolution of analogue electronic circuits. The chapter contains 

a comprehensive number of references to works particularly selected as close to 

analogue circuits as possible, emphasizing the techniques that are utilized in this thesis. 

It also outlines the milestones and most promising techniques that other researchers have 

developed to tackle the basic problems in evolutionary analogue circuit design.  

Further, the following essential features of EA will be discussed: Representation, 

Mutation, Evaluation, Ranking and Selection. Then, the narration will continue with 

other techniques that are able to enhance the power of the core system: Parallel EA, 

Adaptation and Incremental Evolution. The target of the chapter is to describe and 

discuss the advantages and disadvantages of these techniques. 

2.1 Analogue Circuit Overview  

2.1.1 Analogue circuits for unconventional applications 

The human ability to design analogue circuits has some limits. This is supported by 

Aaserud‘s notion from [140]: 

―Analogue designers are few and far between. In contrast to digital design, most of the 

analogue circuits are still handcrafted by the experts or so called ‗zahs‘ of analogue 

design.‖ 

 Moreover:  

―Analogue circuit design is known to be a knowledge-intensive, multiphase, iterative 

task, which usually stretches over a significant period of time and is performed by 
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designers with a large portfolio of skills. It is therefore considered by many to be a form 

of art rather than a science.‖  

This is due to the physical nature of interactions among analogue components. For 

example, the patent in [108] presents the human-designed cubing CC. Intuitively, one 

may guess that the overall cubic curve is in some way contributed to from the inherent 

electrical characteristics of the transistor; more precisely, it is composed of a multitude 

of function fragments of circuit transistors. However, there is no evidence as to how the 

transistors should be organized, what kinds of network laws should be applied and how 

many times. Being designed conventionally, this CC has an average error of 7.1mV 

against 0.99mV for unconventional circuits evolved and patented in [99] and against 

0.29mV evolved in this work. This example suggests that complex circuits are amenable 

to handcrafting, but that there is a trade-off with the precision of their performance.  

Another kind of example is that of the tone discriminator evolved in [38] by 

Thompson. In Thompson‘s opinion, this circuit is a challenge for an analogue circuit 

designer, but not for a digital one. Furthermore, the circuits exemplified in this work - 

where the output signal is a complex discrete or singular function of a continuous input 

signal - are even less amenable to human design.  

On the other hand, relatively less complex circuits - such as the low-pass filter - 

being conventionally designed [102], are unrivalled in terms of economy and attenuation 

in the stop band against every evolved low-pass filter in [12], [13], [17], [78], [33], [16], 

[103], [106] (Table 3-9).  

In this sense, the analogue circuits that are problematic for conventional design or 

else being conventionally designed, but yield to those designed by any other heuristic 

way, including circuits designed with the help of evolution, are limited in their 

applications and belong to the domain of circuits with unconventional applications. 

With new terminology, this thesis now aims, overall, to: develop an extrinsic 

evolutionary system for the design of analogue circuits and to challenge it with analogue 

circuits for unconventional applications.  
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2.1.2 Area overview of complex analogue circuits  

If we look at the past when analogue EHW had just started up and follow the 

development of analogue EHW, it is possible to distinguish four different stages. Firstly, 

the EA technique has been applied for sizing analogue circuits [6], [7], [175], [176], and 

[178]. Since the middle of the 1990s, the second stage started with the appearance of 

successful attempts at designing both their topology and parameters [117], [87]. For 

several years, an increasing number of researchers presented results where circuits had 

been evolved extrinsically [24], [17], [79] and intrinsically [38], [93], [121]. At that 

time, the questions that these works tried to answer could be generalized thus: is it 

possible to design analogue circuits with the help of EA and could EA create more 

complex circuits? Chronologically following the publications of research groups during 

this period, it is evident that the size of the reported circuits designed by each group 

grew each time. For example, Koza et al. in [37] (2006) evolved filters and 

computational circuits in [24] (2007), Zebulum et al. evolved filters and amplifiers in 

[28] (1998) and [149] (2000), and Lohn et al. evolved the same circuits in [13] (1999) 

and in [73] (2001).  

The beginning of the third stage began with the question: is it possible to design 

industry-feasible analogue circuits with the help of EA? There appeared papers about 

robust and industry-feasible analogue circuits [93], [55]. Since then, many researchers in 

the area of analogue circuit evolution turned from the first stage to the second [57], [53], 

[58], [55], [54], [45].  

In this sense, the current research, being inspired by works from the second stage, 

continues to keep answering the question: can EA create larger circuits? It is a 

theoretical exploration of the capabilities of evolution that could create complex useful 

structures composed of numerous analogue components.  

The interest in larger circuits is based on the intuitive assumption that a more 

complex function requires more components and, vice versa, that more components in a 

circuit may determine a more complex function. The proof for the assumption requires a 

definition of the level of the complexity of the function performed by a circuit.  
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It is evident that larger handcrafted analogue circuits require more effort in design, 

involving the application of network laws (Ohm‘s, Kirchhoff‘s, Norton‘s, etc.) and 

calculations [1]. For conventional circuits - such as filters, amplifiers, switches, etc. -

where every component‘s contribution is definite, the level of their complexity could be 

(without doubt) defined as proportional to the effort spent in design and thus to the 

number of components. For unconventional circuits, this may become true if every 

component effectively contributes to the overall circuit functioning as it happens in a 

conventional circuit, where the design is made component by component. There are a lot 

of examples where the evolutionary designed circuits exceed the conventional one in 

terms of component economy and functionality (e.g. [38], [92]) proving the high level of 

involvement per component. Thus, it is appropriate to claim that the above assumption - 

that more components in a circuit determine a more complex function - also suits 

evolved circuits.  

The relation between complexity and involvement had been mentioned by John von 

Neumann [181]. He did not give a formal definition of complexity, but rather tried 

intuitively to explain this concept:  

―This concept clearly belongs to the subject of information, and quasi-

thermodynamical considerations are relevant to it. I know no adequate name for it, but it 

is best described by calling it ―complication.‖ It is affectivity in complication, or the 

potential to do things. I am not thinking about how involved the object is, but how 

involved its purposive operations are. In this sense, an object is of the highest degree of 

complexity if it can do very difficult and involved things.‖  

Therefore, to allege that the function, performed by N components in a circuit, is 

significantly less complex than is claimed will be possible only if one provides another 

circuit composed of M components and performing the same function with the same 

precision, but where M is significantly less than N. Thus, when referring the successfully 

evolved circuits presented in this thesis (after pruning) as well as in other works, we 

make the a priori assumption that the involvement of every component is purposive and 

that the ―circuit complexity‖ or ―circuit size‖ is directly proportional to the ―function 

complexity‖ that this circuit performs, while it is not refuted by direct comparison.   
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Based on this idea, the selection of the foremost related literature is made purely 

upon the size of the circuits evolved. Table 2-1 represents the research groups against 

the maximum sizes of analogue circuits evolved, in descending order.  

On the other hand, based on the overall aim of the thesis, the interest covers those 

circuits that are of unconventional applications. The search does not concern those 

purely analogue circuits such as oscillators, amplifiers, dc-converters, etc., as well as 

those analogue circuits that have the same definition in a digital domain, like 

digital/analogue filters, digital/analogue controllers, etc. This limits the search to the 

most relevant works of Thompson [38] and Koza [24] (the last column of Table 2-1). 

Other works have neglected to evolve this category of circuits. 

Table 2-1. Developers in Evolution of Analogue Circuits: Unconventional Applications 

Researcher Pruning 
 

Type of 
evolution 

Circuit 
size 

 
Circuit name 

Attempts to evolve 
circuits for 

unconventional 
applications 

Thompson [38] After pruning Intrinsic 
20 

cells 
Tone discriminator 

1: tone 

discriminator 

Koza et al. [24] After pruning Extrinsic 64 Square root 

2: NAND, two-

instruction 

arithmetic unit 

Mattiussi et al. [43] After pruning Extrinsic 55 Temperat. sensing No 

McConaghy et al. [44] After pruning Extrinsic 48 Amplifier No 

Sripramong et al. [83] After pruning Extrinsic 41 Amplifier No 

Shibata et al. [84] Before pruning Intrinsic 36 Absolute function No 

Trefzer [148] After pruning Intrinsic 34 Amplifier No 

Layzel [93] After pruning Intrinsic 33 Oscillator No 

He et al. [170] After pruning Extrinsic 28 Amplifier No 

Hu et al. [45] After pruning Extrinsic 26 Low-pass filter No 

Lohn et al. [59] After pruning Extrinsic 23 Low-pass filter No 

Kruiscamp et al. [87] After pruning Extrinsic 22 Amplifier No 

Ando et al. [78] Before pruning Extrinsic 22 Low-pass filter No 

Zebulum et al. [77] After pruning Extrinsic 19 Amplifier No 

Xia et al. [85] After pruning Extrinsic 18 Low-pass filter No 

Dastidar, et al.  [86] After pruning Extrinsic 18 Amplifier No 

Chang et al. [81] After pruning Extrinsic 17 Low-pass filter No 

Langeheine et al. [121] After pruning Intrinsic 15 Amplifier No 

Das et al. [89] After pruning Extrinsic 15 Low-pass filter No 

Ohe et al. [171] After pruning Extrinsic 15 Amplifier No 
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Kim et al. [54] After pruning Extrinsic 14 Low-pass filter No 

Conca et al. [177] After pruning Extrinsic 14 Low-pass filter No 

Yuan et al. [173] After pruning Extrinsic 14 Amplifier No 

Wang et al. [47] After pruning Extrinsic 13 Amplifier No 

Goh et al. [17] After pruning Extrinsic 12 Low-pass filter No 

Sabat et al. [172] After pruning Extrinsic 10 Amplifier No 

Grimbleby [79] After pruning Extrinsic 10 Low-pass filter No 

It is supposed that the number of pruned components is at least 5% of the total number of components. 

This table does not include some intrinsic approaches (i.e. Stoica [40]), where the count of the components of the 

resulting circuits has not been made. It also does not present circuits that contain less than 10 components. 

 

The significance of Thompson‘s work [38] in relation to this thesis has already been 

mentioned. He was the first who, with the help of intrinsic evolution, evolved an 

unconstrained analogue circuit that was problematic for conventional analogue design, 

instead belonging to the domain of digital circuit design. The frequency discriminator - 

that distinguished between 1kHz and 100kHz frequencies by supplying a steady voltage 

to an output - was evolved by involving 20 FPGA cells. FPGA worked in analogue 

mode and thus the analogue behaviours of analogue components composed of the cells 

have been exploited in circuit functioning. Attempts to analyse the work of the circuit 

have failed, but Thompson declared that the trustworthiness of a circuit is not obligatory 

for the exploitation of it, at least in principle [38]. The work has contributed to the 

current research and the important idea that unconstrained evolution which designs 

unconventional circuits could be applied towards targets that belong not only to the 

domain of analogue application domain but also to the domain of digital application. 

The circuit was not robust to component variations and temperatures. In 2000, he 

published work concerning the evolution of a robust temperature circuit [158]. In this 

paper he answered the question of the robustness of unconstrained circuits, where the 

detailed model of how the behaviour of each component affects the circuit function does 

not exist. The initially designed unrobust circuit from [38] - the frequency discriminator 

- became robust after evolution. Unfortunately, Thompson did not continue his work in 

the same direction and in 2002 he switched to adaptive computing [180].  

As can be seen from Table 2-1, the largest circuit evolved after pruning was made by 

Koza et al. [24] in 1997. One of the reasons why the 14-year old work is still on top is 
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the powerful computing support, multi-cluster system that enabled them to operate the 

largest population (640,000) and the highest number of individual evaluations 

(6,700,000,000) in the EHW domain [98]. 

The works of Koza [24], [12], [21], [46], [58], [63] are the most close in spirit to the 

work of this thesis, and many of the problems and results described will be used as 

benchmarks and references for the results obtained. After the discovery of Genetic 

Programming [21] in 1992, he began the evolution of analogue circuits from low pass 

filters in 1995 [12]. In 1997, he achieved the largest circuits in EHW [24]. His circuits 

have been the most distinguished in terms of their size and functions ever since. The 

milestone work appeared in 2000, where he evolved the analogue circuits that perform 

digital functions: the NAND circuit and a two-instruction arithmetic logic unit circuit 

[52]. This was the first attempt with the help of extrinsic evolution to enter the digital 

circuit domain. However, the evolved circuits were modest in size (6 and 26 

components) and took considerable computing effort (2.2mln and 43.6mln evaluations 

respectively). Unfortunately, since then Koza et al. did not make any further attempts in 

the evolution of circuits for unconventional applications. In 2004, Koza et al. published 

the first work on industrial-strength circuits utilizing a multi-objective approach, where 

they evolved an operational amplifier with 31 components and with considerable 

computer effort (7.7E+7) and which almost fitted the multi-objective function [58].  

2.2 Evolutionary Algorithms  

According to [19], the art of EA consists in determining how an evolutionary 

algorithm can be tuned to a problem while solving it. It is suggested that the following 

ways are essential for significantly increasing the efficiency of the algorithm: 

 Adapting and tuning the algorithm to the specific problem, i.e. ―the problem-

specific knowledge incorporated into the system enhances an algorithm's 

performance and narrows its applicability;‖ 

 The parallel implementation of evolutionary algorithms. 
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These points are referenced since each of them plays a significant role in the 

construction of the evolutionary system, and the point made in the quotation above has 

directed the shifting of most of the details on the system from Chapter 2 to Chapter 3.  

In the following sections, an introduction to the main operators in Evolutionary 

Strategy is given with a presentation of some different methods. The references to the 

literature can be found to help in the understanding of each concept. While the details of 

an approach are given in Chapter 3, only short comments on what kind of operator has 

been utilized in the thesis and why it was utilized are presented. 

2.2.1 Representation  

In general, there are two approaches for representations. The first one is to choose 

any of the standard algorithms and to design a decoding function according to the 

requirements of this algorithm [26]. The second approach is to design the representation 

as close as possible to the characteristics of the phenotype. While the direct encoding 

scheme - where all connection parameters are individually encoded - saves 

computational time, the indirect encoding scheme - where the details of the architecture, 

such as the connections - are left to a training scheme or to developmental rules, 

allowing for a more compact representation of the circuit [123].   

In his 1992 PhD thesis, De Garis [25] predicted that the combination of evolution 

and development would be applied to electronic circuits, and he called this field 

Artificial Embryology (AE). A lot of publication appeared over last decade on the 

application of development towards circuit synthesis [123], [43], and [124]. This 

approach - and foremost among its various properties - has an ability to achieve greater 

scalability [123].  However, this thesis does not focus on development technique, 

concentrating more on other kinds of tools. Thus, direct coding has been utilized in this 

work. 

The second aspect that has to be addressed in the frame of the representation is what 

kind of behaviour the chromosome length should have during evolution: dynamic or 

static? The static representation requires the knowledge of a component number in the 
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targeted circuit [83], [15], [87], which is impossible in most of the application cases. 

Therefore, a dynamic or variable genotype strategy is set as basic for the proposed 

system.  

In [143] a novel approach with a special type of direct encoding for digital circuits 

was developed, called Cartesian Genetic Programming (CGP). CGP represents circuits 

as a two dimensional grid of program primitives. Each node is encoded by a number of 

genes representing a particular function and its inputs. Each node takes its inputs in a 

feed forward manner from either the output of a previous node or from one of the circuit 

inputs. The limit of CGP is in the difference between CGP and linear GP, i.e. the 

restrictions that CGP imposes on some interconnectivity, namely, the feed-forward 

connectivity of their directed acyclic graphs.  

In this work, direct representation has been utilized (Chapter 3), similar to that used 

by Zebulum et al. in [149], [28], [77]. In this approach, the minimal genetic code is a 

locus which is coded for a component‘s parameter, pin number and component name. 

Four loci compose a gene that represents a component. The circuit is composed of 

components and is represented by a list of genes inside a chromosome. The main reason 

for applying this kind of coding is the simplicity of the approach. 

2.2.2 Bloat  

Evolutionary Algorithms that use variable length representations suffer from bloat. 

Bloat occurs when the average genome size tends to grow as the evolution progresses. 

The main side effect is that progress toward a solution slows dawn and the probability of 

evolution failure increases. 

Koza [21] used the following techniques to fight bloat: a) the individuals that are 

created for the initial populations are restricted to depths between 2 and 6; b) sub-trees 

that are generated for sub-tree mutation are limited to a depth of 4 and non-terminal 

nodes are selected as mutation points with a probability of 90%; c) the creation of new 

individuals is limited to a depth of 17.  
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Another often used technique to slow bloat is the use of parsimony pressure. In this 

case, the fitness function of an individual is a combination of its performance and its 

size, where a smaller size increases the fitness value [126]. In [28] Zebulum et al. 

explored different genotype length varying strategies. As a result, they declared that a 

successful strategy is that which suggests evolution - besides genotype increase - of the 

pathways from large to smaller genotypes. Namely, the best strategy was that of 

Oscillating Length Genotype (OLG), according to which the genotypes are enabled to 

decrease their lengths during evolution.  

Code editing is another way of reducing the size of individuals. In this approach, 

parts of individuals that have no effect on the result of the individual - called introns - 

are removed from the individual [126]. However, there are strong opinions that suggest 

that introns are not responsible for bloat [128], [127]. 

Finally, it is possible to introduce a ―Delete Element Mutation‖ (DEM). Using this 

approach, individuals during the mutation stage may get their genotype reduced as in 

[125], [43], [80]. The DEM procedure is one such approach, where the randomly chosen 

component is deleted from a circuit and the abandoned connections are randomly 

connected to each other or the circuit nodes. This technique is described in detail in 

Chapter 3, with comparative testing of the example of low-pass filters. It will become an 

essential part of the OLG varying strategy. Table 2-2 displays some previous approaches 

in analogue circuit synthesis, where the third column shows whether or not the DEM is 

used. 

Table 2-2. Statistics of a type of EA and the ―Delete Component Mutation‖ used by others  

Researcher EA type DEM 

Koza et al. [12] GP No 

Lohn, et al. [13] GA No 

Goh, et al.  [17] GA No 

Zebulum, et al. [28] GP,GA Yes 

Grimbleby [18] GA No 

Dastidar, et al. [86] GA Yes 

Sripramong et al. [15] GP No 



 
Chapter 2. Evolvable Hardware 

 

 

 40 

Walker et al. [49] GA No 

Chang, et al.  [81] GP No 

Mattiussi, et al.  [43] GA Yes 

Trefzer [148] GA Yes 

Gan, Yang et al. [80] Gene Expression Programming Yes 

McConaghy et al. [53] GP No 

Kim et al. [54] ES No 

Das, et al.  [89] GA No 

 

2.2.3 Mutation (Modification) 

As is already understood, ES is a type of EA that does not utilize recombination or 

crossover operation during modification. Thus, the term ‗mutation‘ is further used to 

describe any modification of some number of gene loci according to the mutation rate 

that involves the genotype of a single chromosome.   

The mutation parameter has been suggested as being the most sensitive parameter in 

the theory of EA [34], as well as when it concerns a digital electronic circuit synthesis 

[35]. Harvey, in [36], argued with the example of SAGA that mutation is a driving force 

of the natural evolution of species. It has been noticed that different values of the 

mutation rate are desired at different stages of the evolutionary process in order to 

achieve balance between global and local searches. For example, in [19] it is proposed 

that the art of EA consists of how the algorithm is adapted to the problem, especially the 

mutation operator. Thus, there is no conventional paradigm as to what the optimum 

mutation parameter or mutation operator should be, and a number of publications have 

addressed this problem [129], [130], [131].  

In Chapter 3, the static mutation is used for the framework system. This helped in the 

estimation of how powerful the unconstrained evolution is in comparison with other 

approaches in the design of low-pass filters. Next, in Chapter 4, the mutation operator is 

developed according to a novel mutation strategy so as to tackle the stalling effect 

problem. 
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2.2.4 Evaluation-Ranking-Selection 

A common thread in EA is the evaluation-ranking-selection mechanism. This 

process determines which individuals of the population are selected to be members of 

the next generation. It is done according to how good or bad a solution is. The better it 

is, the higher the probability of its survival, and so it has a higher probability of being 

selected for the next generation [132].  

Primarily, individuals have to get through the evaluation procedure, where the main 

target is the fitness assigning. The fitness function (FF) contains some of objectives with 

weights that are applied toward the individuals. The FF calculates how close an 

individual is in terms of its features to the objectives set [133].  

As is usual, with the fitness values assigned each chromosome is ranked by the 

ranking operation. The last one can also operate selectively, based on the additional 

number of objectives [132].  

In [150], Bentley et al. proposed the classification of ranking methods for multi-

objective problems based on the criteria of whether the method is range-dependent or 

not, where the ―range‖ is a practical interval between the maximum and minimum 

fitness values. Being independent from different fitness ranges that refer to different 

objectives, no objective is directly compared to another. Furthermore, the range-

independent ranking does not require specific knowledge of the nature of the problem. 

The final operation of selection chooses the individuals from the ranking list to the 

next generation. That is, the fittest chromosomes are not guaranteed to be top-ranked and 

the top-ranked members are not guaranteed to be selected for further evolution. For 

example, there are many methods for selecting individuals for survival [132]. These 

methods include: (1) proportional selection, or a ―roulette-wheel‖ selection scheme, 

where the probability of selection is proportional to the individual's fitness; (2) ranking-

based methods, where all the individuals in a population are sorted from the best to the 

worst and the probabilities of their selection are fixed for the whole evolution process; 

and (3) tournament selection, which involves running several "tournaments" among a 
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few individuals chosen at random from the population, where selection pressure is easily 

adjusted by changing the tournament size - if the tournament size is larger, weak 

individuals have a smaller chance of being selected [133].  

The evaluation-ranking-selection procedure is a suitable stage within EA where one 

could apply multi-objective pressure towards evolution [32]. In the case of a single 

objective, it is obvious: the better the fitness value that the individual has, the better the 

solution is. In the multi-objective case, while searching for solutions and when 

attempting to improve one further, other objectives may suffer as a result. In the case of 

multi-objective evolution, three approaches are conventionally applied. The first - and 

the simplest - one is that of ―aggregating functions,‖ because it combines all the 

objectives of the problem into a single one with weighting coefficients representing the 

relative importance of each objective [149]. Another one is that where a population is 

used to diversify the search performing proportional selection of sub-populations against 

each objective [148]. And the final technique involves the simultaneous optimisation of 

a set of objective functions with the use of Pareto optimality [31], [134] [135].  

The last one became quite popular in recent decades. A tentative solution is called non-

dominated or Pareto optimal if it cannot be eliminated from consideration by replacing it 

with another solution which improves an objective without worsening another one. 

Currently, most multi-objective evolutionary systems apply Pareto-based ranking 

schemes [134], [135], [31]. In [31] they used multi-objective EA for analogue circuit 

design in order to perform the optimal sizing of two mixed-mode circuits. As objectives 

they set 12 functions, defining the parameters of the components to be optimized.  

In the frame of the current work, during ranking the additional objective of 

―component economy pressure‖ is suggested to be applied. In the framework system, a 

single-objective fitness function and ranking is utilized for the sake of unconstrained 

approach evaluation. However, the rest of the system‘s sub-versions utilized a double-

objective evolution, where the second objective is the component parsimony. The 

―range-dependant‖ approach [150] with dynamic ―weight‖ has been applied to combat 

the bloat.   
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2.3 Evolvable Hardware  

In the following section, the main features that accompany the analogue EHW will 

be discussed. These terms are the essential attributes of any EHW. The following 

discussion is important since one has to make a choice among the options that will 

define the overall purpose of the system one is constructing. The brief explanations are 

given of the choices that are used during this work. 

2.3.1 Intrinsic vs. extrinsic EHW 

Extrinsic evolution is a case where individuals are evaluated by simulation software. 

For the analysis of analogue circuits, almost every existing simulation software is based 

on the freely distributed SPICE, which was developed at the Electronics Research 

Laboratory of the University of California, Berkley [144]. One of the most advanced 

commercial versions of SPICE is PSPICE, which is currently under development at 

Cadence Design Systems [91]. PSPICE was the first version of UC Berkeley SPICE 

available on the PC, and was released in January 1984 to run on the original IBM PC. 

Intrinsic evolution uses the real hardware, including the programmable integrated 

circuits Field Programmable Gate Array (FPGA), the Complex Programmable Logic 

Device (CPLD), the Field Programmable Transistor Array (FPTA), and the Field 

Programmable Analogue Array (FPAA) (Figure 2-1). It should be noticed that 

Thompson [38] was the first to perform what is called "intrinsic" (in-chip) evolution, 

with very attractive if controversial results.  

However, when one is about to choose between intrinsic/extrinsic, first of all, it 

should be noticed that simulation SW is much more accessible than the specialized HW. 

Some types of hardware to which the EHW system is tuned may have been stopped 

being produced anymore (i.e. Xilinx FPGA XC6200). With software, such problems do 

not look as feasible. The total extrinsic EHW system will cost nothing for those who 

utilize SPICE SW since is available for free in the Internet (excluding the cost of the 

PC). The depreciation of software is miserable in comparison with HW. For example, 

the last version of SPICE3 - written in 1989 - is still actual and widely used; while a 
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programmable circuit may become obsolete after an illegal connection is made. 

Furthermore, HW may not enable some arbitrary connections between components and 

may even limit the granularity of an evolution, enabling only blocks of the circuit to be 

as the smallest components of the evolution (course-grained evolution). This leads to 

potential unconventional solutions being uncovered. The use of software simulation is 

safe because unusable or poor designs may damage the hardware system. A SW-based 

system is also more analytical, since the simulation can be customized so as to provide 

feedback to the designer about any aspect of the state of the evolutionary process. In 

addition - for circuit design - any internal node or state information can be extracted 

from the simulation and incorporated into the fitness evaluations. Finally, the last 

advantage of the extrinsic method is that it easily enables us to struggle against the 

internal variations of a circuit; while HW does not seem amenable to the simulation of 

component variations, in PSICE [91] - for example - there is number of automatic tools 

for doing this. 

 

Figure 2-1. The principle difference between intrinsic and extrinsic EHW approaches. 

On the other hand, the speed of extrinsic evaluation yields to its opponent to a 

significant degree. During experiments, Keymeulen et al. [39] confirmed that the time 

needed to evaluate one individual using the reconfigurable hardware (6.75 ms) is twenty 
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to fifty times faster than the SPICE simulator running on one processor. In earlier work 

[40] they proposed mixtrinsic EHW, where evolution takes place with hybrid 

populations in which some individuals are evaluated intrinsically and some extrinsically, 

within the same generation or in consecutive one. They developed their own chip based 

on FPTA. The amazing thing is that in order to find the efficient structural cell for the 

chip they used evolution, i.e. the evolution ―taught‖ what the EHW prefers.  

Furthermore, the most attractive advantage of using HW for circuit design is the fact 

that the resulted circuits are much closer to the commercial market then the ones 

represented in SW, for which there are a range of quite tedious procedures, like board 

design, layout, routing, etc. 

This work utilizes the extrinsic evolution mainly due to its accessibility. Moreover, 

this valuable part of the thesis is due to the use of extrinsic method, which enabled many 

discoveries and novelties during the exploration and research. 

2.3.2 Digital vs. analogue EHW 

It has already been mentioned that the process of the design of analogue circuits 

constantly deals with continuous electric signals among conductors and semiconductors. 

This fact imposes fewer constraints on analogue circuit evolution and allows more 

interactions among components and - thus - has greater evolutionary potential than the 

evolution of digital circuits. Furthermore, the absence of systematic analogue design 

methodologies increases the necessity of automatic synthesis solutions.  

2.3.3 Constrained vs. unconstrained EHW 

The question of unconstraining the evolution - firstly - has appeared in [38], [51]. 

The frequency discriminator had been evolved intrinsically with the help of FPGA by 

Thompson in [51]. However, the FPGA had instead been treated as an analogue device 

rather than a digital one. The clock signal had been released and the connections among 

the cells and transistors had been freed up to create unconventional structures. As a 
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result, the fine-grained evolution at the component level had evolved a circuit that was 

characterized by a small number of components and an unconventional structure. The 

circuit was able to solve the task with an amount of components that was ten times lower 

than a conventionally designed circuit required for a solution to the same task. By 

realizing constraints, Thompson [51] had enabled an open-ended evolution to create an 

untrustworthy circuit that was not liable for verification. The latter caused researchers in 

the field of EHW to explore the ways of coping with untrustworthiness (see Section 

2.3.5).  

In this work, both approaches are regarded and compared in detail in the initial part 

of the research. Furthermore, the exploration of methodologies that are able to discover 

unconventional designs with the help of unconstrained evolution is set as one of the 

prior targets. There are four kinds of constraints that are distinguished and that can be set 

at the mutation stage of extrinsic evolution: 

1. Constraints №1. Prohibiting some kinds of connections among units inside a 

circuit by applying circuit-structure-checking rules. For instance, transistor 

connections, emitter-to-collector, base-to-constant-voltage-source, etc. [13], [44], 

[49]. The extrinsic approach is only meant here, because in intrinsic evolution 

these kinds of connections are not allowed by default. 

2. Constraints №2. Constraints that are set by evolvable substances due to their 

inherent properties. For example, FPTA and FPGA are limited by routing 

channels among configurable cells [39], [51], [84]. 

3. Constraints №3. Constraints that are set by emulation software due to division 

by zero. For instance, the nodes that have no DC path to ground and loops that 

involve inductors and/or a voltage source [12], [17], [18], [59]  

4. Constraints №4. These limit the number and types of substructures that may 

modify a circuit. For example, by establishing up the predefined substructure 

database [44], [86].   



 
Chapter 2. Evolvable Hardware 

 

 

 47 

The Table 2-3 gives statistics on the constraints listed above from among the various 

works on analogue circuit evolution. 

Table 2-3. Statistics on constraints in analogue circuit evolution  

Researchers EA type  

Circuit-

structure-

checking rules 

Const. No.1 

Constrains 

set by 

hardware 

Const. No.2 

Constraints 

set by 

software 

Const. No.3 

Limit for 

sub-

structures 

Const. No.4 

Koza et al. [12]  
GP,  

Extrinsic  
No No Partially No 

Thompson [38] 
GA,  

Intrinsic 
No Yes No Not used 

Mydlowec et al. [98]  
GP,  

Extrinsic 
No No Partially No 

Keymeulen [39] 
GA,  

Intrinsic 
Data n/a Yes No Yes 

Streeter et al. [99]  
GP,  

Extrinsic 
No No Partially No 

Lohn et al.  [13]  
GA,  

Extrinsic 
Yes No Yes Not used 

Goh, Li  [17]  
GA,  

Extrinsic 
Yes No Yes Not used 

Zebulum, et al. [28]  
GP,GA,  

Extrinsic 
Yes No Yes Not used 

Grimbleby [18]  
GA,  

Extrinsic 
Data n/a No Yes Not used 

Dastidar, et al. [86]  
GA,  

Extrinsic 
Yes No Yes Yes 

Ando, et al. [78]  
GP,GA,  

Extrinsic 
Yes No Yes Yes 

Sripramong et al. [15]  
GP,  

Extrinsic 
Yes No Yes Yes 

Walker et al. [49] 
GA,  

Intrinsic  
Partially Yes No Not used 

Chang, et al. [81] 
GP,  

Extrinsic  
Yes No Yes Not used 

Trefzer [148] 
GA,  

Intrinsic 
Yes Yes No Not used 

Mattiussi et al.  [43] 
GA,  

Extrinsic  
Yes No Yes No 

Gan, et al. [80] 

Clonal 

Selection,   

Extrinsic    

Yes No Yes Not used 

McConaghy et al. [44] 
GP,  

extrinsic 
Yes No Yes Yes 

Kim et al. [54] 
ES,  

Extrinsic  
Data n/a No Yes Not used 

Das et al. [89] 

GA,  

Extrinsic 

 

Yes No Yes Not used 
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Attempts at unconstraining the evolution of analogue circuits have been made in 

[12], [98] and [99] where they utilized the special procedure providing the DC path to 

ground from each node of a circuit by adding the giga-Ohm resistance, allowing any 

kind of connections among capacitors. This let them avoid the most of the ―node 

floating‖ errors and reach an amount of invalid circuit graphs up to 2% [99].  

It should be noticed that constraining the evolution on one hand reduces the solution 

space, but on the other hand it closes the pathways to unconventional solutions. The last 

notion is especially important for unconventional tasks that have never been regarded or 

approached before; for example, the designs of analogue circuits that may replace digital 

logic in applications that conventionally belong to a digital domain [52]. 

In this work, by choosing extrinsic evolution, Constraints №2 imposed by the 

hardware and described in the current section are overcome. By abolishing the circuit-

structure-checking rules and introducing the REMP in Section 3.5, Constraints №1 are 

avoided. The introduction of R-Support elements in Section 3.7.1 helps to cope with 

Constraints №3. And, finally, the automatically defined substructures described in 

Section 4.1 release Constraints №4. Thus, by releasing all the constraints the approach 

presented in this thesis claims to be fully unconstrained.  

2.3.4 Robust vs. unrobust circuits in EHW 

Today the open-ended methods of evolutionary analogue circuit synthesis are 

questioned (e.g. in [53]) and raise an important issue, namely that in being realized in 

silicon are they able to create solutions that are valid enough? Robustness is known as 

the ability of a circuit to cope with the environmental, internal variations and the ability 

of a circuit to continue to operate despite any damage that may occur to some of its 

parts. 

In [54], a set of experiments proved that open-ended techniques enable the design of 

low/high-pass filters with topology-based robustness. In [55], a frequency discriminator 

that was robust to wide temperature range was evolved with an open-ended GA 

intrinsically in FPGA. [56] describes experiments that allowed adaptive in situ circuit 
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reconfiguration in extreme temperature and radiation environments. In [57], 

unconstrained evolution successfully created analogue variability-tolerant CMOS 

circuits performing XOR and XNOR functions. The literature review on that subject 

allows the distinguishing of two approaches: 

1. The first and traditional approach follows the paradigm whereby evolution is 

initially set to discover the unconventional design, and where the circuit is later 

tuned to improve its robustness ([28], [55], [56], [58] and [59]);  

2. Another approach suggests the evolutionary system that was originally proposed 

for robust designs ([53], [54] and [57]).  

In the current study, the first approach has been adopted, focusing on the exploration 

of the technique‘s capabilities to create novel designs and leaving the evolution of 

robustness for the future stage. 

2.3.5 Trustworthy vs. non-trustworthy circuits in EHW 

The open-ended fine grained EHW may produce circuits that are untrustworthy [51]. 

Trustworthiness, or design verification, of a circuit is called such the circuit‘s feature 

that enables for one to fully understand how the circuit works. That is, one is able to 

define the contribution of each component to a circuit‘s functionality [53]. The 

appearance of untrustworthy circuits during evolution is caused by the increasing role of 

physical characteristics that are exploited by circuit during functioning. These 

characteristics are not contemplated by the conventional design approach. And it seems 

impossible to verify all the feedback loops and electromagnetic influences among the 

component [82].  

The non-trustworthy approach to circuit exploitation is supported in this work. 

Furthermore, the overall thesis target is based on the idea of the unconventional features 

of the analogue circuits. 
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In [53], McConaghy criticized the circuits made by open-ended evolution techniques 

with no apparent logic behind them, recommending his own trustworthy structural 

synthesis approach where the closed-ended methodology may suggest the limited 

number of the topology count (for instance 3528 topologies in [53]).  

On the other side, Miller et al. [50] strongly advocate the view according to which 

the exploitation of the physics has the advantage: ―we should not expect artificially 

intrinsically evolved circuits to be decomposable and understandable.‖ They stated that 

the genome doesn‘t specify how to make a cell, let alone the organism: ―Once the 

components are made, they obey their own physics.‖ Thompson, who was the first to 

have discovered and explored the physical effects in FPGA [51], noticed that evolution 

should take advantage of the properties inherent in the very physics of the medium being 

evolved. Furthermore, he advocates that ―if the most promising application domains are 

the ones problematic for conventional design, then the exploration of new strategies is 

appropriate.‖ 

In this sense and in support of the second viewpoint - it should be taken that the 

applications that refer to such a kind of system are ―situated,‖ in the sense that they 

continuously adapt themselves to constantly changing constraints. There is no solution, 

but only the best possible adaptation to the current set of constraints. Typically, both the 

evolutionary system and the constraints are evolving in response to each other. The 

instance of such a kind of system is Evolutionary Robotics (ER). Since ER systems have 

to adapt themselves to a countless number of situations within the real world 

environment, it is logical to suppose that their evolutionary devices have to be able to 

synthesise the same number of circuit topologies. In ER, the adaptation (evolution) time 

is crucial for their application [60]. Thus, the role of verification becomes unfeasible.  

2.4 Enhancing Techniques 

In this section, the following techniques that help to enhance the basic evolutionary 

system and successfully deal with such challenges as the scalability and stalling effect 

problems in EHW will be given an overview: Parallel computing, Divide and Conquer, 
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Adaptation. All of these approaches will be helpful in the further enhancement of the 

proposed system.  

2.4.1 Parallel evolution 

EA are inspired by biological evolution, which is a massively parallel system where 

every individual is independent from every other. Thus, countless number of individuals 

can be evaluated simultaneously. This feature becomes increasingly important as multi-

processors and cluster computers become more powerful. There are three approaches to 

parallel EA that are dominant in EHW: the master-slave approach [49], the diffusion 

approach [67], and the migration approach [68].  

