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ABSTRACT 

             The study of the immune system has provided insight in the mechanism of 

protection induced by vaccination; primarily that most clinically protective vaccines 

are potent in generating neutralizing antibody responses. However, vaccination fails 

to protect against a wide range of acquired chronic infections caused by viruses, such 

as HIV, HBV and HCV. One of the major reasons for weak responses to therapeutic 

vaccine is the impaired function of effector T cells resulting from viral persistence. 

Although IL-2 can potently increase effect function of viral specific T cells, systemic 

administration of IL-2 induces organ pathology and expansion of Treg cells.  

             In this study, we have now developed a novel vaccine delivery system IL-2-

nanoAPC delivering antigen-MHC complexes (pMHC), co-stimulatory molecules 

and IL-2 to antigen specific T cells. NanoAPC are derived from the endoplasmic 

reticulum (ER) membranes of human B cell line 721.221 engineered with selected 

HLA allele and IL-2 as the ER retention proteins. The IL-2-nanoAPC interacted with 

antigen specific T cells, induced immune synapses and expression of high affinity 

IL-2 receptor and enhanced effector function of antigen specific T cells, but did not 

affect bystander T cells and Foxp3
+
 Treg cells. Together with pMHC, co-stimulatory 

molecules, the selective delivery of IL-2 not only increased the CD4 and CD8 T cell 

responses to viral antigens but also enhanced TCR proximal signalling and 

suppressed expression of PD1 molecules on IFNγ producing effector CD8 T cells. 

We also found that the co-induction of T helper responses by IL-2-nanoAPC in a 

mixed culture could increase CD8 T cell responses to viral antigen. The IL-2-

nanoAPC effectively induced responses of CD4 and CD8 T cells from chronic HBV 

patients. The results demonstrate that selective delivery of IL-2, together with pMHC 

and co-stimulatory molecules, by nanoAPC to antigen specific T cells has potential 

to recover anti-viral immune responses in chronic HBV patients.  
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INTRODUCTION 

            The plague of Athens in 430BCE is the earliest trail of immunity recorded by 

Thucydides. He noted that if the people that had recovered from a previous bout of 

the disease could nurse the sick without contracting the illness a second time (Figure 

1.1).  

 

Figure 1.1 Plague of Athens (430BC). 

            Couples of milleniums later, Edward Jenner (1749-1823) who is credited as 

the founder of immunology generated a vaccine against smallpox in 1798. However, 

the similar evidence also existed in traditional Chinese medicine. In 1000 AD the 

ancient Chinese custom suggest to use the powders made from the crusty skin lesions 

of patients recovered from smallpox inhaled by children to protect the disease.  Even 

earlier, in AD 649, Sun Simiao, a famous Chinese doctor recorded that covers the 

people with the sick dog’s brain (Cao, 2008) (Figure 1.2). Although they did not 

have any knowledge of the existence of pathogens, their experiences introduce 

concepts of vaccines and the foundation of immunology. 
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Figure 1.2 the discovery of vaccination. 

Left, Dr Jenner discovered that milkmaids who came into contact with cowpox seemed to be 

immune from contracting smallpox. He inoculated a young boy with pus from cowpox 

blisters found on the hand of a milkmaid (in Latin cow = vacca, hence the term vaccination) 

to generate an immune response which crossreacted and offered protection against smallpox.  

Right Bei Ji Qian Jin Yao Fang by Sun Simiao (581–682), published circa AD 649 and the 

related description of preventing the recurrence of rabies by "covering the people with the 

sick dog's brain" (red line) (Cao, 2008). 

            Then move to 19
th

-century the discoveries of Robert Koch showed that 

specific diseases were caused by specific pathogens. In the 1880s Luis Pasteur 

prepared a vaccine against rabies to treat a boy bitten by a rabid dog. Together with 

Koch and Jenner’s experience, in the early of 1890s, Emil von Behring and 

Shibasaburo Kitasato (Figure 1.3) discovered that the serum of the animals immune to 

diphtheria or tetanus contained a specific antitoxic activity can protect against the 

toxin from the diphtheria or tetanus. This protection is due to specific antibody, which 

binds to the specific protein to neutralize their activity. Overall, the understanding of 

these mechanisms gave birth to immunology. 
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Figure 1.3 Emil von Behring and Shibasaburo Kitasato 
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1. The immune system. 

          The immune system, a system of biological structures and processes within an 

organism that protects against disease. The system consists of tissues organs, cells 

and molecules that work together to detect, distinguish and eliminate harmful 

pathogens by orchestrated mechanisms that are collectively called the Immune 

Response. 

1.1 The cellular mediators of the immune system 

           All the cells in the immune system are derived from multipotent 

hematopoietic stem cells in the bone marrow. Before they give rise to all the blood 

cell types, they need to switch from highly undifferentiated progenitor cell to two 

different types of less differentiating plasticity stem cells, the common myeloid 

progenitor and the common lymphoid progenitor. The myeloid progenitor 

differentiates into platelets, erythrocytes (red blood cells), granulocytes, 

macrophages and myeloid dendritic cells (DC). The lymphoid progenitor 

differentiates into the T cells, B cells and Natural Killer cells (NK cells) (Figure1.4).  

            Granulocytes, also known as polymorphonuclear leukocytes, are a type of 

white blood cells which own their name by the presence of granulues in their 

cytoplasm. They are characterised by a short life span and are detected in increased 

numbers during immune responses. There are three types of granulocytes, neutrphils 

eosinophils and basophils, which are distinguished by the different staining 

properties of the granules. Granulocytes are part of the innate immune system; their 

role is principally phagocytic, as neutrophil is the most important cells in innate 

immune response, and also it provide as potent phagocytic cells, together with 

macrophages and dendritic cells.   

            T and B lymphocytes are distinguished from the other leukocytes, because of 

antigen receptors, and also differentiation from each other by maturation site. After T 

and B cells mature, they are circulate between the blood and the peripheral lymphoid 

http://en.wikipedia.org/wiki/Organism
http://en.wikipedia.org/wiki/Disease
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tissues to recognise the specific antigen. This characteristic makes them the principal 

mediators of an organised adaptive immune response launched against a specific 

pathogen. Unlike T and B cells, NK cells lack antigen specificity and are thought to 

recognise a missing self state through sets of activating and inhibitory receptors. 

 

Figure 1.4 Origin of cells of the immune system. 
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All the cells of the immune system originate from a common pluripotent hematopoietic 

progenitor of the bone marrow. These highly undifferentiated cells divide to produce a 

common lymphoid progenitor that gives rise to NK cells, B and T lymphocytes, and a 

common myeloid progenitor that gives rise to erythrocytes (red blood cells), granulocytes 

(polymprphonuclear leukocytes), megakaryote (cells that produce platelets), macrophages 

and dendritic cells. 

1.2 Other mediators of the immune system 

            Immunoglobulin also known as antibody is antigen recognition molecules of 

B cells. With similar structure, these proteins are produced by naïve B cells and 

activated plasma cell. Membrane bound immunoglobulin serves as B cell receptor 

(BCR). Immunoglobulin for the specific antigen is secreted as antibody by plasma 

cells. They have the capacity to bind specific pathogens or the toxic products. 

            Cytokines are secreted small proteins made by various cells in the body, 

which change the behaviour of cells through binding to specific receptors. Each cell 

type can produce only certain cytokines and in response to certain stimuli. Some 

cytokines have overlapping functions and some have opposite. Cytokines facilitate 

cell growth, chemotaxis, activation and enhance cytotoxicity. Interleukins (IL) are 

group of cytokines that are produced by leucocytes and act on leucocytes.  

Chemokines are small chemoattractant proteins which bind to their receptors 

on leukocytes and induce directed chemotaxis. Normally the cytokine and chemokines 

released by activated macrophages initiate the process known as inflammation. And 

also they response to an activating stimulus which create a certain environment at the 

site of infection which helps the target antigen to the specific antigen presenting cells 

(APC), this initiates APC maturation, triggers cell migration to the  peripheral 

lymphoid organs and regulates differentiation of T cells and antibody mediated 

immunity. The most important cytokines in innate immunity are TNF-α, IL-1, IL-10, 

IL-12, IFNα, β and γ, in adaptive immunity these are IL-2, IL-4, IL-5, TGF-β, IL-10 

and IFNγ 
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1.3 The structure of the immune system. 

            Immune system is the organs, tissues, cells and molecules involved in both 

innate immunity and adaptive immunity. Lymphoid organs can be generally divided 

into central or primary lymphoid organs, where lymphocytes are generated. 

Peripheral or secondary lymphoid organs, is where adaptive immune response are 

initiated and lymphocytes are maintained. The central lymphoid organs are the bone 

marrow and the thymus where B cells and T cells develop respectively. The 

peripheral lymphoid organs are spleen, lymph nodes and lymphoid tissues associated 

with mucosa which are found in various locations in the body such as the 

gastrointestinal tract, thyroid, breast, lung, salivary glands, eye and skin. The 

lymphoid organs are interconnected and link with the blood via the lymphatic system. 

Peripheral lymphoid tissues are dynamic structures highly involved in the immune 

response and their appearance and function is finely coordinated. 

1.4 The immune response. 

            The immune response consists of processes in which our body recognizes and 

defends itself against bacteria, viruses, and substances that appear foreign and 

harmful.  

1.4.1 Innate immune response. 

            Innate immunity is the front line of host defence. It is assumed to be rapid, 

non-specific and identical qualitatively and quantitatively each time the same 

pathogen is encountered (Lanier and Sun, 2007). Similar like adaptive immune 

systems the innate immunity has ability to distinguish between self and non-self 

molecules. Innate immunity relies on receptors such as toll-like receptors (TLR) that 

recognize conserved patterns on different classes of pathogens to trigger an 

inflammatory response which limits pathogen invasion (Janeway and Medzhitov 

2002) (Akira, et al. 2006) (Cooper and Alder 2006). Innate immunity largely 

involves three types of leukocytes, granulocytes, dendritic cells and macrophages 

which bind to pathogens internalise them finally to be killed. Because they use 
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primitive non-specific recognition systems they can bind to a variety of microbial 

products and induce phagocytosis (Janeway et al, 2001). And also the innate immune 

system provides a humeral response via cytokine such as IL-1 to activate the B cells 

to produce antibody. So  innate immune response largely involve professional 

antigen presenting cells, macrophages, dendritic cells and B cells, which can trigger 

adaptive immunity (Figure 1.5). 

 

Figure 1.5 Innate immunity is critical to adaptive immune response. 

Innate immunity is based on the recognition of invariable pathogen associated molecular 

patterns (PAMPs) by Toll-like receptors, and on phagocytosis. If the innate response fails to 

eliminate the pathogen, activated antigen presenting cells bearing this antigen trigger an 

adaptive immune response; they travel to the secondary lymphoid tissues where they present 

antigenic peptides and co-stimulatory signals to naïve T cells. After engaging antigen and 

costimulatory molecules, naïve T cells will be activated, expand and finally differentiated to 

effector T cells.   
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1.4.2 Adaptive immune response. 

            Adaptive immune response is the response of antigen-specific lymphocytes to 

antigen, including the development of immunological memory. B cells are one of the 

major cell types involved in adaptive immune responses. By production of antibodies, 

B cells mediate the humoral response. The antibodies produced by antigen specific B 

cells bind to pathogens and eliminate the pathogens by three main ways: a) They 

inhibit the toxic effects or infectivity of pathogens by binding to them (neutralisation). 

b) By coating the pathogen they enable phagocytic cells to recognise and kill it 

(opsonization). c) Antibodies can also trigger complement activation, which strongly 

enhances opsonization and directly lyses some bacteria (Janeway et al, 2001). 

            T cells are essential component of adaptive immune responses and have a 

wider range of activities. They are divided into two categories based on coreceptor 

molecules, the CD8
+
 T cells and the CD4

+
 T cells.  These two subclasses serve 

different functions upon activation.  CD8
+
 T cells differentiate into cytotoxic T cells 

which act by direct killing of the infected cell, either by delivering cytotoxic proteins 

or by triggering the target cell to apoptosis (Lim et al, 2000). CD4
+
 T cells 

differentiate into helper T cells which activate other cells; they either activate 

macrophages to kill pathogens (T helper I) or they activate B cells to produce 

antibody (T helper 2) (Janeway et al, 2001). T cells can only recognise antigenic 

peptide when in the form of complex with MHC molecules on the surface of antigen 

presenting cells to the two different subsets of T cells. MHC class I present peptides 

to CD8
+
 T cells and MHC class II presents peptides to CD4

+
 T cells (Moss and 

Khanna, 1999).  

            T cell activation requires T cell receptor recognition of peptide/MHC ligands 

on antigen presenting cells, plus co-stimulation resulting from the interaction of 

various molecules on T cells with complementary molecules on antigen-presenting 

cells (mainly dendritic cells) (Chambers and Allison, 1997). Contact with these 

ligands drives T cells to proliferate and differentiate into effector T cells (Figure 1.6).  
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Figure 1.6 Adaptive immune response. 

The humoral branch of the immune system comprises B-lymphocytes (left), which after 

interaction with virus differentiate into antibody-secreting plasma cells. The cellular 

response (right) starts with antigen presentation via MHC I (black) and II (blue) molecules 

by dendritic cells, which then leads to activation, proliferation and differentiation of antigen-

specific T cells (CD4 or CD8). These cells gain effector cell function to help directly, 

release cytokines, or mediate cytotoxicity following recognition of antigen.  
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1.4.3 Thymocytes differentiation and central tolerance 

1.4.3.1 Thymocytes differentiation 

T cell maturation in thymus is strictly controlled process. T cell arise from 

hematopoietic stem cells, migrate to the thymus (Starr et al., 2003). The thymus is an 

organ that supports the differentiation and selection of T cells (Takahama, 2006). 

Figure 1.7 shows the overall scheme of the T cell development within the thymus. 

 

Figure 1.7 Overall summary of T cell development in the Thymus 

Lymphoid Progenitors arise in the bone marrow and migrate to the thymus. In 

the thymus these cells lose the potential for B cell and natural killer cell development 

(Michie et al., 2000). The progenitor upon entry, lack expression of CD4 and CD8 

and are called double negative (DN). DN thymocytes can be subdivided further into 

four sequential stages of differentiation, which are identified by their surface 

expression of CD44 and CD25: DN1, CD44
+
CD25

-
; DN2, CD44

+
CD25

+
; DN3, 

CD44
-
CD25

+
; and DN4;CD44

-
CD25

-
 (Godfrey et al., 1993). As the cells progress 

from DN2 to DN4 stages, they express the pre-T cell receptors (pre-TCR), which is 

composed of the non-rearranging pre-Tα chain and a rearranged TCR β-chain, 

forming a pre-TCR complex (von Boehmer and Fehling, 1997). Only the cells that 
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succeed in in-frame rearrangement of the gene encoding the TCR β-chain are 

selected for further differentiation beyond this DN3 stage.  

In the thymic cortex, the successful expression of the pre-TCR complex on 

the thymocytes along with the interaction of Notch molecules with their legends such 

as delta-like (DII) 1 and delta-like 4 (DII 4) initiate the signals for further 

development to double positive (DP) thymocytes that express the TCRαβ antigen 

receptors. This is the first checkpoint of T cell development at the DN3 stage 

(Takahama, 2006). During the transition of DN4 to DP the pre-TCR expression leads 

to substantial cell proliferation. From the large number of DP thymocytes, the DP 

thymocytes that are best suited to function in the host environment is permitted to 

mature and migrate to peripheral lymphoid tissues. This selection is characterised by 

four processes; death by neglect, negative selection, positive selection and lineage-

specific development (Figure 1.8) 

 

Figure 1.8 Positive selection processes, negative selection process  

Death by neglect is initiated when there is too little signalling between the 

TCR and the self-peptide-MHC ligands, which results in delayed apoptosis. Too 

much signalling can promote acute apoptosis, which is caused in negative selection. 

Positive selection occurs when the signalling is at an intermediate level, where TCR 

signalling initiates effective maturation (Germain, 2002).  
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Positively selected DP thymocytes are induced to differentiate into single 

positive thymocytes, which are CD4
+
CD8

-
 or CD4

-
CD8

+
 (Hollander and Peterson, 

2009). These thymocytes spend approximately 12 days in the medulla before 

travelling to the cortex. During this period the SP thymocytes go through a 

maturation process. This is accompanied by further deletion of self-reactive 

thymocytes that have escaped negative selection in the cortex. This process is 

particularly important in central tolerance to tissue specific antigens (Kyewski and 

Derbinski, 2004).   

As well as the deletion mechanism that ensures self-tolerance, it is also 

thought that the medulla is the place for the production of regulatory T cells 

(Takahama, 2006). Treg cells have emerged to play a critical role in suppressing the 

response of the immune system to self-antigen (Kuhn et al., 2009). 

1.4.3.2 Central tolerance 

            Central tolerance is tolerance to self antigens that is established during 

lymphoid cell development in central lymphoid organs. It is associated with the 

deletion of autoreactive clones. For T cells, this occurs in the thymus. Central 

tolerance mechanisms eliminate newly formed strongly autoreactive lymphocytes 

before they migrate to peripheral lymphoid organs. However, some self-reactive T 

lymphocytes escape central tolerance because some of the cognate self-antigens are 

not expressed in thymus. These autoreactive cells are inactivated in the periphery. It 

is unlikely that mechanisms of tolerance would be sufficient to compensate for the 

failure to remove self-reactive lymphocytes during their primary development. It is 

important that there is some mechanism to prevent auto reactivity of the T cells after 

they have emigrated from the thymus. This is achieved through the T cell tolerance 

process. Although most of the self-reactive T cells are eliminated in the thymus, 

negative selection has limitations and additional mechanisms of tolerance are 

required to limit autoimmunity (Bandyopadhyay et al, 2007). Therefore the self-

reactive T cells that escape the negative selection must be kept under control in the 

periphery. To simplify the tolerance process the peripheral tolerance can be divided 
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into those that act directly on the responding T cell and those that evoke additional 

subsets of cells, including dendritic cells and regulatory cells (Walker and Abbas, 

2002) (Figure 1.9). 

 

Figure 1.9 Central-tolerance mechanisms 

The affinity of the TCR for self-peptide–MHC ligands is the crucial parameter that drives 

developmental outcome in the thymus. Progenitors that have no affinity or very low affinity 

die by neglect. This is thought to be the fate of most thymocytes. If the TCR has a low 

affinity for self-peptide–MHC, then the progenitor survives and differentiates, a process that 

is known as positive selection. If the progenitor has a high affinity for self-peptide–MHC, 

then several outcomes are possible. (Kristin et al, 2005) 
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2. The Major Histocompatibility complex (MHC)  

2.1 MHC genes and molecule. 

            The protective function of T cells depends on their ability to recognize cells 

that are harboring pathogens or the internalized pathogens or their products. They are 

glycoproteins present on the cell surface of host cells. The MHC molecules which are 

proteins involved in antigen presentation to T cells by delivering and displaying 

antigenic peptide on the surface of cell membranes.  

            The MHC is a cluster of genes on human chromosome 6 or mouse 

chromosome 17. The Human Leukocyte Antigen (HLA) is the genetic designation 

for the human MHC. It extends over 4 centimorgans of DNA and contains over 200 

genes, more than 40 of which encode leukocyte antigens. The rest are an assortment 

of genes that are not evolutionary related to the HLA genes themselves, although 

some are involved with them functionally (Klein and Sato, 2000). Some of them 

which have nothing to do with immune recognition which has been suggested that 

these phenotypes are due to accumulated mutations or genetic divergence. The MHC 

genes that are involved in the immune response are the MHC class I and class II 

genes. 

 In the genetic organisation of the MHC in human and mouse, there are three 

classes I α chain genes in humans, called HLA-A, -B and –C (the gene for β2-

microglobulin is located in a different chromosome). There are also three pairs of 

MHC class II α- and β-chain genes, called HLA-DR, -DP and –DQ. However in 

many cases the HLA-DR cluster contains an extra β-chain gene whose product can 

pair with DRα chain. This means that the three sets of genes can give rise to four 

types of MHC class II molecule (Beck and Trowsdale, 1999). The expression of 

MHC alleles is codominant. The class II region also include the TAP, LMP, DM, and 

DO genes. 
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            All the MHC class I and II molecules can present peptides to T cells (Figure 

2.1), MHC class I molecules are expressed on all nucleated cells. By contrast, MHC 

class II expression is restricted in the professional antigen presenting cells, namely B 

cells, macrophages and dendritic cells. To compete with rapidly evolving pathogens 

the MHC is highly polygenic and polymorphic. These are important features as they 

allow the immune system the ability to present a wide array of peptides, preventing 

one disease wiping out the entire species. Much is known about MHC-peptide 

complexes, but each molecule binds a different range of peptides. Thus the presence 

of several different genes of each MHC class means that any individual is equipped 

to present a much broader range of peptides than if only one MHC molecule of each 

class was expressed at the cell surface (Janeway et al, 2001). In this way the host has 

a much greater chance to recognise and eliminate pathogens.  

 

Figure 2.1 The MHC molecule bind to the T cell receptor 
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The MHC class I molecule (left) on most cells binds to the T-cell receptor (TCR) and CD8 

receptor. The MHC Class II molecule (right) on immune cells binds to the TCR and CD4 

receptor on other immune cells. 

2.2. MHC polymorphism 

An outstanding feature of the MHC molecules is their extensive 

polymorphism. There are multiple variants of each gene within a population as a 

whole; the MHC genes are in fact the most polymorphic genes known. There is 

unwarranted satisfaction with the view that MHC polymorphism evolved because 

there was a selective advantage in having a variety of MHC proteins to bind a variety 

of peptide subsets for presentation to T cells (Forsdyke, 1991).  

There are more that 200 alleles of some human MHC class I and II genes, 

each allele being present at a relatively high frequency in the population. So there is 

only a small chance that an individual will be homozygous at a specific MHC locus. 

Thus the extensive polymorphism at each locus has the potential to double the 

number of different MHC molecules expressed in an individual and thereby increases 

the diversity already available through polygeny.  

Allelic variation occurs at specific sites within the MHC molecules (Figure 

2.2). The polymorphic residues are found at the peptide-binding groove. More 

specifically, diversity occurs at the α1 and α2 domains of class I molecules and β1 

domain of class II molecules. Among the polymorphic residues there are several 

conserved residues within the antigen-binding sites. It has been demonstrated by 

Geluk et al (1993) that these reside is crucial for peptide binding and recognition by 

the T cell receptor, and has been conserved for over 30 million years!  

MHC polymorphism appears to have been strongly selected by evolutionary 

pressures. Because selectively neutral polymorphisms are not expected to be 

maintained for long periods of time, the long persistence of MHC polymorphisms is 

evidence that they are selectively maintained (Hughes and Yeager, 1998). Evidence 

from the house mouse (Mus) suggests that the extreme diversity of genes of the 
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MHC results from three different forms of selection: i) pathogen driven selection 

(hypotheses of heterozygote advantage and rare allele advantage), ii) sexual selection 

(hypotheses of mating preferences, infertility and foetal loss and scarcity of 

homozygotes) and iii) inbreeding depression, the most important being the first one 

(Potts and Wakeland 1993) (Jeffery and Bangham, 2000) (Grosberg and Hart,2000) 

(Gruen and Weissman, 1997).     

 

      Figure 2.2. Allelic variation occurs at specific sites within MHC molecules. 

2.3 The structure of MHC molecules. 

As mentioned before, the overall structure of the two classes of MHC 

molecules is very similar. However they bear some critical differences that allow 

them to serve their distinct functions in antigen presentation.     

2.4 MHC class I molecule.    

            There are three components consist of the structure of a mature MHC class I 

molecules which is a heterodimer of the polymorphic heavy chain (HC) 

noncovalently associated with β-2microglobulin (β2m), where does not span the 
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membrane and then loaded with the antigenic peptide, all of which are essential for 

the formation and stability of a functional MHC class I complex. The heavy chain 

(43kDa) α chain, a transmembrane glycoprotein, folds into three different structural 

domains (α-1, α-2, α-3), a transmembrane segment and a cytoplasmic tail. The 

folding of α1 and α2 domains creates a long cleft or groove, which accommodates 

the peptide antigens (Klein and Sato, 2000). The peptides that can bind to a given 

MHC molecule have the same or very similar amino acid residues (‘anchor’ residues) 

at two or three particular positions alone the peptides in the MHC molecule (Bouvier 

and Wiley, 1994). MHC ckass I molecules bind short peptides if 8-10 amino acids by 

both ends. 

 

Figure 2.3 MHC class I.  

Scematic representation shows the MHC class I molecule is a heterodimer of a 

transmembrane α chain bound non-covalently to β2-microglobulin, which does not span the 

membrane. The α1 and α2 segments of the heavy chain fold together to create the peptide-

binding site. 
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2.5 MHC class II molecule. 

The MHC class II molecule (Figure2.4) is composed of two transmembrane 

glycoprotein chain, α and β, which are both encoded within the MHC region of the 

genome. Each chain has two domains and the two chains together form a compact 

four-domain compact structure, similar to that of MHC class I molecule (Fremont et 

al, 1996). The two domains forming the peptide-binding cleft are contributed by 

different chains and are therefore not joined by a covalent bond (Klein and Sato, 

2000). The major difference between the two molecules is that for MHC class II the 

membrane distal domains are not joined by covalent bonds, thus forming a peptide-

binding groove that is open at both ends. As a result, the peptide ends are not bound 

into pockets, but instead the peptide lies in an extended conformation between the 

two chains and binds by interactions along the length of the binding groove. Because 

the peptide is bound by its backbone and allowed to emerge from both ends of the 

binding groove, the length of the peptides that bind to MHC class II molecules are at 

least 13 amino acids long and can be much longer than of those that bind to MHC 

class I molecules, in most cases between 13-17 amino acids long (Rammensee, 1995) 

(Sofra, 2009). Similarly to MHC class I molecules, the sites of major polymorphism 

in the MHC class II molecule that determine antigen binding are located in the 

peptide binding cleft; different allelic variants of MHC class II molecules bind 

different peptides. However, the more open structure of the MHC class II peptide-

binding site and the greater length of the peptides bound in it allow greater flexibility 

in peptide binding (Sofra, 2009). 
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Figure 2.4 MHC class II.  

Schematic representation shows MHC class II is formed by two transmembrane 

glycoprotein chains, which are not covalently bound. Thus, the peptide binding site that is 

formed is open at both ends. 

 

2.6 Peptide-MHC complex. 

            MHC molecules assemble with short antigenic peptides to form antigenic 

peptide MHC complexes. TCR interacts both the antigenic peptides and MHC to 

respond effectively to antigen under MHC restriction. As mentioned before the 

mature MHC molecules consist of three components: the polymorphic heavy chain 

(HC), (light chain) and the antigenic peptide which is a necessary and integral part of 

a stable MHC molecule structure; this serves to prevent random peptide exchanges at 

the cell surface, thus making the peptide/MHC complex a reliable indicator of 

infection or of uptake of a specific antigen. 
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MHC class I molecules are translocated during synthesis into the lumen of 

Endoplasmic reticuculum (ER). Here the chains must fold correctly and assemble 

with each other if necessary, before the complete protein can be transported to the 

cell surface. Thus the peptide-binding site of the MHC class I molecule is formed in 

the lumen of ER and is never exposed to the cytosol. Newly synthesized MHC class I 

molecules are held in the ER until they form stable peptide/MHC class I complexes 

(Townsend et al, 1989), so antigenic peptides are transported into the lumen of ER. 

The antigenic fragments derive from proteins found in the cytosol and they are 

formed by degradation of larger proteins by the proteasome, which is protein 

degradation machines located in the nucleus and the cytoplasm, before they enter the 

ER through the transporters associated with antigen processing (TAP). The TAP 

transporter is responsible for antigenic peptide translocation. This is a heterodimer of 

TAP1 and TAP2 proteins, which are members of the ATP-binding cassette (ABC) 

superfamily and are characterised by the ABC unit. ABC proteins mediate ATP-

dependent transport of ions, sugars, amino acids, and peptides across membranes in 

many types of cells, including bacteria (Klein et al, 1999). 

            In the ER, every step of the assembly and forming of the MHC class I 

molecule undergoes extensive quality control by a wide array of chaperones and 

specific proteins. Thus there is a recognition point on class I heavy chain molecules 

single N-linked glycan for the ER membrane chaperone calnexin and soluble 

chaperone calreticulin, both of which aid in the proper folding and retention of the 

class I molecules (Amy et al, 2002). Initially, partly folded MHC class I α chains 

bind to a chaperone protein, calnexin, and form a complex that binds to β2m. The 

MHC class I α: β2m dimmer is then released from calnexin to become associated 

with the loading complex, which consists of the chaperone molecules calreticulin and 

Erp57, the transporters associated with antigen processing (TAP1 and TAP2) and 

tapasin as the specific chaperone only located at the membrane of the ER. Tapasin 

bridges TAP and MHC class I to facilitate the delivery of suitable TAP-associated 

peptides and their loading on the MHC class I. A stable peptide/MHC class I 

complex is then allowed to travel to the cell surface (Figure 2.5). 
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Figure 2.5. Degradation and Transport of antigens that bind to MHC class I molecules 

Schematic representation of peptide loading mechanism on MHC class I molecules. 

Peptides generated by the immunoproteasome are transported through the ER membrane by 

TAP. Tapasin links TAP to MHC class I heavy-chain/β2- microglobulin dimers to facilitate 

peptide loading onto MHC class I. Other components of the loading complex, such as 

calreticulin (Crt) and ERp57, ensure correct folding and assembly of the MHC class I with 

the peptide. 

            Conversely, MHC class II antigen presentation pathway is geared towards the 

presentation of extracellulaely derived antigens or antigens generated within the 

endolysosomal pathway. MHC class II expression is confined only in a small subset 

of antigen presenting cells grouped as professional APC, which include macrophage, 

B cells and dendritic cell. Like MHC class I, MHC class II molecule is also 

translated into ER, but class II molecules has to transport to the lysosome associated 

endosomal compartment with a third transmemebrane glycoprotein invariant chain 

(Ii), which protects the peptide binding site and targets delivery of MHC class II 



24 
 

molecules to the acidic endosomal compartment. As a molecular chaperone for class 

II this invariant chain also provide targeting information in its cytoplasmic N 

terminus to direct the next step for class II /Ii complex (Amy et al, 2002). Once they 

arrive in the endosomal compartment, the MHC class II will form stable complexes 

with antigenic peptides derived from extracellular proteins before it is allowed to 

reach the cell surface. After transport into the acidified vesicle, acid proteases such as 

cathepsin S sequentially cleave the invariant chain leaving only the short fragment, 

called CLIP that blocks the MHC class II α: β peptide binding groove. The class II-

associated invariant chain peptide (CLIP) remains bound to the MHC class II 

molecule until it encounters suitable peptides; upon peptide competition it is 

dissociated or displaced to allow peptide binding to MHC class II. There are other 

proteins also playing an important role called HLA-DM (DM) which form a similar 

structure of that class II molecule. It like the tapasin with class I molecules, DM 

stable class II molecule and confer upon the class II molecule with high affinity bind 

with peptide into the peptide-binding groove.  Finally stable peptide/MHC class II 

complexes travel to the cell membrane where they are presented to T cells. This 

process is slower than class I; new synthesized peptide/MHC class II molecules 

present to cell surface approximate 2-4 hours (Figure 2.6).  
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Figure 2.6. Antigen degradation, transport and binding to MHC class II molecules 
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3. T cell activation 

            T cell activation is initiated by interaction of the TCR-CD3 complex with a 

processed antigenic peptide bound to either a class I (CD8
+
 cells)  or class II (CD4

+
 

cells) MHC molecule on the surface of an antigen presenting cell. CD8
+
 and CD4

+
 

cells also require a co-stimulating boost called B7, and then following activation 

from the APC cells there are a number of substances called cytokines trigger the 

rapid growth and proliferation of more T cells and are thought to increase the 

cytotoxic effects of the CD8
+
 cells. So three signals are required for T cell activation, 

which are peptide- MHC complex binding with TCR, co-stimulate molecule and 

cytokines (Figure 3.1).   

 

Figure 3.1 three signals induce T cell activation  

The outcome of specific antigen recognition by T cells (signal 1) is determined by co-stimulation 

(signal 2) delivered by fully activated APCs and the presence of inflammatory cytokines (signal 3). 

Activation of naïve T cell in the presence of all three signals leads to full effector function.  
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3.1 T cell receptor (TCR).  

            The antigen recognition molecule of T cells is the T cell receptor (TCR) 

located on the plasma membrane of T cell that recognises peptide/MHC 

combinations on antigen presentation cells. TCR is a disulphide-linked heterodimer 

which is formed by two transmembrane glycoprotein chains, α and β, which contain 

highly variable antigen recognition sites (Figure 3.2) A minority of T cells bear an 

alternative but structurally similar receptor made up of a different pair of chain 

designated γ and δ; the function of γ; δ T cells in immune responses is not yet 

entirely clear. 

            The TCR associated with CD3, forming a TCR-CD3 membrane complex. 

CD3 expression in required for membrane expression of α: β and γ: δ TCRs. The 

rearrangement of antigen-recognition segments in TCR gene results in highly 

diversified TCR pool sufficient to recognise a plethora of antigens potentially 

encountered through life time. The α: β chains form extracellular disulfide-linked 

heterodimers responsible for MHC/antigen recognition. The TCR complex is formed 

with various other components that are required for initiating signalling when the 

TCR complex binds to peptide/MHC. These components include various CD3 

molecules which are five invariant polypeptide chains γ, δ, ε, ζ and η chain. These 

chains associate to form three dimmers, γ: ε, δ: ε and a ζ: ζ or a ζ: η. 
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Figure 3.2. T cell receptor  

Schematic representation shows that the T cell receptor is formed by two transmembrane 

glycoprotein chains, the α and β. The extracellular portion of the chains consists of a 

constant region and a viariable region, which is the site of peptide/MHC recognition. 

3.2 Co-stimulatory molecules. 

            Although recognition of antigen: MHC complexes are mediated solely by the 

TCR- CD3 complex, co-stimulatory molecule play an important accessory role to 

fully active T cell. In the absence of co-stimulatory signals with disturb of specific 

signalling through the TCR will lead to T cell non-responsiveness or ‘anergy ’. Co-

stimulatory signals are delivered by co-stimulatory molecules on APCs via their 

cognate receptors on T cells. The two major co-stimulation signals following the 

TCR: CD3: MHC interactions are i) the prototypical CD28 interaction with either 

CD80 (B7.1) or CD86 (B7.2) and ii) the binding of CD40:CD40L (Figure 3.3).  
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                     Figure 3.3. Two major co-stimulation signals 

CD80 and CD86 bind CD28 with equal affinity but are present in differing 

densities on the various APCs (Chambers and Allison, 1997). For this reason the 

resultant T cell response can alter markedly depending to which ligand CD28 binds. 

It must also be noted that upon activation of the T cell a newly expressed CTLA-4 

receptor may also bind the CD86 ligand but with higher affinity, and acts as an 

inhibitory signal leading to deceleration of the activation process (Chambers and 

Allison, 1997). The role of CD28 as a co-stimulatory entity is observed through its 

collaborative actions in ultimately recruiting transcription factors for interleukin-2 

(IL-2) gene expression (Figure 3.4).  
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          Figure 3.4. Co-stimulation signalling control T cell activation 

The CD40: CD40L co-stimulation acts in two directions. It is involved in the 

upregulation of CD80 (B7.1) and CD86 (B7.2) surface expression on the B cell and 

thus in driving the T cell response. Alternatively, CD40 ligand expression by the T 

cell may act upon macrophages to provide the contact dependent macrophage 

response to interferon-γ; although it has been found that tumour-necrosis factor α or 

β can substitute for CD40L in macrophage activation (Janeway et al, 2001). 

3.3 The immunological synapse. 

            The immunological synapse is the interface between an antigen presenting 

cell and a lymphocyte as well as other critically important accessory ligands. This 

structure forms around the site of contact between the T cell and APC as 

consequence of reorganization of T cell membrane proteins. This advance in live 2-

photon-microscopy have revealed that the immunological synapse is an active and 

dynamic structure that allows T cells to recognise and respond to antigenic molecules 

on the surface of APCs. The formation of the immunological synapse is thought to 

take place in three general steps; first, an interaction occurs between the accessory 
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ligands on the T cell, e.g LFA-1, and those on the APC, e.g. ICAM-1 (Sofra, 2009). 

This contact provides a stable structure which allows the T cell to stop and ‘sample’ 

the available peptide/MHC complexes through its TCR. Subsequently, if the TCR 

recognises and binds to the peptide/MHC complex, the entire TCR/peptide/MHC 

structure is transported and becomes the centre of the synapse during which time 

signalling occurs (Figrue 3.5).  

            The immunological synapse requires hours of stable interaction between a T 

cell and an APC to result in effective T cell activation (Garcia et al. 2008). Once 

synapse formation is underway, the size and stability of the assembled cluster are 

determinants of the signal initiation which triggers T cell activation. Thus, the 

molecules involved in the cluster define the fate of T cells following their 

engagement with APC (Sofra, 2009). The function of immunological synapse is still 

in research step, but it is thought to have an important role in regulating signalling, 

and also involved in the directed secretion of cytokines and cytotoxins by effector T 

cells in contact with their target cells. 

 

Figure 3.5. Immunological synapse 
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3.4 T cell activation and immune response to target infected cells  

            The responses of T lymphocytes to cell associated microbial antigens consist 

of a series of sequential steps that result in an increase in the number of antigen 

specific T cells and the conversion of naïve T cells to effector cells. Naïve T 

lymphocytes constantly circulate through peripheral lymphoid organs until 

recognition of specific antigenic peptide in context with MHC on APC. The 

recognition leads to activation and expansion of naïve T cells (Figure 3.6). 

            The activation of naïve T cells leads to their proliferation and the 

differentiation of their progeny into effector T cells. Both of proliferation and 

differentiation depend on the production of cytokines whose multiple functions in 

cell-mediated immunity. Once naïve T cells differentiated into specialized effector T 

cells is associated with their enhanced functional potential to orchestrate pathogen 

clearance. After differentiated into distinct Th cells, the major function for CD4 T 

cells is to produce specific effector cytokines that induce specific type of immune 

responses. So in other words this primary cell-mediated immune response when 

challenged by the same pathogen not only provides a specialized ‘army’ of effector T 

cells, but also generates a state of immunological readiness for protection from 

subsequent challenge with the same pathogen.  
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 Figure 3.6. The recognition of antigens by T cells is MHC restricted.                                

Naïve T cells recognise specific complexes of peptide/MHC. For example, a T cell that has 

a TCR that can recognise antigen x on MHCα would not recognise the same antigen on a 

different MHC (e.g. antigen x on MHCβ), or a different antigen on the same MHC (e.g. 

antigen y on MHCα). 

            The effector T cells act very rapidly when they encounter their specific 

antigen on other cells because of their requirement to recognize peptide antigens 

presented by MHC molecules. And all of them act on other hast cells but not the 

pathogen itself. Subsequently, the effector T cells secrete IL-2, which drives them to 

proliferate and differentiate into armed effector T cells. 
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3.4.1 T cell differentiate 

            On antigen recognition, naïve T cells differentiate into several functional 

classed of effector T cells that are specialized for different activities. There are two 

main functional categories that detect peptide antigens derived from different types 

of pathogen, the cytotoxic CD8
+ 

T cells and the helper CD4
+ 

T cells. Circulating 

effector CD8
+ 

T cells recognize antigenic peptide derived from intracellular 

pathogens in the context of peptide/MHC class I complexes on the APC surface and 

naïve CD8
+
 T cells all differentiate into cytotoxic effector T cells that respond by 

initiating a cytotoxic response towards the antigen presenting cell that synthesized 

the antigenic peptides. Effector CD4
+
 T cells have more flexible repertoire of effector 

activities. After recognition antigens derived from pathogens replicating in 

intracellular vesicles, as well as extracellular bacteria and toxins, in the context of 

peptide/MHC class II complexes on the APC; in response, they can differentiate 

down distinct pathways that generate effector subsets with different immunological 

functions.  

