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ABSTRACT: CSPs are widely used in industry, although have yet to operate across organizational boundaries. 
Reuse across organizations is restricted by the same semantic issues that restrict the inter-organization use of web 
services. The current representations of web components are predominantly syntactic in nature lacking the 
fundamental semantic underpinning required to support discovery on the emerging semantic web. Semantic models, 
in the form of ontology, utilized by web service discovery and deployment architecture provide one approach to 
support simulation model reuse.  Semantic interoperation is achieved through the use of simulation component 
ontology to identify required components at varying levels of granularity (including both abstract and specialized 
components).  Selected simulation components are loaded into a CSP, modified according to the requirements of the 
new model and executed. The paper presents the development carried out within CSPI-PDG and Fluidity Group at 
Brunel University, of an ontology, connector software and web service discovery architecture.  The ontology is 
extracted from simulation scenarios involving airport, restaurant and kitchen service suppliers.  The ontology 
engineering framework and discovery architecture provide a novel approach to inter-organization simulation, 
adopting a less intrusive interface between participants.  Although specific to CSPs the work has wider implications 
for the simulation community. 
 
 
 
1. Introduction 
 
Commercial-off-the-shelf (COTS) simulation packages 
(CSPs) offer an interactive and visual model 
development environment for creating computer 
models of existing and proposed systems and 
experimenting with the same. Simulation practitioners 
in industry extensively use CSPs like Simul8, Witness, 
AnyLogic, AutoMod and Arena to model their 
simulations. These packages allow reuse of standard 
simulation components like workstations, queues, 
conveyors, resources etc. and thereby provide the 
building blocks which facilitate creation of larger 
models. As these models grow larger and more 

complex the prospect of simulation model reuse is 
appealing as it has the potential to reduce the time and 
cost incurred in developing future models. An 
extension of model reusability is the concept of 
separate development and user groups, whereby 
models are developed and validated by one group and 
then used to specify simulations by another group [23]. 
In this paper we look at the discovery and import of 
CSP-created models across organizational boundaries 
in the context of supply chains, thus enabling the 
development and user groups to exist in different 
organizations. This approach does not allow model 
information hiding between enterprises and contrasts 
with the distributed simulation approach to model 
reuse which allows an organization to hide model 
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specific information and data from the other 
participants. A short discussion on supply chains and 
the distributed simulation approach follows. 
 
Supply Chain Management (SCM) consists of a series 
of tasks like manufacturing, transport and distribution 
that are undertaken by organizations with an aim of 
delivering products to their customers. Simulation of 
the supply chain can identify manufacturing 
bottlenecks, resources required for on time delivery, 
adequate stock levels for distribution etc. and help 
improve the performance of the underlying supply 
chain. Each organization that forms a part of the supply 
chain normally develops models that simulate their 
own part of the supply chain using CSPs [26]. 
Assuming that all necessary individual simulation 
components are now available the question is how do 
we link them together? Distributed simulation offers 
one such solution. Distributed simulation can be 
defined as the distribution of the execution of a single 
run of a simulation program across multiple processors 
[31]. It allows each organization to run its model in its 
own site (thereby encapsulating model details within 
the organization itself) and participating with other 
sites through information exchange using distributed 
simulation middleware [27]. [21, 29, 22, 30] are 
examples of successful distributed simulation using 
CSPs. There is a growing body of research dedicated to 
creating distributed simulation with CSPs and the High 
Level Architecture (HLA), the IEEE 1516 standard for 
distributed simulation. In an attempt to unify this 
research COTS Simulation Package Interoperability 
Product Development Group (CSPI-PDG), a 
Simulation Interoperability Standards Organization 
(SISO) standardization group that began operation in 
October 2004 (http://www.cspi-pdg.org/).  
 
The distributed simulation approach to model 
reusability in the context of CSPs faces the following 
challenges. Firstly, a lack of widespread demand for 
distributed simulation in industry has meant that the 
CSP vendors have not currently incorporated 
distributed simulation support into their products. 
Consequently, the organizations that want to use this 
approach do not have readymade solutions. Secondly, 
research projects that aim to create CSP based 
distributed simulation do not have access to its source 
code are thus limited by the functionality offered by 
the vendor. Thirdly, execution of a distributed 
simulation tends to be much slower than traditional 
standalone simulation. For example, the 
straightforward use of the conservative HLA time 
advance mechanisms results in a simulation that runs 
extremely slowly, at times a few factors slower that its 
corresponding sequential runs [22]. In order to 

progress, these issues have to be resolved before 
industry can fully benefit from the application of CSP 
based distributed simulation. In the meantime it is 
worth investigating other approaches enabling supply 
chain simulation across organizational boundaries. 
 