The master-slave approach is the simplest form of parallel EA. A master node 

implements all aspects of the EA itself, other than calculating the fitness; this has the 

advantage of introducing no new parameters. This approach is used when calculating the 

fitness function, which is a very costly operation compared to ranking and mutation. The 

string representation of parameters makes mutation very simple, and can thus be easily 

run on the master node. For instance, in [49] they used parallel evolution to design a 

multi-output digital circuit. Each slave node designed a particular sub-circuit with a 

single output selecting a particular part or a so-called multi-chromosome. Then, the 

master node joined the sub-chromosomes and provided the evaluation of the multi-

chromosome. There are two types of selection in the master-slave approach. In a 

sequential selection model, a master processing unit waits for the ending of computation 

in all slave nodes so that there is a clear distinction between successive generations 

[137]. This makes the implementation simple, yet the cost in the idle time of slaves is a 

potential bottleneck for this approach. In a parallel selection model, a master unit does 

not wait for other slaves but if anyone finishes the work it is immediately allocated a 

new task. In this case, selection may be done according several variants, for example in 

the form of a tournament. 
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The fine-grained approach (also called the diffusion approach) concentrates on 

producing a large, interacting population over a number of nodes, often with just one or 

few individuals per node [67].  

The migration approach, often called the coarse-grained approach (and also called 

the island-model approach), involves the running of a number of largely independent 

evolving systems - each on a separate processor - which occasionally exchange 

information with each other. Whereas the diffusion approach has much in common with 

mainland population biology, this approach is inspired by island population biology, 

with populations connected together by migrations. In [67], the parallel island model 

evolution was applied towards a synthesis of analogue circuits, namely a ―hierarchical 

fair competition model.‖ Since the purpose of the work was a comparison of different 

techniques, the circuits evolved were not complex enough to probe the power of the 

parallel EA.  

There is a common problem for all of the parallel evolution approaches described: 

communication costs become a bottleneck. The  majority  of  the communication  costs  

are  spent  on migrating  individuals  from  one  subpopulation  to  another. The factors 

affecting the communication costs are the processor network topology, the migration 

scheme and the migration intensity (rate and frequency). 

It has been noticed that ES would be particularly well-suited to the migration 

approach [68]. Work [68] noted that an island-ES could solve problems that a standard 

ES could not. In [69], a parallel ES was used in the determination of a protein structure, 

which behaved mostly like a master-slave ES but with coarse-grained elements. 

Selection was done in parallel, with each slave node evaluating a subset of the 

population. However, the view was expressed in [70] that no extensive study has been 

done on the implementation and efficiency of a purely migration-based parallel ES. 

2.4.2 Adaptation 

To get successful results using an EA, one needs good parameters such as the 

mutation rate, the SR, the crossover rate, etc. Often parameters have to be predefined or 
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tuned manually and are only optimal for a specific problem [61]. In order to find 

optimized parameters for a certain application, researchers tune them by hand, i.e. 

experimenting with a multitude of values and selecting one that exhibits the best 

performance [13]-[18]. For instance, different values of the mutation rate are desired at 

different stages of the evolutionary process [138]. Tuning the rates manually is very 

time-consuming where the tuned result is only efficient for some particular instance. The 

space of the operators and parameters is large. Therefore, hand-designed adaptive 

mechanisms have had relatively little success, and there has been natural interest in the 

application of adaptive techniques [34], [36]. The important feature of adaptation is that 

the algorithm can be adjusted to the particular task while solving that task. In general, 

there are three levels where the adaptation may take place inside evolution: 

 Population-level adaptation adjusts control parameters that apply for the entire 

population. This approach is the most studied in the literature;  

 Individual-level adaptation focuses on adapting of parameters of every 

chromosome. For instance, each chromosome has its own mutation rate [62]. 

They may be varied depending on the convergence state of the population, the 

fitness value of the chromosome, the average fitness value of the population and 

whether the population tends to get stuck at a local optimum or is scattered in the 

solution space. The convincing example here is in [63], where the automatically 

defined function is an individual-level adaptive genetic program, where each 

individual adapts its definitions for a predetermined set of subroutines.  

 Component-level adaptation dynamically alters how the particular gene of each 

chromosome will be manipulated independently from each other [34].  

There is another classification of the adaptation. According to [74], the dynamic 

adaptation could be deterministic, adaptive or self-adaptive, depending on the 

mechanism of adaptation. The deterministic adaptation is a case where the rule - 

according to which the adaptation takes place - is predefined and does not depend on the 

EA. The adaptive type is a case where the EA in some way causes the adaptation rule to 
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change. Furthermore, the adaptive type is a case where some coefficients for the 

adaptation rule are co-evolved or else evolved in parallel.  

There are several cases where adaptation is used in this work. The most simple is the 

deterministic adaptive weight called the ―pressure-constant,‖ introduced during ranking 

in Chapter 4. In addition, the novel differentiated mutation is suggested with the 

adaptive mutation strategy. The most intriguing type of adaptation is the selection rate 

adaptation during VNFE in Chapter 5, where a self-adaptive selection rate helped the 

parallel WDWC strategy. 

2.4.3 Divide and conquer (Incremental evolution) 

Incremental evolution is regarded as one of the techniques for conquering the 

scalability problem. One of the first attempts to apply it was undertaken in [75] towards 

digital circuits. Since then, many approaches have been developed in the digital domain 

[48], [76], [49]. In the analogue area, few works distinctly utilized these approaches 

[46], [47]. Furthermore, the targeted circuits were not complex enough to exploit the 

potential of the technique. The basic idea of incremental evolution was first introduced 

by Torresen in [139] as a ―divide and conquer‖ method, when the task is decomposed 

into subtasks and then the subtasks are solved step-by-step.   

Today the method has been used widely and diversely, and within it can be 

distinguished three categories of incremental evolutionary techniques: divide and 

conquer, staged evolution and fitness shaping (Figure 2-2). The first one is quite popular 

in digital circuit evolution [48], [76], [49], when subtasks may be evolved independently 

and then joined together for further evolution if required. During the second case of 

incremental evolution, the initial population is evolved to complete the first sub-task. 

Based upon the end of the first, the fitness function is changed to the second subtask‘s 

fitness function and the second sub-stage runs, and so on. This technique was first 

introduced by Harvey et al. [167], where in order to evolve a vision-based target location 

task he used three sub-stages from locating a large immobile target to tracking a moving 

smaller one. The last type is not often seen as an incremental evolution scheme because 

it does not suppose the task decomposition [169], [168]. Instead, for the initially 
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complex task, it applies the fitness function (FF) that changes its parameters with 

increasing pressure in response to the achieved progress in results. For example, Gomez 

et al. used competitive co-evolution with a predator-prey task. He modified FF 

parameters related to the prey‘s speed and the delay before starting the pursuit ten times, 

i.e. ten sub-stages were run.  

Figure 2-2. Three types of incremental evolution: (a) divide and conquer, (b) staged evolution, 

(c) fitness shaping. The squares are the tasks and subtasks. The arrows are evolutions. In case (a) 

and (b), the first sub-stage is the task decomposition. In case (c), multiple arrows between sub-

stages express FF modification. 

In analogue electronics, the sub-solutions of the subtasks cannot be easily connected 

to get the proper functioning solution. That is, two perfectly working circuits, when 

connected to a common input, are not guaranteed to perform in the same way, and it is 

more likely that each circuit will disturb the functioning of its neighbour. This comes 

from the physical nature of the electronic components that interact with each other by 

(a) 

(b) 

(c) 
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means of potentials and currents. This situation differs from that of digital circuits, 

where the rules of Boolean algebra and the complex task could be decomposed by 

Shannon’s expansion theorem or output decomposition [48]. For instance, in [49] a 

digital circuit with multiple outputs was broken down into many smaller sub-circuits 

(each encoded by a single chromosome) with a single output. Due to the digital nature of 

the target, the ―divide and conquer‖ approach enabled parallel evolution for each sub-

circuit. The final solution was built by a simple jointing of sub-solutions together. 

In this regard, and in this work, the task decomposition has been applied and the 

staged evolution is found to be most suitable. Thus, when staged incremental evolution 

is mentioned in this work, it means - first of all - not the independent evolution of 

subtargets but rather the evolution of the current subtarget together with all the 

subtargets evolved previously. That is, if one has the already evolved a subtarget, when 

evolving the second one the first solution must participate in that evolution, being 

encoded in the chromosome together. This fact decreases the benefit in comparison with 

―divide and conquer.‖ However, as will be shown, to tackle this issue a special technique 

has been proposed in Section 5.1.2. 

2.5 Problems of EHW 

In the following, there is a discussion of three major problems in EHW: 

generalization, scalability and the stalling effect. The first one is met during Experiment 

16: Evolution of Time Interval Meter Circuit (TIMC). The second one is met and even 

has brought about the failure of Experiments 8: Evolution of Cube Root circuit and 14: 

Evolution of 8-Output Voltage Distributor circuit (VDC). The third problem is met at 

every experiment, starting from Experiment 8: Evolution of Cube Root circuit.  

2.5.1 The generalization problem 

In EHW, the prospective circuits are tested by exposing them a range of input signals 

and observing the circuit outputs in order to evaluate their fitness. In most of the cases, it 

would be unfeasible to expose and observe all the possible training examples. Therefore, 
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the HW has to generalize beyond the cases it has observed. The notable notion relating 

to this is in [41]: ―Modern real-world circuits can process hundreds of input signals, and 

to observe each possible combination of these just once, even at millions of training 

cases a second, would take longer than the age of the universe. For sequential circuits 

the number of training cases is infinite.‖ So, it is obvious that the ability of EHW to 

generalize is vital. In Figure 2-3, there is an example how an evolved solution at a good 

fitness value cannot generalize for the rest of the cases beyond the five test samples. 

The chart in Figure 2-3 shows a fitness function of the best Time Interval Meter 

Circuit (TIMC) against the 1000 test pulses ranging from 0 to 4V. There are five visible 

test samples used during the evolution, applied at 0.1, 0.6, 1.5, 2.3 and 3.2V. Beyond 

these five cases, the evolved circuit does not function properly, which means that the 

circuit has not generalized. In this thesis, the solutions to the problem of generalization 

are met and solved in the frame of Experiment 16: Evolution of TIMC. The solution for 

the problem is the increasing of the number of input samples during evolution. 

 

 

Figure 2-3. The chart fragment of a fitness function of the best TIMC against the different test 

pulses. The set of 5 test samples were applied (at 0.1, 0.6, 1.5, 2.3 and 3.2V) during evolution, 

but beyond these cases the circuit has not generalized.  
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2.5.2. The scalability problem 

In contrast to digital circuit design, most analogue circuits are handcrafted and the 

process is regarded as ―a knowledge-intensive, multiphase, iterative task, which usually 

stretches over a significant period of time‖ [140]. The evolution of analogue circuits, - 

both their structure and their parameters - is considered to be a difficult task as well [12]. 

This is because - unlike a digital component - an analogue component brings to the 

circuit a high number of new variable dimensions, including: a component‘s type (up to 

5 in this work) and the connection numbers for each of 2-3 pins and parameters (up to 90 

in this work). This exposes the requirement of tackling the problem of scalability in 

EHW. Until recently, the most advanced EHW techniques were able to deal with 

analogue circuits sized up to 70 components (Table 2-1) (the evolution of both the 

structure and parameters). This number may be increased if one possesses some 

knowledge of the targeted circuit, for example the structural topologies or the limits of 

the parameters that belong to the components of the evolved circuit. However, and in 

any case, the solution space that it is necessary to search is tremendous. Yao and 

Higuchi consider the fundamental limiting factors in producing large-scale, complex 

systems, and in [111] they point out that the solution space circuit evolution is 

proportional to O(2
n
), where n is the number of functional components in the EHW and 

O is some constant. However, it is more likely concerned with the solution space of 

digital circuits, because the thoughtful estimation of the solution space of analogue 

circuits - given in the next Section - exceeds this value considerably. 

To tackle the scalability problem, and according to [43], ―designers have introduced 

various approaches that can be divided into three classes: functional level evolution, 

incremental evolution and development.‖ Most of the attempts to tackle the scalability 

problem use the first option, namely improving the system at the EA level by exploiting 

the novel techniques developed by EA theory, such as representation, multi-

objectiveness, co-evolution and adaptation. For the second option, few works have 

distinctly utilized this approach in the analogue domain [47], [78], [120] (see column 5 

of Table 2-4). Furthermore, as it can be seen from column 6 of Table 2-4 that the 

targeted circuits were not complex enough to exploit the potential of the techniques. 

This is explained in Section 2.4.3, i.e. in the analogue electronics, the sub-solutions of 

http://lingvopro.abbyyonline.com/ru/Search/LingvoArticlesAndExtraInfo?text=%d0%b2%d0%bd%d0%b8%d0%bc%d0%b0%d1%82%d0%b5%d0%bb%d1%8c%d0%bd%d1%8b%d0%b9&translation=thoughtful&srcLang=ru&destLang=en&dictionaries=LingvoUniversal%20(En-Ru)&author=
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the subtasks cannot compose a final solution by simply jointing ―bricks into a wall,‖ and 

in most of the cases every sub-solution has to be coded in the chromosome during the 

evaluation procedure.  

Table 2-4. Developers in evolution of analogue circuits: scalability 

 

Researcher EA    type 
Genotype length 

varying 

strategies 

Scalability 
Method 

Input/  
output No 

Circuit  
size 

Koza et al. [24] GP ILG D&C 3/3 64 

Mattiussi et al. [43] GA OLG development 2/1 55 

McConaghy et al.   

[44], [53] [179] 
GP ILG 

structural 

 homotopy 
2/1 48 

Sripramong et al. [83] GP Fixed represent. 1/1 41 

Shibata et al. [84] GA Fixed represent. 1/1 36 

Trefzer [148] GA OLG M-O 2/1 34 

He et al. [170] DEA ILG represent. 1/1 28 

Hu et al. [45] GP ILG M-O 1/1 26 

Lohn et al. [59] GA ILG represent. 1/1 23 

Ando et al. [78] GP,GA n/a D&C 1/1 22 

Kruiscamp et  al. [87] GA Fixed No 1/1 22 

Zebulum et al. [77] GP,GA 
ILG/OLG/ 

UDIP 
represent. 2/2 19 

Dastidar, et al.  [86] GA OLG No 2/1 18 

Chang et al. [81] GP UDIP represent. 1/1 17 

Das et al. [89] [174] GA UDIP represent. 1/1 15 

Ohe et al. [171] GP ILG M-O 1/1 15 

Langeheine, et al. [121] ES Fixed M-O 2/1 15 

Yuan et al. [173] DEA ILG DE 1/1 14 

Conca et al. [177] GA ILG development 1/1 14 

Kim et al. [54] ES ILG co-evolution 1/1 14 

Wang et al. [47] 

Gene 

Expression 

Programming 

ILG D&C 1/1 13 

Goh et al. [17] GA ILG No 1/1 12 

Xia et al. [85] GA Fixed adaptation 1/1 11 

Grimbleby [79] GA ILG No 1/1 10 

Sabat et al. [172] DEA ILG DE 2/1 10 

Gan et al. [80] GA OLG represent. 1/1 7 

 Kuyucu et al. [120] ES Fixed D&C 4/4 n/a 

D&C  - divide and conquer, DEA is Differential Evolution Algorithm, M-O – multi-objectiveness, DE – 

differentiated evolution  
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And finally, the third way of tackling the scalability problem is the development. 

Over the past decade, increasing attention has been targeted toward modelling the 

biological developmental mechanism in artificial evolutionary synthesis [23], [43], [45], 

[123]. Since the search space grows exponentially with the genotype size, the evolution 

of large phenotypes should benefit from development. Development uses a genetically 

encoded growth program in several recursive steps. Parsimony arises from the fact that 

rewriting rules can be applied an arbitrary number of times so that the genotype size 

should be highly independent of the phenotype size.  

In 2001, Layzell [93] pointed out that, to his knowledge, ―no circuit with 100+ 

functional basic elements has yet been evolved; the greatest number so far attained 

seems to be around 30-40,‖ since this time there has been little progress in scaling EHW 

to more complex analogue circuits. In this regard, it is suggested the following 

classification of analogue circuits along the levels of complexity that will be helpful for 

automatic analogue circuit synthesis, at least within the frame of this thesis. 

1. The first or initial complexity level circuits are the ones that contain only 2-pin 

components. With regard to the number of inputs and outputs, these circuits 

contain only one input and one output; with regard to the number of components, 

these circuits - as usual - do not need more than 20-30 components to perform a 

function that is within 1% deviation from the ideal function. This class of circuits 

is usually used as an initial test targeted for novel evolutionary systems, since 

there are a lot of them available for comparison and the making of the decision as 

to whether the system is powerful [17], [59], and [79]. 

2. The second complexity level circuits are the ones that may contain 2- and 3-pin 

components. With regard to the number of inputs and outputs, these circuits may 

contain a maximum three inputs and outputs, in sum. With regards to the number 

of components, these circuits - as usual - need about 30-70 components to 

perform a function that is within 1% deviation from the ideal function. To this 

level of class belongs the largest circuits evolved until recently [24], [43], [44], 

[84].  
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3. The third complexity level circuits are the ones that may contain any kinds of 

components. With regard to the number of inputs and outputs, these circuits may 

contain 3 or more inputs and outputs, in sum. With regard to the number of 

components, these circuits - as usual - need more than 70 functional components 

to perform functions that are within 1% deviation from the ideal function. This 

type of circuit marks the future of EHW, those that aims to tackle the scalability 

problem as their main subject, including the current thesis.  

In the above classification, only the functional components are supposed, i.e. each of 

them by its functioning improves the individual‘s fitness. There are examples with a 

greater element count - for example [2], [55] and [110] - but tests have not been 

conducted on these examples to determine how many of the elements have a functional 

role. 

 2.5.3. Solution space for analogue circuit evolution 

The automatic synthesis of analogue circuits from high-level specifications is treated 

as a challenging problem. For example Alpaydın, et al. [16] stated: ―Design in the 

analogue domain requires creativity because of the large number of free parameters and 

the sometimes obscure interactions between them.‖ To the author‘s knowledge, no 

attempts have been undertaken to make estimation of the solution space of analogue 

circuit evolution. However, some works refer to this question with regard to an 

exponential dependence on circuit size [17], [23], [28].   

In this regard - and in this section - the function of the volume of the solution space 

from the number of circuit components and its parameters will be defined. The total 

solution space S depends on structural solution space Ss and parametric solution space Sp. 

They are bound by the Product Rule [112]:  S= Ss ×Sp. 

Let is regard j floating pins of some number of unconnected components; then, the 

minimum number of the pin-to-pin connections - supposing that there are no floating 

pins left - is j/2. On the other hand, no pin is limited to connect to all other pins at the 
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same time; thus the maximum number of connections enabling each pin to connect to 

every another pin except itself is defined by combinatorial formula for the combination 

[112]: j!/(k!(j-k)!), where the set has in total j pins and the subset k equals to 2 

(connecting 2 pins). So the maximum number of pin-to-pin connections is j!/(2!(j -2)!) = 

j (j-1)/2. For simplicity, suppose that all of the pins in a circuit are represented by two-

pin components (resistors, capacitors, inductors, etc), then the number of components is 

z and the number of two-side connections in this circuit - as defined above - may vary 

from z=j/2 to z(2z-1). For every fixed number and structure of connections of a circuit 

within the defined interval, adding or changing just one additional connection may bring 

about a significant redistribution of currents and potentials; therefore, this circuit can be 

regarded as a separate solution.  

For simplicity, the combinations among the connections of minimum number z are 

not regarded, i.e. the circuit has some kind of fixed structure with a minimum number of 

connections that make all the pins joined and the circuit proper. This assumption, while 

it simplifies the task, reduces the solution space by the number of combinations that z 

connections may connect to z components in a circuit. Thus, possible combinations 

should be counted from the first connection, following z until z(2z-1)-z= 2z(z-1).  

Thereby, and firstly, for every fixed number of connections the total amount of 

combinations within the maximum possible ways 2z(z-1)
 

can be defined. An a-

combination of size a from a set 2z(z-1), where order does not matter, is given by a 

sequence of a distinct elements [112] and is equal to the binomial coefficient: 

)!a1)-2z(z(!a

)!1)-2z(z(
. Secondly, all combinations should be summarized along the 

number from 1 to 2z(z-1): 

1a

1)-2z(z

s
)!a1)-2z(z(!a

)!1)-2z(z(
S        [2-1] 

Unlike the structural solution space, the parametric solution space Sp depends on 

component parameters. If the total number of components with different parameters that 

are available for evolution is f, then according to the Product Rule [112] the number of 
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ways to select z components - provided that each choice has no effect on any subsequent 

choice - is Sp=f 
z
. Together with the structural solution space, formula [2-1] is the last 

one and according to the same Product Rule [112] it composes the solution space for the 

evolution of an analogue circuit: 

1a

1)-2z(z

z

)!a1)-2z(z(!a

)!1)-2z(z(
fS      [2-2] 

As applied to different circuit sizes, this last formula instantiates the solution spaces 

listed in Table 2-5. 

Table 2-5. Solution spaces for circuits of different sizes 

Component 
number in a 

circuit 

Structural 
solution space 

Parametric 
solution space 

Total solution 
space 

Reasonable 
structural 

solution space 

Reasonable 
solution space 

3 
4095 

 
1,839E+7 

7,53E+10 

 

4016 

 

7,39E+10 

 

4 
1,68E+7 

 
4,86E+9 8,15E+16 

9,74E+6 

 

4,73E+16 

 

5 1,10E+12 1,28E+12 1,41E+24 8,46E+10 
1,08E+23 

 

9 
2,23E+43 

 
6,23E+21 

1,39E+65 

 

1,66E+29 

 

1,03E+51 

 

13 
≈6E+91 

 

≈3E+31 

 

≈2E+123 

 

≈2E+52 

 

≈7E+83 

 

15 
≈4E+126 

 

≈2E+36 

 

≈2E+161 

 

≈8E+60 

 

≈2E+97 

 

20 
≈2E+227 

 

≈3E+48 

 

≈5E+275 

 

≈8E+89 

 

≈2E+138 

 

40 ≈1E+863 
≈7E+96 

 
≈1E+960 

9E+222 

 
≈7E+318 

The total number of parameters, equal to f=264, is taken from Experiments 3-7, where there are 84 values for 

inductors and capacitors, while for resistors there are 96 values.  

Formula [2-2] does not claim to offer an exact calculation of the solution space 

because it does not take into account three-pin components, number of input/output pins, 

ground and power connections, useless circuits where components may short themselves 

or else create a non-functional group of components. On the other side, it accounts for 

the meaningless circuits where every component is connected to every another 

component or most of the components in the circuit.  
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The last problem may be tackled to replace the upper limit 2z(z-1) of the sum [2-2] 

with a more reasonable value. If - to take as an example - the circuits evolved in the past, 

(including ones that are commercialized [44], [53]) the average numbers of connections 

per component are presented in Table 2-6. As can be seen from Table 2-6, this number 

does not exceed 4, i.e. the total number of connections in a circuit exemplified does not 

exceed 4z, where z is a number of components. Taking into account the previous 

assumption that the first z connections are fixed, the solution space Sr for analogue 

circuits with a maximum of 4z interconnections could be counted according to the 

formula:  

1a

3z

z

r
)!a1)-2z(z(!a

)!1)-2z(z(
fS      [2-3] 

Table 2-6. Brief analysis of previously evolved circuits on the average number of pin-to-pin 

connections per component 

Researcher Circuit name Component 
No 

Total No of  
pin-to-pin 

connections 

Avg. No of  pin-to-
pin connections per 

component 

McConaghy et al. 

[44], [53] 

Current conveyor 15 45 3.0 

Current-feedback opamp 25 80 3.2 

Opamp 48 129 2.7 

Koza et al. [24] 

Cubing 56 127 2.3 

Four-way source 

identification 
24 52 2.2 

Mattiussi et al. 

[43] 

Temperature sensing 55 114 2.1 

Voltage reference 47 107 2.3 

  

The last two columns of Table 2-5 displays the solution space with a more 

reasonable number of circuit connections, which is called - for simplicity - a ―reasonable 

solution space‖ Sr. Figure 2-4 shows that for circuits with less than 5 components the Sp 

dominates the Ss, but for larger circuits the Ss gives the main contribution to the solution 

space. Despite this, the formula [2-3] does not define the exact value and works with 

some assumptions, giving the idea that the potential solution space for evolutionary 
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analogue circuit synthesis grows according to a factorial law rather than an exponential 

law [17], [23], [28].   

 

Figure 2-4. Dependence of the solution space on the number of components: parametric Sp, 

structural Ss and their product S. 

2.5.4 The stalling effect problem in the evolutionary process 

The EA displays a tendency towards stalling effects, or local optimums. There are 

two main reasons for such a problem, as pointed out in [119]. The first one typically 

occurs when an inappropriate technique is applied towards the task. That is, the 

technique enables the diminishing of the gene pool; in other words, it leads to the 

depletion of gene diversity inside a population. It may be caused by an application of a 

non-optimal mutation parameter or the wrong selection operation. Another reason is the 

scalability problem [107], [123], when the search space becomes too large for relatively 

few evaluations. While the first problem is usually solved by the application of adaptive 

evolution parameters [62], [67], the second problem is solved by the methods 
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exemplified in Section 2.5.2. All the methods are developed and tested in the frame of 

this thesis. 

2.6 Targets for evolution 

In this section, the motivation for evolutionary targets and a brief description of the 

targeted circuits are given. The experimental work presented in this thesis can be divided 

into 3 parts, the testing of the framework system, the testing of the intermediate system 

and the testing of the final system.  

2.6.1 Targets for the framework system 

The framework system - described in Chapter 3 - has been mainly applied to the low-

pass filters. Many of the works in analogue circuit design begin from evolving a passive 

low-pass filter [12], [13], [17], [28], [78] which is a convenient tool for the probation of 

an evolutionary technique and the tuning of the evolutionary algorithm parameters for 

the more sophisticated designs. The behaviour of low-pass filters between the 

frequencies of 1Hz and 100KHz - the cut-off frequency 1KHz and the transition band 

1KHz - has been actively researched through in [12], [13] and [28]. Thus, the 

performance of a proposed evolutionary technique could be evaluated more precisely if 

the evolution target were to have exactly the same filter properties. Moreover, the filters 

could be of two types: LC and LCR. The evolution of LC filters was considered in [12], 

[17] and [18].  LCR filters were discussed in detail in [13], [18], [28], [45] and [78].  

Considerable results were obtained by Koza et al. in [12]. They used Genetic 

Programming (GP) circuit-constructing program trees with four kinds of circuit-

constructing and automatically defined functions that are as one with the mutation types 

described in this thesis. The last one let them got as results the filters with regular 

structures within the circuit. The main drawback of this experience is that the technique 

required large computing power and the methodology was very complex in view of its 

implementation. The larger computational efforts in a circuit evolution required by GP 

were proven by Zebulum et al. [28] and Ando et al. [78], where they have given a 
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comparison between GP and GA. In the first work, the low-pass filters operated as a 

testing task for the comparison of performance among different types of variable 

representation strategies. The second work concerned the evolution of real hardware for 

the purposes of robustness. 

There are two important features of low-pass filter that define how good the filter is: 

the maximum absolute attenuation in the pass-band and the attenuation in the stop-band. 

The best evolved filter in terms of the first feature is presented by Lohn et al. in [13] 

(0.0144dB). In terms of the second feature, the filter evolved by Koza in [12] (-72dB) 

exceeds all others. When making comparisons, other evolutionary features should be 

taken into account, such as the number of components in the circuit and the computation 

effort spent. 

Finally, the last notion relating to low-pass filters concerns the transition band. The 

transition band varies from wider [28] to shorter [12], but no one has ever attempted to 

evolve transition bands shorter than 1 KHz. This is because the shorter the transition 

band the closer the filter is to the ideal, and the harder the tasks therefore become [106].  

2.6.2 Targets for the intermediate system 

For an intermediate system that has been armed with a differentiated mutation 

technique the computational circuits (CC) have been chosen as the main targets for 

evolution. An analogue electrical circuit whose output is a mathematical function is 

called a computational circuit.  

The CC is a circuit that converts the incoming voltage into outgoing voltage in 

accordance with some computational function, such as square, square root, cubing, etc. 

Analogue CCs have two main advantages over digital CCs [24]: 

1. They operate faster and they are especially useful when the mathematical 

function must be performed more rapidly than is possible with a digital 

circuit (e.g., for real-time signal processing at high frequencies).  
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2. They are more cost- and size- effective. Analogue CCs are useful when the 

need for a single mathematical function in an analogue circuit does not 

require converting an analogue signal into a digital signal, with the help of an 

analogue-to-digital converter, performing the mathematical function through 

the digital processor and converting the result back to the analogue domain 

using a digital-to-analogue converter.  

The design of computational circuits is one of the most protracted issues for any 

automatic circuit synthesis system, because it relies on the clever exploitation of some 

aspect of the underlying device physics of the components (e.g., the transistors) that is 

uniquely suited to the particular desired mathematical function. Because of this, the 

implementation of each different mathematical function typically requires an entirely 

different design approach [145]. It should be mentioned that among all the analogue 

circuits evolved by Koza, the largest one is a square root circuit with 64 components in 

[24]. In [24], [98] and [99], they used GP substructure reuse to evolve four types of 

analogue CC. These papers suggest an attractive opportunity to judge the effectiveness 

of the evolutionary tool. Targeting the same arithmetic functions, and utilizing an 

identical evaluation procedure (fitness function), one can directly compare the fitness 

values (average error), circuit size (economy) and PC time spent. In this work, this 

opportunity has been taken advantage of. In [98], two CCs were developed by a similar 

evolutionary technique, as in [24]; however, they used time-continuous signals in time-

domain simulations. The transient analysis of a circuit in contrast to DC-analysis 

provides more robust circuits, despite the higher time-consumption in completing the 

analysis. The patent in [108] presents the conventionally designed cubing CC, which 

was improved in [99] by the iterative refinement method.  

Cube root computational circuits are very hard to find in the literature, especially the 

schematics that are formed through evolution. With regards to deciding as to the 

efficiency of the proposed evolutionary technique, only one work was found that directly 

addresses the problem [24]. 
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2.6.3 Targets for the final system 

The evolutionary targets for the final system have been chosen based on the 

following criteria: they should belong to an unconventional application domain and thus 

be of higher complexity in comparison with previous targets. Since the CCs are one of 

the most complex circuits in the EHW domain [24], the next targets are those circuits 

that never been approached before. 

Three circuits are defined as such targets: the 4-output Voltage Distributor Circuit 

[116], the 8-output Voltage Distributor Circuit [65] and the Time Interval Meter Circuit 

[146]. The first two of them are interesting since they are multi-pin circuits. The last one 

attracted attention because it represents a real world problem, suggested by a 

commercial entity.   

Since these tasks are more specific, their descriptions are given in Sections 4.6.1, 

5.2.1 and 5.6.1 where the corresponding system and experiment setups are given.  

2.7 Summary of Chapter 2  

One of the main purposes of this chapter was to uncover the area of research, and it 

was done in two stages. At the first stage, the location of EHW in relation to other fields 

was demonstrated, while second stage focuses on the concrete place to which this work 

mostly contributes to inside the EHW domain. This Chapter reviewed the field of EHW, 

focusing on the main techniques, features, questions and problems that are useful for a 

reader without spreading too thinly over every grain of the area. The special attention is 

paid to scalability problem, for which the solution space for analogue circuit evolution is 

investigated in detail. The comprehensive reference list is follows this charter. The next 

Chapter introduces the development of the ES-based EHW framework, with its 

limitations at the end of the Chapter.  
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Chapter 3. The EHW Framework for Analogue 

Circuits  

The aim of this chapter is to describe the EHW framework system whose purpose is 

the automatic synthesis of analogue electronic circuits of initial complexity, according 

to the classification given in Section 2.5.2. It depicts - step-by-step - the entire system, 

starting from the chromosome encoding to the choice of some suitable strategies. The 

chapter details the analysis of several simulation results that revealed the most 

appropriate techniques. Finally, the research in this chapter develops an Unconstrained 

ES-based EHW system with OLG that is able to evolve highly effective LCR analogue 

circuits.  

In Experiments 1-7 below, the methodology developed has been utilized towards the 

constrained and unconstrained extrinsic evolution for analogue LC and LCR circuit 

design. Experiments 1-3 utilize the simplest ILG strategy, while in Experiments 4-8 the 

OLG technique has been applied. In Experiment 8: Evolution of Cube Root circuit, it is 

considered the first circuit that contained - beside L, C and R components - p-n-p and n-

p-n bipolar transistors, called in further LCRQQ circuits. 

3.1 The Start: Encoding (Representation) 

In initiating the system with the purpose of circuit synthesis, one first of all needs to 

decide as to what kind of genotype this form of the circuit phenotype properties should 

be coded in. For the framework system, the direct coding of the phenotype properties of 

a circuit is proposed.  

Besides the initial components - called the embryo - it has been proposed that 

evolution should use five types of analogue components (Figure 3-1):  

 L – inductor, a two-pin component; 



 
Chapter 3. The EHW Framework for Analogue Circuits 

 

 

 71 

Qp14

 C – capacitor, a two-pin component;  

 R – resistor, a two-pin component;  

 Qn – the n-p-n bipolar transistor, a three-pin component;  

 Qp – the p-n-p bipolar transistor, a three-pin component. 

 
 

 

 

 

 
 

 
 

Figure 3-1. Genes coding: a resistor (a), a p-n-p bipolar transistor (b), a n-p-n bipolar transistor 

(c), a capacitor (d), an inductor (e). Rx, Qpx, Qnx, Cx, Lx are loci for names, where the letter 

―x‖ is a particular number. N1, N2, N3 are loci for the first, the second and the third pins; Pa-

loci is the parameter.  

 

As is usual, each component has four features that describe it. For 3-pin components 

(transistors), these four features are: three pin numbers and a name of a component. For 

2-pin components (resistor, capacitor or inductor), these four features are: two pin 

numbers, a component‘s name and a parameter. These four features are to be coded into 

four loci of a gene. On Figure 3-1, there are five components and five corresponding 

genes with four loci in each. Thus, every component of a circuit is directly represented 

as a particular gene, and each gene consists of exactly four loci corresponding to a 

component‘s features. 

In such a way, the list of genes that describes a circuit composes a chromosome of 

that particular circuit. The genes on the Figure 3-1 look exactly the same as component 

lines in the PSPICE netlist on Figure 3-2; as such, there is no necessity to converting a 

genotype into a netlist. This type of coding simplifies the terminology (for example, it is 

   Rx  N1  N2  Pa       Qpx  N1  N2  N3      Qnx  N1  N2  N3       Cx  N1  N2  Pa         Lx  N1  N2  Pa 
    
              (a)         (b)               (c)         (d)                (e) 

     
 

Qn15
C6

5.6e-7

R5

5.6e+6

L4

0.68
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meant ―circuit‖ when ―chromosome‖ is mentioned; it is meant ―component‖ when 

―gene‖ is mentioned; it is meant ―population‖ when ―netlist‖ is mentioned).  

 

Figure 3-2. The PSPICE deck fragment of a computational circuit derived from the cir-file.  

 

Table 3-1. The dimensions of potential values for each of the loci 

 
Name 

loci 
Node 1 loci Node 2 loci Node 3 loci 

Parameter 

loci 

Dependence Static 

Depends on 

circuit 

structure 

Depends on 

circuit 

structure 

Depends on 

circuit 

structure 

Preset 

The number of 

values 
5 

From 5 to 

100 

From 5 to 

100 

From 5 to 

100 

From 84 to 

96  

 

Each locus has its own dimensions of potential values that differ from each other. 

These differences are shown in Table 3-1. If, for a parameter and a name loci, it is 

possible to set the particular number of values (say, one can choose the number of types 

of components and number of parameters) for component pins, the number of potential 
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connections cannot be predefined as it is a function of the circuit size (see Section 

2.5.3). 

3.2 The System Framework – Master Part 

In order to create a system that will be able evolve electronic circuits, one has to be 

able to join two main parts: the slave evaluation part (i.e. simulation software) and the 

master part of the system. 

Conventionally, the master part of the system must create the following functions 

and - accordingly – it must have the same number of subroutines: 

1. The initial conditions setting part. Here, the limits of the system are set, such as:  

 The number and names of components that participate in evolution. A 

component list is initiated, where to every component is assigned its own 

position number; 

 The number and values of parameters that participate in evolution. For 

each component, the list of parameters is initiated based on 12 parameters 

per decade, where to every parameter is assigned its own position number; 

for inductors (from 1E-9H) and capacitors (from 1E-12F), there are 84 

values, for resistors (from 1.8Ω) there are 96 values used by evolution; 

 The PSPICE analysis options, such as the component models to be used, 

RELTOL, ITL1, ITL2, etc. (listed and described in Appendix B); 

 The EA parameters, such as the population size, the mutation rate and the 

SR; 

 Initiating the results summarizing data-file, where all the required by the 

researcher results are accumulated throughout the experiment; 
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 The number of testing points and the number of tests. 

2. The embryo circuit part. This part of the system is responsible for initiating the 

embryo circuit. It defines the circuit terminals and the embryo‘s components, 

parameters and structure. It only works during the first generation. 

3. The initial circuit growth part. Since the embryo circuit cannot be evaluated - 

due to floating pins - here the embryo has to be grown up until at least several 

elements are able to conduct the current from the source to the load of the 

circuit. Usually, this number depends on the size of a population. For example, 

for a population 20,000 the number of components in the initial circuit (embryo 

excluding) should be from 3 to 5 for the one input-one-output circuit, and it 

takes the corresponding number of initial generations. The lower the number of 

initial components that are initially used may lead to a large amount of identical 

circuits in a population to be evaluated. On the other hand, a higher number may 

cause the earlier appearance of the stalling effect. This part of a system works 

only during the first generation. 

