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H∞ State Estimation for Discrete-Time Complex
Networks with Randomly Occurring Sensor

Saturations and Randomly Varying Sensor Delays
Derui Ding, Zidong Wang, Bo Shen and Huisheng Shu

Abstract—In this paper, the state estimation problem is in-
vestigated for a class of discrete time-delay nonlinear complex
networks with randomly occurring phenomena from the sensor
measurements. The randomly occurring phenomena include ran-
domly occurring sensor saturations (ROSSs) and randomly vary-
ing sensor delays (RVSDs) that result typically from networked
environments. A novel sensor model is proposed to describe the
ROSSs and the RVSDs within a unified framework via two
sets of Bernoulli distributed white sequences with known con-
ditional probabilities. Rather than the commonly used Lipschitz-
type function, a more general sector-like nonlinear function is
employed to describe the nonlinearities existing in the network.
The purpose of the addressed problem is to design a state
estimator to estimate the network states through available output
measurements such that, for all probabilistic sensor saturations
and sensor delays, the dynamics of the estimation error is
guaranteed to be exponentially mean-square stable and the effect
from the exogenous disturbances to the estimation accuracy is
attenuated at a given level by means of an H∞-norm. In terms
of a novel Lyapunov-Krasovskii functional and the Kronecker
product, sufficient conditions are established under which the
addressed state estimation problem is recast as solving a convex
optimization problem via the semi-definite programme method.
A simulation example is provided to show the usefulness of the
proposed state estimation conditions.

Index Terms—Complex networks; state estimation; randomly
occurring sensor saturations; randomly varying sensor delays

I. INTRODUCTION

Complex networks are everywhere. Many phenomena in
nature can be modeled as coupled networks such as brain
structures, protein-protein interactions, social interactions, the
Internet and the World Wide Web. All such networks can be
represented in terms of nodes, edges and coupling strengths
indicating complex connections between the nodes. Typical
complex networks that have been thoroughly investigated
include communication networks, social networks, electrical
power grids, cellular and metabolic networks and the internet.
Random graphs are known to be able to describe the large-
scale networks with no explicit design principles, so the early
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study on complex networks has been the territory of graph
theory since the seminal work in [6], [7]. Recently, due to
the discovery of the “small-world” and “scale-free” properties
[3], [30], the dynamical behaviors of complex networks have
attracted an ever increasing research interest from a variety of
communities such as mathematicians, statisticians, computer
scientists and control engineers. As a result, a number of
dynamics analysis issues have been extensively investigated
for complex networks such as the stability and stabilization,
synchronization, pinning control and spread mechanism, see
e.g. [1], [2], [4], [8], [10], [12], [14], [17], [18], [20], [21],
[23]–[26], [29], [31], [34], [35] and the references therein.

In the past decade, special attention has been focused on the
stability and synchronization problems of various complex net-
works. Generally speaking, there are mainly two approaches
that shed insightful lights on the stability and synchronization
phenomenon in various real-world complex networks. The first
one is the matrix eigenvalue analysis method that has been
widely applied (see e.g. [14], [20], [21], [25], [26], [34]) for
pinning control or impulsive control problems. For example,
in [14], the important concept of virtual control has been pro-
posed to show, in a nice way, that the pinned nodes “virtually”
control other dynamical nodes through coupling and eventually
lead to the synchronization of the whole network. The other
approach is the linear matrix inequality (LMI) technology that
has recently been adopted (see e.g. [5], [8], [10], [13], [16],
[17], [35]) for complex networks with or without time-delays.
For instance, in [5], the relationship between the stability
of the whole network and the stability of its corresponding
subsystems has been discussed, and the special decentralized
control strategy has been employed to derive some necessary
and sufficient conditions for the stability and stabilizability
for linear networks. Furthermore, in [16], one of the first
few attempts has been made to address the synchronization
problem for stochastic discrete-time complex networks with
time delays.

The vast literature on stability and synchronization problems
of complex networks has implicitly assumed that the states of
the complex networks under investigation are fully accessible.
This is, unfortunately, not always the case in practice. For
example, as a typical example of complex networks, the
wireless sensor networks exhibit complicated coupling be-
tween the sensor nodes as well as network-induced phenomena
such as random packet dropouts, random sensor saturations
and random sensor communication delays. These phenomena,
together with the large scale of the networks, often give rise
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to the unavailability of part of the sensors, i.e., only partial
information from the sensor measurements is available. In
this case, it becomes necessary to estimate the states of the
nodes through partial but available measurements, and then
use the estimated node states to carry out specified tasks such
as dynamics analysis and synchronization control. The state
estimation problem for various complex networks has recently
drawn particular research attention, see e.g. [11], [16], [22].
For instance, in [16], by using a novel Lyapunov-Krasovskii
functional and the Kronecker product, the state estimation
problem has been studied for an array of discrete-time complex
networks with the simultaneous presence of both the discrete
and distributed time delays. Very recently, the state estimation
problem over a finite-horizon has been investigated in [22]
for a class of time-varying complex networks in terms of a
new concept called H∞-synchronization, and the estimator
gain has been obtained by utilizing the recursive linear matrix
inequalities (RLMIs).

For the purpose of estimating the network states in reality,
the available measurement outputs are collected from all
sensor that are then processed to minimize the effects from
the possible noise and various kinds of incomplete information
such as the missing measurement and communication delays.
It is now well known that sensors cannot provide signals of
unlimited amplitude due primarily to the physical or tech-
nological constraints. This phenomenon is referred to as the
sensor saturation. Saturation brings in nonlinear characteristics
that can severely restrict the application of traditional estimator
design schemes. Specifically, this kind of characteristics not
only degrades the estimation performance that can be achieved
without saturation, it may also lead to undesirable oscillatory
or even unstable behavior. Because of the practical importance
of sensor saturations, much attention has been focused on
the filtering and control problems for systems with sensor
saturation [9], [32]. In most existing literature, the saturation
is actually assumed to occur definitely. Such an assumption is,
however, not always true. For example, in a network environ-
ment, the sensor saturations may occur in a probabilistic way
and the saturation level may be randomly changeable as well.
This is mainly due to the random occurrence of networked-
induced phenomena such as random sensor failures leading to
intermittent saturation, sensor aging resulting in changeable
saturation level, sudden environment changes, etc. Such a
phenomenon of sensor saturation, namely, randomly occurring
sensor saturation (ROSS), has been largely overlooked in the
area due probably to the difficulty in mathematical analysis.
The main motivation of the present research is, therefore,
to investigate how the ROSS phenomenon influences the
performance of state estimation for complex networks.

In addition to the appearance of ROSSs, the sensor measure-
ment delay serves another common phenomenon that occurs
in a random way especially when the sensors are connected
via communication networks. Sensor delays may be induced
by a variety of reasons such as an asynchronous time-division-
multiplexed network, intermittent sensor failures, and random
congestion of packet transmissions, etc. Such a phenomenon
is customarily referred to as the randomly varying sensor
delays (RVSDs), see [33] and [27] for more details. In many

cases, the RVSDs are a source of instability and performance
deterioration of a complex network equipped with a large
number of sensors. One of the most popular ways to describe
the RVSDs is to use a Bernoulli distributed (binary switch-
ing) white sequence specified by a conditional probability
distribution in the sensor output. This approach has first been
proposed in [19] to deal with the optimal recursive estimation
problem. Recently, it has been utilized in [27] for filtering
problems and in [15] for control designs. Obviously, to reflect
the network reality, it makes practical sense to consider both
the ROSSs and RVSDs where their occurrence probabilities
can be estimated via statistical tests. Up to now, to the best of
the authors’ knowledge, the estimation problem for complex
networks with both the ROSSs and RVSDs remains an open
yet challenging issue, and the main purpose of this paper to
shorten such a gap. It is worth pointing out that the main
difficulty lies in how to establish a unified framework to
account for the two phenomena of ROSSs and RVSDs.