Our discovery and import approach to model reuse in 
the context of CSPs offer an alternative to the 
distributed simulation approach. By discovery we 
mean that individual simulation models, which are 
created by organizations to model their activity in the 
supply chain, are discovered from among an inter-
organizational repository of models spread across the 
organizations. The selected models are then loaded into 
a CSP, modified according to the requirements of the 
new model and executed. We believe that our approach 
to enabling CSP based supply chain simulation has a 
lighter touch with much fewer technical barriers. It also 
requires minimal CSP vendor intervention when 
compared to the distributed approach.  
 
Our vision is a web of SC models that are accessible to 
the practitioner. The current representations of web 
components are predominantly syntactic in nature 
lacking the fundamental semantic underpinning 
required to support discovery on the emerging 
semantic web [1] Semantic models, in the form of 
ontology, utilized by web service discovery and 
deployment architectures provide one approach to 
support simulation model reuse. Improved component 
reuse supported by ontological models has already 
been proposed in simulation [2].  When considering 
COTS Simulation packages, intrusive activities are not 
possible when dealing with packaged software as only 
import or export capabilities are achievable. The tools 
of the semantic web provide a means to construct 
external description of the CSP models.  This external 
description, or ontology, can then be used to support 
the reuse of simulation components (SCs). Consider a 
scenario where a large multinational organisation uses 
CSPs to model many of its business activities.  Two 
human process are undertaken when a simulation is 
required – the creation of the model and its execution.  
In order to fully utilise the capabilities within the 
organisation we propose that model parts can be reused 
more effectively, better utilising the expertise within 
distinct models.  In order to support the reuse, methods 
for describing the models then enable semantic 
discovery are proposed.  The system supports the 
discovery of specific model components and their 
loading into the COTS simulation package.   Semantic 
interoperation is achieved through the use of a 
simulation component ontology to identify required 
components at varying levels of granularity (including 
both abstract and specialized components).  Once 



selected, simulation components are loaded into a CSP, 
modified according to the requirements of the new 
model and executed.  The ontology is derived from 
existing CSP Simulation Components (SCs) and is 
contrasted to current simulation ontology. 
The paper proposes that the evolutionary construction 
of domain grounded SC ontology better supports the 
semantic discovery of SCs.  In addition, when 
combined with hard simulation semantics (such as state 
etc.), concepts from both vocabularies provide 
improved matching terms.   
The paper is organized as follows.  Section 2 presents a 
summary of pertinent literature including a summary of 
semantic web and ontologies. Section 3 describes the 
DESC ontology and the process undertaken to engineer 
it.  Section 4 covers the software tools that use the 
DESC ontology – the semantic search and component 
integration software.  A conclusion summarizes the 
work presented. 
 
2. Related Literature 
 
Two communities of research are relevant to the work 
presented here: (1) Semantic web services and (2) the 
grid resource discovery.  Both provide an insight into 
the decoupling of component models from their 
execution environment and are used for discovery and 
synthesis. Semantic search has been applied to both 
topics with a common reliance on knowledge – 
referred to as service ontology. Ontology itself is a 
specification of a representational vocabulary for a 
shared domain of discourse – with definitions of 
classes, relations, functions, and other objects [3]. It is 
an explicit specification of a conceptualization. The 
term is borrowed from philosophy, where an Ontology 
is a systematic account of existence [3]. In borrowing 
the term ontology and placing it into an engineering 
discipline, two distinct usage types emerge in the 
creation of these specifications:  The theoretic 
(deductive) approach and the pragmatic (inductive 
approach) [35]. It is the pragmatic approach that is 
adopted in this paper – focusing on the engineering of 
knowledge from CSP models.  
The semantic web provides the knowledge structure 
and reasoning about a web of models and the grid 
because our vision is a grid of CSPs that are able to 
execute discovered models. The semantic web [4] aims 
to uncover knowledge about domains so as to better 
support discovery, integration and understanding of 
resident objects.  Semantic web services SWS refine 
this vision [5] making web services “computer-
interpretable, use apparent, and agent-ready”.  With 
this web of services comes a need to describe explicitly 
and in a form able to be read by computer.  