4. There must be a special interface that organizes communication with the 

evaluation part of the system. This interface runs and stops the evaluation 

software/hardware and downloads the cir-file and opens the out-file. 

5. When running the evaluation part of the system, the special sub-program has to 

monitor the process of evaluation in order to interact in real time with the latter 

in case of any problem. There are two main problems here. Both of them happen 

due to the analysis of non-convergent circuits that may cause PSPICE to delay 

the analysis or even to stop the analysis. 

6. When reading the out-file, a special fitness assigning subroutine must identify 

the valuable information - such as the chromosome number - circuit functioning 

characteristics and errors. Depending on the type of the information read, the 

subroutine has to assign a fitness value per chromosome. All the fitness values 

are associated with corresponding chromosomes and are stored inside the system 
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memory. Since this part of the process is the most time consuming, a great deal 

attention should be paid on it.  

7. The ranking part of the system ranks the chromosomes based on their fitness 

values and other available properties. As has been mentioned in Section 2.2.4, 

this part of the system suggests an opportunity for the inclusion of additional 

objectives for evolution. 

8. The selection part selects the parents of the next population and clones them to 

the complete population.  

9. The mutation part of a system mutates each chromosome of a population. It 

creates the PSPICE netlist and writes it in the next cir-file. 

10. The process termination part of a system checks the terms and stops or enables 

the further evolution with the report written in the data-file. 

These 10 milestone procedures are regarded as obligatory for the master part of the 

framework evolutionary circuit synthesis system (Figure 3-3).  
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Figure 3-3. The flowchart of the proposed system. The ranking, selection and mutation stages of 

the system are squared in red bold, since they are the most modifiable parts in the frame of this 

thesis. In the dashed box is the subroutine that is usually presented in almost all the other 

approaches. However, within the frame of this thesis this kind of subroutine will be applied only 

during Experiments 1 and 4. 
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3.3 The System Framework – Slave Part (Simulation SW) 

It has been discussed that there are two conventional options for evaluation: 

extrinsic and intrinsic (the third, unconventional one, is mixtrinsic). The advantages of 

the extrinsic method have become more valuable and feasible for in view of the current 

research. 

In order to download a circuit into PSPICE, one has two options: interactive and 

non-interactive. If the first one requires the constant presence of a human, the second 

one implies the off-line communication with the program in a command-line regime. 

Since dealing with EA means dealing with a population of circuits (chromosomes) that 

have to be evaluated by PSPICE, the second - non-interactive - option is more suitable 

for utilization. The non-interactive mode of PSPICE enables it to run the batch regime, 

where the multitude of circuits - coded in the PSPICE netlist inside a cir-file - is 

downloaded into PSPICE. The last one produces the out-file upon the end of the 

analysis. The software enables the use of built-in library models or else the use of one‘s 

own.  

Thus, each generation a population of chromosomes coded in the PSPICE netlist is 

listed in a cir-file and downloaded into PSPICE.  

Being tuned, however, the simulation software may produce an error message if the 

analogue circuit under analysis has at least one of the following properties: 

1. Has at least one floating pin of any of a component inside the circuit; 

2. The circuit is not able to converge according to the formulas calculating the 

current and voltage of PSPICE; 

3. If the voltage or current at any node or component exceeds the limits set in 

PSPICE;  

4. If any orthographic mistake is made in the netlist.  
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If problems 1 and 4 are solvable in the frame of the master part of the system, 

problems 2 and 3 refer to the source-code of PSPICE. Since the source-code is closed, 

one has to find a way to tackle problems 2 and 3 by an additional subroutine. This has to 

be made because problems 2 and 3 in PSPICE default mode may lead to enormous time 

consumption during evolution. In default mode, the software - if it has met problem 2 or 

3 - solves it during ten seconds in the best case. That is, the evaluation of a 10,000-

population where there are 1000 non- converging circuits (10%) requires almost three 

hours (for a chromosome size equal to 10-12 genes, instead of 15 minutes), which is 

intolerable. In the worst case, PSPICE comes to a standstill, requiring manual 

interaction. 

To tackle this problem, in this work the built-in Windows API functions have been 

used to recognize the appearance of problems 2 and 3 during PSPICE‘s running and are 

able to automatically interact with PSPICE in order to skip the various time consuming 

default procedures. When PSPICE ends the work, it automatically saves the results of 

an analysis in an out-file, which is then downloaded back into the system. 

3.4 The Initial Circuit Growth Part 

 

 

Figure 3-4. The embryo circuit for TIMC. The task of the initial circuit growth part of the 

system is to provide connections to floating pins that are labelled on the figure by red circles. 

 

On Figure 3-4 is an image of the embryo for the TIMC circuit. The task consists of 

connecting each input with each output with the help of randomly chosen components. 
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Otherwise, if there is any floating pin, the circuit will be rejected by PSPICE as invalid. 

The initial circuit growth part of a system suggests an option to choose the initial 

number of elements to grow up. As mentioned above, this number varies from 3 to 5 

components (per out pin). Since the structure of the resulting 3-5 component circuit is 

random, the first generation may bring about 30-50% crippled chromosomes. However, 

in further generations, with their being chosen, the right chromosomes only bring up to 

1% of invalid offspring in the case of LCR circuits and up to 8% of crippled 

chromosomes in the case of LCRQQ
2
 circuits,

3
 where all the ―cripples‖ belong to non-

convergent circuits. 

3.5 Mutation 

For the framework system, only the static population-level mutation rate is utilized. 

For the first part of the framework system, the ILG varying strategy has been 

inculcated. This means that the mutation procedure consists of two main parts, which 

are applied depending on the current success of the search process: the circuit-structure-

mutation (CSM) and the add-new-element-mutation (ANEM).  

At the ANEM stage as well as at the CSM stage and in all other mutation types 

described in this work, the Rule of Equal Mutation Probabilities (REMP) is set. The 

REMP is established targeting the same general target, the unconstrained evolution of 

analogue circuits. According to this rule, any kind of mutation must have an equal 

probability of appearing at every component, node, pin, parameter and other attributes 

of a circuit. There are no prohibitions to any kind of connection. For instance, during 

ANEM, every component has an equal right to appear at any part of a circuit 

disconnecting any kind of connection and creating any type of a new structure with an 

equal probability. In intrinsic approaches, due to the inherent features of hardware, the 

application of REMP is limited. However, most of the extrinsic approaches constrain 

the evolution intentionally. When mutating by a single gene, they suggest for a 

new/mutated component a limited choice of connections/mutations. For instance, in 

                                                 
2 LCRQQ is a circuit composed of inductors, capacitors, resistors and two types of transistors 
3 In this context, ―up to‖ means ―maximum.‖  The amount of invalid circuits depends on the average chromosome length of a 

population. The longer the chromosome is the higher the amount of invalid circuits. 
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[94] they suggest for the n-p-n bipolar transistor only 52 variants of integration inside 

the circuit (nodes to connect to), regardless to the circuit size. The statistics constraining 

analogue circuit evolution are presented by Table 2-3. Some typical prohibitions on 

transistor connections are listed by Table 3-3.  

3.5.1 CSM 

CSM is like any conventional mutation in that it is an operation that concerns per 

loci replacement inside a chromosome. This is to say that the value of a randomly 

chosen locus has to be replaced by another randomly chosen value. If only CSM is 

applied, the procedure repeats as many times as is required by fitting the mutation rate. 

For instance, for a 20-gene chromosome, consisting of 80 loci, at mutation rate set at 

5%, the procedure has to be repeated four times. Other examples instantiating the 

procedure are shown in Table 3-2. 

Table 3-2. Examples of the 5% mutation rate for 5 different chromosomes. 

Chromosome size, genes 
Locus 

number 

No of locus to be mutated at mutation 

rate 5% 

10 40 40×5%= 2 

20 80 80×5%= 4 

50 200 200×5%= 10 

80 360 360×5%= 16 

100 400 400×5%= 20 

  

For the framework system, the circuit growth methodology and the genotype 

varying strategy are the simplest conventional ILG. The flowchart of the mutation 

procedure, including the triggering of one or another mutation type, is shown on Figure 

3-5. If the evolution has got into a local optimum (stalling effect), the add-new-element-

mutation (ANEM) is applied at every stalling generation, otherwise CSM takes place.  
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Figure 3-5. The flowchart of ILG-based mutation in the framework system. 

 

The following circuit modification rules take place during CSM. The design 

decisions below are made in accordance with REMP, as stated at the beginning of 

Section 3.5; i.e. all of the options below suggest the freedom of connections for a 

new/mutated component and represent all the possible variations of connections that 

may occur in a circuit. 

1. Component name mutation rules. There are four possible options that may 

appear when changing one component to another inside a circuit, depending on 

the component type combinations: 

 A 2-pin component changes another 2-pin component. Since each 2-pin 

component has a symmetry towards a current and voltage direction, the 

change of one component to another is the simplest procedure among all the 

others. For instance, a resistor can be changed by a capacitor or inductor 

without any probability of the appearance of any floating pin (Figure 3-6). A 

parameter inheritance rule takes place when components with parameters 

change each other: a parameter of a new component is chosen by its position 
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number that is proportional to a position number in a parameter list of the 

previous component‘s parameter. That is, if a parameter list of a component 

to be changed consists of n parameters and the parameter‘s number in this 

list is a, a new component whose parameter list consists of m members, will 

have a new parameter b: 
n

ma
b . For example, if in a parameter list of a 

resistor there are 50 parameters, while in a parameter list of a capacitor there 

are 80 parameters, and a capacitor with a position number 40 is changed to a 

resistor, the parameter of the latter should be under a position number 25.    

 

 

Figure 3-6. The mutation of the 2-pin component to another 2-pin component. (a) The 

component with a name ―R13‖ is replaced by the component ―C3‖ (b) and ―L5‖ (c). 

 

 A 3-pin component changes another 3-pin component. In this case, after the 

removal of the component, there are 3 pins left floating. Each pin of the new 

component is randomly assigned to one of the floating pins with equal 

probability. However, there is only one prohibition - it is not allowed to 

assign all three pins to one node. As a result of an application of this rule, it 

may appear as a circuit where there are no floating pins left (Figure 3-7b) or 

where is one floating pin left after the operation (Figure 3-7c). The last 

problem is solved by connecting a floating pin to any of the circuit‘s nodes 

with equal probability.   

 

(a) (b) (c) 
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Figure 3-7. Mutation of the 3-pin component by another 3-pin component. (a) The component 

with the name ―Qp21‖ is replaced by the component ―Qn20‖ (b) without floating nodes left and 

(c) with one floating node left. By the red circle is indicated a floating pin at Qn19. 

 

 A 3-pin component changes a 2-pin component. In this case, each pin of a 

new component is randomly assigned to one of the floating pins with equal 

probability. However, there is only one prohibition - it is not allowed to 

assign all three pins to one node. As a consequence of an application of this 

rule, there may appear a circuit where there are no floating pins left (Figure 

3-8b) or where there is one floating pin left (Figure 3-8c). The last problem 

is solved by connecting a floating pin to any of circuit‘s nodes with equal 

probability.   

 

 

Figure 3-8. Mutation of the 2-pin component by a 3-pin component. (a) The component with a 

name ―R13‖ is replaced by the component ―Qn21‖ in two ways: without floating pins (b) and 

with floating pins (c)‖. By the red circle is indicated a floating pin at Qn21. 

 

 A 2-pin component changes a 3-pin component. In this case, each pin of a 

new component is randomly assigned to one of the floating pins with equal 

probability. However, there is only one prohibition - it is not allowed to 

(a) (c) (b) 

(a) (b) (c) 
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assign all two pins to one node. Due to an application of this rule, a circuit 

with one floating pin appears (Figure 3-9b). The last problem is solved by 

connecting a floating pin to any of circuit‘s nodes with equal probability. 

 

 

Figure 3-9. Mutation of the 3-pin component by the 2-pin component. (a) The component with 

the name ―Qn21‖ is replaced by the component ―R13‖ (b). This kind of replacement always 

leads to a floating pin. By the red circle is indicated a floating pin at C8. 

 

2. Node connection mutation rules. There is no difference as to which pin of a 

component is set to be mutated, whether first, second or third; for all of them the 

rule is the same. The randomly chosen pin of a randomly chosen component is 

disconnected from the current node and randomly connected to another node. 

The last one is randomly and equiprobably chosen from the all nodes of a 

circuit. The floating pins - if they appear - obey the same rule, i.e. they are 

connected to a randomly chosen node of a circuit. In Figure 3-10 there are two 

cases where a pin is disconnected from a 3-pin node (a) and a 2-pin node (b). 

3. Parameter mutation. The parameter mutation is when a randomly chosen 

component with a parameter changes its parameter to a new one. The latter is 

chosen equiprobably from the list of available parameters set by the initial 

conditions setting part of the system. If the randomly chosen component does 

not possess the parameter feature, the choosing procedure continues until the 

required component is found or some limit of for search iterations is reached. In 

the latter case, the parameter mutation is randomly replaced by another mutation 

type. 

(a) (b) 
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Figure 3-10. The node connection mutation. After breaking a randomly chosen connection, 

there are two kinds of possible cases: with one floating pin to be mutated (a), and two floating 

pins (b), one of which is supposed to be mutated and another one is caused to find another 

connection (b). For each floating pin, the new node is found randomly among all the nodes with 

equal probability.  

 

3.5.2 ANEM 

The add-new-component-mutation (ANEM) plays a crucial role in dynamic 

representation: during the initial circuit growth stage, as a mutation tool it struggles 

against stalling and for permanent circuit growth [127].  

In common with other works ([2], [12]-[18]), ANEM consists of a procedure where 

one component has to be randomly chosen from a component list and connected to a 

circuit. For this, randomly chosen nodes and the parameter are selected with equal 

probability and assigned to a new component. When connecting to pins (Figure 3-11a), 

a new component may not disturb the existing circuit structure (Figure 3-11b) or change 

it in different ways (Figure 3-11c-j).  

In case all the pins of a new component are assigned to the same node, the 

component disconnects the connections and again randomly chooses new "neighbours." 

The floating pins - left after this procedure - have to search for new connections. The 

example of a new 2-pin component connecting to a node with two and three pins is 

shown by Figure 3-12. 

(a) (b) 
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(e) (a) 

 

     

     
 

Figure 3-11. An example of an ANEM mutation. (a) For a resistor R9 with a parameter 

10Ohm two nodes are chosen. (b) The new component is connected to a circuit without 

changing the overall structure. (c)-(j) There are eight variants where a new component is 

connected to a circuit while changing the overall structure. The floating pins are marked by 

red circles. 

 

 

 

 

   

Figure 3-12. An example of an ANEM mutation when the same node is assigned to both pins 

of a resistor R9 with a parameter 200Ohm. (a) The node is formed by two pins and the only 

means of connection is on (b). (c) The node is formed by three pins. (c)-(f) Three variants 

when a new component is connected to a circuit changing the overall structure. The floating 

pins that are marked by red circles have to search for other connections. 

 

(f) (d) (b) 

(j) (i) (h) (g) (f) 

(e) (d) (c) (b) (a) 

(c) 
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3.6 Fitness Assigning, Ranking and Selection Procedures 

A fitness assigning subroutine searches for useful information inside an out-file, 

such as the number of the chromosome, the points of analysis and the corresponding 

values of analysis results (Figure 3-13). Based on this information, it calculates a fitness 

function and assigns it to a particular chromosome. The built-in PSPICE options - such 

as ―NOREUSE‖, ―NOECHO‖, etc. - significantly help to form the out-file and are 

convenient for searching for the necessary information inside the file. In Figure 3-13, 

there is a fragment of an out-file with the transient analysis result that refers to an 

evolution of TIMC. 

 

 

Figure 3-13. A fragment of an out-file that refers to a chromosome coding TIMC. The useful 

information here for a fitness assigning subroutine is ―Chromosome No 12,‖ ―TIME,‖ ―V(3)‖ 

and 11 values of V(3).    

 

At the framework system, the ranking is only made upon the fitness value, i.e. the 

better the fitness of the chromosome the higher the ranking. 

Another point to note concerns the prevention of chromosome replication. The 

extrinsic EHW has an advantage in using the simulation software. The simulation 

software, when making the analysis of identical circuits, produces identical analysis 

values. Consequently, the FF calculates identical fitness values, even if with a precision 
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of 5 or more decimal digits. During ranking procedure, when comparing two or more 

chromosomes with identical fitness values and identical genotype length, this feature 

enables the assignation of a rank to only one individual and eliminates the others. This 

could be done with the confidence that the rest of the chromosomes, in terms of their 

functional parts, are replications of the ranked one. The aim of this operation is the 

increasing of the diversification of the gene pool. On the other hand, the non-functional 

components of such the circuits - called ―introns‖ [126] - that can differ may carry the 

neutral mutations and are regarded as an important factor in the evolution of circuits 

[38], [101]. As a result of this trade-off, the first option is chosen because the 

diversification of the gene pool will be crucially important in the later part of this 

research during VNFE, when selection rates are minimized.  

There are many alternatives as to how to select individuals for the next generation. 

There are two types of selection schemes that have been used in the frame of this thesis: 

the ―roulette wheel‖ and the disruptive selection scheme. The ―roulette-wheel‖ selection 

scheme is used with a selection strength of β=∞. The disruptive selection scheme is 

used when 9% of the top-ranked and 1% of the bottom ranked are selected as parents 

for the next generation. 

Throughout all the experiments, the fitness threshold is set to 0.3%, i.e. the evolution 

ranks the fitness of a new chromosome as the best if the relative fitness difference 

between one of the current best ones and one of the rival chromosomes is more than 

0.3%. This barrier enables pressure to be applied during selection which stimulates an 

application of more radical mutations (ANEM). Furthermore, it prevents the appearance 

of chromosomes with negligible differences that any simulation software like PSPICE 

will inherently produce. 

3.7 Unconstrained Evolution  

As has been discussed in Section 2.5.3, unconstrained evolution provides a larger 

space for potential solutions to be explored and for the discovery of unconventional 

solutions for conventional tasks as well as for unconventional tasks.  
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In [82], unconstrained evolution - both spatially and temporally - is applied 

intrinsically to digital FPGA-based reconfigurable hardware. By releasing the full 

repertoire of the behaviour that FPGA can manifest - namely, allowing any connections 

among modules, letting the evolution evolve the granularity of modules as well as the 

regimes of synchronization - such evolution has been able to find a highly efficient 

electronic structure, which requires 1-2 orders less silicon area to achieve the same 

performance as a conventional design does.  

By analogy to this approach, unconstrained evolution could be applied towards the 

original analogue circuits. The Rule of equal mutation probabilities (REMP) introduced 

in Section 3.5 makes the first contribution to removing the constraints on the evolution. 

Furthermore, the analysis of earlier developments in the evolution of analogue circuit 

design reveals that all of the approaches so far developed are based on the circuit-

structure–checking rules for avoiding invalid circuits (Table 2-3). In this sense, the 

range of circuit-structure-checking rules at the netlist composition stage - prohibiting 

invalid circuit graphs - are regarded as the main constraints for the design methodology.  

In this regard, there are two terms that should be satisfied by the system to perform 

the unconstrained evolution. The first one is that no circuit-structure-checking rules 

should be applied and all the circuits should be counted as valid graphs except for the 

ones that have elements with floating pins and isolated sub-circuits. The second is the 

adaptation of the REMP. In what follows, the first term is regarded in detail. 

3.7.1 Unconstraining the evolution of LCR circuits 

There are two main kinds of invalidities in netlists that treated as errors by most of 

the simulation software: the nodes that have no DC path to the ground (tackled in [12]) 

and loops that involve inductors and/or a voltage source. By tackling these issues, the 

evolution is enabled so as to create structures with arbitrary connections and eliminate 

the constraints imposed by the simulation software. Most of the methodologies in the 

area simply prohibit such kinds of invalidities from appearing. In the case of LCR 

circuits, adding to each capacitor the Giga-Ohm resistance in parallel and adding to 
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each inductor the Micro-Ohm resistance in series, and at the stage of PSPICE cir-file 

generation, this allows us to avoid these invalidities. Such kinds of resistances are called 

R-support. Using R-support and avoiding floating pins makes almost any randomly 

generated LCR circuit valid, and indeed makes the evolution absolutely unconstrained. 

Figure 3-14b demonstrates how unconstrained evolution generates the circuits with R-

support. The circuit depicted on Figure 3-14a, once it has been prepared for 

unconstrained evolution, will appear as shown by Figure 3-14b. Each element line 

describing inductor (L_0) is followed by an R-support element (Rl_1) in series with an 

infinitesimal parameter; and each element line describing the conductor (C_No) is 

followed by an R-support element (Rc_No) in parallel with an infinite parameter.  

 

Figure 3-14. Two different chromosome representations of the circuit following constrained (a) 

and unconstrained (b) evolution.  

 

If the circuit-structure-checking rules are applied to a circuit after a fitness 

assignment as a part of the pruning procedure - i.e. every R-support element is checked 

(a) (b) 
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as to whether it could be pruned out without damage to the current fitness value of a 

circuit - then the circuit may contain a very few R-support elements or even not contain 

any at all. For instance, on being evolved the circuit shown by Figure 3-14b and after 

such the pruning process may again become the circuit depicted by Figure 3-14a.  

3.7.2 Unconstraining the evolution of LCRQQ-circuits 

In the previous section, only those circuits that contained 2-pin components have 

been treated by unconstrained evolution. Now, the unconstrained evolution of circuits 

with 3-pin bipolar transistors will be considered.  

In Table 2-3, some works in the area of evolutionary analogue circuit synthesis are 

listed with information as to the types of constraints applied. The analysis of the table 

reveals that most of approaches already developed are based on the circuit-structure–

checking rules for avoiding invalid circuit graphs.   

The literature review on the subject of LCRQQ circuit synthesis [15], [13], [44], 

[54], [94], claims that the main conventional prohibitions for connections during circuit 

evolution are as follows in Table 3-3: 

Table 3-3. The list of those prohibitions that are popular for bipolar transistor connections 

during a circuit synthesis. 

   

Transistors are banned from joining their emitters to 

collectors 

   

Transistors are banned from connecting their base to a 

voltage source 

   

Transistors are banned from connecting their base to the 

ground 

 

   

Transistors are banned from connecting their base to 

outputs 

Qp2

Output 

Qn3

Output 

Qp2 Qn3

Qp2

15V

Qn3

15V

Qp2 Qn3
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n-p-n transistors are banned from connecting their 

emitter to a positive voltage source and their collector to 

a negative voltage source 

 

p-n-p transistors are banned from connecting their 

emitter to a negative voltage source and their collector to 

a positive voltage source 

 

As it has already been declared in Section 3.5, the REMP is set as fundamental. That 

is, any kind of connections must have an equal probability of appearing at every 

component, node and pin of a circuit. The releasing of bans in Table 3-3 is 

unconstraining on the evolution of LCRQQ circuits from Constraints №1 listed in 

Section 2.3.3.  

3.8 Experiments 1-3: Constrained vs. Unconstrained Evolution  

In the frame of low-pass filter experiments, a total of 103 circuits were evolved. The 

best seven of them have been chosen to be presented in detail in Chapter 3, because, 

according to the structure of this thesis drawn in Figure 1-4, seven are sufficient for the 

discovery of all the required features of the frame system. In Section 3.10, three circuits 

are presented which have been evolved in the frame of the ILG technique. Two LC 

filters are evolved by constrained and unconstrained evolution. In the end of the section, 

the first three-component circuit LCR low-pass filters were evolved with unconstrained 

evolution. 

In this section, the framework system is tested with a low-pass filter and a 

computational circuit.  

In three ILG-based experiments below, several issues have been tackled including: 

 Testing the framework described in this section;  

Qp2 15VQp2-15V

Qn3 -15V15V Qn3
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 Testing the constrained evolution approach;  

 Testing the unconstrained evolution approach;  

 A comparison of all three tests in terms of the example of a low-pass filter.  

3.8.1 Task setting  

A low-pass filter passes low frequencies fairly well, but attenuates high frequencies. 

An ideal low-pass filter completely eliminates all frequencies above the cut-off 

frequency while passing those below unchanged at the transition band infinitesimal 

(Figure 3-15). This can be realized mathematically by multiplying with the rectangular 

function in the frequency domain or - equivalently - convolution with a sync function in 

the time domain.  

However, the ideal filter is not realizable; otherwise, the filter would need to predict 

the future and have infinite knowledge of the past in order to perform the convolution. 

Real filters for real-time applications approximate the ideal filter by delaying the signal 

for a small period of time, allowing them to "see" a little bit into the future. Greater 

accuracy in approximation requires a longer delay. Two types of filters are shown by 

Figure 3-15: an ideal one with no transition band at all and the real one with the 

transition band. 

 

Figure 3-15. The circuit response of an ideal and a real low-pass filter. The last one is dashed 

with the transition band. 

KHz 

V 

0 

Transition band 

Passband Stopband 
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The goal for the framework evolutionary system thus constructed is to design a filter 

with an AC input signal with a 2 volt amplitude. The filter has a passband below 1kHz 

with voltage values between 970mV and 1 volt and has a stopband above 2kHz with 

voltage values between 0 volts and 1mV. This corresponds to a passband ripple of at 

most 0.3 decibels and a stopband attenuation of at least 60 decibels. The circuit is to be 

driven from a source with a source resistance of 1 kΩ and terminated in a load of 1 kΩ. 

The embryo-circuit refers to the elements that are definitely known as essential for 

the target circuit, that stay unchangeable during all the evolution and take place in each 

circuit netlist. In the case of a low pass filter as a target circuit, there are three such 

kinds of elements: the AC voltage source, the source resistance and the load resistance. 

The embryo circuit is defined in a similar manner to the most popular case, where the 

circuit is driven by an incoming AC voltage source with a 2V amplitude: it has a source 

resistance Rsource=1kΩ and a load resistance Rload=1kΩ (Figure 3-16). The output 

voltage is measured on the pins of the Rload. 

 

 

Figure 3-16. Embryo circuit for a low-pass filter. 

 

3.8.2 Fitness Function  

An AC-analysis is performed along 96 points between 1 Hz and 100 kHz (19 per 

decade), measuring the absolute deviation voltage between the ideal value and the value 

produced by PSPICE. The fitness evaluation is set in the analogy with [12], i.e. it is 

Node1 

Vsource 

Evolving circuit 

Rsource Rload Output 

Voltage 

Node2 

 

+ 
 

~ 



 
Chapter 3. The EHW Framework for Analogue Circuits 

 

 

 95 

distinguished as an acceptable voltage in the passband between 970 mV and 1 V and a 

voltage in the stopband between 0 V and 1 mV:   

p

0i

i

measured

i

ideal1
|VV|F , 

where i

ideal
V is the voltage at the i-th point for an ideal filter and 

i

measured
V is the voltage at the 

i-th point obtained for the evolved filter; p is a number of points evaluated in both the 

stopband and the passbands, equalling 96. The voltage at any other location is as 

unacceptable, punishing it as it follows 
12 FaF , where a=10; for reasons of 

comparison, it is taken as the same as in [12], where multitude of low-pass filters are 

evolved. 

The transition band - consisting of five points between 1 kHz and 2 kHz - is 

regarded as the "don't care" band, where the fitness value is supposed to be equal to 

zero. 

3.8.3 Initial settings 

Experimentally, it has been established that the disruptive selection scheme [97] 

suits well: only 9% of the best chromosomes and 1% of the worst ones are to be chosen 

for the next generation. Being chosen for the next generation, each chromosome 

contributes 10% of the next population size, i.e. a total of 10% of the selected 

chromosomes generate 100% of the population of the next generation. A static mutation 

rate of 5% is then applied to each chromosome, randomly changing with equal 

probability at every loci of a gene. The evolutionary strategy is the simpler evolutionary 

algorithm, because it does not contain the recombination stage.  

A population size of 20,000
4
 chromosomes is set. It was decided to use a larger-

population-size approach because it provides the advantage in speed: PSPICE requires 

some time for starting up, downloading the cir-file and web-licensing. This is to say that 

                                                 
4 Despite the good results have been received with this population size, there are no reasons why this size should not be 

increased. In fact, in here the author is only driven by convenience of processing the PSPICE out-file, which size in 20,000 

population case reaches 210MB. It is used PC Pentium-4, 3GHz, RAM 1GB. 
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10-20 seconds are required for each generation to be loaded, regardless of the 

population size.  

The termination criteria are set as either exceeding the chromosome length of 28 

genes or the running of 20 contentious generations without any improvement of the 

fitness value of the best chromosome. 

For Experiment 1 - as the constraint for the evolution - two special subroutines have 

been created for the framework system. The first one checks circuits for invalidities up 

to five nodes in the chain around the new/mutated element on the floating nodes. The 

second rule checks up to four elements around the new/mutated element, whether or not 

they are involved in the inductor/voltage source loop. If the chromosome is found to be 

―crippled‖ - i.e. either floating nodes or inductor loops or other invalidities are found - it 

is not sent for evaluation. 

3.8.4 Experiment 1-2: Unconstrained vs. constrained evolution of LC 

circuits 

The purpose of the experiments below is to compare constrained and unconstrained 

evolutions on the example of a LC low-pass filter using inductors and capacitors. For 

both constrained and unconstrained cases, thirty nine experiments have been run with 

different seeds for a random number generator (RNG): 1-39. All 39 experimental results 

are shown in Table 3-4.  

The best result for constrained evolution has been obtained at chromosome 11,863 

of generation No.61 (20,000×60+11,863=1,211,863 individuals), with 26 elements 

(without embryo) with a best fitness value of 0.0041. The schematic and the voltage 

response of the best circuit are shown by Figure 3-17. The non-monotonic filter is 

received with the following features: the maximum absolute attenuation in the passband 

is 0.0015dB and the maximum attenuation in the stopband is -66dB. 

 

Table 3-4. The experimental results for 39 different seeds of a random number generator 
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(RNG). Against each RNG seed, there are two values: the best fitness value reached and the 

generation number when this fitness value appeared. 

Seed 

for 

RNG 

Constrained 

evolution 

Unconstrained 

evolution Seed 

for 

RNG 

Constrained 

evolution 

Unconstrained 

evolution 

Best 

fitness 

Gen. 

No 

Best 

fitness 

Gen. 

No 

Best 

fitness 

Gen. 

No 

Best 

fitness 

Gen. 

No 

39 0,0278 55 0,0052 69 19 0,0181 53 0,0247 61 

38 0,0230 91 0,0279 61 18 0,0226 54 0,0137 56 

37 0,0220 63 0,0083 62 17 0,0118 60 0,0147 56 

36 0,0201 63 0,0046 69 16 0,0087 63 0,0192 61 

35 0,0161 57 0,0081 73 15 0,0120 62 0,0093 67 

34 0,0066 55 0,0180 65 14 0,0220 57 0,0139 64 

33 0,0217 64 0,0182 57 13 0,0230 51 0,0168 59 

32 0,0130 62 0,0184 68 12 0,0236 62 0,0132 70 

31 0,0095 56 0,0120 62 11 0,0246 57 0,0129 62 

30 0,0049 62 0,0053 65 10 0,0261 62 0,0209 69 

29 0,0105 65 0,0143 63 9 0,0221 61 0,0134 57 

28 0,0081 61 0,0082 62 8 0,0119 56 0,0118 59 

27 0,0313 54 0,0064 68 7 0,0090 56 0,0029 60 

26 0,0080 64 0,0067 61 6 0,0055 56 0,0101 57 

25 0,0082 55 0,0108 61 5 0,0119 58 0,0099 64 

24 0,0041 61 0,0124 60 4 0,0103 57 0,0179 59 

23 0,0133 60 0,0034 55 3 0,0239 55 0,0124 58 

22 0,0216 57 0,0031 66 2 0,0219 59 0,0059 70 

21 0,0244 57 0,0295 67 1 0,0244 53 0,0166 63 

20 0,0109 56 0,0113 58 0 0,0164 59,2 0,0126 62,7 
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Figure 3-17. The schematic after pruning and the voltage response of the best low-pass filter 

evolved with constrained evolution in Experiment 1. 

 

The best result for unconstrained evolution was obtained at chromosome 19,993 of 

generation No.60 (1,199,993 individuals) with a best fitness value of 0.002855, which is 

44% better than the best achieved through constrained evolution. The schematic after 

pruning and the voltage response of the best circuit are shown by Figure 3-18. As can be 
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seen, a non-monotonic filter is evolved, consisting of 27 elements (without embryo) 

among which 3 are the R-support and with the following features: the maximum 

absolute attenuation in the passband is 0.00118dB and the maximum attenuation in the 

stopband is -69dB. 

 

 

Figure 3-18. The schematic after pruning and the voltage response of the best low-pass filter 

evolved with unconstrained evolution in Experiment 2. 
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3.8.5 Experiment 3: Unconstrained evolution of LCR circuits 

Additionally, with regard to the previously evolved filters in this experiment, the 

purpose is set so as to apply the newly developed methodology of unconstrained 

evolution for the evolution of the LCR low-pass filter using inductors, resistors and 

capacitors. The task is more sophisticated due to the larger space of potential solutions 

to search in. The latter is due to the third dimension which is now added and which is 

available for the evolution on the place of the name loci in each gene of a chromosome. 

In this and in all other experiments until the end of Chapter 3 (except for ―Experiment 

8: Evolution of cube root circuit‖), only LCR circuits will be considered. 

 

Figure 3-19. The schematic after pruning and the voltage response of the best LCR low-pass 

filter evolved in Experiment 3. 
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The best result out of five attempts has been obtained at chromosome 9,790 of 

generation No.42 (20,000×41+9,790=829,790 individuals), with 12 elements before 

pruning (without embryo), among which one is R-support and with a fitness value of 

0.009693. The schematic after pruning and the voltage response of the best circuit are 

shown by Figure 3-19. The non-monotonic filter has the following features: the 

maximum absolute attenuation in the passband is 0.012dB and the maximum 

attenuation in the stopband is -59dB. 

It should be noted that after pruning no resistors are left inside a circuit (except for 

R-support). This fact can be explained as that the evolution has ―decided‖ that the low-

pass filter is absolutely sufficient, with only two types of elements (―L‖ and ―C‖). 

During the experiments above, the amount of invalid circuits among all those 

randomly generated did not exceed - on average - 0.03%. 

3.8.6 Results comparison 

In this section, a comparison of the results of Experiments 1-3 is presented as well as 

the results received by others on the low-pass filter with the same properties. 

In order to provide a fair comparison between those results obtained and those 

previously published, the author has validated each result using PSPICE. For this, each 

previously published schematic has been manually netlisted and the netlists have been 

run on PSPICE. The same fitness function is applied to all of the compared filters. By 

doing this, the filter characteristics for each circuit and its fitness values have been 

received, and all are summarized in Table 3-5. The proof of the correctness of this 

operation is verified by the perfect match between the fitness value obtained by the 

operation described and ones published in [12].   

The experimental data on the LC filters in Table 3-5 shows that on average 

unconstrained evolution requires 62.7 generations, which is 5% longer than that of 

constrained one; however, the average fitness value (0.0126) is 30% better. A similar 

situation arises with the chromosome producing the best fitness: the unconstrained 
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evolution at RNG seed 7 runs out 60 generations and reaches a fitness value of 

0.002855, which is 44% better than that of a constrained one (0.0041, reached at 

generation No.61 at RNG seed 24).  

Table 3-5. Comparison table of filter and evolution characteristics among works published 

before and presently. 

  

Ideal 

filter 

10order 
Chebyshev 

filter 

[102][12] 

Koza 1    

et al, [12] 
elliptic 

Koza 2   et 

al, [12] 
ladder 

Koza 3   

et al, [12] 
bridge-T 

Lohn 

et al, 
[13] 

LCR-filter 
Unconstrained 

Experiment 3 

[96] 

LC-filter 

Constrained 

evolution 
Experiment 1 

[33]  

LC-filter 

Unconstrained 

evolution 
Experiment 2 

[33]  

Filter Characteristics 

Pass band, V 1 1 1 1 1 1 1 1 1 

Stop band, V 0 0 0 0 0 0 0 0 0 

Transition band, KHz 0 1 1 1 1 1 1 1 1 

Maximum absolute  

attenuation in the pass-

band, dB 

0 0.035 0.179 0.0175 0.137 0.0144 0.012 0.0015 0.0012 

% of improvement - 2866 15069 1383 11510 1120 917 27 - 

Maximum attenuation  

in the stop band, dB 
- ∞ -83 -72 -61 -60 -59 -59 -66 -69 

% of improvement* - -20 -4 12 13 14 14 4 - 

Evolution characteristics 

Fitness value 

- 

 

0.0259 0.0805 0.0071 0.0502 0.0134 0.00969 0.0041 0.0029 

% of improvement* 809 2725 149 1661 369 240 44 - 

No. Elements 10 25 14 15 24 12 26 27 

No. Individuals - N/A 2,048,000 N/A 997,000 829,790 1,211,863 1,199,993 

Gen.No./Individ.No. at 
which the fitness is 

reached in Exp.2 

 
25/    

520,000 

16/   

340,000 

34/ 

700,000 

20/  

420,000 

31/ 

640,000 
- - - 

Circuit simulator  - SPICE OrCAD PSPICE 

* The value ―% of improvement‖ shows the correlation of the difference between the value above in the same column and the 

corresponding value in the column ―LC Unconstrained evolution,‖ 

This result can be explained as a result of two reasons. The analysis has shown that 

exploiting the circuit-structure-checking rules in a constrained evolution still allows a 

significant amount of mistaken circuits to be sent to simulation SW. In the case of the 

structure checking rule applied in Experiment 1, up to 15% of error circuits - on 

average- are allowed to be generated, which generates up to roughly 3% of the invalid 

chromosomes. In contrast, during the running of unconstrained evolution, the number of 

invalid graphs among all those randomly generated never exceeds 0.03%. In other 

words, the effective population size with unconstrained evolution was 15% larger than 
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that of a constrained one.  