Summarizing the above discussions, the focus of this paper
is on the state estimation problem for a class of discrete time-
delay complex networks with randomly occurring phenom-
ena including ROSSs and RVSDs that result typically from
networked environments. Two sets of Bernoulli distributed
white sequences with known conditional probabilities are
introduced to describe the ROSSs and the RVSDs within a
unified framework. A general sector-like nonlinear function
is employed to describe the inherently nonlinear nature of
the complex networks. By employing the Lyapunov stability
theory combined with the stochastic analysis approach, a
delay-dependent criterion is established that guarantees the
existence of the desired estimator gains, and then the explicit
expression of such estimator gains is characterized in terms of
the solution to a convex optimization problem via the semi-
definite programme method. Moreover, a simulation example
is provided to show the effectiveness of the proposed estimator
design scheme. The main contribution of this paper is mainly
twofold: 1) A novel sensor model is established to account for
both the ROSSs and RVSDs in a unified framework; and 2)
based on this sensor model, the estimator design approach is
proposed to ensure that the error dynamics is exponentially
mean-square stable and the H∞ performance constraint is
satisfied.

The rest of this paper is organized as follows. In Section II, a
class of discrete time-delayed complex networks with both the
ROSSs and RVSDs are presented. In Section III, by employing
the Lyapunov stability theory, some sufficient conditions are
established in the form of LMI and then the explicit expression
of the estimator gains is given. In Section IV, an example
is presented to demonstrate the effectiveness of the results
obtained. Finally, conclusions are drawn in Section V.

Notation The notation used here is fairly standard except
where otherwise stated. Rn and Rn×m denote, respectively,
the n dimensional Euclidean space and the set of all n ×m
real matrices. The set of all positive integers is denoted by N.
l2([0,∞); Rn) is the space of square-summable n-dimensional
vector functions over [0,∞). I denotes the identity matrix of
compatible dimension. The notation X ≥ Y (respectively,
X > Y ) where X and Y are symmetric matrices, means
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that X − Y is positive semi-definite (respectively, positive
definite). MT represents the transpose of M . Sym{A} denotes
the symmetric matrix A + AT . For a matrix A ∈ Rn×n,
λmax(A) and λmin(A) denote the maximum and minimum
eigenvalue of A, respectively. E{x} stands for the expectation
of stochastic variable x. ||x|| describes the Euclidean norm of
a vector x. The shorthand diag{M1,M2, · · · ,Mn} denotes a
block diagonal matrix with diagonal blocks being the matrices
M1, ...,Mn. The symbol ⊗ denotes the Kronecker product. In
symmetric block matrices, the symbol ∗ is used as an ellipsis
for terms induced by symmetry.

II. PROBLEM FORMULATION AND PRELIMINARIES

Consider the following array of discrete time-delayed com-
plex networks consisting of N coupled nodes:

xi(k + 1) =f(xi(k)) + g(xi(k − τ(k)))

+
N∑

j=1

wijΓxj(k) + Liv1(k),

zi(k) =Mxi(k),
xi(s) =ψi(s),∀s ∈ [−τ̄M , 0], i = 1, 2, · · · , N,

(1)

where xi(k) ∈ Rn is the state vector of the ith node, zi(k) ∈
Rr is the output of the ith node, and v1(k) is the disturbance
input belonging to l2([0,∞); Rq). Γ = diag{r1, r2, · · · , rn}
is the matrix linking the jth state variable if rj ̸= 0, and
W = (wij)N×N is the coupled configuration matrix of the
network with wij ≥ 0 (i ̸= j) but not all zero. Li and M are
constant matrices with appropriate dimensions, and ψi(s) is a
given initial condition sequence.

The positive integer τ(k) describes the known time-varying
delay satisfying 0 < τ̄m ≤ τ(k) ≤ τ̄M , where τ̄m and τ̄M
are known positive integers representing the minimum and
maximum delays, respectively. The nonlinear vector-valued
functions f and g : Rn 7→ Rn are assumed to be continuous
and satisfy f(0) = 0, g(0) = 0 and the following sector-
bounded conditions

[f(x) − f(y) − ϕf
1 (x− y)]T [f(x) − f(y) − ϕf

2 (x− y)] ≤ 0,

[g(x) − g(y) − ϕg
1(x− y)]T [g(x) − g(y) − ϕg

2(x− y)] ≤ 0,
(2)

for all x, y ∈ Rn, where ϕf
1 , ϕf

2 , ϕg
1 and ϕg

2 are real matrices
of appropriate dimensions.

In this paper, the N sensors with both saturations and delays
are modeled by

yi(k) =βi(k)[αi(k)ϱ(Cxi(k)) + (1 − αi(k))Cxi(k)]
+ (1 − βi(k))[αi(k)ϱ(Cxi(k − d))
+ (1 − αi(k))Cxi(k − d)] +Giv2(k),
i = 1, 2, · · · , N,

(3)

where yi(k) ∈ Rm is the measurement output of the node i,
v2(k) is the disturbance input which belongs to l2([0,∞); Rp),
the sensor delay d is a scalar satisfying 0 < d ≤ τ̄M , and
Gi, C are known matrices with appropriate dimensions. The
saturation function ϱ : Rm 7→ Rm is defined as

ϱ(x) =
[
ϱ(x1) ϱ(x2) · · · ϱ(xm)

]T
, (4)

where xi is the ith element of the vector x and ϱ(xi) =
sign(xi)min{1, |xi|}. Here, the notation of “sign” denotes
the signum function. Later, we will slightly abuse the no-
tation by using ϱ to denote both the scalar valued and the
vector valued saturation functions. Note that, without loss of
generality, the saturation level is taken as unity. The variables
αi(k) and βi(k) (i = 1, 2, · · · , N) are Bernoulli distributed
white sequences taking values on 0 and 1 with the following
probabilities:{

Prob{αi
k = 1} = αi

Prob{αi
k = 0} = 1 − αi

and
{

Prob{βi
k = 1} = βi

Prob{βi
k = 0} = 1 − βi

where αi, βi ∈ [0, 1] are known constants. Throughout the
paper, the stochastic variables αi(k) and βi(k) are mutually
independent in all i.

Remark 1: As is well known, in an abstract model for
complex networks, the nodes in the same cluster usually
possess the same attributes or properties. For example, in a
homogeneous sensor network, the sensor nodes are typically
identical in terms of battery energy and hardware complexity.
An interesting topic for complex networks is to examine how
the nodes interact each other to form rich dynamics through
links according to a given topology dynamics. Therefore, it is
reasonable to assume that the nodes’ information is collected
by means of the same type of measurements. Moreover, with-
out loss of generality, the disturbances in measurements are
set to be same. In the case of different kinds of disturbances,
similar results can be obtained readily by using an augmented
method.

Remark 2: Note that, the zero-row-sum property of the
configuration matrix W is quite important for many traditional
methods to deal with the dynamics analysis issues of com-
plex networks. By assuming the zero-row-sum property, the
eigenvalue-based matrix analysis methods could be employed
to construct the difference of signals, see e.g [14], [16], [20]–
[23], [25], [26], [34] for more details. These methods, however,
are no longer valid for the problem addressed in this paper
because of the sensor saturation phenomenon. One of the main
contributions of this paper would be the development of a new
methodology to deal with the phenomenon of both ROSSs and
RVSDs without requiring the zero-row-sum property.