3.4.2 CD4
+ 

effector T cell subsets  

            The naïve CD4
+
 T cell is a multipotential precursor with defined antigen 

recognition specificity, but substantial plasticity for development. It has the ability to 

differentiate into several different subtypes of effector T cells in response to specific 

cytokine environment.  The subsets that were defined first are called TH1, TH2; more 

recently, a third population has been identified and called TH17 cells because its 

signature cytokine IL-17 and several regulatory T cell subsets that have inhibitory 

activity that limits the extent of immune activation (Figure 3.7). 
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Figure 3.7. Cytokines involved in CD4 T cells differentiation, flagship cytokines produced 

by the differentiated CD4 T cells and their effector functions  

            Intracellular bacterial infections tend to stimulate the development of TH1 

cells, which differentiate in the presence of IL-12 and are defined on the basis of 

their production of IL-2, IFNγ and lymphotoxin (Macatonia et al. 1993; Scharton and 

Scott 1993). TH1 cells have the capacity to trigger an inflammatory response and 

support macrophage activation and migration.  These cells provide additional 

activating signals for macrophages that are chronically infected with certain 

pathogens and are unable to destroy them. This is done through producing CD40 

ligand for CD40 macrophage receptor and through IFNγ the generation of cytotoxic 

T cells and the induction of B cells for the production of opsonizing antibodies. 

These effector TH1 cells will generate copious IFNγ when they recognize antigen on 

a target cell, thus reinforcing the signal for the differentiation of more TH1 cells.  
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            Conversely, extracellular antigens tend to stimulate the differentiation of TH2 

cells (also called helper CD4 T cells), which develop in the presence of IL-4. The 

TH2 cells make IL-4, IL-5, IL-13 and other cytokines that help B cell activation, 

production of neutralizing antibodies, control of allergic reactions and expulsion of 

extracellular parasites (Mohrs et al. 2002; Prout et al. 2004). TH2 cells largely 

promote immune response to parasites. They secrete cytokines that promote B cell 

growth: IL-4, IL-5, IL-9 and IL-13. They express CD40 ligand that also induces B 

cell proliferation and isotype switching. Recent evidence has suggested that certain 

protein secreted by activated dendirtic cells can lead to the activation of the IL-4 and 

GATA-3 gene in cells, thus starting a cascade of positive feedback for differentiation 

as TH2 cells as a result of continued IL-4 secretion. Each subset promotes its own 

development and inhibits the development of the other subset via their secreted 

cytokines (Sanders et al. 1988; Gajewski and Fitch 1988), such that in that particular 

environment the induction of one type of response suppresses the induction of the 

other (Mosmann and Coffman 1989).  

            Recently an IL-17-producing subset, known as TH17 cells (Harrington, 

Hatton et al. 2005), has been described. TH17 cell differentiation is driven by TGFβ 

in combination with the pro-inflammatory cytokines IL-6, IL-21, and IL-23 (Zhou, 

Lopes et al. 2008), and it is antagonised by products of the TH1 (e.g. IFNγ) and TH2 

(e.g. IL-4) lineages (McGeachy and Cua 2008), and they express the receptor for 

cytokine IL-23 rather than the receptor for IL-12 expressed by TH1 cells. In addition 

to IL-17, TH17 cells are characterised by their ability to produce IL-22 and IL-17F 

(Boniface et al. 2009). They promote the recruitment of neutrophils and moncytes, 

and this may be their principal role in inflammatory disorders. The commitment to 

the TH17 lineage is thought to be under the control of the transcription factor RORγT, 

which is induced in these conditions and which drives expression of the receptor for 

IL-23. TH17 cells are thought to be an evolved arm of the adaptive immune response 

specialized for enhanced host protection against extracellular bacteria and some fungi 

(Horton et al. 2000) (Stefanelli et al. 2005) (Harrington et al. 2006) particularly at 

mucosal surfaces (Pallone et al. 2009). They are thought to contribute to homeostatic 
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maintenance of mucosal tissues such as the gut (Izcue et al. 2008), and emerging 

information suggests that TH17 cells may also be involved in antiviral immune 

responses by protecting the host against secondary infections involving 

gastrointestinal microbes (Brenchley and Douek 2008). 

            Besides armed effector cells, CD4
+
 T cells can also differentiate into distinct 

regulatory subsets (Treg cells) which found in the periphery are a heterogeneous 

group of cells with different developmental origins. They are CD4
+ 

and also express 

the α chain of the IL-2 receptor (CD25) with high levels of the L-selectin receptor 

CD62L and represent about 10-15% of the CD4 T cells in the human circulation. 

They suppress the proliferation and differentiation of TH or cytotoxic T cells; serve to 

limit potential immunopathology and autoimmunity that may be caused by an over-

exuberant immune response (Sakaguchi. 2000). Treg cells are defined by the 

expression of a forkhead transcription factor, Foxp3, which is essential for 

programming their regulatory effector function. Regulatory T cells can be further 

divided in two categories, the naturally occurring CD4
+
CD25

+ 
subset that develops in 

the thymus (nTregs) and the TGFβ-induced CD4
+
CD25

- 
subset that differentiates in 

the periphery (iTregs) (Curotto de Lafaille and Lafaille 2009) (Josefowicz and 

Rudensky 2009). Generally, both types exert regulatory function by suppressing 

immune responses via the secretion of specific cytokines, for example by producing 

IL-10 and TGFβ, they inhibit T cell proliferation. Inter-linking mechanisms for CD4
+
 

T cell effector and regulatory lineage specification have been described (Veldhoen 

and Stockinger 2006); for example TH17 differentiation depends on the pleiotropic 

cytokine TGFβ, which is also linked to regulatory T cell development and function. 

Low concentrations of TGFβ drive TH17 cell differentiation, while high 

concentrations of TGFβ inhibit TH17 cell development and induce differentiation of 

regulatory T cells. Even after differentiation a helper T cell of a specific lineage can 

convert to another helper phenotype, within a certain cytokine environment. For 

example, iTregs can become IL-17 producing cells in the presence of IL-6 and IL-21, 

TH17 cells can switch to IFNγ producing TH1 cells in the presence of IL-12 or, in the 

presence of IL-4, to IL-4 producing TH1 cells. Treg is involved in controlling 
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adaptive immune responses, so failure of natural Treg function is known to be 

involved in several autoimmune syndormes (Figure 3.8). 

  

Figure 3.8. FOXP3
+
 regulatory T cells in the human immune system (Sakaguchi et al, 2010) 

           One subset of these adaptive regulatory T cells, called TH3, is found in the 

mucosal immune system. TH3 cells produce IL-4, IL-10, and TGFβ which is the main 

reason to distinguish from TH2 cells. TH3 cells may by predominantly of mucosal 

organ and be activated by the mucosal presentation of antigen. Lack of these cells is 

linked to autoimmune disease in the gut and to inflammatory bowel disease 

(Sakaguchi et al. 2006).             

            Other CD4
+
 T cells that may regulate the development and differentiation of 

the helper subtypes are the NKT cells, known as innate-like lymphocytes (ILLs). 

http://www.nature.com/nri/journal/v10/n7/full/nri2785.html
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They require the recombinases RAG-1 and RAG-2 to produce antigen receptors, and 

undergo the process of antigen receptor gene rearrangement; therefore these cells 

belong to adaptive immune system. They arise from the same lymphoid progenitor 

but their development is distinct from that of the other CD4
+
 T cells, since it does not 

depend on the expression of MHC class II. Instead their activation depends on 

relatively invariant CD1 molecules (Silk, Salio et al. 2008) that are induced in 

response to infection. Together with other innate-like lymphocytes, such as the γδ T 

cells, NKT cells are thought to act as intermediates between innate and adaptive 

immunity. 

            After antigen/pathogen is cleared most effector cells die, but a few antigen-

experienced cells remain for long-term protection. These are known as memory T 

and B cells, which guard lymphoid organs and patrol peripheral tissues to mount 

rapid responses on re-exposure to antigen (Sallusto, Lenig et al. 1999). Thus, a 

successful T cell-mediated immune response has the capacity to clear infection and 

establish a state of long-term protective immunity to that particular pathogen. 

3.5 Immunological memory. 

            Immunological memory is the ability to provide a rapid reinduction of 

antigen-specific antibody and effector T cells on subsequent encounters with the 

same pathogen, thus providing long-lasting and often lifelong protection against it. 

Although the mechanisms underlying protective immunological memory are still not 

well understood, the phenomenon has long been recognised and applied to 

vaccination (Figrue 3.9). 

            Long-term protective immunity either naturally derived after an infection or 

after vaccination, involves three key main factors (Rafi Ahmed 13th Congress of 

Immunology): First, it provides the host with pre-existing neutralizing antibodies 

which upon re-infection mediate the initial response. Indeed, it is clear from the early 

days of immunology that antibodies generated by provocation with pathogen can 

protect from reiterated challenge with pathogen as elegantly demonstrated by 



40 
 

Kitasato and Behring more than 100 years ago (Behring, 1900), (Dorner and 

Radbruch 2007). Second, it involves long-lived antibody-secreting plasma cells 

(humoral memory) and long-lived memory B cells capable of reacting quickly to a 

recurrent antigenic challenge (reactive memory) (Ahmed and Gray 1996). The third 

key factor of immunological memory is the increased number and longevity of 

memory T cells, which have the capacity to respond quicker and better than T cells in 

a primary immune response; as a result they aid a more rapid and efficient 

elimination of the infectious agent (Sofra, 2009).   

 

Figure 3.9. Immunological memory 

The First encounter with an antigen produces a primary response. Antigen A introduced at 

day 0 encounters little specific antibody in the serum (Red line). After a lag phase antibody 

against antigen A appears; its concentration rises to a plateau and then gradually declines 

which is a typical primary response. After recovering from an infection, a second exposure 

of antigen A, over the ensuing weeks, months, or even years, a very rapid and intense 

secondary respond to A occurs. But this response is specific, because there is only a primary 

response to the new antigen B (Blue line). 
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3.5.1 Memory T lymphocytes 

            There is a small group of antigen specific T cells differentiated into long lived 

memory cells which can survive even after the infection is eradicated and antigens as 

well as the innate immune reaction to the infectious pathogen are no longer present. 

These memory T cells can be found in lymphoid organs in mucosal tissues, and in 

the circulation. There are two subsets of memory T cells. One is central memory cells 

populate in lymphoid organs and responsible for rapid clonal expansion after re-

exposure to antigen. The other called effector memory cells stored in mucosal tissue 

and mediate rapid effector functions on reintroduction of antigen to these sites. 

Memory T cells require signals delivered by certain cytokines like IL-7 to keep them 

stay alive. Although memory T cells cannot continue to produce cytokines to kill 

infected cells, they still have the ability to recognize antigen and then recover rapidly 

on encountering it.  

            To date, it remains to be defined how protective memory is maintained. 

Generally, there are two fundamentally differing views: One that describes memory 

maintenance as an inherent special quality of the immune system independent of 

sustained antigen dependence, and another that illustrates immunological memory as 

a low-level antigen-driven protective immune response. 

3.6 Factors that influence the T cell response. 

            During the T cell response, the survival and proliferation of T cells are 

maintained by antigen, co-stimulatory signals from CD28, and cytokines such as IL-

2. Numerous mechanisms ensure the generation of a useful T cell response, despite 

several obstacles. However, initiation of T cell response is mediated by APC that 

present antigenic peptide-MHC complexes and costimulatory molecules to T cells. 

And then, the correct type of T cell must respond to antigens form the extracellular 

and intracellular compartments which worked out perfectly with the help from the 

specificity of the CD4 and CD8 co-receptors for MHC class II and class I molecules, 

and by the segregation of extracellular and intracellular protein antigens for display 
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by MHC class II and class I molecules, respectively. Third, T cells must interact with 

antigen-bearing APCs long enough to be activated which is accomplished by 

adhesion molecules to stabilize T cell binding to APCs. Fourth, T cells should 

respond to microbial antigens but not to harmless proteins. Microbes take the 

responsibility, because T cell activation requires co-stimulators induced on APCs by 

microbes. Finally, antigen recognition by a small number of T cells must lead to a 

large enough response to be effective, which is calculated by several amplification 

mechanisms that are induced by microbes and activated T cells themselves and lead 

to enhanced T cell activation.      
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4 Professional antigen presenting cells 

4.1 Function of professional APC 

            Cells can present antigen peptide associated with MHC molecule to inactive 

T lymphocytes and activate them for the very first time know as antigen presenting 

cells (APCs). A variety of cells can function as antigen presenting cells to express 

MHC class I, but there is a distinguishing feature group which has unique ability to 

express MHC class II classified as professional antigen presenting cells: dendritic 

cells, macrophages and B lymphocytes.  

             Macrophages must be activated by phagocytoses of particulate antigen 

before they express class II MHC molecules or co-stimulatory membrane molecules 

such as B7. B cells constitutively express class II MHC molecules but must be 

activated before they express co-stimulatory molecules.  Dendritic cells (DC) are the 

most effective of the antigen presenting cells, because these cells constitutively 

express a high level of class II MHC molecules and have co-stimulatory activity, 

they can activate naïve TH cells as discussed later in this chapter (Figure 4.1).  
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Figure 4.1.  Professional antigen presenting cells 

There are three different types of professional antigen presenting cells are shown in different 

models. (From top to bottom).   
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4.2 Dendritic cell biogenesis, function, in vitro generation, antigen loading 

and subtypes. 

DCs represent a unique system of cells that induce, sustain and regulate 

immune responses (Banchereau and Steinman, 1998). Figure 4.2 shows an electron 

microscopic image of a DC. DCs originate in the bone marrow from pluripotent 

CD34
+
 stem cells and migrate to peripheral tissues through the blood. DC progenitors 

give rise to myeloid and lymphoid precursors. DCs are distributed in most tissues and, 

in particular, in tissues that interface with the external environment. There they 

perform sentinel function for incoming pathogens. Langerhans cells, the first DCs 

described, are widely distributed to the skin, esophagus, cervix, and buccal epithelia. 

Interstitial DCs are present in the dermis as well as the interstitium of virtually all 

tissues except for the brain. Furthermore veiled DCs may be found in the afferent 

lymph and interdigitating DCs reside in the cortical zone of the lymph nodes and in 

the spleen (Dannull et al, 2000). The DCs in peripheral tissues are immature but 

capable of actively taking up antigens by three major pathways, micropinocytosis, 

phagocytosis and receptor-mediated endocytosis (Paczesny et al, 2003). 

Macropinocytosis allows uptake of soluble extracellular antigens. In addition, 

phagocytosis or receptor mediated endocytosis may be initiated by direct, 

nonopsonic interaction between pathogen, apoptotic cells, or effete body cells and 

DCs. Receptor mediated uptake may occur via the multilection receptor, the mannose 

receptors, collectins, toll-like receptors, and scavenger receptors (Colino and Snapper, 

2003) (Dannull et al, 2000). Alternatively, antibodies or complement can act as 

bridging molecules between pathogen and Fc-type or complement- type receptor, 

thus leading to opsonic uptake (Dannull et al, 2000). 
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Figure 4.2 Image of a DC 

Following uptake of antigens, DCs induce leukocyte recruitment to the site of 

inflammation through production of chemokines and inflammatory cytokines. 

Antigen uptake induces maturation, which is complex process with the dual role of 

transforming immature DCs in the peripheral tissue into cells that will migrate to the 

secondary lymphoid organs and then act as professional APCs for the priming of 

naïve T cells (Colino and Snapper, 2003). Toward accomplishing migration, 

activated DCs lose their phagocytic capacity and tissue adhesive structures; increase 

their expression of receptors for lymphoid chemokines (i.e. CCR7), and reorganise 

their cytoskeleton for the acquisition of high cellular mobility (Winzler et al, 1997). 

Towards the second goal, DCs strongly upregulate their expression of co-stimulatory 

molecules (i.e. CD40, B7.1, B7.2) and upregulate synthesis and translocation to the 

surface of MHC molecules complexed with processed antigens (Guermonprez et al, 

2002). The ability of DCs to induce a primary immune response is unique among 

APCs. The mature state of DCs ends by apoptotic cell death in the lymph modes, 

which is enhanced by immunoinhibitory cytokines such as IL-10.  

DCs are also important in immune tolerance (Steinnman et al, 2000) 

(Steinman et al, 2002) (Steinman et al, 2003). Two mechanisms were created to 

avoid the immune system attack on the components of self, central and peripheral 
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tolerance, both of which are maintained by DCs. Central tolerance that occurs in the 

thymus is dependent on mature thymic DCs which are essential for deletion of newly 

generated T cells with a receptor that recognises self components (Steinman et al, 

2003). However many self antigens may not access the thymus while others are 

expressed later in life. Hence the need for peripheral tolerance which occurs in 

lymphoid organs and is mediated by immature DCs. Peripheral tolerance involves 

induction of T cell anergy or under certain circumstances deletion. Immature DCs 

within tissues capture the remains of cells that die in the process of physiological 

tissue turnover. As there is no inflammation accompanying this process the DCs 

remain immature. There immature DCs, which lack co-stimulatory molecules, 

migrate to draining lymph nodes where they present the tissue antigens to T cells. T 

cells presented with antigen in the absence of comstimulation either enter into a state 

of anergy or get deleted (Steinman et al, 2002) (Steinman et al, 2000). Immature DCs 

may be critical in development of tolerance towards tumours (Wakkach et al, 2003).  

4.3 Cytokine mediated DC differentiation  

            Dendritic cells are bone marrow derived cells found in most tissues, including 

lymphoid tissues. Two main functional subsets are distinguished. Conventional 

dendritic cells take up antigen in peripheral tissue, are activated by contact with 

pathogens, and travel to the peripheral lymphoid organs, where they are the most 

potent stimulator of T cell responses. Plasmacytoid dendritic cells also take up and 

present antigen, but their main function in an infection is to produce large amounts of 

the antiviral interferons.  Both these types of dendritic cells are distinct from the 

follicular dendritic cell that presents antigen to B cells in lymphoid follicles.   

            A key characteristic of dendritic cell biology is that the cells differentiate or 

mature in distinct ways in response to a spectrum of environmental and endogenous 

stimuli. There is evidence shown either polarized DCs or distinct DC subsets might 

provide T cells with different signals to determent class of immune response.  For 

example, DCs respond to microbial ligands for pattern recognition receptors (e.g. 

pathogen-associated molecular patterns recognised by Toll-like receptors), T cell 
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ligands (e.g. CD40 ligand), innate lymphocytes (e.g. NK cells), and inflammatory 

cytokines (e.g. TNFα) and upon cell contacts with other DCs.   

            In the absence of specific maturation stimuli dendritic cells may differentiate 

by ‘default’ and can induce tolerance when they capture self or harmless 

environmental antigens (Hawiger, Masilamani et al. 2004). Generally, induction of 

tolerance is a consequence of antigen presentation to T cells by phenotypically 

immature dendritic cells that lack co-stimulatory signals and it can be described as T 

cell deletion, T cell anergy or the induction of Tregs (Hawiger et al. 2003). 

            By contrast, in response to infection and inflammation dendritic cells 

differentiate rapidly to a mature state. During maturation antigen uptake is reduced 

(Chen et al. 2000), while antigen processing is upregulated by lowering of the pH in 

endocytic vacuoles, activated lysosomal proteolysis and increased transport of 

peptide/MHC class  II complexes to the cell surface (Trombetta and Mellman 2005). 

Importantly, the maturing dendritic cell membrane undergoes remodelling, dendrites 

are formed and membrane associated co-stimulatory molecules are expressed. 

            The nature of DC maturation, which is regulated by the nature of the stimuli 

received through pattern recognition receptors, and is also dependant on the type of 

DC that is responding to these signals, has a major influence on both DC function 

and subsequent activation of naïve T cells. For example, depending on the type of 

infection maturing dendritic cells selectively polarise CD4
+
 T cell differentiation 

towards TH1 cells to help resist viruses and tumours, or towards TH2 cells in response 

to extracellular bacteria and fungi. 



49 
 

5 Infectious immunity 

5.1 Immune responses to viral infection 

The viral infection is any type of infection that caused by a virus, which is 

pathogens composed of a nucleic acid genome enclosed in a protein coat, so it is 

more difficult to kill than bacteria. Viruses can replicate only in a living cell, as they 

do not possess the metabolic machinery for independent life. Viruses can be 

transmitted in numerous ways such as direct contact with infected person, 

swallowing or inhalation. Effective immune response to viruses requires the 

coordinated activation of both innate and adaptive immune modules. 

Innate immune defense against viruses comprises IFN, NK cells and 

macrophages (Male et al, 2006). Interferons are pro-inflammatory cytokines that are 

particularly important in limiting viral infection. Type I interferons, IFNs (α and β), 

can be produced by many different cell as a response to viral infection, when cell 

surface or endocytic PRR recognize viral nucleic acids. Pro-inflammatory cytokines 

such as IL-1 and TNF-α are also potent inducers of IFNα and β production. Most 

nucleated cells have receptors for type I IFNs. IFN binding to virus-infected or 

healthy cell leads to expression of more than 300 genes. However, the key 

mechanisms to prevent viral replication in the cell is activation of enzymes that 

degrade ssRNA, inhibit mRNA translation, increase production of MHC class  I and, 

in the last instance, trigger apoptosis via Bcl-2. IFNs also activate NK and 

macrophages (Male et al, 2006) (Takeuchi and Akira 2009). Cells infected with a 

virus tend to have less MHC class I on their surface, often due to the viral inhibition 

of antigen presenting machinery. NK cells recognize cells that display less MHC 

class I, induce them to undergo apoptosis or kill them by perforin and proteases. NK 

cell also secrete IFNγ (Andoniou et al, 2006). 

Macrophages are ubiquitously present in body tissues and are the first line of 

defense against many pathogens, including viruses. They phagocytize virus-infected 

cells and produce TNF-α and IFNα (Male et al, 2006). 

Adaptive immune response is always required for clearing of viruses. Normally 

it starts when DC present processed viral antigen on MHC class I to CD8 cells in 
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peripheral lymphoid organs, however CD4 cell are also of a great importance in viral 

infection. MHC class I viral antigen presentation can also be carried out by a wide 

variety of cells, not just DC. CD8 cells differentiate into Tc cells, migrate to the site 

of infection, recognize virus-infected cells and kill them in perforin- or granzyme-

dependent manner or by Fas-FasL interactions (Male et al, 2006). CD4 cells 

differentiate into TH1 cells and produce INF-γ that activates macrophages, and TNF-

α. TNF-α mediates INF-dependent mechanism of apoptosis in infected cells (Alberts 

et al, 2008). 

Antibodies are also employed during viral infection. They may act alone or 

with the complement system. They can bind viruses directly and prevent them from 

entering cells or damage the virus itself. In addition, antibodies bind virus-infected 

cell thus marking it for recognition by phagocytes (Male et al, 2006). There are two 

types of viral infection acute infection and chronic infection (Figure 5.1). 
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Figure 5.1 Infectious immunity 

(a) In an acute viral infection, CD8
+
 T cells become activated in response to viral antigen, 

proliferate, acquire the ability to produce cytokines and interferons, and kill virally infected 

cells.  

(b) During a chronic infection, CD8
+
 T cells become exhausted, produce fewer cytokines 

and are less able to kill virally infected cells and control virus levels. (Farrell, 2006) 
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5.2 Acute viral infection and immune responses  

            In acute viral infections, the number of infectious agents rapidly increases 

initiating an innate anti-viral immune response. This takes numerous forms but 

mainly includes interferon production and natural killer (NK) cell activity, which 

occurs early after infection and constitutes the first line of defence (Gregoire, 

Chasson et al. 2007) (Ha, West et al. 2008). As the pathogen is retarded by the 

components of the innate immune system a concurrent adaptive immune response is 

triggered; professional antigen presenting cells, such as DCs, process virally-derived 

antigens, loaded onto MHC, that with the help of co-stimulation result in the 

activation and expansion of specific effector T cells. Four to seven days after 

infection, large numbers of activated cytotoxic T cells appear within the secondary 

lymphoid tissues. At the same time, activated CD4
+ 

T helper cells help B cells to 

produce specific antibody as both the cellular and humoral adaptive response peak. 

Systemic viral load is reduced during this stage. Clearance of the infection coincides 

with elevated cytotoxic T cell activity followed by T cell death as the antigen levels 

fall. The conclusion of the adaptive response is characterised by a dramatic fall in the 

numbers of antigen-specific effector T cells, but, also by elevated serum antibody 

titres that can persist for months and the appearance of antigen-specific memory cells. 

Typical examples of viruses that result in acute infections are smallpox and yellow 

fever virus (Miller, van der Most et al. 2008) (Sofra, 2009).    

            Acute resolving infections leave no residual pathology following an effective 

adaptive immune response, which, ideally, clears the infection and precludes 

potential disease by establishing in the host a state of protective immunity against 

reinfection with the same pathogen. 

5.3 Chronic viral infection and immune responses 

            Consistent to chronic viral infection, there are many virus infection, however 

often fail to resolve and become chronic which can persist for many years, such as 

cytomegalovirus, herpes viruses and mycobacterium tuberculosis, have evolved to 
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coexist with their human hosts, thereby avoiding the generation of efficient 

protective immunity (Thomas Dörner and Andreas Radbruch, 2007). These 

infectious agents may exist within the host in a latent state (contained but not 

eliminated), but when the adaptive immune response is weakened, the pathogen can 

opportunistically reappear as a virulent systemic infection. 

            Despite the protection that T cell effector mechanisms provide during the 

period of acute infection, T cell responses can also be detrimental by destroying 

inoffensive host cells. As a result, the balance between immunoprotection and 

immunopathology becomes a very fragile one, as is well-illustrated in the phenotypes 

of various persistent infections. For example, symptoms in HBV infected patients 

can range from in-apparent infection to very aggressive hepatitis (Zinkernagel 2003). 

5.3.1 Immune defects in chronic infectious diseases  

              There are two issues for immune defection in chronic infection disease 

interacted either the virus or it interaction with immune system. For the virus, they 

can escape from immune surveillance. Some of them focus to destroy the antigen 

present pathway via MHC class I and II dysfunctional which is appeared in the viral 

glycoproteins US2 and US3 from human cytomegalovirus (CMV). US2 can bind to 

MHC class I heavy chain result it dislocation from ER membrane to cytosol, finally 

degraded by proteasome (Wiertz et al, 1996), which is also demonstrated in MHC 

class II molecule (Tomazin et al, 1999). US3 also play function to escape, which can 

associates transiently with MHC class I molecules caused it retention in the ER 

(Gruhler and Fruh 2000). In addition there are also some kinds of virus can be 

latency and reactivation in host which will describe latter.  

             Surprisingly, some of the viruses even contain a special gene which plays a 

niche specific role during chronic infection to evade immunity. These virus encode 

genes contribute to evade immunity during acute or chronic infection (Virgin, 2007b). 

For example which has been demonstrated by Rickinson and Kieff (2007), they 

found that the latency gene in EBV can specialize to prolong the infection of memory 
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B cells and to respond to and regulate B cell activation and differentiation. And also 

they can maintain the viral episome, regulate of B cell antigen receptor signalling and 

regulate of cell cycle and apoptosis (Herbert et al, 2009). The other speciality of 

some persist viruses is that they can select a specific cell type to reside. Like 

genitourinary tract is a particularly place chose by several virus like human T cell 

leukaemia virus (HTKV), human cytomegalovirus (CMV), Kaposi’s sarcoma 

herpesviurs (KSHV) EBV, HIV, LCMV, HSV, and polyomaviruses (Virgin, 2007b), 

which is a difficult place for the immune system to surveillance. 

             In the other hand the immune system also affected by this immune 

suppressed environment which caused by long time inflammation and suppressed 

cytokine or receptor which will lead the T cell and B cell responds deficient which 

will introduce latter. Over all the location, timing, and magnitude of the immune 

response relative to the speed of virus replication and spread are also the major 

determinants of the eventual outcome of viral infection (Herbert et al, 2009). Due to 

the factor that the virus must evade sterilizing immunity, while the immune system 

must adjust to the continuous presence of viral antigen-driven inflammatory 

responses in order to limit viral replication to an acceptable level without untoward 

damage to permanently infected tissues under chronic viral infectious condition, 

there is a dynamic but metastable equilibrium between the virome and the host 

immune defence in chronic viral infection. 

            Major viral mechanisms for chronic infection (Figure 5.2); 

1) Continuous replication: Viruses in this category include HIV, HBV, and HCV in 

humans Continuous replication can generate up to 10
12

 particles per day for HBV 

and HCV (Rehermann and Nascimbeni, 2005). Viruses that persist via continuous 

replication express potentially antigenic viral proteins that are required for viral 

assembly and release, resulting in continuous antigenic stimulation of lymphocytes. 

Continuous replication has other effects on the immune system—low levels of tissue 

damage and stimulation of inflammatory cytokines and co-stimulatory molecules 

may alter the normal immune system. Some viruses, however, are very efficient at 
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avoiding the generation of such inflammatory signals. For example, HBV infection 

can proceed for weeks without any significant induction of either innate or adaptive 

immunity in a “stealth” approach to establishing chronic infection (Wieland and 

Chisari, 2005) (Herbert et al, 2009). 

2) Latency and reactivation: cell latency is neither slow viral replication nor the 

presence of viral nucleic acid without the capacity to reactivate. Latent virusesretreat 

from adaptive immunity into a transcriptionally and antigenically quiescent state. 

Perhaps the most frightening example of this is HIV, which can survive in memory 

CD4 T cells in the proviral state without expressing any proteins that can be 

recognized by the immune system. Similarly, EBV can establish latency in memory 

B cells with undetectable expression of protein- coding RNAs, at least until the 

latently infected cell divides (Hochberg et al., 2004) (Herbert et al, 2009). 

3) Invasion of the genome: the best example is endogenous retroviral elements (ERVs) 

chronically infect in Mammalian genomes which spread vertically from one host 

generation to the next as integrated viral genomes or partial genomes in host 

chromosomes. Some ERVs are replication competent, but many are replication 

defective.  Yet even such defective ERVs can express proteins. Human ERVs from 

over 30 lineages constitute perhaps 8%–9% of the human genome (Virgin, 2007b). 

There are two effects on the immune system. First, they can encode B or T cell 

antigens (Miyazawa et al., 1987) (Wang- Johanning et al., 2008) (Levisetti et al., 

2003). Second, ERV-encoded superantigens can shape the T cell repertoire (Meylan 

et al., 2005) (Sutkowski et al., 2001) (Stauffer et al., 2001) (Herbert et al, 2009).  
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Figure 5.2. Processes of Acute and Chronic Viral Infection 
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Viruses use a range of strategies for acute and chronic infection. (Top) The strategy used 

during acute infection results in the expression of antigens associated with the production of 

new viruses. (Middle) When a virus persists via continuous productive replication, the same 

antigens expressed during acute infection are produced, but the virus has the opportunity to 

evolve under immune selection to produce viruses that express neo-antigens and have 

altered pathogenetic capacities. (Bottom) In contrast to the previous two processes, viruses 

that persist via latency and reactivation can generate antigens associated with productive 

replication but also can enter into transcriptional states in which antigens associated with 

latent infection are expressed. In the most extreme case, no antigens are expressed, resulting 

in immunological silence. There may be more than one latency-associated gene program, 

and it is likely that latency gene programs are cell type specific. When these viruses become 

reactivated, they reinitiate a productive replication program and once again express viral 

antigens associated with the production of new viruses (Herbert et al, 2009). 

             Major mechanisms for the unresponsiveness of immune system; 

             Immune defects in chronic infectious diseases also affect T or B cells 

response. T cell exhaustion (antigen specific T cells fail to respond to antigens) 

which is the major type of T cell dysfunction appeared in chronic infectious diseases. 

These T cells initially develop effector functions, but prolonged or excessive 

stimulation leads to progressive loss of function over time.   

             There are at least four mechanisms to limit T cell responses to persisting 

viruses; first, T cell intrinsic mechanisms including induction of PD1 and CTLA-4 

and altered expression of cytokine receptors such as IL-7R and IL-15R. The 

suppressive receptors, PD1 and CTLA-4 have been found to be induced in antigen 

specific CD8
+
 by  chronic LCMV infection (Barber et al, 2006) and coexpress in 

HIV specific CD4
+
 cells (Kaufmann et al., 2007), while LCMV suppress the 

expression of IL-7R or IL-15R lead to alter TCR and cytokine receptor signal 

transduction (Lang et al, 2005). Second, the expression of immunoregulatory 

cytokines such as IL-10, TGF-β, and possibly additional factors produced by other 

cells in the environment can modulate and suppress vigorous antiviral T cell 

responses. It has been found that LCMV infection induced expression of IL-10 which 
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can induce naïve T cells become iTreg cells, while HCV induces expression of TGF-

β that can impact immune responses during persisting infections (Alatrakchi et al., 

2007). Third, regulatory cells can modulate antiviral effector T cells. Recent research 

shows that Tregs are more often associated with ineffective immune responses 

during chronic infections, including those by Friend leukemia virus (Zelinskyy et al., 

2006), HIV (Kinter et al., 2007) (Nilsson et al., 2006), HCV (Boettler et al, 2005) 

(Ebinuma et al, 2008) (MacDonald et al, 2002), and HBV (Franzese et al, 2005) (Xu 

et al, 2006). The Treg cells could act through cell-to-cell contact, inhibition of APC 

maturation, production of immunoregulatory cytokines, or direct inhibition of CD8 T 

cell effector function. The function of Treg cells functions are enhanced by 

immunosuppressive chemokine and cytokines such as IL-10 and TGFb (Fantini et al, 

2004) (Antonella et al, 2008), thereby creating synergic effect between mechanisms 

that inhibit T cell effectiveness during chronic viral infection (Herbert et al, 2009). 

             Finally, defects of APC function have been found in chronic infectious 

conditions. The quality of T cell stimulation can also be impacted by changes in 

dendritic cell function or number, as well as differences in antigen presentation by 

professional versus nonprofessional APC during persisting viral infection. DC as the 

delegate of APC has been found that monocyte-derived DCs in chronic HCV 

infection do not respond to maturation stimulation, which will maintain their 

immature DCs caused impaired antigen presenting function (Susanne et al, 2001).  

             In addition, defects in memory T cell differentiation during chronic viral 

infections are not just confined to effector functions, but also include a failure to 

develop into self-renewing antigen-independent memory T cells which due to reduce 

expression of CD127 and CD122, the receptor of IL-7 and IL-15 respectively. These 

factors are essential for the maintenance of memory T cells (Shin and Wherry, 2007).  

             Similar to viral mediated T cell defects, the effect function of B cells is also 

reduced in chronic infectious diseases such as deficient responds of B cells during 

HIV infection. There is a study shows that HIV-specific B cells, but not others, have 

a low proliferative capacity and express Fc-receptor-like-4 (FCRL4) that can 
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generate signals that inhibit B cell function (Herbert et al, 2009). There are evidences 

that alterations in B cell responses, B cell tolerance, and the accumulation of 

antibody-antigen immune complexes are associated with chronic viral infections and 

can contribute to disease (Casali and Oldstone, 1983)   

5.3.1.1 Immune responses in acute and chronic HBV infection  

             There are one third of people (about 2 billion) have been infected with 

hepatitis B virus (HBV) among them about 400million people have become 

chronically infected. This virus markedly differs in their virological properties and in 

their immune escape and survival strategies from the other virus. In the acute 

infection, a rapid viral replication associates with a rapid and strong anti-viral 

immune response. HBV DNA is detectable in the circulation under one month after 

infection and keeps control low level of genome equivalents up to 6 weeks until 

HBV DNA and HBV envelope and surface antigen reach to peak. With the injury of 

T cell mediated liver, the serum alanine aminotransferase (ALT) level start to rise 

within 10-15 weeks before most of HBV DNA has been cleared (Rehermann and 

Nasximbeni, 2005). After acute infection, immune memory is established for 

protection of further infection.  

             In contrast to acute infection, the chronic infection has persistent viral load 

with chronic liver inflammation (Chen et al, 2004). Similar like the other chronic 

infection disease, chronic hepatitis B infection associates with immune 

unresponsiveness or low responsiveness (Reignat et al, 2002). The mechanisms for 

the immune unresponsiveness in chronic HBV infection are largely unknown. It has 

been found that HBeAg can induce T cell tolerance in transgenic mice (Chenet et al, 

2004). The development of viral escape mutations in HBeAg was found which affect 

humoral immune responses. However, in chronic hepatitis B, T-cell escape mutants 

are not common (Rehermann et al, 1995) (Rehermann and Nasximbeni, 2005). The 

unresponsiveness of T cells to chronic HBV infection is largely due to the common 

mechanisms discovered in most chronic infectious diseases with high viral load such 
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as over expression of PD1 and CTLA-4 and high levels of inhibitory cytokines 

(Blackburn et al, 2008).  

             Recently, it has been demonstrate that Bim express the highest intracellular 

levels in CTLA-4 high expressed HBV specific CD8
+ 

 T cell in chronic HBV 

infection (Schurich et al, 2011), which suggests that  CTLA-4 may provide a 

pathway for T cell encountering the antigen in liver and then drive it to Bim 

dependent apoptosis. And also they suggested that only treat the patients with 

antiviral therapy is not enough, which will not show any affection after 7-12 months 

later, caused by high level of CTL-4 and Bim (Schurich et al, 2011). So the CLTA-4 

blockade could be one of the therapeutic approaches for chronicle HBV therapy in 

the future.    

5.3.2 T cell tolerance 

            In the T cell compartment, tolerance, or unresponsiveness, to self-antigens is 

maintained by the deletion of immature T cells that recognize these antigens in the 

thymus, and by several mechanisms that are operative in the periphery. Peripheral 

tolerance is attributable to the induction of functional anergy, deletion by apoptosis, 

and the suppressive actions of regulatory T lymphocytes (Treg) (Abbas et al, 2004). 

Self-tolerance of T cells is induced and maintained in different compartments of the 

immune system (Mondino et al, 1996). As mentioned developing T cells can be 

clonally deleted in the thymus as a result of negative selection, which requires the 

presence of relevant antoantigens. Peripheral tolerance is therefore a mechanism 

supplementary to central tolerance. The mechanisms responsible for peripheral CD8
+
 

T cell tolerance can be divided into those acting directly on the responding T cells, 

such as inactivation or deletion of specific T cell (Walker and Abbas2002) (Steinman 

et al 2003) and those that act through additional cells or factors, such as regulatory T 

cells or suppressive cytokines (Sakaguchi et al, 2004) (Hans et al, 2005). In most 

cases in which natural Treg cells participate in responses to infection, these are 

chronic infections. The influence of natural Treg cells may favourably affect the 

outcome or can be harmful to the host, and it most can be infect by the factors which 
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include the stage of infection, dose of the pathogen and genotype and immunological 

status of the host as well as the presence of concomitant disease or other infections. 

In chronic infections, it continually secreted low dose of viral which will finally 

confuse the body to protect it as a part via Treg. As a result there are only non-

responsed antigen specific T cells left in patient body (Figure 5.3). 

 

Figure 5.3 Mechanisms of peripheral T cell tolerance.  