The second reason explaining the result is that each generation produced by 

unconstrained evolution contains more diverse chromosomes. The usage of R-support 

enabled the unconstrained evolution to create chromosomes which a constrained 

evolution will never allow to appear. For instance, the best circuit reached at RNG seed 

7 contains three R-support elements, without which the circuit loses proper functionality 

and - thus - could never be replicated by constrained evolution.  

Despite the fact that the evolution of the LCR-filter in Experiment 3 is worse than 

both of the LC-filters evolved in Experiments 1 and 2 - according to all of the 

characteristics in Table 3-5 - it displays features that are significantly better than the 

LC-filters designed in [12] and the LCR-filter designed in [13]. More attention will be 

paid later on for the evolution of LCR-filters. 

In Table 3-5, all comparison characteristics are of two types: filter or evolution. The 

first three lines of the table show that those filters that are compared are of the same 

nature, and it is correct to make a comparison among them. The last two lines of the 

filter characteristics - attenuations in the stopband and the passband - are two major 

features that directly define the fitness value. The number of elements and individuals 

do not influence a fitness value; however, they are presented for a comparison because 

this property is regarded as an important feature of the unconventional design of the 

circuit that has been evolved by unconstrained open-ended evolution [51].  

The last idea concerns the comparison of the system‘s ability with those developed 

by others. Line 15 of Table 3-5 shows the generation number and the number of the 

individual evaluated during Experiment 2 against each case. It should be noted that it 

took 3-times less individuals to evaluate than in [12], and 35% less individuals than in 

[13], to reach the same fitness.  

Through Experiment 3, the first important version of the framework system is 

concluded. The results of the experiment are inspiring, showing that the methodology 

initiated is arranged in an appropriate manner. The framework system created will 
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become a skeleton for bringing up the more powerful system. The next section will 

suggest the OLG strategy as the first modernisation.  

3.9 Oscillating Length Genotype (OLG) Varying Strategy 

The main reason for introducing OLG is for chromosome length control so as to 

struggle against bloat [126], [127]. As previous experiments show, during the pruning 

there were several components (genes) that were removed. Furthermore, it is felt that 

26-27 components for a circuit is quite a large size for a low pass filter. Therefore, the 

introduction of OLG should lead to more compact circuits, since OLG enables the 

deletion of single genes from chromosomes.  

For this purpose, a new kind of mutation is introduced, namely ―Delete element 

mutation‖ (DEM) which will be responsible for the deletion one gene if the best 

chromosome is shorter than the one viewed by some preset threshold value (for instance 

two genes, Figure 3-20). This is to say that after two fruitless consequent generations 

the difference becomes one gene, while after three fruitless consequent generations the 

difference becomes three genes and the DEM begins to work.  

Now the whole picture of the mutation procedure is as follows. The ―circuit 

structure mutation‖ (CSM) performs mutation over any of four loci of a randomly 

chosen gene. If the mutation comes to a pin connection, the whole structure of a circuit 

is changed. However, the total amount of components stays unchangeable during CSM. 

The number of components may only increase during ANEM. If the best chromosome 

has not been changed for several generations, the ANEM procedure may cause a 

difference between the size of the best individual and the size of the chromosomes in 

the rest of a population. If the difference exceeds two components (genes), DEM starts 

to randomly choose a gene in a chromosome for deletion. 
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Figure 3-20. The flowchart of OLG-based mutation in the framework system. New terms are in 

bold. 

 

When DEM removes a randomly chosen component, every new potential 

connection made by the floating pins has an equal probability of appearing. However, 

the last procedure may cause some pins to become unconnected, and then these floating 

pins connect to any of the circuit‘s nodes equiprobably. The example of the deletion of 

a 2-pin component may cause in total seven possible cases of structural recovery, as 

shown by Figure 3-21. 
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Figure 3-21. An example of a ―delete element mutation‖. A resistor R9 with a parameter of 

22kΩ (a) is removed and seven different cases of circuit structuring are shown (b-h). The 

floating pins - marked by red - have to search for other connections. A similar picture arises in 

the case of the removal of a 3-pin component and in the case of different circuit topologies.  

 

 

The influence of OLG with the help of DEM on the fitness history of the best 

chromosome during evolution is shown by Figure 3-21. It represents the fragments of 

the circuit size and its fitness during evolution with OLG. The size of the circuit 

gradually grows up from 5 to 20 components, while the fitness value of the best circuit 

falls (improving). It can be seen that ANEM improved the fitness at generations 1-2, 6, 

10, 12, 15, 18, 21, 25-27 ,30 and 33; DEM worked out at 8, 13, 17, 23-24, 28-29 and 31. 

The rest of the evolution is ruled by CSM (3-5, 7, 9, 11, 14, 16, 19-20, 22, 32 and 34-

35). In general, the behaviour of the chromosome‘s length during evolution corresponds 

to the ―oscillating length genotype strategy‖ mentioned in [28], where the 

chromosome‘s length can grow-up as well as shorten-down. 

It also should be noticed that the proposed OLG technique differs from that 

presented in [28]. In [28], the genotype length was oscillating according to a sinusoidal 

function, whereas in the case presented here, the oscillation order becomes adaptive and 

is self-defined by evolution (Figure 3-22).  

(h) (f) (d) (b) 

(g) (e) (c) (a) 
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Figure 3-22. Chart fragments of the fitness value and size of the best circuit vs. generation. The 

ridges at the chromosome length curve are caused by the DEM procedure.  

 

3.10 Experiments 4-5: Constrained vs. Unconstrained 

Evolution of LCR Circuits 

The results of the evolution of two LCR circuits are presented in this section [103]. 

All of them are made with help of the OLG technique. In Experiment 6, the constrained 

evolution has been running. In Experiment 4, the unconstrained evolution is applied to 

the same target under the same conditions as in Experiment 5. The results are then 

compared.  

3.10.1 Introduction 

The low-pass filters for the experiments below have the same properties as before, 

namely the embryo and the stopband and the passband. Furthermore, the ES properties 

also are set as the same for facilitating further comparison, namely the FF, the SR, the 

mutation rate, and the population size, etc.  
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In the three OLG-based experiments below, several issues have been tackled, 

including: 

 Testing the new OLG-based system which possesses a DEM operation; 

 Testing the framework described in this section on the LCR circuits; 

 Testing the constrained evolution approach; 

 Testing the unconstrained evolution approach;  

 Comparison of the two tests.  

3.10.2 Experimental results  

Termination criteria are set as either the running of 20 unfruitful consecutive 

generations or the reaching of a fitness of 10
-3

. The results presented below are the best 

out of five attempts for both of the experiments performed, with five different seeds for 

the RNG.  

3.10.2.1 Experiment 4: Constrained evolution of a LCR circuit 

The purpose of the experiment is to evolve the LCR low-pass filter by means of 

constrained evolution and OLG. All the target properties and evolution conditions are 

used as in Experiments 1. The best result has been obtained at chromosome 17,308 of 

generation No.62 (20,000×61+17,308=1,236,308 individuals), with 27 elements 

(without embryo-circuit) with a best fitness value of 0.008084. The schematic and the 

voltage response of the best circuit are shown by Figure 3-23.  
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Figure 3-23. The schematic after simplification and the voltage response of the best low-pass 

filter evolved by Experiment 4. 

 

As can be seen, in Figure 3-23 the non-monotonic filter has the following features: 

the maximum absolute attenuation in the passband is 0.0023dB and the maximum 

attenuation in the stopband is 60dB. 

A special subroutine has been set that checks invalid circuits up to five nodes in the 

chain around a new/mutated element - whether or not they are floating - and a rule that 

checks up to four elements around a new/mutated element, whether or not they are 
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involved in the inductor/voltage source loop. This subroutine has been detaining the 

invalid circuits to be evaluated. Once any of the invalidities are found by this 

subroutine, the latter one sends back the chromosome to the mutation part of the 

framework system. 

It should be noticed that, after pruning, no resistors are left inside a circuit as with 

Experiment 3.  

3.10.2.2 Experiment 5: Unconstrained evolution of a LCR circuit 

The purpose of this experiment is the unconstrained evolution of a low-pass filter in 

contrast to the one evolved previously by constrained evolution. All of the target 

properties and evolution conditions are as those used in Experiments 2 and 3. The best 

result has been obtained at chromosome 9,958 of generation No.75 

(20,000×74+9,958=1,857,453 individuals), with 28 elements before simplification and 

with a best fitness value of 0.003916, which is two times better than that achieved 

through constrained evolution (Experiment 4). The schematic after pruning and the 

voltage response of the best circuit are shown by Figure 3-24.  

As can be seen from Figure 3-24, there is a non-monotonic filter consisting of 16 

elements (without embryo) among which 1 is R-support and with the following 

features: the maximum absolute attenuation in the passband is 0.0043dB, the maximum 

attenuation in the stopband is -69dB. 
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Figure 3-24. The schematic after pruning and the voltage response of the best low-pass filter 

evolved at Experiment 5. 

 

3.10.3 The comparison of constrained and unconstrained evolutions 

The experimental results show that exploiting the circuit-structure-checking rules in 

Experiment 5 still allows a significant amount of mistaken circuits to be sent to the 

simulation software. For example, in those cases where the rules are they still allowed 

up to around 15% of error circuits to be generated, which reduces the effective 

population size. In contrast, during the running of Experiment 5, the amount of invalid 
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graphs among all randomly generated ones did not exceed - on average - 0.05%. 

In order to provide a fair comparison between the results obtained and those 

previously published ([12], [13], [17], [28]), each result is validated using PSPICE. By 

this, one can get the filter characteristics for each circuit and its fitness values, all of 

which are summarized by Table 3-6. The correct performance of the fitness function is 

verified by the perfect match between the fitness value received and the fitness value 

published in [12].  As can be seen by Table 3-6, in having only 16 elements the filter 

from Experiment 5 exceeds one that of Experiment 4, as well as by its other 

characteristics and its fitness value. In comparison with the best filter from [12], the 

fitness is improved by 82% at lower number of evolution attempts (generations) by 

37%. 

Table 3-6. Comparison table of the filter and evolution characteristics among works published 

before and present. N/A means that the data is not available. 

  

Ideal 

filter 

10order 

Chebyshev 
filter [102] 

Koza 1   et 

al, [12] 
elliptic 

 Koza 2   et 

al, [12] 
ladder 

Koza 3   et 

al, [12] 
bridge-T 

Lohn 

et al, 
[13] 

Goh,   et 

al . [17] 

Zebulum 

et al. [28] 

Constr. 
evolution 

Exper. 4 

[103] 

Unconstr. 
evolution 

Exper.5 

[103] 

Filter Characteristics 

Pass band, V 1 1 1 1 1 1 1 2 1 1 

Stop band, V 0 0 0 0 0 0 0 0 0 0 

Transition band, KHz 0 1 1 1 1 1 1 1 1 1 

Maximum absolute  
attenuation in the pass-

band, dB 

0 0.035 0.179 0.0175 0.137 0.0144 0.042 0.188 0.0023 0.0043 

% of improvement - 714 4063 307 3086 235 877 4272 -47 - 

Maximum attenuation 

in the stop band, dB 
- ∞ -83 -72 -61 -60 -59 -34 -24 -60 -69 

% of improvement - -20 -4 12 13 14 51 65 13 - 

Evolution characteristics 

Fitness value 

- 

 

0.0259 0.0805 0.0071 0.0502 0.0134 0.186 N/A 0.0081 0.0039 

% of improvement 564% 1964 82 1187 244 4664 1.5e+8 108 - 

No. Elements 10 25 14 15 24 12 10 27 16 

No. Individuals - N/A 2,048,000 N/A 997,000 20,200 320,000 1,236,308 1,489,958 

Gen.No./Individ.No. at 

which the fitness is 

reached in Exp.5 

24/  
500,000 

13/  
280,000 

55/ 
1,120,000 

17/ 
360,000 

32/   
660,000 

5/      
120,000 

- - - 

Circuit simulator - MicroSim SPICE 
Micro 

Sim 
SMASH OrCAD 

The value ―% of improvement‖ shows the correlation between the value above in the same column and 

the corresponding value in the column ―Unconstrained evolution.‖  
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The comparison of the system ability with those developed by others again provides 

a significant advantage, except with [17]. Line 15 of Table 3-6 shows the generation 

number and the number of individuals evaluated during Experiment 4 against each case. 

It should be noted that it took almost twice less individuals to evaluate than in [12] and 

34% less individuals than in [13] to reach the same fitness.  

The analysis of the results provides another two discoveries. First, in both circuits 

there is only one R-support element left after simplification (in Experiment 5). Second, 

despite the fact that the resistor had an equal probability of being chosen as an inductor 

or a capacitor the best circuits that were evolved do not contain resistance at all. Further 

analysis show that throughout Experiment 5 the amount of R-support elements in the 

best circuits on average does not exceed 2% and in the rest of the circuits does not 

exceed 1.5%. On one hand, neither the R-support nor the resistors are essential for the 

functionality of the low-pass filter and they drastically increase the search space; on the 

other hand, both of them improve the characteristics of the filters thereby evolved.  

The only - and the obvious - explanation of both these discoveries is that the 

evolution has used the resistance and R-support elements in neutral networks. Neutral 

networks have been already applied and are regarded as the crucially important factor in 

avoiding the local optimums and in reaching successful results [38], [17], [78], [82], 

[100], [101]. 

3.11 Experiments 6-7: Long and Short Transition Band LCR 

Low-Pass Filters 

Within the following experiments, two LCR low-pass filters have been evolved. The 

first one - with a longer transition band of 1 KHz - is intended to tune up the 

methodology of unconstrained evolution. The second experiment is targeted towards the 

more sophisticated task of a low-pass filter with a shorter transition band of 0.4 KHz. 

This is one of the first attempts in this area to evolve a ―close-to-ideal‖ low-pass filter 

[106].  
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The low-pass filters could be of two types: LC and LCR. The following works have 

concentrated on the design of LC low-pass filters: [12], [17] and [18]. The works that 

have considered LCR low-pass filters are: [13], [18], [28], [45] and [78]. The low-pass 

filter, if the proper R-load and R-source are provided, is absolutely sufficient with only 

two types of elements (L and C). However, in this experiment the more complex tasks 

for the evolution of LCR filters are considered, which corresponds to the overall 

strategy of the thesis, according to which the system under development aims towards 

the synthesis of highly complex analogue circuits. Contrary to a filter with the 0.4KHz 

transition band, the evolution of a filter with a 1kHz transition band has been 

investigated by a number of researchers ([12], [17], [18], [13], [28] and [78]) whose 

results have been taken for comparison.  

In the two OLG-based experiments below several issues have been tackled, 

including: 

 Testing the OLG-based framework described in this section;  

 Testing the unconstrained evolution approach on an LCR low-pass filter with a 

standard transition band; 

 Testing the unconstrained evolution approach on an LCR low-pass filter with a 

short transition band; 

 Comparison of all the tests.  

 

 3.11.1 Experiment 6: LCR Low-pass filter with a transition band of 

1KHz 

The best result has been obtained at chromosome 17,453 of generation No.93 

(20,000×92+17,453=1,857,453 individuals) with 28 elements before pruning, and with 

a best fitness value of 0.002445. The schematic after simplification and the voltage 
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response of the best circuit are shown by Figure 3-25. It should be noticed that after 

pruning no resistors are left inside a circuit, as with Experiments 3 and 4. 

As can be seen, the non-monotonic filter has been received, consisting of 21 

elements (without embryo) with the following features: the maximum absolute 

attenuation in the passband is 0.0028dB and the maximum attenuation in the stopband is 

-80dB.  

 

Figure 3-25. The schematic after pruning and the voltage response of the best low-pass filter 

evolved with a transition band of 1KHz in Experiment 6. 

 



 
Chapter 3. The EHW Framework for Analogue Circuits 

 

 

 116 

3.11.2 Experiment 7: LCR Low-pass filter with a transition band         

of 0.4 KHz 

 

Figure 3-26. The schematic after simplification and the voltage response of the best low-pass 

filter with a transition band of 0.4KHz in Experiment 7. 
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The best results for the 0.4 KHz transition band filter have been obtained at 

chromosome 19,275 of generation No.85 (20,000×85+19,275=1,699,275 individuals), 

with a best fitness value of 0.021018. The schematic after simplification and the voltage 

response are shown by Figure 3-26. The non-monotonic filter consists of 29 elements 

(without embryo), among which two R-support elements and one resistor show the 

following features: the maximum absolute attenuation in the passband is 0.01513dB and 

the maximum attenuation in the stopband is -53dB. 

3.11.3 Results analysis 

In order to provide for a fair comparison between the circuits obtained and those 

previously published ([12], [13], [17], [18], [28] and [78]), each result has been put 

through PSPICE. By this, the filter characteristics for the circuits and their fitness values 

which have been obtained are all summarized by Table 3-7. The correct performance of 

the fitness function is verified by a perfect match between the fitness value which has 

been obtained and the fitness value published in [12].  As can be seen by Table 3-7, the 

unconstrained evolution exceeds the constrained evolution by the filter and the 

evolution characteristics.  

The comparison of the system‘s ability with those developed by others - as in 

previous experiments - provides a significant advantage, except as with [17]. Line 15 of 

Table 3-7 shows the generation number and the number of individuals evaluated during 

Experiment 6 against each case. It should be noted that it took twice less individuals to 

evaluate than in [12] and 18% less individuals than in [13] to reach the same fitness.  

Table 3-7. Comparison table of the filter and evolution characteristics among the results 

published before and within this work. N/A means that the data is not available. 

  

Ideal 

filter 

10order 
Chebyshev 

filter    

[102] 

Koza 1   
et al.    

[12] 

elliptic 

Koza 2     
et al.    

[12]   

ladder 

Koza 3       
et al.        

[12]   

bridge-T 

Lohn et 

al.       
[13] 

Goh, et 

al. [17] 

Zebulum     

et al. [28] 

Ando, et 

al. [78] 

Exp. 6,   
1KHz       

filter        

[106] 

Exp. 7, 
0.4KHz   

filter      

[106] 

Filter Characteristics 

Pass band, V 1 1 1 1 1 1 1 2 1 1 1 

Stop band, V 0 0 0 0 0 0 0 0 0 0 0 



 
Chapter 3. The EHW Framework for Analogue Circuits 

 

 

 118 

Transition band 

length, KHz 
0 1 0.934 0.934 0.934 1 1 1 0.3 1 0.4 

Maximum 

absolute 
attenuation in the 

pass-band, dB 

0 0.035 0.179 0.0175 0.137 0.0144 0.042 0.188 
N/A 0.0028 0.0151 

% of improvement  -1350 -6493 -725 -4993 -614 -1600 -6814 

Maximum 
attenuation in the 

stop band, dB 

- ∞ -83 -72 -61 -60 -59 -34 -24 

N/A -80 -53 

% of improvement  -4 10 24 25 26 58 70 

Evolution characteristics  

Fitness value 

- 

 

0.0259 0.0805 0.0071 0.0502 0.0134 0.1858 N/A 

N/A 0.0024 0.021018 
% of 

improvement 
959 3192 190 1953 447 7499 2E+6 

No. Elements 10 25 14 15 24 12 10 20 21 29 

No. 

Evaluations 
- N/A 2,048,000 N/A 997,000 20,200 320,000 100,000 1,857,453 1,699,275 

Gen.No./Indivi
d.No. at which 

the fitness is 

reached in 
Exp.6 

30/ 
620,000 

17/ 
360,000 

45/ 
920,000 

60/ 
1,220,000 

40/ 
820,000 

14/ 
300,000 

- - - - 

Circuit 

simulator 
 Spice, MicroSim SPICE 

Micro 

Sim 
SMASH 

Intrinsic 

EHW 
OrCAD PSPICE 

 The value ―% of improvement‖ shows the correlation between the value above in the same column and 

the corresponding value in the column ―Experiment 6, 1KHz filter.‖  

3.11.4 Conclusion of Experiments 1-7  

The process of the extrinsic evolutionary design of analogue circuits has always 

been constrained in the generation of only valid circuit graphs. However, the 

introduction of R-support elements can significantly reduce these constraints. The 

proposed technique is based on ES in combination with an OLG sweeping strategy. In 

Experiments 1-7, the developed system has been applied towards the LCR and LC low-

pass filters, and it showed the superiority of the method over the conventional 

constrained evolutionary ones which were earlier applied towards analogue circuit 

design. The results obtained are in order to improve the previous attempts in the area 

through the characteristics of filters as well as through the features of evolution.  

Thus, the instinctive wish to reduce the potential solution space for an evolutionary 

search, by which the circuit-structure-checking rules are usually justified, is not always 
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the best strategic manoeuvre for obtaining unconventional circuit designs. 

Next, the developed methodology has been applied towards a more sophisticated 

task - the design of a filter with a shorter transition band of 0.4 KHz. The filter displays 

excellent characteristics. 

An OLG sweeping strategy in conjunction with the capability of evolution to focus 

on limited genotype lengths has been developed. The results of the experiments agree 

with ones in [28]; here, the OLG strategy is one of the best for a low-pass filter design. 

Further analysis of results reveals the implicit tendency of evolution to minimize the 

usage of resistance and R-support elements - such that the final solution could not 

contain them at all - and use them as the neutral elements inside the neutral networks. 

These two discoveries again emphasize the importance of neutral networks in the 

evolutionary search. 

3.12 Experiment 8: Evolution of computational circuit 

In this section, the first attempt is undertaken to evolve the RCQQ circuit [109]. It is 

made with help of the OLG technique and unconstrained evolution. This experiment is 

the last made by means of the framework system and in the frame of Chapter 3. 

3.12.1 Introduction 

Despite the difference between the previous and the following targets, they have the 

same embryo and the same ES properties, such as the SR, the mutation rate, etc. 

In the three OLG-based experiments below several issues have been tackled, 

including: 

 Testing the framework described in this chapter;  
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 Testing the unconstrained evolution approach;  

 Testing the unconstrained evolution approach on a more challenging circuit that 

contains 4 components, including 3-pin components.  

3.12.2 Fitness function and termination term 

The target for the evolutionary search is to evolve an analogue circuit whose output 

voltage is the cube root of its input voltage.  To enable ourselves to make an estimation 

of the final results from the experiment, the same fitness terms as in [12] have been set. 

That is, the PSPICE simulator is made to perform a DC sweep analysis at 21 equidistant 

voltages between –250 mV and +250 mV for the cube root. The fitness value is set to 

the sum, over these 21 fitness cases, of the absolute weighted deviation between the 

target value and the actual output value voltage produced by the circuit. The smaller the 

fitness value, the closer the circuit is to the target. It is set so that a given fitness will be 

penalized by 10 if the output voltage is not within 1% of the target voltage value. The 

error circuits are not analyzed by a simulator and are assigned to the worst fitness value.    

For the termination criteria, they are set as the achievement of either of the 

following conditions: the fitness value does not improve over 20 generations or the best 

circuit reaches more than 100 elements, or else the best fitness value reaches 0.5, which 

corresponds to an average voltage deviation from the target of 0.02V per point.  

3.12.3 Experimental results 

The results presented are the best out of 20 runs on 10 different PCs with different 

seeds for the RNG. The ES with linear representation and OLG are utilized. The total 

population consisted of 30,000 individuals, with a mutation rate of 5%.  

At generation No.3, the best individual (No.24,999) with three genes (in addition to 

embryo elements) showed a fitness of 65.57. The circuit that this chromosome describes 

is presented by Figure 3-27 and has two transistors and one resistor. 
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Figure 3-27. The best cube root circuit from generation No.3 of Experiment 8. 

 

The next notable result appeared at generation No.15 (No.23,882) with 14 genes (in 

addition to embryo elements), which describes a circuit with 7 transistors, 1 diode (a 

transistor whose collector is connected to the base) and 6 resistors. This circuit, pictured 

by Figure 3-28, has a fitness of 5.53.  

 

Figure 3-28. The best cube root circuit from generation No.15 of Experiment 8. 
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Figure 3-29. The best cube root circuit from generation No.133 of Experiment 8. 

 

Finally, the circuit evolved at 133 generations (No.34318), and for which evolution 

had not been able to improve during the following 20 generations, appeared with a total 

of 38 elements (in addition to embryo elements): 24 transistors, 12 resistors and 2 

diodes (Figure 3-29). The fitness of this circuit achieved 2.37. 

The average number of invalid circuits per population is 4-5%, and most of them are 

non-convergent.  

It is very rare to find the cube root computational circuit in the literature, and 

especially the schematics that were made by evolution. To decide on efficiency of the 
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proposed evolutionary technique, one work is directly addressed, namely [12]. Since the 

same fitness function is set, one can directly compare the circuits and their 

corresponding fitness values. The result of the comparison is presented by Table 3-8.  

As can be seen from the Table 3-8, the results indicate that the stalling effect took 

place over the last part of the evolution, while at the beginning and in the middle the 

performance exceeded the results made by Koza et al. [12], finding more effectively 

functioning solutions with the same (3 genes) and with less (14 against 18) genes. One 

of the main reasons for the stalling effect is the weakness of the technique as applied 

towards the task [119]. This requires further development of the proposed technique. 

Table 3-8. The comparison of the results received with those published in [12] 

 

1-st circuit 2-nd circuit 3-d circuit 

Element 

number_1 

Fitness 

value_1 

Element 

number_2 

Fitness 

value_2 

Element 

number_3 

Fitness 

value_3 

Achieved in [12] 3 77.7 18 26.7 50 1.68 

Achieved in this 

experiment [109] 
3 65.6 14 5.53 38 2.27 

 

3.12.4 Conclusion of Section 3.12 

In this section, the unconstrained evolution with OLG is applied towards the 

analogue circuit design of the QR computational circuit performing the cube root 

function.  

The method utilized here is much easier than that applied in [12]. While the last 

approach - with help of reusable sub-constructions - has successfully evolved circuits 

with a large amount of elements, the proposed method (as can be seen by Table 3-8) 

succeeds for small- and middle-sized circuits.  
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The computer resources in the attempt just presented are much lower, and equal to 

about 0.5mln chromosomes for a final solution (17*30000) against to about 11mln (for 

the second circuit).  

The proposed method has shown its potential for further improvement by getting the 

fitness close to that in [12]. The shortage in fitness is almost the same (26%) as the gain 

in the element economy (24%). Moreover, the gain in computer resources is 

tremendous, at 90%. This comparison is encouraging because the computational cube 

root circuit is one of the largest circuits evolved by Koza [12], and - despite its attractive 

advantages - it is quite difficult to find another example of this circuit in the open 

sources.  

The OLG sweeping strategy developed with the capability of evolution to focus on 

the limited genotype length dispersion has proved its powerful search capacity. 

Experiment 8 has indicated that the further strengthening of the framework system is 

required. 

3.13 Summary of Chapter 3 

With Chapter 3, the start of the proposed evolutionary system has been triggered. 

First of all, it has presented the direct representation technique, which is something of a 

standard in the area. Next, two basic mutations have been introduced, namely CSM and 

ANEM: these are the base for the ILG varying strategy. With ILG, the direct dynamic 

representation is concluded.  

A very important principle has been introduced, namely the Rule of equal mutation 

probabilities (REMP). This basic principle represents the true spirit of the proposed 

approach, unconstraining the extrinsic evolution of analogue circuits. According to it, 

and during mutations, any kinds of connections are allowed without limit, having an 

equal probability of occurrence. To support this idea, the R-support elements have been 

introduced so as to tackle the issues caused by inductors and capacitors. With the last 

procedure, the evolution is becoming fully unconstrained. On the other hand, the 
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constrained approach has been created by enabling a circuit-checking-structure-rule in a 

form of a specially created subroutine so as to analyse and filter out every circuit with 

an invalid structure. Experiments 1-3 have shown that with ILG, unconstrained 

evolution gives more promising results than constrained evolution.  

The analysis of the circuits derived during evolution has shown that one of the 

reasons why REMP may help to succeed in the described experiments is that REMP 

enabled creation of unconventional connections inside the circuits which brought the 

creation of neutral components and even sub-circuits and which in turn participated in 

neutral mutations. There are a lot of works in the area of EHW devoted to the 

importance of neutrality for the success of evolution [38], [82], [101]. 

The further development of the system was introduced through the DEM procedure. 

With DEM, the OLG varying strategy became available for utilisation by the system, 

enabling the creation of circuits that are potentially more economic in terms of their 

components than ILG. OLG allows evolution to decrease the number of genes in a 

chromosome. The second part of the experiments has proven that unconstrained 

evolution is more valuable than constrained evolution. Experiments 4-7 created low-

pass filters that were even better than before in terms of their functioning and the 

economy of their components (Table 3-9).  

As a test task, the low-pass filter has been chosen from the quite high number of 

circuits with the initial level of complexity (see Chapter 4), including high-pass filters, 

band pass and band stop filters, etc. The choice made was dictated by the wide range of 

papers dedicated to the low-pass filter. Moreover, the behaviour of low-pass filters 

between the frequencies of 1 KHz and 100 KHz - the cut-off frequency 1 KHz and the 

transition band 1 KHz dominating all the exemplified circuits - suggests an opportunity 

for a comparison.  

It is notably that the evolutionary system of both approaches – both unconstrained 

and constrained - during the evolution of the seven low-pass filters presented and 

another 38 circuits (in the frame of Experiment 1-2) prefers only two types of elements 

as building blocks, namely L and C (ignoring resistors). The statistics show that only 
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1.5% of the total amount of components are resistors. But on the other hand, the filters 

evolved with the use of resistors have better features, even if they do not contain any 

resistor. This fact could be explained in that resistors can play the role of neutral 

components, composing neutral networks and carrying neutral mutations [38], [82], 

[101].  

These comparisons enable us to make a strategic decision as to what kind of 

technique it is better to use and to trust. Both the OLG and the unconstrained techniques 

will be utilized as default techniques.    

Figure 3-30 gives a general view of how the evolution takes place. All seven curves 

are put in one chart; among them the curve corresponding to the close-to-ideal filter 

stands out by its gentle slope. On average, up to generation No.20 evolution reaches a 

fitness of 0.5% of its initial value, while up to generation No.40 it reaches a fitness of 

0.1%. 

The failure of the system to improve the fitness of the cube root circuit during 

Experiment 8 - shown in the last column of Table 3-8 - pushes for further explorations 

of new techniques that, when integrated into the system, could help to succeed not only 

over the cube root circuit, but also in evolving any other circuit that belongs to a second 

complexity level.  
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Table 3-9. The aggregated comparison table of low-pass filters evolved by others and evolved in Experiments 1-7. 

Evolved in the frame of the Thesis 

 
 Ideal 

filter 

10order 

Chebyshev 
filter [102] 

Koza 1 et al. 

[12] elliptic 

Koza 2 et al. 

[12] ladder 

Koza 3   et 

al. [12] 
bridge-T 

Lohn et 

al. [13] 

Goh, et 

al. [17] 

Zebulum et 

al. [28] 

Ando 

et al. 
[78] 

ILG Con. 

LC Exp.1 
[33]  

ILG Unc. 

LC Exp.2 
[33]  

ILG Unc. 

LCR Exp.3 
[96] 

OLG Con. 

LCR Exp.4 
[103] 

OLG Unc. 

LCR Exp.5 
[103] 

OLG Unc. 

LCR Exp.6  
[106] 

OLG Unc. 
LCR Exp.7  

Close-to-ideal 

[106]  

Filter Characteristics 

Pass band, V 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 

Stop band, V 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Transition 
band, KHz 

0 1 1 1 1 1 1 1 0.3 1 1 1 1 1 1 0.4 

Maxim. 

absolute  

attenuation in 
pass-band, 

dB 

0 0.035 0.179 0.0175 0.137 0.0144 0.042 0.188 
N/

A 
0.0015 0.0012 0.012 0.0023 0.0043 0.0028 0.0151 

Maxim 

attenuation in 

stop band, 
dB 

- ∞ -83 -72 -61 -60 -59 -34 -24 
N/

A 
-66 -69 -59 -60 -69 -80 -53 

Evolution characteristics 

Fitness value 

- 

 

0.0259 0.0805 0.0071 0.0502 0.0134 0.1858 
585.766

5 

N/

A 
0.0041 0.0029 0.00969 0.0081 0.0039 0.0024 0.021018 

No. Elements 10 25 14 15 24 12 10 20 26 27 12 27 16 21 29 

No. 

Individuals 
- N/A 2e+6 N/A 1e+6 20,200 320,000 1e+5 1,211,863 1,199,993 829,790 1,236,308 1,489,958 1,857,453 1,699,275 

Circuit 
simulator 

- SPICE 
Micro 
Sim 

Smash 
Intri
nsic  

PSPICE 

―Unc.‖ is for Unconstrained evolution; ―Con.‖ is for Constrained evolution; ―Exp.‖ is for Experiment; 
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Figure 3-30. Evolution of seven low-pass filters in Experiments 1-7.
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Chapter 4. The Individual-Level Differentiated Mutation 

Technique 

In this chapter, a novel paradigm is suggested to deal with the second level of 

complexity circuits. According to the first part of this paradigm, the novel approach is 

suggested towards substructures and their utilization. A new mutation approach is 

formed into a new adaptive individual-level mutation technique. This important 

development of the proposed system is called substructure reuse mutation (SRM). SRM 

will be smoothly integrated inside the mutation procedure which makes the contribution 

to the building of differentiated mutation technique. It will play an important role in the 

evolution of the second level of complexity circuits. 

The second part of the novel approach describes the development of SRM into a 

more global technique called the differentiated mutation technique, which will unite all 

the types of mutations into one highly-organized and well-coordinated procedure.  

The range of the experiments tested both of the methodologies on the examples of 

the computational circuits and the 4-output voltage distributor circuit (VDC). 

4.1 The Substructure Reuse Mutation  

4.1.1 Introduction 

The SRM - also called as the topological reuse [86] or memory paradigm [28] - is 

quite a popular technique in EHW [2]. The memory paradigm requires the existence of a 

central database, which will behave as a genetic memory; as fitter genes come up in the 

beginning of the evolution, they are stored and then reused as the genotypes grow in 

size.  

One of the first attempts to reuse the substructures was undertaken by Koza in [12] 

when evolving analogue electronic circuits. Since then, almost every work in the area 
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utilizes this technique. The essence of the technique lies in the idea that it is not only 

random evolutionary per-locus mutations and the per-gene growth of a chromosome that 

are able to bring improvement to the search process, but also the ―specially selected‖ 

fragments of chromosomes that may consist of between one and several genes. The 

questions that arise here relate only to from where to get these structures and how to use 

them. There are two approaches that are pertinent to the first question: 

1.  The first approach may be called a ―long-term database approach‖ or a 

―knowledge-based approach‖ [2], [53], [86], [87]. Here, the creation of the 

substructure database involves almost the same laborious work as the 

evolutionary system‘s development. The multitude of sorted circuits from the 

past may go through attentive analysis for the sake of generalized substructures. 

The substructures even may be prepared manually [2]. The building blocks are 

stored in classified databases designed for particular evolutionary targets. This 

kind of approach mostly aims at the synthesis of trustworthy circuits and uses 

course-grained topologies such as current mirrors, differential pairs, active loads 

and cascade stages, etc.  

2. On the other hand, what can be called as ―heuristic approach‖ mostly uses 

substructures [12]-[13] that are produced by evolution and during evolution. For 

every particular task, evolution creates building blocks for that particular case. 

The designer does not participate in this process and does not try to understand 

how the topology works. The evolution uses the substructures as ad hoc building 

blocks.  

If the first approach targets designs that are close by their structure to conventionally 

designed circuits, the second one is able to create unconventional solutions. In this work, 

the second approach is utilized.  

4.1.2 The sources for substructures 

When targets become more complex, an evolutionary search becomes difficult and 

the stalling effect becomes a problem. In this case, the necessity for an additional 
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process revival technique becomes essential. One such kind of technique is the SRM, 

which is applied in the frame of mutation operation. The idea is that the structures that 

were helpful during previous generations may help in the current one. Now, evolution 

acquires the memory and it is able to recall better building blocks when a ―hard time‖ 

comes.  

There are four main files that accompany the evolutionary process: 1) the cir-file 

which is formed by the system as an entry in PSPICE, 2) the out-file which is the result 

of the PSPICE analysis produced by PSPICE, 3) the data-file which is accumulates the 

useful information throughout the generations, including the best chromosome fitness 

(Figure 4-1), and 4) the best-chromosome-file which contains the PSPICE decks of the 

best chromosomes.  

When it comes to applying the particular substructure, the system based on the 

information contained in the data-file turns to the best-chromosome-file to obtain the 

required chromosome. It finds the best individual among others of the same length. In 

Figure 4-1 the best individuals of lengths 2, 3, 4, and 5 are marked by red boxes. These 

are the best representatives in their classes. Recalled from the memory, the individual 

from a chromosome becomes a substructure after a special procedure. This procedure 

removes from a chromosome the components that belong to the embryo (source, 

input/output resistors, etc.). The floating pins that are left after that procedure are 

entitled to provide new connections of the substructure to a new main circuit. The details 

of that procedure for a one-input-one-output circuit are exemplified by Figure 4-2. The 

nodes for connections inside the main circuit are chosen with an equal probability from 

the total list of the circuit nodes.  

