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Abstract  

Evidence is accumulating that climate change is having a significant effect on a wide 

range of organisms spanning the full range of biodiversity found on this planet. This 

study investigates the ecological role of climate change, the North Atlantic Oscillation 

(NAO) and habitat change on British insect populations. Despite the NAO having a 

considerable effect on British weather, the role of the NAO on British insects has not 

previously been studied in great detail. The World‟s two best entomological time 

series datasets were used – the United Kingdom Butterfly Monitoring Scheme 

(UKBMS) and the Rothamsted Insect Survey of aphids – both surveys with very 

large sample sizes and high quality data.  

Summary of main findings: 

1. Warm weather associated with a positive NAO index caused the spring 

migration of the green spruce aphid (Elatobium abietinum), a pest species of 

spruce trees (Picea) to start earlier, continue for longer and contain more 

aphids. An upward trend in the NAO index during the period 1966-2006 is 

associated with an increasing population size of E. abietinum.  

 

2. The NAO does not affect the overall UK butterfly population size. However, 

the abundance of bivoltine butterfly species, which have a longer flight 

season, were more likely to respond positively to the NAO compared to 

univoltine species, which show little or a negative response.  

 

3. A positive winter NAO index was associated with warmer weather and earlier 

butterfly flight dates. For bivoltine (two generations in a year) species, the 

NAO affects the phenology of the first generation, and then the timing of the 

second generation is indirectly controlled by the timing of the first generation. 

The NAO influences the timing of the butterfly flight seasons more strongly 

than it influences population size.  

 

4. Butterfly data from Monks Wood National Nature Reserve in Cambridgeshire 

showed that the NAO does not affect the abundance of the whole butterfly 

community, but it does affect the population size of some species. The NAO 
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does not affect butterfly diversity, but there were decreases in butterfly 

diversity and number of species with time.  

 

5. The total number of butterflies counted at Monks Wood was constant for most 

of the time series. However, the population size of the ringlet (Aphantopus 

hyperantus) increased from very low numbers to more than half the total 

number of butterflies counted each year. Therefore the total population size of 

all the other species has decreased considerably.  

 

6. The NAO was more important than climate change in determining the flight 

phenology of the meadow brown butterfly (Maniola jurtina) at Monks Wood. 

 

In conclusion, the NAO affects the abundance of some species of British butterfly, 

and an aphid species, with a stronger effect on the timing of flight rather than 

abundance. There was evidence for a long-term decrease in the biodiversity of 

butterflies at Monks Wood and this decrease is likely to continue. 
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Chapter 1 

Introduction 

 

1.1 Overview 

 

Britain has a temperate maritime climate warmed by the Gulf Stream. The climate is 

subject to long term change due to changes in the composition of gases, including 

carbon dioxide, methane, nitrous oxides and aerosols in the atmosphere, which are 

causing changes in radiative forcing. The climate is also subject to shorter term 

fluctuations caused by the North Atlantic Oscillation (NAO). 

 

Carbon dioxide is one of the main greenhouse gases that are responsible for the 

warming, and the rate of increase in atmospheric concentration of this gas is 

accelerating. Projected temperature increase due to climate change by 2100 AD for 

most of Europe is in the range 4 to 8°C and for the Arctic Ocean is >10°C. Projected 

temperature increases for the UK may be slightly lower, in the range of 2-6°C. 

 

The NAO has a considerable influence on the weather over a large geographical 

area, including the North Atlantic, Europe, Mediterranean, Scandinavia and the UK. 

The NAO controls the route taken by depression systems crossing the Atlantic, 

thereby influencing the temperature and precipitation in the UK, especially during the 

autumn and winter months. The NAO is described by an NAO index, which is 

calculated from air pressures in Iceland and a location within the Azores high 

pressure area. 

 

Climate change appears to be having an increasing effect on the ecology of 

organisms, including changes to distribution and phenology. Less has been 

published regarding the ecological effects of the NAO, although there is evidence 

that the NAO affects a range of different groups of organisms. 

 

Increasing atmospheric carbon dioxide concentrations can have other ecological 

effects on invertebrates through changing the carbon to nitrogen ratios in plants. A 

reduced proportion of nitrogen in plants can reduce their nutritional value to insects. 
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Carbon dioxide can dissolve in seawater to cause ocean acidification. There are very 

few marine insect species however there are potentially severe consequences for 

other invertebrates as the acidification affects the ability of corals and molluscs to 

produce carbonate based skeletons and shells.  

 

The ecological effects of climate change are already apparent and with projected 

increases in atmospheric carbon dioxide concentrations the effects of ocean 

acidification on marine biodiversity are likely to be apparent by 2030-2050 so the 

need for meaningful reductions in the production of greenhouse gases is urgently 

needed. There are attempts to reduce carbon dioxide emissions through 

international agreements, technological developments and public pressure. 

However, it is uncertain whether any meaningful reduction in emissions will be 

achieved as the global human population size is increasing rapidly and more people 

means more pressure to burn fossil fuels. 

 

UK insect populations are also responding to changes in land management, 

including changes in forestry and livestock grazing, pressures from introduced 

organisms, diseases and air pollution. While some new insect species have 

colonised the UK recently, the overall pattern is one of a decrease in insect 

abundance and there is evidence that this decrease is also found in some non-insect 

invertebrate groups. It is likely that this decrease in insect population size is 

contributing to a reduction in population size of insectivorous organisms.  

 

1.2 Factors influencing the UK weather 

 

The UK has a temperate maritime climate, which means that its latitude and the 

surrounding sea reduce the extremes of weather that might be encountered further 

into mainland Europe, where continentality causes the weather to be more extreme. 

UK weather is influenced by the Gulf Stream (O‟Hare, 2011), which is part of the 

thermohaline circulation that brings considerable amounts of heat energy to the 

North Atlantic. Westerly winds then carry this warmth and evaporated water into the 

UK and Western Europe, which causes winters to be warmer and wetter than would 

be expected for this latitude (Ahrens, 2000). For example, winter weather at the 
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same latitude on the eastern coast of the USA, which is not warmed by the Gulf 

Stream, is much colder. 

 

UK climate is also affected by climate change and the North Atlantic Oscillation 

(NAO). Climate change is caused by a range of substances that are mainly of 

anthropogenic origin and most of which are gases, which cause radiative forcing 

resulting in meteorological changes, including an increase in temperature. The NAO 

is an oscillatory weather system, causing changes in temperature and precipitation 

across the North Atlantic region and surrounding continental areas, including the UK. 

 

1.3 Atmospheric radiative forcing 

 

Radiative forcing is the difference in the solar energy that comes down to the Earth 

and its atmosphere compared to the amount of energy that leaves – if more energy 

comes in than leaves, due to a change in atmospheric concentration of greenhouse 

gases, then temperatures increase and climate change is occurring. Radiative 

forcing is measured in Wm-2 (IPCC, 2007). Solomon et al. (2007) lists eighteen 

greenhouse gases including carbon dioxide, methane, nitrous oxide and the 

Montreal gases, which include chloroflurocarbons. Anthropogenic sources of 

greenhouse gases include: carbon dioxide from burning fossil fuels, deforestation 

and cement manufacture; methane sources include agriculture, landfill and leaks 

from natural gas distribution; nitrous oxides come from the burning of fossil fuels and 

fertilisers; chloroflurocarbons used in refrigerators. The Montreal gases are now 

subject to control through the Montreal Protocol and there has been negligible 

change in their atmospheric concentrations between 1998 and 2005 (Table 1.1; 

Solomon et al., 2007).  Water vapour is an important greenhouse gas, but there is no 

direct human control over emissions. Other factors that reduce radiative forcing, 

include some aerosols and the reflection of heat by ice and clouds (Figure 1.1).  

 

Figure 1.1 gives an indication of the relative magnitude of the effect of different 

substance on radiative forcing, and also indicates whether they increase or decrease 

global temperature. Table 1.1 takes four of the most important greenhouse gases – 

carbon dioxide, methane, nitrous oxide and the Montreal gases - and puts their 

radiative forcing in to context with changes in their atmospheric concentrations. 
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1.4 Greenhouse gases causing climate change 

.  

The atmospheric concentrations of carbon dioxide, methane and nitrous oxide have 

been fairly constant from the years 0 to 1800 AD (Solomon et al., 2007). However, in 

the last two hundred years, the atmospheric concentration of carbon dioxide has 

increased by 35%, methane by 157% and nitrous oxide by 19% (Figure 1.2). The 

increase in concentrations of these gases is associated with human population 

growth, industrialisation and agriculture.  