The mechanisms that maintain tolerance in CD4 T cells are illustrated, and compared with a 

normal immune response (Abbas et al, 2004). 
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6. Vaccines 

6.1 Immunity is the ability of an organism to resist infection. 

Vaccination is the best known and the most successful application of 

immunological principles to human health. The first vaccine was named after 

vaccine, the cowpox virus. Jenner pioneered its use 200 years ago. It was the first 

deliberate scientific attempt to prevent an infectious disease (smallpox), but it was 

done in complete ignorance of viruses (or indeed any kind of microbe) and 

immunology. Jenner’s achievement was the realization that infection with a bovine 

analogue of smallpox (vaccinia), which caused cowpox, would provide protective 

immunity against small pox in humans without the risk of significant disease.  

It was not until the work of Pasteur 100 years later that the general principle 

governing vaccination emerged: altered preparations of microbes could be used to 

generate enhanced immunity against the fully virulent organism. During his work on 

chicken cholera he observed that a culture if the responsible bacteria had spoiled and 

failed to induce the disease in some chickens he was infection with the disease. 

Upon reusing these healthy chickens he discovered that he could not infect them, 

even with fresh bacteria; the weakened bacteria had caused the chickens to become 

immune to the disease, even though they had only caused mild symptoms. After 

inoculating the infection being fatal, as usual, the chickens recovered completely. 

Pasteur guessed the recovered animals now might be immune to the disease. He 

applied this immunization method to anthrax, which affected cattle, and aroused 

interest in combating other method to anthrax, which affected cattle, and aroused 

interest in combating other diseases. He publicly claimed he had made the anthrax 

vaccine by exposing the bacillus to oxygen. Pasteur produced the first vaccine for 

rabies by growing the virus in rabbits, and then weakening it by drying the affected 

nerve tissue.  
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The notion of a weak form of a disease causing immunity to the virulent 

version was not new; this had been known for a long time for smallpox. Inoculation 

with smallpox was known to result in far less scarring, and greatly reduces mortality, 

in comparison to the naturally acquired disease. As mentioned earlier Edward Jenner 

had also discovered vaccination, using cowpox to give cross-immunity to smallpox 

(in 1796), and by Pasteur’s time this had generally replaced the use of actual 

smallpox material in inoculation. The difference between smallpox vaccination and 

cholera and anthrax vaccination was that the weakened form of the latter two disease 

organisms had been generated artificially, and so a naturally weak form of the 

disease organism did not need to be found (Figure 6.1). 
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  Figure 6.1 Vaccination 

The term was originally used by Edward Jenner to describe the process of inoculating 

patients with discharge of cowpox to protect them from smallpox. Nowadays vaccination 

applies to the administration of any antigenic material (the vaccine) for the purpose of 

stimulating active immunity to a disease. 
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6.2 Antigens used as vaccines 

           Different vaccination strategies aim to deliver pathogenic protein to antigen 

presenting cells, that will be processed in vivo deliver pathogenic proteins to antigen 

processing pathways. A major drawback of is that proteins are broken down into 

many peptides, very few of which are immunogenic. Peptide vaccination offers a 

solution to this problem, and involves vaccination with characterised T cell specific 

peptide epitopes that stimulate protective immunity. However, it is not possible to 

generate MHC class I specific T cell responses by in vivo immunisation with free 

peptides, as free peptides are diluted and degraded too fast once administered. On the 

other hand, efficient peptide presentation by APCs occurs with endogenously 

processed antigens (Cresswell et al, 2005) (Zhang and Williams, 2006). 

1. Attenuated pathogen. Attenuated live vaccines have been highly successful against 

viruses (e.g. polio, measles, mumps etc) and bacteria (e.g. tuberculosis), generally 

being easier to attenuate the former than the latter. The aim is to diminish the 

pathogen’s virulence while retaining the desired antigens. Attenuated pathogens are 

‘changed’ pathogens in the sense that are less able to grow and cause disease in their 

natural host. ‘Changed’ means that mutations are induced to them. The results of 

attenuation are widely divergent. An example is the divergence between the three 

types of live polio vaccine; Type 1 polio has 57 mutations and has almost never 

reverted to wild type while Type2 and 3 vaccines depend for wild type has occurred, 

in some cases leading to outbreaks of paralytic poliomyelitis. 

2. Killed/inactivated pathogen. Killed vaccines are intact but non-living organisms. 

Some are very effective (rabies and the Salk polio vaccine), some moderately so 

(typhoid, cholera and influenza), some are of debatable value (Plague and typhus) 

and some are controversial on the grounds of toxicity. Some of these will 

undoubtedly be replaced by attenuated or subunit vaccines. 
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3. Inactivated toxins and toxoids. They are the most successful bacterial vaccines. 

Vaccines against tetanus and diphtheria are based on inactivated exotoxins and 

constitute the most successful of all bacterial vaccines.  

4. Subunit vaccines. Aside from toxin-based vaccines which are subunits of their 

respective microorganisms, a number of other vaccines are employed, which make 

use of antigens whether purified from microorganisms or produced by recombinant 

DNA technology. While hepatitis B surface antigen is immunogenic when given with 

alum adjuvant, the bacterial capsular polysaccharides of Neisseria meningitis, 

Streptococcus pneumonia and Haemophilus influenza B give lasting protection 

because helper T cells are not activated by polysaccharide alone. A significant 

improvement in the efficacy of these vaccines has been obtained by chemically 

conjugating the purified polysaccharides to protein carriers (e.g. tetanus or diphtheria 

toxoid), which provide peptide that can be recognised by antigen-specific T cells, 

thus converting a T cell independent response to a T cell dependent anti-

polysaccharide antibody response.  

5. Recombinant vector vaccines. This class of vaccines utilises attenuated versions of 

certain microbes as recombinant vectors to express target antigens from other 

pathogens. Thus the desired gene is incorporated into a vector which can then be 

injected into the patient, allowed to replicate, express the gene and produce large 

amounts of antigen in situ. Vaccinia (Kass et al, 1999) is a convenient vector that is 

large enough to carry several antigens. A number of experimental vaccines using 

recombinant vaccine have been tested (expressing surface protein from HIV, 

influenza, etc), though none are yet in routine use. Many other viruses have also been 

proposed and tested experimentally as vaccine vectors. Viral vector vaccines elicit 

strong humeral and cell mediated immune response, resulting in immunological 

memory. They can be targeted by viral tropisms inducing desired immunity and can 

encode several antigens at the same time. Also they do not interfere with the 

protection produced by other kinds of vaccines and are relatively inexpensive. On the 



67 
 

other hand, there is always the risk of reversion to virulence and of pathology caused 

due to immune responses to virus-infected cells.     

Attenuated bacteria have the advantage that they have genomes large enough 

to incorporate many genes from other organisms. They are generally safe and 

reversions can be controlled. Depending on the bacteria used MHC class I and/or II 

antigen processing pathway can be targeted. Some bacteria induce both cell mediated 

and humeral immune responses, including mucosal immunity since some bacteria 

can survive in the gastrointestinal tract, making this technology attractive for oral 

immunisations.  

6. DNA vaccine. A new approach to protect susceptible individuals against a lethal 

disease is the administration of plasmid DNA by direct inoculations with the intent of 

inducing an immune response to the protein encoded therein. The beginning of the 

development of such a vaccine started with the fundamental experiment by Wolf et al 

(1990). They demonstrated that a single intramuscular (i.m.) inoculation of plasmid 

DNA encoding the reporter protein β-galactosidase induces the expression of this 

protein without the use of a delivery vehicle under in vivo conditions. Using 

histochemical staining procedures forβ-galactosidase activity, blue-coloured muscle 

cells were easily detectable at the site of inoculation 7 days after injection. Moreover, 

transfected muscle cells were surrounded by infiltrating leukocytes, indicating the 

activation of a specific immune response against the foreign antigen. Western Blot 

also showed that there wereβ-galactosidase-specific antibodies. 

             Other types of injections tried in DNA vaccination include intradermal (i.d), 

mucosal, and biojector injections as well as direct skin delivery has been reported. 

The majority of DNA vaccination though involves i.m. or i.d. administration. After 

i.m. injection DNA is taken up by myocytes and/or professional APCs with 

subsequent expression of the foreign antigen via the MHC class I pathway. Secreted 

antigens may be ingested by phagocytes and then presented via the MHC class II 

pathway. These exogenous antigens may prime both the induction of antibody 

responses as well as CD4
+
 T cell activation. However activation of naïve CD8

+
 T 
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cells to armed effecter T cells can only occur through MHC class I presentation by 

bone marrow-derived APCs (and not myocytes). 

With the gene gun delivery system, which shoots plasmid DNA on golf 

particles onto skin via helium gas acceleration, it was demonstrated that DNA is 

delivered directly into Langerhans cells. Thereafter, these transfected cells migrate to 

draining lymph nodes presenting the foreign antigen to the immune system (Condon 

et al, 1996). 

In general, DNA vaccines depend upon the delivery route and method of 

delivery. i.m. inoculation drives immune responses mainly towards the Th1 response 

(Raz et al, 1996). However the gene gun method requires much less DNA compared 

to i.m. administration and gives immune responses both of the Th1 and Th2 types 

(But the mechanism is not clear yet) (Feltquate et al, 1997) (Prayaga et al, 1997). 

Initial clinical trials indicate that DNA vaccines are currently tested. 

The two major advantage of DNA vaccine include that they encode multiple 

cell-mediated immune responses. In animal studies the vaccination induced a long 

term protection. Additionally, large-scale manufacturing procedures are available and 

such vaccines are thermostable and nonvirulent. Finally a more simplified and 

effective quality control process is allowed.       

7. Peptide vaccines. Peptide vaccination involves immunisation against usually 

tumours with identified and characterised immunogenic peptides derived from 

antigens associated with tumours. Peptide vaccines are either in the form of free 

peptide administered with adjuvant, peptide-pulsed dendrite cells, or peptides pulsed 

or incorporated in membrane carriers. Detailed discussion of peptide vaccines will 

follow in this chapter.  



69 
 

6.3 Adjuvants 

            Some vaccines contain components that enhance their immunogenicity. 

These components, called adjuvants, boost the immune response by providing 

inflammation signals and activate APCs. For example, tetanus toxoid is not 

immunogenic in the absence of adjuvants, and tetanus toxoid vaccines often contain 

aluminium salts, which bind polyvalently to the toxoid by ionic interactions and 

selectively stimulate antibody responses. Pertussis toxin, produced by B. pertussis, 

has adjuvant properties in its own right and, when given mixed as a toxoid with 

tetanus and diphtheria toxoids, not only vaccinates against whooping cough but also 

acts as an adjuvant for the other two toxoids. This mixture makes up the DPT triple 

vaccine given to infants in the first year of life. 

Many important adjuvants are sterile constituents of bacteria, particularly of 

their cell walls. For example Freund’s complete adjuvant, widely used in 

experimental animals to augment antibody response, is an oil and water emulsion 

containing killed mycobacteria. A complex glycolipid, muramyl dipeptide, which can 

be extracted from mycobacterial cell walls or synthesized, contains much of the 

adjuvant activity of whole killed myxobacteria. Other bacterial adjuvants include 

killed B. pertussis, bacterial polusaccharides, bacterial heat shock proteins and 

bacterial DNA. Many of these adjuvants cause quite marked inflammation and are 

not suitable for use in vaccines for humans. 

It is thought that most, if not all, adjuvants act on APCs (especially DCs) and 

this reflects the importance of these cells in initiating an immune response. Tissue 

DCs take up antigens from their environment, then migrate into the lymphoid tissue 

and present these antigens to T cells. They appear to detect the presence of a 

pathogen in two main ways. A) Ligation and activation of receptors for invading 

microorganisms. These include receptors of the complement system, Toll-like 

receptors, and other pattern recognition receptors of the innate immune system. 

There is much that we don’t know about the direct mechanisms of detection of 

infectious agents. For example APCs get powerfully activated by bacterial DNA 
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containing unmethylated CpG dinucleotide motifs, bacterial heat shock proteins and 

muramyl dipeptide and it is not know how they detect them (even though there is 

indirect evidence that many adjuvants use various Toll-like receptors). APCs upon 

direct activation, respond by secreting cytokines and expressing co-stimulatory 

molecules, which in turn stimulate the activation and differentiation of antigen 

specific T cells. B) The second mechanism of stimulation of DCs by invading 

organisms is indirect and involves their activation by cytokine signals derived from 

the inflammatory response triggered by infection. Cytokines such as GM-CSF are 

particularly effective in activation DCs to express co-stimulatory signals and, in the 

context of viral infection; DCs also express IFNα and IL-2. 

Different types of adjuvants promote different kinds of immune response. For 

example, pertussis toxin stimulates mucosal immune responses, which are 

particularly important in defence against organisms entiering through the digestive or 

respiratory tract. Another vaccine approach is coadministering cytokines. For 

example IL-12 has been used as an adjuvant to promote protective immunity against 

the protozoan parasite Leishmania major. 

Apart from boosting the immune response adjuvants have a very important 

role in converting soluble antigens into particulate material, which is more readily 

ingested by APCs such as macrophages. For instance, the antigen can by absorbed on 

particles of the adjuvant (such as alum), made particular by emulsification in mineral 

oils, or incorporated into the colloidal particles of Immune Stimulatory Complexes 

(ISCOMS). This enhances immunogenicity somewhat but such adjuvants are 

relatively weak unless they also contain bacteria or bacterial produces.    

6.4 IL-2 

            IL-2 is a 15,000 kDa α-helical cytokine produced predominately by active 

CD4
+
 and CD8

+
 T cells which can active dendritic cells (DC), natural killer (NK) 

cells and NKT cells. Originally designated T cell growth factor (Morgan et al, 1976), 

IL-2 supports the growth and proliferation of antigen activated T lymphocytes and 
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plays a central role in the cascade of cellular events involved in the immune response 

(Fauci, 1987). IL-2 is rapidly produced by naïve T cell when stimulated by TCR and 

co-stimulatory molecules via APC. As described, upon activation, resting T cells are 

induced to express IL-2 receptors and to secrete IL-2. This autocrine stimulation 

drives the proliferation of activated, receptor-bearing T cells and the generation of 

antigen specific effector T cell types, including cytotoxic, helper and suppressor T 

cells (Figure 6.2). 

 

Figure 6.2 CD28 dependent co-stimulation of activated T cells induces expression of the T 

cell growth factor interleukin-2 and the high affinity IL-2 receptor 

6.4.1 IL-2 receptor 

            The IL-2 receptor is a heterotrimeric protein expressed on the surface of 

certain immune cells which was the first interleukin receptor described by Kendall 

Smith. There are three subunits, IL-2Rα (CD25), IL-2Rβ (CD122), and the common 

gamma chain or γc (CD132). CD122 and CD132 are primarily folded into β-sheet 

structures as low affinity IL-2R (Nelson and Willerford 1998) (Malek, 2008). Once 
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all three subunits form together, they will become high affinity IL-2R. Functional 

structures of IL-2 and IL-2R interaction reveals that each receptor subunit will 

contact with IL-2, most contact will be at the IL-2/CD25 interface. A strong 

interaction between CD25, CD122 and CD132 leads to a stable quaternary complex 

of IL-2, CD25, CD122 and CD132 (Stauber et al, 2006) (Rickert et al, 2005) 

(Thomas R. Malek, 2008). The IL-2 and IL-2R complex on cell surface is transient 

(10 to 20 min) and they are rapidly internalized. However, it requires a few hours for 

IL-2 to drive T cells into cell cycle. It is therefore a continuous expression of IL-2 

and its receptor is essential for IL-2 induced T cell proliferation. (Cantrell and Smith. 

1984) (Malek, 2008). 

            CD25 does not express on naïve T cell. Following TCR and co-stimulatory 

signals, initially a moderate level of CD25 are rapidly induced by after activation of 

transcription factors of NF-κB, NFAT, AP-1, and CREB/AFT, while after interaction 

with IL-2, IL-2R mediates activation of Stat-5 pathway leading to a high level 

expression of CD25. This mechanism is to increase IL-2 binding and hence 

signalling by activate T cells though enhanced capture of IL-2 by CD25 (Kim et al, 

2006) (Malek, 2008). 

The initial encounter with specific antigen in the presence of a co-stimulatory 

signal triggers entry of the T cell into the G1 phase of the cell cycle; at the same time, 

it also induces the synthesis of IL-2 along with the α chain of the IL-2 receptor, also 

known as CD25. Resting T cell express a form of this receptor composed of β and γ 

chains that binds IL-2 with moderate affinity, allowing resting T cells to respond to 

very high concentrations of IL-2. Association of the α chain with the β and γ 

heterodimer creates a receptor with a much higher affinity for IL-2, allowing the cell 

to respond to very low concentrations of IL-2. Binging of IL-2 to the high affinity 

receptor then triggers progression through the rest of the cell cycle (Figure 6.2).    

Activation of CD8
+
 T cells leads to expression of high affinity IL-2 receptor 

in lieu of the moderate affinity receptor in resting T cells. It is the binding of IL-2 to 

its high affinity receptor that initiates cell cycle progression and proliferation. IL-2 
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may act in an autocrine manner and thus stimulate proliferation into thousands of 

antigen specific clones. With continued maturation, the T cell develops into an armed 

effector T cell not requiring co-stimulation to mount an immune attack. 

6.4.2 IL-2 signalling pathway 

             Human IL-2 is a 133 amino acid polypeptide. IL-2 signalling is mediated by 

IL-2R. The IL-2R α chain primarily increases the affinity of ligand binding, whereas 

the β and γ chain participate in both ligand binding and signal transduction. There are 

at least three different pathways in IL-2R signalling system proceeds, which mediate 

the flow of mitogenic and survival promoting signals (Figure 6.3). First pathways 

proceeds through protein tyrosine kinase activity, Ras and the MARK (Mitogen-

Activated Protein Kinase) cascade, leading to expression of the protooncogenes c-

Fos, c-Jun, and Eik1. The Syk, which for the second pathway is responsible for c-

Myc gene induction.  And the final pathway results in BCL2 (B Cell Leukemia-2) 

expression, and progression through a Rho, Pl3k (Phosphoinositide-3 Kinase) and 

Akt/ PKB (Protein Kinase-B) mediated signalling pathway. As the last pathway is 

also involved in IL-2 promoted regulation of actin cytoskeleton organization (Gomez  

et al, 1997) 
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Figure 6.3 IL-2 Signalling pathways 

6.4.3 IL-2 function 

            IL-2 is crucial for in vitro proliferation of T cells and is assumed to be the 

central growth hormone of the immune system. And as most of the data support that 

IL-2 play essential role in immune tolerance, but this idea is overthrow by IL-2 or IL-

2R deficient mice (Sadlack et al, 1995) (Suzuki et al, 1995). This change is occurred 

when T regulatory cell defect was shown to be responsible for the lethal 

autoimmunity associated with IL-2/ IL-2R deficient. Most T cells have the potential 

to secrete IL-2. Treg cells, however, do not produce IL-2, and this represents one of 

their defining features. In contrast to naïve T cells, the IL-2 proximal promoter in 
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Treg cells does not undergo chromatin remodeling upon TCR activation (Su et al 

2004). Moreover, Foxp3 directly binds to the minimal IL-2 promoter in association 

with NFAT and further downstream in association with AML1/Runx1, contributing 

to active transcriptional repression of IL-2. Recent studies indicate that Treg lineage 

commitment ensues without expression of Foxp3 (Gavin et al 2007) (Lin et al 2007). 

An important function of Foxp3 is to amplify and fix these pre-existing features 

required for the suppressive program. Moreover, paracrine IL-2 was suggested as 

essential for establishing this program (Gavin et al 2007). As the Treg cell 

suppressive program depends on consistent high levels of Foxp3 (Wan et al 2007) 

(Gavin et al 2007), a fundamental role of IL-2 likely lies in its ability to increase 

Foxp3. Another link between IL-2R signaling and expression of important molecules 

for Treg function is the fact that enforced expression of Foxp3, TGF-β, or CTLA-4 

into IL-2- or CD122- deficient T cells controls many aspects of autoimmunity when 

such cells are present in IL-2- or CD122-deficient mice (Hwang et al, 2004) (Carrier 

et al, 2007) (Malek, 2008).  

6.4.2 IL-2 as an adjuvant in different types of vaccination  

            As mentioned adjuvant play a key role in vaccination strategies. In many 

vaccinations delivery system the immune response is significantly boosted by co-

administration of IL-2. IL-2 is responsible for promoting cell division in a resting T 

cell, and it also treat as a key to reverse the tolerance (Essery et al, 1988) (Figure 6.4). 

They were of interest to determine whether IL-2 could reverse tolerance. They 

culture T cells with IL-2 after induction of unresponsiveness. Once the T cells are 

cultured with IL-2 tolerance T cell restore ability to response.    
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Figure 6.4 IL-2 can reverse tolerance of T cells 

            Proliferating T cells also produce a variety of other lymphokines that affect 

other arms of the immune system. B cell specific lymphokines produced by activated 

T cells (interleukins 4, 5, and 6) act in conjunction with T cell help to activate B cells 

and to generate mature antibody producing plasma cells and memory B cells 

(Coffman et al 1988) (Seghal et al. 1987). Another T cell produced lymphokine, 

interferon γ, induces expression of class II histocompatibility antigens on cells of the 

monocyte/macrophage lineages and activates these phagocytic and antigen 

presenting cells (Basham et al, 1984). 

            In view of these direct and indirect actions of IL-2 in the immune response, it 

has been postulated that IL-2 may function as a potent adjuvant to vaccination, to 

increase the specific and durable response to vaccine immunogens.  

           Recombinant human IL-2 (Rosenberg et al, 1984) (Wang et al, 1984) has been 

shown to be biologically active in cells of many mammalian species (Fong and 

Doyle, 1986). Previous work showed that IL-2 can enhance protection against 

Haemophilus pleuropneumonia in seine when IL-2 is administered systemically in 

conjunction with intramuscular H.  pleuropneumonia vaccination (Anderson et al, 

1987). Daily treatment with IL-2, at the time of vaccination and for 4 days thereafter, 
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was substantially more efficacious than a single IL-2 treatment at the time of 

vaccination. It was concluded that the continued presence of IL-2, throughout the 

period of the immune response, is important in the adjuvant effect. This 

interpretation is consistent with the in vivo action of IL-2 during the immune 

response (Fauci, 1987). 

            IL-2 was also used as an adjuvant to inactivated rabbits virus vaccine. The 

National Institutes of Health (NIH) test for rabies vaccine potency (Seligman, 1973) 

was used to study the effect of daily, systemic IL-2 administration on the potency of 

inactivated rabies virus vaccine (Nunberg et al, 1989). Nunberg et al (1989) found 

that daily systemic administration of IL-2 in conjunction with inactivated rabies 

vaccine can increase the potency of vaccination in out bread mice at least 25-fold, as 

measured by survival following challenge with virulent rabies virus. The same study 

revealed that enhanced protection is not correlated with an increase in virus-

neutralising antibody titers and suggested that IL-2 acts to increase the cellular 

immune response to vaccination.  

            In the recent years IL-2 has been used in conjunction with the highly active 

antiretroviral therapy (HAARA) against HIV. As IL-2 is the major T cell growth 

factor that its exogenous administration could help restores immune function in HIV 

positive patients. This assumption led to the development of therapeutic strategies 

aimed at modulating IL-2 signal strength for clinical benefit. Indeed, numerous 

controlled clinical studies in HIV-positive patients with widely varying CD4 counts 

have now demonstrated that when combined with HAART, IL-2 results in a 

significant rise in CD4 cell count compared with HAART alone, with only transient 

or even no associated bursts of HIV plasma viraemia (Kovacs et al, 1996) (Hengge et 

al, 1998) (David et al, 2001) (Katlama et al, 2002) (Levy et al, 2003). Martinez-

Marino et al (2004) reports that IL-2 therapy in combination with HAART leads to 

significant increases in CD4 numbers that are maintained for six months after 

discontinuation for the IL-2 treatment. This group also report that CD8 cell non-

cytotoxic anti-HIV response was restored among subjects receiving HAART and IL-
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2 whereas it declined among those receiving HAART alone and in untreated infected 

subjects. The percentage of HAART subjects with CD8 cells showing at least 50% 

suppression of HIV replication increased significantly following IL-2 therapy and 

persistence for 6 months. According to Marchetti et al (2005), IL-2 administration 

resulted in a significant increase in CD4 cells, sustained up to one year of follow up, 

whereas HAART patients experienced a much less relevant and slower rise in CD4 

cells. Furthermore Machetti and her group report that clinical recods of the patients 

enrolled suggested that the accelerated IL-2 driven CD4 cell gain might indeed be 

effective in preserving an adequate cellular immunity, as no HIV-related clinical 

eevents were observed among IL-2 treated patients, whereas more than 30% of 

HAART alone patients presented minor opportunistic infections. 

            In DNA vaccination against cancer coexpression of cytokine genes together 

with antigen-encoding genes in DNA vaccination vectors can increase humoral and 

cellular immune responses and may steer them in a TH1 or TH2 direction. In a study 

by He et al (2005), a plasmid expressing the OVA tumour antigen incorporated into 

the signal peptide of human IL-2 was tested as a DNA vaccine in a murine model 

system. Results showed that antigen specific CTL responses were elicited by 

intramuscular injection of these plasmids. Importantly, compared with the minigene 

vector expressing the same OVA epitope, IL-2 expression plasmid vaccination was 

more effective in protection mice from OVA expressing tumour challenge. The 

improved efficacy appears to result from enhanced antigen presentation as well as the 

immunostimulatory activity of IL-2.     

           But IL-2 does get limitation which has been documented. It shows that higher 

doses of IL-2 appear better clinical responses but cause appreciable toxicity named 

capillary leak (Waldmann, 2006) 

6.5 Other cytokines used as adjuvant in vaccine development. 

            IL-2 is the first cytokine administered in a vaccine trial. But there are many 

other cytokine also contributed as the adjuvant to enhance the vaccine response, like 
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IL-7 and IL-21 for the clinic offered the promise of enhancing anti-tumour responses 

but with far less systemic toxicity and no expansion of regulatory T cell. Some 

preclinical studies are also demonstrated that IL-15 could improve T cell and 

particular NK cell responses too (Christian et al, 2009).  

            Il-7 can be produces by a variety cells and tissues but not by lymphocytes 

themselves. It can involved in maintenance and survival of αβ T cells as well as 

development of B cell and γδ T cells, and also may play a role in DC and monocytes’ 

biology except to support NK cells. IL-7 does not appear to support NK cells. Thus, 

IL-7 plays a critical role in lymphocyte homeostasis as indicated by markedly 

diminished lymphocyte counts in IL-7 and IL-7 receptor gene deleted mice and the 

severe combined immunodeficiency associated with IL-7 receptor mutations in 

humans. An extensive review of IL-7 biology and signalling can be found elsewhere, 

but here is focus to point out it as an agent for adjuvant therapy for vaccines (Fry et 

al, 2002) (Capitini et al, 2009) (Christian et al, 2009). Recently, adjuvant IL-7 was 

shown to improve vaccine mediated survival in a spontaneously occurring murine 

tumour model via enhanced Th17 differentiation and reduced T cell-intrinsic 

inhibitory networks. IL-7 is a very promising agent to enhance overall immune 

competence and, potentially, tumour specific immune responses. The absence of 

Treg expansion and the lack of toxicity observed in this clinic would suggest that IL-

7 offers definite advantages over IL-2 as an adjuvant. But IL-7 does play a role in 

either the initiation or maintenance of some leukaemias and lymphomas which 

described as the potential limitations for IL-7 therapy. Therefore it will need to be 

used with extreme caution in immunotherapy regimens involving lymphoid 

malignancies (Korte et al, 1999) (Vudattu et al, 2008) (Christian et al, 2009).   

            IL-15 is constitutively expressed by a variety of cell types and tissues, but in 

contrast to IL-2, is mainly membrane bound. IL-2 and IL-15 have pivotal roles in the 

control of the life and death of lymphocytes. IL-15 and IL-2 exhibit similar immune 

effects and share the IL-2 receptor subunits IL-2 β and γ except α chain (Waldmann 

2006) (Budagian et al, 2006) (Fehniger et al, 2002) (Christian et al, 2009). IL-15 is 
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required for the differentiation of NK cells and plays a role in maintaining and 

expanding CD8
+
 T cells particularly memory subsets, NK cells, NKT cells 

interferon-killer DCs and γδ T cells. And IL-15 may also have function related to B 

cells and APCs. So these features of IL-15 biology will have important implication to 

utilize this cytokine as a therapeutic agent. There have been numerous preclinical 

studies exploring IL-15 as a vaccine adjuvant. Although the majority has been in 

infection models, a number of reports of the adjuvant effect of IL-15 have been 

published. One important observation is that IL-15 can revert tolerant T cells to 

become effectors (Teague et al, 2006). Adjuvant use of IL-15 can enhance vaccine 

responses to both dominant and subdominant, tumour antigens (Melchionda et al, 

2005). Recently, IL-15 administered after a gene-modified vaccine resulted in 

enhanced anti-tumour activity in a murine melanoma mode (Basak et al, 2008). 

Based on the available pre-clinical data, IL-15 would appear to be well suited as an 

adjuvant to cancer vaccines (Christian et al, 2009).   

            IL-21 is homologous to IL-15, but the receptor for IL-21 is comprised of a 

unique subunit designated IL-21Rα and the IL-2Rγ(c). IL-21Rα is expressed on most 

mature lymphocyte populations (Figure 6.5). Production of IL-21is restricted to 

activate CD4
+
 T help cells (Wurster et al, 2002). IL-2 appears to play important roles 

in modulating responses of lymphocytes to other cytokines. IL-21 has also been 

shown to induce IL-10 production in models of lupus, suggesting that like IL-2, it 

can also contribute to immunosuppressive activity (Spolski et al, 2009) (Christian et 

al, 2009).  Besides enhancing IL-2 therapy, IL-21 may also improve the effectiveness 

of other cytokines and immunotherapies. Combining IFNα and IL-21 increases NK 

cell and CD8
+
 T cell mediated cytotoxicity in an experimental model of RCC, 

leading to inhibition of tumour growth and an increased survival (Eriksen et al, 2009). 

IL-21 can also significantly augment IL-7 induced expansion of cytotoxic T cells, 

possibly by preventing the cytokine-induced down-regulation of CD127 on antigen-

stimulated T cells, results which suggest that IL-21 may also play a cooperative role 

with IL-7 in modulating primary CD8
+
 T cell responses (Liu et al, 2007). Lastly, in 

regards to a pediatric tumour, vaccinating with IL-21-gene-modified cells in a 
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syngeneic metastatic neuroblastoma model demonstrated a reduction of microvessels 

in late metastases from therapeutically vaccinated mice. A role of survivin as a 

tumour antigen was suggested since a specific T cell response against this antigen 

was induced (Søndergaard et al, 2007) (Christian et al, 2009).      

 

Figure 6.5 Target lymphocyte population for common cytokine receptor γ-chain family 

cytokines . 
There is considered that the effects of stimulatory or inhibitory on lymphocytes depend on 

the cytokine. IL-21 only increases proliferation of T cells stimulated with anti-CD3 or 

antigen, but can augment responses to other gamma(c) cytokines. IL-7 acts on developing B 

cells but not mature cells of this lineage. IL: Interleukin, NK: Natural Killer, NKT: Natural 

Killer-T cell, Treg: Regulatory T cell (Christian et al, 2009).     

6.6 Dendritic cell-based vaccination approaches 

There is large literature involving vaccination strategies using DCs loaded ex 

vivo with antigens. Different sources of DCs for ex vivo loading have been used. 1) 

Peripheral blood DCs. There are obtained by leukaheresis from blood, followed by 
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positive or negative selection (Hsu et al, 1996) (Small et al, 2000) (Reichardt et al, 

1999). 2) Monocyte-derived DCs. Culture of CD14
+
 monocytes and plastic adherent 

mononuclear cells for 7 days in media containing GM-CSF and IL-4, TNF-a, or IL-

13 is the most popular culture method (Sallusto and Lanzavecchia, 1994) (Cao et al, 

2000) (Morse et al, 1993). 3) CD34
+
 precursor-derived DCs. The generation of these 

DCs requires a more substantial cocktail of cytokines, including stem cell factor 

Flt3L, IL-3, and IL-6, followed by differentiation with IL-4 and GM-CSF (Chen et al, 

2001) (Curti et al, 2001). The second and third methods are the most popular 

methods for in vitro generation of DCs for vaccination.  

There are six type of ex vivo antigen loading to DCs: 

1. Protein-loaded DCs. DCs, being professional antigen presenting cells 

are extremely efficient in taking up proteins. Proteins have the benefit of potentially 

containing multiple antigenic epitopes, including class II epitopes, and thus avoid 

MHC restriction. On the other hand proteins are more difficult to synthesis and are 

less readily available for clinical use. Additionally, proteins are broken down into 

many epitopes, only few of which are immunogenic. Despite these concerns studies 

in multiple myeloma inhibitor of DNA binding (Id) proteins loaded DCs have 

demonstrated that Id- specific T cell responses can be stimulated (Timmerman et al, 

2002) (Titzer et al, 2000) (Li et al, 2000). Another concern has been that even though 

DCs are naturally efficient in taking up proteins, the processing of epitopes derived 

thereof into MHC class I molecules requires high amounts of exogenous antigen and 

therefore appears to be rather inefficient (Lanzavecchia, 1996) (Brossart and Bevan, 

1997) (Norbury et al, 1997) (Raychaudhuri and Rock, 1998). Therefore many 

laboratories are involved with the development of methodologies for effective 

delivery of proteins into the class I processing pathway of DCs. In a report by Laus et 

al (2000) two proteins (ovalbumin and a fragment of the HER-2/neu protein) were 

modified through coupling polylysine stretch is proposed to facilitate cellular uptake 

by neutralising the negative charge of the protein. The fusogenic sequence improves 

access of the antigen form the endosomal route into the cytosol, thereby boosting 
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processing of the antigen into MHC class I. addition of the peptide-conjugated 

antigen to muring APCs resulted in a 10 to 100-fold increase in the efficiency of 

class I restricted antigen presentation (Laus et al, 2000).      

2. DCs loaded with peptides. DCs are known to be able to efficiently take 

up and process protein antigens and present them in the form of peptide: MHC 

complexes. However, it was found that peptides can also be loaded to DCs and such 

peptide-pulsed DCs are potent inducers of immune responses. In fact, direct 

comparison of peptide- and protein- loaded DCs showed that immunisation with 

SIINFEKL- loaded DCs resulted in a much stronger H-2Kb-restricted response 

compare with OVA protein-loading DCs (Met et al, 2003). This could be due to the 

notion that protein processing leads to the production of numerous peptides, not all of 

which are immunogenic, whereas the SIINFEKL peptide is reported to be the most 

immunogenic peptide of the OVA antigen. Advances in peptide- pulsed DC 

vaccination are discussed below. Walden and his group carried out a research on the 

efficiency of peptide presentation by peptide-pulsed DCs compared with other 

peptide-pulsed cell types (Zhen et al, 2006). They found that JY EBV-immortalised 

B cell line for a comparable number of peptide: MHC complexes on their surfaces. 

The higher stability of per-existing peptide: HLA molecules on DCs compared with 

other cell types (Zhen et al, 2004) is the most probable explanation for the less 

efficient peptide loading and the need for higher concentrations of peptide compared 

with JY cells. With the use of sodium azide to inhibit all energy- dependent 

membrane turnover or brefelin A to block export of newly synthesised HLA 

molecules and thereby decouple peptide loading from conventional MHC class I-

specific antigen processing, the efficiency of peptide-loading was reduced. The 

loading of peptides in the presence of those reagents suggests that a fraction of the 

peptide: MHC complexes are formed on the cell surface by exchange against 

peptides already bound to MHC molecules. However the reduces efficiency of 

peptide loading in the presence of the inhibitor reagents suggests that a fraction of 

complexes is formed intracellularly (Zhen et al, 2006). Several laboratories have 

been studying ways it improve peptide loading to DCs. Buschle et al (1997) were 
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able to show that polyarginine treatment enhanced peptide delivery by more than 2- 

fold as compared with cells treated with peptide alone; they also showed that 

polylysine treatment resulted in an approximately 10- fold increase in peptide uptake. 

In a more recent study it was reported that peptide linking with a C- terminal Lys-

Asp-Glu-Leu ER retrieval signal leads in a more efficient and prolonged intracellular 

MHC class I presentation, in a TAP- and proteasome- independent, but brefelin A- 

sensitice manner (Wang et al, 2004). The rapid turnover of the peptide: MHC 

complex also contributes to inefficient peptide presentation. Prolongation of 

synthetic of synthetic peptide presentation has been reported by Waeckerle- Men et 

al (2004) employing the peptides encapsulated in biodegradable microspheres.  

3. DCs transfected with DNA and mRNA. These methods provide 

epitopes from endogenously synthesised antigen. DNA and mRNA have the 

advantage of being easier to manufacture than full-length proteins. Although DCs 

may be loaded with naked DNA, this approach has low efficiency of transfection, 

and thus viral vectors are generally employed. However, there have been studies to 

improve transfection; in a study by Irvine et al, (2000) a cationic peptide (CL22) was 

used to condense plasmid DNA encoding the antigens of choice to improve 

transfection efficiency of human and murine DCs. An alternative is to load DCs with 

mRNA encoding tumour antigens (Boczkwski et al, 1996) (Mitchell and Nair, 2000). 

mRNA is transfected in its naked form with liposomes or via  electroporation. 

VanTendeloo et al (2001) reported that mRNA-electroporated DCs are more potent 

in activation antigen specific CTLs than mRNA-liposome transfected DCs. It has 

been reported that even low levels of transfection are adequate for mRNA-loaded 

DCs to strongly stimulate antigen specific CTLs (Nair et al, 1998). Importantly, 

mRNA can be amplified from small amount of tumour, and thus this method may 

increase applicability of DC based vaccines to patients with minimally available 

tumours (Heiser et al, 2001). A general advantage of nucleotide transfection of DCs 

is that endogenously sythesised antigens have better access to the MHC class I 

pathway. 
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4. DCs transuded with viral vectors. Several classes of viral vectors have 

been developed for the delivery of genetic material to DCs. Retroviral vectors can 

successfully transducer proliferating CD34
+
 progenitors prior to their differentiation 

into DCs. These viral vectors carry the risk of oncogenic transformation and have 

relatively low transduction efficiency (Osada et al, 2006). Lentiviral vectors do not 

encode viral proteins, thereby minimising their potential to interfere with the function 

of transduced DCs via the induction of vector –specific immunity (Osada et al, 2006). 

Lentiviral vectors have been developed with increased safety profiles that prevent the 

generation of replication- competent recombinants (Firat et al, 2002) (Lizee et al, 

2004) (Dull et al, 1998). He et al (2005) directly compared lentiviral vector-

transducer DCs with peptide/protein-pulsed DCs by analysing the kinetics and 

strength of the resultant in vitro and in vivo antigen-specific immune responses, and 

demonstrated that the lentivirus stimulated more potent and persistent in vivo CTL 

activity, resulting in superior therapeutic efficacy. Adenoviruses have also been used 

to transduce DCs and different modifications have been explored to avoid vector 

immunogenicity and increase safety (Amalfitano et al, 1998) (Rea et al, 2001) 

(Worgall et al, 2004). Fowlpox vectors have been studied as well, being interesting 

due to their ability to infect but not replicated within human cells (Brown et al, 2000). 

Kim et al (1998) reported that fowlpox transduced DCs were able to stimulate CD8
+
 

T lymphocytes in vitro from 10 out of 11 patients. Fowlpox vectors with co-

stimulatory molecules and antigen have been used to transducer DCs and led in 

superior antigen presentation capacity (Zhu et al, 2001) (Tasang et al, 2005).  