Current intersections between web services and the 
semantic web have delivered a diverse body of 
research.  The agent community [5-7] has recognized 
the benefit of ontology if computer-to-computer web 
architectures are to be achieved.  Combining service 
and domain ontology is seen as a key to achieving 
service synthesis [8].  Work on service ontology is 
currently centered on OWL-S and WSMO groups. 
Recognizing the progress, by the DAML Consortium 
and others, attention has moved from the ontology 
languages to specific application to services.  A 
discussion of semantic web services would not be 
complete without coverage of the OWL-S upper 
ontology model (WSMO is less mature at this time 
although similar in nature). The OWL-S high level 
model describes the relationship between the differing 
service decompositions (see Figure 1) [8, 9]. A 
resource provides a service that is represented by the 
ServiceProfile, described by the ServiceModel and 
supported by the ServiceGrounding.  Generally, the 
profile describes the service in a high level way 
(enough to discover the service), the model describes 
the detail of how it works and can be used to: (1) 
perform more in-depth analysis of whether the service 
meets a need, (2) to compose service descriptions from 
multiple services to perform a specific task, (3) during 
enactment, to co-ordinate activities from participants 
and (4) to monitor execution [9].  The service 
grounding details practical access and has converged 
with WSDL. 
 

Figure 1: OWL-S Upper Ontology 
 

  
OWL-S (and WSMO) [10]provide generalized models 
for describing services.  Others have identified the 
need for specialized common concepts within a web 
service context [10-14], with one example being 
quality of service.  These concepts represent glue 
homogenizing a wealth of asymmetrically described 



web resources. New issues become pertinent in a 
semantic web of “great number of small ontological 
components consisting largely of pointers to each 
other” [15].  This semantic web service environment, 
with recognition of the need to combine service and 
domain ontology, warrants research that identifies 
practical approaches for businesses to combine the 
service ontology with existing or new domain 
ontology.  The foremost question in semantic service 
orientation is how best this should be undertaken in the 
context of simulation. 
 
Transporting this vision to a simulation environment 
with a web of simulation components has several 
challenges.  Combining distributed SCs models into a 
new model requires that they are discovered. 
Consequently, explicit, computer readable knowledge 
is required for such search tasks.  Knowledge in the 
form of ontologies has already been applied to 
simulation [16] with work by the University of Florida 
on simulation translation and University of Georgia on 
a taxonomy of simulation objects called DeMO.  
DeMO provides a precise description of simulation 
models with hard semantics. In order to realize a vision 
for SCs similar to that of SWS requires that the domain 
being simulated is represented explicitly (an OWL 
ontology [17]). The DeMO ontology [16] is an upper 
ontology that details events, activities and processes.  
Hard semantics work perfectly if all stakeholders adopt 
the single model. If this is not the case, and with only 
the CSP SCs, a transformation directly to such a model 
will likely miss tacit domain concepts that may help 
any subsequent SC search activity.  
The eXtensible Modeling and Simulation Framework 
(XMSF) is defined as a set of composable standards, 
profiles and recommended practices for web-based 
modeling and simulation. XMSF prescribes the use of 
ontologies for the definition, approval and 
interoperability of complimentary taxonomies that may 
be applied across multiple simulation domains [20]. In 
military modeling and simulation, the study of 
ontology is recognized as important in developing 
techniques that would allow semantic interoperability 
between simulation systems and to this effect ontology 
of C2IEDM (Command and Control Information 
Exchange Data Model) has been created to further 
studies on enabling interchange of data between two or 
more systems [34]. Work is also underway for creating 
an ontology for physics which would represent 
physics-based model semantics in modeling and 
simulation. Its intension is to capture the concepts of 
physical theories in a formal language so as to support 
various forms of automated processing that are 
currently not supported [24]. An ontology for the 
representation of data pertaining to Synthetic 

Environment called sedOnto (Synthetic Environment 
Data Representation Ontology) has been proposed 
[20]. Finally,  ongoing work is looking into 
establishing an ontology for BML, an unambiguous 
language to command and control forces and 
equipment [33].  
 
3. Simulation Component Ontology 
3.1 Requirement for Semantic Search 
 
The globalization of many organisations and industries 
often result in a fragmentation and heterogeneity of 
knowledge produced by its domain experts.  In order to 
synthesize the most appropriate knowledge in a model, 
the best available model parts must first be found.  
Syntactic or taxonomic approaches limit the precision 
in which SCs can be related to the domain.  Typical 
issues are that a component may not fit neatly into a 
prescribed category or simple use of synonyms to 
describe the component. 
 