 

Carbon dioxide is now regarded as the most important greenhouse gas as it causes 

more radiative forcing than the other gases, and also because it has increased from 

pre-industrial concentrations of about 280 ppm (Solomon et al., 2007) to over 390 

ppm in 2011 (Figure 1.3; Tans, 2011). The annual rate of increase in atmospheric 

carbon dioxide concentration has doubled during the period 1959-2010 and appears 

still to be increasing (Figure 1.4), with the current rate of increase at slightly more 

than 2 ppm year-1. This includes a 29% increase in emissions from fossil fuels 

between 2000 and 2008 (Le Quéré et al., 2009). The slowing in the rate of increase 

of the atmospheric carbon dioxide concentration in the early 1990s was partly due to 

an economic recession (Connor, 2010). Shepherd (2009) suggests that atmospheric 

carbon dioxide concentrations will exceed 500 ppm by the middle of this century and 

be approaching 1000 ppm by 2100.  

 

Although carbon dioxide is the most important greenhouse gas, Table 1.1 suggests 

that nitrous oxides may increasingly contribute to climate change as a smaller 

increase in atmospheric nitrous oxide concentration than carbon dioxide 

concentration has produced a similar percentage change in radiative forcing. 

Increasing fertiliser use or increasing combustion of fossil fuels associated with an 

expanding human population has the potential to increase the atmospheric 

concentration of nitrous oxides. 
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Figure 1.1. Global average radiative forcing (RF) components in 2005 compared to 
1750 (pre-industrial) for carbon dioxide, methane and nitrous oxide. LOSU means 
level of scientific understanding (IPCC, 2007). 
 
 

 

 
Table 1.1. Some of the greenhouse gases, their change in atmospheric 
concentration and radiative forcing. Note change between ppm and ppb. ND = no 
data.  Adapted from Solomon et al. (2007). 
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Figure 1.2. Changes in atmospheric concentrations of carbon dioxide, methane and 
nitrous oxide during the last 2000 years (Solomon et al., 2007). 
 
 

 

Figure 1.3. Mean annual atmospheric carbon dioxide concentration between 1959 
and 2010 at Mauna Loa Observatory, Hawaii. Plotted by AWS using data from Tans 
and Keeling (2011). 



7 

 

 

Figure 1.4. Annual rate of increase in atmospheric carbon dioxide concentration 
between 1959 and 2010 at Mauna Loa Observatory, Hawaii. Graph includes a linear 
trendline. Plotted by AWS using data from Tans and Keeling (2011).  
 

 
 
Figure 1.5. Human population growth for the World, less developed countries and 
more developed countries. Adapted by AWS from National Statistics (2005). 
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Human population size is increasing rapidly (Figure 1.5) and is expected to reach 

over 9 billion people by 2050 (United Nations Population Division, 2009), which 

would be a 50% population growth in 45 years, although the rate of growth may slow 

during the 21st century (US Census Bureau, 2011). The increase in atmospheric 

carbon dioxide concentration is associated with human population growth (Figures 

1.2, 1.3, 1.4 and 1.5). Most of the population growth is in less developed countries, 

and as the populations of some of these countries gain in wealth, they may buy more 

fossil fuel powered products, such as cars, and also use more nitrogenous fertilisers 

for agriculture, so it is likely that the atmospheric concentration of greenhouse gases 

will continue to increase.  

 

It is difficult to see any credible means of controlling greenhouse gas emissions with 

such a large predicted population increase. Trenberth (2011) suggests that the 

actions needed to „decarbonise the economy‟ are so „revolutionary as to be highly 

unlikely to be achieved‟ and Lovelock (2006), suggests that working to control the 

quality of the atmosphere suitable for life would be difficult and could become 

impossible. Melton (2011) is slightly more positive, suggesting that the use of 

renewable energy sources would increase if they were cheaper than fossil fuels, and 

that to achieve this financially would require economies of scale. „Health co-benefits‟ 

might in part compensate for the costs of dealing with climate change. For example, 

healthcare costs could be reduced by more cycling and walking which would reduce 

the number of patients with heart disease and more fuel efficient stoves would 

reduce premature deaths from air pollution in India (Ganten et al., 2010; Roberts and 

Stott, 2010).  

 

1.5 Aerosols 

 

Atmospheric aerosols can be naturally present in the atmosphere (e.g. sea salt or 

dust) or be of anthropogenic origin (e.g. soot, or black carbon produced by 

combustion) and they can affect the amount of energy passing through the 

atmosphere by reflecting or absorbing radiation or by acting as condensation nuclei, 

thereby causing cloud formation. These clouds can then reflect radiation back into 

space and change precipitation patterns. So while some aerosols reduce, and some 



9 

 

increase, radiative forcing, the overall effect of all aerosols is to reduce radiative 

forcing. However, the pattern can be complex as aerosols are much less equally 

distributed around the World and can be removed from the atmosphere much more 

quickly than greenhouse gases (Earth System Research Laboratory, 2011). 

Lovelock (2006) comments that aerosol pollution is keeping the Earth cool by 

reflecting solar energy, but that this is dependent on pollution sources and is a 

transient protection from extreme heat, with the potential to disappear relatively 

quickly – he suggests in days – if the pollution sources are removed.  

 

Atmospheric black carbon is an aerosol that has the effect of absorbing solar energy 

and causing warming (Earth System Research Laboratory, 2011). In Lithuania, 

atmospheric black carbon was found to be more concentrated during the period 

October to April due to domestic heating, although black carbon also comes from 

road traffic and wildfires (Bycenkiene et al., 2011). Atmospheric black carbon has 

been decreasing in the UK since the 1960s, in part due to less domestic coal fires, 

although since the 1990s this decrease has been partly offset by increasing use of 

diesel cars (Novakov and Hansen, 2004). Therefore the atmospheric concentration 

of black carbon varies with time, both on an annual and a multi-decadal pattern, and 

as a result radiative forcing will change. Will future changes in black carbon 

concentrations result from the introduction of diesel particulate filters in car exhausts 

and will this slightly reduce the rate of climate change? 

 

Aerosols can have other ecological effects. For example, Chameides et al. (1999) 

showed that in China aerosol haze can reduce solar radiation reaching crop plants, 

reducing yield by between 5 to 30%. Air quality control might increase agricultural 

production to meet the increasing demand for food, but improved air quality could 

increase the rate of local climate change, as less heat would be reflected. 

 

1.6 The projected scale of global climate change 

 

Climate change is expected to result in different temperature increases in different 

locations during the 21st century: the Atlantic and Pacific oceans are expected to 

increase by up to 4°C; most continental areas (Europe, Asia, Africa, USA and 

Antarctica) by 4-8°C; the tundra area of northern Canada and Russia increasing by 
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8-10°C; the Arctic Ocean by 10+°C. The tropical rainforest area of Brazil in the River 

Amazon basin is also predicted to increase by 10+°C (Hadley Centre, 2003, 

reproduced in Gregory, 2011). As this is an area of high species diversity, including 

insect diversity, the consequences might be severe. High temperature increases are 

predicted for Arctic areas, partly due to snow and sea ice melting (Perovich and 

Richter-Menge, 2009), as demonstrated by a record minimum sea ice extent in 2007 

(Turner and Overland, 2009) and therefore reduced albedo (Notz, 2009), so less 

heat will be reflected.  Stendel et al. (2008) predict that specific areas along the 

eastern coast of Greenland will increase by 18°C as a result of the retreat of sea ice. 

 

Temperature change on this scale may have serious ecological and humanitarian 

consequences (Lowe et al., 2006). Bale and Hayward (2010) suggest that climate 

change could raise summer temperatures in Europe to 40+°C in 50-75 years, which 

is close to the upper lethal temperature limit for some insects. Lovelock (2006) 

presents an extreme example, suggesting that climate change will turn large areas of 

tropical land into scrub and desert, so reducing land available for food production. 

This scenario might lead to a grim situation of attempting to keep agriculture going 

as long as possible, followed by a societal breakdown and then 80% of the World‟s 

human population dying by the end of the 21st century (J. Lovelock quoted in 

Aitkenhead, 2008). A considerable reduction in the human population has the 

potential to reduce further emissions of greenhouse gases and allow the restoration 

of ecosystems, although Lovelock (2006) says the recovery might be slow, with a 

timescale of 100000 years. 