5. DCs loaded with tumour cells or tumour cell lysates. Tumour cells 

have been explored as a strategy to load DCs, as they contain all the necessary 

material against which the desired immune response should be directed. In murine 

models immunisation with DCs that had phagocytosed apoptotic/ necrotic tumour 

cells resulted in a greater tumour-specific CTL response and successful eradication 

of lung metastases compared with immunisation with tumour peptide pulsed in many 

clinical trials, as the processing of the lysate by DCs allows for the targeting of broad 

variety of unknown proteins (Yu et al, 2004) (Lee et al, 2005) (Chang et al, 2002).  
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6. DC- tumour cell fusions. Another method for delivering the contents of 

tumour to DCs is the construction of DC-tumour cell fusions. These fused cells 

express a large repertoire of TAAs, high levels of MHC class I and II molecules, and 

adhesion/ co-stimulatory molecules, making them strong antigen-presenting 

platforms (Osada et al, 2006). Preclinical data has demonstrated that DCs fused with 

tumour cells are potent inducers of tumour-specific immune responses (Gong et al, 

2000) (Koido et al, 2004). Polyethylene glycol has long been utilised for fusing cell, 

and electrofusion has also emerged as an alternative technique (Parkhurst et al, 2003) 

(Scott-Taylor et al, 2000). Many clinical trials employing DCs fused with autologous 

tumour or allogeneic tumour cell lines have been initiated, with the results suggesting 

that hybrid cell vaccination is a safe and well tolerated procedure capable of inducing 

T cell responses (Martein et al, 2003) (Kikuchi et al, 2001). 

6.6.1 Peptide-pulsed DCs in the clinical setting  

 New methods and technologies allow easier generation and collection of 

large number of either monocyte- or CD34
-
 derived autologous DCs from cancer 

patients (Sallusto and Lanzavecchia, 1994) (Siena et al, 1995). In vitro experiments 

and animal models demonstrated that autologous DCs can effectively present human 

TAA as loaded proteins or peptide to naïve T cells (Fong and Engleman, 2000). 

Several clinical trials, mainly on melanoma patients, have been carried out using 

peptide-pulsed DCs (Figure 6.6).  
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Figure 6.6 Strategy for immunization with autologous peptide-pulsed DCs (Jay et al, 

2001) 

Monocytes or CD34
+
 precursors are isolated from patient blood by cytopheresis. Cells are 

cultured in the presence of various cytokines to differentiate them into immature dendritic 

cells, which are then loaded with the antigen of interest before or following dendritic cell 

maturation. Mature antigen-loaded autologous DCs are then administered to patients. 

            In an early study by Mukherji et al (1995) melanoma patients whose tumour 

cells express the MAGE-1 gene and who are HLA-A1﹢were immunized with a 

vaccine made of culture autologous APCs (peripheral blood-derived plastic-adherent 

mononuclear cells culture in GM-CSF) pulsed with the synthetic MAGE-1 
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nonapeptide EADPTGHSY. Analyses of the nature of the in vivo host immune 

response to the vaccine revealed that the peptide-pulsed APCs are capable of 

inducing autologous melanoma reactive and peptide-specific CTLs in situ at the 

immunization site and at distant metastatic disease sites (Mukherji et al, 1995).  

            In another study (Banchereau et al, 2001) eighteen patients with metastatic 

melanoma received s.c injections with CD34 progenitor-derived autologous DCs 

pulsed with peptides derived from four melanoma antigens. Immune responses 

(expansion of melanoma-specific IFNγ-producing CD8
+
 T cells in the blood) to one 

or more peptides were observed in sixteen out of eighteen patients (Banchereau et al, 

2001). The overall immunity to melanoma antigens after DC vaccination was 

associated with a clinical response. In a later follow up study the same group further 

analysed twelve of the patients to determine whether vaccination with peptide-pulsed 

CD23-DCs permits expansion of melanoma-specific CD8
+
 T cells that can yield 

functional CTLs able to kill melanoma antigen-expressing cells (Paczesny et al, 

2004). They showed in nine out of twelve analysed patients the expansion of 

cytolytic CD8
+
 T cell precursors specific for melanoma differentiation antigens. 

Larger follow up studies to assess the immunological and clinical response to 

peptide-pulsed CD34-DC vaccines are underway.     

            Peptide-pulsed SC vaccination has also been employed for numerous other 

clinical trials involving several types of malignancies like multiple myeloma (Titzer 

et al, 2000), malignant glioma (Yu et al, 2001), nasopharyngeal carcinoma (Lin et al, 

2002), chronic myelogenous leukaemia (Takahashi et al 2003), gastrointestinal 

malignancies (Matsuda et al, 2004), colorectal cancer (Liu et al, 2004), 

hepatocellular carcinoma (Butterfiled et al, 2006), renal cancer (Wierecky et al, 

2006), and breast cancer (Svane et al, 2007). 
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6.7 Problems of DC based vaccines 

            DC as the most potent APC has been used to elicit protective T cell immune 

response to viral infection and cancer. However, so far, there are very limited clinical 

success (Melief, 2008) (Steinman and Banchereau, 2007) largely due to a lack of 

knowledge of the ideal antigen-loaded DC for optimal therapy and standardization 

(Figdor et al, 2004) (Steinman and Banchereau, 2007). One of the major problems is 

the creation of HLA and peptide complexes on therapeutic DC cells. Although a 

number of reports demonstrated an induction of CD8 T cell responses by peptide 

loaded DC cells in vitro (Smith et al, 2007) (Melief, 2008), it is impossible to control 

the quantity and quality of peptide – HLA class I assembly on therapeutic DCs 

making the therapeutic DCs inconsistent. It is even more difficult to characterise 

peptide – HLA class II complexes on DCs which is important to induce CD4 helper 

function required for long lasting CTL responses (Smith et al, 2007) (Melief, 2008). 

             The second major problem is the immunogenic heterogeneity of the matured 

of DC matured after derived from monocytes isolated from patient blood in vitro. 

The differentiated DCs have heterogenic population with immunologically active or 

suppressive function for induction of T cell responses. It has discovered that mature 

DCs differentiated in vitro can produce soluble suppressive factors like IL-10, 

Transforming growth factor beta (TGF-β) and indoleamine 2,3-dioxigenase (IDO) 

(Munn et al, 2002) (Lan et al, 2006) (Kobie et al, 2003) (Vassiliki et al, 2009).  

             The other major problems for live DC therapies are low stability after 

transfused back into patients, could not be stored for repeated use, therapeutic DC 

reagents have to be individually prepared from autologous blood monocytes 

(Fernandez et al, 1998). 

             In addition to the difficulties to prepare good DC therapeutic reagents, an 

immune suppressive microenvironment in tumour is also one of the major barriers 

for a successful anti-cancer immune therapy (Melief, 2008). Numbers of 

immunosuppressive cytokines, including IL-10 and TGF-b are produced by tumour 
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or tumour stimulated stromal environment (Kortylewski et al, 2005) (Kortylewski 

and Yu, 2008). immunoediting (Dunn et al., 2006) (Koebel et al, 2007), in contrast to 

the activation and maturation factors for DC under infectious condition, the immune 

suppressive environment induced by tumour negatively affect the function of 

therapeutic DC cells and effector T cells (Hamzah et al, 2008a) (Hamzah et al, 

2008b). In conclusion, the therapeutic DCs manipulated in vitro differ functionally 

from DCs induced by pathogens in vivo and the uncontrolled biological functions in 

therapeutic DCs can severely reduce the efficacy. 

             To overcome the low stability of therapeutic DCs, cell-free antigen-

presenting systems have been reported, including membrane vesicles derived from 

APC such as exosomes, which are secreted from endosomal compartments of APC 

and microvesicles derived from plasma membranes of APC after sonication (Kim et 

al, 2004) (Kovar et al, 2006), However, these vesicles have problems  such as 

difficulty to control the quality and the quantity of pMHCs in the preparation, low 

yield and have to be prepared from patient cells. Our group has generated a novel 

vesicle based vaccine by using microsomal vesicles from the ER membranes of 

APCs (Vassiliki et al, 2009). The data demonstrated that these microsomal 

membranes not only can be monitored and controlled quantitatively and qualitatively 

of the level of pMHC with reporter peptides, but also possess a high level of co-

stimulatory molecules (Vassiliki et al, 2009). 

6.8 Liposomes 

            Liposomes are colloidal, vesicular structures based on lipid bilayers. Their 

characteristics depend on the manufacturing protocol and choice of bilayer 

components. They range from 20nm to 10μm in diameter. The liposomes can be 

unilamellar (with only one bilayer surrounding an aqueous core) or multilamellar 

(several bilayers concentrically oriented around an aqueous core). Moreover the 

choice of bilayer components determines the ‘rigdity’ (or ‘fluidity’) and the charge of 

the bilayer. For example saturated phospholipids with long acyl chains, such as 

dipalmitoylphosphatidylcholine, for a rigid, rather impermeable bilayer structure, 
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while unsatureated phosphatidycholine species from natural sources (egg or soybean 

phoshatidylcholine) give much more permeable and less stable bilayers. The 

introduction of positively or negatively charged lipids gives the liposomes a surface 

charge. Liposome surface can be readily modified. The circulation time of liposomes 

in the blood stream is dramatically increased by attaching poluethylene glycol 

(PEG)-units to the bilayer. Alternatively homing molecules can be attached to 

liposome bilayers to make these structures target site specific. Size, lamellarity, 

bilayer rigidity, charge and bilayer surface modifications are all parameters that 

determine the fate of liposomes on the shelf and in vivo. Over the years the behaviour 

of liposomes has been investigated in great detail (Gregoriadis, 1993) (Storm and 

crommelin, 1997). Algorithms can be used to help the pharmaceutical formulation 

scientist to select the proper liposome type (Figure 6.7). 

 

            Figure 6.7 A drawing of a small spherical liposome seen in cross section  

           Liposomes are used as carriers for drugs and antigen because they can serve 

several different purposes. Liposomes can direct a drug to a certain target. Secondly, 

liposomes can prolong the duration of drug exposure, acting as a slow release 

reservoir (Oussoren et al, 1999).  This has been demonstrated in a number of studies, 

for example with the antimalarial drug chloroquine or the radical scavenger 
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superoxide dismutase. Liposomes can protect a drug against degradation (e.g. 

metabolic degradation). Conversely, liposomes can protect the patient against side 

effects of the encapsulated drug. For example liposome encapsulation greatly reduces 

exposure to the heart to doxorubicin and thereby its cardiotoxicity. As liposomes can 

solubilise lipophilic compounds, this solubilising potential can be used to inject 

poorly water soluble compounds intravenously. If a fast pharmacological response is 

desired, then ‘fragile’ liposomes with ‘fluid’ bilayers should be selected.  

            Liposomes can be made tissue or cell specific. Most of the work on liposome 

targeting has been done with antibodies or antibody fragments attached to the 

liposome surface (Mastrobattista et al, 1999). However other homing devices have 

also been considered, e.g. plasminogen-coated liposomes were designed to 

endothelial cells to block angiogenesis (Koning et al, 2006). Saccharide directed 

targeting has also been described to direct liposomes to hepatocytes. Targeted 

liposomes should readily have access to the target site and should not be taken up by 

macrophages before encountering their target tissue or cells. Therefore nowdays 

stealth technology is often combined with the attachment of a homing device to the 

terminal end of the PEG chain that is exposed to the aqueous medium. 

            In cancer immunotherapy, liposomes have been used to deliver antigen and 

immunomodulating agents to DCs. Different startgies are being explored to target 

liposomeal antigens to DCs in vivo. In a study by Kawamura and colleaques (2006) 

IgG conjugated liposomes without attaching PEG were most efficiently endicytosed 

by DCs. Immunisation of mice with DCs that endocytosed ovalbumin containing IgG 

liposomes completely prevented the growth of OVA-expressing lymphoma cells. 

Importantly administration of DCs that endocytosed OVA containing IgG liposomes 

to the mice with established OVA expressing tumours strongly suppressed tumour 

growth (Kawamura et al, 2006). 

            The potential for using cell-deriver liposomal membranes to deliver tumour 

antigens to DCs recently has been explored using tumour cell derived plasma 

membrane vesicles (PMVs). Tumour cell derived PMVs are known to retain tumours 
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antigens from established tumour cell lines. They can be prepared by brief sonication 

of the cells, followed by separation of the membrane fraction by high speed 

centrifugation on sucrose (van Broekhoven et al, 2002) (van Broekhoven et al, 2004). 

The membrane fraction PMVs is then collected and used for vaccine production.  

            Various tumour vaccine combinations have been prepared recently from 

tumour cell derived PMVs that have been modified to contain cytokines and 

engrafted with either T cell co-stimulatory molecules or with ScFv that target the 

surface markers CD11c and DEC-205 on murine DCs. Importantly, immunological 

studies showed that PMV preparations containing the co-stimulatory molecules B7.1 

and CD40 and IL-2 cytokines can exert potent antitumour responses, including the 

inhibition of tumour growth and regression of established tumours (van Broekhoven 

et al, 2002). Later, the same group used an approach where single chain antibody 

fragments to the DC surface molecules CD11c and DEC-205 were attached to 

vesicles containing IFNγ or lipopolysaccharide, to target them to DCs (Altin et al, 

2004) (van Brokhoven et al, 2004). Such membranes induce dramatic antitumour 

responses and immunotherapeutic effects when used as a vaccine in the murine 

tumour model B16-OVA melanoma. Therefore, PMV targeting of antigen and 

maturation signals directly to DCs in vivo represents a much simpler strategy for 

cancer immunotherapy than antigen loading DCs ex vivo (Altin et al, 2004) (van 

Broekhoven et al, 2004).  

            Clinical trials of liposomal vaccines on cancer patients have revealed that 

liposomes are safe and well tolerated and can induce tumour specific T cell responses 

(Neidhart et al, 2004) (Neelapu et al, 2004). In a study by Neelapu et al (2004), ten 

patients with advanced stage follicular lymphoma were vaccinated with liposomal 

idiotype/IL-2 vaccine. 6 out of 10 patients showed complete remission. However, 

only a few clinical trials have been carried out, generally with no significant clinical 

results.  
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6.9 Dendritic cell-based cell-free vaccination approaches 

6.9.1Exosomes 

             Exosomes are saucer shaped vesicles of 30-100nm in diameter, which are 

delimited by a lipid bilayer and which float at a density of 1.13-1.19g/ml in sucrose 

gradients. These vesicles are secreted by various cells in culture (Figure 6.8). 

Analysis of the protein composition of exosomes that are secreted by various cells 

reveals the presence of some common proteins, which define exosomes as a bona 

fide secreted subcellular compartment, as well as the presence of some cell type 

specific proteins, which could mediate the different functions of exosomes that are 

produced by different cell types. All of the proteins that have been identified in 

exosomes are localised in the cell cytosol or endosomal compartments, never in the 

endoplasmic reticulum, Golgi apparatus, mitochondria or nucleus. Exosomes also 

contain some plasma membrane proteins, which have been described also in 

endosomal compartments. These observations are consistent with the proposed origin 

of exosomes as internal vesicles of late multivesicular compartments (Tery et al, 

2002) 

            The biological functions of exosomes remain unclear. The original role of 

exosomes was most probably to eliminate undergraded endosomal or lysosomal 

proteins and mmembranes. Recent results indicate, however, that in different cell 

types, exosomes might have other functions, such as the stimulation or inactivation 

of T cells, or the transfer of antigens to DCs. Scientists at the institute Curie proposed 

a novel mode of functioning of exosomes (Thery et al, 2002); After the uptakge of 

incoming pathogens in the periphery, immature or maturing DCs generate peptide 

MHC complexes. Some of these complexes could be secreted on exosomes, and 

locally sensitize other DCs that have not encountered the pathogen directly, as a 

result of the effects of inflammation, all of these DCs migtate out of the tissue 

towards the draning lymph nodes. Although maturing DC seem to secrete fewer 

exosomes that immature cells, an exchange of exosomes inside the lymph nodes 

between newly arrived and resident DCs could take place too. Therefore, exosomes 



95 
 

production would increase the number of DCs that bear the revelant peptide MHC 

complexes, and thereby amplify the magnityde of immune responses. In the absence 

of inflammation, spontaneous migration of exosomes-bearing DCs could contribute 

to tolerance induction. Figure 6.8  

             

 

Figure 6.8 The exosome pathway (Laura et al, 2008) 

              By now results have shown that DC derived exosomes stimulate T cell    

proliferatio in vitro and have a potent capacity to generate antitumour immune 

resposes in vivo. All these reported studies have involved in vitro grown mature DCs 

expanded from precursors with cytokines. However, immature DCs produce higher 

numbers of exosomes than mature DCs and this is thought to be due to a reduction in 

endocytosis as DCs mature, associated with reduced formation of multivesiculatr 

bodies and reduced exosomes formation. In Segura et al (2005) group they found that 

exosomes secreted by mature DCs are enrighed in MHC class II, B7.2 and ICAM-1, 

and up to 100fold more potent than exosomes form immature DCs both in vitro and 

in vivo. Functional analysis using DCderived exosomes from knock out mice showed 
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that MHC class II and ICAM-1 are required for mature exosomes to prime naïve T 

cells. 

            The feasibility of using DC derived exosomes as a cancer therapeutic 

vaccines has been tested in two Phase I clinical studies in melanoma and lung cancer 

patients (Escudier et al, 2005) (Morse et al, 2005). Both of these studies highlighted 

the feasibility of large scale exosomes production and safety of exosomes 

admistration. However, T cell immunomonitoring did not reveal any significantly 

strong peptide specific CTL expansion nor clinically significant DTH responses.  

6.9.2 Membrane vesicles form APCs 

            A newly described method involving membrane vesicles for vaccination was 

published by Kovar et al (2006). They made the hypothesis that since the 

immunogenicity of DCs presumably reflects their dense expression of MHC/peptide 

plus high levels of costimulatory molecules, one might expect that the direct 

immunogenicity of mature DCs could be mimicked by plasma membrane fragments 

from these cells. In line with this prediction, using a DC line, they shoed that 

ultracentrifuged vesicles derived from sonicatied of mature DCs contain MHC class I 

as well as costimulatroy and adhesion molecules such as ICAM-1, B7.1 and B7.2. 

These vesicels have a round shape and cle=osedly resemble classic exosomes, naïve 

CD8 T cells were able to bind membrane vesicles from DCs in vitro but only in the 

presence of peptide. A key finding was that in the presence of specific peptide, 

sonicated from DCs were strongly stimulatory for CD8 T cells in vitro in the absence 

of APC. Vesicles from immature DCs were poorly immunogenic. Peptide loaded 

vesicles led to efficient cells capable of tumour cell elimination. The vesicels, given 

as a single injection, were immunogenic after either i.v. or s.c. injection. (Figure 6.9). 

            As discussed earlier, DC derived exosomes are proving a very useful tool for 

tumour immunotherapy, but their use is limited by low yields, especially from mature 

DCs. They show that this problem can be overcome simply by degrading DCs into 

small fragments by sonication. Discarding nuclei and larger debris, the yielded 
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materal has the form of small membrane vesicels which have the size and 

morphology of exosomes, and are strongly immunogenic for CD8 T cells when 

pulsed with peptide. 

 

Figure 6.9 EM images of exosomes and sonicates prepared form IFNγ stimulated DCs 

(Boyman et al. 2006)  

            How the vesicles are presented to T cells in vivo is unclear. Also unclear is 

the potential of these vesicles in tumour vaccination in humans; further studies need 

to be carried out. However it is reported by th eauthors that at least in vitro, vesicles 

were more immunogenic than exosomes and obtained in much higher yields (Kovar 

et al, 2006) 
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7 Proposed system and thesis aims. 

             From the studies of therapeutic vaccines during last 20 years, it has now been 

clear that;  

1. Manipulation of antigens in vaccine preparation is not enough, therapeutic 

vaccines have to be able to reverse immune unresponsiveness or enhance antigen 

specific T cells.  

2. Although DCs are most effective antigen presenting cells under infectious 

conditions in vivo, DC vaccines developed from monocytes cannot perform same 

function as naturally differentiated DCs under infection condition in vivo.  

3. The best therapeutic vaccines will be ones that can bypass antigen presentation 

pathways in vivo and directly activate antigen specific T cells.  

            In previous study, we found that the endoplasmic reticular (ER) enriched 

microsomal membranes (microsomes) isolated from APC can directly activate T 

cells and induce immune responds for acute virus infection and cancer in vivo. In 

order to apply this strategy for the development of therapeutic vaccine for chronic 

infectious diseases, we create a nanoAPC able to deliver not only antigen-MHC, but 

also IL-2 to antigen specific T cells to enhance T cell activation leading to overcome 

the immune exhaustion.   

           To develop IL-2-nanoAPC, we constitute a human B cell line 721.221 cells 

with engineered HLA-A2 and IL-2 specifically inserted into the ER membrane. 

721.221 cells express high levels of co-stimulatory molecules, but defect in MHC 

class I (Shimizu et al, 1988). In order to express IL-2 and HLA-A2 into the ER in 

221cells, we fused IL-2 with Tapsin an ER retention protein and HLA-A2 with ER 

retention signal (Turnquist et al, 2002). With an improved procedure, we produced 

homogenous vesicles at a nano-size of ~ 500 nm termed as nanoAPC. Assembled 

with specific antigenic peptides, the IL-2-nanoAPC directly interacted with antigen 
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specific T cells and induced immune synaptic formation of antigen specific T cells. 

The IL-2 on nanoAPC did not affect bystander T cells, but potently enhanced 

activation and effector function of antigen specific T cells. We examined the ability 

of IL-2-nanoAPC in the induction of viral specific T cell responses in peripheral 

blood lymphocytes from chronic HBV patients. Assembled with a pool of five HLA-

A2 peptides, and four DR and DP associated peptides, IL-2-nanoAPC strongly 

induced responses of CD4 and CD8 T cells in patient PBMC, while responses were 

not detected in PBMC following stimulation with peptides or peptide-assembled 

nanoAPC in the absence of IL-2. Our results demonstrated that IL-2-nanoAPC can 

be developed as effective therapeutics for the treatment of chronic infectious diseases.  
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MATERIALS AND METHODS 

1. Experimental tools and conditions. 

1.1 Animals. 

             OTI transgenic mice on the C57BL/6 background were kindly provided by 

Dr. Kioussis D. MRC National Institute for Medical Research, London. C57BL/6 

mice were purchased from Harlan UK, (Oxon, England). All animals were 

maintained in pathogen-free facilities at the Brunel University.  

1.2 Cell lines. 

             The human B-LCL cell line721.221/HLA-A2 cell lines were kindly provided 

by T. Elliott. The murine DC2.4 line was kindly provided by Dr. Mann D. 

Southampton, UK. The murine CTL cell line CTLL4 was kindly provided by Dr 

Gitta Stockinger, NIMR, London. All cell lines were cultured in RPMI 1640 or 

DMEM supplemented with 10% FBS 1% P/S and 1% L-glutamine if not supplied in 

medium. Adherent and cells in suspension were pooled and centrifuged at 1200rpm 

for 5min; the pellet was then resuspended in fresh medium and dispensed into new 

flasks. The growth medium was changed once per week. Briefly, the old medium 

was removed, and then the cells were dislodged and dispensed into new flasks. Cells 

were sub-cultured in a ratio of 1:4, twice a week or as appropriate. All running 

cultures were maintained in a humidified incubator at 37°C in 5% CO2. All cell 

stocks were stored in freezing medium at >10
6
cells/ml in liquid nitrogen vapour 

phase. 

1.3 Reagents and antibodies. 

             All cell culture reagents were from Invitrogen Ltd. (Gibco-BRL, Rockville, 

MD). Ficoll Pacj was from Amersham (Amersham Biosciences UK Limited, Little 

Chalfont). FITC-conjugated mouse anti human antibodies to CD54 (ICAM-1), CD80 
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(EuroBioSciences), and FITC-conjugated Streptavidin; PE-conjugated mouse anti 

human antibodies to pErk, PD1, HLA A2, , Foxp3, W6/32, FITC-conjugated mouse 

anti human CD4, APC-conjugated mouse anti human CD8 and PEcy5-conjugated 

mouse anti human IFNγ were from BD Biosciences. CD8 microbeads (Miltenyi 

Biotec) were used for isolation of CD8 T cells from spleens of OTI mice, according 

to the manufacturer's protocol. Goat anti-human IL-2 and anti-human CD3, and 

W6/32, specific to human MHC class I and MA2.1 specific to HLA A2 were used 

for immune staining of cells and nanoAPC. Texas Red labelled rabbit anti-goat Ig 

and FITC labelled goat anti-mouse Ig were used for secondary antibodies. 

1.4 Peptides. 

             Peptides were synthesized by Invitrogen and purified to more than 95% 

purity. Peptides were reconstituted following the manufacturer's instructions by 

calculating the hydrophobic and hydrophilic amino acids and accordingly dilute in 

recommended medium. Specifically, OVA257–264 SIINFEKL CMV pp65 peptide 

NLVPMVATV HBV HLA-A2 peptide C18-27 FLPSDFFPSV; HBV envelope 183-

191 FLLTRILTI; 335-343 WLSLLVPFV; 338-347 LLVPFVQWFV; 348-357 

GLSPTVWLSV (Das A et al, 2008) and DR/DP binding peptides HBV Env 180-195 

AGFFLLTRILTIPQS; Env 339-354 LVPFVQWFVGLSPTV; and Pol 767-782 

AANWILRGTSFVYVP) (Mizukoshi et al, 2004)  were reconstituted in DMSO 

under sterile conditions. Working concentrations of all peptides were prepared in the 

appropriate cell culture medium. 
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2. IL-2-tapasin construct  

2.1  Construct creation  

             To establish IL-2-A2-721.221 seed cells, IL-2-tapasin and HLA-A2-E3-19K 

fusion constructs were constructed by PCR cloning approaches. For IL-2-tapasin, an 

expression construct of tapasin was modified by substitution of the signal sequence 

(Li et al 1997) with a 2 x GS linker (GGSG) (Casto and Feng 2000) by PCR cloning. 

Then, a PCR product of human IL-2 coding region was cloned to upstream of GS 

linker to create IL-2-GS-tapasin.  The sequence of insert contains tapasin and IL-2 

shows in figure 1.9. The HLA-A2-E3-19K was constructed by insertion of a 16-aa 

(LKYKSRRSFIDEKKMP) from E3-19K proteins (Gabathuler and Kvist 1990) to C-

terminus of HLA-A2 in an HLA-A2 expression construct (Li et al 2000).  

2.1.1 DNA extraction from agarose gel & Restriction enzyme digestion and 

ligation 

             After the PCR sample is run on a 7% agarose gel the gel slice is excised, put 

in an eppendorf tube and its weight is determined. Extraction is carried out using the 

QIAGEN gel extraction kit and protocol which is carried out in the following way: 

three volumes of buffer QG to 1 volume of gel. Incubate at 50
o
C for 10 min while to 

help dissolve the gel vortex the tube every 2-3 min. The sample is then centrifuged at 

maximum speed at room temperature for 1 min in the QIAquick spin column on top 

of a collection tube. After 0.5 ml of buffer QG to column and spin for 1min, the 

sample will be washed under 0.75 ml PE buffer once. Finally the sample has been 

dissolved into 30-50ul of EB buffer and then collected into another clean eppendorf 

tube. 1-2ul of the supernatant is then used test concentration. After same Restriction 

Enzyme Digest both vector and insert, the vector will be processed under 

dephosphorylation stage which is the essential process before ligation maximum to 

avoid vector self ligation. And finally both linearizing vector and insert ligate with 

T4 ligase and the appropriate buffer at 16
o
C overnight. 
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2.1.2 Plasmid extraction  

             The constructions transfamation into E.coil under heating shock flowing by 

clone select on LB argos plat and small cultures.  The Plasmid extractions from small 

cultures which are about 1ml-3ml were carried out as follows. After the bacteria 

cultured overnight, and then are centrifuged for 1min at 13000rpm and the 

supernatant is removed. The pellet is resuspended in 100ul P1 buffer (Tris 2.5M, 

EDTA 0.5M, 500ul RNase) and incubated for 5min at room temperature. 200ul of P2 

buffer (NaOH 10M, SDS 2.5%) is then added to the mixture, and a further incubation 

follows for 5min on ice. 15ul P3 (KOAc 3M pH 4.8) are added to the mixture which 

is then mixed gently and incubated for a further 5min on ice. The mixture is 

centrifuged at 4°C at 13000rpm for 5min and the supernatant is transferred to another 

tube. Add 70% of this volume of isopropanol to the supernatant and after mixing and 

for centrifuging 5min at 13000rpm the supernatant is discarded and the pellet is 

washed with 500ul 70% ethanol. The pellet is finally resuspended in water and 

frozen down at -20°C.  

             The positive clone will be confirmed by restricted enzyme test and sequence. 

Chose one positive construct plasmid extraction from big cultures was carried out the 

QIAGEN plasmid purification kit and protocol.  

2.2 Construct plasmid transfection 

            Construct plasmid were transfected into 721.221 cells using T cell 

nucleofector solution (Lonza). First Spin 5-10 million cells under 1200rpm for 5 min 

the supernatant is removed. The pellet is resuspended in 110ul T cell nucleofector 

solution plus 8ug of DNA and incubated for 2min at room temperature. And then the 

60ul of this mixture is transferred to a cuvette and electroporation with program S-

018. Immediately add 500ul 37°C prewarmed complete medium. Finally, add 

another 8ug of DNA to rest of the mixture and repeat same process as before. The 

transfectants into complete medium and selected with antibiotic or running sorting 

couple of days later.  
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3. Protein analysis. 

3.1 Western blot analysis of protein. 

3.1.1 Cell lysis  

             Harvest cells from 1x 75 cm
2
 flasks and then wash once with PBS. 

Resuspend cells in 100ul 1% NP40 lysis buffer and add 1ul PI and 1ul 10mM PMSF 

following shaking for one hour at 4
o
C. Spin down at 14000rpm for 30min at 4

o
C and 

then transfer the supermatant to new tube. After measure protein content via BioRad 

Dye reagents, the protein sample is ready for western blot analysis.  

3.1.2 Gel preparation  

            Gels were cast and run using the Bio-Rad Western apparatus. The plates were 

cleaned, the spacers were introduced and the plates clamped in place. The resolving 

gel was poured first. A 10ml preparation of 10% consists of 2.4ml purified water, 

3.35ml 30% acrylamide, 3.75ml 1M Tris pH 8.8, 100μl 10% SDS, 100μl 10% APS 

and 4μl TEMED. After pouring the gel was covered with isopropanol (~0.5ml) to 

ensure a level surface to the top of the gel and to aid polymerization. Once set 

isopropanol was removed and the plates were dried. The stacking gel was then 

poured and the comp was fitted. A 2.5ml preparation of 5% stacking gel consists of 

1.7ml of purified water, 415μl 30% acrylamide, 315μl 1M Tris pH 6.8, 25μl 10% 

SDS, 25μl 10% APS and 5μl TEMED.  

3.1.3 Test sample running 

            Transfer 25ug protein for each well which need to take required volume of 

smaple and then mix with smaple buffer and 1ul 1M DTT/10ul sample volume 

fllowing heating at 95
o
C for 5min. The gel is run at 30mA for ~1hour at cool room 

(4
o
C). After running the top plate is removed and the stacking gel is cut away. 
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3.1.4 Transfer-semi-Dry Blot 

             The transfer apparatus is then assembled. The bottom plat is covered with 4 

sheets of Whatman 3MM paper, then the membrane and gel, 4 more sheets of  

Whatman 3MM paper. Using a graduated pipette carefully roll out any air bubbles. 

The sandwich is then placed into the transfer tank with top plate in positive. The 

transfer of protein to the membrane for 1.5 hours at ~175mA and ~10V was then 

performed at RT with continuous circulation of the buffer. 

3.2 Western blot hybridisation. 

             Membranes were blocked with 50ml of Western block buffer consisting of 5% 

w/v non-fat dry milk in TBS, for 1-2 hours at room temperature, before been probed 

with the corresponding antibodies. Primary antibodies were diluted according to 

manufacturer’s instructions in blocking buffer and incubated for overnight at 4
o
C 

with agitation. After 3 washes for 15min with 5ml of wash buffer (0.05% Tween-20 

in TBS), the secondary antibodies were diluted according to manufacturer’s 

instructions and added in 5ml block solution. After 1 hour at room temperature, 3 

washes for 15min in wash buffer were performed. 
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4. Preparation of nanoAPC from antigen presenting cells. 

4.1 Fractionation of cell contents. 

            The seed cells were expanded to large volume at a viability of > 99% and 

used for preparation of nanoAPC. The nanoAPC was prepared by two steps; 

preparation of the ER enriched microsomes and processing of nano-particles. Human 

nanoAPC from these transfected 221-A2-IL2 and control 221-A2 cell lines were 

prepared and purified according to previously described protocols.  Mouse nanoAPC 

isolated from bone-marrow derived DCs (Wang et al. 1996). Specifically, cell 

cultures were grown to a minimal number of 10
9
cells. All the steps during the 

nanoAPC preparation are performed on ice or at 4°C.  

             Cells were collected, centrifuged at 1500rpm for 5min and washed once with 

cold PBS. Cells were washed and resuspended in homogenization buffer. After 

homogenization, the nuclear, mitochondria and larger cell debris were removed by 

centrifugation at 10 000g. The total microsomes were recovered by centrifugation at 

100 000g and subfractionated by flotation in sucrose gradients. The microsomes were 

layered on top of 5mL of 0.33M sucrose, layered in turn on top of a discontinuous 

sucrose gradient consisting of 2mL of 2M and 1mL of 2.5M sucrose. Centrifugation 

in a TH-641 rotor for 1h at 110000g at 4°C yielded a microsome band on top of the 

2M sucrose cushion, which was collected and resuspended in RM buffer (250mM 

Sucrose, 50mM triethanolamine-HCl, 50mM KOAc, 2mM MgOAc2, 1mM DTT). 

The microsomes were further processed to homogenous nano-particles by 

sequentially homogenized in a fine cell homogenous (isobiotec) with different cut off 

size between 6 and 4 microne. The homogenized particles were recovered by 

centrifugation in a TH-641 rotor for 1 hours at 110 000g at 4
o
C and then resuspended 

in RM buffer. After protein assess the nanoAPC was stored at -80
o
C until use. 
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5. Labelling and detection of antigens in nanoAPC and cells. 

5.1 Flow cytometry. 

             Flow cytometry analysis was used to detect cell surface or markers on cells 

and nanoAPC. Single cell suspensions were obtained from homogenised spleens and 

lymph nodes, or from PBMCs, or from cell cultures. 

             Cells or nanoAPC after washing, cells were first stained with surface 

markers with antibodies (0.5mg/ml) were 1 into 10 diluted with FACS media and 

then incubate for 30min at 4°C in dark, washed in 1ml FACS media and collected by 

centrifugation. The stained cells were washed with PBS and fixed according to 

intracellular staining Kit (BD) after washing step for intracellular staining. 

Antibodies were diluted according to manufacturer’s instructions and added to the 

pellets, mixed gently and incubated at 4°C for 30min in dark. The stained cells were 

washed with PBS, then analysed on a FACS (CantoII). The data were analysed using 

flowjo (Tree Star, Inc). The isotype Ig was used as background controls for all the 

staining of both cells and nanoAPC.  

5.2 Peptide biotinylation. 

            DR/DP binding peptides HBV Env 180-195 AGFFLLTRILTIPQS; Env 339-

354 LVPFVQWFVGLSPTV; and Pol 767-782 AANWILRGTSFVYVP was 

biotinylated using the NHS-LC-Biotin reagent (Pierce Chemical). Dissolve FITC in 

conjugation buffer at a final concentration for 1mg/ml, immediately before use. The 

reaction was initiated by adding 90μl of 1mM peptides diluted in PBS in the biotin 

solution. The mixture was allowed to react for 2 hours at room temperature by 

continuous agitation. Remove excess and hydrolyzed FITC by gel filtration. After 

analysis the fluorescent biotinylated peptides were stored at -80°C until use. 
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5. 3 NanoAPC labelling with chemical fluorescence. 

             For the detection nanoAPC by fluorescence microscopy nanoAPC were 

labelled with chemical fluorescence using the FITC1 fluoroTagtm FITC conjugation 

kit from Sigma FITC1-1KT, according to manufacturer’s instructions. For each 

labelling 1mg of nanoAPC were used. NanoAPC were labelled before or after 

peptide loading. 

             Briefly, the contents of one sodium carbonatebicarbonate capsule were 

dissolved in 50ml of de-ionized water. The pH of the resulting buffer (C0688 at 0.1M) 

was measured and calibrated at pH 9. NanoAPC suspension was centrifuged at 

10000rpm for 5min and the resulting pellet was re-suspended in 200μl of the C0688 

buffer. At this stage one vial of FITC was re-constituted in 2ml of C0688 buffer. 50μl 

of the FITC solution were added drop wise to the nanoAPC suspension on a slow 

shaker. The mixture was covered in foil to reduce exposure to light and the reaction 

was allowed for 30min at room temperature, on a shaker. To stop the reaction 50μl of 

0.2M glycine pH 8 were added and the experimental tube containing the mixture was 

stored on ice. 

             The reaction was centrifuged at 10000rpm for 5min at 4°C and the 

supernatatnt was removed. Labelled nanoAPC were re-suspended in 50μl of RM 

buffer and stored in -80°C and protected from dark until further use. 

5.4 Distribution of nanoAPC in lymph nodes 

             For distribution of nanoAPC in lymph nodes, nanoAPC were prepared from 

CFSE labeled mouse DC2.4 cells. An aliquot of 20μg of peptide-loaded nanoAPC or 

FITC labeled Dextran was injected into C57BL/6 mice i.v. After 48 hours, lymph 

nodes were isolated and processed to single cell suspension. The cellular fraction was 

collected by concentration at 1000g for 5 min, while cell-free particles were 

recovered after removing supernatants through microfilter nanoAPC at cutoff size of 

3000kd (Millipore Amicon Ultra centrifugal filters) which can recover both 
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nanoAPC and dextran. The cellular and cell-free particles were stained with PE-

labeled CD11c as DC marker and analysed by FACS.  
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6. Isolation of primary cells. 

6.1 Isolation of mononuclear cells from mouse secondary lymphoid organs. 

             Mouse spleens and lymph nodes were harvested and single cell suspensions 

were prepared. The cells were pelleted by centrifugation at 1200rpm for 5min at 

room temperature and the supernatant was discarded by aspiration. The pellets were 

re-suspended in 5ml of RBC lysis buffer per spleen and incubated at 37
o
C for 4-5min. 

The cell suspension was centrifuged at 1200rpm for 5min at room temperature, the 

supernatant was discarded by aspiration and the resulting cell pellet was re-

suspended in the complete medium and incubated at 37
o
C for 30min to exclude 

macrophage. The cell suspension was centrifuged at 1200rpm for 5min at room 

temperature. At this stage, the cells were counted. 

6.2 Isolation of mononuclear cells from human peripheral blood. 

             Mononuclear cells were isolated from human peripheral venous blood by 

density gradient centrifugation over Ficoll-Histopaque. 15ml of Ficoll hypaque were 

aliquoted per 50ml test tube in sterile conditions and allowed to equilibrate to room 

temperature. A dilution of 1/1 in serum free medium was slowly layered on top of the 

Ficoll-hypaque and centrifuged for 30min at 400 x g centrifuge force in room 

temperature, with the centrifuge breaks off. After centrifugation the interface of 

PBMCs was collected, further diluted with serum free medium (approximately 1:2) 

and centrifuged at 250 x g centrifuge force for 10min at room temperature. The 

supernatants were then discarded and the remaining cell pellet was resuspended in 

with serum free medium. The cell suspension was washed with serum free medium 

and centrifuged at 250 x g centrifuge force for 10min at room temperature. The 

resulting pellet was resuspended in 10ml of complete medium and the cells were 

counted. 
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7. Activation assays. 