 When a substructure‘s floating pins are connected to a circuit, the same rules as with 

ANEM take place, as described in Section 3.5.2. That is, each floating pin of a 

substructure could be associated with the pin of a new component to be added (Figures 

3-11 and 3-12). 
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Figure 4-1. The fragment of a data-file. By columns: 1-―Generation number‖, 2- ―The best 

chromosome number‖, 3- ―The best chromosome‘s fitness value‖, 4- ―Gene (component) 

number‖, 5- ―The number of crippled chromosomes‖, 6- ―The average fitness of a population‖. 

By the red rectangular boxes are indicated the chromosomes that have been taken as 

substructures. 

 

The effectiveness of SRM directly depends on the size of the circuit to which the 

SRM is going to be applied to. Since the junction points for the substructure inside a 

circuit are under the choice of a random process, a substructure with a larger amount of 

floating pins for connection E1 has more possible ways (NE1) of being connected to a 

circuit containing N nodes than a substructure with fewer floating pins E2 has to be 

connected to the same circuit: NE1> NE2, where E1> E2. Thus, the higher the number of 

inputs and outputs of the evolving circuit, the higher the floating pins of the substructure 

and the larger the population size required for containing enough diversity by which two 

structures could bring via their junction.  
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Figure 4-2. The example of circuits of different sizes and the substructures derived from them. 

a), c), e), g) are the chromosomes of 2-, 3-, 4- and 5-component circuits. b), d), f), h) are the 

corresponding substructures. Red squares mark the pins by which the substructures are going to 

connect to the main circuits. 

 

(a) (b) 

(c) (d) 

(e) 
(f) 

(g) (h) 
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On the other hand, those circuits with a larger node number has more possible ways 

(N1
E
) to connect to themselves a substructure with E floating pins than a circuit with a 

lower node number N2 could to connect to itself the same substructure: N1
E
> N2

E
, where 

N1> N2. Thus, the larger the circuit, the higher number of nodes for a connection, and 

the larger population size it requires for containing enough diversity which two 

structures could bring by their junction. The limit for a substructure size of up to six 

components, at maximum population size of 30,000 chromosomes, followed from the 

series of experiments and has verified that substructures of larger size rarely help in 

evolution. The analyses showed that - as usual - the chromosomes that received larger 

substructures rarely survived, showing low fitness values. This caused the evolution to 

steadily slow down and finally to experience the stalling effect. There are three possible 

reasons of this. 

The first one is caused by the number of connecting pins rather than by the number 

of substructure components. Unlike the known example of incremental evolution, when 

a chromosome may join to another comparable in terms of the size of its genetic part, the 

place for substructures inside the chromosome is not defined. The growth of substructure 

size may cause the growth of the number of pins by which the substructure should 

connect to the circuit. This, in turn, causes the solution space to search to grow 

considerably. As has been discussed in Section 2.5.3, the maximum number of 

connecting variants where each pin of a substructure may connect to different nodes of a 

circuit (except connecting to itself) is defined by combinatorial formula for the 

combination [112]: j!/(k!(j-k)!), where the set has a total of j nodes and the subset k 

equals the number of substructure pins. According to the SRM strategy, it is applied at 

later stages of the evolution where j may equal 15 or more. For k=4, the total number 

variations is 1365, for k=6 this number is 5005. Taking into account that - for example - 

an 8-gene substructure has an equal right to be applied to about ten others and that not 

every chromosome in a population needs the SRM, the probability of success from the 

SRM with a larger size falls down. A possible way out for this problem is the ―know-

how‖ of where the multiple pins of a substructure should be connected to. 

The second reason does not concern the size of the substructures but rather the 

competition between them. With the appearance of a new substructure, the potential 
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benefits for the rest decreases. Evolution has more choice but under the same amount of 

resources, i.e. the population size is not enough for diversifying this choice. 

And the third reason why the larger substructure size causes a stalling effect is bloat 

(Section 2.2.2). The sudden increase of genotypes in chromosomes will defocus the 

evolution, spreading its efforts to a larger solution space. This requires reconsideration 

of the DEM strategy and possibly additional measures against bloat.  

4.1.3 Triggering the SRM procedure 

To implement the triggering of the SRM procedure it has been set as the threshold 

for a number of unsuccessful generations. If, for DEM procedure, this number is set to 3, 

for triggering the SRM this number is set to between 4 and 6. The details of triggering 

the SRM are depicted on Figure 4-3. 

To avoid the situation where the SRM procedure leads to the overgrowing of the 

chromosomes‘ length - or bloat - an additional condition is introduced, namely one that 

limits of application of SRM by one within a minimum of four generations (the same 

number as the maximum size of substructure applied in the experiments below in this 

section). If the last four generations did not bring about improvement and the last time 

that SRM was applied - say, two generations ago - the system checks whether the 

difference in length between the best and the current chromosomes are within the three 

genes. If the difference is large, DEM will reduce the length, otherwise ANEM works. 

To fight bloat, CGP was found to be an effective technique [147]. However, as it is 

discussed in Section 2.2.1, the limit of CGP is the restrictions imposed on feed-forward 

interconnectivities, which contradicts the unconstrained nature of the proposed 

technique in this thesis. 
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Figure 4-3. The flowchart of mutation procedure with the SRM at the population level. The new 

terms are in the bold frames.  

4.2 Individual Level Mutation 

If previously the mutation operator was applied towards the total population without 

differentiating among individuals, now it will approach each chromosome individually. 

The reason why such an approach is suggested now was the introduction of SRM in the 

previous section. Indeed, if the system decided to apply SRM, for each chromosome it 

will randomly choose among the blocks available, but the blocks are of different sizes. 

That is, after an application of SRM, the chromosomes tend to be of a different length. 
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The further applications of SRM may lead to significant differences in length among 

individuals. For example, a chromosome with a length of five genes went via SRM four 

generations ago and was modified by a 4-gene substructure. If, now, the same individual 

with nine genes goes through the same 4-gene modification, it will consist of thirteen 

genes, while its neighbour will have grown from five to nine genes for the same number 

of generations.  

The individual approach requires the control of two of the chromosomes‘ features: 1) 

their length, and 2) their fitness. For this, the additional function inside the system is 

enabled so as to associate each chromosome with its length and fitness histories. The 

view of the standard print out of the memory buffer looks like that presented by Table 4-

1, where at generation N+6 and N+13 two substructures of sizes 4 and 3 genes 

correspondingly have been connected to the chromosome; at generations N+2 and N+9 

ANEM has been applied; at generation N+7 DEM has been applied; and at generations 

N+3, N+4, N+5, N+8, N+10, N+11, N+12 CSM has been applied. 

Table 4-1. The fitness and length stories of a single chromosome throughout 15 generations. 

Generation N N+1 N+2 N+3 N+4 N+5 N+6 N+7 N+8 N+9 N+10 N+11 N+12 N+13 N+14 

Length 8 8 9 9 9 9 13 12 12 13 13 13 13 16 16 

Fitness 46.2 46.2 41.4 41.4 41.4 41.4 41.4 29.3 29.3 26.5 26.4 26.4 26.3 22.1 20.3 

 

According to the new paradigm, when every chromosome has to go through a 

procedure as depicted by Figure 4-3, the new mutation flowchart will look as is shown 

by Figure 4-4. 

It should be noted that the choice among the 4 types of mutations (CSM, ANEM, 

DEM and SRM) is only defined by the chromosomes‘ fitness and length stories, and the 

choice among the different types of substructures is defined randomly. 
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Figure 4-4. The flowchart of the mutation operation at the individual level.  

4.3 Trade-off between fitness and size 

With the individual approach during mutation procedure, it becomes possible to 

more closely control the second most important of the chromosomes‘ features (after 

fitness): the length. The problem of the overgrowing of mutation size is a well-known 

problem in evolutionary electronics [2], [38], [78] and the pruning procedure is the 

standard technique for tackling this issue. However, as experiments have revealed, 

pruning in the middle of the evolution process does not bring any valuable benefits in 
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the long term. Furthermore, in most cases, when pruning is applied at every generation it 

causes the appearance of the stalling effect at earlier stages in the evolutionary process. 

The reason for this is that with the deletion of the components the neutral network 

shrinks, and neutral mutations have less of an effect on the circuit, which decreases the 

effectiveness of evolution. More details on neutral effects are described in [17], [38], 

[78], [82], [100] and [101]. 

The problem of overgrowing affects the evolutionary process in two ways: 1) it 

increases the search space, and 2) it increases the evolution time. Both consequences are 

unpleasant, especially when one cannot be sure at any given moment as to how deep the 

overgrowing problem is. Indeed, without any additional procedure there is no way 

defining of how many redundant components are in the circuit, but that requires 

stopping the process.  

The introduction of the DEM procedure does not solve this problem, since DEM - 

during its operation - chooses the component for deletion randomly. This means that the 

components that take part in the circuit‘s functioning have the same chance of being 

removed as those components which do not have an influence on the circuit‘s 

functioning. 

It is necessary to introduce another kind of mechanism that will control the 

chromosome‘s size against overgrowing. Therefore, in this section, the introduction of 

the pruning procedure and then the second objective are described. 

4.3.1 Pruning 

The idea behind the pruning procedure is to prune those components that have no 

influence to the circuit‘s functionality and, thus, seemingly reduce the solution space. 

Since the procedure is time-consuming, it is meaningless to apply it towards every 

chromosome of a population at each generation, but there is reason to apply it towards 

the top-ranked chromosome (selected) or towards a single best individual at each 

generation. The last approach has been tried, and a brief description is given below.  
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After evaluation and ranking, each chromosome gets into the special sub-system, 

which tries to eliminate, one-by-one each gene from a chromosome. The floating pins - 

after elimination - are connected to each other in all possible variations, as is described 

in relation to the DEM; each time a new variant of a chromosome is tested. Finally, the 

gene is eliminated and the new chromosome is adopted if any variant has a fitness value 

equal or better than that which was present prior to the procedure.  

The described operation has been variously applied towards the best-ranked 

individuals during Experiment 11. The experiments show that applying this procedure 

either at each, or one of two, three or four generations towards the best-ranked 

chromosome did not bring an acceptable solution due to the stalling effect. The 

experimental results are shown at the beginning of Section 4.4.2. After getting these 

results, it was decided to introduce - instead of the direct deletion of introns - parsimony 

pressure during ranking.  

4.3.2 The second objective 

The pressure on evolution towards more compact solutions could be applied by 

means of the second objective. If the first objective is the fitness value - which refers to 

the functionality of a circuit - the second objective is the chromosome length, which 

refers to the size of a circuit.  

Besides the techniques described previously, during the experiment it was found that 

it is also convenient to apply the second objective, namely pressure at the ranking 

procedure. That is, when ranking chromosomes - along with their fitness values - their 

length is taken into an account.   

4.3.3 Ranking 

First of all, we should distinguish a chromosome with the best fitness from the best 

chromosome. In the first case, an individual attains the best fitness value according to 

the fitness function. In the second case, an individual has gone through ranking and has 
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been ranked as number one among the population. In most instances, these two are 

represented by the same chromosome, though not always; this is because the 

chromosome length is taken as the second objective during ranking. Thus, if one looks at 

the graph of the fitness function of the best chromosome, it will not always be slowing 

down (improving) and there may appear some ridges (Figure 3-22, from generation No.7 

to No.10 or from No.22 to No.24). 

Through ranking, one has an opportunity to apply selective pressure: along with the 

functionality of the circuit, the shorter chromosomes are preferred over the longer ones. 

The fine-grained, open-ended evolution of analogue circuits with dynamic encoding has 

a side-effect when a resulting circuit integrates into its structure along with functional 

components, namely the ones that have no effect to the circuit‘s behaviour [82]. During 

the ranking procedure, it is applied as a simple pressure-constant that behaves 

adaptively, i.e. depending on the progress of the evolution, it varies the pressure.  

To enable the longer length genotypes to compete with the shorter ones, the longer 

individual should have a better fitness value than that of one of the compared shorter 

chromosomes. The established trade-off rule between size and fitness uses a function 

that combines fitness and size so as to yield a single measure of quality. The idea is 

similar to the notion Adaptive Parsimony Pressure in [151], where the size penalty is 

based on the size of the best individuals. The ranking procedure consists of two stages: 

the adjustment of fitness values of chromosomes according to their sizes, and the simple 

ranking of them in descending order. In order to get a new adjusted fitness of the current 

chromosome fad, to its current fitness f, the adjustment value k is added: fad=f+k, where 

k represents the normalized difference between the sizes of the current individual and 

the best one: k=m(l-lbest). If the length of the best chromosome is shorter than that of the 

current one, k is positive and the new fitness of the current chromosome is fad and 

increases: fad >f, otherwise fad<f. The normalization coefficient m represents the fitness 

per gene of the best individual: m=fbest/c, where the coefficient c is a pressure-constant, 

the meaning of which is a predicted number of genes (components) in the target; the 

smaller the number, the higher the pressure that is applied. The adaptive features of it are 

described further. As such, k determines how much of the best chromosome‘s fitness is 

related to the difference in size, and the final fitness is: 
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 c/)ll(fff bestbestad
    [4-1]  

According to the classification set by Bentley [150], the proposed technique belongs 

to the ―range-dependent‖ ranking methods and the system is not a ―general-purpose 

multi-objective‖ one. The main reason for the choice of this type of ranking is its 

simplicity. The pressure-constant is a deterministic dynamic parameter that is adapted 

by the evolution. The pressure-constant should be set to some initial value. However, if 

two successive generations do not bring forth better individuals, this number is increased 

by two,
5
 which causes the component-reducing pressure to decrease. Conversely, if the 

two successive generations have brought a fitness improvement, the pressure-constant is 

reduced by two. This strategy leads to the inevitable gradual weakness of the selective 

pressure due to the permanent growth of a chromosome‘s length, complexity and 

solution space. 

4.4 Experiments 9-12: Evolution of Computational Circuits 

The CC is a circuit that converts incoming voltage into outgoing voltage in 

accordance with some computational function. As is mentioned in Section 2.6.2, an 

analogue CC is useful when there is a need for a single mathematical function; it does 

not require the conversion of an analogue signal into a digital signal with the aid of an 

analogue-to-digital converter, performing the mathematical function by a digital 

processor, and converting the result back to the analogue domain by using a digital-to-

analogue converter, as is shown by Figure 4-5 (right). 

As has already been mentioned in Section 4.1.1, the substructures are not pre-scribed 

but are automatically created during evolution. It is used as the limit for the substructure 

size, to up to six components at a population size of 30,000 chromosomes. The limit for 

the substructure size is discussed in Section 4.1.2.   

                                                 
5 This and other specified numbers used in description of methodologies are suggested since they have been used during 

experiments. 
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Figure 4-5. A digital (left) and an analogue representation of a computational circuit. 

In the beginning, the brief results of the experiments with pruning are presented. 

Next, four experiments will be described without pruning. All of them are challenging 

tasks since very few attempts have been made before in relation to the evolution of 

computational circuits (CC). Moreover, the CCs that have been developed so far are 

known as some of the largest circuits that have ever been automatically synthesized [24]. 

The use of unconstrained evolution armed with individual-level mutation and SRM will 

attempt to evolve the cube root circuit (which never been synthesized through previous 

techniques). Furthermore, three new CCs are set as targets in this section. 

In Experiments 9-12, several issues are tackled, including: 

 Testing the technique armed with individual-level mutation and SRM; 

 Testing the new technique on the second level of the complexity task; 

 Testing the pruning technique without parsimony pressure; 

 Testing the parsimony pressure without pruning; 

 Testing the new technique on other tasks, some of which are more sophisticated 

(cubing function); 

 Testing the system on the tasks that belong to the third level of complexity 4-

output VDC according to the classification introduced in Section 2.5.2. 
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4.4.1 Fitness function  

 The goal for the evolutionary search is to evolve four CCs whose output voltages 

are: the cube root, cube, the square root and the square of their own input voltages. To 

enable ourselves to make a comparison of the final results, the same fitness terms are set 

as in [12] for all four cases. These are:  

 The PSPICE simulator is made to perform a transient analysis of a source signal 

of a length of 0.2 seconds at 21 equidistant time-points;  

 The voltage source forms a pulse signal arising from –250 mV to +250 mV for 

the cube root, cubing and squaring; and from 0 mV to +500 mV for the square 

root;  

 A fitness value is set to the sum, over these 21 fitness cases of the absolute 

weighted deviation between the target value and the actual output 

value:
p

0i

i

measured

i

ideal
|VV|F , where i

ideal
V is the voltage at the i-th point for the 

ideal response and 
i

measured
V  is the voltage at the i-th point obtained for the evolved 

circuit; p is the number of points evaluated equalling 21;  

 The fitness penalizes the output voltage by 10 if it is not within 1% of the target 

voltage value;  

 The smaller the fitness value, the closer the circuit is to the target.  

The circuits that treated by PSPICE as ―error circuits‖ are assigned the worst fitness. 

The termination criterion is set where either the fitness value has not improved over 20 

consecutive generations or else the best circuit exceeds 70 components in size.  

The embryo circuit is a component or a number of components (including the 

voltage source) which can be predetermined for the particular targeted circuit so as to 

ease further circuit growth. Regardless of the cube root circuit evolved earlier in Section 



 
Chapter 4. The Individual-Level Differentiated Mutation Technique 

 

 

 145 

3-12 with an unsatisfactory fitness of 2.27, the results of that experiment have not been 

used here. The embryo circuit is defined for all targets as the same: a pulse voltage 

source, the source resistance Rsource=1kOhm and the load resistance Rload=1kOhm. 

These three components in Figure 4-6 compose the embryonic circuit. The embryo also 

has two sources of direct voltage, allowing the evolution to choose between them (or use 

both) +15V and -15V, so that the initial node number at the beginning is five (with 

ground). 

 

 

Figure 4-6. Embryo circuit for CC.   

 

4.4.2 Experimental results 

Four attempts are described here for evolving a cube root circuit that have been 

undertaken with a pruning procedure prior to parsimony pressure. Each attempt consists 

of two runs. The best of the runs are shown by Figure 4-7. The first approach was 

undertaken when the pruning was applied towards the best individual at each generation 

(―Pruning 1‖ in Figure 4-7). During the second experiment, the pruning was applied 

towards the best individuals at every second generation (―Pruning 2‖ in Figure 4-7). 

During the third and fourth experiments, the pruning was utilized at one of three and at 

one of four generations towards the best ranked chromosomes respectively (―Pruning 3‖ 

and ―Pruning 4‖ on Figure 4-7). 

The best of the runs out of all eight experiments reached a fitness of 2.68 (―Pruning 
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4‖), which cannot be treated as successful because the targeted fitness was 1.68 from 

[24]. The resulting circuits have not been analyzed deeply, because the goal was to 

tackle the bloat in the simplest manner rather than to perform deep research into the anti-

bloat technique. 

 

Figure 4-7. Experimental results of the evolution of cube root with pruning.   

 

The results of the experiment described could be explained by the crucial role of 

neutrality in evolution [38], [82], [101]. Moreover, it is claimed that the basis of self-

adaptation is the use of neutrality [152]. In the absence of external control, neutrality 

allows a variation of the search distribution without the risk of fitness loss. 

The results presented in the rest of the Section are related to the work of the system 

without pruning, but with the utilization of parsimony pressure as described in Section 

4.3.3. They are out of five runs for each of the target cases, with different seeds for the 

RNG. The data for all 20 runs is presented by Table 4-2, where the best runs are marked 

in bold. 10 PCs are used with a Pentium-4/3GHz/RAM2GB processor running at the 
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same time and independently of each other. The average time per run is 43 hours, which 

is comparable with the duration of the evolution of analogue circuits in [93], [38]. A 

total population of 30,000
6
 individuals, a mutation rate of 5% and a selection rate of 

10% are utilized.  

 Table 4-2. Statistics for the evolution of the 4 targeted circuits 

 

                                                 
6 Despite the good results that have been received with this population size, there are no reasons why this size should not be 

increased. In fact, here the author is only driven by convenience in processing the PSPICE out-file.  

No. 
Fitness Component No. Generation No. Fitness Component No. Generation No. 

Square Root Squaring 

1 0.283 43 119 0.0302 35 92 

2 0.194 23 123 0.0459 43 309 

3 0.443 50 208 0.0563 48 143 

4 0.798 38 97 0.0951 38 97 

5 0.255 50 200 0.0776 50 135 

 Cube Root Cubing 

1 0.764 44 115 0.0095 50 195 

2 1.060 49 179 0.0205 38 72 

3 0.251 39 152 0.0079 49 109 

4 0.268 50 201 0.0061 44 78 

5 0.643 40 294 0.0101 37 98 
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4.4.2.1 Experiment 9-10: square root circuit and squaring circuit 

The best-of-run circuit (Figure 4-8) for the problem of designing a square root circuit 

had 23 components with a fitness of 0.194. The best-of-run circuit (Figure 4-9) for the 

problem of designing a squaring circuit had 35 components with a fitness of 0.0302. 

 

 

Figure 4-8. The evolved square root circuit in Experiment 9. 
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Figure 4-9. The evolved squaring circuit in Experiment 10. 

 

4.4.2.2 Experiment 11-12: cube root circuit and cubing circuit 

The best-of-run circuit (Figure 4-10) for the problem of designing a cube root circuit 

appeared at generation No.152 and had 39 components with a fitness of 0.2508. The 

best-of-run circuit (Figure 4-11) for the problem of designing a cubing circuit appeared 

at generation No.78 and had 44 components with a fitness of 0.00614. 
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Figure 4-10. The evolved cube root circuit in Experiment 11. 

V_OUT

Rl1K

Qp3

Qn10

Qp15

Qn3

Qn6

Qp17

R37 1.2e+4

Qp16

Qp9

Qp19

Qp26

R40

1.2e+4R26
6.5e+3

Qn9

Qn2

Qp5

Qn5 Qn21

Qp8

Qn4

Qp32

R
2
7

2
.2

e
+
4Qp31

R
3

4
.7

e
+
5 Qp1

Qn13

Qp0

R1
1.8e+4R391.2e+4

R34
3.3

Qn19

Qn15

Rs 1K

V_IN

Qp4

R0

1.111e+4

Qn1

Qp30 Qn20

R38
2.2

Qn18



 
Chapter 4. The Individual-Level Differentiated Mutation Technique 

 

 

 151 

 

Figure 4-11. The evolved cubing circuit in Experiment 12. 
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Table 4-3. Comparison with circuits published previously 

 

Table 4-4. Comparison of the evolved cubing circuit with ones published previously 

 

 

The schematics published in [24], [98], [99], [108], enable the netlists in PSPICE to 

get the fitness values appropriate for comparison. Both DC and transient analysis give 

     Author 

 

Feature 

Koza et al.  

[24] 

Streeter et al. 

[99] 

Cipriani et al. 

[108]  

This work 

[115] 

Improvement, 

times  

Cubing 

Avg. error, mV 1.04 0.99 7.13 0.29 3.4 

Fitness value 0.0219 Data n/a Data n/a 0.0061 3.6 

Component No. 56 47 12 44 0.3 

Evaluation No.  Data n/a 2.94E+6 - 2.34E+6 1.3 

The improvement values in column 6 are received from the division of the best corresponding values 

from columns 2-4 and the values from column 5. 

 

Author 

Feature 
Koza  et al.    [24] 

Mydlowec et al. 

[98]  
This work   [115] 

Improvement, 

times 

Square root 

Average error, mV 183.57 20.00 9.23 2.2 

Fitness value 3.855 70.403 0.194 18.9 

Component No. 64 39 22 1.8 

Evaluation No. Data n/a 6,7E+9 3,7E+6 1800 

Squaring 

Average error, mV Data n/a 27.00 1.44 18.7 

Fitness value Not converged 4.812 0.0302 159.3 

Component No. 39 37 35 1.1 

Evaluation No. Data n/a 1,1E+9 2,7E+6 407 

Cube root 

Average error, mV 80.00 - 11.90 6.7 

Fitness value 1.68 - 0.2508 6.7 

Component No. 50 - 39 1.3 

Evaluation No. 3.8E+7 - 4.5E+6 8.4 

The improvement values in column 5 are received from the division of the best corresponding values 

from columns 2-3 and the values from column 4. 
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identical results for each schematic, together with the other published data, presented by 

Tables 4-3 and 4-4. For some of the circuits from [12], exactly the same fitness values 

have been received, the last fact ensuring that the correct transistor models (PSPICE 

default models) and other simulation parameters have been chosen. The right-most 

column of the tables suggests the relative comparison between the value received in this 

work and the best corresponding values from the past. As can be noted, the received 

results are considerably better. Notably, the best by size (12 components) conventionally 

designed cubing circuit from [108] has an average error of 7.13mV which is 25 times 

larger than that (0.29 mV) of the cubing circuit (44 components) evolved in this work. 

Moreover, during evolution the intermediate result with a fitness of 7.27 was obtained at 

generation No.20, but with a component number of 11. The next generation of the 

cubing circuit with 13 components gave a fitness of 6.64.  

In the above experiments, unconstrained evolution with OLG was applied along with 

SRM and individual-level mutation towards the design of analogue computational 

circuits, to the examples of cube root, cubing, square root and squaring functions. This 

was one of the first successful attempts of the application of ES at the synthesis of 

analogue circuits of the second level of complexity, according to the classification 

introduced in Section 2.5.2. In all four experiments, circuits with fewer numbers of 

components with much less computer effort and with significantly better fitness have 

been successfully evolved.  

4.5 Differentiated Mutation of Analogue Circuits 

In the previous sections, attention was paid to a mutation procedure of the system. 

Such mutation operations are introduced as CSM, ANEM, DEM and SRM. The SRM 

consisted of up to six operations with different mutation parameters. The mutation 

application is shifted from the population-level to the individual-level. All these 

operations are organized and united in this section into one differentiated mutation (DM) 

operation. DM is the logical conclusion of the mutations introduced earlier. The DM 

technique is a novel method that is applicable to the evolution of analogue circuits. It 
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enables the application of the mutation procedure in a smoother, more intelligent and 

purposeful manner.  

Four types of mutation are described in previous sections: 

1. CSM modifies a chromosome per locus without influencing an individual‘s 

length. This is the most minimal type of mutation in terms of degree of influence; 

2. ANEM modifies a chromosome by adding a gene (+4 loci);  

3. DEM modifies a chromosome by removing a gene (-4 loci). ANEM and DEM 

are middle-sized mutations in terms of degree of influence; 

4. SRM modifies a chromosome by adding a group of genes united in a 

substructure. This is the most influential mutation (+8, +12, +16, +20, +24 loci). 

The main disadvantage of the existing mutation method is that the triggering of 

different types of mutations depends on the subjective values of the number of non-

successive generations. Furthermore, all of the mutation types are independent of each 

other and thus cannot be assured as being effective. If we look at a typical single 

chromosome‘s mutation history during the evolution of the computational circuit in 

Table 4-5, it might be noted that the sequence of the mutation rates as applied is not 

smooth. When SRM is applied, it brings very considerable changes in the genotype 

(generations N+6 and N+13 of Table 4-5).Therefore, the instantiated average mutation 

rate over 14 generations results in an average of 11.4%. Therefore, it is necessary to 

reorganize the existing mutation method. 

 

Table 4-5. The fitness and length stories of a single chromosome throughout 15 generations. 

 N N+1 N+2 N+3 N+4 N+5 N+6 N+7 N+8 N+9 N+10 N+11 N+12 N+13 N+14 

Length 8 8 9 9 9 9 13 12 12 13 13 13 13 16 16 

Fitness 46.2 46.2 41.4 41.4 41.4 41.4 41.4 29.3 29.3 26.5 26.4 26.4 26.3 22.1 20.3 

Mutation 

type 
- CSM ANEM CSM ANEM ANEM SRM DEM CSM ANEM CSM ANEM ANEM SRM SCM 
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Effective 

mutation 

rate 

- 5% 12.5 5% 11.1% 11.1% 44.4% 7.7% 5% 8.3% 5% 8.3% 8.3% 23.1% 5% 

The average effective mutation rate is 11.4%. 

4.5.1 The essence of Differentiated Mutation  

This method has been developed gradually from experiment to experiment. In earlier 

works, the author has already reported on some aspects of DM [109], [115] where the 

substructure reuse operation is regarded as a case of a more general mutation procedure, 

but never has it been approached from the quantitative point of view. The idea of the 

DM technique lies in a quantitative approach towards every type of mutation. If - to 

measure every mutation by a number of loci - it actually modifies inside the circuit, it 

would be possible to manage the procedure in a much the smoother manner than was 

shown in Table 4-5.  

While different mutation rates are associated with different types of mutations, the 

reference mutation rate is associated with a static predefined value, e.g., 4%.
7
 This rate 

operates as a reference mutation rate and is set as the minimum level of the 

modifications that can take place in a chromosome. The reference mutation rate gives 

the quantitative value of mutation as a percentage. However, under the DM technique, 

the unit for measure of mutation is the suggested locus. The modification of the locus is 

the minimum volume of a chromosome that can be mutated. Thus, every type should be 

calibrated along a new unit.  

The essence of the DM approach is based on four basic concepts: mutation types, 

virtual mutations, mutation ways and mutation strategy, each of which is described 

below. 

                                                 
7 This numeric value is exemplified due to only this number has been used within Experiments described in the thesis. However, 

it does not mean that there may be another value instead.  
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4.5.1.1 Types of mutations 

It has been noted already that each mutation type modifies a specific number of loci. 

If we sort all the mutation types in ascending order of their modification ability, they 

will appear as presented by Table 4-6. 

Table 4-6. The types of mutation, where CSM is a circuit structure mutation, ANEM is adding a 

new element mutation, DEM is deleting an element mutation, and SRM is a substructure reuse 

mutation. 

No Mutation Type 

1 

C
S

M
 Node_number_, Parameter_ or Component_name_ mutation phenotypically 

means the reducing, adding or replacing only 1 locus. There are no limitations on 

where to use it inside a circuit. In most cases, it is applied in combinations with 

Component_mutation and Substructure_X_mutation. 

2 

A
N

E
M

 

&
 D

E
M

 

Component_mutation phenotypically means reducing (DEM) or adding (ANEM) a 

component. It concerns 4 loci at once. 

3 

S
R

M
1
 

Substructure_1_mutation concerns 8 loci. It adds 2 genes at once to a 

chromosome. These two genes compose the first substructure. 

4 

S
R

M
2

 

Substructure_2_mutation concerns 12 loci. It adds 3 genes at once to a 

chromosome. These three genes compose the second substructure. 

5 

S
R

M
3
 

Substructure_3_mutation concerns 16 loci. It adds 4 genes at once to a 

chromosome. These four genes compose the third substructure. 

6 

S
R

M
4

 

Substructure_4_mutation concerns 20 loci. It adds 5 genes at once to a 

chromosome. These five genes compose the fourth substructure. 

7 

S
R

M
5

 

Substructure_5_mutation concerns 24 loci. It adds 6 genes at once to a 

chromosome. These six genes compose the fifth substructure. 

 

These kinds of mutations modify the numbers of loci that are given in an ad hoc 

manner, based on their definitions. However, each mutation may lead to another factual 

number of loci that is modified. So, there should be virtual mutation rates for each kind 

of mutation.  
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4.5.1.2 Virtual mutations 

When some type of mutation should take place - being intended to modify one locus 

(CSM) or four loci (ANEM) - it may cause the modification of more than the intended 

number of loci. This is to say that the actual number of loci modified may differ from 

the number of loci that were intended to be modified. 

It should be noted in Chapter 3 that all types of mutation may result in the effect that 

virtually the number of loci actually modified differs from one that was initially 

intended, because all of them may cause a change of circuit topology whereby some pins 

are floated. These floating pins, as described in earlier sections, have to find new nodes, 

which in turn virtually creates an additional number of loci to be unintentionally 

modified.  

The types of loci that could be unintentionally modified may only belong to a 

node_connection type of mutation, and the maximum number of such a kind of loci is 

limited by two in addition to the loci that were intended to be mutated. Thus, a new 

summary table of mutation types will look that provided by Table 4-7. 

There are in total 47 mutation subtypes that are listed together in Table 4-7. As might 

be noticed, each mutation type now covers a longer interval of mutations and there are 

only two gaps left uncovered in the total range of mutations: 3 loci and 7 loci. In Figure 

4-12, two graphs compared. The first one is associated with the old mutation approach, 

while the second graph refers to the new technique. A novel mutation approach enables 

a much smoother transition among the types and wider coverage of the virtual mutation 

rates, thus providing a more powerful tool for the mutation procedure.  

It should be explained that the system must have an additional subroutine that 

maintains statistics on the types of mutations possible per node in order to avoid the 

unintended loci mutations. This subroutine enables a virtual mutation procedure ―to do 

what was asked.‖ This is viewed as another advantage of the proposed technique 

because the subroutine is selecting the particular nodes for mutation, which reduces the 

randomization of the search process.  
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It should also be noticed that - to the author‘s knowledge - nobody has mentioned the 

idea of virtual mutation rates before. 

 

Table 4-7. The calibration of mutation types among virtual mutations, where CSM is a circuit 

structure mutation, ANEM is an adding a new element mutation, DEM is a deleting an element 

mutation, and SRM is a substructure reuse mutation. 

No Mutation Type Virtual mutation value 

1 

C
S

M
 

Parameter Modifies only 1 locus. 

2 
Node_  

number 

a) Modifies 1 locus. Example is in Figure 3-10a. 

b) Modifies 2 loci. Example is in Figure 3-10b. 

3 
Component_

name 

a) Modifies 1 locus. Example is in Figures 3-7b, 3-8b. 

b) Modifies 2 loci. Example is in Figure 3-7c, 3-8c, 3-9b. 
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a) Modifies 4 loci. Example is in Figure 3-11b, 3-12b. 

b) Modifies 5 loci. Example is in Figures 3-11c, 3-11d, 3-11e, 3-11f, 

3-12e, 3-12d, 3-12f. 

c) Modifies 6 loci. Example is in Figures 3-11g, 3-11h, 3-11i, 3-11j. 

5 

D
E

M
 

a) Modifies 4 loci. Example is in Figures 3-21b, 3-21c, 3-21d. 

b) Modifies 5 loci. Example is in Figures 3-21e, 3-21f, 3-21g, 3-21h. 

c) Modifies 6 loci. (Not instantiated, but possible.) 
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M
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M
1

 Substructure_1_mutation modifies the following number of loci: 

a)8; b)9; c)10; d)11; e)12; f)13; g)14.  

7 

S
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M
2

 Substructure_2_mutation modifies the following number of loci: 

a)12; b)13; c)14; d)15; e)16; f)17; g)18. 

8 

S
R

M
3

 Substructure_3_mutation modifies the following number of loci: 

a)16; b)17; c)18; d)19; e)20; f)21; g)22. 

9 

S
R

M
4

 Substructure_4_mutation modifies the following number of loci: 

a)20; b)21; c)22; d)23; e)24; f)25; g)26. 

10 

S
R

M
5

 Substructure_5_mutation modifies the following number of loci: 

a)24; b)25; c)26; d)27; e)28; f)29; g)30. 
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Figure 4-12. Two graphs that show the loci coverage by different types of mutation. The upper 

graph refers to the old approach, while the lower one shows the loci coverage of the new 

technique. Only 3 and 7 loci are left uncovered, but they may be reached by a combination of 

mutation types. The virtual mutation rates (lower graph) suggest a more diversified mutation 

field. 
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4.5.1.3 Mutation Ways  

Combined with each other, the mutation types suggest a variety of mutation ways in 

the frame of the reference mutation rate. In Table 4-8, there are five examples of 

chromosomes against the list of different ways of mutations which may be applied to a 

corresponding individual. For instance, the 50-gene chromosome can be mutated in 112 

different ways, each of which may be composed of six different mutation types. The 

choice of the particular way is set as a random procedure, if it is not specified elsewhere. 

 

Table 4-8. Examples of the ways of mutation for 5 different chromosomes 

Chromo-

some 

size, 

genes 

No of loci 

mutated at 

reference 

mutation 

rate 4% 

The mutation way list applied to different chromosomes (by 

combining mutation  types named by No.1-No.7 in accordance 

with Table 4-7) 

10 2 1) No.1×2; 2) No.2a×2; 3) No.3a×2; 4) No.2b×1; 5) No.3b×1; 

20 4 

1) No.1×4; 2) No.2a×4; 3) No.3a×4; 4) No.2b×2; 5) No.3b×2; 6) 

No.1×2+No.2b×1; 7) No.1×2+No.3b×1; 8) No.2b×1+No.3b×1;  9) 

No.1×3+No.2a×1; 10) No.1×3+No.3a×1; 11) No.2a×3+No.3a×1; 12) 

No.3a×3+No.2a×1; 13) No.2a×2+No.3b×1; 14) No.3a×2+No.2b×1; 

15) No.2a×2+No.2b×1; 16) No.3a×2+No.3b×1; 17) No.4a×1; 18) 

No.5a×1; 

50 8 
Totally, 112 possible combinations with involvement of mutations 

No.1, No.2, No.3, No.4, No.5 and No.6 

80 13 
Totally, about 1000 possible combinations with involvement of 

mutations No.1, No.2, No.3, No.4, No.5, No.6, and No.7. 

 

 

Thus, here is suggested the differentiation of mutations in analogue circuit evolution 

not just through rates but also through types and ways. In the following sections are 

described the aspects of the fourth concept - the mutation strategy. 
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4.5.1.4 Mutation strategy 

The following rules are actuated if the stalling effect begins to appear: 

 The diversification of a mutation history. Each individual carries its own history 

of the mutations its ancestors have gone through. If the chromosome is ranked 

within 10% of the worst of the selected to the next generation, the random choice 

of mutation is replaced by the following rule: the most seldom mutation type 

from the individual‘s history should be applied in the first place at the current 

generation. 

