
Reducing the cost of applying adaptive test

cases

R. M. Hierons a H. Ural b

aSchool of Information Systems, Computing, and Mathematics, Brunel University,
Uxbridge, Middlesex, UB8 3PH.

bSchool of Information Technology and Engineering, Faculty of Engineering,
University of Ottawa, 800 King Edward Avenue, Ottawa, Ontario, K1N 6N5,

Canada

keywords: State-based testing; Test Execution; Adaptive test
cases; Minimising Cost.

Abstract

The testing of a state-based system may involve the application of a number of
adaptive test cases. Where the implementation under test (IUT) is deterministic, the
response of the IUT to some adaptive test case γ1 could be capable of determining
the response of the IUT to another adaptive test case γ2. Thus, the expected cost
of applying a set of adaptive test cases depends upon the order in which they are
applied. This paper explores properties of adaptive test cases and considers the
problem of finding an order of application of the elements from some set of adaptive
test cases, which minimises the expected cost of testing.

1 Introduction

There are many approaches that generate tests on the basis of some source
of information, such as the specification or the structure of the code. Where
a system is state-based, testing involves the application of sequences of input
values. Such sequences are called test sequences. A test sequence, or a set of
test sequences, may represent some test purpose.

An adaptive test case is applied in an adaptive experiment which is a process in
which at each stage the input applied depends upon the input/output sequence
that has been observed. Once the adaptive test case has finished the system is
returned to its initial state, using some postamble, and is ready for the next
adaptive test case to be applied.

Preprint submitted to Elsevier Preprint 11 April 2006

The use of adaptive tests cases is often essential where the specification is ei-
ther nondeterministic or incomplete and may be useful if we wish to have
robust tests; tests that may achieve their test purpose (such as testing a
particular transition) even if there is an earlier failure. Adaptive test cases
have been used for testing from a (possibly nondeterministic) finite state ma-
chine [1,9,10,15,21,23], testing from a general state-based specification [15],
and generally in protocol conformance testing [13]. Algorithms for testing
from a specification written in a process algebra such as LOTOS [3] typically
produce adaptive test cases with verdicts [20]. Adaptivity is a core element of
the European Telecommunications Standards Institute (ETSI) test description
language TTCN (see, for example, [22]).

Among the motivation and potential uses of adaptive test cases we may also
mention the following: there are systems developed based on requirements
that provide a variety of options for the implementers such as standardized
protocols. A test suite constructed from such a requirement typically consists
of adaptive test cases where the expected behaviour is represented in the form
of trees rather than sequences. For example, a suite of tests in TTCN contains
a behaviour tree for each test which is a succinct representation of an adaptive
test case. Each leaf of the behaviour tree is associated with a verdict which
represents one of the test results, namely, pass, fail, and inconclusive. Such
a set of tests can be constructed manually or automatically based on a set
of test purposes or in a random manner. Further, a third party set of tests
represented in TTCN can be purchased. Thus, it is important to identify an
order of application of the adaptive test cases represented as trees in TTCN
in order to reduce the test effort.

Since testing is extremely expensive, reductions in the cost of testing could
lead to cheaper software and might allow more rigorous testing to be applied.
The test process contains several components, including the generation of a
test suite, the application of the test cases from this test suite, and checking
the behaviour observed in testing against the requirements. This paper inves-
tigates ways in which the cost of applying adaptive test cases may be reduced.
The cost of applying adaptive test cases is particularly important where the
use of a test cases requires expensive/scarce equipment or facilities, involves
human participation, requires a system to be reconfigured, or takes a signifi-
cant time to complete. Crucially, the results given in this paper show how the
expected cost of applying a set of adaptive test cases may be reduced without
diminishing their effectiveness.

When the implementation under test (IUT) is deterministic, the input/output
sequence produced in response to one adaptive test case γ1 may be capable
of providing information that fully decides the response of the IUT to some
other adaptive test case γ2 [11]. Where this is the case, using γ1 before γ2 may
reduce the expected test execution effort. Note that the response of the IUT

2

to γ1 might be capable of determining the response of the IUT to γ2 but not
be guaranteed to do this. In such cases we cannot simply eliminate γ2 from
the test suite without risking reducing the effectiveness of this test suite. Even
if the response to γ1 can determine the response to γ2, relationships involving
other adaptive test cases may affect the best relative ordering of γ1 and γ2.
This paper considers the problem of finding an order of execution, of a given
set of adaptive test cases, that minimises the expected cost of executing the
tests. Such an ordering is considered to be an optimal ordering.

Interestingly, related problems have been considered in the regression testing
of stateless systems. Work in this area has considered ways of reducing the
number of test cases used and the problem of finding an optimal order in
which to execute test cases (see, for example, [8,17,18]). However, since the
systems are stateless, the tests are individual inputs rather than adaptive
test cases and thus the problems are quite different. Further, some of the
algorithms applied to reduce the cost of regression testing may also lead to less
effective regression testing [18]. In contrast, this paper considers algorithms
that reduce the expected cost of testing while guaranteeing to preserve the
inherent effectiveness of the original set of adaptive test cases.

This paper 1 describes how it is possible to reduce the expected cost of the ap-
plication of adaptive test cases. We introduce an algorithm, for the application
of adaptive test cases, that allows adaptive test cases to be deleted where, due
to previously observed input/output sequences, they are no longer required.
We show that the order of application of a set of adaptive test cases affects
the expected cost of testing and formalise this. We prove that the problem of
finding an optimal order of application is NP-hard and give two procedures
for reducing the scale of the optimisation problem. We then give a polynomial
time algorithm that, under certain well-defined conditions, is guaranteed to
return the optimal ordering. This algorithm is extended to form a heuristic
for the general case.

This paper extends [11] in a number of ways. First, we give an explicit algo-
rithm for test execution; this allows potential savings to be utilised. Further,
we prove that the problem of finding an optimal ordering is NP-hard. We
also give, and prove, the (polynomial time) complexity of the algorithms and
functions defined in this paper. Finally, we extend the algorithm, for choosing
an ordering of the adaptive test cases, to the general case.

This paper is structured as follows. Section 2 describes test sequences, di-
rected graphs, and adaptive test cases. Section 3 then considers conditions
under which the relative ordering of adaptive test cases may be significant. In

1 This paper is an extension of [11], which won the Best Paper award at the 23rd
IFIP International Conference on Formal Techniques for Networked and Distributed
Systems (FORTE 2003).

3

Section 4 we prove that the overall optimisation problem is NP-hard. Section
5 considers two ways in which the optimisation problem may be simplified:
by merging adaptive test cases and by dividing the optimisation problem into
a set of optimisation problems. Section 6 introduces a polynomial time algo-
rithm that generates the optimal ordering under a well-defined condition. It
then extends this to a general heuristic. Finally, Section 7 draws conclusions
and discusses future work.

2 Preliminaries

2.1 Sequences

Throughout this paper X and Y will denote the finite input and output do-
mains of the IUT. Given a set A, A∗ will denote the set of sequences of elements
from A, including the empty sequence ε.

It will be assumed that the IUT is a black box state-based system whose
functional behaviour is being tested. Thus testing leads to the observation of
input/output sequences of the form 〈x1/y1, . . . , xk/yk〉 ∈ (X/Y)∗ where x1,
. . . , xk ∈ X and y1, . . . , yk ∈ Y and yi may be a tuple of outputs (1 ≤ i ≤ k).
A preset test sequence is some element of X∗.