7.1 Peptide loading of nanoAPC. 

             NanoAPC suspended in RM buffer were first processed by freeze– thaw 

(30sec in liquid nitrogen and 5min at 37
o
C) repeated three times, followed by 

addition of an equal amount of stripping buffer (0.26M citric acid, 132mM Na2HPO4, 

2% BSA, pH 5.5) and incubation for five minutes on ice.  

             For MHC class I loading, 20μg/ml human β2-microglobin and SIINFEKL 

peptide at indicated doses were pulsed onto 1-4μg of nanoAPC membranes the 

mixture was incubated for 5 min on ice followed by neutralization with 1M Tris 

buffer pH11. And then incubate for one hour at 37°C. After loading free peptides and 

reaction buffers were removed by washing through a filter at cut-size of 3000kd 

(Millinpore Amicon Ultra centrifugal filters). The loaded nanoAPC were 

resuspended in serum free medium at 2mg/ml concentration. 

             For MHC class II, after the freeze-thaw process, the nanoAPC in RM buffer 

were mixed with equal volume of acidic buffer and peptide at 1uM or as indicated 

for one hour at 37°C. And then neutralization with 1M Tris buffer pH11 following 

loading excess peptides were removed by washing through a microfilter at cut-size of 

3000kd (Millipore Amicon Ultra centrifugal filters). The assembled nanoAPC were 

resuspended in serum free medium at 2mg/ml.  

7.2 Interaction of nanoAPC and T cells 

             Interaction of SIINFEKL-Kb-nanoAPC or Kb-nanoAPC from CFSE labeled 

DC2.4 cells and OTI cells were measured by incubation of 10ug SIINFEKL-Kb-

nanoAPC or Kb-nanoAPC with 10
6
 OTI cells in normal medium incubate at 37

o
C for 

30 minutes. Free-nanoAPC was removed by low speed centrifugation at 1000g for 5 

min and washing with cold PBS. Cells were then stained with anti-CD3 antibody 

followed by DIP counter staining. The samples were analysed by confocal 

microscopy (ZEISS LSM 510).  
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7.3 Human study 

7.3.1 Experimental subjects 

             6 CMV serum converted health donors and 57 chronic HBV patients 

participated in this study. All subjects are HLA A2 positive. Informed consent was 

obtained, and the study was approved by local ethical committees at the two 

participating clinics (East London and the City Research Ethics Committee for Barts 

and The London NHS Trust and Huashan hospital ethics committee, Shanghai 

China). Out of 26 chronic HBV patients, 47.4% were positive for HBeAg, 18 had 

raised ALT (>50IU/liter) and high HBV DNA (>10
6
 IU/ml) as quantified by real-

time PCR assay. 31 patients were HBeAg negative, and positive for serum anti-HBe 

antibody. All patients were negative for antibodies to hepatitis C virus, HIV-1, and 

HIV-2. 

7.3.2 Isolation of PBMCs and in vitro stimulation  

             PBMCs were isolated from fresh hepatinized blood by Ficoll-Hypaque 

density gradient centrifugation and resuspended in RPMI 1640 and 10% heat-

inactivated FBS (invitrogen) as mentioned. For some experiments, CD8 positive T 

cells were isolated with anti-CD8 coated beads (MACS). 5 x 10
5
/well PBMC or 

CD8
+
 cells in 24-well plates were co-cultured either with antigenic peptide at a 

concentration of 5uM (the same concentration used for assembling MHC class I in 

nanoAPC) or 10ug nanoAPC for five days. Cells were cultured with PBS or anti-

CD3 coated beads served as negative or positive controls. After five days, 20nM of 

PMA and Inomycine (sigma) were added together with Golgi stopper (BD) and 

cultured for 4 hours. Cells are now ready to staining with antibody for FACS analysis. 
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7.4 Proliferation assays. 

             To determine CTLLA4 IL-2 dependent cell proliferation 1μCi/ml [3H] 

Thymidine was added after one days of culture with IL-2-A2-nanoAPC or A2-

nanoAPC, recombinant IL-2 severed as positive control. The cells were harvested 

after 16 hours and tritium incorporation into thymidine was measured. 

             For [3H] labelling the working surfaces in a radiation controlled area were 

swept with a tissue and after sweeping 1cm piece of tissue was used to evaluate 

background radiation. The labelling medium was made at a concentration of 1μCi/ml 

in RPMR1640. Culture plates were transferred to the radiation culture area after one 

days of activation assay. Labelling medium was added at 20μl/well; the micro-plate 

was placed in plastic container and kept in 5% CO2, at 37°C for 16 hours. At this 

stage the working surfaces were tested for radiation levels. Following 16 hours of 

incubation, the labelled cultures were harvested in a cell harvester or stored at -20°C 

until measured. 

             For harvesting, the orientation of the filter was marked, it was placed with 

the plate in the harvester and harvesting was initiated. Following harvesting of 

cultures, the filters were air-dried and melted with scintillation gel. The processed 

filter was placed in a cassette and the amount of [3H] incorporated by thymidine was 

measured. Following measurements the filters were disposed as appropriate for 

disposal of radioactive material. 
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8. Statistics. 

              Statistical comparisons were performed using Student’s t test; survival was 

plotted using Kaplan-Meier curves and statistical relevance was determined using 

log-rank comparison. Unless noted, data were presented as means ± SD of pooled 

data from four to six independent experiments. 
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9. List of Buffers. 

Complete growth medium: -Culture medium, 10% FBS, 1% Penicillin-

Streptomycin–L-glutamine. 

Freeze medium: -90% PBS; 10% DMSO. 

FACS media: -5% BSA in PBS. 

Lysis Buffer: -1% NP40, 5% PMSF, 10ug/ml PI. 

PBS: -80.0g NaCl, 11.6g Na2HPO4, 2.0g KH2PO4, 2.0g KCL, q.s. to 10L; pH to 7.0. 

RM buffer: -250mM sucrose, 50mM triethanolamine-HCl, 50mM KOAc, 2mM 

MgOAc2, 1mM dithiothreitol, pH to 7.2. 

Stripping buffer: -0.26M citric acid, 132mM Na2HPO4, 2% BSA, pH 5.5. 

Neutralization buffer: - 1M Tris buffer pH 11 

LB medium: -10g Bactotrypton, 5g Bactoyeast, 7g NaCl q.s. to 1L                        

LB Argos: -10g Bactotrypton, 5g Bactoyeast, 7g NaCl, 15g Bactoagar q.s. to 1L                        

P1 buffer: -Tris 2.5M, EDTA 0.5M, 500ul RNase q.s. to 50ml                        

P2 buffer: -NaOH 10M, SDS 2.5% q.s. to 50ml                        

P3 buffer: -KOAc 3M pH 4.8 

1X TBS: 50 mM Tris.HCl, pH 7.4 and 150 mM NaCl. 
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 Western blot: 

Stacking gel: -10ml preparation of 10% consists of 2.4ml purified water, 3.35ml 30% 

acrylamide, 3.75ml 1M Tris pH 8.8, 100μl 10% SDS, 100μl 10% APS and 4μl 

TEMED. 

Resolving gel: -2.5ml preparation of 5% stacking gel consists of 1.7ml of purified 

water, 415μl 30% acrylamide, 315μl 1M Tris pH 6.8, 25μl 10% SDS, 25μl 10% APS 

and 5μl TEMED. 

Sample buffer (2x): -125mM Tris pH 6.8, 4% SDS, 20% glycerol, 10% β 

mercaptoethanol, 4mg BPB/10ml. 

Running buffer (10x): -250mM Tris pH 7.5, 192mM glycine, 0.1% SDS. 

Transfer buffer: -25mM Tris base pH 8.3, 192mM glycine, 20% methanol. 

Blocking buffer: -5% w/v non-fat dry milk powder, 2% w/v BSA, 0.1% v/v Tween-

20 in PBS 

Wash buffer: -0.1% non-fat dry milk powder, 0.1% Tween-20 in PBS 

 

 

 

 



117 
 

RESULTS 

1 Generation of Seed Cells 

1.1 Seed cell selection 

            In order to apply nanoAPC as a delivery vehicle to develop a therapeutic 

vaccine for broad patient groups, we selected cell lines that are MHC class I deficient.  

This allowed me to reconstitute popular MHC class I alleles, such as HLA A2, which 

are predominantly expressed in a large population (Komlos et al, 2007). The seed 

cells have to express high levels of co-stimulatory molecules which are essential for 

optimal T cell activation (Jennifer D Stone et al, 2009). Based on our previous 

studies, we choose 721.221 cells to develop seed cells (Li et al, 1997). The 721.221 

cells are derived from parental 721 cells that are human lymphoblastoid cell lines 

(LCL) 721. 721 cells are established from peripheral blood lymphocytes (PBLs) 

which were isolated from heparinised blood of the 721 donor (female age 21-25). To 

investigate the mechanisms of antigen presentation, Dr Robert DeMars’s group 

developed 721 MHC deficient variants selected after mutagenesis treatment with 

gamma-irradiation (Shimizu et al, 1988). Table 1.1 describes MHC phenotypes of 

donor 721 and her parents (Reitnauer et al, 1985).  To avoid HLA-C expression in 

721 mutated cells, 721.221 have been developed via the following sequence: LCL 

721-.45-.144-.184-.184TG3-.221.mutant (Table 1.2). The 721.221 cells were 

developed from 721.184 TG3, one of the 721 variants, by immunoselection 

following γ ray (300 rad) (Shimizu et al, 1987). Thus, the 721.221 cells are absence 

of endogenous HLA-A,-B,-C Ag. The 721.221 cells transfected with MHC class I 

alleles can express MHC class I Ag at normal levels (Shimizu and DeMars 1989), 

which demonstrates that the antigen presenting pathways in 721.221 cells are  intact. 

721.221 cells still retain phenotype of HLA DR, DQ and DP. Since most of the MHC 

class II associated antigenic peptides can be   cross presented by different MHC class 

II alleles with different affinity, the remaining HLA DR and DP can be used to 
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produce antigen-MHC class II complexes to induce CD4 helper responses (Haren et 

al, 2011).  

 

Table 1.1 the HLA types of donor 721 and her parents (Reitnauer et al, 1985) 

 

Table 1.2 Expression of HLA Ag in HLA Ag loss mutants derived from LCL 721  

(Shimizu and DeMars 1989). 

             In addition to antigen recognition activation of T cells, depends on co- 

stimulation for initiating adaptive immune responses. Therefore, the expression of 

co-stimulatory molecules were analysed on 721.221 cells. Both co-stimulatory 
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molecule B7.1 (CD80) and the adhesion molecule ICAM-1(CD54) were highly 

expressed on 721.221 cells (Figure. 1.1).  

 

Figure 1.1 expression of co-stimulation molecule in 721.221 seed cells. 

721.221 cells were analysed for the co-stimulatory molecules CD80 and adhesion molecule 

ICAM-1 by staining with corresponding antibodies and analysed on flow cytometry. Isotype 

Ig was used as background control.  

            The nanoAPC is prepared from the ER membranes of APC seed cells. 

Previously, we have demonstrated that ER enriched microsomal membranes from 

APC have abundant peptide-receptive MHC class I molecules (Sofra et al, 2009). In 

order to maximize ER-expressing MHC class I molecules, I have used a HLA-A2 

transfected 721.221 cell line in which the HLA-A2 is fused with an ER retention 

signal E3-19K (Figure 1.2). Thus, the transfected HLA-A2 can be retained in the ER. 

Due to a high level of expression, part of the expressed HLA-A2 is transported to the 

cell surface which has been detected by HLA-A2 antibody on 721.221-A2 (short for 

221-A2) cells surface (Figure. 1.3). This cell line has been used throughout this study.    

 

Figure 1.2 Schematic representation of the carboxy-terminal portion of the E3/19K 

protein which has KKXX motif at C-terminus. 
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Figure 1.3 Expression of HLA-A2 in 221-A2 cells  

221-A2 cells were analysed for HLA-A2 expression by flow cytometry. The FITC isotype 

Ig was used as background control for the staining. 

1.2 Generation of IL-2-tapasin expression construct   

1.2.1 IL-2-Tapasin fusion constructs 

             The major challenge for effective therapeutic vaccines against chronic 

infectious diseases is the high activation threshold of antigen specific T cells induced 

by persistent viral antigens resulting in T cell exhaustion during chronic viral 

infection (Lopes et al, 2011). In order to overcome the inactivation of antigen 

specific T cells, we designed nanoAPC carrying IL-2 as a bioadjuvant. Previously, in 

an antigen-induced tolerant model, our group demonstrated that IL-2 can effectively 

reverse the tolerance (Anderson et al, 2005). In order to achieve this goal, we 

attempted to create an IL-2 (Figure 1.4) expression construct that can express IL-2 as 

a fusion protein with the ER chaperon tapasin (Li et al 1997), which can keep IL-2 as 

an ER-retention molecule in the 221-A2 cells. The ER retention of tapasin (Figure 

1.4) is mediated by its C terminal double-lysine motif (KKAE) (Momburg and Tan 

2002). Tapasin functions as an ER chaperon specifically for peptide-receptive MHC 

class I in the ER (Li et al, 1997). Based on the published structure of tapasin, the N-

terminus of tapasin is open (Roder et al, 2009). Therefore, we fused C-terminus of 

IL-2 to the N-terminus of tapasin after deletion of a stop code in IL-2 and signal 
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sequence of tapasin (Figure 1.5). To create free space for fused IL-2, trip repeated 

glycine and serine linker (GGSGGS) was introduced between IL-2 and tapasin 

(Figure. 1.5). The designed fusion molecule has IL-2 with C-termini fused with N-

termini of tapasin (the signal sequence of tapasin is deleted) gapped with 2x GS 

linkers. Thus, the expressed IL-2 is retained in the ER and exposes its functional 

structure for receptor interaction (Figure. 1.5).  

A B   

Figure 1.4 the crystal structure of;  

A. human interleukin-2 (Arkin et al, 2003)  

B. Tapasin ERP57 Heterodimer (Dong et al, 2009) 

 

 

N-terminus N-terminus 
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Figure 1.5 Schematic drawing of the backbone of IL-2 fused with Tapasin 

             It has been demonstrated that tapasin is a MHC class I antigen processing 

molecule present in the lumen of the ER, which plays an important role in the 

maturation of MHC class I molecules in the ER lumen (Li et al, 1997). And also it 

has been introduced as one component of the peptide loading complex; therefore IL-

2 fused tapasin may also increase HLA-A2 retention in the ER as peptide receptive 

molecules (Li et al, 1997).  

1.2.2 GFP as a selection mark for transfected seed cells 

            In order to select IL-2-tapasin transfected seed cells, we used expression 

constructs with CMV promoter to drive expression of IL-2-tapasin and green 

fluorescent protein (GFP) as report molecule. GFP has been widely used as selection 

mark in cell biology and other biological disciplines because it is less harmful when 

illuminated in living cells (Yuste 2005) (Figure. 1.6). pEGFP-N3 encodes GFP which 

has been optimised for brighter fluorescence and higher expression in mammalian 
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cells. The insert of IL-2-tapasin was created by sequential PCR-cloning strategies 

(Figure 1.7) with proper restriction enzyme sites corresponding to the sites in the 

vector (Figure 1.8). The final sequence of insert is shown in figure 1.9.  

 

Figure 1.6 (A) schematic drawing of the backbone of GFP produced by the program 

MOLSCRIPT. The chromophore is shown as a ball and stick model. (B) Schematic drawing 

of the overall fold of GFP. Approximate residue numbers mark the beginning and ending of 

the secondary structure elements N, NH2- terminus; C, COOH-terminus (Ormö et al, 1996). 

 

Figure 1.7 Electrophoresis represents the PCR amplified IL-2-Tapasin inserts with 

BamHI site at two ends. 
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Figure 1.8 The construct map of pEGFP-N3 vector ligate with human IL-2 tapasin 

APTSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRNLTFKFYMPKKATEL

KHLOCLEEELKPLEEVLNLAQSKNFHLRPRDLISNINVIVLELKGSETTFMCE

YADETATIVESLNRWTTFCQSIIISTLTGGSGGSMKSLSLLLAVALGLATAVS

AGPAVIECWFVEDASGKGLAKRPGALLLRQGPGEPPPRPDLDPELYLSVHDP

AGALQAAFRRYPRGAPAPHCEMSRFVPLPASAKWASGLTPAQNCPRALDGA

WLMVSISSPVLSLSSLLRPQPEPQQEPVLITMATVVLTVLTHTPAPRVRLGQD

ALLDLSFAYMPPTSEAASSLAPGPPPFGLEWRRQHLGKGHLLLAATPGLNGQ

MPAAQEGAVAFAAWDDDEPWGPWTGNGTFWLPRVQPFQEGTYLATIHLPY

LQGQVTLELAVYKPPKVSLMPATLARAAPGEAPPELLCLVSHFYPSGGLEVE

WELRGGPGGRSQKAEGQRWLSALRHHSDGSVSLSGHLQPPPVTTEQHGARY

ACRIHHPSLPASGRSAEVTLEVAGLSGPSLEDSVGLFLSAFLLLGLFKALGWA

AVYLSTCKDSKKKAE 

 

Figure 1.9 Sequence of insert IL-2 (red) and Tapasin (purple) linked with glycine and 

serine linker (blue)  
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1.3 Expression of IL-2 in 221-A2  

            After I transfected IL-2-tapasin construct into 221-A2 seed cells via 

electroporation, 60% of cells expressed green fluorescent protein (Figure. 1.11). The 

transfected cells were isolated by cell sorter (Yuste, 2005) (Figure. 1.10). A high 

level of expression of HLA-A2 and IL-2 in 221-A2-IL-2 cells were revealed by 

FACS, immunoblotting and fluorescent microscopy with antibodies specific to HLA-

A2 and IL-2 (Figure. 1.10, 1.11, 1.12). From the result (Figure. 1.13) also confirm 

the high expression of co-stimulatory molecule could not be altered by the 

engineered HLA-A2 and IL-2.  

 

Figure 1.10 IL-2 GFP positive cells were purified by flow cytometric sorting of an IL-2 

tapasin construct transfected 221-A2 cells.  
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Figure 1.11 Expression of IL-2 in seed cells 

Immunoblotting analyses of 20ug lysates from 221-A2 and 221-A2-IL-2 cells respectively 

with antibody against GFP.  

 

Figure 1.12 Fluorescence microscopy distributes the IL-2 location in IL-2 transfected 

cell.  

Cell nuclei were visualized by DAPI (blue) counter-staining, and Texas Red labelled anti-

human IL-2 (red) stained both 221-A2-IL-2 (upper panel) and 221-A2 cells (lower panel).   
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Figure 1.13 expression of co-stimulate molecule in tranfected cells  

221-A2-IL-2 cells were analysed for the co-stimulatory molecules CD80 and adhesion 

molecule ICAM-1 by staining with corresponding antibodies and analysed on flow 

cytometry. Isotype Ig was used as background control. 
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2. Preparation of IL-2-A2-nanoAPC 

2.1 Growth of large quantity of seed cells 

2.1.1 Culture condition and cell growth rate control 

            In order to obtain high quality and large quantity of seed cells, we started 

with a small scale, to work out the cell density and survival rates. Under conventional 

culture conditions with 10% FBS and RPMI 1640 medium, we found that 10
5
/ml 

seeding density is optimal to meet rapid expansion at large volumes and the survival 

rates will drop when over the density of  1 x 10
6
 cells/ml (Figure. 2.1). Therefore, the 

cells were expanded by seeding 10
5
cells/ml and reseeding after reaching 1 x 10

6
 

cells/ml. Thus, the survival rates maintained at > 98%. 

 

Figure 2.1 S-shaped growth curves of 221-A2-IL-2 cells 

In the beginning the cells stay at an initial LAG phase which is the rate of growth or when 

the cell division is very slow, and then the growth or cell division starts to accelerate into the 

exponential phase which is when  the cells are growing or multiphying  rapidly.  
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Figure 2.2 Flowchart of cell expansion  

             At 10
6
/ml density, one gram of cells could be harvested from 1000ml culture. 

After washing, the cells were snap-frozen in the liquid nitrogen and stored at -80ºC 

until further use. The cell enriched large scale culture did not alter the expression of 

transfected HLA-A2 and IL-2 molecules (Figure. 2.3).     
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Figure 2.3 IL-2 and HLA-A2 expression on 221-A2-IL-2 cell  

Cells were stained with antibodies against IL-2 and HLA-A2 molecule, respectively and 

then analysed on flow cytometry. The isotype Ig was used as background control.  

2.2 IL-2-A2-nanoAPC preparation 

            To ensure the nanoAPC’s quality and function, the temperature was 

maintained at 4ºC throughout the isolation procedure. We developed protocols that 

were used to prepare IL-2-A2-nanoAPC at homogenous size of ~500nm and enriched 

with HLA-A2 and IL-2. Importantly, the prepared nanoAPC have to maintain 

peptide receptive HLA-A2 molecules and bioactivation of IL-2. Based on previously 

developed methods for microsome preparation, we used fine homogenizer, 221-A2-

IL-2 cells to prepare microsomes and final nanoAPC. To homogenize seed cells, a 

cut off size of 12 microtron was used to break cells to a mixture of nuclear, 

mitochondrial and membrane fractions. I used a gradient of sucrose to separate 

particles based on their individual densities. The generated IL-2-A2-nanoAPC layer 
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on top of the 2M sucrose cushion was collected (Figure. 2.4). The collected ER and 

Golgi fractions were finally homogenized at cut off size of 4 microtron to make a 

homogenous membrane fragments at size of ~ 500nm (Figure. 2.5) (Figure. 2.7). 

This size is referred as nano-size and can pass micro-vessels and freely distribute to 

target organs such as peripheral lymph nodes. Our result also confirmed that 

nanoAPC still maintained high levels of co-stimulatory molecules; CD80 and ICMA-

1 (Figure 2.6). The yield of IL-2-A2-nanoAPC is usually about 3-5% of the total 

APC cell weight.  
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Figure 2.4 IL-2-A2-nanoAPC preparations. 
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To prepare IL-2-A2-nanoAPC from IL-2 transfected APCs, a cell suspension in a hypertonic 

solution was placed in a 5ml syringe. Cells were passed though the homogenizer on ice. The 

nuclear, mitochondrial and larger cell debris was removed from the cell homogenate by 

centrifugation at 10,000 x g. The total IL-2 nanoAPC was recovered by centrifugation at 

100,000 x g and further subfractioned by flotation in discontinuous sucrose gradients. 

 

Figure 2.5 IL-2-A2-nanoAPC contained IL-2, HLA-A2 and co-stimulatory molecules 

NanoAPC with reconstituted MHC, IL-2-Tapasin and co-stimulatory molecule, which will 

reactive with T cells working as professional antigen presenting cells.  
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Figure 2.6 expression of co-stimulate molecule in NanoAPC  

NanoAPC isolated from either 221-A2 or 221-A2-IL-2 cells were analysed for the co-

stimulatory molecules CD80 and adhesion molecule ICAM-1 by staining with 

corresponding antibodies and analysed on flow cytometry. Isotype Ig was used as 

background control. 

            To confirm co-expression of IL-2 and HLA-A2 in nanoAPC, nanoAPC were 

stained with anti-IL-2 and HLA-A2 antibodies, respectively and analysed by 

confocal microscopy. Confocal fluorescent micrographs revealed that IL-2 molecule 

(Red) and HLA-A2 molecule (Green) on nanoAPC prepared from 221-A2-IL-2 seed 

cells while nanoAPC from 221-A2 seed cells only showed HLA-A2 (Figure 2.7 

down panel). This result demonstrated that the IL-2-A2-nanoAPC was of a largely 

homogenous size, ~500nm, and contained high levels of HLA-A2 and IL-2.  
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Figure 2.7.  Confocal images of GFP expressing nanoAPC 

 NanoAPC has enriched HLA-A2 and IL-2. NanoAPC was prepared from 221-A2-IL-2 or 

221-A2 cells and then stained with antibodies to IL-2 (Red) or HLA-A2 (Green) indicated. 

2.3 Analysis of IL-2 bioactivity 

            Although the IL-2-A2-nanoAPC expressed fused IL-2, it was unclear whether 

this IL-2 molecule still had their initial biological function. The IL-2-tapasin fusion 

protein retained IL-2 bioactivity as demonstrated by the proliferation of the IL-2-

dependent CTLL4 cell line in response to IL-2-A2-nanoAPC (Figure 2.8A). The 

pharmacological activity of IL-2 on nanoAPC was ~2 International Unit (IU)/ug 

nanoAPC (Figure 2.8A). The activity of IL-2 on IL-2-A2-nanoAPC was effectively 

neutralized by IL-2 neutralizing antibody (Figure 2.8B). Although the activity is 

about fifty times lower than the ~100 IU per 1ug of recombinant IL-2, the IL-2 on 

nanoAPC is immobilized which may create an enriched microenvironment for T 

cells that are specifically interacting with the nanoAPC. This strategy can be applied 

to other cytokines or bio-active proteins depending on the therapeutic aim. 
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Figure 2.8 IL-2 activity of IL-2-A2-nanoAPC.  

Proliferation of CTLL4 was measured and converted to international units after comparing 

with recombinant IL-2.  

(A) A2-nanoAPC engineered with or without IL-2 at different doses was incubated with 

CTLL4 cells for 24 hours. Proliferation of CTLL4 was measured and converted to 

international units after comparing with recombinant IL-2. 

(B) IL-2 activity was neutralized by anti-IL-2 antibodies. The data presented as mean of 

triplicate cultures ±SD and are representative of four experiments 
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3 NanoAPC-associated MHC can bind to antigenic peptides. 

3.1 conditions for peptide loading 

            To explore whether the MHC molecules in ER-enriched nanoAPC from APC 

can present antigens to T cells, we first examined the ability of MHC molecules in 

isolated nanoAPC membranes to assemble with peptides.  

3.1.1 Inverted nanoAPC’s membrane via freeze-thaw to expose the luminal side 

of nanoAPC 

            Since assembly of MHC molecules occurs on the luminal side of the ER 

membrane, the assembly of the MHC molecules present in nanoAPC would occur on 

the interior surface of the nanoAPC vesicle, which represents the ER lumen (Kvist 

and Hamann 1990). Thus, in order to achieve maximum access to MHC molecules 

for peptide-loading we attempted to ‘break-open’ the nanoAPC membrane, so as to 

expose the luminal side of nanoAPC, by a repeated freeze-thawing procedure. Based 

on our findings and previous studies, the repeated freeze-thaw process is applied in 

order to disrupt the nanoAPC, such that the luminal side of the membrane is exposed. 

MHC and co-stimulatory molecules are glycoprotein transmembrane proteins 

naturally exposed to the luminal side of the ER (Kreibich et al, 1978) (Sabatini et al, 

1978), which is equivalent to the lumen of the nanoAPC (Kvist and Hamann 1990) 

(Vassiliki et al, 2009). Therefore, after ‘inversion’ of nanoAPC by repeated freeze 

thawing to expose the luminal nanoAPC surface, the MHC glycoproteins should also 

be exposed, allowing better access of soluble peptides to the peptide-binding site of 

the MHC molecule (Figure 3.1).  
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Figure 3.1 Experimental designs for loading of antigenic peptides on MHC class I and 

MHC class II.    
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Both MHC molecules are synthesised and matured in the lumen of the ER. Newly 

synthesized and properly folded MHC class I molecules are retained in the ER until they 

form stable peptide-MHC class I complexes, while MHC class II molecules associate with 

an invariant chain and are transported from the ER to the endosome. The invariant chain 

protects the peptide binding site until it encounters peptide competition (mediated by HLA-

DM in human) in the endosomal acidic environment. Peptide loading in an acidic buffer of 

pH 5 dramatically increased the peptide receptiveness of MHC class II molecules. In 

addition to generating peptide receptive MHC class II molecules, the acid stripping process 

also led to a significant increase in peptide-receptive MHC class I molecules, which may be 

due to dissociation of pre-processed peptides on MHC class I molecules.  

3.1.2 Acidic treatment for class I and II peptide loading  

            Detection of peptide/MHC class I complexes were achieved with the use of 

specific antibodies. In this experiment we used the H2-K
b
 molecules in the processed 

nanoAPC could be loaded with the K
b
-specific peptide SIINFEKL, as shown by 

staining with the SIINFEKL-K
b
 specific antibody 25-D1.16 (Figure 3.2). It has been 

shown by our group that the acid-stripping process also led to a significant increase 

in peptide-receptive MHC class I molecules, which may be due to the dissociation of 

pre-processed peptides on MHC class I molecules (Vassiliki et al, 2009). The whole 

process has been clearly presented by the flowchart above (Figure 3.1). As we see 

that the MHC class I assembly with antigenic peptides takes places in the ER, and 

from the result it shows that the nanoAPC load with SIINFEKL-K
b
 specific peptide 

can be detected and monitored by 25-D1.16 antibody with double mount of the  

fluorescene means.  
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A.  

B.   C.  

Figure 3.2 Flow cytometric analysis of peptide loading onto MHC molecules in 

nanoAPC membranes. 

NanoAPC from Jaws-II cells were pulsed with either SIINFEKL peptide or PBS. Excess 

peptides were washed and peptide-loaded nanoAPC were analyzed in comparison to 

nanoAPC that had been loaded without peptides.  : 

A. Panel displays the mean fluorescence intensity of PE-labelled 25-D1.16 antibody specific 

to SIINFEKL-K
b
 complexes.  

B. NanoAPC with or without pretreatment with acid-stripping and   

C. NanoAPC with or without freeze-thaw process treatment before peptide loading. 

NanoAPC without peptide serves as a background control.     

            We have also developed a method for loading MHC class II antigens onto 

purified ER vesicles to assemble pMHC class II (Sofra et al, 2009). In this 

experiment we used three HBV peptides reported to bind to DR and/or DP, and then 

use FITC biotin to label them by flow cytometry. Analysis of the assembly of HLA 

DR molecules with peptide showed that HLA DR binding peptides could effectively 

assemble with DR under acidic conditions (Figure 3.3). 221 cells are deficient in 

MHC class I, but still express HLA DR and DP molecules. Since MHC class II 
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molecules are much more promiscuous than MHC class I molecules in terms of 

selection of their antigenic peptides, as most of the DR associated peptides can also 

bind to DP to certain degrees (Sadegh-Nasseri et al, 2010), we used the endogenous 

HLA DR and DP molecules from seed cells to assemble antigenic peptide-MHC 

class II complexes for activation of effector CD4 helper T cells. Although it shows 

that the peptide can be loaded on the nanoAPC, however if comparing to naturally 

processed pMHC in live DCs, the assembled pMHC is still limited. The optimal 

approach to generate pMHC in nanoAPC is to introduce native antigen protein into 

seed cells to pMHC processing naturally.  

 

Figure 3.3.   Acidic treatment induces peptide-receptive MHC class II 

Peptide loaded A2-nanoAPC from 221-A2 cells under pH 7.0 or pH 5.0 conditions. The 

same nanoAPC with PBS or with 5 times unlabeled peptide serve as a background control. 

# Fluorescence peptide plus five times unlabelled peptide with A2-nanoAPC under acide 

condition.  
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4 Activation of T cells 

            NanoAPC are designed to directly deliver antigen, co-stimulatory and 

cytokine signals to antigen specific T cells. Therefore, a sustained interaction 

between nanoAPC and antigen specific T cells is essential for the T cells to engage 

IL-2, or other engineered cytokines, effectively.  

4.1 Interaction of nanoAPC to OT1 cell 

            Previously, we have shown that ER vesicles containing pMHC molecules, 

generated by assembly of the MHC on the vesicles with peptide, can directly activate 

antigen specific T cells in vitro (Sofra et al, 2009). To further investigate whether the 

interaction of nanoAPC and antigen specific T cells can induce membrane clustering 

to form stable immune synapses (Fooksman et al, 2010), we examined the interaction 

of nanoAPC, prepared from the murine DC cell line DC2.4 were processed by 

repeated freeze-thaw to facilitate inversion of the luminal side, before loading either 

with SIINFEKL peptides or without. Excess peptides were washed and peptide-

loaded nanoAPC were incubated with splenic T cells isolated from OT-I TCR 

transgenic mice (Jameson et al. 1994), which express TCR specific to SIINFEKL-K
b
. 

T cells without peptide-loaded nanoAPC, were used as a negative control (Figure 

4.1). 
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Figure 4.1 Experimental designs for the analysis of T cell responses induced by 

inverted nanoAPC. 

NanoAPC is processed by repeated freeze-thaw so as the luminal side of the membrane is 

exposed. Endogenous peptides are dissociated from MHC class I, by acid stripping, and 

peptides of interest are loaded on the nanoAPC.  
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4.2 Synapse formation  

            The interaction of nanoAPC and T cells was carried out on an experimental 

system with nanoAPC derived from mouse DC cell line H-2 Kb positive DC2.4 and 

Kb binding peptide SIINFEKL. The SIINFEKL loaded nanoAPC were incubated 

with OTI T cells carrying TCR specific to SIINFEKL-Kb for different periods of 

time at 30ºC. We found that a stable interaction of nanoAPC and T cells formed 

rapidly after just 30 min incubation, while after less than an hour, nanoAPC induced 

synapse formation on T cells (Figure. 4.2). The nanoAPC were completely emerged 

into synapse. The process resembles the membrane processing observed at the 

contactpoint between live DC and T cells (Fooksman et al, 2010). The nanoAPC 

associated synapses can facilitate the recruitment of IL-2R into complexes with the T 

cellbound IL-2-nanoAPC, thus bringing the IL-2R into lipid rafts which can sustain 

IL-2 activation in effector T cells (Cho et al, 2010). Thus, nanoAPC can fully 

substitute for live DC, inducing T cell activation and the formation of immune 

synapses. This creates a stimulatory microenvironment allowing engagement of 

pMHC, co-stimulatory molecules and engineered bio-adjuvants with their respective 

receptors on antigen specific T cells. After 6-hours incubation, nanoAPC were 

infused into T cells a phenomenon observed after interaction of APC and T cells 

previously. Such interactive process will lead to sustained antigen presentation and 

bioactivation of engineered bioadjuvants such as IL-2 or IL-7 (Marc et al, 2011).  
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Figure 4.2 NanoAPC interact and activate antigen specific T cells.                                         

NanoAPC labelled with FITC at 10ug/ml was loaded without (upper panel) or with 

antigenic peptides (low panel) and incubated with antigen specific T cells for 60 min. Free 

nanoAPC were washed off. The cells were stained with anti-CD3. The nanoAPC interacted 

with T cells and formed synapse with CD3.  
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5 Endocytosis of nanoAPC in vivo 

5.1 NanoAPC do not be endocytozed by DCs in peripheral lymphoid 

organs 

            Most reported nano-delivery systems for therapeutic vaccines rely on 

endogenous DC in patients to process and present antigens to T cells (Nandedkar et 

al, 2009). However, the nanoAPC, functionally equivalent to live DC, act directly on 

antigen specific T cells in vivo (Sofra et al, 2009). Accumulation of a 

pharmacokinetic dose of free-nanoAPC in DC rich organs such as lymph nodes and 

liver will be important to effectively induce activation of antigen specific T cells. 

Previously, we found that ER membrane vesicles prepared from DC accumulated in 

the peripheral lymphoid organs and were not endocytosed by DC in vitro (Sofra et al, 

2009). However, whether the nanoAPC are endocytosed by DC in lymphoid organs 

is not known.  

5.2 Test phagocytic function of DCs for the ER membrance vesicles 

            To investigate whether nanoAPC remain in lymphoid organs as free nano-

particles, nanoAPC prepared from murine DC2.4 cells were labelled with 

fluorescence and injected i.v. into B6 mice. After 48 hours, the lymph nodes were 

isolated and separated into cellular and cell-free fractions. The cell-free fragments 

and DC from the lymph nodes were examined for the presence of free and 

endocytosed nanoAPC. In contrast to the efficient endocytosis of dextran by DC in 

lymph nodes, the nanoAPC that accumulated in the lymph nodes remained as free 

particles (Figure 5.1A). To exclude the possibility that DC activation is required for 

phagocytosis of the ER membrane vesicles, we infected mice with a vaccinia virus to 

induce DC activation five days before injection of nanoAPC. Similar levels of free-

nanoAPC were detected in lymph node samples from mice pretreated with vaccinia 

and mice that had not received pretreatment (Figure 5.1B), indicating that the 

intracellular membrane vesicles from APC were not effectively endocytosed by DC 

even with a concomitant viral infection. The lack of endocytosis of nanoAPC may be 
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due to failure of pattern recognition receptors, which enable the DC to discriminate 

between normal physiological components and pathological particles in vivo 

(Geijtenbeek et al, 2004), to recognise the nanoAPC.  

 

Figure 5.1 NanoAPC are accumulated in lymph nodes as free nano-particles.  

A. FTIC labelled Dextran or DC2.4 nanoAPC were injected i.v. at 1mg/kg to C57BL mice. 

48-hour post-injection, lymph nodes were suspended as cellular fraction and cell-free 

fraction. Both were stained with anti-CD11c and analysed by FACS. B. C57BL mice were 

infected with vaccinia virus at dose of 2 x 10
5
 PFU. Five days after infection, FTIC labelled 

Dextran or DC2.4 nanoAPC were injected i.v. at 1mg/kg. 48-hour post-injection, lymph 

nodes were suspended and cell-free fraction was stained with anti-CD11c as described in 

materials and methods. 
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6. IL-2-A2-nanoAPC present peptides to human T cells in vitro. 

6.1 Induction of antigen specific CD8+ T cell responses by IL-2-A2-

nanoAPC  

            The design of IL-2-nanoAPC aims to target IL-2 to antigen specific T cells 

leading to increased T cell activation. To investigate this, IL-2-A2-nanoAPC was 

assembled with human CMVnlv peptides and used to examine the efficacy for 

stimulating CMV specific CD8 T cell responses, in peripheral mononuclear cells 

(PBMC). PBMC isolated from CMV sero-positive and HLA-A2 positive health 

donors and activation of T cells in the absence of assembled CMVnlv peptides. T cell 

responses were evaluated by IFNγ production via FACS analysis (Figure 6.1).   
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Figure 6.1 Experimental designs for detection of induced memory T cell responses in 

vitro in PBMCs from latently infected individuals by a nanoAPC based vaccine.  

IL-2-A2-nanoAPC prepared from IL-2 transfected 221-A2 cells were inverted, stripped and 

loaded with an HLA-A2-specific CMV peptide that has amino acid sequence 

‘NLVPMVATV’. CMV peptide-loaded IL-2-A2-nanoAPC was cocultured with PBMC of 
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CMV serum converted and HLA-A2 positive healthy donors. The presence of reactivated 

CMV-specific CD8
+
 T cells was analyzed by IFNγ antibody detection via FACS analysis. 