Remark 3: The measurement model proposed in (3) pro-
vides a novel unified framework to account for the phe-
nomenon of both ROSSs and RVSDs. The stochastic variable
αi(k) characterizes the random nature of sensor saturation
while the stochastic variable βi(k) is used to describe the phe-
nomenon of the probabilistic sensor delay. By combining these
two stochastic variables, model (3) represents the following
four different phenomena: a) when βi(k) = 1 and αi(k) = 0,
sensor i works normally; b) when βi(k) = 1 and αi(k) = 1,
model (3) is reduced to yi(k) = ϱ(Cxi(k)) which means that
the measurements received by sensor i are saturated; c) when
βi(k) = 0 and αi(k) = 0, it can be seen from model (3) that
the measurements at previous d time-instant are employed by
estimator i instead of the one at current time-instant; and d)
when βi(k) = 0 and αi(k) = 1, model (3) implies that the
measurements are not only delayed but also saturated before
they enter into the estimator i. In addition, it is easy to observe
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that the time-delay in the measurements takes random values
as “0” when βi(k) = 1 and “d” when βi(k) = 0. Such kind
of phenomenon is referred to as the randomly varying delays.

Based on the measurement yi(k), we construct the following
state estimator for node i:


x̂i(k + 1) =f(x̂i(k)) + g(x̂i(k − τ(k)))

+Ki(yi(k) − Cx̂i(k)),
ẑi(k) =Mx̂i(k),
x̂i(s) =0, ∀s ∈ [−τ̄M , 0], i = 1, 2, · · · , N,

(5)

where x̂i(k) ∈ Rn is the estimate of the state xi(k), ẑi(k) ∈
Rr is the estimate of the output zi(k), and Ki ∈ Rn×m is the
estimator gain matrix to be designed.

For the purpose of simplicity, we introduce the following
notations:

xk = [ xT
1 (k) xT

2 (k) · · · xT
N (k) ]T ,

x̂k = [ x̂T
1 (k) x̂T

2 (k) · · · x̂T
N (k) ]T ,

zk = [ zT
1 (k) zT

2 (k) · · · zT
N (k) ]T ,

ẑk = [ ẑT
1 (k) ẑT

2 (k) · · · ẑT
N (k) ]T , z̃k = zk − ẑk,

vk = [ vT
1 (k) vT

2 (k) ]T , τk = τ(k), ek = xk − x̂k,

f(xk) = [ fT (x1(k)) fT (x2(k)) · · · fT (xN (k)) ]T ,

g(xk) = [ gT (x1(k)) gT (x2(k)) · · · gT (xN (k)) ]T ,

ϱ⃗(C̃xk) = [ ϱT (Cx1(k)) ϱT (Cx2(k)) · · · ϱT (CxN (k)) ]T ,

f̃k = f(xk) − f(x̂k), g̃k = g(xk) − g(x̂k),

K = diag{K1,K2, · · · ,KN}, C̃ = I ⊗ C,

L = [ LT
1 LT

2 · · · LT
N ]T , L̃ = [ L −KG ],

G = [ GT
1 GT

2 · · · GT
N ]T , M̃ = I ⊗M,

Ei = diag{0, · · · , 0︸ ︷︷ ︸
i−1

, I, 0, · · · , 0︸ ︷︷ ︸
N−i

}.

By using the Kronecker product, the error dynamics of
the state estimation can be obtained from (1), (3) and (5) as
follows:



ek+1 = f̃k + g̃k−τk
−KC̃ek + (W ⊗ Γ +KC̃)xk

+L̃vk −K

(
N∑

i=1

αi(k)βi(k)Eiϱ⃗(C̃xk)

+
N∑

i=1

(1 − αi(k))βi(k)EiC̃xk

+
N∑

i=1

αi(k)(1 − βi(k))Eiϱ⃗(C̃xk−d)

+
N∑

i=1

(1 − αi(k))(1 − βi(k))EiC̃xk−d

)
,

z̃k = M̃ek.
(6)

Then, by setting ηk = [ xT
k eT

k ]T , we have the following

augmented system

ηk+1 = W1ηk + W2ηk−d + f⃗k + g⃗k−τk

+Hα̃Λϱ⃗(C̃Sηk) + Hυ̃Λϱ⃗(C̃Sηk−d)
+

∑N
i=1(α̃

i
k − α̃i)Giϱ⃗(C̃Sηk)

+
∑N

i=1(β̃
i
k − β̃i)GiC̃Sηk

+
∑N

i=1(υ̃
i
k − υ̃i)Giϱ⃗(C̃Sηk−d)

+
∑N

i=1(ϑ̃
i
k − ϑ̃i)GiC̃Sηk−d + Lvk,

z̃k = Mηk,
ηi = [ψT

1 (i), ψT
2 (i), · · · , ψT

N (i), ψT
1 (i), ψT

2 (i),
· · · , ψT

N (i)]T ,∀i ∈ [−τ̄M , 0]

(7)

where

f⃗k = [ fT (xk) f̃T
k ]T , g⃗k = [ gT (xk) g̃T

k ]T ,

α̃i
k = αi(k)βi(k), υ̃i

k = αi(k)(1 − βi(k)),

β̃i
k = (1 − αi(k))βi(k), ϑ̃i

k = (1 − αi(k))(1 − βi(k)),

α̃i = αiβi, α̃Λ = diag{α̃1I, α̃2I, · · · , α̃NI},
β̃i = βi(1 − αi), β̃Λ = diag{β̃1I, β̃2I, · · · , β̃NI},
υ̃i = αi(1 − βi), υ̃Λ = diag{υ̃1I, υ̃2I, · · · , υ̃NI},
ϑ̃i = (1 − αi)(1 − βi), ϑ̃Λ = diag{ϑ̃1I, ϑ̃2I, · · · , ϑ̃NI},
H = [ 0 −KT ]T , Gi = [ 0 −ET

i K
T ]T ,

M = [ 0 M̃ ], S = [ I 0 ],

W1 =
[

W ⊗ Γ 0
W ⊗ Γ +K(I − β̃Λ)C̃ −KC̃

]
,

W2 =
[

0 0
−Kϑ̃ΛC̃ 0

]
, L =

[
L 0
L −KG

]
.

As analyzed in [32], [36], the saturation function ϱ⃗(C̃Sηk)
satisfies

[ϱ⃗(C̃Sη) − (I ⊗ Λ)C̃Sη]T [ϱ⃗(C̃Sη) − C̃Sη] ≤ 0, (8)

where Λ = diag{θ1, θ2, · · · , θm} and 0 ≤ Λ ≤ I . Also, it
follows from (2) that

[ f⃗k − (I ⊗ ϕf
1 )ηk ]T [ f⃗k − (I ⊗ ϕf

2 )ηk ] ≤ 0,
[ g⃗k − (I ⊗ ϕg

1)ηk ]T [ g⃗k − (I ⊗ ϕg
2)ηk ] ≤ 0.

(9)

Definition 1: [28] The augmented system (7) with vk = 0
is said to be exponentially mean-square stable if there exist
constants ε > 0 and 0 < ~ < 1 such that

E{||ηk||2} ≤ ε~k max
i∈[−τ̄M , 0]

E{||ηi||2}, k ∈ N.