For convenience, the input/output sequence 〈x1/y1, . . . , xk/yk〉 may be repre-
sented as I/O where I = 〈x1, . . . , xk〉 and O = 〈y1, . . . , yk〉. Given sequences
c and d, cd will denote the result of concatenating c and d. For example,
〈a/0〉〈a/1, b/0〉 = 〈a/0, a/1, b/0〉. Given sets C and D of sequences, CD will
denote the set formed by concatenating the elements of C with the elements
of D. Thus CD = {cd|c ∈ C ∧ d ∈ D}.

Given a sequence b ∈ A∗, pre(b) will denote the set of prefixes of b. Given a
set B of sequences Pre(B) will denote the set of prefixes of sequences from
B. These are defined more formally by the following.

Definition 1 Given a sequence b ∈ A∗ and a set B ⊆ A∗:

pre(b) = {b′ ∈ A∗|∃b′′ ∈ A∗.b = b′b′′}

Pre(B) =
⋃

b∈B

pre(b)

When a set of test sequences, or adaptive test cases, is applied, the IUT is
returned to its initial state after each test using a test postamble [12]. This
ensures that each test is applied in the initial state of the IUT.

4

2.2 Directed Graphs

A directed graph is a set of vertices with arcs between them.

Definition 2 A directed graph (digraph) G is defined by a pair (V, E) in
which V = {v1, . . . , vn} is a finite set of vertices and E ⊆ V × V is a set of
directed edges between the vertices of G. An element e = (vi, vj) ∈ E represents
an edge from vi to vj. Given an edge e = (vi, vj), start(e) denotes vi and end(e)
denotes vj.

Definition 3 Given a digraph G = (V, E) and a vertex v ∈ V , indegreeE(v)
denotes the number of edges from E that end in v and outdegreeE(v) denotes
the number of edges from E that start at v. These are defined by the following:

indegreeE(v) = |{(vi, vj) ∈ E|vj = v}|

outdegreeE(v) = |{(vi, vj) ∈ E|vi = v}|

.

Given a digraph G = (V,E), a non-empty sequence 〈e1, . . . , em〉 of edges from
E, in which for all 1 ≤ k < m end(ek) = start(ek+1), is a path from start(e1)
to end(em) in G. A path is a cycle if its initial and final vertices are the same
and no other vertex is repeated. A digraph is said to be acyclic if it has no
cycles.

Given a digraph G, the following defines the result of removing one or more
vertices from G.

Definition 4 Let G = (V,E) be a digraph and V ′ ⊆ V . Then G \ V ′ de-
notes the digraph formed by removing every vertex contained in V ′, and the
associated edges, from G:

G \ V ′ = (V \ V ′, E \ {(vi, vj)|vi ∈ V ′ ∨ vj ∈ V ′})

2.3 Adaptive test cases

Testing typically involves applying input sequences to the IUT and observing
the output produced. Sometimes the input sequences used are preset: each is
fully determined before it is applied. However, a test may be adaptive: the
next input provided in a sequence may depend on the output produced in
response to the previous input values. Such a test is called an adaptive test

5

a

b

0

0

1

1

Fig. 1. An adaptive test case

case. Adaptive test cases are used in a number of areas including protocol
conformance testing (see, for example, [1,13,21]).

In this paper T will denote the set of all adaptive test cases that may be
formed using finite input domain X and finite output domain Y . The set T
may be defined recursively in the following manner.

Definition 5 Each element γ ∈ T is one of:

• null
• a pair (x, f) in which x ∈ X and f is a function from Y to T .

An adaptive test case γ is applied in the following manner. If γ = null then
the adaptive test case ends. If γ = (x, f) then the input x is applied and the
output y is observed. The adaptive test case f(y) is then applied. Note that in
practice, it is more efficient to allow a function f used in defining an adaptive
test case to be a partial function, where execution terminates if it is to be
applied to an output y such that y 6∈ dom f . However, in order to simplify
the exposition we will assume that any function used in an adaptive test case
is total.

By definition, all adaptive test cases are finite: their application must always
terminate. An adaptive test case may be represented by a tree. For example,
the tree in Figure 1 represents an adaptive test case in which the first input is
a, no further input is provided if the output is 0, and the input b is provided
if the output is 1. Whatever the response to b after a, the adaptive test case
then terminates. The adaptive test case γ given in Figure 1 may be defined
in the following way: γ = (a, f), f(0) = null, f(1) = (b, f ′), f ′(0) = null, and
f ′(1) = null.

Given an adaptive test case γ it is possible to define the set IO(γ) of in-
put/output sequences that may be observed using γ.

Definition 6 Given γ ∈ T , the input/output sequences that may be observed

6

using γ are:

IO(γ) =




{ε} if γ = null
⋃

y∈Y {〈x/y〉}IO(f(y)) if γ = (x, f)

The first rule simply states that if the adaptive test case is null then no
input/output behaviour is seen and thus the empty sequence is observed.
The second rule is recursive, stating that given y ∈ Y , γ may lead to an
input/output behaviour in the form of x/y followed by some input/output
behaviour formed by applying f(y). For example, the adaptive test case γ
given in Figure 1 has: IO(γ) = {〈a/0〉, 〈a/1, b/0〉, 〈a/1, b/1〉}. Clearly, IO(γ)
is finite and every element of IO(γ) is finite.

Proposition 1 If γ1, γ2 ∈ Γ and IO(γ1) = IO(γ2) then γ1 = γ2.

Definition 7 The length of an adaptive test case γ is defined by:

length(γ) =





0 if γ = null

1 + maxy∈Y length(f(y)) if γ = (x, f)

The length of γ ∈ T is the length of the longest input/output sequence that
may result from applying γ to an implementation.

Given an adaptive test case γ, it is also possible to define the size |γ| of γ to
be the number of nodes in the tree that represents γ.

Definition 8 Given γ ∈ T , the size |γ| of γ is defined by the following rules:

|null|= 1

|(x, f)|= 1 +
∑

y∈Y

|f(y)|

Consider the adaptive test case γ given in Figure 1. Here |γ| = 1 + |null| +
|(b, f ′)|. Thus, since |(b, f ′)| = 1 + |f ′(0)| + |f ′(1)| = 1 + |null| + |null| = 3,
|γ| = 5.

Throughout this paper Γ will denote a given (finite) set of adaptive test cases
to be used in testing. Thus Γ ⊆ T .

7

a

b a

0

1 1

1

00

a

a

0

1

1

0

a

a b

0

1 1

1

00

Fig. 2. Adaptive test cases γ1, γ2, and γ3

3 Conditions for test case elimination

This section will explore some conditions under which, by applying one adap-
tive test case γ1 before another adaptive test case γ2, it may not be necessary
to use γ2. Consider the first two adaptive test cases γ1 and γ2 in Figure 2. Let
us suppose that the use of γ1 leads to the input/output sequence 〈a/0, a/1〉.
Then, since the IUT is deterministic, we know that the response of the IUT to
γ2 will be 〈a/0〉. Thus there is no need to apply γ2. Naturally, if the application
of γ1 had led to the input/output sequence 〈a/1, b/0〉 or to the input/output
sequence 〈a/1, b/1〉 then the response of the IUT to γ2 would not be deter-
mined and thus γ2 should still be applied.