 The mutation pressure. If the chromosome does not improve its fitness over the 

previous two generations the following rule is activated: the lowest mutation way 

number temporarily leaves out the potential mutation way list (Table 4-8), 

increasing the probability of the other ways to be chosen. This brings more 

radical changes to a genotype by joining bigger substructures. The mutation rate 

continues to stay in the frame of the reference mutation rate. The mutation 

pressure may continue until there is only one mutation way left. The pressure 

disappears once a chromosome has improved its fitness. 

 The Radical mutations. If the chromosome has not improved within the last k 

generations (for instance, 3) the next that should be applied is the mutation that 

modifies the higher number of loci (according to Table 4-7) than is allowed 

within the frame of the reference mutation rate. Suppose a 10-gene chromosome 

with a reference mutation rate of 4% goes through the mutation of only two loci. 

Thus, it allows only mutation numbers 1, 2 and 3, according to Table 4-7 

(Node_number_, Parameter_ or Component_name_). However, due to its fitness 

being stuck, this chromosome should go through the mutation of three loci, 

which is possible by using the same mutation types (Table 4-9). Furthermore, if 

the chromosome has not even improved within the next generation, it should go 

through the modification of four loci, and now its mutation may also include 

mutation type numbers 4a and 5a (Component_mutation). With each ―unfruitful‖ 
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generation, the virtual mutation grows by one loci and the mutation rate 

increases.  

Table 4-9. Examples of the first and second radical mutations for 4 different chromosomes 

Chrom. 

size, genes 

Mutation at reference 

value 4% 
The first radical mutation The second radical mutation 

Loci No. 

mutated 

Mutation 

types, No. 

Loci No 

mutated 

Mutation 

types, No. 
% 

Loci No 

mutated 

Mutation 

types, No. 
% 

10 2 1-3 3 1-3 7.5 4 1-4a, 4b 7.5 

20 3 1-3 4 1-4a, 4b 5 5 1-4b, 5b 5 

50 8 1-6a 9 1-6b 4.5 6 1-5 4.5 

80 13 
1-6c, 7a, 

7b 
14 1-7c 4.4 15 1-7d 4.4 

 

Thus, the general algorithm of the mutation procedure now has a view of the 

flowchart in Figure 4-13. The radical mutation may be applied as many times and to as 

many generations of a chromosome that has not improved its fitness. The virtual 

mutation rate may reach a value many times higher than the reference mutation value. 

The radical mutation is a very important part of a general concept called Very Narrow 

Focused Evolution (VNFE), which will be introduced in Chapter 5. It provides the 

essential modifications to uncommonly homogenous individuals, especially during stuck 

periods.  

  In this chapter, a novel and feasible individual-level mutation scheme is proposed 

for the analogue circuit synthesis system based on the novel concepts of mutation types, 

virtual mutations, mutation ways and mutation strategy. In the approach presented here, 

there is a feature of the adaptation of the mutation rate, which is based on the idea that 

the particular rate value of each mutation is defined by evolution itself. Evolution 

defines the particular mutation type and randomly chooses the mutation way for every 

chromosome using the current and past features of the chromosome and the population it 

comes from. The researcher sets only the increasing direction in the loci modification 

number in the case of idle generations. In the method, the parameters that control the 

mutation rate of a chromosome are not encoded into their corresponding chromosome as 

additional genes [62] but are represented by such chromosome and population 
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characteristics as: the chromosome length‘s story, the chromosome mutation‘s story, the 

chromosome and population fitness‘ stories.  

 

Figure 4-13. The flowchart of differentiated mutation. The new terms are in bold rhomboids and 

squares. 

 

The idea of an adaptive mutation operator to improve GA performance has been 

employed earlier and it has been both empirically and theoretically demonstrated that 

different values of mutation might be optimal at different stages of the evolutionary 

process [34], [61],[62], [67] and [133]. According to the trade-off paradigm between 
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exploration and exploitation [153], [156], [154], [155], when evolution gets into a local 

optimum, the exploration is lacking, and the balance between the exploration and 

exploitation should be re-established by increasing the mutation.  

4.6 Experiment 13: Evolution of 4-Output Voltage Distributor 

As the number of inputs and outputs increases, the difficulty level of a given task 

increases exponentially [119], since additional dimensions are added to the search space. 

Hence, the evolution of multi-input/output circuits becomes considerably more complex. 

In Experiment 13, the following issues have been tackled, including: 

 Testing the newly developed system with the DM technique described in this 

section;  

 Testing the system on the example of a circuit that belongs to the third level of 

complexity, according to the classification introduced in Section 2.5.2.  

4.6.1 Task description 

The essence of the voltage distributor circuit (VDC) becomes simpler if one looks at 

a single-source divergent neuron (SSDN) that has one dendrite and many axons with 

similar functionality [113]. The work of the SSDN does not just include transporting the 

same signal from a single source to different locations, but also in disintegrating the 

incoming signal and distributing the result among the outputs.
8
 Reasoning for the choice 

of analogue over digital for the VDC, one should mention that in the natural neural 

network all (graded and impulse) signals are essentially analogue [114]. Moreover, most 

of the up-to-date industrial sensors receive stimuli and transduce them into electric 

potentials in a purely analogue form. 

The conventional method of circuit design could easily model a neuron by utilizing 

                                                 
8 The procedure is in common with the well-known convergent neuron which integrates different signals from different locations 

into one [7], but it has a backward direction for the signals‘ distribution. 
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the up-to-date digital signal processing units, such as controllers supplemented by 

analogue-to-digital and digital-to-analogue converters. However, a purely analogue 

circuit, in comparison with a digital one, can provide a considerably shorter delay in the 

circuit response because - as with any asynchronous circuit - its speed is not constrained 

by an arbitrary clock; instead, it runs at the maximum speed of electro-magnetic 

interaction. Furthermore, analogue circuits suggest an economy in power and 

components. The last argument becomes vital if the difference in the components 

between the competing circuits reaches multiples of a hundred and concerns such an 

application as a NN where the number of units (neurons) tends to be enormous. 

Knowledge about neurons mostly concerns those convergent ones that integrate 

multiple signals from dendrites into a single signal to an axon. Divergent neurons are not 

as widespread in natural neural systems. This last fact is due to the convergent nature of 

NN, which is mostly caused by a vast diversity of receptors that sense stimuli at a 

molecular level. That is, any stimuli comes into a natural NN at such a fine-grained level 

that the networks are left only with converging the mosaic into the pictures, thus solving 

higher-level intelligent tasks like cognition. On the other hand, most of the up-to-date 

industrial sensors do not possess such a feature. Thus, and practically, it is reasonable to 

target a circuit that simulates a divergent neuron that has the ability to disintegrate the 

incoming voltages from the sensors and distribute them among multiple outputs. Hence, 

the circuit is called a voltage distributor (VDC). Figure 4-14 gives a general view of a 

neuron model consisting of three digital circuitry units. Our task is to replace all three 

units with one analogue circuit. 

 

  
 

Figure 4-14.  A digital (left) and an analogue representation of a one-input multi-output voltage 

distributor/divergent neuron circuit.  
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mode that passes the input signal located within a particular voltage band without any 

change in the form of the signal. For a 4-out VDC, the band-pass for each output equals 

5V/4=1.25V: the first output passes the voltages from 0 to 1.25V, the second from 1.25-

2.5V, the third from 2.5-3.75V and, for the fourth, the band-pass is 3.75-5V. Figure 4-

15a demonstrates separately the transient analysis of every pin of the targeted 4-out 

VDC. As it can be seen by Figure 4-15a, the aggregated signals from all the outputs 

must exactly repeat the form of the input piecewise signal without gaps between the 

signals. 

For a VDC, the author was unable to trace any existing device or published work that 

described an analogue or a digital circuit performing a similar task. The last fact gives an 

alluring opportunity to challenge the potential of the evolutionary technique.  

In Figure 4-15b there is an embryo for a 4-out VDC. The embryo consists of a source 

of piecewise input signal (V_IN), a source resistor (Rs) and four load resistors 

(Rl1…Rl4). The embryo can also have two sources of direct voltage, allowing the 

evolution to choose between (or use both) 15V or 1.5V.  

4.6.2 Fitness Function  

For all design cases, a fitness value is set to a sum over p fitness cases of the absolute 

weighted deviation between the target value and the actual output value voltage 

produced by the circuit: 

p

i

i

measured

i

ideal VVF
0

|| ,        [4-2] 

where i

idealV is the voltage at the i-th point for the ideal response and i

measuredV  is the 

voltage at the i-th point obtained for the evolved circuit; p equals 81 time-points. The 

smaller the fitness value is, the closer the circuit is to the target. The fitness penalizes the 

output voltage by 10 if it is not within a specified percentage range of the target voltage 

value.  
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Figure 4-15. a) Transient analysis of potentials at the input and four outputs of the targeted 4-out 

VDC. b) Embryo for the 4-out VDC. 

 

The ES with linear representation and OLG is utilized. Different selection schemes 

are tried, ranging from 10% to 0.05%, and it is defined that a 1%-selection scheme is the 

optimum, i.e. 1% of the best chromosomes are selected to be parents in the next 

generation. Being chosen, each chromosome contributes 100 new chromosomes for the 

next generation. The ES is deserving of the name of the simplest EA because it does not 

contain the crossover operation: all the offspring chromosomes are identical to a 

corresponding parent. The reference MR of 4% is applied.  
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A population size of 30,000
9
 chromosomes is set. Five PCs are used with Intel Core 

2 Duo/2GHz processors running at the same time independently of each other. The 

results presented in the next section are the best out of five runs for each case, with 

different seeds for the random number generator. 

4.6.3 Experimental results 

 

Figure 4-16.  The evolved 4-output VDC in Experiment 13.  

 

The average evolution time of the 4-out Voltage Distributor is 123 hours. The best-

of-run circuit (Figure 4-16) appeared at the 120th generation and had 51 components 

(embryo excluded) among which there are 14 resistors, 6 capacitors, 0 inductors, 16 

NPN transistors and 15 PNP transistors, with a fitness of 0.38 [116]. The aggregated 

transient response of the circuit to an incoming signal (Figure 4-17a) - as can be seen by 

                                                 
9 Despite the good results have been received with this population size, there are no reasons why this size should not be increased. 

In fact, in here the author is only driven by convenience of processing the PSPICE out-file. 
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Figure 4-17b - almost exactly repeats the form of the incoming piecewise signal.    

In this section, the proposed system evolves the unconventional nonlinear, multi-

output and time-dependent functioning analogue circuits. The evolved example is a 

complex analogue circuit that is able to replace digital logic in its conventionally 

adopted applications. To succeed with the targets, unconstrained evolution with linear 

representation, OLG strategy, substructure reuse and differentiated mutation is applied.  

 

 

Figure 4-17. The transient analysis at the input and outputs of the 4-output VDC. (a) A piecewise 

signal used during evolution, and (b) the circuit response.  

 

Despite the high strength of the methodology developed and the wonderful test 

results obtained, the recently developed evolutionary system has failed to evolve the 8-

output VDC (presented in Section 5.2.4). This fact caused an author to continue 

enhancing the method that is described in Chapter 5. 

4.7 Summary of Chapter 4 

The main contribution that is made in Chapter 4 concerns the development of the 

differentiated mutation technique. It starts by introducing substructure reuse and adding 

this new option to such a mutation procedure as SRM. The new system has been 

successfully tested on the examples of four computational circuits (CC). 

  (a)       (b) 



 
Chapter 4. The Individual-Level Differentiated Mutation Technique 

 

 

 170 

Next, the qualitative approach is applied towards mutation in general as well as 

towards every mutation type, i.e. the base of the measuring mutation is suggested as a 

locus instead of percentage rate as before. Since a locus is the minimum modification 

that is possible in analogue circuit evolution, it now plays the role of the unit of 

measurement. Based on the new unit, each type of mutation is calibrated. The last 

procedure caused each mutation type to now correspond to an exact number of loci to be 

mutated. However, after introducing the virtual mutation, each mutation type there 

corresponds to a mutation interval. The concept of virtual mutation enables us to 

significantly diversify the mutations applied to chromosomes. More choice gives more 

abilities. The final concept that concludes the differentiated mutation technique is the 

mutation strategy. The mutation strategy consists of three main operators, which are the 

diversification of a mutation history, mutation pressure, and radical mutations. All of 

the latter are proposed to revive the evolution in case of fitness becoming stuck, with the 

help of a new virtual mutation methodology. Finally, the new approach is successfully 

tested on the example of a 4-output voltage distributor circuit (VDC). 

It should be noted that the novel approach based on the DM technique being applied 

towards the similar to 4-output VDC circuit - but with eight outputs - failed to evolve 

towards an acceptable solution.
10

 This obstacle has motivated the continued further 

development of the system, starting from the notion of incremental evolution.  

                                                 
10 The results of this experience are not presented in this work. 
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Chapter 5. Incremental Parallel Evolution with 

Adaptive Parameters 

In this chapter, first of all, the technique of incremental evolution is introduced and 

then challenged by a task so to evolve the 8-output voltage distributor circuit (VDC).  

The results from the experiment then saw the discovery of an original parallel 

evolution strategy that is characterized by very low selection rates. Parallel island-model 

evolution runs in a hybrid competitive-cooperative interaction throughout two 

incremental sub-stages. The adaptive population size is applied for the synchronization 

of the parallel sub-evolutions. The novel system is tested on a familiar 8-output VDC 

and the challenging Time Interval Meter Circuit (TIMC) that performs the functions of 

several digital circuits.  

5.1 Incremental Evolution  

5.1.1 Types of incremental evolution for analogue circuit synthesis  

As has been already mentioned in Section 2.4.3, staged incremental evolution is 

regarded as one of the main techniques for tackling the scalability problem. It is also 

noted that the physical nature of analogue circuits limits the application of a ―divide-

and-conquer‖ approach in comparison with digital circuits. Therefore, under the 

incremental evolution of analogue circuits it is further meant, first of all, not the 

independent evolution of subtargets but rather the evolution of the current subtarget 

together with all the subtargets evolved previously. That is, if one already has the 

evolved subtarget when evolving the second one, the first solution must participate in 

that evolution, being encoded in the chromosome. The last proposition means that the 

length of the chromosome after the incremental procedure will continue growing.  
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However, despite the fact that the chromosome length significantly increases with 

each sub-stage, the need to involve every gene of the previously evolved sub-solutions 

into every evolution operation is not necessary. There are two operations that are 

involved in this regard: 

 The evaluation process, which requires all of the parts of the chromosomes to 

participate, i.e. it is important to get the adequate fitness value of the whole 

chromosome.  

 Since ES is utilized - where the recombination is not used - another important 

evolution operation is that of mutation. Three methods are considered in terms of 

the degree of the involvement of the genotypes of the previous sub-solutions into 

the mutation: 

1. Non-involvement. This is when the fragments of the chromosome that 

belong to previous sub-solutions do not participate in all kinds of mutation. 

On one hand, this option keeps the solution space constrained and saves 

computing effort. On the other hand, removing the opportunity for the 

previous sub-solutions to adapt their structures and parameters to a new 

more general solution may obstruct the finding of a current sub-circuit and 

even leave the process out of any solution. In this case, the whole 

―responsibility‖ for the adjustment of the sub-solutions to each other lies on 

the structure of the currently evolving sub-solution. This means that with 

each sub-stage the current sub-task become increasingly complex. 

2. Partial involvement. To avoid the problems that might appear in the first 

option, the second option suggests a ―partial evolution,‖ enabling some loci 

of the previous sub-solutions to participate in the evolution along with the 

rest of the chromosome. These loci are represented by such as the 

components‘ names and nodes and the parameters of the evolved sub-

circuits that are located at the junctions between the currently evolving sub-

circuit and the previous ones. These junctions are predefined when one is 

decomposing the task into subtasks at the start. One can expand the parts of 
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the chromosomes that participate in the current sub-stage mutation by 

adding not only the genes coded for the components at junctions but also 

by adding the genes coded for their neighbours and the neighbours of their 

neighbours, etc. (Figure 5-1). In this case, the ―responsibility‖ for adjusting 

the sub-solutions to each other is distributed among the structures that 

belong to all the sub-solutions, which should facilitate the evolution for 

each sub-stage.  

 

 
 

Figure 5-1. The incremental approach: two sub-circuits that are jointed in a point marked by a 

red circuit. On the right is a sub-circuit that was evolved first, and to the left is a currently 

evolving one. When evolving a sub-circuit, there are three degrees of involvement of the parts of 

the previous solution(s) in the current process: non-involving (marked by the dotted square 1), 

partially, where there are components neighbouring to a junction point (square 2) and full, where 

every component of a previous sub-circuit(s) takes a part in the evolution along with the 

components on the left side of the figure (square 3).  

 

3. Full involvement. The third case is when the whole genotypes of the 

previously completed sub-tasks have the same rights to participate in all 

kinds of evolutionary operations as the genotypes related to the current 

subtask. In this case, the power of the ―divide and conquer‖ method 

drastically falls down due to the extreme expansion of the chromosome 

length and the search space. However - and on the positive side of such the 

approach - while it is applied to deliberately easy problems where 
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scalability is not an issue, the unconventional designs and the foreseen 

component economy of the solutions resulting are. In the frame of this 

work, which has as its goal the construction of a system that will be able to 

synthesise complex analogue circuits by the method of full involvement, it 

is less helpful. 

Since the rest of the targets are seen as the most complex circuits and are going to be 

decomposed into subtasks in order to diminish the scalability problem, only methods 1 

and 2 from above are found to be suitable and only they will be considered any further. 

As such, Experiments 14 and 15 both use the non-involvement method, Experiment 16: 

Evolution of TIMC uses the partial involvement method. 

5.1.2 Types of incremental coding 

Another very important aid that is helpful for incremental evolution is incremental 

coding. When one is utilizing extrinsic evolution with the help of PSPICE (or any other 

xSPICE), one could utilize the PSPICE built-in function for the sub-circuits that are 

instantiated by using the letter ―X‖. This causes the referenced sub-circuit to be inserted 

into the circuit ―using the given nodes to replace the argument nodes in the definition‖ 

[91]. It allows a block of circuitry to be defined once and then used in several places. 

This built-in PSPICE coding can be handy when one would like to easily identify and 

implicitly protect some fractions of a chromosome as well in easing up the operations 

over those individuals that are too lengthy. It will be called ―X-coding‖ from now on.  

There are two kinds of analogue circuit decompositions that may exist. The first one 

is the decomposing of the circuit into sub-circuits that are in series to each other. In this 

case, if the partial involvement method is used, each next evolving sub-circuit will 

involve in its synthesis a part of only that sub-circuit which it is connected to serially. 

Figure 5-2 demonstrates this idea generally. 
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Figure 5-2. The general view of series incremental coding in cases of the partial involvement 

method. Only three sub-circuits are shown. By the letter ―X‖ the X-coded part of a chromosome 

is indicated and which represents the non-mutated part of the chromosome. By the text box, the 

deck part of the chromosome is indicated. From left to right: (a) the first sub-solution deck after 

the first operation becomes partially X-coded (b). Being incremented and evolved on the second 

sub-stage (operation 2) it has a view on (c). The result of the second sub-stage is again partially 

coded (operation 3) and is evolved (operation 4) towards the third sub-target (e). The evolved 

third sub-circuit (e) is X-coded (operation 5) to (f). On (g) the sequential direction of circuit 

growth is shown. In the case of the non-involvement method, the small squares right under the X 

symbol will not be presented. In the case of the full involvement method, there will not be any X 

symbols in the figure, i.e. there will not be any parts of the chromosomes that are protected from 

mutations. 

 

The second case is when the decomposed sub-circuits are in parallel to each other. 

Here, if we consider the partial involvement method, the currently evolving sub-circuit 

will involve in the mutation procedure those structures of all the previously evolved sub-

circuits. Figure 5-3 demonstrates how the development of the parallel incremental 

coding takes place.  

(a) (b) (c) (d) (e) 
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Figure 5-3. The general view of parallel incremental coding. Only four sub-circuits are shown. 

By the letter ―X‖ the X-coded part of a chromosome is indicated and which represents the non-

mutated part of the chromosome. By the text box the deck part of the chromosome is indicated. 

From (a) to (f): (a) the first sub-solution deck after the first operation becomes partially X-coded 

(b). Being incremented and evolved on the second sub-stage (operation 2) it has a view on (c). 

The result of the second sub-stage is again partially coded (operation 3) and is evolved 

(operation 4) towards the third sub-target (e). The evolved third sub-circuit (e) is X-coded 

(operation 5) to (f). On (g) and (h), the coding of the circuit with fourth sub-circuit and its X-

coding are shown. On (i) the direction of the circuit growth is shown. In the case of the non-

involvement method, the small squares right under the X-symbol will not be presented. In the 

case of the full involvement method, there will not be any X-symbols in the figure, i.e. there will 

not be any parts of chromosomes that are protected from mutations. 

(g) (h) 
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Regarding the already mentioned full involvement method, Figures 5-2 and 5-3 will 

not contain the X-coded parts of chromosomes, i.e. there is no need for the protection of 

any of the chromosomes‘ parts from mutation.  

Conversely, in the non-involvement method the partial decks will not be presented 

because they will be covered over by X-coded parts of the chromosomes.  

In the experiment below, the parallel decomposition of the main circuit is utilized 

and the non-involvement method has been applied.  

In the next section, the developed system armed with staged incremental evolution 

will be applied towards the challenging task of the 8-output VDC. This target is much 

more sophisticated than any of the others already tried in this work. Furthermore, it 

looks like an ideal task for probing incremental evolution since an eight parallel output 

circuit suggests the decomposition of the main circuit to eight parallel sub-circuits. 

5.2 Experiment 14: Evolution of 8-Output Voltage Distributor 

(Phase 1) 

The VDC has already been introduced in detail in Section 4.6.1. However, here eight 

outputs instead of four are set for the target. If in the earlier case the target had evolved 

without task decomposition, for current problem this approach has failed. Five attempts - 

the results of which are presented in Section 5.2.4 - to evolve the 8-output VDC without 

incremental evolution have failed at earliest stages of the experiments. Thus, this failure 

assures us that the introduction of the incremental technique to the system provides the 

necessary step in going forward. 

The motivation for the choice of an 8-output VDC as the target for evolution is the 

circuit's functionality in that it performs as the single-source divergent neuron (SSDN), 

which has one dendrite and many axons with similar functionality [113]. In Section 

4.6.1 this has already been described in detail along with the perspectives for the 

evolution in targeting such circuits as VDCs. 
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According to the methodology described, eight subtasks corresponding to eight 

parallel sub-circuits are set. Each sub-circuit is responsible for receiving an incoming 

signal and producing an output signal to its own output pin. If the first task is a design of 

the first sub-circuit, the second task is a design of the first and the second sub-circuits, 

the third task is a design of the first, the second and the third sub-circuits, and so on. 

Finally, the 8-th task is a design of all eight sub-circuits constituting the whole of the 

VDC. The evolution starts from the first sub-circuit and upon its completion moves to 

the next one. It is by the degree of the involvement of the genotypes of the previous sub-

solutions into the mutation of the current sub-solution that the non-involvement method 

is utilized.  

Experiment 14 below aims to tackle several issues, including: 

 Testing the incremental method proposed in this chapter;  

 Testing the system on a task that belongs to the 3rd level of complexity, 

according to the classification introduced in the beginning of Chapter 4; 

 Testing the system on an unconventional application analogue circuit. 

5.2.1 Task description 

The general view of the N-output Voltage Distributor is presented by Figure 5-4a, 

where in our case N=8. As an input signal for the targeted circuit the same piecewise 

voltage pulse has been taken as was the case with the 4-output VDC: starting from 0V, 

going up to 5V for 3.5sec and down to 0V for the last 1.5sec (Figure 5-4b). The task for 

each output was working in a filter-like mode which is to pass through the input signal 

that is located within a particular voltage band, saving the form of the input signal. This 

is to say that the band-pass width for each of the outputs was the same and equalled 

0.625V: the 1st output passes only the voltages from 0 to 0.625V, the 2nd output passes 

only the voltages from 0.625-1.25V, the 3rd band-pass is 1.25-1.875V, the 4th is 1.875-

2.5V, the 5th is 2.5-3.125V, the 6th is 3.125-3.75V, the 7th is 3.75-4.375V, and finally 

the 8th is 4.375-5V. The summary of the transient analysis at the input and eight output 
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pins of the targeted ideal 8-out Voltage Distributor is presented by Figure 5-5. As it 

could be seen from Figure 5-5, the aggregated signals from all outputs must exactly 

repeat the form of the input piecewise signal in Figure 5-4b, without gaps between the 

signals.  

 

Figure 5-4. (a) The general view of the proposed N-out Voltage Distributor. (b) The 

asymmetrical input piece-wise voltage signal.  

 

 
 

Figure 5-5. The ideal united transient analysis of potentials at the input and eight output pins of 

the targeted 8-out Voltage Distributor. 

 

As mentioned above, incremental evolution was introduced for the design of the 8-

output VDC. The fitness function was incremented each time, whenever the current task 

was fulfilled. Eight tasks corresponding to eight sub-circuits were set. Each sub-circuit 

(a) (b) 
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was responsible for acquiring the incoming signal and for provide the outgoing signal to 

the corresponding output. While the first task was the design of the first sub-circuit, the 

second task was the design of the first and the second sub-circuits, the third task was a 

design of the first, the second and the third sub-circuits and so on. Finally, the eighth 

task was the design of all eight sub-circuits that is the whole VDC. Each time the current 

sub-circuit is finished the system X-codes it, protecting it from mutation in further sub-

stages. For each task, a new fitness function was introduced which incrementally 

counted the fitness of all the sub-circuits evolved at that time. 

5.2.2 Dedicated topological reuse 

The use of SRM has been discussed before, where the choice of one or another kind 

of substructure fully depends on a random choice among the mutation ways. However, 

in the case of an 8-output VDC, as well as in most cases of circuits with a multitude of 

outputs/inputs, it is possible to apply another type of topological reuse – the dedicated 

topological reuse. Due to the similarity of the functions that sub-circuits perform 

independently, in the case of the VDC and in order to pass through the particular voltage 

band and to stop the rest, the evolution‘s task (except for the first sub-circuit) is just to 

reprocess the previously evolved sub-circuits into a new sub-circuit with new properties 

- what for VDC is a new pass band. That is, the substructure to be reused is quite 

definite and the junction points for it are also known.  

The main advantage of such an approach is the possibility of starting the evolution of 

the next sub-circuit (e.g. the 3rd) based on the reuse of the previously evolved sub-

circuits (i.e. the 1st and 2nd).  

Thus, there are two types of substructure reuse that are implied in the frame of an 8-

output VDC. The first one - mentioned in Section 4.1 - is the SRM and is a part of 

differentiated mutation operation. Another kind of reuse is suggested as being applied 

during the increment in between the transition from one sub-circuit to another. If the first 

type of the substructure is limited to six components, the size of the second is unlimited; 

if the place for the first substructure is randomized, the place for the second one is 
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definite: between the corresponding source and load resistors in Figure 5-6. Another 

kind of difference between these two is where if the first one can be labelled ―building 

blocks,‖ the second one is closer to the ―framework skeleton,‖ since it aims to be used 

only once in the current sub-stage. It is reasonable to suppose that during evolution the 

DEM procedure may help to remove those components that were essential particularly 

for the functioning of the previously evolved (reused) sub-circuit, while the other 

mutation procedures contribute to finding components that help the functioning of the 

current sub-circuit. 

The additional database is proposed to store the dedicated substructures so if it 

comes to an 8th sub-circuit evolution, the database should already store seven 

topologies. The system tries to reuse the substructure that was taken from a 

neighbouring sub-circuit first. Then, if the evolution is stuck, the system tries to utilize 

the other available topologies.   

For an 8-output VDC as well as a 4-output one, the author was unable to trace any 

existing device as well as any published work that described an analogue or digital 

circuit which performed a similar task. This gives an alluring opportunity to challenge 

the potential of the purposed evolutionary technique, because the proposed circuit is 

going to function in a single analogue mode instead of a number of digital operations 

(Figure 4-14).  Starting from CCs and then looking further, this tendency for targets will 

be kept. 

5.2.3 Fitness function and embryo 

Since the aim of the experiment is to run non-stop throughout all the sub-stages, a 

dynamic fitness function is introduced similar to ―adaptive fitness schedule‖ from [59]; 

i.e. the fitness function is incremented ―whenever the current fitness threshold is reached 

by at least one chromosome in a population.‖ The fitness function scheduled to each 

incremental sub-stage as a simple sum of the fitness values of all the sub-circuits 

evolved at the time. The final fitness function of the 8-output Voltage Distributor is:  
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F=
8

1

i

i

iF ,  

where F
i
 is a fitness value of the sub-circuit i and which is calculated in the 

following way: the PSPICE simulator performs a transient analysis at each output for 

five seconds at 81 equidistant time-points; a fitness value F
i
 is set to the sum and over 

these 81 fitness cases of the absolute weighted deviation between the target value and 

the actual output value voltage produced by the circuit; the fitness penalizes the output 

voltage by 10 if it is not within 50% of the target voltage value. The smaller the fitness 

value is, the closer the circuit to the target.  

In Figure 5-6 there is an embryo for an 8-out VDC. In accordance with all previous 

tasks, it consists of source of input signals (V_IN), eight source resistors (Rs) and eight 

load resistors (Rl1…Rl8). The embryo also has two sources of direct voltage, allowing 

the evolution to choose between (or use both) 15V or 1.5V. This embryo is created by 

way of analogy with the 4-output VDC, but with inputs split apart for the comfort of the 

incremental evolution. 

 
 

Figure 5-6. The embryo circuit 
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Five types of components are suggested that the targeted circuit should consist of: an 

NPN bipolar transistor (Qn), a PNP bipolar transistor (Qp), a resistor (R), an inductor 

(L) and a capacitor (C).  

The termination criteria for the whole circuit is the consecutive summary of the 

termination criteria of each sub-circuit, namely that if the fitness value did not improve 

over 20 consecutive generations or else if the best sub-circuit reaches more than 100 

components. 

The ES with a 1%-SR scheme is applied, i.e. S=1% of the best chromosomes are 

chosen for the next generation. Upon being chosen, each chromosome contributed 100 

new chromosomes for the next generation. A population size of 30,000 chromosomes is 

set. Five PCs have been used with Intel Core 2 Duo/2GHz processors running at the 

same time independently of each other. The results presented in the next section are the 

best out of five runs for each case with different seeds for the RNG. 

5.2.4 Experimental results 

At the beginning of this section, the brief results of the experiment to evolve an 8-

output VDC without task decomposition will be presented. The evolution has been run 5 

times with the same experimental settings as described in Section 5.2.1, and without 

incremental evolution. The FF and the embryo were similar to the FF and embryo of the 

4-output VDC (formula [4-2] and Figure 4-15b), but with an extension to 8 outputs. All 

5 experiments are shown by Figure 5-7.  

As can be seen by Figure 5-7, the reaching of the 20-generation-limit termination 

criteria (i.e. the stalling effect problem) at the early stages of the evolution was the 

reason for the experiment‘s failure. It has been claimed before in [48], [119], [139] that 

with an increase of the input/output pins of the targeted circuit, the complexity level 

becomes extremely high and the most effective tool for tackling this problem is 

―incremental evolution.‖ The fact that the stalling effect took place at the early stages of 

the evolution indicates that the targeted 8-output VDC is too hard a task for an existing 



 
Chapter 5. Incremental Parallel Evolution with Adaptive Parameters 

 

 

 184 

evolutionary approach. Therefore, incremental evolution has been applied to this task 

later on.  

 

 

Figure 5-7. Five runs for the evolution of an 8-output VDC without “incremental evolution.” For 

better visualization, the logarithmic values of fitness are presented.  

 

The rest of the section relates to the incremental evolution of an 8-output VDC 

decomposed into 8 subtasks. The first sub-circuit is evolved relatively quickly, within 10 

hours of the start and resulting in a 10-component circuit with a fitness of 0.095 after 76 

generations. The second sub-circuit that was evolved with the dedicated reuse of the 

first one took twice as much time (19 hours), with 22 components and 132 generations, 

converging with a record fitness of 0.028. At the third sub-stage, it began to reuse the 

second sub-circuit, as was set by the rule. However, after a long term run and 20 

consecutive generations without improvement, the system reused the topology derived 

from the first sub-circuit - and this try has succeeded. After 110 generations (at the 

second attempt) the sub-circuit resulted in a 16-gene chromosome with a 0.174 fitness 

value. 

7,15

7,2

7,25

7,3

7,35

7,4

0 5 10 15 20 25 30 35

Generation No

L
o

g
 (

fi
tn

e
s

s
)

Exp.1

Exp.2

Exp.3

Exp.4

Exp.5



 
Chapter 5. Incremental Parallel Evolution with Adaptive Parameters 

 

 

 185 

Since then, all attempts to evolve the next sub-circuit have failed. All three 

substructures were tried during evolution, with several attempts per substructure. The 

resulting 48-component circuit is shown on the Figure 5-8. The details of the whole 

experiment are presented in Table 5-1. 

This result has stimulated the continuing development of the method in order to 

finish the current task and deal with even more complex targets. 
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Figure 5-8. The result of the evolution of the 8-output VDC that failed to evolve at the 4th sub-

stage in Experiment 14.  
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Table 5-1. The summary for the sub-circuits of the 8-output Voltage Distributor 

 

 

 

 

 

5.3 Parallel Evolution with Migrations at Incremental Stages  

5.3.1 Introduction 

In this section, the power of the ES-based EHW system will be verified through two 

challenging tasks: the 8-output VDC that has failed to evolve and the Time Interval 

Meter Circuit (TIMC), which is the core of the modern laser rangefinder. To solve these 

problems, the ES-based system is upgraded with a combination of the novel adaptive 

individual-level Differentiated Mutation (DM) and the Winner-Dominates-Winner-

Cooperates (WDWC) parallel evolution strategy, formed by means of parallel island-

model evolution.   

When combined, these two techniques make the evolutionary system as ―very 

narrow focused search tool,‖ which is called - for simplicity - Very Narrow Focused 

Evolution (VNFE). The literature review provides - on the subject of the ―optimal 

selection rate‖ - the idea that this mode of selection is a mechanism which increases the 

mean fitness of a population while ―having the least deleterious effect‖ [95] on the 

genotypes, and thus is directly proportionate to the size of a population. In this section, 

 Fitness 
Component 

No. 

Generation 

succeed 

Sub-circuit 1 0.095 10 76 

Sub-circuit 2 0.028 22 132 

Sub-circuit 3 0.174 16 110 

Sub-circuit 4  

Sub-circuit 5  

Sub-circuit 6  

Sub-circuit 7  

Sub-circuit 8  

Total 0.297 48 318 
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relatively large populations are used (from 15,000 to 35,000 individuals evolving in 

parallel), for each of which it is suggested that use is made of very low selection rates 

(SR): from 0.2% to 2% and, aggregately the SR of the system reaches 0.048%. 

Furthermore, the proposed technique theoretically enables all the parallel evolutions to 

―focus‖ on a single chromosome at one generation, which in our experimental case can 

bring up and of SR of 0.0006%.
11

 As can be seen, premature convergence has not 

become a problem due to the DM technique and VNFE.  

5.3.2 Parallel evolution with migrations at incremental stages 

It has been already mentioned that since the evolution of low-pass filters several 

systems evolved in parallel towards the same target. In the previous section, parallel 

systems have been tried so as to evolve the fourth sub-stage of an 8-output VDC, but this 

failed. The utilization of parallel processors until now has always played the simplest 

role of alternate evolutions, providing results from which to choose the best; i.e. there 

were different populations, each of which acted as an independent ES with each one 

separately initializing, ranking, selecting and cloning and with mutation performing only 

within populations. Each population ran on a separate processor. The final results of the 

evolution were always been manually compared, and the best solution had was chosen. 

No kinds of migrations have ever been tried. Figure 5-9 generally presents the procedure 

thus described. 

The difficulties in the previous experiment have led to the search for new techniques 

that may bring better results for the same amount of resources. The further strengthening 

of the parallel methodology was decided as the first choice for enhancing the system. 

Furthermore, in Section 4.5.1.3 we see presented the ways for differentiated mutations, 

with number for a 50-gene chromosome at 112. This number means that each 

chromosome has 112 forms of mutation to choose from. It is obvious that a good 

methodology is that one which will suggest enough individuals for the probation of the 

maximum mutation ways, i.e. the SR should be decreased. For instance, for an average 

population size 30,000 individuals, the SR should be 1% in order to enable 300 clones 

                                                 
11 While during an experiment we have achieved a selection rate equal to 0.048%, theoretically the value 0.0006% is reachable.  
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from one chromosome, but it is so far not enough for an 80-component circuit to apply 

about 1000 mutation ways. Furthermore, this number does not reflect all of the diversity 

of the mutations possible if we want to take into account the random choice of the 

particular place inside a circuit where the mutation must occur. Therefore, the 

reasonable selection rate of about 0.2% - which brings about 1500 clones per individual 

- is the target. However, by lowering the SR, another problem arises, namely the 

depletion of the gene pool. To tackle this latter problem, the population size is increased. 

 

 

Figure 5-9. Utilization of parallel sub-systems in past approaches. 

  

The idea of a narrow SR comes from experiments rather than from the theory of EA. 

In earlier works, the author experimentally noticed during work over computational 

circuits [115] that the system that integrates SRM as a part of mutation procedure 

performs better with an SR 10 times lower than that conventionally adopted before 

(from 10 to 1%). Despite the current system, and armed with the DM technique which 

successfully evolved the 4-output VDC [116], it has failed when evolving the final part 

of the 8-output VDC [65]. And one of the main reasons for this failure is held to be the 

lack of computer resources and the high selection rate. 