The purpose of this paper is to design a set of state
estimators of form (5) for the complex networks (1) with the
sensor model (3) containing both ROSSs and RVSDs. More
specifically, we are interested in looking for the parameters
Ki (i = 1, 2, · · · , N) such that the following requirements
are met simultaneously:

a) The zero-solution of the augmented system (7) with vk =
0 is exponentially mean-square stable.

b) Under the zero-initial condition, for a given disturbance
attenuation level γ > 0 and all nonzero vk, the output error
z̃k satisfies

1
N

∞∑
k=0

E{||z̃k||2} ≤ γ2
∞∑

k=0

||vk||2. (10)
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Remark 4: In terms of (6) and (10), it can be seen that the
value of E{||z̃k||2} would become larger as the number of
the nodes increases. Theoretically, the disturbance attenuation
level γ for the overall network should account for the average
disturbance rejection performance that is insensitive to the
change of the number of the nodes in the estimator design.
For this purpose, the term of 1/N is used to accommodate the
average H∞ index over the complex network so that the scalar
γ reflects the practical significance of the H∞ disturbance
rejection level.

III. MAIN RESULTS

In this section, the stability and the H∞ performance are
analyzed for the augmented system (7). A sufficient condi-
tion is given to guarantee that the augmented system (7) is
exponentially mean-square stable and the H∞ performance
is achieved for all probabilistic sensor saturations and sensor
delays. Then, the explicit expression of the desired estimator
gains is proposed in terms of the solution to certain matrix
inequalities derived according to the obtained condition.

Theorem 1: Let the estimator parameters Ki (i =
1, 2, · · · , N) and the diagonal matrix Λ be given. The zero-
solution of the augmented system (7) with vk = 0 is ex-
ponentially mean-square stable if there exist positive defi-
nite matrices Qi (i = 1, 2, · · · , 6) and positive scalars λj

(j = 1, 2, · · · , 4) satisfying

Π1 =



Ξ11 WT
1 P1W2 0 Ξ14

∗ Ξ22 0 WT
2 P1

∗ ∗ Ξ33 0
∗ ∗ ∗ Ξ44

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

WT
1 P1 Ξ16 WT

1 P1Hυ̃Λ

WT
2 P1 WT

2 P1Hα̃Λ Ξ27

λ2Φ
gT
2 0 0

P1 P1Hα̃Λ P1Hυ̃Λ

Ξ55 P1Hα̃Λ P1Hυ̃Λ

∗ Ξ66 Ξ67

∗ ∗ Ξ77


< 0,

(11)

where

β̃∗
i =βi(1 − αi)[1 − βi(1 − αi)],

ϑ̃∗i =(1 − αi)(1 − βi)[1 − (1 − αi)(1 − βi)],
υ̃∗i =αi(1 − βi)[1 − αi(1 − βi)], α̃∗

i = αiβi(1 − αiβi),

χα̃ϑ̃
i =χβ̃υ̃

i = αiβi(1 − αi)(1 − βi),

χα̃β̃
i =αiβ

2
i (1 − αi), χβ̃ϑ̃

i = βi(1 − αi)2(1 − βi),

χα̃υ̃
i =α2

iβi(1 − βi), χυ̃ϑ̃
i = αi(1 − αi)(1 − βi)2,

Φf
1 =I ⊗ Sym{1

2
ϕfT

1 ϕf
2}, Φf

2 = I ⊗ (ϕf
1 + ϕf

2 )/2,

Φg
1 =I ⊗ Sym{1

2
ϕgT

1 ϕg
2}, Φg

2 = I ⊗ (ϕg
1 + ϕg

2)/2,

P1 =diag{I ⊗Q1, I ⊗Q2}, Ξ33 = −P3 − λ2Φ
g
1,

P2 =diag{I ⊗Q3, I ⊗Q4}, Ξ44 = P1 − λ1I

P3 =diag{I ⊗Q5, I ⊗Q6}, Ξ55 = P1 − λ2I,

Ξ11 =WT
1 P1W1 − P1 + P2 + (τ̄M − τ̄m + 1)P3

− λ1Φ
f
1 − λ3ST C̃T (I ⊗ Λ)C̃S

+
N∑

i=1

(β̃∗
i + χα̃β̃

i + χβ̃υ̃
i + χβ̃ϑ̃

i )ST C̃TGT
i P1GiC̃S,

Ξ14 =WT
1 P1 + λ1Φ

fT
2 , Ξ67 = α̃ΛTHTP1Hυ̃Λ,

Ξ16 =WT
1 P1Hα̃Λ + λ3ST C̃T (I ⊗ Λ + I)/2,

Ξ22 =WT
2 P1W2 − P2 − λ4ST C̃T (I ⊗ Λ)C̃S

+
N∑

i=1

(ϑ̃∗i + χα̃ϑ̃
i + χβ̃ϑ̃

i + χυ̃ϑ̃
i )ST C̃TGT

i P1GiC̃S,

Ξ27 =WT
2 P1Hυ̃Λ + λ4ST C̃T (I ⊗ Λ + I)/2,

Ξ66 =α̃ΛTHTP1Hα̃Λ − λ3I

+
N∑

i=1

(α̃∗
i + χα̃β̃

i + χα̃υ̃
i + χα̃ϑ̃

i )GT
i P1Gi,

Ξ77 =υ̃ΛTHTP1Hυ̃Λ − λ4I

+
N∑

i=1

(υ̃∗i + χα̃υ̃
i + χβ̃υ̃

i + χυ̃ϑ̃
i )GT

i P1Gi.

Proof: Construct the following Lyapunov function for
system (7):

V (k) = V1(k) + V2(k) + V3(k), (12)

where

V1(k) = ηkP1ηk +
k−1∑

i=k−d

ηiP2ηi,

V2(k) =
k−1∑

i=k−τk

ηiP3ηi, V3(k) =
k−τ̄m∑

j=k−τ̄M+1

k−1∑
i=j

ηiP3ηi.

Calculating the difference of V1(k) along the trajectory
of system (7) with vk = 0 and taking the mathematical
expectation, we have
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E{∆V1(k)} = E{V1(k + 1) − V1(k)}
= E{ηk+1P1ηk+1 − ηkP1ηk + ηkP2ηk − ηk−dP2ηk−d}
= E

{
ηT

k WT
1 P1W1ηk + ηT

k−dWT
2 P1W2ηk−d

+ f⃗T
k P1f⃗k + g⃗T

k−τk
P1g⃗k−τk

+ ϱ⃗T (C̃Sηk)α̃ΛTHTP1Hα̃Λϱ⃗(C̃Sηk)

+ ϱ⃗T (C̃Sηk−d)υ̃ΛTHTP1Hυ̃Λϱ⃗(C̃Sηk−d)

+
∑N

i=1
α̃∗

i ϱ⃗
T (C̃Sηk)GT

i P1Giϱ⃗(C̃Sηk)

+
∑N

i=1
β̃∗

i η
T
k ST C̃TGT

i P1GiC̃Sηk

+
∑N

i=1
υ̃∗i ϱ⃗

T (C̃Sηk−d)GT
i P1Giϱ⃗(C̃Sηk−d)

+
∑N

i=1
ϑ̃∗i η

T
k−dST C̃TGT

i P1GiC̃Sηk−d

+ 2ηT
k WT

1 P1W2ηk−d + 2ηT
k WT

1 P1f⃗k

+ 2ηT
k WT

1 P1g⃗k−τk
+ 2ηT

k WT
1 P1Hα̃Λϱ⃗(C̃Sηk)

+ 2ηT
k WT

1 P1Hυ̃Λϱ⃗(C̃Sηk−d) + 2ηT
k−dWT

2 P1f⃗k

+ 2ηT
k−dWT

2 P1g⃗k−τk
+ 2ηT

k−dWT
2 P1Hα̃Λϱ⃗(C̃Sηk)