Let us now suppose that we intend to execute an arbitrary adaptive test case
γ2 after any other γ1, with γ1 being followed by a postamble that returns the
system to its initial state. Then the response of the IUT to γ1 might determine
the response of the IUT to γ2 if one of the possible responses to γ2 is a prefix
of some possible response to γ1. This is captured below in Definition 10.

Given an input/output sequence σ ∈ (X/Y)∗ and an adaptive test case γ ∈
T , the predicate decides(σ, γ) will tell us if σ being observed in the IUT
determines the response of the IUT to γ.

Definition 9 The predicate decides is defined by the following rules:

decides(σ, null) = true

decides(ε, (x, f)) = false

decides(〈x1/y1〉σ, (x, f)) = (x1 = x) ∧ decides(σ, f(y1))

We clearly have the following.

Proposition 2 Given σ ∈ (X/Y)∗ and γ ∈ T , decides(σ, γ) may be computed
in O(min(|σ|, length(γ)) time.

Suppose we wish to apply the adaptive test cases from a given set Γ =
{γ1, . . . , γn} in the order 〈γ1, γ2, . . . , γn〉. Then we could control the test exe-
cution using the following algorithm that prunes the set of adaptive test cases

8

a a
0 01 1

subtree subtree

Fig. 3. Related adaptive test cases

yet to be executed on the basis of those input/output sequences that have
already been observed.

Algorithm 1 (1) Let ∆ = 〈γ1, γ2, . . . , γn〉
(2) while ∆ 6= ε do
(3) Let γ denote the first element of ∆.
(4) Test the IUT with γ and let the observed input/output sequence be denoted

x/y.
(5) Remove γ from ∆.
(6) Remove from ∆ any element γ′ such that decides(x/y, γ′).
(7) od

Proposition 3 The time taken in testing, using Algorithm 1, with the se-
quence 〈γ1, γ2, . . . , γn〉 of elements of T is in O(n

∑n
i=1 length(γi)).

Proof. First observe that at worst each adaptive test case is applied once
and thus the time required to run the tests is in O(

∑n
i=1 length(γi)).

There are at most n iterations of the loop. Each iteration of the loop involves
determining decides(σ, γ) for some σ ∈ (X/Y)∗ and each remaining γ ∈ ∆.
Thus, the effort (in addition to executing a test) on each iteration of the loop
is in O(

∑n
i=1 length(γi)). The result now follows. 2

We will now explore the conditions under which one adaptive test case may
determine the result of applying another.

Definition 10 Let γ1, γ2 ∈ T . We say that the response of the IUT to γ1

may determine the response of the IUT to γ2 if there is some σ1 ∈ IO(γ1)
and σ2 ∈ IO(γ2) such that σ2 ∈ pre(σ1). Whenever this is the case we write
γ2 ¹ γ1.

Note that ¹ is not an ordering since it is not antisymmetric: there are distinct
adaptive test cases γ1 and γ2 such that γ2 ¹ γ1 and γ1 ¹ γ2. Such a case is
illustrated in Figure 3.

9

Proposition 4 The relation ¹ is reflexive but is not always symmetric and
not always transitive.

Proof. The fact that ¹ is reflexive is an immediate consequence of the def-
inition. Adaptive test cases γ1 and γ2 in Figure 2 demonstrate that ¹ is not
always symmetric.

In order to see that ¹ is not always transitive consider the example in Figure
2. It is straightforward to check that γ2 ¹ γ1, γ3 ¹ γ2 but γ3 6¹ γ1. 2

Clearly, if γ2 ¹ γ1 but γ1 6¹ γ2 it is desirable to use γ1 before γ2.

The predicate sav, defined below, may be used to decide whether γ1 ¹ γ2.

Definition 11 The predicate sav is defined by the following rules:

sav(γ, null) = true

sav(null, (x, f)) = false

sav((x1, f1), (x2, f2)) = (x1 = x2) ∧ ∃y ∈ Y.sav(f1(y), f2(y))

The following result is clear.

Proposition 5 Given γ1, γ2 ∈ T , γ2 ¹ γ1 if and only if sav(γ1, γ2).

Proposition 6 There is a constant c such that given γ1, γ2 ∈ T , sav(γ1, γ2)
may be determined in time at most c(|γ1|+ |γ2|).

Proof. First observe that the process of checking the right hand side of the
first two rules requires constant time. The first part of the third rule also
requires constant time. Let c be the sum of the corresponding three constants.

For all γ1 and γ2, let g(γ1, γ2) denote the time taken to determine sav(γ1, γ2).
If γ1 = (x, f1) and γ2 = (x, f2) then g(γ1, γ2) ≤ c +

∑
y∈Y g(f1(y), f2(y)).

Now the result follows by induction on |γ1| + |γ2|, proving that g(γ1, γ2) ≤
c(|γ1|+ |γ2|). 2

Based on the relation ¹ we can define the following digraph.

Definition 12 Given a set Γ = {γ1, . . . , γn} of adaptive test cases, the de-
pendence digraph is the digraph G = (V,E) in which V = {v1, . . . , vn} and
there is an edge (vi, vj) ∈ E if and only if γj ¹ γi and γj 6= γi.

Since the dependence digraph may be constructed by determining sav(γ1, γ2),
for all γ1, γ2 ∈ Γ, the following is a consequence of Proposition 6.

10

Proposition 7 Given a set Γ of adaptive test cases, its dependence digraph
may be derived in time O(n

∑
γ∈Γ |γ|).

Proof. In order to find the dependence digraph it is sufficient to determine
whether γj ¹ γi for every ordered pair (γi, γj) of adaptive test cases in Γ with
γ1 6= γj.

By Proposition 6, it is possible to decide whether γj ¹ γi in O(|γi|+|γj|). Thus,
the dependence digraph may be constructed in O(

∑
γi,γj∈Γ.γi 6=γj

|γi|+ |γj|). For
each γ ∈ Γ the term |γ| appears 2n − 2 times in the sum. Then the desired
result follows. 2

4 The complexity of the optimisation problem

In this section we prove that the problem of finding an ordering of a set of
adaptive test cases, that minimizes the expected cost of testing, is NP-hard.
We start by describing a classic NP-complete problem: the feedback arc set
problem (see, for example, [2,7]).

Definition 13 Given a digraph G = (V,E) we say that a set A ⊆ E is a
feedback arc set of G if (V,E \ A) is acyclic.

Definition 14 The feedback arc set (FAS) problem is: Given a digraph G,
find a minimum size feedback arc set.

The following result has been proved in [14].

Theorem 8 The FAS problem is NP-complete.

It is possible to prove that the problem of finding an optimal ordering of a set
of adaptive test cases is NP-hard by reducing it to the problem above.

Theorem 9 The problem of determining the optimal ordering of a set Γ of
adaptive test cases is NP-hard.

Proof. The proof will proceed by generating an instance of the problem from
an instance of the FAS problem.

Suppose we have a digraph G = (V, E) for which we wish to solve the FAS
problem. Let n be the number of vertices of G. An ordering of the vertices of V
may be represented by a one-to-one function f from {1, . . . , n} to {1, . . . , n}.

Let A = {a0} ∪1≤i≤n {ai} and B = {b0} ∪1≤i,j≤n.i 6=j {bi,j}. A will form the
input alphabet and B will form the output alphabet.