Therefore, the following algorithm is suggested to continue the evolution of an 8-

output VDC: 

Evolution 1 

Evolution 2 

Evolution 3 

Evolution 4 

Evolution 5 

The fittest 

chromosome 
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1. The resulting 8-output circuit with three designed sub-circuits becomes a single 

chromosome to start with for five independent sub-systems (Figure 5-10); 

2. Each sub-system is evolving the first (fourth) and every next sub-stage 

independently of the others;  

3. All the sub-systems work over the particular sub-target at the same time. The 

termination criteria must be applied to each evolution simultaneously in order 

for all sub-systems to switch to the next sub-stage.  

 

Figure 5-10. The utilization of parallel sub-systems in the second phase evolution of an 8-output 

VDC. A single chromosome produced in Experiment 14 (Phase 1) is an embryo for every Sub-

system. There are migrations by black arrows from the sub-system produced the best individual 

after every sub-stage. 

 

4. After each sub-stage, the best chromosome is chosen automatically among all 

the resulting individuals of the sub-systems. The fittest is downloaded to every 

sub-system. The last ones are restarted; 

5. The process continues until the last sub-stage is terminated at all the sub-

systems and the fittest is selected. 
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It should be remembered that for every sub-system the following are the most 

important features of the proposed technique which have been set:  

1. The linear (direct) circuit representation is proposed for use, similar to that 

exploited in [28], where each component in a circuit was coded in a gene. 

Whether it is a 2-pin or 3-pin component, the component‘s features (nodes, 

parameter and name) are coded into four loci;  

2. When evolution passes from one incremental sub-stage to another it applies X-

coding.  

3. For resistors and capacitors, there are 84 and 96 values of E-12 series, i.e. there 

are seven and eight decades corresponding with 12 parameters for each 

chromosome available for evolution. 

4. The OLG strategy has been utilized in a manner similar to that described in 

[28], where different genotype varying strategies have been compared. In 

OLG, the chromosomes are allowed to increase as well decrease their lengths 

with the help of DEM and parsimony pressure. However, in the long term 

prospective genotypes grow up, which is in accord with natural evolution: the 

more complicated the behaviour of an individual, the longer the chromosome it 

requires. Due to OLG - during these experiments - the growth difference has 

resulting in a size difference of 7-8 genes in one population (Figure 5-11). 

 

 

Figure 5-11. Distribution of chromosomes after generation No.46 among different lengths in a 



 
Chapter 5. Incremental Parallel Evolution with Adaptive Parameters 

 

 

 192 

25,000-population located in the 4-st PC.  

 

5. The roulette-wheel selection scheme is used with a selection strength of β=∞ 

[95]. From each population, only 0.2% and above of the best individuals are 

chosen as parents for the next generation. The single best chromosome with all 

its properties always stays as a reference for the individuals of future 

generations until a new one appears with features exceeding it; 

6. During the ranking procedure, when comparing two or more chromosomes 

with identical fitness values (with a precision of 5 decimal digits) and genotype 

length, only one goes to the next generation. This is because it is supposed that 

any chromosomes with the same properties must have identical genotypes and 

thus replicate each other; 

7. Each descendant inherits the mutation and fitness story of its ancestors from 

previous generations, stored in the RAM in the form of decimal values 

corresponding to the types and ways of mutations and the fitness story for the 

last k generations. These stories are helpful for the mutating operation; 

8. Each individual of a new population is mutated according to an individual-

level adaptive DM technique with an adaptive mutation parameter; 

9. During the ranking procedure, the second objective with the help of a pressure-

constant is introduced, i.e. the parameter of a genotype length. According to 

the classification given in [61] to the control parameters, the pressure-constant 

is a deterministic dynamic penalty parameter. It does not depend directly on 

the parallel evolutions, but it is adapted by the local evolution. At each sub-

system, the pressure-constant is set to the same initial value 40. However, if 

two generations following each other do not bring better individuals, this 

number is increased by two, which causes the component-reducing pressure to 

decrease - ten generations without the best chromosome update make the 

pressure constant equal to 60, etc. A limit of 64 is set in case the stagnation 

period continues for more than 12 generations, i.e. the penalty release can 
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reach 60%. Conversely, if two successive generations have brought a fitness 

improvement, the pressure-constant is reduced by two. This strategy leads to 

an inevitable gradual weakness of the selective pressure due to the permanent 

growth of a chromosome‘s length, complexity and solution space. The main 

reason for introducing it is that it is the simplest technique to implement: it 

requires only the straightforward modification of the evaluation function; 

10. The pruning procedure is enabled so as to be applied only after each sub-stage 

of an incremental evolution; 

11. There are two kinds of substructure databases. The first one is when the system 

is enabled so as to memorize each of one substructure of sizes 4, 5 and 6 genes 

and, each of two substructures of sizes 2 and 3 genes for the evolution to have 

a choice. Here - for each such sub-stage - the substructure database is built 

independently. The substructures of the second type involve dedicated 

topological reuse where the substructures are made of previously evolved sub-

circuits; 

12. The first rule of the mutation strategy is the diversification of the mutation 

history. The second is the mutation pressure rule and the third rule is the 

radical mutation. The radical mutation rate depends on the length of the 

chromosome to which it should be applied and it may vary, reaching 80% for 

the short length individuals. Radical mutation is a very important part of 

VNFE. It provides the essential modifications to uncommonly homogenous 

individuals peculiar to VNFE, especially during stuck periods; 

13. It has been allowed for the VDC that the evolution use the non-involvement 

type of the staged incremental evolution as described in Section 5.1.1, i.e. no 

genes at junction and any of its neighbours from previously evolved sub-

circuits that take a part in the evolutionary processes. All of the sub-

chromosomes evolved during the first phase of evolution are frozen up with the 

assistance of X-coding.  
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5.4 Experiment 15: Evolution of 8-Output Voltage Distributor 

(Phase 2) 

5.4.1 Introduction 

The task description has already been presented in Section 5.2.1. However, here the 

general information should be given again. There is one input and eight outputs. An 

input signal has been taken with the same piecewise voltage pulse as in the last case and 

also with the case of the 4-output VDC: starting from 0V, going up to 5V for 3.5sec and 

down to 0V for the last 1.5sec (Figure 5-4b). The task for each output involved working 

in a filter-like mode which passes through the input signal that is located within the 

particular voltage band, saving the form of the input signal. That is, the band-pass width 

for each of the outputs is the same and equals 0.625V: the 1st output passes only those 

voltages from 0 to 0.625V, the 2nd output passes only the voltages 0.625-1.25V, the 3rd 

band-pass is 1.25-1.875V, the 4th is 1.875-2.5V, the 5th is 2.5-3.125V, the 6th is 3.125-

3.75V, the 7th is 3.75-4.375V and finally the 8th is 4.375-5V. The summary of transient 

analysis at the input and eight output pins of the targeted ideal 8-output Voltage 

Distributor is presented by Figure 5-5. As can be seen, the graph in Figure 5-4b must 

exactly repeat the form of the input piecewise signal.  

As before, the FF was incremented each time whenever the current task was fulfilled. 

Eight tasks corresponding to eight sub-circuits were set. For each task, the new FF was 

introduced which incrementally counted the fitness of all the sub-circuits evolved at that 

time. Due to the similarity of functions that the sub-circuits perform, the dedicated 

topological reuse is utilized.  

The fitness function of the 8-output Voltage Distributor is:  

F=
8

1

i

i

iF   
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where F
i
 is a fitness value of the sub-circuit i, which is calculated in the following way: 

the PSPICE simulator performs a transient analysis at each output for five seconds at 81 

equidistant time-points; a fitness value F
i
 is set to the sum over these 81 fitness cases of 

the absolute weighted deviation between the target value and the actual output value 

voltage produced by the circuit; the fitness penalizes the output voltage by 10 if it is not 

within 50% of the target voltage value. The smaller the fitness value is, the closer the 

circuit is to the target.  

As an embryo, the previous resulting circuit has been set in Figure 5-6. The same 

five types of components continue to participate in the evolution and the same 

termination criteria for the whole circuit are set, i.e. if the fitness value did not improve 

over 20 consecutive generations or else if the sub-circuit reaches more than 100 

components. 

Five PCs have been used in parallel with Intel Core 2 Duo/2GHz processors running 

at the same time. The systems have been connected via a hub to each other so as to 

enable migrations according to the proposed scheme in Figure 5-10. Five different SR 

have been set to each system, starting from 1% and going to 5%. The ES with a 

differentiated mutation technique is utilized with a population size of 30,000 

chromosomes set for each PC.  

5.4.2 Experimental Results 

The experiment has been running throughout five sub-stages. Figure 5-12 presents 

the details of the sub-stages and migrants along the evolution. After each sub-stage, the 

best individual migrates to every sub-system and restarts the latter.  

The average time of the evolution of the 8-out Voltage Distributor was 344 hours, 

which is about 43 hours per sub-circuit. The best-of-run circuit (Figure 5-13) appeared at 

the 629th generation and had 138 components (embryo excluded), among which there 

were 38 resistors, 8 capacitors, 7 inductors, 46 NPN transistors and 39 PNP transistors, 

with a best overall fitness of 1.757 [65]. The most ideal signal, with a fitness of 0.028 

was provided by out-pin No.2, which was responsible for the band 0.625V-1.25V; the 
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worst reply - with a fitness of 0.797 - was at out-pin No.7 in the band 3.75V-4.375V. 

Figure 5-14a shows the transient reply of the circuit for the incoming piecewise signal. 

Table 5-2 contains the details of each of the sub-stage results per sub-system. As to how 

human-competitive this result is - this is discussed in Section 5.4.3. 

Table 5-3 highlights the detailed information per incremental sub-stage from the start 

(Phase 1): the best fitness, the component number of the evolved sub-circuit and the 

successful generation number.  

Table 5-2. The details of Experiment 15 (2nd phase). The best values are in bold. 

PC 

No. 

SR,    

% 

4th sub-stage 5th sub-stage 6th sub-stage 

Fitness Gene No. Gene No. Fitness Gene No. Gene No. Fitness Gene No. Gene No. 

1 1 0.323 37 23 0.092 33 17 0.980 49 43 

2 2 0.301 62 60 0.049 26 14 0.197 51 28 

3 3 0.480 54 72 0.291 20 33 1.403 27 22 

4 4 1.422 35 39 2.027 73 62 0.200 107 23 

5 5 1.239 58 91 1.362 62 41 3.001 47 69 

PC 

No. 
SR, % 

7th sub-stage 8th sub-stage 

Fitness Gene No. Gene No. Fitness Gene No. Gene No. 

1 1 0.797 104 22 0.089 37 8 

2 2 2.917 59 36 0.481 46 20 

3 3 1.092 43 29 0.93 67 22 

4 4 1.548 78 37 1.032 53 35 

5 5 3.488 59 55 1.431 71 43 
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Figure 5-12. The migrant schedule for Experiment 15: Evolution of 8-Output Voltage Distributor (Phase 2). The diagram shows when and how the 

migrant takes place along a horizontal axis representing generation numbers. Five sub-systems with different SRs evolve in parallel from left to right. The 

arrows indicate which sub-system is a receiver, from where and at which generation. Each migrant is described by the fitness value of the migrant 

individual and its length in genes. The initial and final chromosome attributes are in red boxes. 
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Figure 5-13. The evolved 138-component 8-output VDC in Experiment 15. 
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Figure 5-14. The transient analysis of the input and outputs of the 8-output Voltage Distributor. 

(a) A piecewise signal used during the evolution and the circuit‘s response. (b) The incoming 

arbitrary piecewise signal and the circuit‘s response. (c) The response to an arbitrary piecewise 

signal and the circuit‘s response. (d) The incoming arbitrary exponential signal.  

(a) 

(b) 

(c) 

(d) 



 
Chapter 5. Incremental Parallel Evolution with Adaptive Parameters 

 

 200 

To verify that the problem of generalization is overcome, different arbitrary signals 

are applied to the resulting 8-output Voltage Distributor. Figure 5-14b shows the more 

complicated piecewise signal and the transient reply at the outputs. Figure 5-14c and 

Figure 5-14d show the arbitrary sinusoidal and exponential signals applied and the 

transient replies of the circuit. 

Table 5-3. Summary for the sub-circuits of the 8-output Voltage Distributor 

 

As can be visually seen, each particular sub-circuit provides accurate replies 

throughout the different examples, which enables us to assume that the relative fitness 

of each of the sub-circuits as well as the whole circuit - least of all - depends on the 

characteristics of the incoming signal. 

5.4.3 Discussion 

In this experiment is described the application of the ES-based analogue circuit 

synthesis system with the differentiated mutation and incremental evolution techniques 

towards the design of an analogue multi-output circuit 8-output Voltage Distributor. 

The first phase of one experiment has failed during the fourth sub-stage. However, after 

the application of the parallel island-model evolution technique during phase 2, a novel 

methodology was able to succeed with the target and to finally evolve the analogue 

 Fitness 
Component No. Generation 

succeed 
Before pruning After pruning 

Sub-circuit 1 0.095 12 10 76 

Sub-circuit 2 0.028 25 22 132 

Sub-circuit 3 0.174 18 16 110 

Sub-circuit 4 0.323 27 23 37 

Sub-circuit 5 0.049 15 14 26 

Sub-circuit 6 0.200 24 23 107 

Sub-circuit 7 0.797 26 22 104 

Sub-circuit 8 0.089 11 8 37 

Total 1.757 158 138 629 
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circuit with 138 components. To the author‘s knowledge, this is the largest analogue 

circuit in terms of component number in the area of automatic analogue circuit 

synthesis.  

It is obvious that this circuit is very special by its modular structure, but this last fact 

does not depreciate its high complexity. The human designer with substantial practical 

experience in the design of analogue and digital circuits has been attempting to design 

the 8-output VDC. Considering the task, the designer draws the conclusion that it is 

possible to design this circuit purely with analogue components (shown on Figure 5-15), 

but it may take an unduly significant amount of time and effort. The voltage controlled 

oscillator (VCO) modulates the incoming voltage signal through frequency. The 

modulated signal comes in the bandpass filters (BPF), each of which is tuned to its own 

pass band. Particular signals which passed through the BPFs then are demodulated by 

analogue demodulators. The drawback of such a purely analogue circuit is that each 

path starting from the BPF input up until the circuit output is independent of the other. 

This makes the signals at all N outputs asynchronous. This last fact may bring problems 

if someone further utilizes signals from outputs, for example in trying to recreate the 

original signal. Therefore, synchronization is required at the circuit outputs, which 

could be set as digital or as analogue. While the first one requires the introduction of 

additional digital devices and comes at the cost of increased complexity in timing 

analysis, the last one requires cumbersome transformers. In any case, even without 

synchronization, the circuit requires a much higher number of components than 138. As 

a final idea concerning the human design of analogue circuits, the ―the analogue 

dilemma‖ from [140] should be mentioned: ―Analogue circuit design… usually 

stretches over a significant period of time and is performed by designers with a large 

portfolio of skills. It is therefore considered by many to be a form of art rather than a 

science.‖  

Considering the technique, one of the features which make this approach unique is 

the single-chromosome migration which has been allowed to happen during parallel 

evolution. That is, only a single best chromosome is defined as a start up embryo for 

every system that had been failed after each sub-stage. This idea is adopted due to the 

multitude of experiments that have proven its feasibility. This is only because the 
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conventional knowledge on optimal SR never suggests the usage of such small values as 

have appeared during Phase 2.  

 

 

Figure 5-15. The human designed N-output VDC with synchronization.  

During Experiment 15, different SRs are used at 5 different sub-systems, with the 

most successful sub-system being No.1, with a minimum SR=1% which has produced 

two of the five best individuals, including the final one. It is notable that the low SR 

sub-systems dominated by producing the best individuals; however, the making of any 

stronger propositions would require more statistical data. 

If we regard all the subpopulations at the sub-systems as one large population and 

follow the evolution during Phase 2, it will be possible define the aggregated SR of the 

system. By doing this, it is possible to follow the idea of VNFE, where differentiated 

mutation requires smaller SRs, and clarifies which SRs have brought about any success. 

Table 5-4 represents the aggregated SR of the system at the beginning of each sub-

stage.  

 

Table 5-4. The aggregated SR of the system. The SRs are given for the beginning of each sub-

stage at each population size of 30,000. 
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4th  

sub-

stage 

Chrom.selected, 

No. 
1 1 1 1 1 5 

SR, % 0.0033 0.0033 0.0033 0.0033 0.0033 0.0033 

5th  

sub-

stage 

Chrom.selected, 

No. 
300 1 1 1 1 304 

SR, % 1 0.0033 0.0033 0.0033 0.0033 0,203 

6th  

sub-

stage 

Chrom.selected, 

No. 
1 600 1 1 1 604 

SR, % 0.0033 2 0.0033 0.0033 0.0033 0,403 

7th  

sub-

stage 

Chrom.selected, 

No. 
1 1 1 1200 1 1204 

SR, % 0.0033 0.0033 0.0033 4 0.0033 0,803 

8th  

sub-

stage 

Chrom.selected, 

No. 
300 1 1 1 1 304 

SR, % 1 0.0033 0.0033 0.0033 0.0033 0,203 

 

As can be seen from Table 5-4, the minimum SR is at the beginning of the initial 4th 

sub-stage. In the middle of each sub-stage, 4500 individuals are selected aggregately at 

every generation at all the sub-systems, which gives the aggregated SR of 3%. Next, at 

the incremental moments between the sub-stages, the SR again falls down.  

The observed behaviour of the SRs makes a contribution towards an understanding 

of the WDWC strategy that will be described in detail since Section 5.6.5.2.  

One of the targets of this section was to confirm the potential strength of the 

developed technique in the synthesis of complex unconventional-application analogue 

circuits. It also has been confirmed that the analogue circuits synthesized by the 

proposed methodology are able to take the place of digital ones in the solution of 

complex tasks.  

5.5 Parallel evolution based on the WDWC strategy  

During Experiment 15, it was noticed that the methodology of parallel evolution 

may be improved significantly. Some sub-systems in the previous experiment had 

running idle during the 20 stalling generations required by the termination criteria for 

the sub-stage termination. Another disadvantage of the previous method is that the 

systems have to wait while the last sub-system finishes all the work. The main idea that 
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lies under the WDWC strategy is to make use of the migrations more often, using them 

as a main tool against the stalling effect during each sub-stage. The migrations since 

that point are regarded as those following from radical mutation in the DM technique, 

proposed so as to stimulate the evolutionary search at local optimums. In Section 5.5.1, 

the algorithm and the proposed strategy are presented. At the same time, the general 

structure of the previous methodology will be preserved.  

5.5.1 Migrant strategy 

The populations are connected together by a migration operation, which is 

performed by communication between processors. There is no centralized (―master-

slave‖ mode) schedule set for the communication frequency or the magnitude of 

migration. On the contrary, each evolution ―decides itself,‖ i.e. when to start migration 

and what it needs for that migration. There is only one condition set, namely when a 

communication among the parallel sub-systems can take place: each evolution is 

allowed to run without communication as long as the best chromosome improves (for 

the term of the best chromosome improvement see Section 3.6. As soon as any 

population does not improve for at least N (in the following experiment N=7) 

generations, the built-in migration operator activates and makes the sub-system search 

for help from the other sub-systems. First of all, the stagnated sub-system collects the 

data-files from all the parallel nodes, analyzes them and decides what the most 

successful evolution among all until now is. It applies the ranking rules - including 

formula [4-1] - to rank out the best chromosome among the latest of each evolution. As 

such, the sub-system gets a ranking list consisting of six members, a top-member of 

which becomes a ―winner‖ chromosome from a ―winner‖ sub-system. Next, the sub-

system gets a clone of the ―winner‖ with all its history, checks the substructures (see the 

paragraph below), and updates its SR and population size. It clones a single individual 

to the total population and continues with its further isolated evolution procedures. 

Here, our approach differs from that of the others. Usually the migrant strategy implies 

the highest-ranking individual to replace the lowest-ranking individual without dumping 

out the rest of the genotype material.  

The advanced feature of the migrant strategy so described is the ability of the whole system to 
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adapt the activity of the migrant operator, varying it from 0-power - when no one sub-system 

gets in the local optimum during evolution - until the full n-power regime (n being the number 

of parallel sub-systems), whereby every processor gets a N-generation stuck period where 

within N generations n migrations are happening.  

 

In the previous paragraph, a general migrant operation is described which is liable 

during all of the evolution. However, there is a migration of the substructures. The 

substructures are limited to six genes, as has been described in Section 4.1. When a 

stagnated sub-system analyses the data-files, it makes two independent rankings for the 

individuals with lengths of five or six genes. The best are decomposed and stored in a 

substructure database. The sub-systems that donate the best chromosomes may differ. 

The procedure of substructure-checks is performed every time before the start of a new 

generation. 

This last statement together with the migration approach enables us to draw the 

general view of a novel parallel evolution in Figure 5-16.  

 

Figure 5-16. Utilization of parallel sub-systems in the WDWC strategy. There are two kinds of 

migrations: the black arrows show the ones when the best individuals are migrating after every 

sub-stage and the yellow arrows indicate the migrants inside the sub-stages. 
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5.5.2 Parallel evolution 

In general, the proposed approach is very similar to a competitive co-evolution 

approach, where as long as some evolution produces ―winners‖ more of these ―winners‖ 

become parents in other parallel evolutions. Notice that while migrating to a new sub-

system the best chromosome destroys all of the previous genotype material of the sub-

system. Despite the different initial conditions set for separate evolutions - due to 

migration - it may be that the descendants of one ancestor compete with each other. 

Furthermore, the approach theoretically allows that all seven sub-systems during our 

experiment (i.e. in total about 169,000 individuals) evolve the same chromosome at the 

same time. Together with the extremely narrow SR (0.2-2.0%), it seems quite 

contradictory to the conventional opinion in EA theory which hails the diversity of 

genotypes. The literature review provides an explanation of why this happens. 

There should be a balance in evolution between exploration and exploitation.  If the 

level of exploration is too high, the search may quickly become random; however, if the 

degree of exploitation is too high, it may result in premature convergence [153], [156], 

[154], [155]. In other words, the diversity created by mutation must be paired off with 

the reduction performed by the selection operator. The reduced SR has been indirectly 

used previously by Altenberg [158] and Soule et al. [159]. They tried to use a method 

whereby offspring are only kept if they improve upon their parents‘ fitness against the 

growth of inoperative code through ―neutral‖ crossover events. By doing this they 

applied the higher mutation rate towards the parent population at the increased selection 

pressure. In [156], Smith et al. used a similar approach called Improved Fitness 

Selection (IFS). To test whether IFS suffers from too low a selection rate, they have 

shown how ―IFS with high selection pressure gains an extended life to the evolutionary 

search process by avoiding the stagnation that is inevitable with the standard method 

over the course of many generations, and thus managed to achieve a very high success 

rate on a problem that is normally intractable to standard GP even with large population 

sizes.‖ Thus, the DM technique described in Section 4.5 - with its adaptive mutation 

rate becoming higher with each unfruitful generation - is balanced by VNFE. 

Experiment 16 has proved that the WDWC technique has found the trade-off between 

exploitation and exploration; moreover, it appears to be the only way to find a solution.  
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Thus, the competition aspect consists of the constant threat of the destruction of the 

whole population when a sub-system is failed. Even a sub-system that imported in the 

past the genotypes from a ―winner‖ sub-system is regarded as a competitor to the 

―winner.‖ Due to the radical increase of the mutation rate by the DM strategy, these two 

become different much faster than was the case during a conventional evolution with a 

standard mutation rate.  

The competition aspect also plays an important role when the termination criteria 

appear during the first sub-stage: the most competitive sub-system at that moment 

becomes a ―winner‖ and only ―it‖ is allowed to save and transfer its population into the 

next sub-stage. All the others must obey a migrant operation. 

On the other hand, the described competitive approach has some features of 

cooperation. The most obvious one is when a ―winner‖ shares the successful SR and 

genotypes with the sub-systems that lost their populations‘ individuals (hereinafter 

called ―losers‖). A ―winner‖ does not allow a stagnated sub-system to stop. It shares 

with that last one the best that it has, in spite of the fact that later the ―looser‖ may 

become its competitor. Another aspect that makes all the sub-systems become 

cooperative is a substructure database that may consist of genotypes (in total seven 

substructures) from different evolutions and is accessible by everyone. Moreover, all 

the sub-systems focus their work towards the same target and have the same FF. This 

parallel evolution approach is called a Winner-Dominates-Winner-Cooperates 

(WDWC) strategy. 

In the following section, the proposed technique is demonstrated as when applied to 

the most sophisticated task in this thesis. 
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5.6 Experiment 16: Evolution of the Time Interval Meter 

Circuit 

5.6.1 The problem’s description: TIMC for the laser rangefinder 

The TIMC is proposed to function in a single analogue mode instead of the number 

of digital operations inside the up-to-date laser rangefinder DAQ-2 [118], where the 

time interval metering function is performed by several digital circuits when the 

rangefinder uses a laser beam to determine the distance to an object. The targeted 

analogue TIMC belongs to a class of devices that are known as ―time to amplitude 

converters‖ (TAC): ―TAC generates a rectangular output pulse whose peak amplitude is 

linearly proportional to the time interval between a START and STOP input pulse pair‖ 

[161]. To the author's knowledge, this is the first attempt towards the automatic 

synthesis of a TAC circuit. 

A laser rangefinder is a device which uses a laser beam to determine the distance of 

an object. The most common laser rangefinder operates on the time of flight principle 

by sending a laser pulse in a narrow beam towards an object and measuring the time 

taken by the pulse to be reflected off the target and returned to the sender. The distance 

is given by:  

2

cT
S ,             

where c is the speed of light and T is the amount of time for the round-trip between the 

device and the target. The typical laser rangefinder has two main parts: one optical and 

the other electrical. The optical block sends the laser beam and receives the reflection, 

providing the electrical block with two voltage pulses, based on which of the electrical 

blocks calculates the distance. 

As a prototype, we take the artillery quantum rangefinder ―DAQ-2‖ [118] with the 

following data: 
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 Working at range is 0.2÷100km;  

 Measurement accuracy is 6÷30m;   

 The width of both pulses is 50ns; the fall/rise time of the pulse is up to 5ns; the 

first pulse has a 9V amplitude while the reflected one has 6V; 

 Power supply required is 29V. 

The core part of the electrical block of the device is a time interval meter sub-block 

(TIMSB). The working principle of a conventional TIMSB consists of three functional 

stages: 

1) At the first stage two electrical pulses received from an optical block should be 

reshaped into the voltage gate pulse, where the first incoming pulse is caused by 

the laser beam sent towards a target and the second one is caused by the beam 

reflected off the target. The gate pulse is a pulse of some constant potential that 

should have the same time-width as the interval between two narrow pulses 

caused by a laser beam; 

2) At the second stage, the gate pulse (i.e. the time interval of the gate pulse) is 

filled up by the clock signals from a crystal oscillator. According to (1), the gate 

pulse width varies from about 0.667us for the minimum measured distance of 

0.1km to 0.667ms for the maximum measured distance of 100km; 

3) Finally, to count the number of pulses contained in the packet, the result of 

counting in binary code should be sent to a decoder for further conversion into a 

decimal code. 

In Figure 5-17 is a general schematic of the TIMSB of the up-to-date laser 

rangefinder. Based on a description available to the public, the goal is set to synthesize 

the analogue circuit which is able by its functioning to unite stages 1), 2) and 3) 

described above, and replace the five digital units from Figure 5-17. A new circuit 

receives two pulses from an optical block and produces the particular constant voltage. 
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The linear correlation between the time gap and the voltage produced is set, ranging 

between the maximum of 5V (against the maximum 100km) and 5mV (for a distance of 

0.1km). The proposed TIMSB based on an analogue circuit is shown in Figure 5-18a. 

The decomposition method is shown on Figure 5-18b, where it is suggested that two 

sub-circuits should be evolved during two incremental sub-stages. The decomposition 

into 2 parts is made by simply splitting Figure 5-17 in the middle and it did not require 

any special knowledge of the device. An attempt is made to evolve both the whole 

device and its decomposed variant. The results are presented in Section 5.6.5. 

The ideal circuit response of the evolved circuit is shown on Figure 5-19. 

 

Figure 5-17.  The TIMSB of an up-to-date laser rangefinder made of digital logic. The shapes of 

the signals are shown under each pin. From left to right: there are two pulses coming in from an 

optical block - 9V and 6V - separated by the time taken for the beam to be reflected and 

returned; they are converted into digital form by ADC. Next, they are transformed into a gate 

pulse by gate circuit; a selector circuit fills up the gate with clock pulses generated by a crystal 

oscillator; a pulse counter circuit gets the packet of pulses and counts the clock pulses; a 

decoder converts that count into decimal form. 
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Figure 5-18.  a) The proposed TIMSB with the targeted analogue circuit. The shapes of the 

signals are shown under each pin. From left to right: two pulses are converted into a constant 

voltage; the voltage level is in linear proportion to the time interval between the two pulses; the 

ADC converts the voltage into the binary code for further decoding. Due the preference that the 

resolution of the circuit should be at least 50uV (corresponding to 1 meter) - i.e. in total 1e+5 

discrete values - the 18-bit ADC with 262144 quantization levels will meet the requirement. b) 

The proposed decomposition of the targeted analogue circuit. The first sub-circuit‘s task is to 

form the gate pulse based on a coupled signal. The aim of the second is to produce a constant 

voltage.  
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Figure 5-19. The top graph shows 2 pulses at 2 input pins of the TIMC (both are of 50ns width): 

The 1st is of 9V at 60us, while for the 2nd we took 5 arbitrary pulses at 85, 120, 170, 230 and 

333.4ns. These coupled signals correspond to the distances to the target of 25, 36, 51, 69 and 

100km. The bottom graph shows 5 transient replies at the output pin of an ideal TIMC. 

 

5.6.2 Adaptive parameters 

Besides the mutation, another three parameters are allowed for each evolution to 

adapt. Different initial populations, SRs and pressure-constants are set.  

The strategy for population size adaptation is to maintain equal times per generation 

of different populations because the difference is as large the deeper the process. If, 

initially, the weaker processors keep pace with the others, later on – and starting from 

the average chromosome length of 10-15 genes - they need their cycle periods to be 

reduced. To enable this synchronization, the evolving period of the first population (at 

the 1st PC) is set as a reference for the others. Thus, during the migrant operator 

activation, each sub-system - except for the 1st one - adjusts its population size P  to a 
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new one 
1

P in order to keep pace with the population of the first processor according to 

the following simple formula: 

 t/P
1

t
1

P , where 
1
t  and t are generation times at the 1st sub-system and the 

synchronizing sub-system. 

Seven SRs from 0.2% to 2% (Table 5-5) are allowed to migrate from a ―winner‖ 

evolution to a ―loser‖ evolution along with a ―winner‘s‖ genotype and its history. This 

enables statistics to be accumulated at the end of an experiment as to which SR is 

becoming the most frequent ―winner.‖  

 

Table 5-5. Initial conditions at 7 parallel PCs 

No. PC description 
Initial pop. 

size*, individ. 

Initial selection 

rate, % 

1 Intel Core2Quad, 2.4Ghz, 4GB 35,000 0.2 

2 Intel Core2Quad, 2.4Ghz, 4GB 35,000 0.5 

3 Intel Core2Duo, 2.2Ghz, 2GB 25,000 0.8 

4 Intel Core2Duo, 2.2Ghz, 2GB 25,000 1.1 

5 Pentium4, 2.8Ghz, 2.0GB 18,000 1.4 

6 Pentium4, 2.5Ghz, 1.0GB 16,000 1.7 

7 Pentium4, 2.8Ghz, 0.5MB 15,000 2.0 

* The population sizes are chosen in accordance with the operational powers of each PC, so that the times 

to be taken by the initial generations are approximately equal. 

 

The pressure-constant is a ―range-dependant‖ [150] deterministic dynamic 

parameter that differs from other adaptive parameters in that it does not depend directly 

on the parallel evolutions, but it is adapted by the local evolution. At each sub-system, 

the pressure-constant is set to an initial value of 40. However, if two generations 

following each other do not find better individuals, this number is increased by two, 

which causes the component-reducing pressure to decrease. Ten generations without the 

best chromosome update make the pressure constant equal to 60, etc. The limit of 64 is 

set if the stagnation period lasts for more than 12 generations, i.e. the ranking pressure 
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can be decreased by 60%. Conversely, if two successive generations have brought a 

fitness improvement, the pressure-constant is reduced by two. This strategy leads to an 

inevitable gradual weakness of the selective pressure due to the permanent growth of a 

chromosome‘s length, complexity and solution space. 

5.6.3 Fitness function 

A fitness function similar to one used in [71] is scheduled and is calculated by the 

following static fitness function set to a sum over p fitness cases of the absolute 

weighted deviation between the target value 
i

idealV  and the actual output value voltage 

produced by the circuit 
i

measuredV : 

p

i

i

measured

i

ideal |VV|F
0

      [5-1] 

p equals 11 time-points for TIMC. The smaller the fitness value is, the closer the 

circuit is to the target. The fitness penalizes the output voltage by 10 if it is not within a 

specified percentage range of the target voltage value. For TIMC, where the output from 

the circuit is supposed to be a constant voltage, all 11 measured points are equidistant 

within the range from 1ms to 10ms (which is quite a long period of time for the ADC to 

catch up with the signal for further coding). 

The fitness threshold is set to 0.3%, i.e. the evolution ranks the fitness of a new 

chromosome as better than the current one if the relative fitness difference between the 

best chromosome and the one under consideration is more than 0.3%. This barrier 

enables pressure to be applied during selection which stimulates the application of more 

radical mutations (see next section).  

The problem of generalization was met during the experiment, which should be 

introduced here since it influences the FF. The problem of generalization appears when 

the validity of the circuit functioning is limited only by a case of source signals used 

during evolution, and it is not extending to arbitrary signals (see Section 2.5.1). Seven 

cases of coupled signals are suggested, corresponding to distances of 0.4, 2, 10, 30, 45, 
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65 and 95 km so as to tackle the problem of generalization. This number means that 

every chromosome in a population at each generation is tested seven times for seven 

different incoming signals, and the final fitness value for that particular chromosome is 

created by a simple sum of seven normalized fitness values: 
7j

1j

j

j
FwF , where jF  

is defined by expression [5-1] and wj is a weight that normalizes the contribution of 

each case. For the distances mentioned, the weights are: 237.5, 47.5, 9.5, 3.167, 2.11, 

1.462 and 1 [5-1]. 

5.6.4 Termination criteria 

First of all, it should be noted that the whole system terminates only if every sub-

system terminates. The termination criteria should be distinguished for a first sub-stage 

and that for a second one which is a complete experiment. There are two events that 

may happen that could most probably cause the evolution to be terminated. The first one 

is the reaching of a goal in a form exceeding the preset fitness threshold. If this happens 

during the initial sub-stage, two main events are automatically triggered: the best 

chromosome that attained the threshold is X-coded (Section 5.1.2) and all other parallel 

sub-systems are forced to stop searches and activate a migrant operator which is to 

receive that individual as a migrant with all its data, initiate a new population as well as 

all of the other standard procedures after migration. If the same happens by the end of 

the second sub-stage, this means the end of the whole experiment. For both cases, the 

threshold is set as reaching a fitness of less than 1.0, which is equivalent to an average 

deviation from the ideal reply function per point of 0.031V for the first sub-circuit and 

0.044V for the whole circuit. 

The second termination criterion is when a sub-system is not able to update the best 

chromosome for over 15 consecutive generations. During 15 generations, every 

evolution - in the case of its local optimum - will get two migrants (one per seven 

generations, see Section 5.5.1), and if the migrants are worse or equal to the sub-

system‘s best individual (i.e. all the other sub-systems did not improve as well) then the 

experiment stops. However, if some sub-system finds a better solution it will be able to 
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revive the others. In the last case, the sub-systems that stopped the search can join the 

process under the same conditions, as if they had just activated the migrant operator. 

If the first term terminates all the sub-systems simultaneously, the second one acts 

independently for each sub-system. 

5.6.5 Experimental Results 

5.6.5.1 The circuit 

Before making a decision on decomposition of TIMC into 2 sub-targets, an attempt 

has been made to try to evolve TIMC without incremental evolution. At the beginning 

of this section, the results of 5 runs of that experiment are presented. The same 

experimental settings as described in Sections 5.6.2-5.6.4 are applied, including the FF 

and the embryo. All 5 experiments are shown on Figure 5-20. 

 

Figure 5-20. The results of five runs of TIMC without decomposition. 

As could be seen from Figure 5-20, the reaching of the 15-generation-limit 

termination criteria (i.e. the stalling effect problem) was the reason for experiment 
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failure. There is a visible improvement in fitness for all cases from about 4000÷6000 to 

500÷1000. The analysis of the best circuit demonstrated that the circuit gives a constant 

voltage that weakly responded to the varying input signals. The evolution just found the 

optimal constant voltage that fitted to all seven input cases. Therefore, incremental 

evolution has been applied to this task for further experiments.  

Thus, the problem has been decomposed into two subtasks (Figure 5-18b). The 

initial sub-stage is the evolution of a two-input-one-output gate pulse producing a sub-

circuit and the next one is the evolution of the one-input-one-output sub-circuit, which 

is in series with the first one.  

The experiment ran non-stop throughout all the sub-stages. To design the whole 

circuit took about one week, where 17% of the time was spent on the first sub-circuit 

and the remaining 83% for the second one. The discussion on competitive features of 

the resulting circuit in relation to human design is presented in Section 5.6.7. 