+ 2ηT
k−dWT

2 P1Hυ̃Λϱ⃗(C̃Sηk−d) + 2f⃗T
k P1g⃗k−τk

+ 2f⃗T
k P1Hα̃Λϱ⃗(C̃Sηk) + 2f⃗T

k P1Hυ̃Λϱ⃗(C̃Sηk−d)

+ 2g⃗T
k−τk

P1Hα̃Λϱ⃗(C̃Sηk)

+ 2g⃗T
k−τk

P1Hυ̃Λϱ⃗(C̃Sηk−d)

+ 2ϱ⃗T (C̃Sηk)α̃ΛTHTP1Hυ̃Λϱ⃗(C̃Sηk−d)

− 2
∑N

i=1
χα̃β̃

i ϱ⃗T (C̃Sηk)GT
i P1GiC̃Sηk

− 2
∑N

i=1
χα̃υ̃

i ϱ⃗T (C̃Sηk)GT
i P1Giϱ⃗(C̃Sηk−d)

− 2
∑N

i=1
χα̃ϑ̃

i ϱ⃗T (C̃Sηk)GT
i P1GiC̃Sηk−d

− 2
∑N

i=1
χβ̃υ̃

i ηT
k ST C̃TGT

i P1Giϱ⃗(C̃Sηk−d)

− 2
∑N

i=1
χβ̃ϑ̃

i ηT
k ST C̃TGT

i P1GiC̃Sηk−d

− 2
∑N

i=1
χυ̃ϑ̃

i ϱ⃗T (C̃Sηk−d)GT
i P1GiC̃Sηk−d

−ηkP1ηk + ηkP2ηk − ηk−dP2ηk−d} .
(13)

Similarly, we can derive

E{∆V2(k)} = E{V2(k + 1) − V2(k)}

= E

{
k∑

i=k−τk+1+1

ηiP3ηi −
k−1∑

i=k−τk

ηiP3ηi

}
= E {ηkP3ηk − ηk−τk

P3ηk−τk

+
k−1∑

i=k−τk+1+1

ηiP3ηi −
k−1∑

i=k−τk+1

ηiP3ηi

}

= E

{
ηkP3ηk − ηk−τk

P3ηk−τk
+

k−1∑
i=k−τ̄m+1

ηiP3ηi

+
k−τ̄m∑

i=k−τk+1+1

ηiP3ηi −
k−1∑

i=k−τk+1

ηiP3ηi

}

≤ E

{
ηkP3ηk − ηk−τk

P3ηk−τk
+

k−τ̄m∑
i=k−τ̄M+1

ηiP3ηi

}
.

(14)

E{∆V3(k)} = E{V3(k + 1) − V3(k)}

= E

{
k−τ̄m+1∑

j=k−τ̄M+2

k∑
i=j

ηiP3ηi −
k−τ̄m∑

j=k−τ̄M+1

k−1∑
i=j

ηiP3ηi

}

= E

{
k−τ̄m∑

j=k−τ̄M+1

k∑
i=j+1

ηiP3ηi −
k−τ̄m∑

j=k−τ̄M+1

k−1∑
i=j

ηiP3ηi

}

= E

{
k−τ̄m∑

j=k−τ̄M+1

(ηkP3ηk − ηjP3ηj)

}

= E

{
(τ̄M − τ̄m)ηkP3ηk −

k−τ̄m∑
i=k−τ̄M+1

ηiP3ηi

}
.

(15)

From the elementary inequality 2aT b ≤ aTa + bT b, it is
straightforward to see that

−2ϱ⃗T (C̃Sηk)GT
i P1GiC̃Sηk

≤ϱ⃗T (C̃Sηk)GT
i P1Giϱ⃗(C̃Sηk) + ηT

k ST G̃T
i P1GiC̃Sηk, (16)

−2ϱ⃗T (C̃Sηk)GT
i P1Giϱ⃗(C̃Sηk−d)

≤ϱ⃗T (C̃Sηk)GT
i P1Giϱ⃗(C̃Sηk)

+ ϱ⃗T (C̃Sηk−d)GT
i P1Giϱ⃗(C̃Sηk−d), (17)

−2ϱ⃗T (C̃Sηk)GT
i P1GiC̃Sηk−d

≤ϱ⃗T (C̃Sηk)GT
i P1Giϱ⃗(C̃Sηk)

+ ηT
k−dST C̃TGT

i P1GiC̃Sηk−d, (18)

−2ηT
k ST C̃TGT

i P1Giϱ⃗(C̃Sηk−d)

≤ηT
k ST C̃TGT

i P1GiC̃Sηk

+ ϱ⃗T (C̃Sηk−d)GT
i P1Giϱ⃗(C̃Sηk−d), (19)

−2ηT
k ST C̃TGT

i P1GiC̃Sηk−d

≤ηT
k ST C̃TGT

i P1GiC̃Sηk

+ ηT
k−dST C̃TGT

i P1GiC̃Sηk−d, (20)

−2ϱ⃗T (C̃Sηk−d)GT
i P1GiC̃Sηk−d

≤ϱ⃗T (C̃Sηk−d)GT
i P1Giϱ⃗(C̃Sηk−d)

+ ηT
k−dST C̃TGT

i P1GiC̃Sηk−d. (21)

Furthermore, in terms of (13)-(21), we can obtain

E{∆V (ηk)} =E{V (k + 1) − V (k)}

=
3∑

i=1

E{∆Vi(k)} ≤ E{ξT
k Π̃1ξk},

(22)

where

ξk =
[
ηT

k ηT
k−d ηT

k−τk
f⃗T

k

g⃗k−τk
ϱ⃗T (C̃Sηk) ϱ⃗T (C̃Sηk−d)

]T
,

Ξ̃11 = WT
1 P1W1 − P1 + P2 + (τ̄M − τ̄m + 1)P3

+
∑N

i=1(β̃
∗
i + χα̃β̃

i + χβ̃υ̃
i + χβ̃ϑ̃

i )ST C̃TGT
i P1GiC̃S,

Ξ̃22 = WT
2 P1W2 − P2

+
∑N

i=1(ϑ̃
∗
i + χα̃ϑ̃

i + χβ̃ϑ̃
i + χυ̃ϑ̃

i )ST C̃TGT
i P1GiC̃S,

Ξ̃66 = α̃ΛTHTP1Hα̃Λ

+
∑N

i=1(α̃
∗
i + χα̃β̃

i + χα̃υ̃
i + χα̃ϑ̃

i )GT
i P1Gi,

Ξ̃77 = υ̃ΛTHTP1Hυ̃Λ

+
∑N

i=1(υ̃
∗
i + χα̃υ̃

i + χβ̃υ̃
i + χυ̃ϑ̃

i )GT
i P1Gi,
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Π̃1 =



Ξ̃11 WT
1 P1W2 0 WT

1 P1

∗ Ξ̃22 0 WT
2 P1

∗ ∗ −P3 0
∗ ∗ ∗ P1

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

WT
1 P1 WT

1 P1Hα̃Λ WT
1 P1Hυ̃Λ

WT
2 P1 WT

2 P1Hα̃Λ WT
2 P1Hυ̃Λ

0 0 0
P1 P1Hα̃Λ P1Hυ̃Λ

P1 P1Hα̃Λ P1Hυ̃Λ

∗ Ξ̃66 α̃ΛTHTP1Hυ̃Λ

∗ ∗ Ξ̃77


.