11

We produce a set of adaptive test cases Γ = {γ1, . . . , γn} in the following way.

Each element in Γ starts with the input a0 and given 1 ≤ i ≤ n, after 〈a0/b0〉
γi gives an adaptive test case that has as input ai combined with a function
that maps any output to null. It is now sufficient to state the response of each
γk after 〈a0/bi,j〉 for each bi,j ∈ B. Given 1 ≤ i, j ≤ n with i 6= j there are two
cases to consider:

Case 1 : (vi, vj) ∈ E. The adaptive test cases γi and γj both have input a0

after a0/bi,j.

After 〈a0/bi,j, a0/b〉 (b ∈ B), the adaptive test case γi gives an adaptive test
case with input a0 combined with a function that maps any output to null.

After 〈a0/bi,j, a0/b〉 (b ∈ B) the adaptive test case γj becomes null.

Each γk with 1 ≤ k ≤ n and k 6= i, k 6= j, has a unique input ak after 〈a0/bi,j〉.
Any output is mapped to null after ak.

Case 2 : (vi, vj) 6∈ E. Each γk (1 ≤ k ≤ n) has a unique input ak, which leads
to any output being mapped to null, after 〈a0/bi,j〉.

Now consider the conditions under which we have γj ¹ γi. Clearly this cannot
occur due to any behaviour that starts with 〈a0/b0〉. Suppose we have that
γj ¹ γi due to some behaviour starting with 〈a0/b〉 for some b ∈ B \ {b0}.
Then this must be followed by the same input for γj and γi and thus this can
only occur if b = bi,j or b = bj,i. Further, since γj ¹ γi we must have that
b = bi,j and thus (vi, vj) ∈ E. If (vi, vj) ∈ E then we have γj ¹ γi. Thus,
γj ¹ γi if and only if the edge (vi, vj) ∈ E and so the dependence digraph for
Γ is isomorphic to G.

Since the IUT is deterministic, there is only one possible b ∈ B such that
the IUT responds to a0 with b when in its initial state. Thus the possible
savings, represented by edges in the dependence digraph of Γ, are mutually
exclusive: when the elements of Γ are applied at most one of these savings
may occur. From this it is clear that the optimal ordering f of the elements
of Γ is the ordering in which fewest edges of the dependence digraph for Γ go
in the opposite direction to the ordering. Thus, since the dependence digraph
of Γ is isomorphic to G, f is an ordering of the vertices of G that minimises
the number of edges (vi, vj) ∈ E such that f(i) > f(j).

Observe that an ordering g defines the following arc feedback set: {(vi, vj) ∈
E|g(i) > g(j)}. Thus, since the set {(vi, vj) ∈ E|f(i) > f(j)} is a minimum
size such set it is a solution to the FAS problem for G. Further, the proce-
dure described above creates an instance of the optimisation problem from an
instance of the FAS problem in polynomial time. The result thus follows. 2

12

a

b a

0

1 1

1

00

a

a

0

1

1

0

a

b

0

1

1

0

Fig. 4. Merging γ1 and γ2 to form γ3

5 Simplifying the optimisation problem

Since the problem of finding an optimal ordering of a set of adaptive test cases
is NP-hard it could be useful to reduce the number of adaptive test cases we
must consider. This section describes two ways of reducing the scale of the
optimisation problem and proves that these approaches do not conflict: by
applying one approach we do not reduce the scope for applying the other.

5.1 Merging adaptive test cases

Given two adaptive test cases γ1 and γ2, it may be possible to combine these
adaptive test cases to form one adaptive test case γ3. The adaptive test case
γ3 should have the property that the information obtained by testing a de-
terministic IUT with γ3 is identical to the information obtained by separately
testing the IUT with γ1 and γ2. For example, Figure 4 has three adaptive test
cases with the property that the first two may be merged to form the third.
By applying γ3 to a deterministic IUT we get the same information as if we
had separately applied γ1 and γ2 to the IUT since each possible response to
γ3 is also a possible response to one of γ1 and γ2, and conversely.

When two adaptive test cases are merged, the size of the optimisation problem
is reduced. Next we consider some conditions under which this may be done
and we define an algorithm that merges adaptive test cases.

Definition 15 γ3 ∈ T is the result of merging γ1, γ2 ∈ T if and only if
Pre(IO(γ1)) ∪ Pre(IO(γ2)) = Pre(IO(γ3)).

Observe that, by Proposition 1, if we can merge two adaptive test cases γ1

and γ2 the result is unique.

Definition 16 γ1, γ2 ∈ T are said to be compatible if and only if there is
no pair of sequences 〈x1/y1, x2/y2, . . . , xk−1/yk−1, xk/yk〉 ∈ Pre(IO(γ1)) and
〈x1/y1, x2/y2, . . . , xk−1/yk−1, x

′
k/y

′
k〉 ∈ Pre(IO(γ2)) with xk 6= x′k (k ≥ 1).

Thus, γ1 and γ2 are compatible if there exists no input/output sequence σ that
might result from both γ1 and γ2 such that γ1 and γ2 apply different input

13

values after σ. It is clear that in order to be able to merge two adaptive test
cases γ1 and γ2 it is necessary that they are compatible: otherwise the resultant
adaptive test case γ3 should provide two different input values after some
input/output sequence σ, which is not allowed by the definition of adaptive
test cases.

Definition 17 The function compatible decides whether two adaptive test
cases are compatible and is defined by:

compatible(γ, null) = true

compatible(null, γ) = true

compatible((x1, f1), (x2, f2)) = (x1 = x2) ∧ ∀y ∈ Y.compatible(f1(y), f2(y))

Proposition 10 γ1, γ2 ∈ T are compatible if and only if compatible(γ1, γ2) =
true.

The proof of the following result is similar to that of Proposition 6.

Proposition 11 There exists a constant cc such that, given γ1, γ2 ∈ T , compatible(γ1, γ2)
may be computed in time at most cc(|γ1|+ |γ2|).

Definition 18 Given two compatible adaptive test cases γ1 and γ2, the result
of merging γ1 and γ2 is defined by:

merge(γ, null) = γ

merge(null, γ) = γ

merge((x, f1), (x, f2)) = (x, {y → merge(f1(y), f2(y))|y ∈ Y })

The proof of the following is similar to that for Proposition 6.

Proposition 12 There exists a constant cm such that, given γ1, γ2 ∈ T that
may be merged, merge(γ1, γ2) may be found in time cm(|γ1|+ |γ2|).

We now explore links between the function merge, the definition of two adap-
tive test cases being compatible, and the definition of one adaptive test case
γ3 being the result of merging two adaptive test cases γ1 and γ2.

Proposition 13 If γ1, γ2 ∈ T are compatible then merge(γ1, γ2) is the result
of merging γ1 and γ2.

Proof. First observe that, by definition, if γ1 and γ2 are compatible then
merge(γ1, γ2) is defined. Let γ3 = merge(γ1, γ2).

We prove the result by induction on the length of γ3. The base case, where

14

γ3 = null, is clear. Inductive hypothesis: if γ3 = merge(γ1, γ2) has length less
than k then Pre(IO(γ1)) ∪ Pre(IO(γ2)) = Pre(IO(γ3)). Now suppose that
length(γ3) = k.