 The first sub-circuit with two inputs and one output, with a primary task of 

providing a gate pulse, consisted of 34 components. Before the next evolution began, 

the fitness of the best first sub-circuit was 0.906. The pruning procedure eliminated 

three components that have no influence on the circuit‘s behaviour. The second sub-

circuit, with a task to accept a gate pulse and produce the required constant voltage, 

consisted of 61 elements. Five components were pruned. The final design consisted of 

95 components before pruning and 87 components after pruning, among which are: 29 

resistors, 26 p-n-p transistors, 17 n-p-n transistors and 15 capacitors. The second 

termination criteria stopped an experiment with a summary fitness of 1.137 at 

generation No.105 [146].  

One run was made. The resulting device is presented by Figure 5-21, and its 

functionality is shown in six arbitrary instances by Figure 5-22a. One of the additional 

features of the circuit is the lower voltage supply required by the circuit in comparison 

with the ―DAQ-2‖: 15V against 29V. 
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Figure 5-21. The evolved TIMC in Experiment 16 consisted of 2 sub-circuits: the first sub-circuit (dashed) passes the gate pulse, while the second one 

produces the required voltage.   
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PSPICE‘s performance analysis enables us to measure the generalization ability of 

the circuit by tracing the dependence of circuit replies on a swept parameter. If we take 

as a swept parameter the absolute average deviation from the ideal circuit response and 

apply it to a family of waveforms, PSPICE produces a trace that is a function of the 

variable that changed within the family. As it can be seen in Figures 5-22b and 5-22c, 

this represents the absolute average deviation along 2000 equidistant circuit replies, and 

the measurement accuracy of TIMC could be approximately split into three groups: 3 

meters for distance range of 0.1÷2.5m, 16 meters for 3÷15km and 54 meters for 

15÷100km. In comparison with a conventional digital TIMC, where the measurement 

accuracy varies within the range of 6÷30m it should be noted that for shorter distances 

the analogue TIMC makes much more accurate measurements. Furthermore, the 

resulting device is able to work out measurements within distances of 0.1 to 0.2 km, for 

which the DAQ-2 cannot.  

 
 

Figure 5-22. a) The voltage replies of the evolved TIMC to six arbitrary incoming signals 

corresponding to 10, 26, 42, 58 74 and 90km. b) The function of the integrated absolute average 

deviation from the ideal circuit response along 2000 equidistant circuit replies. c) The same as 

in (b) but the fragment from 0 to 0.2V. 

a) 

 
b) 

 

c) 
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Moreover, during the solution of the generalization problem, it was noticed that 

there was a tendency for the accuracy of the measurements to directly depend on the 

number of input cases during evolution. Thus, it is logical to conclude that reaching the 

same accuracy (30m) for longer distances and even exceeding it directly depends on the 

computing time.  

 5.6.5.2 Evolution 

The general view of the one-run experiment, consisting of seven evolving sub-

systems with the details of each migration, is shown on Figure 5-23. In total, the 

migrant operator activated 33 times during evolution, happening only once during the 

first sub-stage. The first subtask is significantly easier than the second one: only one 

sub-system turned to a migrant operation while six others have finished the task on their 

own. During the second sub-stage, no one evolution came directly to a global solution. 

Due to the complexity of the problem, all of them got into the local optimum and have 

required ―assistance‖ from others on a number of occasions (Table 5-6).  

From Table 5-6 and Figure 5-23 it can be noted that the most influential during the 

experiment was sub-system No.1, the SR of which (0.2%) dominated the others and 

whose genotype has spread to every sub-system. Surely, it cannot be the case that one 

could declare the principle dominance of lower SRs over the higher ones - more 

statistics would be needed for that. However, two facts display a general tendency of 

the SR. First are statistics as to how many times systems with a particular SR become a 

winner. Systems with the minimum SR of 0.2 became winner seven times, systems with 

a SR of 0.8 did so three times, while there were no winners with any other SR. 

Secondly, it took 77 generations for the SR of 0.2 to occupy every system.  

What is interesting is that during the process each sub-system - powerful ones as 

well as weak - has been a ―winner‖ several times. This fact ensures that the WDWC 

strategy uniformly distributed the probability of finding successful solutions among all 

the processors.  
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The case of tough competition is expressed at the moment in between the sub-stages 

when only one chromosome is allowed to be bred by every sub-system except for a 

―winner‖. This extreme migrating act is implemented instead of the release of a system 

to gradually transfer to the next sub-stage, due to the proven fact of the superiority of 

the first approach over the second.  

 

Table 5-6. Initial vs. final parameters and migrant import/export numbers against the properties 

of 7 parallel sub-systems, where # of individuals and # of migrants is the number of individuals 

and migrants 

N

o. 
PC description 

Initial 

population size, 

# of individuals 

Initial SR, % # of Migrants 

Initially Finally Initially Finally Import Export 

1 Intel Core2Quad, 2.4Ghz, 4GB 35000 35000 0.2 0.2 3 3 

2 Intel Core2Quad, 2.4Ghz, 4GB 35000 36800 0.5 0.2 5 1 

3 Intel Core2Duo, 2.2Ghz, 2GB 25000 19400 0.8 0.2 5 7 

4 Intel Core2Duo, 2.2Ghz, 2GB 25000 19900 1.1 0.2 3 15 

5 Pentium4, 2.8Ghz, 2.0GB 18000 11800 1.4 0.2 5 3 

6 Pentium4, 2.5Ghz, 1.0GB 16000 6600 1.7 0.2 6 2 

7 Pentium4, 2.8Ghz, 0.5MB 15000 7200 2.0 0.2 5 1 

 

From generations 91 to 105 the 4th sub-system dominates the rest, spreading out its 

best genotype to every PC. But after generation 106 no one sub-system can improve and 

after 15 generations the experiment has stopped.  

In Figure 5-24 is shown the results of the population size adaptation. It should be 

noted from there is a tendency according to which the difference in the computing 

properties of the sub-systems brings a more divergent population size with a longer than 

average length of chromosome. On average, the chromosome productivity of PCs No.6 

and No.7 has reduced twice of their initial populations.  

The best chromosomes with a length of five and six genes from sub-systems No.1 

and No.4 and their fragments were stored in and used as substructures.  
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Figure 5-23. The migrant schedule. The diagram shows when and how the migrant takes place along a horizontal axis representing generation numbers. 

Seven numbered sub-systems with an initial population size and SR evolve in parallel from left to right. The arrow indicates which sub-system is a 

receiver, from where and at which generation. In total, 33 migrants are shown where only one occurred during the first sub-stage. Each migrant is 

described by the fitness value of the migrant individual and the length of its genes. The table below carries additional information on the process of how 

SRs migrate along the same axis. The rates just imported are in bold. Since generation 77, the selection rate of 0.2 has dominated the last fifth of the 

evolution. 



 
Chapter 5. Incremental Parallel Evolution with Adaptive Parameters 

 

 223 

 

Figure 5-24. Adaptation schedule of population size. The seven curves correspond to seven 

populations along the horizontal axis representing the generation number. Curve No.1 is a 

primitive for which all others must synchronize their generation cycles by varying the number 

of individuals during each migrant operation. 

 

Figure 5-25 demonstrates seven fitness cases (the fitness of the best individuals) 

during the experiment and in between the sub-stages. The high complexity of the 

second sub-circuit makes the fitness value scale for longer than three decades. There are 

distinctly visible ―waves‖ of migrations when straight vertical lines connect one 

function with another.  

  Another very important notion concerns an aggregated selection rate (ASR), 

which is a correlation between a total number of selected individuals of the whole 

system at each generation and a current total number of individuals inside all 

populations. It is introduced in order to differentiate local SRs and the global one of the 

system. At the initial conditions when SRs are fixed from 0.2% to 2.0% and the total 

number of individuals is 169,000, the ASR is equal to 0.914%. However, during the 
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experiment there are two events that lead to a change in the ASR:  

1) When some sub-system activates a migrant operator. According to our 

methodology, only one chromosome migrates to the stuck sub-system; in other words, 

one is selected, and the ASR and the SR of the sub-system fall down. Furthermore, 

together with an individual a new SR comes from a ―winner.‖ Since sub-system No.1 

has been dominating the others, the ASR has finally converged to a rate of 0.2. 

Migrations bring spikes in the ASR more frequently and for longer towards the end of 

the experiment (Figure 5-25) leading to an ASR of 0.124%;   

2) When evolution is incrementing to the next sub-stage. At this point, only one 

chromosome among all the populations (except for the ―winner‖ population) is selected 

for the next generations and the ASR falls down drastically. In Figure 5-26, this occurs 

at generation 41 where the ASR reaches 0.048%. 

It is useful to watch the adaptive behaviour of the ASR because one can notice the 

rule according to which the evolution moves forward: as it becomes harder for the 

evolution to continue the lower the average ASR becomes. In other words, during the 

successful periods the system tries to expand its gene pool, but at ―crisis‖ periods it 

sharply reduces a gene pool, focusing on breeding the populations from fewer 

individuals. One can view this methodology as similar to natural evolution, whereby 

such kinds of crisis like natural disasters, pandemics and wars force a few survivors to 

regenerate the rest of the kind. 
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Figure 5-25. Seven fitness cases (the fitness of the best individuals) during both incremental 

sub-stages. The general view is in the upper right corner. It shows how different they are when 

scaled to each other due to unlike levels of complexity. The central picture focuses on a 

fragment between the stages. At generation 41 there is a transition to a second sub-stage. The 

frequent migrating ―waves‖ are distinctly visible at the end of the second sub-stage (lower right 

corner). 
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Figure 5-26. The ASR along the generation number. The ASR is converging on a 0.2 selection-

rate initially set on PC No.1. The spikes represent the moments of migrations. The ASR 

contractions are visible when the largest is reaching 0.048% during the first generation of the 

second sub-stage. 

 

5.6.6 Comparison 

The methodology presented so far was discovered after a number of failed attempts 

to evolve a TIMC by means of standard non-parallel ES-based evolution with more 

conventional SRs. In this section, some of these failed attempts are presented so as to 

enable a comparison. 

Being applied towards less complicated circuits ([33], [65], [115]) our previous 

approach could successfully solve all of the tasks set, including low-pass filters, 

computational circuits and 4-output voltage distributor with both superior functional and 

physical features. If earlier experiments [33] are utilized at SR=10%, the later ones [65] 

and [115] are applied at SR=1-10%. 
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During this work - and being inspired by the previous 1%-rate approach‘s success - a 

run of three independent evolutions with a SR 1% was undertaken. Next, we have tried 

to apply SRs of 5.0%, 3% and 0.5% in running another three evolutions. Here we 

present six independent non-parallel evolutions with SRs of 5%, 3%, 1% and 0.5% 

applied towards a TIMC (Table 5-7). All of them have been applied at the second 

incremental sub-stage of the experiment, since the first one is too easy to play the role of 

a challenging task. All of the evolutionary parameters and operators have been the same 

as described in this section except for the SRs and the absence of communication among 

the sub-systems.  

Table 5-7. The population size and initial conditions of the 3 non-parallel PCs 

No. PC description 

Initial 

population size, 

individ. 

SR, % 
Best fitness 

achieved 

1s Intel Core2Quad, 2.4Ghz, 4GB 35,000 1.0 2410,8 

2s Intel Core2Quad, 2.4Ghz, 4GB 35,000 1.0 873,4 

3s Intel Core2Duo, 2.2Ghz, 2GB
*
 25,000 1.0 985,6 

4s Intel Core2Quad, 2.4Ghz, 4GB
*
 35,000 5.0 2303,5 

5s Intel Core2Duo, 2.2Ghz, 2GB
*
 25,000 3.0 2389,5 

6s Intel Core2Quad, 2.4Ghz, 4GB
*
 35,000 0.5 507,4 

* The population sizes are set in a way that the duration of the first generation at each sub-

system is approximately equal. For the purpose of comparison, different SRs have been set for 

identical PC configurations. 

In Figure 5-27 there are six fitness cases of evolutions that are superposed with seven 

cases of VNFEs. It should be noted that there is a very high fitness barrier, at about 40-

43 chromosome lengths for both evolutions. This represents the specific feature that is 

inherent to the functioning of a TIMC. Once an evolution gets over this barrier, the 

fitness improves from about 2200 until 1000. If in the case of WDWC three sub-systems 

that got stuck at this barrier continued evolving after the migrant operation, three sub-

systems of the standard evolution left the experiment after 15 futile generations. The 

second barrier appears at length 48-50 and a fitness of about 100. However, the 

conventional evolution met it much earlier at a fitness of higher than 500. It can be 
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supposed that this happens due to the relatively high SRs. That is, since the DM is 

applied to both cases, it requires the same large amount of clones per individual for 

manifesting itself, for which evolutions with higher SRs make even worse provision. As 

such, the rest of the conventional evolutions were stopped in there. 

 

 

Figure 5-27. By the dotted lines there are six fitness cases, No.1s-No.6s along the generation 

number corresponding to the SR from 0.5% to 5.0%, and 7 cases, No.1-No.7 of VNFEs with 

selection rates from 0.2 to 2.0%.  All six ―conventional‖ evolutions have stuck far away from the 

targeted fitness. 

 

5.6.7 Discussion 

In this section is described a novel methodology of parallel island-model sub-systems 

with adaptive parameters. The methodology is called Very Narrow Focused Evolution 

(VNFE) due to its possession of very small SRs. It has been described as to why authors 

are obliged to apply narrow SRs and enable the sub-systems to destroy the genotypes of 

competitors during the evolution, called Winner-Dominates-Winner-Cooperates 

(WDWC). The novel Differentiated Mutation (DM) strategy that is built up is based on 
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four concepts: virtual mutation, the mutation type, the mutation way and the mutation 

strategy. Together with such the operating tools as the diversification of mutation 

history, mutation pressure and radical mutation, the DM strategy represents quite an 

aggressive operator which increases the mutation rate each time a chromosome does not 

bring an improvement. These two relatively extreme approaches - DM and WDWC - 

work in balance with each other during both ―crisis‖ and ―wealth‖ periods: whenever the 

mutation adapts so as to operate more aggressively and without success, the more 

actively WDWC works in bringing the aggregated selection rate (ASR) to lower values. 

Conversely, if the evolutions gradually move forward together, both operators let the 

system work alone within the frames of standard parameters. Thus, the proposed system 

is able to apply two adaptive modes; one is a ―standard evolution‖ within the frames of 

conventional reference mutation rate (4%) and selection (0.2-2.0%) parameters; the 

other - VNFE - is triggered whenever the first regime meets any problem and involves 

DM (up to 80%) and WDWC (down to 0.124%).  

Indeed, this doubled technique has expressed itself in full during an experiment. At 

the first sub-stage, WDWC brought little assistance in solving an initial subtask with 

only one migration. Conversely, since generation 53 of the second sub-stage during the 

remaining 67 generations, there are 33 migrations, which meant that VNFE played an 

important role. 

It is obvious that if the migrant operator activation term were to be adaptive to the 

complexity level of the subtasks, the first sub-stage would be involved in the genotype 

exchange more actively and probably would converge in much quicker and better 

results, in terms of component economy and functionality. The question that arises here 

as to the effectiveness of VNFE towards such easy problems is the trade-off between 

―standard evolution‖ and VNFE, namely what is better: seven solutions to choose among 

evolved at N independent stations or one solution made in a team by N with the use of 

VNFE? The answer to the last question is possible only with the running of tests for both 

approaches on relatively easy tasks, which should be done in future. 

The evolved TIMC is a core part of a class of commercialized devices that are known 

as ―time to amplitude converters‖ (TAC) [161]. Human designers with substantial 
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practical experience in the design of analogue and digital circuits have attempted to 

design TIMCs with the obtained technical features. Considering the task, the designer 

draws the conclusion that the problem is not in the design of a TIMC itself, but rather in 

reaching such performance features as ―usable distance/time range‖ and ―measurement 

accuracy.‖ Meanwhile, is using purely analogue components there is no visible 

methodology for making it, while the digital approach to this task has been well-known 

for many years [118].  

5.7 Summary of Chapter 5 

The main contribution of Chapter 5 to the thesis is by the development a novel 

methodology based on incremental parallel island-model evolution with adaptive 

parameters.  

The chapter begins with the introduction of types of incremental evolution by the 

degree of involvement of sub-solutions in the mutation procedure. Another helpful idea 

is the defining of different types of incremental coding. Both ideas have enriched the 

conventional concept of incremental evolution and are described from a practical point 

of view and with practical recommendations. The developed system was then applied 

towards the most interesting circuit regarded thus far, the 8-output VDC. The results of 

Experiment 14 have persuaded us to make further improvements to the system in 

constructing the parallel island-model system. The new system had an unconventional 

feature: only a single migrant is allowed to migrate from a winner sub-system to every 

other by destroying all the previous genotypes. This feature causes the aggregated SR of 

the sub-systems to drastically fall down. However, due to the DM technique - which 

requires a lower SR - the new approach succeeded at Experiment 15.   

During Experiment 15 another disadvantage became visible, namely the idle running 

and idle waiting of the sub-systems. The tackling of these problems led to a brand new 

methodology called the WDWC parallel evolution strategy. This last strategy is 

characterized by an even lower aggregated SR, which led to the naming of the whole 

approach as Very Narrow Focused Evolution (VNFE). During VNFE - in contrast to the 
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previous approach - the migrations were regarded as the being near to radical mutation 

in their treatment against the stalling effect. That is, migrations are enabled if radical 

mutations are helpless. At the same time, the migration procedure happens under the 

same terms: a single migrant and the destruction of all the population genotypes at 

―loser‖ sub-systems. 

As it is described in Section 5.6.7, the VNFE operates very small SRs due to a 

combination of two unconventional approaches - DM and WDWC - which work in 

balance with each other during ―crisis‖ and ―wealth‖ periods. During Experiment 16, 

this doubled technique was applied towards the unconventional target in the area of 

automatic analogue circuit synthesis, the TIMC which originally consists of several 

digital circuits. While being uninvolved in the first sub-stage due to its easiness, the 

VNFE has very actively expressed itself during the second sub-stage and it successfully 

evolved the targeted circuit. 
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Chapter 6. Conclusions 

6.1 Summary  

The work presented in a step-by-step fashion and followed the construction of an 

automatic circuit synthesis tool. The author‘s target during the writing of the thesis was 

to present in the most feasible way a method for creating such a tool that would be able 

to synthesise complex analogue circuits from scratch.  

Thus, this thesis consists of the number of versions of the proposed system and 

narration focuses on the construction and probation of each system stage step-by-step. 

Since the test results were not foreseen in advance, the scope was widened each time the 

system failed to achieve the objectives while the initial overall target was reached. Thus, 

the work is segmented into three sections corresponding to three main versions of the 

system against the three objectives set in Section 1.3. Each section in its turn describes 

several subversions of the evolutionary system, so in total eleven system versions are 

described and tested in the thesis. Each version has been built upon the previous one in 

such a way that every subroutine of the previous system has been utilized in the next 

version. The only exception is the subroutine that checks the validity of the circuits to be 

evaluated. The last one is to provide the constrained evolution.  

First of all, there is creation of the framework system from scratch in Chapter 3. 

Here, the motivating features of the proposed system - like unconstrained evolution, 

fined-grained evolution, etc. - have been established, along with such basic system parts 

as representation, mutation, evaluation, etc. (Section 2.2). A novel approach to the 

mutation procedure was introduced called the Rule of equal mutation probabilities 

(REMP). As a result, the framework system effectively evolved competitive LCR 

circuits. Six subversions of the system have been tested, which are the intersection of the 

versions composed of different components, namely LC/LCR, mutation strategy, 

ILG/OLG and Constrained/Unconstrained versions. Based on the experimental results, 

such basic techniques as unconstrained evolution, REMP, and the OLG varying strategy 
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(with DEM), have been approved as basic and essential parts of the system targeted 

towards the overall aim.  

In Chapter 4, and based on such known evolution enhancing techniques as 

substructure reuse, individual level mutation, and ranking parsimony  pressure, as well 

as novel developments such as the concept of virtual mutation and - based on it – the 

differentiated mutation (DM) approach, the framework system was upgraded to a second 

version that enabled it to effectively evolve competitive LCRQQ circuits. Two sub-

versions of the system successfully evolved two different types of circuits: two-pin and 

five-pin circuits. It has been shown that although the DM technique has been derived 

from properties that are inherent - particularly to analogue circuits, it may be extended to 

other real world instances.  

In Chapter 5, three versions of the system evolved two of the most complex circuits 

in the thesis, which represent the thesis‘s overall aim: circuits from a prospective 

application domain that are problematic for conventional design. A novel incremental 

approach for analogue circuits and a Very Narrow Focused Evolution (VFNE) based on 

parallel Winner-Dominates-Winner-Cooperates (WDWC) strategy was introduced.  

The circuits evolved by the framework and intermediate systems considerably 

exceeded the rival circuits in terms of performance precision.  

In Chapter 5, the importance of the balance between exploitation and exploration 

during evolution was shown again, demonstrating that the novel VNFE with extremely 

small selection rates being coupled with quite an ―aggressive‖ DM technique is able to 

effectively synthesise large scale circuits. All of these novel techniques have been 

discovered and explored as ad hoc problems.  

Besides the primary aims and objectives already achieved, this work plainly stated 

through a series of experiments that the scalability of an analogue circuit’s evolution can be 

enhanced by exploiting together unconstrained evolution, incremental evolution, parallel 

evolution and the adaptation technique within one system. Namely, it has been shown that:   
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 In the first part of the thesis unconstrained evolution can discover analogue circuits 

that may exceed the functionality, component economy and computing effort 

utilized by the circuits evolved by constrained evolution;  

 In the second part of the thesis, unconstrained evolution, incremental evolution, the 

parallel strategy and the adaptation technique in one system can synthesis 

analogue circuits of a larger scale and with better functionality, component 

economy and computing effort utilized than the circuits evolved by other 

evolutionary methods.  

6.2 Critical Evaluation of the Work 

This thesis does not pretend to tackle any other problem outside of its objectives and 

- as with any other work - it has its own weaknesses. If the contents up until now 

narrated the research‘s achievements, in this section the weak sides of the work from the 

author‘s point of view are presented. There are two main classes of critical points that 

should be mentioned. The first one concerns the general approach to the research. The 

second refers to the details of how and why some techniques were developed and 

applied.  

6.2.1 Critique of the approach 

There are three main points relating to the general approach that could be criticized. 

1. Not every design decision in the thesis is fully justified. Mainly there are two 

kinds of such decisions. The first are the technical decisions when designing 

certain experimental setups, such as embryo circuits, fitness functions, etc. - 

mostly in Chapters 3 and 4. This is done for the sake of reaching the first and 

the second objectives of the thesis, i.e. providing similar start ups to those 

published in comparable works so as to make the comparison of results 

easier.  
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2. The second kind of ―poor decisions‖ is more strategic, such as the application 

of some techniques without empirical proofs of their effectiveness. The same 

applies to the experimental data which has not been explored and analyzed 

deeply enough before starting another one, for example, the application of 

such techniques as the range-dependant ranking procedure, R-support 

components and the Rule of equal mutation probabilities (REMP). These are 

made based two criteria: simplicity and intuition. The first one is admittedly 

advantageous in enabling one to focus on other issues. As an example of the 

second case is the assumption from [38] that unconstrained evolution 

stimulates unconventional designs and encourages the development and 

application of R-support components and REMP so as to enhance the 

unconstraining of analogue circuits, without empirical exploration of these 

techniques.  

3. Another criticism of the technique should relate to the lack of empirical data 

as to how the resulting system works on relatively easy tasks. It really would 

be helpful in getting the data on how the resulted system became powerful, if 

to evolve the targets of Chapters 3 and 4 (filters and CCs). 

Despite the justifications given to the ―poor decisions‖, the last ones are always 

about the trade-off between time and reaching final targets, and thus are amenable to 

critics. 

6.2.2 Critic on techniques 

Concerning the technical details, there are four remarks that should be made. 

1. On one side, the work has been motivated and inspired by potential industrial 

applications, but on the other side the work looks purely theoretical and stands 

far behind real world applications. This arises from the need to perform a multi-

objective evolution. Multi-objective fitness measures are typically associated 

with industrial strength problems enabling, first of all, a count of more targets 

that concern the circuit itself, for example, high/low input/output impedance, the 
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level of noise, etc. More than a dozen of them are utilized in [58] and [53]. 

Secondly, it may help to reach robustness by tackling the problem of internal and 

external variations.  

2. There should be more effort made towards defining the optimum mutation 

strategy, namely, the combination relating the three mutation operators, the 

diversification of mutation history, the mutation pressure and radical mutation. 

This problem refers to the more general, where little exploration has been made 

in relation to the dependence between the highly explorative DM operator and 

exploitative VNFE. This would be good to due to the ―extreme‖ nature of both 

and, surely, for the sake of setting out the effective relationship between them. 

3. As a further subject of criticism we can be look to the lack of problem-specific 

knowledge during all of the experiments. Indeed, only the minimum problem-

specific knowledge has been used for setting up the experiments: at the FF 

setting and the embryo setting (no inputs/ outputs), some knowledge was 

required for the decomposition of the tasks. Probably, problem-specific 

knowledge would significantly help in reaching faster and better results. For 

example, based on such knowledge, the number of component parameter ranges 

to choose among for evolution could be significantly reduced. However, this was 

not done because it would be somewhat against the thesis‘ strategy according to 

which the system should create circuits about which little design knowledge is 

available. 

4. The pressure-constant - the meaning of which is a predicted number of genes in 

the target (the smaller number the higher the pressure is applied) – can, with high 

level of confidence, be criticized for a lack of flexibility. According to the 

classification set by Bentley [150], the proposed ranking belongs to the range-

dependent methods, while such a highly sensitive parameter should be more 

adaptable (range-independent). 

There are probably other types of criticisms applicable to the work, since this section 

has not targeted to draw out all the weaknesses but rather to indicate the most 
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meaningful. Some of the drawbacks are set out for subsequent work in Section 6.4 

Future Work. 

6.3 Perspectives  

It should be noticed, first of all, that the suggested approach requires significant 

computational resources, and the first perspective holds that the speed of commercially 

available single computers increases quickly in accordance with ―Moore‘s law‖
12

 [160], 

which promises faster and better results.  

More than two decades have passed since the appearance of EHW and a decade has 

passed since the first hope for a ―killer application‖ of EHW [3] - quite a long period of 

time from a commercial point of view. With time, many developed systems are required 

to make a contribution to the real world problems. This pressure makes some researchers 

turn to methodologies that combine an evolutionary approach with other optimization 

engines, like simulated annealing, ant colony algorithms, etc. creating so-called hybrid 

EA. These last ones, together with closed-ended constrained evolution and knowledge-

based substructure databases, produce trustworthy circuits in a very short time [53], 

[104]. 

However, the initial idea behind EHW was not only to use it as a CAD system, but 

also for significantly broader kinds of applications, including adaptive systems, 

evolutionary robotics, etc. [111]. The last one requires faster rates of interaction with the 

environment and higher computational power in order to evolve the enormous number of 

configurations for every interacted situation. These kinds of applications still stand in the 

wings, waiting for when the ―Moor‘s Law‖ [160] - which is not expected to stop until 

2015 or 2020 or later - will bring the suitable HW conditions.  

In this situation, the proposed work suggests open-ended unconstrained EHW 

perspectives in the design of such analogue circuits that lie beyond the conventional 

boundaries of applications. This may become a reality soon due to the following reasons: 

                                                 
12 Moore's law describes a long-term trend in the history of computing hardware, namely that the number of transistors that can be 

placed inexpensively on an integrated circuit doubles approximately every two years. 
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1) the proposed system will benefit from the real nature of EA, whose power is to find 

unconventional solutions for conventional tasks as well as to find solutions for 

unconventional tasks; 2) the proposed system does not need such extensive processing 

capacity as is required by adaptive systems. Namely, the main perspective of the 

approach suggested from the point of view of future applications is the system‘s ability 

to design the analogue system-on-a-chip (SOC), where all parts of the proposed 

electronic system are integrated into a single integrated circuit (IC) chip. 

Conventionally, SOC ―may contain digital, analogue, mixed-signal, and often radio-

frequency functions – all on a single chip substrate‖ [162]. The difference with the 

current concept of SOC is - while conventional SOCs are supposed to contain digital and 

mixed analogue-digital signals - the proposed SOC is suggested to contain only analogue 

components that process purely analogue signals. The advantages that this technology 

may bring to potential users in comparison with conventional SOC are: 

1. The compactness of such the systems being located in one crystal. This 

advantage is based on economizing on synchronization circuits, and other 

redundant circuits that are required to support digital logic inside ICs. 

Moreover, as is presented in this thesis, unconstrained evolution suggests 

considerable economy in terms of components in comparison with human-

designed analogue circuits. 

2. Decreased power consumption. This feature is caused by prior advantage 

as well as by the inherent nature of analogue electronics. Furthermore, the 

evolutionary approach is able to enable a designer to set the preferable 

power supply as one of an evolution‘s objective. This feature is especially 

pertinent given trends in global energy efficiency. 

3. As a cause of the previous advantage, the larger IC size is due to decreased 

heat extraction. This, and other features like faster input-to-output signal 

processing, is a well-known fact when comparing analogue and digital 

circuits. 
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In this sense, the CCs evolved in this thesis, the 4/8-output VDCs and TIMC - may 

be regarded as analogue SOCs. The functions that these systems perform are quite 

simple from the point of view of the digital designer, but they are hard issues for the 

specialist in analogue. The last two targets do not exist in analogue circuitry, but in 

digital circuitry they comprise the bulk of digital circuits. There are a lot of applications 

that are potentially waiting for the technique described in this thesis. Some of them are 

those that utilize sensors and require tiny sizes and low power consumption. For 

example, wearable electronics [163] and embedded systems [164]. The concept of the 

prospective application of the proposed system is shown on Figure 6-1. 

 

Figure 6-1. The perspective positioning of the work presented inside an application domain 

where CAD is Circuit Automated Design, ER is Evolutionary Robotics, AE is Artificial 

Embryology and EE is Evolutionary Electronics. 

 

This idea looks alluring from the following point of view. In past - and with the 

arrival of the digital era - analogue circuits have been excluded by digital ones, leaving 

them important mostly as components for digital logic. However, with a novel approach 
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analogue circuits have a chance of coming back, replacing digital circuits in some 

conventionally adopted applications. In this sense, the contribution of this work to the 

future perspective is not the design of circuits that might rival those designed in the 

conventional manner in the analogue domain, but rather is bringing forward the day 

when the novel approach might evolve industry-feasible analogue SOCs that are rival to 

digital circuits. 

During the evolution of circuits for unconventional applications, it has been noticed 

that the character of the evolutionary search differs from evolving conventional analogue 

circuits. While in the second case the steps towards fitness improvement over recent 

generations lay inside quite a narrow range relative to the whole fitness range, in the first 

case this range is significantly wider due to one to three occasional ―leaps‖ of 

improvements. The first ―leaps‖ always has a crucial meaning and one of the largest. As 

can be seen by Figures 5-7 and 5-20, evolution was unable to make it in those cases.  

This exciting and intuitive hypothesis has arisen to explain such behaviour. It looks 

as though evolution needs some time for accumulating genotype material inside 

chromosomes in order to search for some kind of helpful heuristics. According to the 

DM strategy, it is possible for chromosomes to accumulate eight extra genes beyond the 

best individual size. As such, it looks like evolution tries to build up usable intermediate 

substructures to provide the current required functional fragment to the overall singular 

output function. If for the less complex tasks (CCs, 4-output VDC) the smaller sizes of 

such the substructures were enough for the progress, for the complicated ones (4-output 

VDC, TIMC) they tend to be larger.  

In this regard, it would be quite interesting in future experiments to enable evolution 

to accumulate such substructures of larger sizes and to target the performance of more 

complex functions, for example analogue memory. The interesting question is whether 

evolution will be able to organize the structure of, say 30 analogue components, so as to 

memorize a fragment of an input voltage signal limited in time? If in digital logic the 

simple capacitor ability of keeping a charge as a logic unit is exploited, will evolution 

exploit it in the same way or will it settle in some way the continuous nature of analogue 

components for memory construction?  
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6.4 Future work  

The main problem of the technique described by this thesis is that the circuits 

evolved with unconstrained open-ended evolution are not robust. The problem is 

aggravated by the fact that evolution is extrinsic, which makes the resulting circuits even 

further from real-life application ICs. However the last disadvantage is compensated in 

some way by the fine-grained flexibility that the simulation SW seems to suggest, 

because all of the available HW tools have fixed structural cells with limited connections 

among them. In this sense, SW may even help in discovering optimum reconfigurable 

evolution-oriented HW [165] which suits it to particular kinds of tasks. 

To make a circuit robust, its work should be simulated in SW against such variations 

as processing, both internal and external [6]. The last two are of special importance. 

Internal includes variations in component parameters, xSPICE model parameters, 

voltage/current sources, noise, etc. External variation, first of all, concerns temperature. 

There is no common understanding as to how to make an analogue circuit robust against 

all of the variations - it is an inalienable part of the whole design process ―that is 

characterized by a combination of experience and intuition and requires a thorough 

knowledge of the process characteristics and the detailed specifications of the actual 

product‖ [140]. However, by being armed with an evolutionary tool, this task is 

approachable.  

As it was mentioned in Section 2.3.4, there are two ways to design robust circuits: to 

evolve designs and robustness at once [53], [54], [57] or else to make it in two 

evolutions [28], [55], [56], [58], [59]. The last method will allow the preservation of the 

results obtained and features of the technique developed previously without significant 

adjustments.  

Thus, the resulting circuits obtained by the present technique should be downloaded 

into a newly developed system targeted in particular towards increasing their robustness. 

There are different ways of implementing such the system. One known way is to use 

multi-objective evolution [58] where different types of variations are used as objectives. 

Another way is an iterative approach [99], where variations are added as objectives one 



 
Chapter 6. Conclusion 

 

 242 

by one. Utilizing parallel evolution, it is possible to evolve each sub-system which is 

struggling per variation. As such, the resulted genotypes are united in one evolution 

toward the final solution.  

Another factor that should be counted for future work are the different performance 

requirements of the targeted circuit. When it concerns commercial circuits, the data 

sheets used to specify them typically contain a dozen or more different performance 

requirements [58]. Therefore, multi-objective evolution should be implemented by the 

current technique. 

To enhance the evolution, it is decided that the use of multi-cluster computers should 

accelerate whole the process. For example, if it were possible to use a home-built low-

cost Beowulf-style parallel cluster computer system consisting of 66 processing nodes - 

similar to that one used in [52] - the evolution time for the 8-output VDC would be 5-

times less, that is about 2-3 days instead of 2 weeks. 

As to the next short-term targets, it would be interesting to test the novel approach on 

evolution of multi-input circuits such as convergent neuron. From an industry-feasible 

point of view, it would be interesting to design a temperature-sensing circuit.  
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Appendix A – PSPICE Model Parameters 

A1 - Bipolar transistor model parameters 
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A2 - Capacitor model parameters 

 

 

 

A3 - Inductor model parameters  
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A4 - Resistor model parameters  
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Appendix C – PSPICE Decks of the Thesis 

C1 - Low-Pass Filter Circuit [33] from Chapter 3.8.5, 

Experiment 1, Figure 3-17 
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C2 - Low-Pass Filter Circuit [33] from Chapter 3.8.5, Experiment 

2, Figure 3-18 
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C3 - Low-Pass Filter Circuit [96] from Chapter 3.8.6, Experiment 

3, Figure 3-19 
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C4 - Low-Pass Filter Circuit [103] from Chapter 3.10.2.1, 

Experiment 4, Figure 3-23 
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C5 - Low-Pass Filter Circuit [103] from Chapter 3.10.2.2, 

Experiment 5, Figure 3-24 
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C6 - Low-Pass Filter Circuit [106] from Chapter 3.11.1, 

Experiment 6, Figure 3-25 
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C7 - Low-Pass Filter Circuit [106] from Chapter 3.11.2, 

Experiment 7, Figure 3-26 
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C8 - Cube Root Circuits [109] from Chapter 3.12.3, Experiment 8 

at generations 3 and 15, Figures 3-27 and 3-28 
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C9 - Cube Root Circuit [109] from Chapter 3.12.3, Experiment 

8, at generation 133, Figure 3-29 
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C10 - Square Root Circuit [115] from Chapter 4.4.2.1, Experiment 

9, Figure 4-7 
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C11 - Squaring Circuit [115] from Chapter 4.4.2.1, Experiment 10, 

Figure 4-8 
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C12 - Cube Root Circuit [115] from Chapter 4.4.2.2, 

Experiment 11, Figure 4-9 
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C13 - Cubing Circuit [115] from Chapter 4.4.2.2, Experiment 12,   

Figure 4-10 
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C14 - 4-output Voltage Distributor Circuit [116] from Chapter 

4.6.3, Experiment 13, Figure 4-14 
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C15 - 8-output Voltage Distributor Circuit [65], [116] from 

Chapter 5.4.2, Experiment 15, Figure 5-12 
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Appendix D – PSPICE Decks Netlisted From Other 

Works 

D1 - The Netlisted Low-Pass Filter Circuit from [2] 
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 D2 - The Netlisted Ladder Low-Pass Filter Circuit from [12] 
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D3 - The Netlisted Bridge Low-Pass Filter Circuit from [12] 
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D4 - The Elliptic Low-Pass Filter Circuit from [12] 
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D5 - The Netlisted Squaring Circuit from [12] 
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D6 - The Netlisted Cubing Circuit from [12] 
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D7 - The Netlisted Square Root Circuit from [12] 
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D8 - The Netlisted Low-Pass Filter Circuit from [13] 
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D9 - The Netlisted Low-Pass Filter Circuit from [17] 
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D10 - The Netlisted Low-Pass Filter Circuit from [28] 
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D11 - The Netlisted Low-Pass Filter Circuit from [102] 
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