 

1.7 Climate change in the UK 

 

Figure 1.6 shows how mean annual temperature has increased in the UK from about 

9.1°C in 1900 to about 10.3°C in 2009. The trend has not been constant throughout 

this time period, with considerable annual variation and a period of cooling during the 

1950s and 1960s, which might have been due to aerosol pollution. Temperatures are 

expected to continue to increase, with Woodward et al. (2010) giving a range of 

mean annual temperature rises for Ireland, starting in the year 2000 with a mean of 

approximately 9.6°C, then rising to between 10.5°C and 17°C by 2100 based on a 

range of atmospheric carbon dioxide concentrations between 520 ppm and 920 ppm. 



11 

 

These different carbon dioxide concentrations are based on different predictions of 

human population growth, economic growth and use of clean technologies. The 

temperature increase predictions in Woodward et al. (2010) are corroborated by 

Solomon et al. (2007), who predict that northern European temperatures will 

increase by between 2 and 6°C by 2100. 

 

 

 
 
Figure 1.6. Mean annual temperature rise in England between 1900 and 2009 (r2 = 
0.2371, r = 0.480, P = <0.001) Plotted by AWS from Central England Temperature 
Series data. 
 
 
1.8 The North Atlantic Oscillation 

 

The North Atlantic Oscillation (NAO) has a considerable influence on the weather 

over a large geographical area (Figure 1.7) covering the North Atlantic, Scandinavia, 

the Mediterranean basin, North Africa, North America and Greenland (Mehta et al., 



12 

 

2000 and Nesje et al., 2000). The NAO affects the flow rate of the Euphrates and 

Tigris Rivers (Cullen and deMenocal, 2000) and the Indian monsoon (Kakade and 

Dugam, 2000). 

 

The North Atlantic Oscillation is described by the NAO index, which is calculated 

from air pressures in Iceland and a location within the Azores high pressure region. 

The southern pressure data can come from the Azores, Lisbon or Gibraltar, with the 

exact choice of location being of little importance (Osborn, 2000). The present study 

uses NAO indices from the Climate Research Unit (CRU) at the University of East 

Anglia, UK (Climate Research Unit, 2004 and Osborn, 2010). CRU NAO indices are 

calculated from air pressure data from Iceland and Gibraltar (Climate Research Unit, 

2004). 

 

A positive NAO index is associated with depression systems taking a more northerly 

route across the Atlantic, resulting in warmer and wetter autumn and winter weather 

in the British Isles, whereas a negative NAO index is associated with the depression 

systems travelling along a more southerly route across the Atlantic, resulting in 

colder and drier conditions in north-west Europe (Hurrell, 1995 and Osborn, 2000). 

During high, positive, NAO index winters the westerly winds in Europe are over  

8 ms-1 stronger than low NAO index winters (Hurrell, 1995). Weaker westerly winds 

associated with a negative NAO index allow colder northerly winds to dominate over 

northern Europe (Edwards et al., 2001). 

 

The NAO causes contrasting weather in different regions, so a positive NAO index is 

associated with wet weather in north-west Europe and relatively dry weather in the 

Mediterranean, and a negative NAO index results in the UK being drier, but the 

Mediterranean wetter. A negative NAO results in cold weather in northern Europe, 

and south-east USA and warm weather in southern Greenland. Therefore there are 

oscillations in weather between both sides, and between higher and lower latitudes, 

on both sides of the North Atlantic (Figure 1.7). 
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Figure 1.7. Meteorological effects associated with a positive (NAO+) and a negative 
(NAO-) NAO index. (Provided to AWS in 2002 by S. Leroy. Originally from CLIVAR, 
Climate Variability & Predictability, World Climate Research Programme). 
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1.9 Calculation of the NAO index 

 

1.9.1 Calculation of monthly NAO indices from air pressure data 

 

The CRU NAO index is calculated using monthly average air pressures in Gibraltar 

and Iceland. T. Osborn of the Climate Research Unit at the University of East Anglia 

gave me instructions on this calculation. I have used this equation to calculate 

monthly NAO indices from monthly air pressure data, and confirmed that the 

calculations were correct by checking the calculated NAO indices with the published 

NAO indices. 

 

NAO index      =  PGnormalised  –  PInormalised 

 
 
NAO index      =  PG – PGmean    –    PI – PImean 

            PGSD              PISD 
 
 

PG  = Mean air pressure for any one specific month in one specific  

   year. 

 

PGnormalised  = Gibraltar normalised air pressure for any one specific month in 

   one specific year. 

 

PGmean           = Gibraltar mean monthly air pressure for the years 1951 – 1980. 

   Calculated for January, February, March, etc. 

 

PGSD  = Gibraltar standard deviation of monthly air pressures for the  

   years 1951 – 1980. Calculated for January, February, March,

   etc. 

 

PI, PInormalised, PImean and PISD are the same as for PG, but instead of Gibraltar they 

refer to Iceland, hence the letter „I‟ instead of „G‟.  
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1.9.2 Calculation of seasonal NAO indices 

 

It is possible to calculate NAO indices for any group of months or a year. The most 

useful NAO indices are the winter NAO index calculated as a mean of the NAO 

indices for January, February and March and the extended winter NAO index for 

December, January, February and March. The winter NAO index has the advantage 

that it avoids temporal overlap of data in calculations – for example, a correlation 

calculated between the extended winter NAO index and mean annual temperature 

data, where the December NAO index involved in calculating the extended winter 

NAO index describes the NAO that is controlling temperature in December of the 

previous year.  

 

 

 

Figure 1.8. The winter NAO index between 1900 and 2009. 

 

Figure 1.8 shows the winter NAO index between 1900 and 2009. Edwards et al. 

(2001) suggest that „a large part‟ of the warming trend during the 1990s was due to 

the winter NAO index becoming more positive rather than just due to an increase in 

greenhouse gases. There is also evidence that temperatures were lower (Figure 1.6) 

during the period 1960 to the late 1980s, when the winter NAO index was lower. 

However during the period 1900-1930, temperatures were lower than during the 

period 1990-2009, although the NAO was approximately the same, so it appears that 

there is an interaction between climate change and the NAO in influencing 

temperature. 
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Figure 1.9 shows the association between the winter NAO index and mean annual 

temperature from the Central England Temperature Series, with more positive NAO 

indices associated with higher temperatures.  During the period 1900-2009, the 

winter NAO index was associated with 21.8% of the variability in temperature. 

Coefficients of determination (and correlation coefficients) are vulnerable to changes 

in the time window examined, with the percentage of the variability in temperature 

associated with the winter NAO rising to 30.2% for the period 1966-2009, which is 

the range of years used in the present study. For comparison, a coefficient of 

determination for changing temperature with time (Figure 1.6) used as a proxy for 

climate change is 23.7% for 1900-2009 and 39.1% for 1966-2009. Therefore both 

climate change and the NAO have a considerable influence on temperature, with the 

NAO having a relative affect to climate change of about 77-92%. 

 

 

 
Figure 1.9. Mean annual temperature from the Central England Temperature Series 
plotted against the winter NAO index. Data for the years 1900-2009. (r2 = 0.2178, r = 
0.467, P = <0.001). 
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1.10 The effect of climate change on organisms 

 

1.10.1 Climate change and insects 

 

Climate change appears to be affecting the flight phenology of social hymenoptera. 

Sparks et al. (2010) have investigated changes in the timing of honeybee (Apis 

mellifera L.) first cleansing flight (when faeces are removed) in Poland. During the 

period 1985 to 2009, the timing of the first cleansing flight advanced by over one 

month. An earlier first cleansing flight was associated both with higher January to 

March temperatures and higher June to September temperatures in the previous 

year. Higher temperatures during the previous summer result in larger colonies 

which stay warmer during the winter, which means that brood rearing can occur and 

more food is consumed, resulting in more faecal waste that needs eliminating 

sooner. Tryjanowski et al. (2010) investigated the influence of climate change on two 

social wasps – Vespula germanica (Fabricius) and V. crabro (L.) – and found that V. 

germanica workers appeared up to 26 days earlier over the period 1981 to 2009, but 

V. crabro workers and queens of both species had not advanced their flight dates. 

Explanations for the different responses to temperature increases may include sex-

specific cooling mechanisms, as well as a role of light intensity in controlling wasp 

activity. There was also some evidence that warmer weather in April caused an 

earlier flight season, but higher precipitation in April delayed the flight season.  