The result clearly holds if γ1 = null (as γ2 = γ3) or γ2 = null (as γ1 = γ3).
We may thus assume that there exists x ∈ X, f1, f2, f3 such that γ1 = (x, f1),
γ2 = (x, f2), and γ3 = (x, f3). Further, for all y ∈ Y , f1(y) and f2(y) are
compatible.

It is sufficient to prove that Pre(IO(γ1)) ∪ Pre(IO(γ2)) = Pre(IO(γ3)). We
will first prove by contradiction that Pre(IO(γ1))∪Pre(IO(γ2)) ⊆ Pre(IO(γ3)).
Suppose there is some 〈x/y〉σ ∈ Pre(IO(γ1)) ∪ Pre(IO(γ2)) \ Pre(IO(γ3))
(x ∈ X, y ∈ Y), then σ ∈ Pre(IO(f1(y)))∪Pre(IO(f2(y))) \Pre(IO(f3(y))).
By the definition of merge, f3(y) = merge(f1(y), f2(y)). By the inductive
hypothesis, since length(f3(y)) < length(γ3), merge(f1(y), f2(y)) is the re-
sult of merging f1(y) and f2(y) and so Pre(IO(f1(y))) ∪ Pre(IO(f2(y))) =
Pre(IO(f3(y))). This provides a contradiction as required.

We will now prove that Pre(IO(γ3)) ⊆ (Pre(IO(γ1)) ∪ Pre(IO(γ2))), also
by contradiction. Let us suppose that there is some 〈x/y〉σ ∈ Pre(IO(γ3)) \
(Pre(IO(γ1)) ∪ Pre(IO(γ2))) (x ∈ X, y ∈ Y). Then σ ∈ Pre(IO(f3(y))) \
(Pre(IO(f1(y)))∪Pre(IO(f2(y)))). By definition of merge, f3(y) = merge(f1(y),
f2(y)). By the inductive hypothesis, since length(f3(y)) < length(γ3), merge(f1(y),
f2(y)) is the result of merging f1(y) and f2(y) and so Pre(IO(f3(y))) =
Pre(IO(f1(y))) ∪ Pre(IO(f2(y))). This provides a contradiction as required.
2

Proposition 14 It is possible to merge adaptive test cases if and only if they
are compatible.

Proof. By Proposition 13, it is possible to merge γ1 and γ2 if they are
compatible. It thus suffices to prove that if γ1 and γ2 can be merged then they
are compatible. Proof by contradiction: suppose that γ1 and γ2 can be merged
but they are not compatible. Let γ3 denote the result of merging γ1 and γ2.

Since γ1 and γ2 are not compatible there exists σ = 〈x1/y1, . . . , xm−1/ym−1〉,
σ〈xm/ym〉 ∈ Pre(IO(γ1)), and σ〈x′m/y′m〉 ∈ Pre(IO(γ2)) with xm 6= x′m.
Now observe that, by definition, σ〈xm/ym〉 ∈ Pre(IO(γ3)) and σ〈x′m/y′m〉 ∈
Pre(IO(γ3)). This contradicts the definition of an adaptive test case, since γ3

must allow two different input values after the input/output sequence σ. The
result thus follows. 2

The following results are immediate consequences of the definitions.

Proposition 15 If γ1, γ2 ∈ T are compatible then γ1 ¹ merge(γ1, γ2) and
γ2 ¹ merge(γ1, γ2).

15

a

b

a

a

a

c
0 1

1

1

1 1

1

0

0

0

0

0

Fig. 5. Adaptive test cases γ1, γ2, and γ3

Proposition 16 If γ1, γ2 ∈ T are compatible then |merge(γ1, γ2)| ≤ |γ1| +
|γ2|.

By merging compatible adaptive test cases it is possible to reduce the number
of adaptive test cases considered.

Definition 19 We say that a set Γ of adaptive test cases is irreducible if no
two elements of Γ are compatible. Otherwise we say that it is reducible.

It will be assumed that any set of adaptive test cases considered is irreducible:
where there are compatible adaptive test cases these are merged before we
determine the order in which the adaptive test cases will be applied in testing.

Observe that given a reducible set Γ of adaptive test cases, there may be
more than one way in which to merge the elements of Γ in order to produce
an irreducible set. To see this, consider the adaptive test cases in Figure 5.
Here we may merge γ1 and γ2 or γ1 and γ3. In each case we are left with two
adaptive test cases that cannot be merged.

Algorithm 2 takes a sequence of n adaptive test cases and returns an irre-
ducible set. In this algorithm, remove(Γ, γj) denotes the set formed from Γ
by removing the element γj.

Algorithm 2 (1) Input Γ;
(2) i=1;
(3) while (i < |Γ|) do
(4) j=i+1;
(5) while (j≤ |Γ|) do
(6) if compatible(γi, γj) then

(a) γi = merge(γi, γj);
(b) Γ = remove(Γ, γj);
(c) For all k with j < k ≤ |Γ|, relabel γk as γk−1;

(7) else j=j+1;
(8) od
(9) i=i+1;

(10) od
(11) Output Γ;

Let us suppose that we are given adaptive test cases γ1 = (x, f1) and γ2 =
(x, f2) that are not compatible but that f1(y) and f2(y) are compatible for all

16

y ∈ Y except for one output yi ∈ Y . When we determine compatible(γ1, γ2)
we first calculate compatible(f1(y1), f2(y1)) for some y1 ∈ Y and if this is true
(i 6= 1) then we next calculate compatible(f1(y2), f2(y2)) for some y2 ∈ Y \{y1}.
This process continues until we calculate compatible(f1(yi), f2(yi)). Thus, the
cost of determining compatible(γ1, γ2) depends upon the order in which we
consider the elements of Y . In order to reason about the relative costs of
applying compatible to different pairs of adaptive test cases we assume that
the order in which the individual values for compatible(f1(y), f2(y)) (y ∈ Y)
are calculated is determined by some fixed ordering 〈y1, . . . , ym〉 of the elements
of Y .

We will now explore the time complexity of Algorithm 2.

Lemma 17 If γ1, γ2 ∈ T are compatible and γ3 = merge(γ1, γ2), the cost
of determining compatible(γ, γ3) is bounded above by the sum of the costs of
determining compatible(γ, γ1) and compatible(γ, γ2).

Proof. By induction on |γ1| + |γ2|. The base case, when γ1 = null and
γ2 = null, follows immediately. Similarly, the result is immediate if either
γ1 = null or γ2 = null.

Inductive hypothesis: the result holds if |γ1| + |γ2| < k (k > 2). Suppose
|γ1|+ |γ2| = k.

Let us consider the case where γ1 = (x, f1), γ2 = (x, f2), γ3 = (x, f3), and
γ = (x1, f). The result clearly holds if x 6= x1 so assume x = x1. There are
now two cases.

Case 1 : compatible(γ, γ3) = true. Then the cost of determining compatible(γ, γi)
(1 ≤ i ≤ 3) is a constant plus the sum of the costs of determining compatible(f(y),
fi(y)) for all y ∈ Y . The result now follows from the inductive hypothesis.

Case 2 : compatible(γ, γ3) = false. Let 〈x1/y1, . . . , xm/ym, x/y〉 ∈ Pre(IO(γ))
and 〈x1/y1, . . . , xm/ym, x′/y′〉 ∈ Pre(IO(γ3)) be the elements first found that
show that compatible(γ, γ3) = false. Then the cost of determining that
compatible(γ, γ3) = false is the sum of:

(1) the sum over the y ∈ Y that are considered before y1 of the cost of
determining that compatible(f(y), f3(y)) = true plus

(2) the cost of determining that compatible(f(y1), f3(y1)) = false.