Subsequently, from (8) and (9), it follows that

E{∆V (ηk)}

≤E
{
ξT
k Π̃1ξk − λ1[f⃗k − (I ⊗ ϕf

1 )ηk]T [f⃗k − (I ⊗ ϕf
2 )ηk]

− λ2 [⃗gk−τk
− (I ⊗ ϕg

1)ηk−τk
]T [⃗gk−τk

− (I ⊗ ϕg
2)ηk−τk

]

− λ3[ϱ⃗(C̃Sηk) − (I ⊗ Λ)C̃Sηk]T [ϱ⃗(C̃Sηk) − C̃Sηk]

− λ4[ϱ⃗(C̃Sηk−d) − (I ⊗ Λ)C̃Sηk−d]T

×[ϱ⃗(C̃Sηk−d) − C̃Sηk−d]
}

≤E{ξT
k Π1ξk}.

(23)

Since Π1 < 0, there must exist a sufficiently small scalar
ε0 > 0 such that

Π1 + ε0diag{I, 0} < 0. (24)

Then, it is easy to see from (23) and (24) that the following
inequality holds:

E{∆V (ηk)} ≤ −ε0E{||ηk||2}. (25)

On the other hand, according to the definition of V (k), one
derives

E{V (k)} ≤ρ1E{||ηk||2} + ρ2

k−1∑
i=k−τ̄M

E{||ηi||2}

+ ρ3

k−1∑
i=k−τ̄M

E{||ηi||2},

(26)

where ρ1 = λmax(P1), ρ2 = λmax(P2) and ρ3 = (τ̄M − τ̄m +
1)λmax(P3).

For any scalar µ > 1, together with (12), the above
inequality implies that

µk+1E{V (k + 1)} − µkE{V (k)}
= µk+1E{∆V (k)} + µk(µ− 1)E{V (k)}
≤ [(µ− 1)ρ1 − µε0]µkE{||ηk||2}

+ (µ− 1)(ρ2 + ρ3)
k−1∑

i=k−τ̄M

µkE{||ηi||2}

(27)

Then, along the similar line of proof of Theorem 1 in [26],
we can achieve

µkE{V (k)} ≤ E{V (0)} + (ω1(µ) + ω2(µ))
k−1∑
i=0

µiE{||ηi||2}

+ ω2(µ)
∑

−τ̄M≤i≤0

E{||ηi||2},

(28)

where ω1(µ) = (µ − 1)ρ1 − µε0, ω2(µ) = τ̄Mµτ̄M (µ − 1)
(ρ2 + ρ3).

Let ρ0 = λmin(P1) and ρ = max{ρ1, ρ2, ρ3}. It is obvious
from (12) that

E{V (k)} ≥ ρ0E{||ηk||2}. (29)

Meanwhile, it follows easily from (26) that

E{V (0)} ≤ ρ(2τ̄M + 1) max
−τ̄M≤i≤0

E{||ηi||2}. (30)

In addition, it can be verified that there exists a scalar µ0 > 1
such that

ω1(µ0) + ω2(µ0) = 0. (31)

Therefore,it is not difficult to see from (28), (30), (31) that

µk
0E{V (k)} ≤ ρ(2τ̄M + 1) max

−τ̄M≤i≤0
E{||ηi||2}

+ ω2(µ0)
∑

−τ̄M≤i≤0

E{||ηi||2},
(32)

And then, it is obvious from (29) and (32) that

E{||ηk||2}

≤
(

1
µ0

)k
ρ(2τ̄M + 1) + τ̄Mω2(µ0)

ρ0
max

−τ̄M≤i≤0
E{||ηi||2}.

(33)

According to Definition 1, the augmented system (7) with
vk = 0 is exponentially mean-square stable, which completes
the proof.

Now, let us consider the H∞ performance of the overall
estimation process. In the following theorem, a sufficient con-
dition is obtained that guarantees both the exponential mean-
square stability and the H∞ performance for the augmented
system (7).

Theorem 2: Let the disturbance attenuation level γ > 0,
the estimator parameters Ki (i = 1, 2, · · · , N), and the
diagonal matrix Λ be given. Then the augmented system (7) is
exponentially stable in the mean square sense for vk = 0 and,
under the zero initial condition, satisfies the H∞ performance
constraint (10) for all nonzero vk, if there exist positive definite
matrices Qi > 0 (i = 1, 2, · · · , 6) and positive scalars λj
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(i = 1, 2, · · · , 4) satisfying

Π2 =



Ξ∗
11 WT

1 P1W2 0 Ξ14 WT
1 P1

∗ Ξ22 0 WT
2 P1 WT

2 P1

∗ ∗ Ξ33 0 λ2Φ
gT
2

∗ ∗ ∗ Ξ44 P1

∗ ∗ ∗ ∗ Ξ55

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
Ξ16 WT

1 P1Hυ̃Λ WT
1 P1L

WT
2 P1Hα̃Λ Ξ27 WT

2 P1L
0 0 0

P1Hα̃Λ P1Hυ̃Λ P1L
P1Hα̃Λ P1Hυ̃Λ P1L

Ξ66 Ξ67 α̃ΛHTP1L
∗ Ξ77 υ̃ΛHTP1L
∗ ∗ LTP1L − γ2I


< 0,

(34)

where

Ξ∗
11 =WT

1 P1W1 − P1 + P2 + (τ̄M − τ̄m + 1)P3

− λ1Φ
f
1 − λ3ST C̃T (I ⊗ Λ)C̃S +

1
N

MTM

+
N∑

i=1

(β̃∗
i + χα̃β̃

i + χβ̃υ̃
i + χβ̃ϑ̃

i )ST C̃TGT
i P1GiC̃S

and other parameters are defined as in Theorem 1.
Proof: According to Theorem 1, it is easily shown that the

zero-solution of the system (7) with vk = 0 is exponentially
stable in the mean square since the inequality (11) is implied
by (34). It remains to show that, under zero-initial condition,
the output error z̃k satisfies the H∞ performance constraint
(10).

Choosing the Lyapunov function similar to one in the proof
of Theorem 1, we can calculate as follows:

E{∆V (k)}
≤ E{ξT

k Π1ξk + 2vT
k LTP1W1ηk

+ 2vT
k LTP1W2ηk−d + 2vT

k LTP1f⃗k

+ 2vT
k LTP1g⃗k−τk

+ 2vT
k LTP1Hα̃Λϱ⃗(C̃Sηk)

+ 2vT
k LTP1Hυ̃Λϱ⃗(C̃Sηk−d) + vT

k LTP1Lvk}.

(35)

where ξk and Π1 are defined previously.
Setting ξ̃k = [ ξT

k vT
k ]T , inequality (35) can be rewritten

as

E{∆V (k)} ≤ E
{
ξ̃T
k

[
Π1 L̃T

∗ LTP1L

]
ξ̃k

}
, (36)

where L̃ = [ LTP1W1 LTP1W2 0 LTP1 LTP1

LTP1Hα̃Λ LTP1Hυ̃Λ ]
In order to analyze the H∞ performance of the system (7),

we introduce

J (s) = E
s∑

k=0

{
1
N

||z̃k||2 − γ2||vk||2
}

(37)

where s is nonnegative integer.

Under the zero initial condition, one has

J (s) =E
s∑

k=0

{
1
N

||z̃k||2

−γ2||vk||2 + ∆V (k)
}
− E{V (s+ 1)}

≤E
s∑

k=0

{
1
N

||z̃k||2 − γ2||vk||2 + ∆V (k)
}

≤E
s∑

k=0

{
ξ̃T
k Π2ξ̃k

}
< 0.

(38)

Letting s→ ∞, it follows from the above inequality that

1
N

∞∑
k=0

E{||z̃k||2} ≤ γ2
∞∑

k=0

||vk||2,

and the proof is now complete.