 

Aphids are a group of insects that are especially well studied as many of them are 

agricultural pests. Climate change is causing the green peach aphid (Myzus persicae 

Sulzer) (Harrington et al., 2007) and the green spruce aphid (Elatobium abietinum 

Walker) (Westgarth-Smith et al., 2007), to fly earlier. Climate change may lead to 

increases in aphid pests of Ribes (L.) crops in the UK, through increased over-

wintering survival and longer seasonal activity, a problem which may be exacerbated 

by increased cropping densities and stricter pesticide restrictions (Mitchell et al., 

2011). Increased atmospheric carbon dioxide concentrations can influence insect 

herbivory of plants, including by increasing the carbon to nitrogen ratio (Holopainen, 

2002). Hence, cotton aphids (Aphis gossypii Glover) produce more honeydew in a 

higher carbon dioxide environment, as they need to ingest more phloem sap to 

obtain sufficient amino acids (Sun et al., 2009). The Chinese lacewing (Chrysopa 
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sinica Tjeder) is a predator of Aphis gossypii and higher carbon dioxide 

concentrations affect C. sinica by increasing the larval development rate and 

reducing predatory ability (Gao et al., 2010). 

 

A mountain species can be trapped by altitude, as they may be unable to move 

northwards to track climate change because the low lying areas between the 

mountains are too warm, and becoming warmer. If insects are unable to move to 

track climate change, then factors that enable them to thermoregulate and survive 

the temperature increase become important (Turlure et al., 2010). Vegetation type 

can have a role in maintaining a constant thermal environment, for example 

hummocks of Sphagnum (L.) moss are used in Belgium by the glacial relict 

cranberry fritillary butterfly (Boloria aquilonaris Stichel), which has reduced larval 

survival at higher temperatures. Hummocks of Sphagnum are more thermally 

buffered than Polytrichum (Hedw.) moss. The surface temperature of both species of 

moss ranged from 5°C to 30°C through the day, but at 30 cm depth, Sphagnum 

provided a stable thermal environment of 12°C, whereas at 30 cm depth under 

Polytrichum the temperature ranged from 8-18°C. It appeared that the larvae were 

more abundant in Sphagnum hummocks that were more thermally buffered. Thermal 

buffering was higher in more humid conditions and lower nearer trees, because trees 

resulted in drier conditions. Peat bogs can gradually change into heathlands through 

succession, and this process might accelerate as a result of climate change. Climate 

change may require the butterfly larvae to go further into the hummocks, as thermal 

buffering will decrease due to less water as well as ambient temperatures increasing. 

Therefore habitat management to maintain populations of B. aquilonaris would 

involve maintaining early successional stages that are relatively wet (Turlure et al., 

2010). This example illustrates the complex associations between climate change 

and responses of animals to that change. These responses may not be easy to 

predict with any degree of confidence. 

 

Mountains are good environments in which to investigate the effects of climate 

change, as changes in temperature with altitude can act as models for climate 

change. The mountain specialist butterfly, Parnassius apollo (L.), uses more open 

habitats at higher altitudes in mountains in central Spain as open microhabitats were 

warmer, and this compensates for the lower temperatures found at higher altitude. 
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Climate change may cause habitat heterogeneity to be important for the 

conservation of P. apollo, as it will provide greater opportunities for larval 

thermoregulation as well as protecting against changes in food plant availability.  

Increasing altitude also caused a 5.3 – 7.0 day delay in phenology per 100 m 

increase in altitude (Ashton et al., 2009). Wilson et al. (2005) have shown that the 

lower elevational limit for 16 Spanish mountain butterfly species has risen by an 

average of 212 m in a 30 year period. During this 30 year period, the temperature 

increased by 1.3°C, which was equivalent to an altitude increase of 225 metres. This 

increase in altitude reduces the area of land available to the butterflies by about a 

third, with the prediction of a 50-80% loss during the 21st century. 

 

There is an association between altitude and the number of generations that an 

insect is able to complete. Rhagoletis pomonella (Walsh) (the apple maggot, Diptera: 

Tephritidae) is a pest of apples in the Southern Appalachian Mountains in Carolina, 

USA. At altitudes of more than 630 metres, R. pomonella was univoltine, with most 

of the adult activity restricted to two months, whereas at altitudes of 300 metres R. 

pomonella was bivoltine, with adults active for five to six months (Meck et al., 2008). 

  

Butterfly mating behaviour is temperature sensitive, so climate change may cause 

important behavioural changes. For example, male small copper butterflies (Lycaena 

phlaeas daimio L.) in Japan use both patrolling and perching mate-location 

strategies. Patrolling involves flying over a large area searching for females, whereas 

perching involves remaining stationary and waiting for a female to fly past. Patrolling 

was more common in high light intensity conditions, whereas perching appeared 

more independent of environmental conditions, so the chasing of insects increased 

when light intensity was highest. In cool weather the thoracic temperature of 

patrolling males was lower than perching males, so it appears that patrolling can 

increase heat loss whereas perching allows for easier heat regulation through 

basking. Although patrolling is used by males less frequently in colder weather, it can 

also become a more successful mating strategy as colder weather reduces the flight 

activity of females, so a perching male may encounter less females than a patrolling 

male (Ide, 2010). Consequently, climate change might result in patrolling behaviour 

being a more frequent mate finding strategy than perching. 
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More butterflies have the northern limit of their distribution in the UK - there are only 

four British butterfly species that have the southern limit of their geographical range 

in the UK, and therefore might decline as climate change causes the southern limit of 

their range to move northwards or increase in altitude. These species are the large 

heath (Coenonympha tullia Müller), Scotch argus (Erebia aethiops Esper), mountain 

ringlet (Erebia epiphron Knoch) and northern brown argus (Aricia artaxerxes 

Fabricius). Although all four species have declined due to habitat loss, only the 

Mountain Ringlet has disappeared from low altitude sites while remaining present at 

high altitudes (Thomas, 2010). 

 

Isaac et al. (2011) have attempted to predict the abundance of UK butterfly species 

in 2080 by assuming that UK temperatures increase by 2.8°C in northern England 

and 3.6°C in southern England. They predicted that out of 45 butterfly species, 9 

species would increase in numbers and 36 species would decline, with over half the 

species declining by more than 50%. They also suggest that the total number of 

butterflies will increase by 21%, with the meadow brown (Maniola jurtina L.) likely to 

make up half of all butterflies recorded by the UKBMS as a result of a predicted 68% 

increase in abundance. In contrast, Roy et al. (2001) suggested that climate change 

will result in only one species declining - the large white (Pieris brassicae L.) – and 

other species increasing or remaining stable, but Isaac et al. (2011) suggested that 

P. brassicae will increase by 15.8%. Therefore the most important message from 

both Roy et al. (2001) and Isaac et al. (2011) seems to be that butterfly population 

changes due to climate change are likely, and could be considerable, but that 

predicting which species will benefit, and which will not, is currently difficult. Potential 

sources of discrepancy include Isaac et al. (2011) using data for just England 

whereas Roy et al. (2001) used data for all of Britain - although there are relatively 

few UKBMS sites in Scotland and Wales. There were also different time windows in 

the two studies, with Roy et al. (2001) using fifteen years of data from 1976-90 and 

Isaac et al. (2011) apparently basing their analysis on five years of data from 2002-

2006. It is also arguable that both papers are trying to analyse too many species 

without looking closely at the biology of individual species. Furthermore, neither 

paper considered habitat changes associated with changing climate. 
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Distribution maps plotted using NBN Gateway data (National Biodiversity Network, 

2011a) can be used to show changes in distribution due to climate change. Species 

with a nationwide distribution need more than about 300000 records to form a clear 

map (pers. obs.), although species with a more restricted distribution can be plotted 

with less data. For example, the northern range boundary of the comma butterfly 

(Polygonia c-album L.) in the UK has moved northwards, probably in response to 

climate change (Figure 1.10). However, an associated increase in population size 

may not occur if there has also been a decrease in habitat quality. For example, 

Asher et al. (2001) say that the large skipper butterfly (Ochlodes venata Bremer and 

Grey) has increased in range, but there has been a decline in the area of suitable 

habitat within this range, due to agricultural intensification and hedgerow removal, 

with a reduction in suitable flight area for O. venata in Wales by over 70% since 

1901.  