Observe that for all y ∈ Y that are considered before y1 we must have that
compatible(f(y1), fi(y1)) = true (1 ≤ i ≤ 2). Thus, the cost of determining
compatible(γ, γi) (1 ≤ i ≤ 2) is at least:

(1) the sum over the y ∈ Y that are considered before y1 of the cost of

17

determining that compatible(f(y), fi(y)) = true plus
(2) the cost of determining the value of compatible(f(y1), fi(y1)).

The result now follows by applying the inductive hypothesis. 2

Proposition 18 If the set Γ′ of adaptive test cases is formed from the set Γ
of adaptive test cases through a sequence of applications of merge, then for
any γ ∈ T the total cost of determining compatible(γ′i, γ) for all γ′i ∈ Γ′ is at
most the total cost of determining compatible(γi, γ) for all γi ∈ Γ.

Proof. This follows from Lemma 17 and a simple proof by induction on the
number of applications of merge. 2

Proposition 19 Given a set Γ of n adaptive test cases, Algorithm 2 requires
time in O(n

∑
γ∈Γ |γ|).

Proof. From Propositions 11 and 12 we know that there exist cm, cc > 0 such
that the cost of determining merge(γ1, γ2) is bounded above by cm(|γ1|+ |γ2|)
and the cost of determining compatible(γ1, γ2) is bounded above by cc(|γ1| +
|γ2|).

We can partition the set Γ into subsets ΓM and ΓU such that ΓU contains the
adaptive test cases from Γ that are not merged with other adaptive test cases
when Algorithm 2 is applied. Thus, the application of Algorithm 2 involves the
merging of the elements in ΓM . We will prove that g(Γ, ΓM) = cc(n

∑
γ∈Γ |γ|)+

cm(|ΓM |∑γ∈ΓM
|γ|) is an upper bound of the execution time of Algorithm 2.

We will apply induction on the number of uses of merge in the application
of the algorithm. The base case, where no elements of Γ are merged, follows
immediately from Proposition 11.

Inductive hypothesis: if the application of Algorithm 2 involves less than k
uses of merge (k > 0) then Algorithm 2 requires time at most g(Γ, ΓM).

Suppose the application of Algorithm 2 requires k uses of merge (k > 0). It
is now sufficient to prove that Algorithm 2 requires time at most g(Γ, ΓM).

Suppose that the last pair to be merged in the application of Algorithm 2 is
(γ′i, γj) (i < j) and γ′ = merge(γ′i, γj).

Let Γ′ = {γ′1, . . . , γ′m} denote the set of adaptive test cases, formed from Γ,
immediately before γ′i and γj are merged. We may now compare the time taken
in applying Algorithm 2 to the two sets Γ and Γ\{γj}. There are two possible
effects, on the execution time of Algorithm 2, of the addition of γj to Γ \ {γj}
to form Γ:

(1) The effect on the cost of calculating compatible(γ′i, γj) for all γ′i ∈ Γ′ \

18

{γj}. By Proposition 18 this is bounded above by the cost of determining
compatible(γi, γj) for all γi ∈ Γ \ {γj} which in turn is bounded above by
cc

∑
γ∈Γ\{γj}(|γ|+ |γj|). This is equal to cc((

∑
γ∈Γ\{γj} |γ|)+(

∑
γ∈Γ\{γj} |γj|)

which may be simplified to cc((
∑

γ∈Γ\{γj} |γ|) + (n− 1)|γj|).
(2) The cost of merging γ′i and γj. This is at most cm(|γ′i| + |γj|) which

is less than or equal to cm
∑

γ∈ΓM
|γ| since, by Proposition 16, |γ′i| ≤∑

γ∈ΓM\{γj} |γ|.

Thus, by the inductive hypothesis, the cost of applying the algorithm to Γ is
at most:

g(Γ \ {γj}, ΓM \ {γj}) + cc((
∑

γ∈Γ\{γj}
|γ|) + (n− 1)|γj|) + cm

∑

γ∈ΓM

|γ|

But

g(Γ \ {γj}, ΓM \ {γj}) = cc((n− 1)
∑

γ∈Γ\{γj}
|γ|) + cm(|ΓM \ {γj}|

∑

γ∈ΓM\{γj}
|γ|)

Thus the cost of applying the algorithm to Γ is at most

cc((n− 1)
∑

γ∈Γ\{γj}
|γ|) + cm(|ΓM \ {γj}|

∑

γ∈ΓM\{γj}
|γ|) +

cc((
∑

γ∈Γ\{γj}
|γ|) + (n− 1)|γj|) + cm

∑

γ∈ΓM

|γ|

which may be simplified to

cc(n
∑

γ∈Γ\{γj}
|γ|+ (n− 1)|γj|) + cm((|ΓM | − 1)

∑

γ∈ΓM\{γj}
|γ|+ ∑

γ∈ΓM

|γ|)

Further, cm((|ΓM | − 1)|∑γ∈ΓM\{γj} |γ| +
∑

γ∈ΓM
|γ|) is bounded above by the

term cm(|ΓM |∑γ∈ΓM
|γ|). Thus, the upper bound may be replaced by the

following.

cc(n
∑

γ∈Γ\{γj}
|γ|+ (n− 1)|γj|) + cm(|ΓM |

∑

γ∈ΓM

|γ|)

The result now follows from observing that this is bounded above by g(Γ, ΓM) =
cc(n

∑
γ∈Γ |γ|) + cm(|ΓM |∑γ∈ΓM

|γ|). 2

19

5.2 Independent adaptive test cases

We have seen that the order of the application of adaptive test cases could
be important. However, there may be adaptive test cases in the test suite
used whose relative order is irrelevant. When this is identified, the problem
of determining the optimal ordering may be reduced to that of determining
the optimal ordering amongst the elements within a subset of adaptive test
cases. This breaks up the overall optimisation problem into a set of simpler
problems.

Suppose that we are considering two adaptive test cases γ1 and γ2 with γ1 6¹ γ2

and γ2 6¹ γ1 so that it appears that the relative order of γ1 and γ2 is irrelevant.
However, since ¹ is not transitive, it is possible that there is some γ3 such that
γ1 ¹ γ3 and γ3 ¹ γ2. Thus, in order to define some notion of independence we
generate an equivalence relation from ¹.

Definition 20 The relation ∼ is the transitive closure of the union of ¹ and
its inverse relation. If γ1 ∼ γ2 then we say that γ1 and γ2 are dependent.
Otherwise we say that they are independent and write γ1 6∼ γ2.

Observe that ∼ and 6∼ have an implicit parameter: the set Γ. In Lemma 22
we will prove that if two adaptive test cases are compatible then they are
dependent. The relation ∼ is an equivalence relation and so we may consider
its equivalence classes. Given two equivalence classes Q1 and Q2 if Q1 6= Q2,
γ1 ∈ Q1, and γ2 ∈ Q2, γ1 and γ2 must be independent. It is then possible
to split the set of adaptive test cases used into these equivalence classes and
determine an order of application for the elements of each equivalence class.
This observation may simplify the problem of finding an optimal ordering.