Up to now, the analysis problem of estimator performance
has been solved. Finally, we are in a position to consider the
H∞ estimator design problem for the complex network (1).
The following result can be easily accessible from Theorem
2, and the proof is therefore omitted.

Theorem 3: Let the disturbance attenuation level γ > 0
and the diagonal matrix Λ be given. For the discrete time-
delayed complex networks (1) with the sensor model (3)
containing both ROSSs and RVSDs, the augmented system
(7) is exponentially stable in the mean square sense for
vk = 0 and satisfies the H∞ performance constraint (10)
under the zero initial condition for all nonzero vk, if there exist
positive definite matrices Qi > 0 (i = 1, 2, · · · , 6), matrices
Yi (i = 1, 2, · · · , N) and positive scalars λj (i = 1, 2, · · · , 4)
satisfying


Π̄ RT FT

1 FT
2 FT

3 FT
4

∗ −Q2 0 0 0 0
∗ ∗ −Q2 0 0 0
∗ ∗ ∗ −Q2 0 0
∗ ∗ ∗ ∗ −Q2 0
∗ ∗ ∗ ∗ ∗ −Q2

 < 0, (39)
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where

Π̄ =



Π11 Π12 Π13 0 0
∗ Π22 0 0 0
∗ ∗ Π33 0 0
∗ ∗ ∗ Π44 0
∗ ∗ ∗ ∗ Π55

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

Π16 Π17 Π18 Π19 Π1,10

Π26 Π27 0 0 Π2,10

Π36 Π37 0 Π39 Π3,10

0 0 0 0 0
0 Π57 0 0 0

Π66 Π67 Π68 Π69 Π6,10

∗ Π77 Π78 Π79 Π7,10

∗ ∗ Π88 0 Π8,10

∗ ∗ ∗ Π99 Π9,10

∗ ∗ ∗ ∗ Π10,10


,

Y⃗ = diag{Y1, Y2, · · · , YN}, Q2 = I ⊗Q2

Z1 = [ ℓ(1)1 E1Y⃗
T ℓ

(1)
2 E2Y⃗

T · · · ℓ
(1)
N EN Y⃗

T ]T ,

Z2 = [ ℓ(2)1 E1Y⃗
T ℓ

(2)
2 E2Y⃗

T · · · ℓ
(2)
N EN Y⃗

T ]T ,

Z3 = [ ℓ(3)1 E1Y⃗
T ℓ

(3)
2 E2Y⃗

T · · · ℓ
(3)
N EN Y⃗

T ]T ,

Z4 = [ ℓ(4)1 E1Y⃗
T ℓ

(4)
2 E2Y⃗

T · · · ℓ
(4)
N EN Y⃗

T ]T ,

F1 = [ Z1(I ⊗ C) 0 0 0 0 0 0 0 0 0 ],
F2 = [ 0 0 Z2(I ⊗ C) 0 0 0 0 0 0 0 ],
F3 = [ 0 0 0 0 0 0 0 Z3 0 0 ],
F4 = [ 0 0 0 0 0 0 0 0 Z4 0 ],

R = [ Y⃗ (I − β̃Λ)(I ⊗ C) −Y⃗ (I ⊗ C) −Y⃗ ϑ̃Λ(I ⊗ C)

0 0 0 0 −Y⃗ α̃Λ −Y⃗ υ̃Λ 0 −Y⃗ G ],

ℓ
(1)
i =

√
β̃∗

i + χα̃β̃
i + χβ̃υ̃

i + χβ̃ϑ̃
i ,

ℓ
(2)
i =

√
ϑ̃∗i + χα̃ϑ̃

i + χβ̃ϑ̃
i + χυ̃ϑ̃

i ,

ℓ
(3)
i =

√
α̃∗

i + χα̃β̃
i + χα̃υ̃

i + χα̃ϑ̃
i ,

ℓ
(4)
i =

√
υ̃∗i + χα̃υ̃

i + χβ̃υ̃
i + χυ̃ϑ̃

i ,

Π11 = (WTW ) ⊗ (Γ(Q1 +Q2)Γ) − λ3I ⊗ (CT ΛC),

+ Sym{(W ⊗ Γ)T Y⃗ (I − β̃Λ)(I ⊗ C)}
− I ⊗ (Q1 −Q3 − (τ̄M − τ̄m + 1)Q5) − λ1Φ

f
1

Π12 = − (W ⊗ Γ)T Y⃗ (I ⊗ C),

Π13 = − (W ⊗ Γ)T Y⃗ ϑ̃Λ(I ⊗ C),

Π16 = [ WT ⊗ (ΓQ1) + λ1Φ
fT
2

WT ⊗ (ΓQ2) + (I ⊗ C)T (I − β̃Λ)Y⃗ T ],

Π17 = [ WT ⊗ (ΓQ1)

WT ⊗ (ΓQ2) + (I ⊗ C)T (I − β̃Λ)Y⃗ T ],

Π18 = − (WT ⊗ Γ)Y⃗ T α̃Λ + λ3I ⊗ CT (Λ + I)/2,

Π19 = − (WT ⊗ Γ)Y⃗ T υ̃Λ,

Π1,10 =[ WT ⊗ (Γ(Q1 +Q2))L+ (I ⊗ C)T (I − β̃Λ)Y⃗ TL

−(W ⊗ Γ)T Y⃗ G ],

Π22 = − I ⊗ (Q2 −Q4 − (τ̄M − τ̄m + 1)Q6)

− λ1Φ
f
1 +

1
N

(I ⊗ (MTM)),

Π26 =[ 0 (I ⊗ C)T Y⃗ T + λ1Φ
fT
2 ],

Π27 =[ 0 (I ⊗ C)T Y⃗ T ],

Π2,10 =[ −(I ⊗ C)T Y⃗ TL 0 ],

Π33 = − I ⊗Q3 − λ4I ⊗ (CT ΛC),

Π36 =Π37 = [ 0 −(I ⊗ C)T ϑ̃ΛY⃗ T ],

Π39 =λ4I ⊗ CT (Λ + I)/2,

Π3,10 =[ −(I ⊗ C)T ϑ̃ΛY⃗ TL 0 ], Π44 = −I ⊗Q4,

Π55 = − diag{I ⊗Q5, I ⊗Q6} − λ2Φ
g
1, Π57 = λ2Φ

gT
2 ,

Π66 =diag{I ⊗Q1, I ⊗Q2} − λ1I,

Π67 =diag{I ⊗Q1, I ⊗Q2},
Π68 =Π78 = [ 0 −α̃ΛY⃗ T ]T ,

Π69 =Π79 = [ 0 −υ̃ΛY⃗ T ]T ,

Π77 =diag{I ⊗Q1, I ⊗Q2} − λ2I,

Π88 = − λ3I, Π8,10 = [ −α̃ΛY⃗ TL 0 ],

Π99 = − λ4I, Π9,10 = [ −υ̃ΛY⃗ TL 0 ],

Π6,10 =Π7,10 =
[

(I ⊗Q2)L 0
(I ⊗Q2)L −Y⃗ G

]
,

Π10,10 =
[
LT (I ⊗ (Q1 +Q2))L− γ2I −LT Y⃗ G

∗ −γ2I

]
,

and other parameters are defined as in Theorem 1. Moreover,
if the above inequality is feasible, the desired state estimator
gains can be determined by

Ki = Q−1
2 Yi. (40)

Remark 5: At present, a large number of results on complex
networks have been available in the literature that require the
symmetry and the zero-row-sum properties for the configura-
tion matrix W . However, these results cannot be applied to the
state estimation problem with sensor saturations considered in
this paper. Our main results in Theorems 1-3 are applicable
to a wide class of complex networks including both directed
and undirected networks, and the measurement model in
this paper is quite comprehensive that encompasses network-
induced phenomena including both the randomly occurring
sensor saturations and the randomly varying sensor delays.
Comparing with existing literature, our results are obtained
on a new state estimation problem for a more general model
using in-depth stochastic analysis tools.