 

However, not all species appear to move geographically to track climate change. For 

example, the black hairstreak butterfly (Satyrium pruni L.), which has a very 

restricted distribution in the UK, has not shown a distributional change that might be 

associated with climate change although there has been a decrease in the number 

of sites (Figure 1.11). This suggests that there is a considerable variation in the 

ability to move and track climate change between butterfly species, which might 

make S. pruni more vulnerable to extinction than P. c-album. Lawton et al. (2010) 

point out that not all species will be able to move at the same rate that weather 

patterns move, due to limits in their dispersal ability, geographical barriers or 

because other organisms which act as food sources or breeding sites are unable to 

keep pace with climate change. 

 

Therefore, each species has a range of climatic conditions that it can live within, and 

hence as the climate changes the species may either move to remain within the right 

climatic conditions or if they cannot move, they could become endangered or extinct 

as the climate becomes unsuitable. Parmesan (2008) points out that this creates an 

important practical conservation issue as it is quite possible that many nature 

reserves will no longer have the climate conditions for the species that they were 

originally established to conserve and „a nation‟s carefully planned reserve system 

will not work as intended‟.  
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Figure 1.10. The apparent effect of climate change on the distribution of the comma 
butterfly (Polygonia c-album) at a 10 km square resolution in Great Britain and 
Ireland. Black squares are all records up to 1990 and grey squares are all records up 
to 2011. Illustration prepared by AWS using data from the NBN Gateway (National 
Biodiversity Network, 2011a). © Crown copyright. All rights reserved NERC 
100017897 2004. 
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Figure 1.11. The distribution of the black hairstreak butterfly (Satyrium pruni) at a 10 
km square resolution in Great Britain and Ireland. Black squares are all records up to 
1990 and grey squares are all records up to 2011. Illustration prepared by AWS 
using data from the NBN Gateway (National Biodiversity Network, 2011a). © Crown 
copyright. All rights reserved NERC 100017897 2004. 
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1.10.2 Climate change and other organisms 

 

Climate change affects the phenology, or timing, of biological events. Climate 

change has resulted in the advance of the timing of the spring migration of eight 

wading bird species in the Czech Republic and Slovakia. However, changes in the 

timing of the autumn migration was more variable with three species advancing their 

migration, three species delaying their migration and two species did not change the 

timing of their migration (Adamik and Pietruszkova, 2008). Todd et al. (2011) show 

that a 1.2°C increase in night-time temperatures associated with climate change is 

affecting the time of breeding of amphibians in South Carolina, USA, with two 

autumn breeding species now breeding later and two winter breeding species now 

breeding earlier, with phenological change in the range 5.9 to 37.2 days in one 

decade. Climate change appears to influence different groups of organisms by 

different amounts, with trees advancing their phenology by about 3 days per decade, 

invertebrates, amphibians and birds advancing by 4-6 days per decade, and 

zooplankton 7-8 days per decade (Richardson, 2008), with the potential to cause a 

mis-timing of biological events (Thackeray et al., 2010), for example associations 

between a predator and its prey. 

 

There is a debate over whether climate change is (Aars and Ims, 2002), or is not 

(Brommer et al., 2010), preventing a 3-4 year cyclicity (Hornfeldt, 2004) in the 

population size of small mammals in Scandinavia. Aars and Ims (2002) suggest that 

a mechanism for climate change to negatively affect small mammal populations was 

for the ground to be covered by ice due to alternate melting and freezing in warmer 

winters rather than snow cover. Ice reduces insulation, access to food and causes 

flooding during the spring thaw. Hornfeldt (2004) discusses several other factors that 

might cause the loss of the cyclical pattern, including the decline of the red fox 

(Vulpes vulpes L.) due to the spread of the disease sarcoptic mange (Sarcoptes 

scabei De Geer). Although foxes eat small mammals, the small mammal population 

did not increase when the fox population declined, because foxes also eat stoats 

(Mustela erminea L.) and weasels (Mustela nivalis L.), both of which are more 

efficient predators of voles than foxes, so as stoats and weasels increased in 

numbers, the vole numbers decreased. 
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The magnitude of climate change is expected to vary geographically and therefore 

have a different magnitude of effect on species depending on where they live. For 

example, climate change is expected to be more pronounced in Arctic regions than 

elsewhere (Stendel et al., 2008), which may be detrimental to the Pacific walrus 

(Odobenus rosmarus divergens L.) (Jay et al., 2011). Polar bears (Ursus maritimus 

Phipps) may need to swim further to reach ice, if ice recedes, although this species 

is capable of swimming huge distances. A radio-tracked polar bear has been 

recorded swimming continuously for 687 km over 9 days, although this involves high 

energetic costs, may reduce reproductive fitness (Durner et al., 2011) and makes 

bears vulnerable to drowning in stormy conditions (Monett and Gleason, 2006). One 

response to climate change might be to relocate species to areas where their habitat 

may still exist, although introducing organisms to an area where they do not normally 

live can have negative ecological consequences. Parmesan (2008) suggests that the 

polar bear could be introduced into Antarctica as sea ice is being lost there at a 

lower rate than in the Arctic, but points out that penguins might be particularly 

vulnerable to increased predation as they are not adapted to defend themselves 

against terrestrial predators, because they cannot fly. 

 

Climate change can interact with organisms through their parasites and symbionts. 

Fasciolosis is a parasitic disease of sheep and cattle caused by the liver fluke 

(Fasciola hepatica L.), which reduces growth, economic productivity and can be 

fatal. The area of Britain where Fasciolosis occurs has increased during the period 

1970 to 2000, possibly associated with climate change, and if trends continue there 

might be serious epidemics from about 2020. However, predictions of infection rates 

are not straightforward. There is a relationship between both temperature and 

precipitation as droughts can dessicate and kill both F. hepatica and its intermediate 

host, a freshwater snail, Lymnaea truncatula (Müller), reducing the infection risk, but 

also drought conditions can force livestock to feed in damp areas where the infection 

risk is higher (Fox et al., 2011). Climate change can effect gut symbionts in two stink 

bug species, Acrosternum hilare (Say) and Murgantia histrionic (Hahn). These 

symbionts live normally at 25°C but disappear or die within two generations at 30°C, 

reducing the fitness of the host and causing a lower stink bug population growth rate 

(Prado et al., 2010). 

 



26 

 

Climate change also affects plants. Fitter and Fitter (2002) have shown that the first 

flowering dates of 385 British plants advanced by 4.5 days in 10 years during the 

1990s and 16% of these plant species advanced their flowering date by 15 days in 

one decade. Annual species were more likely to flower earlier than perennials and 

insect pollinated species were more likely to flower earlier than wind pollinated 

flowers. Sparks et al. (2011) show that botanical phenology in the spring has 

advanced and botanical phenology in the autumn has become later as a result of 

climate warming. Sparks and Carey (1995) have used 211 years of data from the 

Marsham phenological record to predict that an increase in winter temperature of 

3.5°C accompanied by an increase in temperature in spring, summer and autumn of 

3°C and a 10% increase in rainfall would cause the flowering dates of four British 

plants to advance by 20-25 days and the leafing dates of 13 tree and shrub species 

to advance by 13-24 days. Importantly, Sparks and Carey (1995) are trying to 

compensate for climate change affecting the seasons by different amounts and 

affecting both temperature and precipitation. Unusual winter warming events on sub-

Arctic heathland can cause a reduction in berry production, root growth and more 

than a 50% increase in shoot mortality and more than 50% reduction in gross 

primary production of dwarf shrub species such as Empetrum hermaphroditum, 

Vaccinium vitis-idaea (L.) and Vaccinium myrtillus (L.). Arctic areas are warming 

faster in winter than in the summer, so climate change might have serious 

consequences for these plant species, and possibly also birds which eat the berries 

(Bokhorst et al., 2011). 
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1.11 The effect of the NAO on organisms 

 

The NAO has advantages as a measure of weather parameters that might influence 

the ecology of organisms as it is a “multi-month average that holds information on 

rainfall, wind speed and temperature”, whereas monthly meteorological data may be 

too precise to describe the ecological event (Hallett et al., 2004) and fail to take into 

consideration the range of meteorological variables acting together on an organism. 

 

1.11.1 The NAO and invertebrates 

 

Zooplankton biomass during the spring and early summer in the Baltic Sea was 

found to be higher following positive NAO (mild) winters (Hansson et al., 2010). The 

population size of the copepod, Calanus finmarchicus (Gunnerus), in the North Sea 

and eastern North Atlantic is linked to the NAO, with the mechanisms including air 

temperature and wind stress affecting both sea surface temperature and 

phytoplankton production, which then affect C. finmarchicus abundance. C. 

finmarchicus can also affect the population size of C. helgolandicus (Claus) through 

competition (Fromentin and Planque, 1996).  