Naturally, the equivalence classes are simply the weakly connected components
of the dependence digraph. Thus, since the weakly connected components of
G = (V, E) may be found in O(|V |+|E|) [19], the following result is immediate.

Proposition 20 The set of equivalence classes of ∼ may be computed in a
time in O(|Γ|2).

Proof. We just have to observe that the number of vertices is |Γ| so that the
number of edges is bounded above by |Γ|2. 2

We have seen two different approaches that simplify the optimization problem:
dividing the set of adaptive test cases into a set of equivalence classes and
merging adaptive test cases where possible. In Theorem 24 we prove that
these approaches do not conflict: by applying one approach we do not reduce
the scope for applying the other.

20

Lemma 21 Given γ, γ1, γ2 ∈ T , if γ = merge(γ1, γ2) and σ ∈ IO(γ) then we
have either σ ∈ IO(γ1) or σ ∈ IO(γ2).

Proof. This follows from Proposition 13 and Definition 18. 2

Lemma 22 If we can merge γ1 and γ2 then γ1 ∼ γ2.

Proof. Suppose that we can merge γ1 and γ2 and let γ = merge(γ1, γ2).

Let σ = 〈x1/y1, . . . , xm/ym〉 ∈ IO(γ). By Lemma 21, σ ∈ IO(γ1) ∪ IO(γ2).
Without loss of generality, σ ∈ IO(γ1). If σ ∈ Pre(IO(γ2)) then γ1 ¹ γ2, and
so γ1 ∼ γ2, as required. Let us now assume that σ 6∈ Pre(IO(γ2)).

Let σ′ denote the longest prefix of σ contained in Pre(IO(γ2)). Thus σ′ =
〈x1/y1, . . . , xk/yk〉 for some k < m. Suppose there is some extension, σ′〈x/y〉
of σ′ in Pre(IO(γ2)). Observe that, since γ1 and γ2 may be merged, by Propo-
sition 14, γ1 and γ2 are compatible. Thus x = xk+1, contradicting the maxi-
mality of σ′. Thus σ′ ∈ IO(γ2) and so γ2 ∼ γ1 as required. 2

Lemma 23 Let γ, γ1, γ2 ∈ T with γ1 6¹ γ, γ 6¹ γ1, γ2 6¹ γ, γ 6¹ γ2, and
γ3 = merge(γ1, γ2), then γ 6¹ γ3 and γ3 6¹ γ.

Proof. We will prove the result by contradiction. There are two cases to
consider.

Case 1 : γ3 ¹ γ. Thus there exists two input/output sequences σ ∈ IO(γ3)
and σ′ ∈ IO(γ) such that σ ∈ pre(σ′). By Lemma 21, σ ∈ IO(γ1) ∪ IO(γ2).
Without loss of generality, we can take σ ∈ IO(γ1). Thus, γ1 ¹ γ, providing
a contradiction as required.

Case 2 : γ ¹ γ3. Thus there exist two input/output sequences σ ∈ IO(γ) and
σ′ ∈ IO(γ3) such that σ ∈ pre(σ′). By Lemma 21, σ′ ∈ IO(γ1) ∪ IO(γ2).
Without loss of generality, we can take σ′ ∈ IO(γ1). Thus, γ ¹ γ1, providing
a contradiction as required. 2

The following result shows that we cannot combine two equivalence classes of
∼ by merging two adaptive test cases.

Theorem 24 Let γi and γj be two compatible adaptive test cases from Γ,
γ = merge(γi, γj), and Γ′ = Γ \ {γ1, γ2} ∪ {γ}. For every equivalence class Q
of Γ under ∼ let Q′ denote the corresponding set of adaptive test cases from Γ′:
if γi ∈ Q or γj ∈ Q then Q′ = Q \ {γ1, γ2} ∪ {γ} and otherwise Q′ = Q. Then
for any two distinct equivalence class Q1 and Q2 of Γ under ∼, no element of
Q′

1 is related to an element of Q′
2 under ∼.

Proof. By Lemma 22, γi and γj are in the same equivalence class of Γ under
∼. There are two cases to consider.

21

Case 1 : γi, γj ∈ Q1 ∪ Q2. Without loss of generality, γi, γj ∈ Q1. Since Q1 is
an equivalence relation of Γ under ∼, no element of Q′

1 \ {γ} is related to an
element of Q′

2 under ∼. Further, by Lemma 23, γ is not related to any element
of Q′

2 under ∼.

Case 2 : γi, γj 6∈ Q1∪Q2. Let Qk denote the equivalence class of Γ that contains
γi and γj. By Lemma 23 no element of Γ′ \ Q′

k is related to any element of
Q′

k under ∼ and so the result follows from Q1 = Q′
1 and Q2 = Q′

2 being
equivalence classes of Γ under ∼. 2

6 Ordering based on the dependence digraph

In this section we will study the problem of finding an ordering based on the
dependence digraph. First we consider the special case where the dependence
digraph G is acyclic. It transpires that in this case an exact solution may be
found in polynomial time.

The following is a useful property of acyclic digraphs.

Proposition 25 If digraph G = (V, E) is acyclic and |V | > 0 then there
exists some v ∈ V such that indegreeE(v) = 0.

Thus, given an acyclic digraph G that represents the relation ¹ for some set
Γ of adaptive test cases, it is possible to choose some γ ∈ Γ such that the
application of another element of Γ cannot lead to γ not being required. Thus,
in choosing an order in which to apply the elements of Γ it is acceptable to
start with γ.

Proposition 26 Let us suppose that the digraph G = (V,E) is acyclic and
v ∈ V . Then the digraph G \ {v} is acyclic.

From this it is clear that if the dependence digraph G is acyclic, then having
chosen some γ ∈ Γ as described above, when γ is removed from Γ the resultant
digraph is acyclic.

Based on these results, we get the following algorithm for the case when ¹
defines an acyclic dependency digraph. This algorithm essentially chooses some
ordering based on a directed acyclic graph (DAG).

Algorithm 3 (1) Input the dependence digraph G = (V, E), where vi ∈ V
represents adaptive test case γi.

(2) Set T = ε, G0 = (V0, E0) = (V, E), k = 0.
(3) While (Vk 6= ∅) do
(4) Choose some vi ∈ Vk such that indegreeEk

(vi) = 0.

22

(5) Set T = T 〈γi〉, k = k + 1, Gk = (Vk, Ek) = Gk−1 \ {vi}.
(6) od
(7) Output T

The following result is clear.

Proposition 27 Algorithm 3 has computational complexity O(|Γ|2).

Thus, when the dependency digraph is acyclic the problem of finding an op-
timal ordering for the adaptive test cases may be solved in polynomial time.

We will now give an algorithm, for the general case where G contains cycles.
This algorithm is also based on the dependence digraph.

Algorithm 4 (1) Input the dependence digraph G = (V, E), where vi ∈ V
represents adaptive test case γi.

(2) Find a feedback arc set A.
(3) Set G′ = (V, E \ A).
(4) Return the result of applying Algorithm 3 to G′.

Note that at step 2, ideally A is the solution to the feedback arc set problem.
However, since this problem is NP-complete, typically we will apply some
heuristic in order to generate a possibly large feedback arc set A. A number
of low-order polynomial time heuristics have been developed (see for example
[4,5]). See [6] for an overview of the feedback arc set problem and some of the
heuristics that have been developed for this problem. It is interesting to note
that this problem is solvable in polynomial time for undirected graphs and
planar graphs [16].