            Here we investigate whether IL-2-A2-nanoAPC can induce CMV-specific T 

cell responses in vitro (Figure 6.2). IL-2-A2-nanoAPC are isolated from 221-A2-IL-2 

cells, while A2-nanoAPC isolated form 221-A2 cells as control for IL-2 effect 

though the whole experiment. Human PBMC obtained from HLA-A2 healthy 

individuals, who were serologically positive for CMV, were co-cultured with IL-2-

A2-nanoAPC or A2-nanoAPC loaded with a CMV peptide (amino acid sequence 

“NLVPMVATV”). Co-cultures with IL-2-A2-nanoAPC without peptide or with 1uM 

soluble CMV peptide, served as controls. The presence of reactivated CMV-specific 

CD8
+
 T cells was indirectly detected by CD8 and IFNγ antibody following analysed 

analysis by flow cytometry. There is a weak amount of IFNγ in stimulation of 

PBMC’s with soluble CMV peptides which is possibly due to uptake and 

presentation of the peptide by APC’s naturally present in the PBMC’s. This result 

shows (Figure 6.3) that CMV-specific IFNγ-secreting cells can be detected in the 

samples after stimulation with CMV peptide loaded either IL-2-A2-nanoAPC or A2-

nanoAPC. However IL-2-CMVnlvA2-nanoAPC induces significant more strong CD8 

T cell responses which can effectively neutralized by human IL-2 antibody (Figure 

6.4). To further confirm the antigen-dependent effect of IL-2, the IFNγ producing 

cells were quantified in CMVnlvpentamer
+
CD8

+
 cells in PBMC after stimulation 

(Figure 6.5). The antigenic peptide dependent T cell response between IL-2-A2-

nanoAPC and T cells demonstrating that this IL-2 in IL-2-A2-nanoAPC only 

enhances the response of antigen specific T cells but not bystander T cells. 
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Figure 6.2 Induction of CMVnlv specific CD8 T cell responses.  

Six CMV seropositive PBMC’s were stimulated with CMVnlvA2-nanoAPC or IL-2- 

CMVnlvA2-nanoAPC for five days. After re-stimulation with PMA and Inomycine, IFNγ 

producing CD8 T cells were quantified. Six HLA-A2 negative PBMC’s served as controls. 

Statistical comparisons were performed using Student’s t test.  
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Figure 6.3. IL-2 on nanoAPC enhances responses of antigen specific CD8 T cells.                

PBMC from three HLA-A2 positive and CMV serum converted donors (A, B C) were 

incubated with 1uM CMVnlv peptide or 10ug/ml of IL-2-CMVnlvA2-nanoAPC or 10ug/ml 

CMVnlvA2-nanoAPC or 10ug/ml IL-2-A2-nanoAPC for five days. After restimulation with 

PMA and Inomycin for three hours, cells were stained with anti-CD8 and anti-IFNγ. The 

IFNγ producing cells were measured on CD8 gated cells.  
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Figure 6.4. IL-2 increases efficacy of nanoAPC on induction of IFNγ producing T cells 

can be neutralized by IL-2 antibody.  

CD8 T cells From CMV serum converted and HLA-A2 positive PBMC were stimulated for 

5-days. Cells were stained with anti-IL-2 and IFNγ. 

 

Figure 6.5 IL-2 on nanoAPC enhances the responses of CMV specific CD8 T cells 

PBMC’s from donor A and C were incubated with 10ug/ml CMVnlvA2-nanoAPC or IL-2-

CMVnlvA2-nanoAPC or IL-2-A2-nanoAPC for five days. After restimulation with PMA and 

Inomycin for three hours, cells were stained with anti-CD8, anti-IFNγ, CD19 and 

CMVnlvPentamer. IFNγ producing cells were measured after gating on 

CMVnlvPentamer
+
CD8

+
CD19

-
 cells. 



154 
 

6.2 IL-2-CMVnlvA2-nanoAPC can increase CD25 expression on CD8 T 

cells without influence of Treg cells 

            It has been  mentioned that the IL-2 does have the function to upregulate the 

expression of CD25 and IL-2Rα chain, which can assemble with IL-2 low affinity 

receptor, formed by IL-2Rβ and γ chain, switch it to high affinity receptor which is 

required for IL-2 to induce T cell activation (Malek et al, 2010). The result shows 

that IL-2 on the IL-2-CMVnlvA2-nanoAPC can increase CD25 expression on 

CMVnlvtetramer
+
CD8

+
 T cells (Figure 6.6). IL-2 is also important for the 

maintenance and expansion of CD4
+
CD25

+
Foxp3

+
 Treg cells, but the result shows 

that there is no increase of the Treg cells detected in IL-2-CMVnlvA2-nanoAPC 

stimulated PBMC sample (Figure 6.7)    

 

Figure 6.6. IL-2-CMVnlvA2-nanoAPC induced CD25 expression on CD8 T cells  

PBMC from HLA-A2 positive and CMV serum converted donor were incubated with 

10ug/ml CMVnlvA2-nanoAPC or IL-2-CMVnlvA2-nanoAPC for three days. CD25
+
 cells 

were quantified after gating on CMVnlvPentamer 
+
CD8

+
CD19

-
 cells via FACS analysis. 
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Figure 6.7. Foxp3
+
CD4

+
 T cells measurement  

Foxp3
+
CD4

+
 T cells were measured in two PBMC’s from CMV serum converted donor 

after stimulation with indicated stimuli for five days. 

            Overall, IL-2-A2-nanoAPC induced better immune responses in terms of 

IFNγ secretion compared to the responses induced by the others (Figure 6.3) even 

better than A2-nanoAPC loaded with same peptide which cannot reach to the similar 

level. These data indicate that IL-2-A2-nanoAPC can present peptides in vitro to 

induce stronger antigen specific T cell response without affecting any bystander T 

cells like Treg cells. 
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7 Examine the efficacy of IL-2-A2-nanoAPC to induce HBV 

specific responses in PBMC from chronic HBV patients.  

            The aim is to use IL-2-A2-nanoAPC to reactivate immune responses in 

chronic infectious patients such as chronic HBV. In chronic HBV infection, the 

function of HBV specific T cells is impaired and activation threshold is high due to 

disregulation of TCR signalling (Anderson et al, 2005). Previously studies have 

shown that the additions of IL-2 can effectively overcomes the tolerance and the 

activation of T cells towards antigen stimulation.    

7.1 Selection of HLA-A2 associated HBV peptides.  

              We also investigated HBV peptide binding. We chose peptides that have 

been studied for their ability to induce specific CD8 T cell responses (Das et al, 

2008). In order to maximize the response, we selected five HLA-A2 peptides to 

establish as HLA-A2-HBV peptide pool. The five peptides are HBV core 18-27 

FLPSDFFPSV; HBV envelope 183-191 FLLTRILTI; 335-343 WLSLLVPFV; 338-

347 LLVPFVQWFV; 348-357 GLSPTVWLSV (Das et al, 2008). To validate 

whether these five peptides can bind HLA-A2, we did binding assay by using these 

peptide to compete a known report HLA-A2-binding peptide MP58-66 

(YILGKVFTL). The report peptide has been modified by labelling 125I and a 

crosslinker (Li et al, 2000). According to our previous study, we used 2nm report 

peptide to bind to HLA-A2 molecules in 10ug nanoAPC while using different 

concentrations of HBV peptides to complete the binding (Li et al, 2000). Results 

show that the binding affinity of five peptides was similar (Figure 7.1.). However, 

none of the five peptides is as good as report peptide (Figure 7.1.). We therefore 

pooled five peptides to collectively load HLA-A2 molecules in nanoAPC.  
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Figure 7.1. Five HBV peptides reported for induction of HLA-A2 restricted CD8 T cell 

responses in HBV patients were analysed for their binding to HLA-A2 on IL-2-A2-

nanoAPC by a competition assay.  

Different concentration of peptides were used to compete 125I-labeled HLA-A2-reporter 

NP peptide and percentage of reporter peptide competed for binding to HLA-A2 were 

measured. With a similar binding affinity, these five peptides were mixed and pooled at 

concentration of 1uM each used to assemble HBVA2-nanoAPC or IL-2-HBVA2-nanoAPC. 
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7.2 Selection of DR/DP binding peptides from HBV.  

            In order to induce both CD4 and CD8 T cells, we selected peptides (HBV 

Env 180-195 AGFFLLTRILTIPQS; Env 339-354 LVPFVQWFVGLSPTV; and Pol 

767-782 AANWILRGTSFVYVP) (Mizukoshi et al, 2004) that have been tested to 

interact DR and DP molecules that expressed in IL-2-nanoAPC. To examine the 

binding affinity, we labelled peptides with fluorescent marker and incubated labelled 

peptides to nanoAPC. After removal of free peptides, the peptide binding was 

detected by FACS analysis. The results showed that all these three peptides all can 

associate with DR and DP molecules under acidic conditions (Figure 7.2). Similar to 

HLA-A2 peptides, we pooled three peptides and loaded all three onto DR and/or DP 

molecules in nanoAPC. 

 

Figure 7.2.   Acidic treatment induces peptide-receptive MHC class II 

Peptide loaded A2-nanoAPC from 221-A2 cells under pH 7.0 or pH 5.0 conditions. The 

same nanoAPC with PBS or with 5 times unlabeled peptide serve as a background control. 

# Fluorescence peptide plus five times unlabelled peptide with A2-nanoAPC under acide 

condition.  
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7.3 IL-2-A2-nanoAPCs induce strong CD8 T cell responses in peripheral 

lymphocytes from chronic HBV patients 

            We previously found that IL-2 can effectively reverse tolerance induced by 

antigen persistence (Anderson et al, 2005). T cells from chronic HBV patients show 

reduced production of IL-2 in response to TCR ligation (Frebel et al, 2010), which is 

consistent with the defective induction of IL-2 in T cells rendered tolerant by 

persistent antigen stimulation (Anderson et al, 2005).  To investigate whether IL-2-

A2-nanoAPC can enhance responses of virus specific CD8 T cells from chronic 

HBV patients, we developed HBV specific IL-2-HBVA2-nanoAPC by assembling a 

pool of five HBV peptides, which have been found to induce HBV specific CD8 T 

cell responses in HLA-A2 positive HBV patients (Das et al, 2008), with the HLA-A2 

molecules on the IL-2-A2-nanoAPC. Therefore a pool containing equal amounts 

(5uM) of each peptide was used for assembly of IL-2-HBVA2-nanoAPC and 

HBVA2-nanoAPC. Peripheral lymphocytes from 57 HLA-A2 positive chronic HBV 

patients, with viral loads ranging from 3 x 10
3
 to 10

13
 IU/ml (Table 7.1), were used to 

investigate CD8 T cell responses. We detected minimal CD8 T cell responses, as 

measured by the proportion of IFNγ producing CD8 T cells, after incubation with the 

pool of the five HBV peptides (Figure 7.4.). The HBVA2-nanoAPC induced better 

responses in about 20% of patients (Figure 7.4. table 7.1 and 2). However, IL-2-

HBVA2-nanoAPC induced the strongest responses, with lymphocytes from most 

patients showing a strong CD8 T cell response (Figure 7.4. table 7.1 and 2). 

Consistently, IL-2-A2-nanoAPC, in the absence of antigenic peptide, did not induce 

IFNγ production by CD8 T cells in any of the patient samples (Figure 7.4). 

Furthermore, we could not detect an increase in the proportion of Foxp3
+
CD4

+
 cells 

after stimulation with IL-2-HBVA2-nanoAPC or IL-2-A2-nanoAPC (Figure 7.5.). 
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CD8 Overall HBV QMUL† Shanghai 

Number 57 20 37 

Median age 

(range) 

36 

(17-69) 

40 

(17-69) 

33 

(18-52) 

Sex (M:F ratio) 

%male 

(42:15) 

73.7% 

(13:7) 

65% 

(29:8) 

78.4% 

Viral load 

(Log; range) 

6.35 

(3.27-9.96) 

5.94 

(3.27- 9.96) 

6.57 

(4.31-9.13) 

Median ALT 

(IU/liter; range) 

120.2 

(20-430) 

81.7 

(30-211) 

141 

(20-430) 

HBeAg status  (% 

positive) 

47.4% 25% 59.5% 

 

Table 7.1. Clinical characteristics of chronic HBV patients investigated with IL-2-A2-

nanoAPC  

HBV patients stimulate with HBV class I peptide pool load on IL-2-A2-nanoAPC or A2-

nanoAPC 

†Queen Mary University of London 
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CD4 Overall HBV QMUL† Shanghai 

Number 28 6 22 

Median age 

(range) 

35.4 

(19-69) 

45.8 

(28-69) 

32.5 

(19-52) 

Sex (M:F ratio) 

%male 

(18:10) 

64.3% 

(4:2) 

66.7% 

(14:8) 

63.6% 

Viral load 

(Log; range) 

6.57 

(3.27-9.96) 

5.00 

(3.27- 9.96) 

7.00 

(5.29-9.13) 

Median ALT 

(IU/liter; range) 

110.4 

(20-430) 

42 

(31-97) 

129 

(20-206) 

HBeAg status 

(% positive) 

46.4% 33.3% 50.5% 

 

Table 7.2. Clinical characteristics of chronic HBV patients investigated with IL-2-

DR/DP-nanoAPC  

HBV patients stimulate with HBV class II peptide pool load on IL-2-DR/DP-nanoAPC or 

DR/DP-nanoAPC 

†Queen Mary University of London 
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 HBVA2-nanoAPC IL-2-HBVA2-nanoAPC 

No respond 77.2% 35% 

Respond >0.5% 

CD8 

13/57=22.8% 

(0.6-6.2) 

37/57=65% 

(0.7-16.4) 

Respond >0.5% CD4 9/28=32% 

(0.6-4) 

18/28=64.3% 

(0.6-5.6) 

IL-2/A2>2‡ 

CD8 

- 70.3% 

IL-2/A2>2‡ 

CD4 

- 46.4% 

 

Table 7.3. Antigen specific T cell response ratio comparison between HBVA2-

nanoAPC and IL-2-HBVA2-nanoAPC 

The data in the bracket shows the range 

‡ IL-2-HBVA2-nanoAPC induce more than twice response compare to HBVA2-

nanoAPC 
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Figure 7.3. Percentages of IFNγ producing CD8 T cells induced in  

A. Total 57 HLA-A2 positive chronic HBV patients 

B. 20 HLA-A2 positive chronic HBV patients from Barts and the London hospital care ethics 

review board and  

C. 37 HLA-A2 positive chronic HBV patients from Huashan hospital ethics committee, 

Shanghai China 

Statistical comparisons were performed using Student’s t test. 
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Figure 7.4. IL-2-HBVA2-nanoAPC enhance HBV specific CD8 T cell responses 

PBMCs from chronic HBV patients were incubated with the pool of five HBV peptides at 

concentration of 1uM each or 10ug/ml IL-2-HBVA2-nanoAPC or 10ug/ml HBVA2-

nanoAPC or IL-2-A2-nanoAPC for five days. After restimulation with PMA and Inomycin 

for three hours, IFNγ producing CD8 T cells were quantified after gating on CD8 cells 
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Figure 7.5. Foxp3
+
CD4

+
 T cells measurement  

Foxp3
+
CD4

+
 T cells were measured in two PBMCs from chronic HBV patients after 

stimulation with indicated stimuli for five days. 

7.4 IL-2-HBVA2-nanoAPC improve TCR signalling and suppress 

expression of inhibit receptor in HBV specific CD8 T cells from chronic 

HBV patients 

             In addition, expression of PD1, an inhibitory co-stimulatory molecule, was 

increased in CD8 T cells from chronic HBV, HCV and HIV patients (Keir et al, 

2007). To investigate whether the enhanced CD8 T cell responses induced by IL-2-

HBVA2-nanoAPC resulted from improved TCR signalling and/or reduced 

expression of PD1, we test the expression of PD1 on IFNγ producing CD8 T cells 

induced by either HBVA2-nanoAPC or IL-2-HBVA2-nanoAPC. To further prove 

that IL-2 on IL-2-A2-nanoAPC can reverse tolerance which was induced by 

persistent antigenic stimulation, effectively increases the threshold for T cell receptor 

activation in response to antigen stimulation by suppressing TCR proximal signalling 

pathways (O’meill et al, 2004) (Anderson et al, 2005) we examined activation of 

extracellular signal-regulated protein kinase (Erk), which is repressed in tolerant T 

cells (Anderson et al, 2005). The results demonstrated that the levels of Erk 
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activation were enhanced in responding CD8 T cells from chronic HBV patients 

stimulated with IL-2-HBVA2-nanoAPC compared to those stimulated by HBVA2-

nanoAPC (Figure 7.6.), suggesting that IL-2 can antagonize T cell tolerance by 

enhancing TCR proximal signals. In addition to increased TCR signalling, the 

expression of PD1 was reduced on IFNγ producing CD8 T cells induced by IL-2-

HBVA2-nanoAPC compared to those stimulated by HBVA2-nanoAPC (Figure 7.6.). 

Thus, we have provided direct evidence to demonstrate that IL-2 on nanoAPC 

effectively reduces the TCR activation threshold and the expression of negative 

regulators in virus specific CD8 T cells; the two important factors needed to 

overcome T cell tolerance.   
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Figure 7.6. IL-2 can enhance T cell activation and suppress expression of PD1 on HBV 

specific CD8 T cells.  

PBMCs from three chronic HBV patients, which showed weak responses to HBVA2-

nanoAPC, but strong responses to IL-2-HBVA2-nanoAPC, were incubated with 10ug/ml of 

IL-2-HBVA2-nanoAPC or HBVA2-nanoAPC for five days. After restimulation with PMA 

and Inomycine for three hours, cells were stained with anti-CD8, anti-IFNγ, anti-PD1 and 

anti-phospho-Erk. IFNγ positive or IFNγ negative CD8 T cells were gated for analysis of 

PD1 expression or Erk phosphorylation.  
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7.5 IL-2-nanoAPC increase CD4 T cell responses to viral antigens 

             It has been proved that CD4 T cell tolerance is similar to CD8 cells, and also 

it has been reported that CD4 helper function is essential for the development and 

maintenance of CD8 T cell effector function. I have shown that MHC class II 

molecules in isolated ER vesicles can assemble with antigenic peptides under acidic 

conditions. 221 cells are deficient in MHC class I, but still express HLA DR and DP 

molecules (Shimizu et al, 1989). Three HBV peptides reported to bind to DR and/or 

DP (Mizukoshi et al, 2004) were analysed for their ability to assemble with nanoAPC 

from 221-A2 and 221-A2-IL-2 cells. Consistent with previous findings (Mizukoshi et 

al, 2004), specific binding of all three peptides to nanoAPC were detected under 

acidic conditions (Figure 7.7.). Pools of the three peptides were assembled with DR 

and/or DP molecules on either nanoAPC or IL-2-nanoAPC to create HBVDR/DP-

nanoAPC or IL-2-HBVDR/DP-nanoAPC, respectively. Peptide alone did not induce 

IFNγ producing CD4 T cells in peripheral lymphocyte populations isolated from 

chronic HBV patients (Figure 7.7.).  HBVDR/DP-nanoAPC induced a weak response 

in 8% patient samples (Figure 7.7.), while significant CD4 T cell responses were 

induced in more than 50% of patient samples treated with IL-2-HBVDR/DP-

nanoAPC (Table 7.3.) (Figure 7.7.). Again, we did not find an increased proportion 

of Foxp3
+
CD4 T cells in peripheral lymphocytes from chronic HBV patients after 

culture with IL-2-HBVDR/DP-nanoAPC (Figure 7.8.).  
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Figure 7.7. IL-2-HBVDR/DP-nanoAPC induce CD4 T cell responses in PBMCs from 

chronic HBV patients 

Induction of IFNγ producing CD4 T cells in PBMCs from chronic HBV patients. PBMCs 

were incubated with 10ug/ml of IL-2-HBVDR/DP-nanoAPC or HBVDR/DP-nanoAPC or 

IL-2-A2-nanoAPC for five days. After restimulation with PMA and Inomycin for three 

hours, IFNγ producing CD4 T cells were quantified after gating CD4 cells. 
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Figure 7.8 Foxp3
+
CD4

+
 T cells were measured in PBMCs from chronic HBV patients 

after stimulation with indicated stimuli for five days.  

The presented data were from patients’ number Q6 and Q16, who were among the patients 

shown CD4 T cell responses towards IL-2-HBVDR/DP-nanoAPC stimulation 

7.6 IL-2-nanoAPC induced CD4 T cell responses leading to stronger viral 

antigens CD8 T cell responses 

            To investigate whether the induced Th1 CD4 responses can enhance viral 

antigen specific CD8 T cell responses, patient lymphocytes were stimulated with 

both IL-2-HBVDR/DP-nanoAPC and IL-2-HBVA2-nanoAPC. The results showed 

that the induction of Th1 CD4 T cells increased the proportion of IFNγ producing 

CD8 T cells in response to IL-2-HBVA2-nanoAPC (Figure 7.9.), suggesting that 

CD4 responses are indeed important for the expansion of effector CD8 T cells. 

Therefore, the presence of IL-2 on nanoAPC is important to drive optimal CD4 and 

CD8 T cell responses against HBV in lymphocytes from chronic HBV patients. 
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Figure 7.9. IL-2-HBVDR/DP-nanoAPC induces CD4 T cell responses in PBMCs from 

chronic HBV patients leading to the enhanced responses of HBV-specific CD8 T cells. 

PBMCs from chronic HBV patients were incubated with 20ug/ml IL-2-HBVA2-nanoAPC 

or 10ug/ml IL-2-HBVA2-nanoAPC and 10ug/ml IL-2-HBVDR/DP-nanoAPC for five days. 

After restimulation with PMA and Inomycin, IFNγ producing CD4 or CD8 cells were 

quantified after gating on CD4 or CD8 cells.  
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DISCUSSION 

             The study of the immune system has provided insight in the mechanism of 

protection induced by vaccination; primarily that most clinically protective vaccines 

are potent in generating neutralizing antibody responses. Nonetheless, vaccination 

fails to protect against a wide range of acquired chronic infections caused by viruses, 

such as HIV, HBV and HCV, intracellular pathogens, and cancer. Attempts to 

combat these diseases are thought to also require the induction of the cellular arm of 

the immune response, in which dendritic cells (DCs) play a key role. Thus, DCs are 

considered a promising target/tool when designing new-generation vaccines (Farkas 

et al. 2005) (Clay et al. 2006). But these are associated with several difficulties. For 

example, there are limitations involved in the loading of antigen, and in the 

appropriate maturation of DC in vitro. Furthermore, the complexity of DC subsets in 

relation to the induction versus suppression of T cell activation in vivo severely limits 

DC- based vaccine applications (Hawiger et al. 2003). To overcome the difficulties 

of DC therapies, we have developed a microsome based DC vaccine by using ER-

enriched microsomes isolated from professional antigen presenting cells, such as 

DCs (Sofra et al, 2009). This approach not only preserves antigen presenting function 

of DC, but also avoids unrelated function of DC such as inhibitory function and 

soluble factors such as IL10, TGF-β and IDO (Sofra et al, 2009). However, it has 

been clear that poor immune response against viral infection is one of major courses 

of chronic infectious diseases. It is therefore ineffective if the therapeutic vaccine 

delivers only conventional antigen and co-stimulatory signal. Based on our 

microsomal vaccine, here, we have explored the hypothesis by selectively delivering 

IL-2 with HLA-antigen complexes to antigen specific T cells in patients with chronic 

infectious diseases.    
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1. Defective immunoresponses in chronic infectious diseases 

             Our approach is based on the recent understanding of immunological defects 

in chronic infectious diseases. The studies of chronic HBV infection demonstrate that 

the persistent high load of virus can lead to severe immune tolerance (Frebel et al, 

2010). The T cells from chronic HBV are tolerant to viral antigens and fail to 

produce effective cytokines such as IL-2, TNFα and IFNγ in response to viral 

stimulation. The viral persistence in chronic HBV patients leads to reduction of T 

cell population and the proliferation potential of effector T cells (Frebel et al 2010). 

It has been suggested that the deficiency is due to both cellular intrinsic and extrinsic 

mechanisms. The expression of inhibitory receptors such as CTLA4 and PD1 on 

antigen specific T cells, and regulatory cytokines such as IL-10, and the possible 

increases of Treg cells are found in chronic HBV, HCV and HIV patients (Frebel et 

al 2010) (Keir et al 2007) (Racanelli et al 2007). Recently, the downregulation of 

TCR proximal signalling pathways has been found in T cells from chronic HBV 

patients (Maini and Schurich 2010) (Das et al, 2008); compelling support for the 

notion that persistent antigen engagement is at least one of the mechanisms for the 

induction of virus specific T cell tolerance. The unresponsiveness of viral specific T 

cells has been found as a generic mechanism partly responsible for the chronic 

infections of HIV, HBV and HCV (Keir et al 2007), suggesting that the induction of 

T cell tolerance is due to persistent engagement of T cells with viral antigens, rather 

than the function of specific viral molecules. 

             Together with the findings from chronic infectious diseases and animal 

models, it indicates that viral induced tolerance is not due to loss of antigen specific 

T cells, but rather downregulation of proximal TCR signalling pathways following 

antigen stimulation (Anderson et al, 2005) (Frebel et al, 2010). Such tolerance cannot 

be reversed by an increase in the amount of antigen presented by activated dendritic 

cells and this cannot reverse tolerance (Anderson et al, 2005). Thus the priority to 

develop a therapeutic vaccine for chronic infectious diseases is its capability to 

reverse the function of antigen specific T cells.  
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2. Immunotherapeutics for increasing immunogenicity in chronic 

infectious diseases 

             To overcome the tolerance of viral specific T cells, approaches to increase 

the function of APC have been investigated such as increase of co-stimulatory 

signalling by treating DCs with α‑galactosylceramide which binds to CD1, CD40-

specific antibody and TLR ligands such TLR9 ligand (Paulsson et al, 2007). 

Although some of these modifications have increased efficacy in induction of HBV  

HCV specific T cells in vivo in mouse models, the use of autologous DC and 

dysfunction of DCs in chronic infectious condition (Encke et al, 2005) (Farag et al, 

2010) have limited their clinical applications. The nanoAPC with reconstitute IL-2 

and HLA-A2 not only deliver the bio-adjuvant and antigen directly to T cells, but 

also can be broadly applied to patient groups sharing HLA alleles. Using cytokines as 

bio-adjvenat to immunetherapy the chronic infections have found that IL-7, IL-15 

and IL-2 can effectively improve the anti-viral immune response (Ha et al, 2008). IL-

7 and IL-15 are required for survival and homeostatic proliferation of memory T 

cells (Meldhionda et al, 2005). IL-7 has been found to suppress Socs3 (suppressor of 

cytokine signalling 3) expressions in effector T cells (Marc et al, 2011). Socs3 is 

suppressor of cytokine signalling (Yoshimura et al, 2007). Thus, the inhibition of 

Socs3 results in induction of IL-22 and IL-6 that is required for anti-viral responses 

and protection of liver pathology (Marc et al, 2011). Although unlike IL-2, IL-7 

induces less organ pathology, the function of IL-7 is not limited to viral specific T 

cells. Therefore, it may be less effective under the chronic infectious condition which 

the immune system is largely deregulated with high levels of Treg cells and 

inflammatory cytokine production (Frebel et al 2010).  
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3. IL-2 as adjuvant for immunotherapy 

             IL-2 is the most potent stimulatory cytokine for T cells and is required for 

memory T cell function (Malek 2008). It has been used as a bio-adjuvant to 

overcome low immunogenicity of therapeutic vaccine in the treatment of chronic 

infectious diseases (Ha et al 2008) (Fearon 2007). Previously, our group discovered 

that IL-2 can effectively reverse T cell tolerance induced by antigen persistence 

(Anderson et al, 2005). Therefore, among cytokines used for immune therapy, IL-2 is 

the best choice for a promising strategy to augment the efficacy of therapeutic 

vaccination against chronic viral infections. However, application of IL-2 as a bio-

adjuvant for immunotherapy is hampered by organ pathology induced by therapeutic 

doses and the expansion of Treg cells leading to the suppression of effector T cells 

(Malek and Castro 2010). IL-2 is required for expansion of Treg cells and IL-2 

treatment for HIV induces immune suppressive effect due to the overexpansion of 

Treg cells (Weiss et al, 2010).  

             Our approach to use immobilized IL-2 incorporated into the nanoAPC 

effectively delivers the IL-2 to antigen specific T cells that are engaging pMHC on 

APC. By this, the therapeutic dose of IL-2 to enhance activation of antigen specific T 

cells is much less than the therapeutic dose of soluble IL-2 used for systemic 

administration (Bernsen et al, 1999). IL-2 activation depends on the formation of its 

receptor. In resting T cells, only IL-2 receptor β and γ chains are expressed while IL-

2 receptor α chain is effectively induced by pMHC stimulation (Malek and Castro 

2010). We have shown that nanoAPC can induce synapse formation that can induce 

strong TCR signalling and subsequently the expression of IL-2 receptor α chain 

(Malek and Castro 2010). Thus, the IL-2 on nanoAPC can effectively interact with 

high affinity receptor on antigen specific T cells. Moreover, it has been shown that 

IL-2 can autocrinely induce expression of high affinity receptor on antigen 

stimulated T cells (Ascherman et al, 1997). Consistently, the stimulation of CMV 

specific T cells by IL-2-CMV-A2nanoAPC effectively induces CD25 expression on 

CMV tetramer positive T cells. Thus, the IL-2-nanoAPC creates a microenvironment 
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for antigen specific T cells to effectively engage high doses of IL-2 locally. IL-2 

forms four helical proteins that dock on the trimetric receptor surface. Since the IL-2 

on nanoAPC is preferentially targeting antigen specific T cells, therefore, it does not 

significantly affect bystander T cells and Treg as shown in both systems of CMV and 

HBV.  

             In order to maintain the function of structure of IL-2, We optimized the IL-2-

tapasin structure to remain IL-2 exposed by addition of due GGS linker sequence. 

The amount of the IL-2 expressed in nanoAPC expresses a similar activity to that of 

recombinant IL-2 (~ 100IU/ng) suggesting that the engineered IL-2 maintains its 

activity on nanoAPC. We found that the IL-2 on nanoAPC is much more stable than 

soluble recombinant IL-2 (data not shown). It may be due to the stable structure after 

being immobilized on nanoAPC membranes. IL-2 can sustain its function after 

internalization by T cells following interaction with its high affinity receptor (Malek 

and Castro 2010). We found that nanoAPC engraphed into the synapse can be 

internalized by T cells. Thus, the IL-2 can remain active in complex with its receptor 

after internalization. This approach can be applied with other cytokines or even 

combination of different cytokines if they are beneficial for optimizing viral specific 

T cell activation.  

4. Nano-sized antigen presenting cells (nanoAPC) 

             Nano-particles have been used to develop therapeutic vaccines for chronic 

infectious diseases (Nandedkar, 2009) (Ansari et al, 2011). Most of the nano-

particles are developed by synthesis of chemical reagents or viral particles or 

microbial after engineered with antigens (Nandedkar, 2009). So far, the reported 

nano-vaccine aim to introduce antigen to DC in vivo and activate DC to stimulate T 

cells (Cruz et al, 2011). However, the high level of viral load in chronic infectious 

diseases indicates that the immune unresponsiveness to virus is not resulted from 

lack of antigens, but the defects in both innate and adaptive immune systems 

including function of DC (Frebel et al, 2010). It is therefore the induction of 

exogenous antigen to DC may not be effective for reactivation of defected immune 
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system. Some of the nano-vaccine aim to deliver pMHC to T cells by coupling 

folded recombinant pMHC to surface of particles (Cruz et al, 2011). Due to the 

nature of MHC-peptide folding process, only limited number of antigen peptides can 

effectively induce MHC class I folding and the conformation of folded pMHC on 

particles may differ from physiologically processed pMHC in APC. The nanoAPC 

are derived from APC with abundant peptide receptive MHC class I molecules that 

semi-folded under physiological condition. It is therefore effectively assembled with 

peptides. We have shown that all the HLA-A2 peptides used in this study can 

effectively bind to HLA-A2 molecules in the nanoAPC. In addition, the engineered 

IL-2 is also processed naturally in APC seed cells. It is therefore nanoAPC present 

physiological pMHC and IL-2 to T cells. In addition, nanoAPC have perfect 

biocompatibility with nature components including co-stimulatory molecules 

synthesised in APC cells. At a nanosize, we demonstrate that nanoAPC can 

effectively distribute to peripheral lymphoid organs. Importantly, unlike nano-

particles, nanoAPC are not effectively endocytosed by DCs in lymph nodes. This is 

also largely due to the physiological pattern of nanoAPC that are not recognized by 

pattern reorganization receptors on DC (Namswskar, 2009).  

             In previous report, HBV antigenic peptides can induce viral specific T cells 

in PBMC (Das et al, 2008). However, these reports were using IL-2 in stimulatory 

cultures (Das et al, 2008). We have discovered that even a minimal dose of IL-2 

(20IU) can globally activate T cell activation and proliferation. It is therefore in the 

absence of IL-2 we could not detect significant T cell responses by antigen peptides 

alone. The induced responses are only observed in some cases with peptide 

assembled nanoAPC. The significant responses are only detected in IL-2-nanoAPC 

which is consistent with our previous observation that IL-2 can effectively reverse 

responses of tolerant T cells to antigen stimulation (Anderson et al, 2005).  
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5. TH1 helper cells are important for the induction of effective 

responses of viral specific CD8 T cells  

             We however confirmed that an induced TH1 response is important for a 

maximum response of CD8 T cells to viral antigens. We tried two different 

approaches to induce both CD4 and CD8 responses by either separately assembling 

MHC class I and MHC class II on nanoAPC then mixed together for stimulation of 

PBMC and also assembling sequentially the pMHC class I and class II on same 

nanoAPC. Results showed that the pMHC class II can induce strong CD4 T cell 

response when stimulated by IL-2-nanoAPC and the induced CD4 T cell response 

can enhance the response of HBV specific CD8 T cells. This finding indicate; 1. IL-2 

is important for the induction of viral specific CD4 T cells and 2. TH responses are 

important for the development and maintenance of CD8 T cell function (Yang et al, 

2010). However, in all the cases analysed, the proportion of CD4 cells that responded 

was lower than the proportion of responding CD8 cells. This may be due to the fact 

that CD8 T cells are more sensitive to IL-2 than CD4 T cells (Li et al, 2000). Another 

possibility, is that the level of MHC class II molecules expressed on nanoAPC 

prepared from 721.221 seed cells is lower than the level of HLA-A2 (Gabathuler and 

Kvist 1990) or that the pMHC class II complexes, generated by assembly with the 

selected HBV peptides, are not optimal for induction of CD4 T cell responses. It is 

therefore important for further development to detail screen the MHC class II binding 

peptides from HBV viral peptide databases. We have tried different parameters to 

assemble pMHC class I in order to obtain maximum loading. We found a pre-acidic 

treatment reported for increasing peptide receptive MHC class I by striping bound 

peptides is not effective. This suggests that the MHC class I in nanoAPC derived 

from the ER membranes are effectively peptide receptive. However, when we 

compared SIINFEKL-Kb complexes on nanoAPC prepared from OVA transfected 

APC and SIINFEKL loaded nanoAPC, the level of pMHC is much higher in 

nanoAPC if the pMHC is processed naturally. I therefore propose that instead of 

loading antigenic peptide in vitro onto nanoAPC, the antigen has to be engineered 

into the seed cells and let the seed cells to process pMHC complexes.  
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             The effect cytokines induced by antigen peptides in CD8 T cells from 

chronic HBV patients have been investigated and a differential expression of IL-2 

and IFNγ was discovered with defective IL-2 expression, but induction of IFNγ 

(Frebel et al 2010). We however did not detect significant increase of IL-2 producing 

CD8 T cells after five day stimulation. This may be due to the addition of IL-2 into 

the culture in reported studies and also to the time for detection of IL-2 as the 

reported results are from peptide stimulated T cells in short time (less than 48 hours) 

( Schurich et al, 2011).  

6. IL-2 enhances T cell responses by reciprocally regulating 

expression of PD1 and TCR signalling 

             One of the major disorders of viral specific immune response in chronic 

infectious diseases such as HIV, HCV and HBV is the elevated expression of PD-1 

on viral specific T cells (Das et al, 2008). Although it remains unknown by which 

mechanism the PD-1 has reported that the expression of PD-1 can effectively induce 

Batf expression, an AP1 repressor and the expressed Batf can subsequently inhibit 

TCR mediated AP1 activation (Quiqley et al, 2010). PD1 expression has been found 

in T cells from chronic HBV patients (Keir et al, 2008). We have now demonstrated 

that stimulation of viral specific T cells from chronic HBV patients with IL-2 and 

pMHC delivered by nano-APC can effectively reduce expression of PD1. Our data 

not only supports previous findings of induced expression of PD1 on T cells by viral 

persistence (Keir et al, 2008) and also demonstrates a possible mechanism for IL-2 to 

repress PD1 expression on effector T cells. In addition, we could also engineer 

membrane bound single chain antibodies to PD1 and/or CTLA4 to further reduce 

negative co-stimulatory signals on viral specific T cells. 

             One of the major mechanisms for viral specific T cell to be tolerant is the 

impairment of TCR signalling in chronic infectious diseases (Das et al, 2008). We 

have previously demonstrated that persistent stimulation with high affinity viral 

antigens can effectively induce T cell tolerance with severe impaired TCR signalling 

which resemble the findings from chronic infections (Anderson et al, 2005). In 
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chronic HBV conditions, a defective expression of CD3ζ downregulate was 

discovered on CD8 T cells (Das et al, 2008). The reduced expression of CD3 ζ 

associates with defective function of CD8 induced by anti-CD3 (Das et al, 2008). It 

has been found that the reduced expression of CD3 ζ is due to persistent infections. 

In another investigation, Bim has been found to be induced in T cells from chronic 

HBV, but not acute infected patients (Schurich et al, 2011). Bim is a pro-apoptotic 

protein and expression can repress TCR signalling (Hale et al, 2011). A generous 

defect in TCR signalling is a common disorder of T cells in chronic infections largely 

due to the viral persistence (Maini and Schurich 2010) (Das et al, 2008). In a tolerant 

model induced by persistant antigen stimulation, we have demonstrated that IL-2 can 

effectively reverse the tolerance and restore full responses to tolerogenic antigens 

(Anderson et al, 2005). Consistently, we have now demonstrated that IL-2 together 

with pMHC on IL-2 nanoAPC can enhance TCR signalling, a therapeutic mechanism 

to reverse T cell tolerance.  

7. NanoAPC are biocompatible as live APC and accumulate in 

peripheral lymphoid organs 

             Unlike reported nano-vaccine, nanoAPC affects directly on antigen specific 

T cells in vivo (Nandedkar, 2009). It is therefore important that nanoAPC remain as 

free particles in peripheral lymphoid organs. Previously, we demonstrated that 

nanoAPC are not effectively endocytosed by DCs in vitro (Sofra et al, 2009). Here, 

we further confirmed that the nanoAPC largely remain as free particles in the lymph 

nodes and accumulated for more than 48 hours. This is important not only for 

induction of memory T cells in lymphoid organs and also for activation of viral 

specific T cells in pathological organs such as liver in chronic HBV with a high level 

of lymphatic infiltration. Although we do not know why the nanoAPC are resistant to 

endocytosis, the lack of pattern recognition molecules those are recognized by 

pattern recognition receptors on DC may be the reason (Geijtenbeek et al, 2004). In 

addition to the tolerance to endocytosis, nanoAPC are also highly accumulated in 

peripheral lymphoid organs (Sofra et al, 2009). This may result from high levels of 
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homing receptors inherited from seed APC cells (Sachstein, 2005). Nevertheless, the 

nanoAPC have great advantages in lymphoid distribution and sustained free particles 

comparing to synthesised nano-vaccines.  

8. NanoAPC induce immune synapse on antigen specific T cells  

             Synpatic formation on the interactive parts between DC and antigen specific 

T cells is the functional architectures of effective antigen recognition (Fooksman et al, 

2010). The clustering of multi surface molecules including pMHC-TCR, co-

stimulatory molecules are required for the initiation of potent TCR signalling. The 

nanoAPC can effectively induce synapthesis formation on antigen specific T cells. 