 

Corals can record fluctuations in climate over considerable periods of time. Oxygen 

isotope records provided a 245 year record from a coral from the northern Red Sea 

(Felis et al., 2000), and strontium to calcium ratios were used in corals from 

Bermuda (Cohen et al., 2004). In both cases these corals showed evidence of the 

NAO as well as indicating the considerable geographical area influenced by the 

NAO.  Geological evidence for the NAO has also been found in the thickness of 

annual bands in stalagmites from NW Scotland, with the change in thickness being 

linked to changes in precipitation (Proctor et al., 2000 and 2002). 

 

There is evidence that the NAO influences the phenology and abundance of the 

green spruce aphid (Elatobium abietinum) (Westgarth-Smith et al., 2007) and affects 

butterfly ecology (Westgarth-Smith et al., 2005a, 2005b and 2005c). 
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1.11.2 The NAO and vertebrates 

 

Warren and Bradford (2010) found that the abundance of four species of 

plethodontid salamanders (Desmognathus spp. Baird) in the Southern Appalachian 

mountains, USA, is positively associated with the NAO index. The Southern 

Appalachian mountains are at a similar latitude to parts of North Africa and the 

Mediterranean, so positive NAO phases result in warmer and wetter winters – that is 

weather associated with the NAO is in phase with north-west Europe and out of 

phase with the Mediterranean. These salamanders are completely dependent on gas 

exchange through their moist skin as they do not have lungs, and perhaps this is 

why their abundance is higher in wetter years. 

 

The NAO appears to affect the population size of small mammal species in southern 

Finland (Solonen and Ahola, 2010), with significant and highly significant 

associations, that were positive for shrews and mice, but negative for bank voles. 

Significant associations between monthly NAO values rather than seasonal 

averages suggest that there are “critical periods of time” which may be “species-

specific” and “quite short”. 

 

Weather associated with the NAO affects Soay sheep (Ovies aries L.) on the island 

of Hirta, St Kilda, Scotland. After positive NAO index winters, which were 

characterised by warm, wet and windy weather, sheep were more likely to give birth 

to one rather than two lambs, which were born earlier with lower birthweights and 

take longer to reach maturity. However, while positive NAO index years reduced 

reproductive success, it also resulted in increased adult survival (Forchhammer et 

al., 2001). A more positive NAO index was also found to be associated with lower 

bodyweight of reindeer (Rangifer tarandus Smith) calves in Norway (Weladji and 

Holand, 2003). 

 

The spring arrival date of short-distance bird migrants to Estonia was strongly linked 

to the NAO, but this association was much weaker for the long distance migrants 

(Palm et al., 2009). A positive NAO index being associated with an earlier arrival 

time of spring migrant wader species (Adamik and Pietruszkova, 2008). However, 

the timing of arrival of migrant birds that fly across the Sahel to the Mediterranean 
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region in the spring is associated with vegetation growth in their over-wintering and 

passage areas, rather than the NAO and whether they take a western or an eastern 

route through the Mediterranean (Robson and Barriocanal, 2011). It therefore 

appears that the arrival time of spring migrant birds into European countries is 

controlled by both the meteorological and ecological conditions in the countries that 

they have over-wintered in, flown through and are arriving in. With so many variables 

involved, there is the potential for a mis-match in timing with ecological conditions in 

the breeding area. 

 

The NAO has an effect on cod (Gadus morhua L.) recruitment in the North Atlantic, 

but this effect is complex, depends on the location of the population, sea 

temperature, salinity, oxygen and turbulence and the density of stocks. The 

demography of the fish stocks is heavily influenced by fishing and this also 

influences recruitment (Stige et al., 2006). 

 

1.12 Atmospheric carbon dioxide and ocean acidification 

 

As well as causing climate change, increased atmospheric carbon dioxide 

concentration is causing ocean acidification, with a calculated change from pH 8.2 to 

8.1 between 1750 (pre-industrial) and 2009. If atmospheric carbon dioxide 

concentrations continue to rise, then by 2100 there is a predicted change in pH of 

0.5 units. There are very few marine insect species, so the effect of ocean 

acidification on insects is small. However ocean acidification is discussed here as 

the potential future consequences for the conservation of marine invertebrates and 

their predators is serious. 

 

Increasing acidity is expected to disrupt the calcification process used by 

invertebrates such as corals to make coral reefs and molluscs to make shells 

(Raven, 2005; Parliamentary Office of Science and Technology, 2009). Species that 

might be affected include the edible mussel (Mytilus edulis L.), Pacific oyster 

(Crassostrea gigas Thunberg) (Gazeau et al., 2007), Nucella lamellosa (Gmelin) 

(Nienhuis et al., 2010) and Sydney rock oyster (Saccostrea glomerata Gould) 

(Watson et al., 2009). Changes to mollusc shells are a problem, as Bibby et al. 
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(2007) suggest that thinner shells caused by ocean acidification may increase the 

predation risk for common periwinkles (Littorina littorea L.). 

 

Kawaguchi et al. (2011) found that 2000 ppm concentrations of carbon dioxide 

prevented larval Antarctic krill (Euphausia superba Dana) from hatching by disrupting 

development before gastrulation. It is not clear if Antarctic krill have developed any 

hardened calcareous structures prior to gastrulation, so perhaps acidification 

disrupts more physiological processes other than just calcification. The authors 

predict that sea water carbon dioxide concentration might reach 1400 ppm by 2100.  

Whales and seals in the seas around Antarctica are dependent on krill for food (Food 

and Agriculture Organisation of the United Nations, 2012), so a reduction in krill 

populations could have severe consequences for Antarctic ecosystems. 

 

The effect of ocean acidification can be made worse by other environmental factors. 

Ocean acidification and increased temperature, both caused by increased 

atmospheric carbon dioxide concentrations, can combine in effect to cause 

bleaching, reduced productivity and reduced calcification in corals (Anthony et al. 

(2008). Anthony et al. (2011) suggests that corals become vulnerable at carbon 

dioxide concentrations of 450-500 ppm, which might be during the years 2030-2045.  

Reduced calcification may make corals more vulnerable to storm damage (Madin et 

al., 2008). Ocean acidification can alter sperm performance in broadcast spawners 

such as the sea urchin, Strongylocentrotus franciscanus (L.), leading to low 

fertilisation rates, especially in locations where there are low population densities or 

high water turbulence (Reuter et al., 2011). 

 

1.13 Mitigating the effects of climate change  

 

Climate change mitigation is fascinating as it spreads into a range of areas including 

politics, environmental activism and technological development and it requires 

interaction with an entire cross section of society, as almost everyone uses fossil 

fuels and is therefore likely to be involved in the response to climate change. A Royal 

Society report (Raven, 2005) very bluntly states that carbon dioxide emission 

reduction needs to happen “now” and involve “all” possible means to “avoid the risk 

of irreversible damage to the oceans” from acidification, as well as help control 
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climate change. Trenberth (2011) says that a response to climate change should be 

„multifaceted‟ requiring „mitigation‟ including new energy infrastructure, „adaptation‟ to 

cope with the consequences of climate change and „communication‟ with the public.  

 

Lowe et al. (2006) suggest that the public is “uncertain about whether and when 

climate change will occur”, and Weber and Stern (2011) suggest that climate change 

is „challenging‟ for the public to understand. For example, in only one month, May 

2011, the BBC News web site (www.bbc.co.uk) carried 43 articles relating to climate 

change, with topics as wide ranging as wind turbines, international electricity cables, 

ocean currents, food prices and legal action against protestors. Climate change has 

become a very wide ranging topic for a non-specialist to cope with, so the 

environmental movement might be more successful in organising campaigns against 

the effects of increased carbon dioxide concentration on ocean acidification rather 

than climate change. The message, carbon dioxide makes the oceans acid which 

kills corals, might be quicker and easier for the public to understand rather than the 

complexities of climate change. For example, Murray (2011) has demonstrated that it 

is possible to summarise ocean acidification in a 1.25 minute animation. 

 

Whether or not society succeeds in mitigating or even halting emissions of 

anthropogenic greenhouse gases will have profound effects on global ecology. 

Mitigation could confound ecological predictions due to changes in the rates of 

emissions of greenhouse gases and associated weather patterns, which could alter 

predictions of climate change. The potential ecological costs of failure to mitigate 

climate change could be very high. 