3.2 DESC Ontology 
 
The Discrete Event Simulation Component (DESC) 
ontology resulted from two distinct research activities: 
(1) The transformation of CSP models into OWL 
ontology files and (2) semantic search scenarios being 
carried out against the OWL files.  Snapshots of 
DeMO and DESC ontologies are presented in figures 2 
and 3.  The differences are apparent with DeMO 
focusing on the component properties and DESC on 
the component in relation to the domain.  Links 
between the two models are achieved through 
referencing the DeMO:ModelComponent from the 
DESC:SimulationConcept when it relates to an 
available component model.  Additionally, the DeMO 
ontology is imported into Protégé in order to use it’s 
classes as properties of the DESC ontology (for 
example, when describing a business concept that is a 
specific state or activity in the simulation). 
 
 
 
   



 
Figure 2. DESC-Restaurant Ontology Structure 

 
 

 
 

Figure 3. DeMO Ontology Structure 
 
The ontology was created using the Protégé tool from 
Stamford University (with Owl plugins) 
(http://protege.stanford.edu/).  A decision was made to 
ground the ontology in existing SCs as opposed to 
using particular service ontology such as OWL-S or 
WSMO. 
 
3.3 Ontology Engineering 
 
A number of activities were carried out to transform 
three CSP models into ontological form – OWL files.  

The process included the decoupling of the SCs from 
the model by placing disctinct component models into 
a web based component library (URI accessible).  The 
activities carried out, in framework form, are detailed 
in Table 1.  The framework evolved as each CSP 
model was deconstructed and transformed into 
ontology classes (including relations to dependent or 
related classes). Realization of the need for a DESC 
ontology resulted from this process – which included 
the adoption of DeMO for hard component semantics.  
 

Activities Description Impact 
Component 
Extraction 

Specific components 
are extracted to form 
distinct models. These 
are stored in the DESC 
library (a standard web 
server). 

 CSP models 
 SC Models  

Component  
Typing 

A new class is added to 
the OWL ontology to 
represent the SC.  
Similar classes are 
grouped under a type.  

 OWL 
Classes 

Component 
Dependenc
y 
Models 

Extended DeMO 
properties are used to 
define dependencies 
between services. E.g. 
StateDependency. 
Reference DeMO 
concepts when 
describing business 
properties (e.g. 
ThinkingTable has a 
DeMO state property). 
New classes and 
properties are created 
for previously implied 
activities etc. (e.g. 
Serving is a created 
from an analysis of 
table in ordering and 
eating). 

 OWL 
Properties 

 New OWL 
Classes and 
properties 
implied 
from the 
model 

 

Ontology 
Testing 

The finalized ontology 
is loaded into the 
SEDI4G server and 
several search tasks are 
undertaken. 

 DESC 
OWL File 

Table 1: Process for deriving semantic content from 
CSP Models 

 
The ontology engineering process resulted in DESC-
RESTAURANT (Figure 2), DESC-KITCHEN and 
DESC-AIRPORT models (OWL Files).  Each 
provided more component returns as concept 
inferencing was able to traverse the concept tree and 
return additional suitable candidates.  The process 
undertaken to engineer the domain simulation ontology 
provides the basis for subsequent modelers to reference 
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and extend the domain ontology; thus achieving richer 
search results and evolving large component ontology.  
The ontology engineering process systematically 
analyses the CSP model, of which figure 4 is an 
example. 
 

 
Figure 4. Simul8 Model 

 
4. Discovery and Import of Simulation 
Components 
 
Our discovery and import approach aimed at CSP 
model reuse enables us to (1) semantically search for 
the desired simulation models and (2) parse and import 
the identified models into a simulation package. For 
our demo application we have used CSP Simul8.  
Simul8 enables users to rapidly construct accurate, 
flexible and robust simulations using an easy-to-use 
visual modeling interface [13]. However, our discovery 
and import architecture has the potential to support any 
CSP that allows an external program to perform basic 
operations such as opening the CSP and loading a 
model through its Component Object Model (COM) 
interface. COM is a Microsoft technology that allows 
different software components to communicate with 
each other by means of interfaces [14]. The discovery 
component of our architecture (described in section 
4.1) can be used with very little change to support 
other CSPs. The parse and import component, 
however, would require implementation of a CSP 
specific parser (described in section 4.2) and cannot be 
reused. 
 
4.1 Design of Component Discovery System  
 

The component discovery system is an extension of the 
SEDI4G architecture [18].  Extending the application 
to support SC descriptions as well as grid services 
required only minor configuration changes to support 
the new OWL DESC ontology.  The semantic 
discovery system shown is figure 5 comprises a set of 
web services (SCVD, SDCS and SMAS).  