Importantly, the membrane clustering leads to the engrapher of whole nanoAPC into 

T cells, a phenotype observed in the process of synapthses after interaction between 

DC and antigen specific T cells (Fooksman et al, 2010). The endocytosis of 

synapesis is important to sustain the interaction of pMHC-TCR and co-stimulatory 

molecules in the T cells (Fooksman et al, 2010). It has been reported that an 

interaction of IL-2 with high affinity IL-2 receptor on T cells can also induce 

endocytosis of IL-2-IL-2R complex which is also important for a sustained IL-2 

stimulation. Thus, the endocytosis of nanoAPC can result in the sustained stimulation 

of both TCR and IL-2 receptor, a maximum induction of viral specific T cells which 

is critical for the reversed immune responses in chronic infectious conditions.  

9 NanoAPC can be applied as vaccine delivery system. 

             In addition to the flexible reconstitution of selected bio-active molecules and 

physiolocially processed therapeutic molecules, the nanoAPC created from MHC 

class I negative seed APC cells (721.221) gives advantages to freely reconstitute 

MHC class I alleles. As statistics reviewed, there are a few of most common MHC 

class I alleles that are distributed in a large population (Janeway et al, 2001). It is 

therefore, reconstitution of these most common MHC class I alleles that can make 

nanoAPC broadly used by large population of patients. Another major advantage of 
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nanoAPC is the sustained activity after storing at -80
o
C, which is not only possible 

for pharmaceutics production but also maintains consistent between benches easier.  

10 Future considerations/ work 

             The ultimate aim of nanoAPC is to deliver engineered bio-adjuvant to 

antigen specific T cells, but not to bystander T cells and Treg cells. It is therefore 

important that reconstituted pMHC on nanoAPC can effectively engage antigen 

specific T cells in vivo. To achieve this, high affinity and broad spectrum pMHC on 

nanoAPC can effectively induce comprehensive responses against viral antigens and 

subsequently deliver engineered adjuvant to antigen specific T cells. We 

demonstrated in this study that pMHC assembled by the loading of exogenous  

peptides to MHC class I in vitro on nanoAPC or live DC is much lower than that 

processed physiologically in APC after forced expression of antigen into the APC. It 

is therefore important in future development that viral antigen has to be transfected 

into seed cells and allow the pMHC to be assembled before isolation of nanoAPC. 

The efficacy of nanoAPC with engineered bio-adjuvant has to be tested in clinical 

trials and the induction of viral specific CD4 and CD8 T cells and viral clearance 

have to be examined in vivo. 

11 Conclusions: 

             To overcome the unresponsiveness of viral specific T cells induced by viral 

persistence in chronic infectious patients, in this study, we merged advantages from 

nano-technology, bio-adjuvant, antigen presenting cells and selected viral antigenic 

peptides in the development of therapeutic vaccines for chronic infectious diseases 

(Nandedkar, 2009) (Ha et al, 2008) to develop a novel form of nano-vaccine, 

nanoAPC, to pMHC, co-stimulatory signals and IL-2 or other engineered bio-

adjuvant to viral specific T cells, but not bystander T cells and Treg cells. The 

selection of MHC class I defective human B cell line as seed cells allows us to 

reconstitute the most popular MHC class I alleles into nanoAPC. Thus, the 

therapeutic vaccines can apply to large population sharing same MHC class I alleles. 
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Derived from natural APC, the nanoAPC serve native APC function and effectively 

induce functional synapses on antigen specific T cells. Therefore, I conclude that 

nanoAPC serve as a most effective delivery platform for the development of 

therapeutic vaccines for chronic infectious diseases or cancer in which the T cells are 

tolerant to antigens. 
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Table 1. Administration of stimulatory cytokines to boost exhausted T cells during chronic infection 

(Ha et al, 2008) 

Cytokine General effect on T cells Treatment Infection Effect References 

IL-2 

• Expansion of recently activated T cells 

• Expansion and maintenance of Tregs 
IL-2 LCMV 

• ↑Virus-specific T cells 

• ↓Viral load 

•Blattman et 

al, 2003 

 

• Induction of AICD 

• Upregulation of Bcl-2 

IL-2+ 

Anti-retroviral 

drugs HIV* 

• ↑CD4 T cells Virus-

specific T cells (ND) 

• Viral load (no effect) 

•Aladdin et al, 

2001  

• Levy et al, 

1999 

• Kovacs et al, 

1996 

  

IL-2+ 

Therapeutic 

vaccine + HIV* 

• ↑Virus-specific T cells  

• ↓Lower viral load† 

•Levy et al, 

2005 

  

Anti-retroviral 

drugs HIV‡ 

• Virus-specific T cells (no 

effect)  

• Viral load (no effect) 

• Hardy et al, 

2007 

• Kilby et al, 

2006 

• Smith et al, 

2007  
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SIV‡ 

• ↑Virus-specific T cells 

• ↓Lower viral load † 

•Tryniszewska  

et al, 2002  

IL-7 

• Maintenance of memory 

• T cells Survival of IL-7Rα
Hi

 effector T 

cells 

• Upregulation of Bcl-2 IL-7 SIV 

• ↑CD4 and CD8 T cells 

Virus-specific T cells (ND)  

• Viral load (no effect) 

• Beq et al, 

2006 

•Nugeyte et al, 

2003 

•Fry et al, 2003 

  

IL-7 + 

Therapeutic 

vaccine + 

Anti-retroviral 

drugs SIV‡ 

• Virus-specific T cells (no 

effect)  

• Viral load (no effect) 

•Hryniewicz et 

al, 2007 

IL-15 

• Maintenance of memory T cells 

• Survival of IL-7Rα
Low

 effector T cells  

• Upregulation of Bcl-2 

IL-15+ Anti-

retroviral 

drugs SIV* • ↑Virus-specific T cells 

•Picker et al, 

2006 

  

IL-15+ 

Therapeutic 

vaccine + 

Anti-retroviral 

drugs SIV‡ 

• Virus-specific T cells (no 

effect) 

• ↑Viral load† 

•Hryniewicz et 

al, 2007 

*Compared with anti-retroviral therapy alone. 

†After cessation of anti-retroviral therapy. 

‡Compared with therapeutic vaccine 1 anti-retroviral therapy. 

ND not determined. 
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Table 2 Different types of immunotherapy 

Type of 

vaccine 

Origin/generation Antigen 

loading 

Characteristics/ 

advantages 

Disadvantages Reference 

Free 

peptides 

 Synthetic 

immunogenic 

peptides from TAAs 

  Administered with 

or without 

adjuvants. 

 Induction of CTL 

responses in vivo 

and in clinical 

trials. 

 No induction of 

immunity with free 

peptides in the 

absence of adjuvant 

in clinical models. 

 Therapeutic 

vaccination with 

IFA is effective in a 

few animal models. 

 Some clinical trials 

showed some 

clinical responses 

against melanoma. 

 Easy and 

inexpensive 

production of 

 Can induce 

tolerant. 

 Inconclusive 

clinical results, 

limited clinical 

responses. 

 Ineffective 

prophylactic 

vaccination 

against non-

virally induced 

cancers in vivo 

models. 

 Some clinical 

trials showed no 

clinical response. 

 Require uptake by 

patients DCs, 

which can be 

compromised. 

 Schulz et al, 1991 

 Mandelboim et al, 

1995 

 Wang et al, 1999 

 Jager et al, 1996 

 Jager et al, 2000 

 Gjertsen et al, 

1997 

 Gjertsen et al, 

2001 
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peptides. 

 Simple peptides 

administration in a 

clinical setting. 

Dendritic  

Cells 

 Monocyte-derived 

DCs. 

 CD34
+
 precursor-

derived DCs. 

 Peripheral blood 

DCs. (Maturation is 

induced by culturing 

with cytokines.) 

 DCs pulsed 

with 

peptides. 

 DCs pulsed 

with 

proteins. 

 DCs loaded 

with DNA 

and mRNA 

 DCs loaded 

with viral 

vectors. 

 DCs loaded 

with tumour 

cell lysates. 

 DC-tumour 

cell fusions. 

 Professional APCs 

for potent T cell 

induction. 

 Superior than other 

methods in tumour 

models. 

 Strong CTL 

induction in animal 

models. 

 Effective 

prophylactic and 

therapeutic 

vaccination in 

mouse models (eg, 

melanoma, HPV). 

 Expansion of 

tumour specific 

CTLs and 

regressions in 

cancer patients. 

 Can also induce Th 

cell responses. 

 In i.v. 

administration DCs 

 Problematic long-

term storage. 

 Time consuming 

and labour 

intensive. 

 Expensive. 

 On a large scale 

this approach will 

be problematic. 

 DCs generated ex 

vivo home poorly 

in the lymph 

nodes after s.c. 

injection 

(although the few 

cells that reach the 

draining lymph 

nodes generate T 

cell responses). 

 Even though they 

can stimulate T 

cell responses, 

these are often not 

accompanied with 

significant clinical 

 Mayordomo et al, 

1995 

 Zitvogel et al, 

1996 

 Bellone et al, 2000 

 Soares et al, 2001 

 Eggert et al, 1999 

 Mullins et al, 2003 

 Saha et al, 2007 

 Nestle et al, 1998 

 Thurner et al, 1999 

 Banchereau et al, 

2001 

 Schuler-Thurner et 

al, 2002 

 Mandic et al, 2005 

 Londge et al, 2000 

 Thomas-Kaskel et 

al, 2006 
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home to the spleen 

and do not reach 

the lymph nodes 

(effective in lung 

cancer model but 

not for 

subcutaneous 

tumour). 

 S.C. injection leads 

to mixed homing to 

spleen and lymph 

nodes. 

 Safe and well 

tolerated for 

clinical use. 

 Have shown 

clinical responses 

to melanoma, 

prostate cancer, and 

metastatic renal cell 

carcinoma... 

 

responses. In 

general clinical 

results are 

unsatisfactory. 

Liposomes  Manufactured in the 

lab from 

phospholipids. 

 Tumour cell-derived 

liposomes. 

 

 TAA or 

TAA-derived 

peptide 

incorporation 

during 

preparation. 

 Can be modified 

for site-specific 

delivery, can be 

targeted to DCs. 

 Efficiently 

endocytosed by 

 Very few clinical 

trials with cellular 

but no significant 

clinical response. 

 Require uptake by 

patients DCs, 

 Kawamura et al, 

2006 

 Van Broekhoven 

et al, 2004 

 Van Broekhoven 

et al, 2002 
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 Tumour cell-

derived 

liposomes 

retain 

antigenic 

properties 

from original 

tumour cells. 

DCs, 

 Can be prepared to 

contain cytokines 

and DC maturation 

signals. 

 Offer antigen 

protection against 

degradation. 

 Cell free vaccine 

(simpler). 

 Can be rapidly 

available and in 

large quantities. 

 Induce strong CTL 

responses in 

animals. 

 Provide 

prophylactic 

immunity in animal 

models against 

tumour challenge. 

 Therapeutic effects 

in animal models 

inducing regression 

of established 

tumours. 

 Better than free 

peptides. 

 Clinical response to 

which can be 

compromised. 
 Altin et al, 2004 

 Neelapu et al, 

2004 

 Neidhart et al, 

2004 
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B cell lymphoma. 

ISCOMs 

 

 Manufactured in the 

lab from cholesterol, 

saponin and 

phospholipids. 

 Proteins and 

peptides 

incorporate 

into iscomes 

during 

preparation. 

 Cationic 

antigens 

naturally 

associate to 

ISCOMATR

IX when 

admixed. 

 Cell-free. 

 Fuse with DCs 

unloading their 

contents. 

 Available in large 

quantities. 

 Protect antigen 

from degradation. 

 Contain saponin 

which is highly 

immunogenic. 

 Promote high 

antibody levels and 

strong CTL and Th 

cell responses in 

animal models. 

 Induced antibody 

and CD8
+
 T cell 

response against 

HPV16 protein in a 

clinical trial. 

 Better than free 

peptides. 

 Safe for clinical 

use. 

 One clinical trial 

reported against 

cancer with no 

significant clinical 

response. 

 Require uptake by 

patients DCs, 

which can be 

compromised. 

 Barr and Mitchell, 

1996 

 Claasen and 

Osterhaus, 1992 

 Maloy et al, 1995 

 Lenarczyk et al, 

2004 

 Stewart et al, 2004 

 Frazer et al, 2004 

Exosomes  Secreted from DCs or 

tumour cells and 

obtained from culture 

 Exosomes 

pulsed with 

peptides. 

 Naturally secreted 

and endocytosed by 

DCs, so efficient 

 Low yields from 

mature DCs, 

which limits their 

 Zitvogel et al, 

1998 

 Andre et al, 2004 



241 
 

supernatants.  Pulsing 

peptides to 

DCs before 

exosome 

production 

and 

purification. 

uptake for 

vaccination 

purposes. 

 Contain MHC class 

I and II. 

 Contain co-

stimulatory/adhesio

n molecules. 

 Require mDCs 

from antigen 

presentation. 

 Induce potent CTL 

responses in animal 

models. 

 Only exosomes 

from mDCs are 

efficiently 

immunogenic. 

 Both prophylactic 

and therapeutic 

immunity in animal 

models. 

 As efficient as DCs 

and more efficient 

than peptides in 

animal models. 

 Cell-free. 

 Can be stored for 

prolonged periods 

clinical use. 

compromised 

 Require uptake by 

patients DCs, 

which can be 

compromised. 

 Only a couple of 

phase I trials at 

the moment, with 

no clinical and 

limited cellular 

response. 

 Chaput et al, 2004 

 Segura et al, 2005 

 Escudier et al, 

2005 

 Morse et al, 2005 

 Andre et al, 2002 

 Dai et al, 2006 

 Chen et al, 2006 
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in vitro. 

 Safe and well 

tolerated.  

Membrane 

Vesicles 

from DCs 

 Membrane vesicles 

obtained by 

ultracentrifugation of 

sonication-disrupted 

DCs. 

 Administered 

together with 

peptides. 

 Cell-free therefore 

simple. 

 Can be obtained in 

high yields. 

 Contain MHC class 

I and co-

stimulatory/adhesio

n molecules. 

 Can stimulate T 

cells in the absence 

of APCs in vitro. 

 Prime CD8
+
 T cells 

in vivo. 

 Induce a 

prophylactic 

response against 

tumour challenge in 

vivo. 

 No clinical results 

available. 

 System not well 

characterized. 

 Kovar et al, 2006 

Microsomes  ER membrane 

obtained from lysed 

APCs by rounds of 

ultracentrifugation. 

 Pulsed with 

peptides. 

 Cell-free, therefore 

simpler. 

 Can be obtained in 

high yields. 

 Microsomes 

efficiently bind 

peptides. 

 Directly stimulate 

 No clinical results 

available. 

 Sofra et al, 2009 
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T cell in vitro, 

without the 

presence of APCs. 

 Contain MHC class 

I and II. 

 Contain co-

stimulatory/adhesio

n molecules. 

 Induce peptide-

specific CD8
+
 

responses in vivo. 

IL-2-

nanoAPC 

 ER membrane 

obtained from lysed 

IL-2 and HLA-A2 

transfected 721.221 

cell line by rounds of 

ultracentrifugation. 

 Pulsed with 

peptides. 

 Continue each 

advantage from 

microsome 

 Delivery  both 

antigen peptide and 

bio-adjuvant IL-2 

to antigen T cell  

 Broad application 

to HLA shared 

patient groups 

 IL-2 direct active 

on antigen T cell no 

effect to the rest T 

cells or Treg cells 

 Nano-size free pass 

and accumulate 

 Limitation of high 

affinity and broad 

spectrum pMHC 

 Manuscript send to 

Journal of 

Immunology  
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into peripheral 

lymph nodes 

 Formed in a part of 

immune synapse to 

induce T cell 

responds 

 More than 50% 

patient samples 

shown positive 

responds for the IL-

2-nanoAPC with 

peptide in the HBV 

clinical trail  
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Table 3 Strategles Applies to Vaccine Development and Their Featurres 

     Production   Immunity     

Vaccine 

Type 

Structure Replication Mark Cell 

Culture 

Chemical 

Synthesis 

Recombinant 

DNA 

Administration Humoral Cell 

Mediated 

 Safety Notes 

Classic 

Killed 

Particles 

Microorganisms 

N N *   ** * * +- Uncomplete 

inactivation 

Yes, if 

pathogens 

can be easily 

cultured 

Classic 

Live 

attenuated 

Microorganisms Y N *   * * * +- Rescue of 

Viulence 

In vivo 

recombination 

Yes, if 

pathogens 

can be easily 

cultured 

Subunit Single proteins N Y * * * *** * ? + Yes, if 

properly 

purified 

New 

adjuvants and 

formulations 

Peptides Carrier-

conjugated 

peptide 

N Y  *  *** * ? + Yes, highly 

purified 

Long R&D 

study Also 

polyvalent 

Recombinant 

antigens 

Single proteins 

Carrier-

conjugated 

N Y   * *** * ? ++ Yes, highly 

purified 

 

Micelles 

Liposomes 

Antigens 

embedded 

In lipid Bilayer 

N Y * * * ** * ? ++ Yes, highly 

purified 

Long R&D 

development 

Coexpression 

of antigens 

and/or 

cytokines 

ISCOMs Particles N Y * * * ** * * ++ Yes, highly 

purified 

 

VLPs Particles N Y   * ** * * ++ Yes, no toxic  
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effects 

Recombinant 

Live vectors 

Particles 

Microorganisms 

Y Y   * * * * +- Rescue of 

virulence 

Recombination 

with WT virus 

Long R&D 

development 

Coexpression 

of antigens 

and/or 

cytokines 

Naked DNA Plasmid DNA, 

RNA, Lipsomes 

Gold 

Microbullets 

N Y   * ** * * ++ Applicable to 

gene therapy 

Easy to 

prepare 

Thermostable 

Avirulent 
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Table 4 Patient characterization and CD8 T cell response 

induced by nanoAPC for each patient 

Subject  ALT  HBeAg  Viral load  Sex  Age  IL-2M-I  M-I  Control  

 (IU/liter)   (log)     CD8
+
 IFNγ

+
 (%)   

1  39  N  5.28  F  36  5.9  3.1  0  

2  37  N  3.27  M  44  0.8  0.3  0.1  

3  24  N  4.58  M  69  0.8  0.1  0  

4  53  N  5.98  M  23  10.1  0.7  0.2  

5  32  P  7.99  F  35  0.1  0  0  

6  24  N  5.84  M  42  0.5  0.4  0  

7  36  N  4.67  F  44  3.7  0.3  0.3  

8  127  N  4.63  M  26  1.5  0.3  0.4  

9  65  N  7.14  F  58  7.3  0.2  0.2  

10  30  P  7.45  M  17  0.1  0  0.1  

11  211  N  5.22  M  33  4.2  2.3  0.1  

12  97  P  4.05  F  56  0.3  0.1  0  

13  206  N  5.27  M  51  16.1  5.4  0.2  

14  45  P  7.31  M  18  12.3  3  0.3  

15  202  N  8.37  F  27  0.1  0.1  0  

16  31  P  9.96  M  28  4.5  0.5  0.1  

17  79  N  5.58  M  52  0.5  0.3  0  

18  44  N  5.11  M  42  0.7  0.3  0  

19  169  N  6.65  F  36  14.2  6.2  0.2  

20  83  N  4.49  M  57  0  0  0  

21  27  P  5.36  M  27  1.4  1.4  0.1  

22  135  p  7.23  F  52  0.5  0.3  0  

23  430  p  4.68  M  33  11.4  4.5  0.3  

24  110  P  7.54  M  22  4  2.5  0.1  

25  143  N  7.03  F  32  3.5  2  0.1  

26  188  N  6.13  M  19  1.8  1.6  0  

27  194  P  7.05  F  41  3.5  1.5  0.1  

28  121  N  5.79  M  37  1.7  1.4  0.1  

29  267  N  9.13  M  22  1  1  0  

30  126  P  6.23  M  19  1  0.3  0  

31  20  P  7.04  F  40  1.4  0.5  0  

32  313  N  6.32  M  38  1  0.9  0.1  

33  212  P  9.12  M  47  1.5  0.2  0  

34  122  P  7.15  M  32  1.7  1.2  0.1  

35  42  N  5.21  M  44  1.3  1.3  0.3  
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36  35  N  7.24  M  20  4.2  1.3  0.3  

37  23  N  7.24  F  37  1.1  0.8  0.2  

38  73  N  5.58  M  23  1.4  1.2  0.3  

39  46  N  6.09  F  38  0.8  0.3  0.8  

40  310  N  7.61  M  34  4  0.4  0.1  

41  76  N  7.14  M  46  0.6  0  0.1  

42  362  P  4.31  M  32  2.6  0.7  0  

43  211  N  7.54  M  33  1  0.6  0.1  

44  79  N  6.23  F  52  3.7  0.2  0  

45  140  N  5.38  M  40  12.4  1.1  0  

46  170  P  5.42  M  27  7.8  0.5  0  

47  35  P  6.34  M  26  4  2  0  

48  120  P  5.49  M  29  3.6  3.3  0  

49  278  P  5.83  M  40  4.9  2.3  0.3  

50  40  P  5.87  M  25  0.9  1.5  0  

51  46  P  7.38  M  18  2.1  1.1  0.3  

52  80  P  7.24  F  27  5.6  0.9  0  

53  423  P  5.63  M  33  2.5  0.8  0.2  

54  43  P  7.23  M  18  4.7  3.9  0.2  

55  86  P  7.42  M  30  2.8  0.9  0.3  

56  47  P  7.86  M  41  0.9  0.9  0.1  

57  42  P  6.1  M  28  0.7  0.6  0  
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The Journal of Immunology

IL-2–Engineered nano-APC Effectively Activates Viral
Antigen-Mediated T Cell Responses from Chronic Hepatitis B
Virus-Infected Patients

Mengya Liu,*,†,1 Tizong Miao,†,1 Haoxiang Zhu,‡ Alistair L. J. Symonds,† Li Li,†

Anna Schurich,x Mala K. Maini,x Jiming Zhang,‡ Patrick T. F. Kennedy,† Suling Li,* and

Ping Wang†

Impaired function of virus-specific T cells resulting from virus persistence is one of the major mechanisms underlying the devel-

opment of chronic hepatitis B viral infection. Previously, we found that IL-2 can restore the effector function of T cells rendered

tolerant by Ag persistence. However, systemic administration of IL-2 induces organ pathology and expansion of T regulatory cells.

In this study, we show that nano-APC with engineered HLA alleles and IL-2 deliver peptide–MHC complexes, costimulatory

molecules, and IL-2 to Ag-responding T cells, resulting in enhanced expression of CD25 and activation of TCR signaling pathways,

while suppressing PD-1 expression on viral-responding CD8 T cells from chronic hepatitis B virus patients. The enhanced

activation of CD4 and CD8 T cells induced by IL-2–nano-APC was Ag dependent and IL-2–nano-APC did not affect T regulatory

cells. At a size of 500 nm, the nano-APC effectively induce immune synapse formation on Ag-specific T cells and accumulate as

free particles in the lymphoid organs. These attributes of IL-2–nano-APC or other bioadjuvant-engineered nano-APC have

profound implications for their use as a therapeutic strategy in the treatment of chronic hepatitis B virus infection or other

chronic viral diseases. The Journal of Immunology, 2012, 188: 1534–1543.

H
epatitis B virus (HBV) is a noncytopathic hepadnavirus
that can cause acute and chronic hepatitis (1). Approx-
imately 350 million people worldwide are chronically

infected with HBV, which greatly increases the risk of hepato-
cellular carcinoma and causes .1 million deaths annually (1).
Despite recent advances in the development of immunotherapies
for chronic HBV infection, effective induction of virus-specific
T cell activation in persistent HBV infections remains a chal-
lenge (2). One of the major problems for the development of
therapeutic vaccines for chronic HBV infection is the functional
defects in T cells resulting from continual stimulation of these
T cells by persistent viral Ags (3, 4). The functional properties lost
by the antiviral T cells can range from the failure to produce ef-

fector cytokines, such as IL-2, TNF-a and IFN-g, to complete
deficiency in cytokine production and proliferation ability, in ad-
dition to a reduction in virus-specific T cell populations (4). These
deficiencies are due to both cell intrinsic and extrinsic mecha-
nisms, including the expression of inhibitory receptors, such as
CTLA4 and PD-1; regulatory cytokines, such as IL-10; and pos-
sibly increased numbers of T regulatory (Treg) cells (4–6). The
unresponsiveness of virus-specific T cells has been found to be
a generic mechanism partly responsible for chronic HIV, HBV,
and hepatitis C virus (HCV) infections (5), suggesting that the
induction of T cell tolerance is due to persistent engagement of
T cells with viral Ags, rather than the function of specific viral
molecules. Therapeutic interventions to counter the effects of
T cell tolerance, and overcome the immunosuppressive environ-
ment resulting from high viral Ag load, have aimed to boost T cell
responses via administration of defined Ags in combination with
blocking Abs to IL-10 or PD-1 or with cytokines enhancing T cell
activation, such as IL-2 and IL-7 (7–9). Recently, downregulation
of TCR-proximal signaling pathways was found in T cells from
chronic HBV patients (3, 10), compelling support for the notion
that persistent Ag engagement is at least one of the mechanisms
for the induction of virus-specific T cell tolerance. Ag-induced
immune tolerance has been well studied in many animal models
(11). After repeated Ag stimulation, effector T cells become tol-
erant (12). We found that tolerance is not due to loss of Ag-specific
T cells, but rather downregulation of proximal TCR signaling
pathways following Ag stimulation (13, 14), which resembles the
findings from chronic viral infections (4). We found that an in-
crease in the amount of Ag presented by activated dendritic cells
(DC) cannot reverse tolerance (13). However, addition of IL-2 can
effectively overcome tolerance and restore the full activation of
T cells in response to Ag stimulation (13). It has been found that
liver sinusoidal endothelial cells can induce tolerance of HBV-
specific CD8 T cells through interaction between B7-H1 on liver
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sinusoidal endothelial cells and programmed cell death-1 on CD8
T cells, and such tolerance can be effectively overcome by IL-2
(15). IL-2 has been used as a bioadjuvant to overcome the low
immunogenicity of therapeutic vaccines for the treatment of can-
cer and chronic infectious diseases (16, 17). Although IL-2 is
a potent activator of memory and effector T cells, systemic ad-
ministration of high doses of IL-2 not only induces severe side
effects, but may also promote Treg function, which can further
increase the activation threshold of Ag-specific T cells (16).
To use IL-2 to overcome the T cell exhaustion induced in chronic

HBV infection while avoiding the side effects of systemic ad-
ministration, we have now developed a novel therapeutic vaccine
(nano-APC) that delivers Ag and IL-2 to Ag-responding T cells, but
has little effect on bystander T cells. The nano-APC are prepared
from the endoplasmic reticulum (ER) membranes of a MHC-
deficient human B cell line, 721.221 (18), which expresses high
levels of costimulatory molecules and genetically engineered ER-
retained MHC I alleles and IL-2 constructs. After assembly with
antigenic peptide in vitro, the nano-APC directly interact with Ag-
specific T cells and induce formation of immune synapses and
expression of the high-affinity IL-2R on T cells. The IL-2 delivered
by nano-APC enhanced T cell responses and effector function, but
did not affect bystander T cells or Treg cells. When assembled with
a pool of HLA-A2–associated HBV peptides and HBV peptides
associated with HLA-DR and DP, IL-2–nano-APC induced strong
CD4 and CD8 T cell responses in peripheral lymphocytes from
chronic HBV patients. Our results demonstrate that IL-2–nano-
APC, which deliver both Ag and IL-2 to Ag-responding T cells,
can significantly increase functional antiviral responses, thereby
overcoming the immune tolerance induced by persistent viral load.

Materials and Methods
Mice and cell lines

OTI transgenic mice on the C57BL/6 background were provided by
D. Kioussis (Medical Research Council, National Institute for Medical
Research, London, U.K.). All CD8 T cells in OTI mice carry same TCR
recognizing OVA residues 257–264 in the context of H2Kb (19). C57BL/6
mice were purchased from Harlan UK (Oxon, U.K.). All animals were
maintained in pathogen-free facilities at the Brunel University. The DC2.4
DC line was provided by D. Mann (Southampton, U.K.). The 721.221 cells
have been described in our previous reports (20). CTLL4 was provided by
G. Stockinger (National Institute of Medical Research, London, U.K.). All
lines were cultured in RPMI 1640 with 10% FBS (Invitrogen).

Abs, flow cytometry, and confocal microscopy

FITC-conjugated Abs to CD54 and CD80 were from EuroBioSciences,
and FITC-conjugated streptavidin, and PE-conjugated Abs to pERK, PD-1,
HLA A2, W6/32, Foxp3, FITC-conjugated CD4, FITC-conjugated CD19,
allophycocyanin-conjugated CD8, and PEcy5-conjugated IFN-g were from
BD Biosciences. PE-conjugated A2-CMVnlvpentamer was from ProIm-
mune (Oxford, U.K.). Abs against tapasin and E3-19K retention signal
were described previously (21, 22). For all flow cytometry data, the median
fluorescence intensity from three experiments was presented. Isotype Abs
were used as background controls for all experiments. The side-scatter and
forward-scatter settings were the same for cells and microsomes. CD8
microbeads (Miltenyi Biotec) were used for isolation of CD8 T cells from
total splenocytes from OTI TCR transgenic mice, according to the manu-
facturer’s protocol. Goat anti-human IL-2; anti-human CD3; W6/32, spe-
cific to human MHC I; and MA2.1, specific to HLA A2, Abs were used for
immune staining of cells and nano-APC. Texas Red-labeled rabbit anti-
goat Ig and FITC-labeled goat anti-mouse Ig secondary Abs were used, and
samples were analyzed by confocal microscopy (ZEISS LSM 510).

Peptides, peptide modification, and binding assay

Peptides were synthesized by Invitrogen and purified to .95% purity. The
ε-amino group of the lysine in the influenza-A matrix protein (MP), M58–
64G58YF62K (YILGKVFTL) peptide was synthesized by Invitrogen and
was covalently modified by a photoreactive cross-linker and labeled with
iodination (125I), as described previously (23). The N termini of the

HBV peptides, HBV Env 180–195 AGFFLLTRILTIPQS, Env 339–354
LVPFVQWFVGLSPTV, and Pol 767–782 AANWILRGTSFVYVP (24),
were synthesized by Invitrogen, and labeled and purified with a FITC-
labeling kit (Pierce). For the HLA-A2–binding assay, 2 nM modified
MP peptides was incubated with IL-2–A2–nano-APC in the absence or
presence of unlabeled competing peptides, HBV C18-27 FLPSDFFPSV,
HBV envelope 183–191 FLLTRILTI, 335–343 WLSLLVPFV, 338–347
LLVPFVQWFV, 348–357 GLSPTVWLSV, CMV pp65 matrix protein epi-
tope NLVPMVATV, and MP, at various concentrations, as described previ-
ously. HBV peptides were described in previous publication (10). CMV
NLVPMVATV and OVA SIINFEKL peptides were synthesized by Invi-
trogen. After the removal of free peptides, HLA-A2was precipitated with the
W6/32 Ab, and the binding was measured by detection of radioactivity using
a gamma counter (Beckman). For the DR/DP-binding peptides (synthesized
by Invitrogen), HBV Env 180–195 AGFFLLTRILTIPQS, Env 339–354
LVPFVQWFVGLSPTV, and Pol 767–782 AANWILRGTSFVYVP (24), 20
nM FITC-labeled peptides were incubated with IL-2–A2–nano-APC in
acidic condition (23). After removal of free peptides, samples were ana-
lyzed by flow cytometry. The binding specificity was confirmed by com-
petition assays using unlabeled peptides.

Preparation of nano-APC

To establish IL-2-A2-721.221 seed cells, IL-2-tapasin and HLA-A2-E3-19K
fusion constructs were constructed by PCR-cloning approaches. For IL-2-
tapasin, atapasin expression construct was modified by substitution of the
signal sequence (22) by a 23 GS linker (GGSG) (25) using PCR cloning.
Then, a PCR product containing the human IL-2 coding region was cloned
upstream of the GS linker to create IL-2-GS-tapasin. HLA-A2-E3-19K was
constructed by insertion of a 16-aa (LKYKSRRSFIDEKKMP) sequence
from the E3-19K protein (21) downstream of the C terminus of HLA-A2 in
a HLA-A2 expression construct (26). The constructs were transfected into
721.221 cells, as described in our previous publications (26). The seed cells
were expanded to yield a large volume of cells with .99% viability and
then used for preparation of nano-APC. The preparation of nano-APC was
a two-step process, consisting of preparation of ER-enriched microsomes
and processing of nano-particles. Microsomes from cells were prepared
and purified, as described in our previous publication (23). Briefly, cells
were washed and resuspended in homogenization buffer. After homoge-
nization, tonicity was restored to 0.15 M NaCl. The nuclei, mitochondria,
and larger cell debris were removed by centrifugation at 10,000 3 g. Total
microsomes were recovered by centrifugation at 100,000 3 g and sub-
fractionated by flotation in sucrose gradients. The microsomes were lay-
ered on top of 5 ml 0.33 M sucrose, which was, in turn, layered on top of
a discontinuous sucrose gradient consisting of 2 ml 2 M and 1 ml 2.5 M
sucrose. Centrifugation in a TH-641 rotor for 16 h at 110,000 3 g at 4˚C
yielded a microsome band on top of the 2 M sucrose cushion, which was
collected and resuspended in rough microsomes (RM) buffer (250 mM
sucrose, 50 mM triethanolamine-HCl, 50 mM KOAc, 2 mM MgOAc2, and
1 mM DTT). The microsomes were further processed to homogenous
nano-particles by sequential homogenization using an Isobiotec cell ho-
mogenizer (Heidelberg) with a cutoff size between 6 and 4 mm. The ho-
mogenized particles were recovered by centrifugation in a TH-641 rotor for
24 h at 110,000 3 g at 4˚C and then resuspended in RM buffer at a con-
centration of ∼4 mg/ul. The nano-APC were stored at 280˚C until use.

Assembly of peptides with MHC molecules on nano-APC

The nano-APC in RMbuffer were first processed by a freeze-thaw procedure
(three cycles of 30 s in liquid nitrogen, followed by 5 min at 37˚C) three
times. For assembly of MHC I, the nano-APC were mixed with peptides at
1 mM concentration and human b2-microglobulin (5 mg/ml; M4890; Sigma-
Aldrich) under acidic conditions (0.26 M citric acid, 132 mM Na2HPO4,
2% BSA [pH 3]). The mixture was incubated for 5 min on ice, followed by
neutralization with 1 M Tris buffer (pH 7.5). The neutralized mixtures were
incubated for 30 min at 37˚C. Free peptides and reaction buffers were then
removed by washing through Amicon Ultra centrifugal filters with a cutoff
size of 3000 kDa (Millipore Amicon Ultra centrifugal filters). The loaded
nano-APC were resuspended in RM buffer at a 2 mg/ml concentration. For
MHC II loading, after the freeze-thaw process, the microsomes in RM
buffer were mixed with an equal volume of acidic buffer (0.26 M citric
acid, 132 mM Na2HPO4, 2% BSA [pH 3]) containing peptide at 1 mM
concentration or as indicated for 30 min at 37˚C. After loading, free
peptides were removed by washing through Amicon Ultra centrifugal fil-
ters. The assembled nano-APC were resuspended in RM buffer at 2 mg/ml.

Human study

Experimental subjects. Five CMV serum-converted healthy donors and 57
chronic HBV patients participated in this study. All subjects were HLA-A2
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positive. Informed consent was obtained, and the study was approved by the
local ethics committees at the twoparticipating clinics (EastLondon andCity
Research Ethics Committee for Barts and The London National Health
Service Trust, and Huashan Hospital Ethics Committee, Shanghai, China).
Of 57 chronic HBV patients, 47.4% were positive for hepatitis B e Ag
(HBeAg), whereas 18 had raised alanine aminotransferase (.50 IU/l) and
high HBVDNA (.106 IU/ml), as quantified by real-time PCR assay. Thirty-
one patients were HBeAg negative and positive for serum anti-hepatitis B e
Ab. All patients were negative for Abs to HCV, HIV-1, and HIV-2.

Isolation of PBMCs and in vitro stimulation. PBMCs were isolated from
fresh heparinized blood by Ficoll-Hypaque density gradient centrifugation
and resuspended in RPMI 1640 containing 10% heat-inactivated FBS
(Invitrogen). For some experiments, CD8-positive T cells were isolated with
anti-CD8–coated beads (Miltenyi Biotec). A total of 5 3 105/well PBMC
or CD8+ cells in 24-well plates was cocultured either with antigenic
peptide at a concentration of 5 mM (the same concentration used for as-
sembling MHC I on nano-APC) or 10 mg nano-APC for 5 d. Cells were
cultured with PBS, or anti-CD3–coated beads served as negative or posi-
tive controls. After 5 d, 20 nM PMA and ionomycin (Sigma-Aldrich) were
added together with GolgiStop (BD Biosciences) and cultured for 3 h.
Cells were then harvested and washed with cold PBS. After washing, cells
were first stained with surface markers, and then washed with PBS and
fixed for intracellular staining with selected Abs or isotype controls using
an intracellular staining kit (BD Biosciences), according to the manu-
facturer’s instructions. The stained cells were washed with PBS, and then
analyzed on a Canto II flow cytometry. The data were analyzed using
FlowJo (Tree Star).

Interaction of nano-APC and T cells, and in vivo distribution of
nano-APC in lymph nodes

The interaction between nano-APC and OTI cells was visualized by in-
cubation of 10 mg SIINFEKL–Kb–nano-APC or Kb–nano-APC, prepared
from CFSE-labeled DC2.4 cells, with 106 OTI cells in normal medium for
15 min. Free nano-APC were removed by low-speed centrifugation at 1000
3 g for 5 min and washing with cold PBC. Cells were then stained with
anti-CD3 Ab, followed by DAPI counterstaining. The samples were ana-
lyzed by confocal microscopy (ZEISS LSM 510).

For analysis of the distribution of nano-APC in lymph nodes, nano-APC
were prepared from CFSE-labeled mouse DC2.4 cells. An aliquot of 20 mg
peptide-loaded nano-APC or FITC-labeled dextran was injected into
C57BL/6 mice i.v. After 48 h, lymph nodes were isolated and processed to
single-cell suspensions. The samples were centrifuged at 1000 3 g for 5
min, and the pellet containing the cellular fraction was collected. Cell-free
particles were recovered from the supernatant by centrifugation through
a microfilter with a cutoff size of 3000 kDa (Millipore Amicon Ultra
centrifugal filters), which can recover both nano-APC and dextran. The
cellular and cell-free particles were stained with PE-labeled CD11c as
a DC marker and analyzed by FACS.

Statistics

Statistical comparisons were performed using the Student t test; unless
otherwise noted, data were presented as the means 6 SD of pooled data
from four to six independent experiments.