 

There are international agreements on climate change, such as the Kyoto Protocol of 

1997, which allows for emissions trading, also called the carbon market (United 

Nations, 1998). The Copenhagen Accord 2009 aims to keep the increase in global 

temperature below 2°C (United Nations, 2010), although does not make it clear what 

the baseline year is from which to measure this increase. The United Nations 

Framework Convention on Climate Change 2010, which took place in Cancun, 

Mexico and resulted in an international agreement for a “Green Climate Fund” to 

support less affluent countries in financing emission reduction and adaptation. There 

might be a relevant debate on whether this money should be spent on reducing 

http://www.bbc.co.uk/


32 

 

emissions in the more affluent countries that produce most of the emissions. The 

United Nations Framework Convention 2011, which took place in Durban, South 

Africa (United Nations Framework Convention on Climate Change, 2011) and 

resulted in an international legally binding agreement to reduce emissions of carbon 

dioxide. The date that this agreement will come into effect seems a bit uncertain, 

with press reports of 2015-2020, and a suggestion that it will be insufficient to keep 

climate change below 2°C (Gray, 2011).  

 

There was significant environmental protest activity in London associated with these 

United Nations negotiations, including a Climate Camp at Blackheath, in August 

2009 (Bird and Booth, 2009). „The Wave‟ protest march (Figure 1.12) of between 

20000 and 50000 people (Siddique, 2009) coincided with the Copenhagen meeting 

in December 2009, a protest march with a few thousand people that coincided with 

the Cancun negotiations and a protest march of a few hundred people at the same 

time as the Durban conference. It is not clear why there were less people on each of 

the successive demonstrations, unless interest was reducing. Protest marches can 

be contradictory with banners opposing short haul internal flights and opposing the 

proposed high speed rail link between London, Birmingham, Manchester and Leeds 

(High Speed Two Ltd, 2012) – a rail link that might reduce carbon dioxide emissions 

from internal flights, although the proposed route may damage wildlife habitats. 
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Figure 1.12. The „Wave‟ climate change protest march opposite the United States 
Embassy in Grosvenor Square, London. Photograph taken by AWS. 
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International conventions and agreements are incorporated into UK legislation, 

including the Climate Change Act 2008, which requires a 34% reduction in carbon 

dioxide emissions by 2020 and an 80% reduction by 2050 compared with a 1990 

baseline (Department of Energy and Climate Change, 2011). 

 

Recent technological developments aim to reduce the use of fossil fuels in buildings. 

For example, ground and air source heat pumps, wood chip fired heating systems, 

photovoltaic and water heating solar panels and insulation products ranging from 

sheep‟s wool to plants that can be grown on roofs (Ecobuild, 2011). Plants on roofs 

have a dual use, as climate change may increase the severity of rainfall events and 

the plants reduce the rate of storm water run-off and hence mitigate flood risk.  

 

However, Lomas (2009) shows that the task of retro-fitting energy use reduction 

products to existing houses by 2050 is huge, as there are about 24 million homes in 

the UK and this would be the equivalent of refurbishing a city the size of Cambridge 

each month, requiring an estimated 23000 teams of trained workers. Also even if 

building design was improved, Janda (2011) points out that it is people rather than 

buildings that use energy, and people can be highly variable in their energy usage 

and there may be a need for public awareness training on how to use buildings in an 

energy efficient manner. Also increased energy efficiency can result in higher usage, 

as people can afford to use more energy (Nature Editorials, 2011). 

 

Climate change mitigation policy is directed at the user, not the supplier, of fossil 

fuels, whereas in some other industries that harvest environmental products, for 

example, fishing, the control regulations are directed at the fishing fleet, rather than 

the consumer. It might be more appropriate to restrict the extraction and supply of 

fossil fuels although this would increase prices and directly affect the ability of people 

to commute to work and heat their houses. During the unusually cold winter of 2010-

2011 there were 25700 excess deaths in England and Wales (BBC, 2011), so 

restricting energy supplies as a climate change mitigation strategy has the potential 

to increase human mortality. 

 

Geoengineering techniques which include reflecting solar radiation back into space 

and removing carbon dioxide from the atmosphere (Shepherd, 2009) may become 
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necessary, as there is little confidence that political efforts (Seitz, 2011) to cause 

sufficient carbon dioxide emission reductions needed to avoid „unmanageable‟ 

(Ridgwell et al., 2009) and „dangerous‟ (Shepherd, 2009) climate change will 

succeed. As an example of a geo-engineering technique that reflects solar energy, 

Seitz (2011) has investigated creating hydrosols by producing small bubbles in sea 

water, which doubles the albedo. Microbubble production technology is increasingly 

available as it is used in paints and to reduce the drag of ships hulls as they move 

through the sea. Doubling the albedo of a 1 hectare reservoir would reflect heat, 

offset some carbon dioxide emissions and would reduce water loss by evaporation 

by about 1 mm day-1, which is the equivalent of 3600 m3 yr-1 and potentially could be 

powered by a photovoltaic system. At present it is difficult to imagine geo-

engineering techniques on a scale able to alter the planet‟s temperature, but 

microbubble technology may have the potential to reduce the temperature increase 

experienced by localised populations of aquatic or marine organisms that might 

otherwise be vulnerable to climate change.  

 

Other techniques to increase reflection of solar energy include using crop plants that 

have a higher albedo due to glossier leaves, perhaps including genetic modification 

of leaf waxes, although this extra reflectivity should not reduce photosynthesis, as 

this would reduce crop yield (Ridgwell et al., 2009). 

 

Examples of geo-engineering techniques that remove carbon dioxide from the 

atmosphere include increased forestry cover and ocean fertilisation. Ocean 

fertilisation works by increasing the rate of growth of phytoplankton by adding 

additional nutrients to the oceans. These phytoplankton die, or are eaten by 

zooplankton, which in turn die or defecate and the resulting material sinks to the sea 

bed, where it may remain as a carbon store or may be decomposed by bacteria, 

releasing the carbon dioxide, some of which may then return to the atmosphere. 

Removal of atmospheric carbon dioxide has extra benefits compared to reflecting 

solar energy as it addresses the actual cause of climate change and ocean 

acidification (Shepherd, 2009). Carbon dioxide capture and storage can be used to 

prevent carbon dioxide entering the atmosphere from power stations (Schrag, 2009). 
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1.14 Other factors causing insect population changes in the UK 

 

UK invertebrate population sizes appear to be changing, with increasing evidence of 

declines. This can be a complex topic, because of the wide range of taxonomic 

groups involved and range of environmental factors. Also, while there is evidence of 

declines, some species are colonising the UK and increasing in distribution, partly 

due to climate change. This issue is further complicated by variation in the level of 

knowledge of different groups and the number of people with the specialist skills to 

identify and study them. 

 

70% of UK butterflies are in decline (Thomas et al., 2004), mainly due to the loss, 

degradation and isolation of habitats. These changes are thought to be caused 

mainly by agricultural intensification, declines in woodland coppicing or by 

myxomatosis, which reduced rabbit grazing in the 1950s, causing grasslands to grow 

taller and denser, but less florally diverse. British butterfly populations are highly 

monitored and are sensitive to environmental change, so they may be good 

indicators of changes in the population sizes of other insect groups (Thomas, 2010).  

 

British macro-moths are monitored through the Rothamsted Insect Survey. Out of 

337 species that are monitored, two thirds have declined during a recent period of 35 

years and 71 species declined by more than 30% in a ten year period (Conrad, et al., 

2006). However, there have also been moth species that have newly colonised the 

UK, partly associated with non-native plants, with over 60 moth species recorded as 

new to Britain since 2000 and at least some confirmed as breeding and increasing in 

range (Fox et al., 2010). Many causes of moth declines are probably similar to other 

insect species, however most moth species are nocturnal and can be adversely 

effected by “light pollution” (Settele, 2009), which is probably of little or no relevance 

to daylight active species. If it was possible to stop species declining or becoming 

extinct, then with some species colonising diversity might increase, unless the new 

arrivals occupy an identical niche and cause competitive exclusion. 

 

Mr S. Roberts from the University of Reading Centre for Agri-Environmental 

Research says two-thirds of British bee species are in decline. So a 66-70% of 

species in decline appears to be found in butterflies, moths and bees and may well 
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be an indicator of the percentage of species declining in other, less well monitored, 

insect groups. Many flower visiting insects act as pollinators, although bees are 

particularly important. A decline in pollination services can have implications for 

agricultural productivity and possibly the conservation of insect pollinated 

wildflowers. 