 

 

 
Figure 5.Discovery Architecture 

 
The discovery process begins by identifying the web 
services and ontology required to carry out semantic 
search. The choices are directed by the ontology size 
and service placement on the network (represented by 
the grey flexible services and data in Fig. 1). Thus, 
Step 1 involves the selection of which discovery 
control service (SDCS), knowledge base and matching 
service best fit the user requirement – specified as text 
strings. This information is sent to SDCS together with 
the search parameters (2). SDCS then calls the KB 
based matching service SMAS (based on OWLJessKB 
(http://edge.cs.drexel.edu/assemblies/software/owljessk
b/ )) (3) that in turn loads the KB and rules (5). The 
maching is carried out and returned to SDCS for use in 
one of the client components (4). The SDCS service 
can optionally provide the resource properties, the 
dynamic state of each service, alongside the service 
choices (6).  Finally the returned components are 
displayed in a web start client (SCSV holding the 
component options on the server side) allowing 
selected components to be deployed into the CSP.  The 
deployment is simple in nature, loading server side 
XML into the CSP.  A more robust solution would 
provide transformation capabilities as has been done at 
Florida [16]. 

The matching algorithm is semantic and uses an 
ontology and a reasoning engine. The assumption in 
this paper is that an ontology is a catalogue of the types 
of “things”; derived from existing simulation models. 
Types in the ontology represent the predicates, word 
meanings, or concept and relation types of the 
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language when used to discuss topics in the domain 
[18] – in this paper these are SCs.  

To summarize, the matching algorithm comprises two 
steps; the initialization of the knowledge base and the 
search. During the initialization phase the ontology is 
loaded transforming ontological classes into facts that 
have rules applied using the Rete algorithm [19]. 
During the search inferences are made from the facts 
(using Jess queries) identifying semantically matched 
SCs. For example, when searching for a component to 
simulate a restaurant table – several are returned that 
model different states. 

 
4.2 Design of CSP Model Parser and Importer  
 
The discovery architecture detailed in the previous 
section is used by the CSP Model Parser and Importer 
(CMPI) software to conduct a semantic search for 
existing models. This search is conducted by calling a 
web service defined in the component discovery 
architecture, which takes a search string as parameter 
and returns an enumeration of uniquely identified name 
(URN) and corresponding unique resource locator 
(URL) for each model returned by the matching 
algorithm. CMPI then provides the user an option to 
(1) download the models into the local system for 
introspection or (2) import it directly into the new 
model being built through reuse of the discovered 
components.  
 
In case the user chooses option (1) the model can be 
downloaded into the local system by clicking on the 
URL, as with any file download from the Internet. The 
file downloaded is an XML representation of the 
Simul8 model which was discovered.  
 
If the user chooses option (2) the URN is passed as a 
parameter to yet another web service which returns the 
XML representation of the model as a SOAP 
attachment. The nature of this web service is 
synchronous and this allows the CMPI to block further 
execution of the code until the XML file has been 
received.  
 
The merging of the existing model (being built through 
reuse of discovered models and model components) 
with the new model requires a CSP specific parsing 
operation. Since both the models in question have an 
XML representation we employ a crude text parsing 
mechanism which traverses through the XML 
hierarchy of these models and outputs a third XML file 
containing assimilated results from both. This new 
XML file is now loaded into the CSP and the user is 
presented with the overall model. It should be added 

that the text parsing mechanism is heavily dependent 
on the Simul8 specific knowledge and has not yet be 
fully perfected. However, this is not a major problem 
because a model can be opened in Simul8, copied into 
the clipboard and pasted into another Simul8 model. 
This solution would alleviate the need for a model 
parser.  
 
The CMPI software is written in Java and it uses the 
Simul8 COM interface to interact with Simul8 using 
Java Native Technology [32]. CMPI invokes web 
service calls to communicate with the component 
discovery system. It also includes a CSP specific parser 
component which, as has been discussed in the 
previous paragraph, can be considered optional. The 
architecture and dependencies of CMPI is shown in 
Figure 6. 
 

 
 
Figure 6. Architecture of dependencies of CMPI 
 
5. Conclusion 
The paper presents a novel approach to CSP model 
reuse using a simulation component ontology and 
semantic search architecture.  The approach to 
modeling simulation components focuses on the 
domain in which they are modeling.  In relating each 
component to a type collection and each other enables 
the search process to better identify likely semantic 
matches.  Several Simul8 models are transformed into 
OWL ontologies and then used by a web service based 
semantic search and component deployment 
architecture.  The research has demonstrated: (1) a 
new, lighter approach to CSP model reuse and (2) the 
benefits of semantic search to this field of research. 
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