7 Conclusion and discussion

Adaptive test cases are used when testing a state-based system. Where the
implementation under test (IUT) is known to be deterministic, the response of
the IUT to one adaptive test case γ1 may fully determine the response of the
IUT to another adaptive test case γ2. We have introduced a test application
algorithm that utilises this: when the response of the IUT to an adaptive test
case γ is determined by previous tests, γ is not used in testing. It transpires
that, when this algorithms is used, the order in which the adaptive test cases
are applied may affect the expected cost of testing. This paper has considered
the problem of finding an ordering that minimises the expected cost of testing.

The relation, which states when the use of one adaptive test case may lead
to another not being used, has been represented as the dependence digraph.
This paper has shown that while the overall optimisation problem is NP-hard,

23

when the dependence digraph is acyclic the problem may be solved in low order
polynomial time.

By considering the dependence digraph we have applied an abstraction, in
which it is deemed to be sufficient to consider only the relation ¹. When the
dependence digraph is acyclic this abstraction leads to no loss of precision.
However, in general this might throw away some useful information, such as
the expected effort saved by utilising an ordering γ1 ¹ γ2 or the probability
that the response to γ1 actually determines the response to γ2. One natural
way of introducing such information is to weight the edges of the dependence
digraph. However, there may also be dependencies between relations of ¹.
For example, the saving due to having γi2 before γi1 may preclude the saving
due to having γj2 before γj1 and so we lose information if we simply apply
weights to the edges of the dependence digraph. Future work will consider
how additional information may be used when determining the optimal order
of application of a set of adaptive test cases.

We have proved that the optimisation problem is NP-hard and described two
ways of reducing the size of the optimisation problem: by merging adaptive test
cases and by splitting the set of adaptive test cases into a set of equivalence
classes that may be considered separately. We have proved that these two
approaches are practical (they take low-order polynomial time) and they do
not affect one another: merging adaptive test cases cannot lead to equivalence
classes being combined.

This paper has focussed on the case where the IUT is known to be determin-
istic and thus will always respond to an input sequence with the same output
sequence. When the IUT is non-deterministic, it is sometimes possible to make
a fairness assumption: it is assumed that there is some k such that the use of
an adaptive test case k times will lead to all possible responses being observed.
When such an assumption is made, and each adaptive test case is applied k
times, it is possible for the responses of the IUT to one adaptive test case γ1

to be capable of determining the response to another adaptive test case γ2.
An alternative might be to apply a probabilistic argument based on repeated
applications of an adaptive test case. Future work will consider the problem
of finding an optimal ordering of a set of adaptive test cases when the IUT is
non-deterministic.

Acknowledgements

This work was supported in part by Leverhulme Trust grant number F/00275/D,
Testing State Based Systems, Natural Sciences and Engineering Research
Council (NSERC) of Canada under grant number RGPIN976, and Engineer-

24

ing and Physical Sciences Research Council grant number GR/R43150, Formal
Methods and Testing (FORTEST). We would like to thank the anonymous
referees for their valuable comments; these significantly strengthened the pa-
per.

References

[1] H. AboElFotoh, O. Abou-Rabia, and H. Ural. A test generation algorithm
for protocols modeled as non–deterministic FSMs. The Software Engineering
Journal, 8(4):184–188, 1993.

[2] J. Bang-Jensen and G. Gutin. Digraphs: Theory, Algorithms and Applications.
Springer–Verlag, 2001.

[3] T. Bolognesi and E. Brinksma. Introduction to the ISO specification language
LOTOS. Computer Networks and ISDN Systems, 14:25–59, 1987.

[4] P. Eades and X. Lin. A heuristic for the feedback arc set problem. Australasian
Journal of Combinatorics, 12:15–25, 1995.

[5] G. Even, J. S. Naor, B. Schieber, and M. Sudan. Approximating minimum
feedback sets and multi–cuts in directed graphs. Algorithmica, 20:151–174,
1998.

[6] P. Festa, P. M. Pardalos, and M. G. C. Resende. Feedback set problems.
Technical Report 99.2.2, AT&T Labs, 1999.

[7] M. R. Garey and D. S. Johnson. Computers and Intractability. W. H. Freeman
and Company, New York, 1979.

[8] M. J. Harrold, R. Gupta, and M. L. Soffa. A methodology for controlling the size
of a test suite. ACM Transactions on Software Engineering and Methodology,
2(3):270–285, 1993.

[9] R. M. Hierons. Adaptive testing of a deterministic implementation against a
nondetermistic finite state machine. The Computer Journal, 41(5):349–355,
1998.

[10] R. M. Hierons. Testing from a non–deterministic finite state machine using
adaptive state counting. IEEE Transactions on Computers, 53(10):1330–1342,
2004.

[11] R. M. Hierons and H. Ural. Concerning the ordering of adaptive test sequences.
In 23rd IFIP International Conference on Formal Techniques for Networked and
Distributed Systems (FORTE 2003), volume 2767 of Lecture Notes in Computer
Science, pages 289–302, Berlin, Germany, September 29 – October 2 2003.
Springer–Verlag.

25

[12] Joint Technical Committee ISO/IEC JTC 1. International Standard
ISO/IEC 9646-1. Information Technology – Open Systems Interconnection –
Conformance testing methodology and framework – Part 1: General concepts.
ISO/IEC, 1994.

[13] ITU-T. Recommendation Z.500 Framework on formal methods in conformance
testing. International Telecommunications Union, Geneva, Switzerland, 1997.

[14] R. M. Karp. Reducibility among combinatorial problems. In R. E. Miller and
J. W. Thatcher, editors, Complexity of Computer Computations. Plenum Press,
New York–London, 1972. 85–103.

[15] D. Lee and M. Yannakakis. Principles and methods of testing finite–state
machines – a survey. Proceedings of the IEEE, 84(8):1089–1123, 1996.

[16] C. L. Lucchesi. A minimax equality for directed graphs. PhD thesis, University
of Waterloo, Waterloo, Ontario, Canada, 1976.

[17] G. Rothermel and M. J. Harrold. Analyzing regression test selection techniques.
IEEE Transactions on Software Engineering, 22(8):529–551, 1996.

[18] G. Rothermel, M. J. Harrold, J. von Ronne, and C. Hong. Empirical studies of
test-suite reduction. Journal of Software Testing, Verification and Reliability,
12(4):219–249, 2002.

[19] R. E. Tarjan. Depth-first search and linear graph algorithms. SIAM Journal of
Computing, 1(2), 1972.

[20] J. Tretmans. Conformance testing with labelled transitions systems:
Implementation relations and test generation. Computer Networks and ISDN
Systems, 29(1):49–79, 1996.

[21] P. Tripathy and K. Naik. Generation of adaptive test cases from non–
deterministic finite state models. In Proceedings of the 5th International
Workshop on Protocol Test Systems, pages 309–320, Montreal, September 1992.

[22] C. Willcock, T. Deiss, S. Tobies, S. Keil, F. Engler, and S. Schulz. An
Introduction to TTCN-3. Wiley, 2005. New Jersey.

[23] S. Yoo, M. Kim, and D. Kang. An approach to dynamic protocol testing. In IFIP
TC6 10th International Workshop on Testing of Communicating Systems, pages
183–199, Cheju Island, Korea, September 1997. Chapman and Hall, London.

26