Remark 6: A general form of sector-like nonlinear function,
instead of the commonly used Lipschitz-type function, is em-
ployed to describe the nonlinearities existing in the network.
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The main results established contain all the information of the
complex networks including the physical parameters, lower
and upper bounds of the network state delay, the sensor delays,
the H∞ disturbance rejection attenuation level as well as the
occurrence probabilities of the sensor saturations and sensor
delays. Notice that the system governing the error dynamics
involves both the fixed and varying time-delays. To reduce the
possible design conservatism, a novel Lyapunov-Krasovskii
functional is proposed in which the first component V1(k) is
used to account for the fixed time-delay and other components
are constructed to cater for the varying time-delays. In the
next section, a simulation example is provided to show the
usefulness of the proposed design procedure for the desired
state estimators.

Remark 7: Note that, for the standard LMI system, the al-
gorithm has a polynomial-time complexity. That is, the number
N (ε) of flops needed to compute an ε-accurate solution is
bounded by O(MN 3 log(V/ε)), where M is the total row
size of the LMI system, N is the total number of scalar
decision variables, V is a data-dependent scaling factor, and
ε is relative accuracy set for algorithm. Let us now look at
the H∞ state estimation problem for the complex network
(1) with the measurements (3), where the network size is N
and the variable dimensions can be seen from xi(k) ∈ Rn,
yi(k) ∈ Rm, zi(k) ∈ Rr, x̂i(k) ∈ Rn (i = 1, 2, · · · , N ),
v1(k) ∈ Rq, and v2(k) ∈ Rp. From Theorem 3, we have
M = 8nN + 2mN + rN and N = 3n2 + 3n + m2N + 4.
Therefore, the computational complexity of the LMIs-based
H∞ state estimation algorithm can be represented as O(n7N+
m7N4). Similarly, the computational complexity of the pro-
posed condition in Theorem 1 is also O(n7N). Obviously,
the computational complexity of the LMI-based algorithms
depends polynomially on the network size and the variable
dimensions. In order to reduce the computation burden, a
possible way is to obtain the estimator gains node by node
and then the computational complexity can be represented as
O(n7N). Fortunately, research on LMI optimization is a very
active area in the applied mathematics, optimization and the
operations research community, and substantial speed-ups can
be expected in the future.

IV. NUMERICAL EXAMPLES

Consider a discrete time-delayed complex network (1) with
three nodes. The coupling configuration matrix is assumed to
be W = (wij)M×M with

W =

 −0.6 0.6 0
0.6 −1.1 0.5
0 0.5 −0.5

 ,
and the inner-coupling matrix is given as Γ = diag{0.1, 0.1}.
The disturbance matrices and the output matrix are as follows

L1 =
[

0.04 0.03
]T
, L2 =

[
−0.02 0.04

]T
,

L3 =
[

0.02 −0.03
]T
, M = [0.70 0.65].

The nonlinear vector-valued functions f(xi(k)) and

g(xi(k)) are chosen as

f(xi(k)) =
[

−0.6xi1(k) + 0.3xi2(k) + tanh(0.3xi1(k))
0.6xi2(k) − tanh(0.2xi2(k))

]
,

g(xi(k)) =
[

0.02xi1(k) + 0.06xi2(k)
−0.03xi1(k) + 0.02xi2(k) + tanh(0.01xi1(k))

]
.

Then, it is easy to see that the constraint (2) can be met
with

ϕf
1 =

[
−0.6 0.3

0 0.4

]
, ϕf

2 =
[

−0.3 0.3
0 0.6

]
,

ϕg
1 =

[
0.02 0.06
−0.03 0.02

]
, ϕg

2 =
[

0.02 0.06
−0.02 0.02

]
.

Consider the sensors with both the ROSSs and RVSDs
described by (3) with the following parameters:

G1 =
[

−0.03
0.02

]
, G2 =

[
−0.02
0.04

]
,

G3 =
[

0.06
−0.02

]
, C =

[
0.8 0.6
0.9 −0.4

]
.

In this example, the probabilities are taken as α1 =
0.88, α2 = 0.85, α3 = 0.87 and β1 = 0.91, β2 = 0.92, β3 =
0.9, the delay parameters are chosen as τ̄m = 1, τ̄M = 3, the
disturbance attenuation level is γ = 0.92, and the diagonal
matrix is Λ = diag{0.7, 0.7}. By using the Matlab (with
YALMIP 3.0 and SeDuMi 1.1), we solve LMI (39) and obtain
a set of feasible solutions as follows:

λ1 = 14.6065, Q1 =
[

6.6408 2.5172
2.5172 1.3932

]
,

λ2 = 53.3398, Q2 =
[

5.4508 1.9621
1.9621 3.0666

]
,

λ3 = 0.3624, Q3 =
[

0.2706 −0.0581
−0.0581 0.1037

]
,

λ4 = 2.1997, Q4 =
[

0.1516 −0.1421
−0.1421 0.3701

]
,

Q5 =
[

0.5182 −0.1538
−0.1538 0.0527

]
,

Q6 =
[

0.4129 −0.1257
−0.1257 0.0975

]
,

Y1 =
[

−0.0023 −0.3538
0.3023 −0.0403

]
,

Y2 =
[

0.0467 −0.3267
0.3426 −0.0630

]
,

Y3 =
[

−0.0162 −0.3243
0.2813 −0.0882

]
.

Then, according to (40), the desired estimator parameters can
be designed as

K1 =
[

−0.0466 −0.0782
0.1284 0.0369

]
,

K2 =
[

−0.0411 −0.0682
0.1380 0.0231

]
,

K3 =
[

−0.0468 −0.0638
0.1216 0.0121

]
.
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In the simulation, the exogenous disturbance inputs are
selected as

v1(k) = 5 exp(−0.2k) sin(k), v2(k) =
6 cos(0.8k)
k + 1

.

The discrete time-varying delay τ(k) satisfies τ(k) = 2 +
sin(πk/2), and the constant delay is selected as d = 1. The
initial values ψi(k) (i = 1, 2, 3; k = −3,−2,−1, 0) are
generated that obey uniform distribution over [−1.4, 1.4].
Simulation results are shown in Figs. 1-4, where Fig. 1-
3 plot the actual measurements and ideal measurements for
sensors 1-3, respectively, and Fig. 4 depicts the output errors.
The simulation results have confirmed that the designed H∞
estimator performs very well.

V. CONCLUSIONS

In this paper, we have investigated the H∞ state estimation
problem for a class of complex networks with time-varying
delay and incomplete information. The considered incomplete
information includes both the ROSSs and RVSDs. In order to
take both the ROSSs and RVSDs into account in a unified way,
a novel sensor model has been proposed by using two sets
of Bernoulli distributed white sequences with known condi-
tional probabilities. Then, some estimators have been designed
such that the augmented system is exponentially mean-square
stable and the estimation error satisfies the specified H∞
performance requirement. Finally, the developed estimation
approach has been demonstrated by a numerical simulation
example. Further research topics include the extension of
our results to more general complex networks with varying
time-delays in measurements, and also to the network control
systems with both ROSSs and RVSDs.

0 5 10 15 20 25 30 35 40
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time (k)

S
en

so
r

1

 

 
Actual measurements y11

Ideal measurements y11

Actual measurements y12

Ideal measurements y12

Fig. 1. Measurements from sensor 1
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