Results
IL-2–nano-APC

To reverse the impairment in viral-specific T cell function induced
by virus persistence (4), we developed IL-2–nano-APC with the
aim to deliver high doses of peptide MHC (pMHC), IL-2, and
costimulatory molecules directly to Ag-specific T cells. We se-
lected the HLA-I–deficient human B cell line 721.221 (18) as seed
cells for the nano-APC. The 721.221 cells express high levels of
costimulatory molecules (Fig. 1A) and HLA-DR and DP mole-
cules (18). We engineered ER-retained HLA-I alleles (in this
study, HLA-A2 was used) and IL-2 by transfecting HLA-A2–ER
retention signal, a 16-aa–long fragment from the C-terminal end
of E19 3K protein (21), and IL-2-tapasin, an ER-retained mem-
brane protein (20, 22), fusion constructs into the 721.221 cells.
The 16-aa ER-retention signal from E19 3K and tapasin effec-
tively retained the HLA-A2 and IL-2 fusion proteins in the ER
membranes, as shown by the ER-staining pattern with anti-A2 and

anti–IL-2 Abs (Fig. 1B). The engineered HLA-A2 and IL-2 did
not alter the expression of costimulatory molecules (data not
shown). The HLA-A2– and IL-2–expressing 721.221 cells were
used for preparation of nano-APC (IL-2–A2–nano-APC), as de-
scribed in Materials and Methods. The IL-2–A2–nano-APC were
of a largely homogenous size, ∼500 nm, and contained high levels
of HLA-A2, IL-2, and costimulatory molecules (Fig. 1B, 1C). The
IL-2–tapasin fusion protein retained IL-2 bioactivity, as demon-
strated by the proliferation of the IL-2–dependent CTLL4 cell line
in response to IL-2–A2–nano-APC (Fig. 2A). The pharmacologi-
cal activity of IL-2 on nano-APC was ∼2 IU/mg nano-APC (Fig.
2A). The activity of IL-2 on IL-2–A2–nano-APC was effectively
neutralized by IL-2–neutralizing Ab (Fig. 2B). Although the ac-
tivity is about 50 times lower than the ∼100 IU/1 mg rIL-2, the
IL-2 on nano-APC is immobilized, which may create an enriched
microenvironment for T cells that are specifically interacting
with nano-APC. This strategy can be applied to other cytokines or
bioactive proteins depending on the therapeutic aim. Previously,
we have demonstrated that ER membranes derived from APC
contain peptide-receptive MHC I and abundant costimulatory mol-
ecules, which can assemble with antigenic peptides and induce
protective immune responses (23). Consistent with this, the A2
molecules on IL-2–A2–nano-APC effectively assembled with A2-
binding peptides (Fig. 1D), as shown by reduced binding of known
A2 peptide MP58–64 to IL-2–A2–nano-APC after incubation to-
gether with CMVnlv peptide in a competition assay. We have also
developed a method for loading MHC II Ags onto purified ER
vesicles to assemble pMHC II (24). Analysis of the assembly of
HLA-DR molecules with peptide showed that HLA-DR–binding
peptides could effectively assemble with DR under acidic con-
ditions (Fig. 1E). Because MHC II molecules are much more
promiscuous than MHC I molecules in terms of selection of their
antigenic peptides, as most of the DR-associated peptides can also
bind to DP to certain degrees (27), we used the endogenous HLA-
DR and DP molecules from seed cells to assemble antigenic
pMHC class II complexes for activation of effector CD4 Th cells.
Thus, at a size of ∼500 nm, the IL-2–nano-APC are designed to
deliver pMHC, IL-2, and costimulatory molecules to T cells.

The IL-2 on IL-2–nano-APC enhances activation of
Ag-responding T cells, but does not affect bystander T cells

The IL-2–nano-APC are designed to deliver IL-2, Ag, and co-
stimulatory molecules to Ag-specific T cells. To investigate
whether the IL-2 on nano-APC can affect both Ag-specific and
bystander T cells, A2–nano-APC and IL-2–A2–nano-APC were
assembled with CMVnlv peptide to generate CMVnlvA2–nano-
APC and IL-2–CMVnlvA2–nano-APC, which were used to stim-
ulate CD8 T cells isolated from peripheral lymphocytes of CMV-
seropositive and HLA-A2–positive healthy donors. In contrast
to treatment with free 1 mM CMVnlv peptide, which induced low
CD8 T cell response, CMVnlvA2–nano-APC could induce de-
tectable Ag-specific CD8 responses (Fig. 3A). However, IL-2–
CMVnlvA2–nano-APC induced far stronger CD8 T cell responses
(Fig. 3A). These enhanced CD8 responses induced by IL-2–
CMVnlvA2–nano-APC could be effectively neutralized by anti–
IL-2 Ab (Fig. 3B). Although we analyzed IFN-g–producing
T cells after a 3-h restimulation with PMA and ionomycin, in the
absence of antigenic peptide, IL-2–A2–nano-APC did not induce
a T cell response, suggesting that the IFN-g–producing cells were
Ag-responding T cells (Fig. 3A). To further confirm the Ag-
dependent effect of IL-2, the IFN-g–producing cells were quan-
tified in CMVnlvtetramer+CD8+ cells in PBMC after stimulation.
Consistently, an enhanced response of Ag-specific CD8 T cells
was detected specifically after stimulation with IL-2–CMVnlvA2–
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nano-APC (Fig. 3C). We compared Ag-specific responses of CD8
T cells induced by IL-2–CMVnlvA2–nano-APC and CMVnlvA2–

nano-APC plus 20 IU/ml soluble IL-2. Although soluble IL-2 did
increase IFN-g–producing CD8 T cells, most of the IFN-g–pro-
ducing CD8 T cells in PBMC stimulated by CMVnlvA2–nano-
APC and soluble IL-2 were CMVnlvA2-tetramer negative (Fig.

3D). In contrast, IL-2–CMVnlvA2–nano-APC effectively induced
responses of CMVnlv-specific CD8 T cells (Fig. 3D). These results
demonstrate that the overall dose of IL-2 delivered by IL-2–

CMVnlvA2–nano-APC is not sufficient for a pharmacological ef-
fect on bystander T cells. We found that in the absence of Ag,
a minimum of 50 IU/ml IL-2 is required to induce any detectable
T cell response (data not shown), whereas the IL-2 dose equiva-

lent of 10 mg/ml IL-2–CMVnlvA2–nano-APC is ∼10 IU/ml. It is
known that IL-2 upregulates expression of CD25, the IL-2Ra
chain that is required for assembly of the high-affinity IL-2R

needed for IL-2 to induce T cell activation (28) on preactivated
T cells (28). Indeed, in addition to induction of high levels of CD8
T cell responses, IL-2–CMVnlvA2–nano-APC also induced CD25

expression on CMVnlvtetramer+CD8+ T cells (Fig. 3E). IL-2 is
also important for the maintenance and expansion of CD4+CD25+

Foxp3+Treg cells (28). However, we did not observe an increase in
the proportion of Foxp3+CD4+Treg cells in PBMCs after stimu-

lation with IL-2–A2–nano-APC (data not shown). These findings
suggest that nano-APC can selectively deliver IL-2, together with
pMHC and costimulatory molecules, to Ag-specific T cells.

IL-2–A2–nano-APC induce strong CD8 T cell responses in
peripheral lymphocytes from chronic HBV patients

Functional impairment of virus-specific T cells due to persistent
viral Ags is one of the important mechanisms leading to, and

maintaining, chronic HBV infection (3, 10). We previously found

that IL-2 can effectively reverse tolerance induced by Ag per-

sistence (13). T cells from chronic HBV patients show reduced

production of IL-2 in response to TCR ligation (4, 10), which is

consistent with the defective induction of IL-2 in T cells ren-

dered tolerant by persistent Ag stimulation (13). To investigate

whether IL-2–A2–nano-APC can enhance responses of virus-

specific CD8 T cells from chronic HBV patients, we developed

HBV-specific IL-2–HBVA2–nano-APC by assembling a pool

of five HBV peptides, which have been found to induce HBV-

specific CD8 T cell responses in A2-positive HBV patients

(10), with the A2 molecules on the IL-2–A2–nano-APC. We

found that the five HBV peptides had similar binding affinities

for A2, as measured by competition assays with a known A2-

binding peptide: a modified influenza MP peptide YILGKVFTL

(26) (Fig. 4A). Therefore, a pool containing equal amounts (5

mM) of each peptide was used for assembly of IL-2–HBVA2–

nano-APC and HBVA2–nano-APC. Peripheral lymphocytes from

57 HLA-A2–positive chronic HBV patients, with viral loads rang-

ing from 3 3 103 to 1013 IU/ml (Table I), were used to investi-

gate CD8 T cell responses. We detected low CD8 T cell responses,

FIGURE 2. Bioactivity of IL-2 on IL-2–A2–

nano-APC. The bioactivity of IL-2 was measured

by stimulation of the IL-2–dependent CTLL4 cell

line. A2–nano-APC and human rIL-2 served as

negative and positive control, respectively. A,

Dose-dependent induction of CTLL4 proliferation

by IL-2–A2–nano-APC. B, The activity of IL-2 on

IL-2–A2–nano-APC can be neutralized by anti–

IL-2 Ab.

FIGURE 1. Characterization of IL-2–A2–nano-APC assembled with MHC I and II peptides. A, 721.221 seed cells express the costimulatory molecules

CD80 and ICMA1. B, IL-2-A2-721.221 cells and IL-2–A2–nano-APC were stained with anti–IL-2 (red) and A2 (green). Nuclei were visualized by DAPI

counterstaining. C, Costimulatory molecules CD80 and ICMA-1 on IL-2–A2–nano-APC. D, Binding of A2-associated peptides. Binding of MP58–64 and

CMVnlv peptides to A2 in IL-2–A2–nano-APC was measured by competing with 125I-labeled MP58–64 peptides at the same 20 nM concentration. HBV Env

180–195 AGFFLLTRILTIPQS peptide served as control. E, Assembly of HLA-DR with HBV Env 180–195 AGFFLLTRILTIPQS on IL-2–A2–nano-APC.

Binding of HBV Env 180–195 to IL-2–A2–nano-APC was measured under different pH. Binding was measured by detection of FITC-labeled HBV Env 180–

195 on IL-2–A2–nano-APC after removal of excess peptides at the end of the binding reaction. PBS and addition of unlabeled peptide as controllers.
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as measured by the proportion of IFN-g–producing CD8 T cells,
after incubation with the pool of the five HBV peptides (Fig. 4B).

The HBVA2–nano-APC induced better responses in ∼50% of

patients (Fig. 4B, 4C, Supplemental Fig. 1, Supplemental Tables

1, 2). However, IL-2–HBVA2–nano-APC induced the strongest

responses, with lymphocytes from most patients showing a strong

CD8 T cell response (Fig. 4B, 4C, Supplemental Tables 1, 2).

The increased responses by IL-2–HBVA2–nano-APC were not

significantly related to viral load, HBVeAg, age, and sex (Sup-

plemental Tables 1, 2), suggesting that IL-2–HBVA2–nano-APC

improved effector function of viral-specific T cells rather than

induced immune responses of naive T cells. Consistently, IL-2–

A2–nano-APC, in the absence of antigenic peptide, did not in-

duce IFN-g production by CD8 T cells in any of the patient

samples (Fig. 4B). Furthermore, we could not detect an increase

in the proportion of Foxp3+CD4+ cells after stimulation with IL-

2–HBVA2–nano-APC or IL-2–A2–nano-APC (data not shown).

Thus, taken together with the induction of CMVnlv-specific CD8

T cell responses, we have demonstrated that the addition of IL-2

into nano-APC effectively enhanced the response of Ag-

responding T cells, which may be essential to overcome virus-

induced T cell tolerance and the tolerogenic environment in

chronic HBV patients.

IL-2–HBVA2–nano-APC improve TCR signaling and suppress
the expression of PD-1 on HBV-responding CD8 T cells from
chronic HBV patients

Evidence of T cell exhaustion has been found in both virus-specific
and nonspecific CD8 T cells in chronic HBV patients (3, 10).

Exhaustion induced by persistent antigenic stimulation effec-
tively increases the threshold for TCR activation in response to

Ag stimulation by suppressing TCR-proximal signaling pathways

(12, 13). In addition, expression of PD-1, an inhibitory costim-

ulatory molecule, was increased in CD8 T cells from chronic

HBV, HCV, and HIV patients (5, 29). To investigate whether

the enhanced CD8 T cell responses induced by IL-2–HBVA2–

nano-APC resulted from improved TCR signaling and/or reduced

expression of PD-1, we examined activation of ERK, which is

repressed in tolerant T cells (13), and the expression of PD-1

on IFN-g–producing CD8 T cells induced by either HBVA2–

nano-APC or IL-2–HBVA2–nano-APC. The results demonstrated

that the levels of ERK activation were enhanced in responding

CD8 T cells from chronic HBV patients stimulated with IL-2–

HBVA2–nano-APC compared with those stimulated by HBVA2–

nano-APC (Fig. 5), suggesting that IL-2 can antagonize T cell

tolerance by enhancing TCR-proximal signals. In addition to

increased TCR signaling, the expression of PD-1 was reduced on

IFN-g–producing CD8 T cells induced by IL-2–HBVA2–nano-

APC compared with those stimulated by HBVA2–nano-APC (Fig.

5). Although the cells were restimulated with PMA and iono-

mycin for 3 h before analysis, a similar level of pERK and PD-1

in IFN-g–negative T cells suggests that IL-2–HBVA2–nano-APC

improves TCR signaling and represses PD-1 expression on Ag-

responding T cells compared with HBVA2–nano-APC. These re-

sults suggest that IL-2 on nano-APC reduces the TCR activation

threshold and the expression of negative regulators in viral-

responding CD8 T cells, two important factors needed to over-

come T cell tolerance.

FIGURE 3. IL-2–nano-APC enhances the responses of Ag-responding CD8 T cells. A, PBMCs from three A2-positive and CMV-seropositive donors (A–

C) were incubated with 1 mM CMVnlv peptide, 10 mg/ml IL-2–CMVnlvA2–nano-APC, 10 mg/ml CMVnlvA2–nano-APC, or 10 mg/ml IL-2–A2–nano-APC

for 5 d. After restimulation with PMA and ionomycin for 3 h, cells were stained with anti-CD8 and anti–IFN-g. IFN-g–producing cells were measured after

gating on CD8 cells. B, Part of PBMC from donor C was incubated with 10 mg/ml IL-2–CMVnlvA2–nano-APC in the presence of IL-2 neutralization Ab. C,

PBMCs from donors A and C were incubated with 10 mg/ml CMVnlvA2–nano-APC, IL-2–CMVnlvA2–nano-APC, or IL-2–A2–nano-APC for 5 d. After

restimulation with PMA and ionomycin for 3 h, cells were stained with anti-CD8, anti–IFN-g, CD19, and CMVnlvpentamer. IFN-g–producing cells were

measured after gating on CMVnlvpentamer+CD8+CD192 cells. D, PBMCs of donor A were stimulated either with 10 mg/ml IL-2–CMVnlvA2–nano-APC

for 5 d or with 20 IU/ml IL-2 and 10 mg/ml CMVnlvA2–nano-APC for 3 d, and then restimulated with same doses of IL-2 for another 2 d. IFN-g–producing

and CMVnlvpentamer-positive cells were quantified on gated CD8 cells. E, PBMCs of donors A and C were stimulated with 10 mg/ml CMVnlvA2–nano-

APC, IL-2–CMVnlvA2–nano-APC, or IL-2–A2–nano-APC for 3 d. CD25+ cells were quantified after gating on CMVnlvpentamer+CD8+CD192 cells.
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IL-2–nano-APC increase CD4 T cell responses to viral Ags,
leading to stronger CD8 T cell responses

Like CD8 T cells, virus-specific CD4 T cells are functionally
defective in chronic HBV patients (4), consistent with our finding
that persistent antigenic stimulation can effectively induce CD4
T cell tolerance. It has been reported that CD4 helper function is
essential for the development and maintenance of CD8 T cell
effector function (30). Previously, we have demonstrated that
MHC II molecules in isolated ER vesicles can assemble with
antigenic peptides under acidic conditions (23). The 721.221 cells
are deficient in MHC I, but still express HLA-DR and DP mole-
cules (18). Three HBV peptides reported to bind to DR and/or DP
(24) were analyzed for their ability to assemble with nano-APC
from A2-721.221 and IL-2-A2-721.221 cells. Consistent with
previous findings (24), specific binding of all three peptides to
nano-APC was detected under acidic conditions (Fig. 6A). A pool
of the three peptides was assembled with DR and/or DP mole-
cules on either nano-APC or IL-2–nano-APC to create HBVDR/
DP–nano-APC or IL-2–HBVDR/DP–nano-APC, respectively.
Peptide alone did not induce IFN-g–producing CD4 T cells in
peripheral lymphocyte populations isolated from chronic HBV
patients (Fig. 6B, Supplemental Table 3). HBVDR/DP–nano-APC
induced a weak response in a few patient samples (Fig. 6B),
whereas significant CD4 T cell responses were induced in .50%

of patient samples treated with IL-2–HBVDR/DP–nano-APC (Fig.
6B, Supplemental Table 3). Again, we did not find an increased
proportion of Foxp3+CD4+ T cells in peripheral lymphocytes
from chronic HBV patients after culture with IL-2–HBVDR/
DP–nano-APC (data not shown). To investigate whether the in-
duced Th1 CD4 responses can enhance viral Ag-responding CD8
T cell responses, patient lymphocytes were stimulated with both
IL-2–HBVDR/DP–nano-APC and IL-2–HBVA2–nano-APC. The
results showed that the induction of Th1 CD4 T cells increased the
proportion of IFN-g–producing CD8 T cells in response to IL-2–
HBVA2–nano-APC (Fig. 6C), suggesting that CD4 responses are
indeed important for the expansion of effector CD8 T cells.
Therefore, the presence of IL-2 on nano-APC is important to drive
optimal CD4 and CD8 T cell responses against HBV in lympho-
cytes from chronic HBV patients.

nano-APC form stable interactions with Ag-specific T cells as
part of immune synapses

nano-APC are designed to directly deliver Ag, costimulatory, and
cytokine signals to Ag-specific T cells. Therefore, a sustained in-
teraction between nano-APC and Ag-specific T cells is essential for
the T cells to engage IL-2, or other engineered cytokines, effectively.
Previously, we have shown that ER vesicles containing pMHC
molecules, generated by assembly of the MHC on the vesicles with

FIGURE 4. HBV-specific CD8 T cell responses were induced by delivering IL-2 to viral-specific T cells. A, Five HBV peptides reported to induce HLA-

A2–restricted CD8 T cell responses in HBV patients (7) were analyzed for their ability to bind to HLA-A2 on IL-2–A2–nano-APC by a competition assay.

Different concentration of these peptides was used in a competition assay with a 125I-labeled A2-reporter MP peptide, and the percentage of reporter peptide

that failed to bind to A2 was measured. Due to their similar binding affinities, these five peptides were pooled at a concentration of 1 mM each, and used to

assemble HBVA2–nano-APC or IL-2–HBVA2–nano-APC. B, PBMCs from chronic HBV patients were incubated with the pool of five HBV peptides at

concentration of 1 mM each or 10 mg/ml IL-2–HBVA2–nano-APC, 10 mg/ml HBVA2–nano-APC, or IL-2–A2–nano-APC for 5 d. After restimulation with

PMA and ionomycin for 3 h, IFN-g–producing CD8 T cells were quantified after gating on CD8 cells. C, Percentages of IFN-g–producing CD8 T cells

induced in 57 A2-positive chronic HBV patients. The CD8 T cell responses induced by IL-2–HBVA2–nano-APC or HBVA2–nano-APC for each patient

were summarized in Supplemental Table 1.

Table I. Clinical characteristics of chronic HBV patients

Overall HBV
Queen Mary University

of London Shanghai

Number 57 20 37
Median age (range) 36 (17–69) 40 (17–69) 33 (18–52)
Sex (M:F ratio) % male (42:15) 73.7 (13:7) 65 (29:8) 78.4
Viral load (log; range) 6.35 (3.27–9.96) 5.94 (3.27–9.96) 6.57 (4.31–9.13)
Median alanine aminotransferase
(IU/l; range)

120.2 (20–430) 81.7 (30–211) 141 (20–430)

HBeAg status (% positive) 47.4 25 59.5
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peptide, can directly activate Ag-specific T cells in vitro (23). To
further investigate whether the interaction of nano-APC and Ag-
specific T cells can induce membrane clustering to form stable
immune synapses (31), we examined the interaction of nano-APC,
prepared from the murine DC cell line DC2.4 and assembled with
peptide to form SIINFEKL–Kb complexes, with SIINFEKL-Kb–
specific OTI T cells (23). An Ag-dependent interaction between
nano-APC and T cells induced changes in the TCR distribution on
the T cell membrane, leading to clustering of TCR complexes with
nano-APC to form synapses (Fig. 7A). The process resembles the
membrane processing observed at the contact point between live
DC and T cells (31). The nano-APC–associated synapses can
facilitate the recruitment of IL-2R into complexes with the T cell-
bound IL-2–nano-APC, thus bringing the IL-2R into lipid rafts,
which can sustain IL-2 activation in effector T cells (32). Thus,
nano-APC can fully substitute for live DC, inducing T cell acti-
vation and the formation of immune synapses; this creates a
stimulatory microenvironment allowing engagement of pMHC,

costimulatory molecules, and engineered bioadjuvants with their
respective receptors on Ag-specific T cells.

nano-APC are not endocytosed by DC in peripheral lymphoid
organs

Most reported nano-delivery systems for therapeutic vaccines rely
on endogenous DC in patients to process and present Ags to T cells
(33). However, the nano-APC, functionally equivalent to live DC,
act directly on Ag-specific T cells in vivo (23). Accumulation of
a pharmacokinetic dose of free nano-APC in DC-rich organs such
as lymph nodes and liver will be important to effectively induce
activation of Ag-specific T cells. Previously, we found that ER
membrane vesicles prepared from DC accumulated in the pe-
ripheral lymphoid organs and were not endocytosed by DC in vitro
(23). However, whether the nano-APC are endocytosed by DC in
lymphoid organs is not known. To investigate whether nano-APC
remain in lymphoid organs as free nano-particles, nano-APC pre-
pared from murine DC2.4 cells were labeled with fluorescence

FIGURE 5. Enhanced TCR signaling and reduced

expression of PD-1 on HBV-specific CD8 T cells.

PBMCs from three chronic HBV patients, which

showed weak responses to HBVA2–nano-APC, but

strong responses to IL-2–HBVA2–nano-APC, were

incubated with 10mg/ml IL-2–HBVA2–nano-APC or

HBVA2–nano-APC for 5 d. After restimulation with

PMA and ionomycin for 3 h, cells were stained with

anti-CD8, anti–IFN-g, anti–PD-1, and anti–phospho-

ERK. IFN-g–positive or IFN-g–negative CD8 T cells

were gated for analysis of PD-1 expression or ERK

phosphorylation.

FIGURE 6. CD4 Th function is important for the responses of HBV-specific CD8 T cells. A, Three HBV peptides reported to bind to DR and/or DP and

induce CD4 T cell responses in HBV patients (25) were examined for their ability to interact with DR and/or DP on nano-APC. A total of 100 nM of these

FITC-labeled peptides was incubated with 10 mg IL-2–A2–nano-APC under different pH. After removal of unbound peptides, binding to nano-APC was

assessed by flow cytometry. The specificity of binding was measured by addition of unlabeled peptide at a concentration of 500 nm. These three peptides

were pooled at 1 mM each used to assemble with DR and/or DP on nano-APC. B, Induction of IFN-g–producing CD4 T cells in PBMCs from chronic HBV

patients. PBMCs from indicated patients were incubated with 10 mg/ml IL-2–HBVDR/DP–nano-APC, HBVDR/DP–nano-APC, or IL-2–A2–nano-APC for

5 d. After restimulation with PMA and ionomycin for 3 h, IFN-g–producing CD4 T cells were quantified after gating CD4 cells. C, PBMCs from chronic

HBV patient were incubated with 20 mg/ml IL-2–HBVA2–nano-APC or 10 mg/ml IL-2–HBVA2–nano-APC and 10 mg/ml IL-2–HBVDR/DP–nano-APC

for 5 d. After restimulation with PMA and ionomycin, IFN-g–producing CD4 or CD8 cells were quantified after gating on CD4 or CD8 cells. The presented

data are from patient Q1 (Supplemental Table 1).
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and injected i.v. into B6 mice. After 48 h, the lymph nodes were
isolated and separated into cellular and cell-free fractions. The
cell-free fragments and DC from the lymph nodes were examined
for the presence of free and endocytosed nano-APC. In contrast to
the efficient endocytosis of dextran by DC in lymph nodes, the
nano-APC that accumulated in the lymph nodes remained as free
particles (Fig. 7B). To exclude the possibility that DC activation
is required for phagocytosis of the ER membrane vesicles, we
infected mice with a vaccinia virus to induce DC activation
5 d before injection of nano-APC. Similar levels of free nano-APC
were detected in lymph node samples from mice pretreated with
vaccinia and mice that had not received pretreatment (Fig. 7C),
indicating that the intracellular membrane vesicles from APC
were not effectively endocytosed by DC even with a concomitant
viral infection. The lack of endocytosis of nano-APC may be due
to failure of pattern recognition receptors, which enable the DC
to discriminate between normal physiological components and
pathological particles in vivo (34), to recognize the nano-APC.

Discussion
T cells are essential for the clearance of HBV postinfection (30).
Like most chronic viral infections, persistent HBV infection re-
sults in functional defects in virus-specific T cells largely due to
immune tolerance (unresponsiveness) induced by continual stim-
ulation by viral Ags and the tolerogenic environment induced by
HBV (4). The unresponsiveness of virus-specific T cells results
from downregulation of TCR signaling pathways and upregulation
of suppressive molecules such as PD-1 (5), tolerogenic mecha-
nisms common to many tolerance models induced by persistent
antigenic stimulation (12, 13). Although IL-2 is an important
cytokine in modulation for effective function of T cells and it is
required for the expansion of effector T cells and effector function
of memory T cells (28), application of IL-2 as a bioadjuvant
for immunotherapy is hampered by organ pathology induced by
therapeutic doses and the expansion of Treg cells, leading to the
suppression of effector T cells (28). By immobilizing IL-2 on
membrane nano-particles prepared from bioengineered APC, we
have shown that IL-2–nano-APC can potently induce effector
functions in virus-responding T cells, by providing an immuno-

stimulatory microenvironment to Ag-specific T cells and delivering
IL-2 to Ag-responding T cells, without the activation of bystander
T cells or organ pathology. The impaired T cell function in chronic
HBV infection resembles, in many respects, T cell tolerance in-
duced by Ag persistence (4, 12, 13). Indeed, studies have shown
that the proximal TCR signaling molecule CD3z is downregulated,
whereas the expression of the inhibitory molecule PD-1 is up-
regulated in CD8 T cells from chronic HBV patients (10). IL-2
on nano-APC is able to enhance TCR-proximal signaling and
downregulates PD-1 expression on virus-responding CD8 T cells
from chronic HBV patients, which could effectively reverse tol-
erance, as demonstrated by induction of IFN-g–producing CD8
T cells in lymphocytes from chronic HBV patients. In addition to
TCR signaling, MAPK activation can directly result from IL-2R
signaling (28). It has been found that the activation of MAPK and
PI3K through Shc recruited by the IL-2R is independent on STAT5
signaling in effector T cells, which differs from that in Treg cells,
and is important for the expansion of activated CD8 T cells (35).
We have demonstrated that nano-APC can induce CD25 expres-
sion and immune synapse formation, which not only execute the
function to induce T cell activation, but also bring engineered
bioadjuvant such as IL-2 stably into signalsomes of effector T cells
(36). The increased expression of CD25 on CMVAg-specific CD8
T cells by IL-2–CMVnlvA2–nano-APC is consistent with the well-
known observation that IL-2 can induce CD25 expression on
preactivated CD8 T cells. Thus, together with pMHC and co-
stimulatory molecules, the selective delivery of IL-2 is important
to induce activation of HBV-responding T cells from chronic HBV
patients. As the overall pharmacological dose remains low, the
IL-2–nano-APC do not activate Treg cells, indicating that this
approach can be adapted for use with other bioadjuvants.
Expression of PD-1 is low in memory CD8 T cells, but it is

upregulated in chronic viral infections; this leads to defects in
proliferation and production of effector cytokines, which facilitate
viral persistence (37). The enhancement of HBV-Ag–dependent
CD8 T cell effector function by IL-2–HBVA2–nano-APC was
associated with downregulation of PD-1, suggesting that the ex-
pression of PD-1 on T cells may be associated with impaired
function of those T cells. Indeed, PD-1 expression correlates with

FIGURE 7. Nano-APC induce immune synapse formation on Ag-specific T cells and remain as free particles in lymphoid organs in vivo. A, Kb–nano-

APC, prepared from murine DC2.4 cells, were labeled with FITC and assembled with or without SIINFEKL peptides. SIINFEKL-Kb–specific OTI CD8

T cells were incubated with SIINFEKL–Kb–nano-APC or Kb–nano-APC for 30 min. After removal of unbound nano-APC, cells were stained with anti-

CD3 Ab, counterstained with DAPI, and assessed for immune synapse formation by confocal microscopy. B, FITC-labeled dextran or DC2.4-derived nano-

APC was injected i.v. at 1 mg/kg to C57BL/6 mice. Forty-eight hours postinjection, lymph nodes were isolated and separated into cellular and cell-free

fractions. Both fractions were stained with anti-CD11c and then analyzed by flow cytometry. C, C57BL/6 mice were infected with vaccinia virus at dose of

2 3 105 PFU. Five days postinfection, FITC-labeled dextran or DC2.4-derived nano-APC were injected i.v. at 1 mg/kg. Forty-eight hours postinjection,

lymph nodes were isolated and the cell-free fraction was stained with anti-CD11c and analyzed by flow cytometry.
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viral load, declining CD4 count, and impaired function of CD8
T cells in HIV infection, and with CD8 T cell exhaustion in
chronic HCV infection (37).
The function of CD4 T cells is essential for an effective and long

lasting antiviral CD8 response and viral clearance (30). Persistent
viral infection can also induce CD4T cell tolerance viamechanisms
similar to those that induce CD8T cell tolerance (13).We found that
IL-2–HBVDR/DP–nano-APC induced strong CD4 T cell respon-
ses, which further enhanced the response of HBV-responding CD8
T cells to IL-2–HBVA2–nano-APC, in lymphocytes from chronic
HBV patients. However, in all the cases analyzed, the proportion
of CD4 cells that responded was lower than the proportion of
responding CD8 cells. This may be due to the fact that CD8 T cells
are more sensitive to IL-2 than CD4 T cells (28). Other possible
reasons are that the level of MHC II molecules expressed on nano-
APC prepared from 721.221 seed cells is lower than the level of
HLA-A2 (18) or that the pMHC II complexes, generated by as-
sembly with the selected HBV peptides, are not optimal for induc-
tion ofCD4T cell responses.We have developed effective screening
methods to define the binding affinity of peptides to MHC I or II
on nano-APC, which can be used to select optimal viral antigenic
peptides from viral peptide databases (23).
Nano-particles prepared from synthetic materials or genetically

engineered microbes have been used to deliver Ags to DC for in-
duction of antiviral or anticancer immune responses (33). In contrast
to these particles, nano-APC are prepared from the ER membranes
of bioengineered APC. Therefore, they are not only more biocom-
patible than synthetic nano-particles or microbars, but also deliver
therapeutic molecules that are physiologically synthesized by APC
seed cells. Thus, the IL-2 on IL-2–nano-APC is more stable than
free IL-2 in vivo, and maintains its physiological conformation,
allowing optimal interaction with the IL-2R (data not shown). Un-
like other nano-particle–based vaccines, nano-APC directly acti-
vate T cells. The nano-APC mimic live DC to induce lipid raft
clustering on T cells and formation of an immunological synapse,
which is essential for T cell activation. Furthermore, using HLA-
I–negative 721.221 cells as seed cells allows us to specifically
express selected HLA alleles, allowing construction of HLA allele-
matched nano-APC for individual patient populations.
Previously, we observed nano-APC homing to T cell areas of

peripheral lymphoid organs, largely due to the expression of
homing receptors by the cells from which the nano-APC are de-
rived (23). We have now further demonstrated that nano-APC are
not effectively endocytosed by DC in vivo, which is important, as
it allows the nano-APC to remain as free particles in peripheral
lymphoid organs. The absence of endocytosis may be due to the
lack of molecules on nano-APC recognized by DC pattern rec-
ognition molecules (34).
In chronic HBV infection, T cells are continuously confronted

with moderate to high levels of viral Ags (4), which, in combi-
nation with the induced immunosuppressive microenvironment
resulting from high viral load and dysregulated immune responses,
lead to the downregulation of T cell activation and, subsequently,
reduction of effector function (4). Therefore, one of the major
challenges for immunotherapy against chronic infectious diseases,
such as HBV, is the development of delivery vehicles targeting
Ag-specific T cells that provide not only Ag, but also designed
bioadjuvant(s) that can restore effector function. Our results
demonstrate that the ability to deliver bioadjuvant, as well as
pMHC, to virus-specific T cells, to generate specific nano-APC for
each individual HLA-shared patient group, and to directly activate
Ag-specific T cells are advantages of nano-APC over current nano-
particles used for immunotherapy of chronic HBV and other
chronic viral infections.
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Supplementary data Fig. 1. Summary of CD8 T cell responses from two clinical
studies of HLA A2 positive chronic HBV patients induced by HBVA2-nanoAPC or
IL-2-HBVA2-nanoAPC. Unstimualted PBMC from same patient served as
controls.
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Supplementary data Table 1. Patient characterization and CD8 T cell response
induced by nanoAPC for each patient from QM study.

Subject ALT HBeAg Viral load Sex Age IL-2M-I M-I Control 
Low viral 

load (IU/liter) (log) CD8+IFN�+(%) 
Q1 39 N 5.28 F 36 5.9 3.1 0.1
Q2 37 N 3.27 M 44 0.8 0.3 0.1
Q3 24 N 4.58 M 69 0.8 0.1 0
Q4 53 N 5.98 M 23 10.1 0.7 0.2
Q5 24 N 5.84 M 42 0.5 0.4 0
Q6 36 N 4.67 F 44 3.7 0.3 0.3
Q7 127 N 4.63 M 26 1.5 0.3 0.4
Q8 211 N 5.22 M 33 4.2 2.3 0.1
Q9 97 P 4.05 F 56 0.3 0.1 0
Q10 206 N 5.27 M 51 16.1 5.4 0.2
Q11 79 N 5.58 M 52 0.5 0.3 0
Q12 44 N 5.11 M 42 0.7 0.3 0
Q13 83 N 4.49 M 57 0 0 0

Average  81.54 P/N=1/12 4.92 F/M=3/10 44.23
High viral 

load
Q14 32 P 7.99 F 35 0.1 0 0
Q15 65 N 7.14 F 58 7.3 0.2 0.2
Q16 30 P 7.45 M 17 0.1 0 0.1
Q17 45 P 7.31 M 18 12.3 3 0.3
Q18 202 N 8.37 F 27 0.1 0.1 0
Q19 31 P 9.96 M 28 4.5 0.5 0.1
Q20 169 N 6.65 F 36 14.2 6.2 0.2

Average  82 P/N=4/3 7.84 F/M=4/3 31.29
Total 

Average  81.7 P/N=5/15 5.94 F/M=7/13 39.7
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Supplementary data Table 2. Patient characterization and CD8 T cell response
induced by nanoAPC for each patient from Shanghai study.

Subject ALT HBeAg Viral load Sex Age IL-2M-I M-I Control 
Low viral 

load (IU/liter) (log) CD8+IFN�+ (%) 
F1 430 P 4.68 M 33 11.4 4.5 0.3
F2 121 N 5.79 M 37 1.7 1.4 0.1
F3 42 N 5.21 M 44 1.3 1.3 0.3
F4 73 N 5.58 M 23 1.4 1.2 0.3
F5 362 P 4.31 M 32 2.6 0.7 0
F6 140 N 5.38 M 40 12.4 1.1 0
F7 170 P 5.42 M 27 7.8 0.5 0
F8 120 P 5.49 M 29 3.6 3.3 0
F9 278 P 5.83 M 40 4.9 2.3 0.3

F10 40 P 5.87 M 25 0.9 1.5 0
F11 423 P 5.63 M 33 2.5 0.8 0.2

Average 199.91 P/N=7/4 5.38 F/M=0/11 33
High viral 

load
F1 2 135 P 7.23 F 52 0.5 0.3 0
F13 110 P 7.54 M 22 4 2.5 0.1
F14 143 N 7.03 F 32 3.5 2 0.1
F15 188 N 6.13 M 19 1.8 1.6 0
F16 194 P 7.05 F 41 3.5 1.5 0.1
F17 267 N 9.13 M 22 1 1 0
F18 126 P 6.23 M 19 1 0.3 0
F19 20 P 7.04 F 40 1.4 0.5 0
F20 313 N 6.32 M 38 1 0.9 0.1
F21 212 P 9.12 M 47 1.5 0.2 0
F22 122 P 7.15 M 32 1.7 1.2 0.1
F23 35 N 7.24 M 20 4.2 1.3 0.3
F24 23 N 7.24 F 37 1.1 0.8 0.2
F25 46 N 6.09 F 38 0.8 0.3 0.8
F26 310 N 7.61 M 34 4 0.4 0.1
F27 76 N 7.14 M 46 0.6 0 0.1
F28 211 N 7.54 M 33 1 0.6 0.1
F29 79 N 6.23 F 52 3.7 0.2 0
F30 35 P 6.34 M 26 4 2 0
F31 46 P 7.38 M 18 2.1 1.1 0.3
F32 80 P 7.24 F 27 5.6 0.9 0
F33 43 P 7.23 M 18 4.7 3.9 0.2
F34 86 P 7.42 M 30 2.8 0.9 0.3
F35 47 P 7.86 M 41 0.9 0.9 0.1
F36 42 P 6.1 M 28 0.7 0.6 0
F37 140 P 6.5 M 32 0.3 0.1 0

Average 120.35 P/N=15/11 7.12 F/M=8/18 32.46
Total

Average 141.11 P/N=22/15 6.61 F/M=8/29 32.64
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Subject ALT HBeAg 
Viral 
load Sex Age IL-2M-II M-II Control 

Low viral 
load (IU/liter) (log) CD4+IFN�+ (%) 
Q1 39 N 5.28 F 36 2.6 0.5 0
Q3 24 N 4.58 M 69 1.4 0.2 0.1
Q5 24 N 5.84 M 42 1.9 0.5 0
Q9 97 P 4.05 F 56 4.6 2.2 0.1
F4 73 N 5.58 M 23 0.9 0.8 0
F5 362 P 4.31 M 32 0.6 0.2 0
F8 120 P 5.49 M 29 0.9 0.6 0.1
F10 40 P 5.87 M 25 1.7 0.3 0

Average 97.38 P/N=4/4 5.13 F/M=2/6 39
High viral 

load
Q19  31 P 9.96 M 28 4.3 0.8 0.4
F12 135 P  7.23 F 52 0.6 0.2 0.2
F13 110 P 7.54 M 22 3.6 1.5 0
F14 143 N 7.03 F 32 5.6 2.9 0.1
F18 126 P 6.23 M 19 0.9 0.2 0
F19 20 P 7.04 F 40 1 0.3 0
F20 313 N 6.32 M 38 0.7 0.6 0
F21 212 P 9.12 M 47 0.5 0.2 0
F23 35 N 7.24 M 20 1.9 0.5 0.1
F24 23 N 7.24 F 37 0.5 0.3 0
F25 46 N 6.09 F 38 0.7 0.1 0.1
F26 310 N 7.61 M 34 3.9 1.9 0.2
F27 76 N 7.14 M 46 0.3 0.5 0.1
F28 211 N 7.54 M 33 2.7 3 0.2
F29 79 N 6.23 F 52 1.4 1.7 0
F30 35 P 6.34 M 26 0.8 0.1 0.1
F31 46 P 7.38 M 18 3.4 3.2 0
F35 47 P 7.86 M 41 2.9 2.7 0.3
F36 42 P 6.1 M 28 3.5 2.4 0.1
F37 140 P 6.5 M 32 0.1 0.1 0

Average 109 P/N=11/9 7.19 F/M=6/14 34.15
Total

Average 108.15 P/N=15/13 6.65 F/M=8/20 35.52

Supplementary data Table 3. Patient characterization and CD4 T cell response
induced by nanoAPC for each patient included in this study.
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