 

Causes of butterfly declines can be quite complex. For example, the high brown 

fritillary (Argynnis adippe Denis and Schiffermüller) has declined considerably in 

distributional area in the UK (Figure 1.13). A. adippe may now be Britain‟s most 

endangered butterfly and is becoming “conservation dependent” (Barnett and 

Warren, 1995). Causes of this decline include a decline in both woodland coppicing 

and grazing of more open habitats that contain bracken (Pteridium aquilinum (L.) 

Kuhn). When grazing stops the litter layer can become deeper preventing the growth 

of violets (Viola spp.), which are their larval food plants (Barnett and Warren, 1995). 

The reasons for these land management changes add further complexity, as they 

include the economics of rough grazing and a decline in requirement for coppice 

products, although the demand for wood for fuel may increase (Broome et al., 2011), 

as it can be used as a renewable energy source that can reduce greenhouse gas 

emissions from energy production (Karp et al., 2011). However, an increase in short 

rotation coppice involving a glyphosphate herbicide application is unlikely to be 

beneficial as it may kill the violets. The example of A. adippe, emphasises the 

complexity of identifying the factors which influence changes in invertebrate 

population size and distribution. 
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Figure 1.13. Decline in distribution of the high brown fritillary (Argynnis adippe) in the 
UK. Grey squares are all distribution records up to 1989 and black squares are all 
distribution records from 1990-2011. Each square is 10 km x 10 km in size. 
Illustration prepared by AWS using data from the NBN Gateway (National 
Biodiversity Network, 2011a). © Crown copyright. All rights reserved NERC 
100017897 2004. 
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The decline in insects probably represents a considerable decline in overall insect 

biomass, as cars used to have dried „fly-splatter‟ on the windscreens (Bennett and 

Gilchrist, 2010), but rarely do nowadays. However, even this apparently simple 

indicator of insect density is difficult to interpret as it can be difficult to separate the 

effect of car design, non-stick paintwork, insect population size and insect splatter. A. 

Saunders (email 2 February 2011) described butterfly splatter in the 1980s in the 

mid-West USA and said that some of this was due to cars having front grills at that 

time, as well as being in a „Lepidopteran rich region‟. Munguira and Thomas (1992) 

have investigated butterfly mortality caused by cars and estimated that a busy road 

in southern England resulted in the death of 0.8-6.8% of a roadside verge population 

of butterflies. This included 92 individuals of Pieris rapae killed out of an estimated 

total population of 1350 individuals, although this number is much less than is likely 

to be killed by predators or parasitoids. 

 

Agricultural productivity will need to increase to feed a human population size that is 

expected to increase considerably during the 21st century (Devine and Furlong, 

2007; Figure 1.5) and this is likely to involve an increasing use of agrochemicals. 

Unfortunately, insect decline has occurred due to agrochemical usage, with 

insecticides killing the insects, herbicides killing the insect food plants and fertilisers 

reducing floral diversity by increasing the soil nutrient status. The loss of flowers 

means less nectar and pollen for honeybees (Decourtye et al., 2010), bumblebees 

and butterflies. Insects that feed on nectar and pollen need flowers available 

throughout the flight season, and some species of bumblebee can be quite specific 

about the shape of the flower (the corolla) that they can obtain nectar from, so they 

will not visit all flower species. Therefore a loss of floral abundance and diversity can 

mean that nectar is not available for the entire flight season (Corbet and Westgarth-

Smith, 1992). 

 

Agrochemicals can also drift away from the target crops. Estimates of how far 

pesticides can drift vary, for example 10 m (Longley and Sotherton, 1997) to 200 m 

and also depend on whether chemicals were applied from ground based machinery 

or from aircraft, with aerial applications able to drift several kilometres (Cox, 1995). 
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Consequently insecticides can affect non-target insects in habitats a considerable 

distance from agricultural land, and in the UK, where nature reserves can be small, 

potentially the whole reserve may be vulnerable to contamination.   

 

Habitat loss has been considerable, although can be difficult to interpret due to 

changing habitat classifications and changes in survey area – for example surveys of 

England and Wales or Britain. Also the skills base of the surveyors and the 

technologies available to them have changed. However, there has been a 97% loss 

of unimproved lowland pasture between 1930 and 1984 (Fuller, 1987) and 45% of 

ancient woodland has been cleared or converted to plantations between 1930 and 

1985 (Spencer and Kirby, 1992), although there has been a 23% increase in 

broadleaved woodland since 1945 (Lawton et al., 2010). Habitat loss continues to 

the present day with 26000 km of hedgerows lost between 1998 and 2007 

(Countryside Survey, 2009 cited in Lawton et al., 2010). 

 

Habitats have gained legal protection, so more than 50% of species rich grasslands 

now have Site of Special Scientific Interest (SSSI) status, but this is less than 2% of 

this habitat that would have been present in 1930 and 74% of heathlands are 

currently SSSIs, however this is only 10-15% of the heathland area that existed in 

the 19th century (Lawton et al., 2010). This is because unprotected habitats have 

been lost and by the time the legal protection was available it was too late for many 

sites.  

 

European grassland butterfly species have declined by 70% between 1990 and 

2009, due to agricultural intensification and abandonment of grazing, particularly in 

Eastern and Southern Europe, as people migrate to cities or as rough grazing 

becomes no longer economically viable. Habitat fragmentation and isolation has also 

affected grassland butterfly species. Europe has 436 butterfly species and 88% of 

them are found on grasslands at some time (Van Swaay et al., 2010; Van Swaay 

and Warren, 2006) making conservation of grasslands possibly the single most 

important factor in maintaining butterfly populations. The downward trend in the 

European grassland butterfly index is still continuing in 2009, so grassland butterflies 

are continue to decline. 

 



41 

 

1.15 Consequences of insect population change for insectivorous predators 

 

Many organisms eat insects and other invertebrates, so a decline in insect 

population size could have negative consequences for the population size of 

insectivores. Conrad et al. (2006) has described the decline in moths as an „insect 

biodiversity crisis‟, and that it could have serious consequences for birds and bats, 

which eat the moths. There is evidence of UK population declines for insectivorous 

birds: spotted flycatchers (Muscicapa striata Pallas) have declined by 85% during the 

period 1970-2008 (Eaton et al., 2010) and pied flycatchers (Ficedula hypoleuca 

Pallas) have declined by 50% during the period 1995-2008 (Hernandez, 2009). Both 

these flycatcher species are migratory (Hernandez, 2009), so factors outside the UK 

might be affecting their population size and make reserve-based management an 

inefficient conservation tool (Goodenough et al., 2009). Furthermore, flycatchers are 

vulnerable to climate change related mis-timing between the time of arrival and 

breeding and availability of their insect prey (Both et al., 2006). 

 

Haysom et al. (2010) says that „many‟ species of bats in Europe have suffered 

serious population declines during the 20th century. However it is possible that bat 

populations were much higher before the start of the 20th century as Gilbert White 

(1902) described in a letter written in 1767 that while travelling in a boat from 

Richmond to Sunbury he saw “myriads of bats…the air swarmed with 

them…hundreds were in sight at a time”. Bat population trends may be quite 

complex, with Kervyn et al. (2009) reporting that five species of bats had declined 

and four species have increased in Belgium. In Britain, the common pipistrelle 

(Pipistrellus pipistrellus Schreber) shows a 35.6% decrease in colony counts and a 

54.7% increase in field counts during the period 1999-2006 (Bat Conservation Trust, 

2008). This might be due to less bats spending more time feeding, as food is harder 

to obtain and therefore bats are counted more often when in flight and feeding. An 

alternative explanation is that the bat survey has not been running for enough years 

to produce reliable trends. AWS has been a member of Berkshire and South 

Buckinghamshire Bat Group (2011) since 1989 and has seen how the number of 

people interested in bats and bat surveys has increased and the monitoring 

technology has improved during this time – all factors that could influence bat 

recording data. It may also be difficult to separate out the effect of changes in insect 
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population size from the effect of changing timing of insect activity due to climate 

change, which may influence food availability as Altermatt et al. (2010a) has 

suggested that climate change is causing moth species flying before the summer to 

fly earlier and species that fly after the hottest part of the year to fly later, potentially 

reducing the number of moths flying during the summer, which may be detrimental to 

insectivores such as bats. 

 

Declines are also occurring in non-insect invertebrate groups in the UK. Between 

1999 and 2008, 38 out of 87 land snail species, 11 out of 35 freshwater snail species 

and 10 out of 28 freshwater bivalve species have declined (Killeen, 2010). This may 

have negative consequences for the population size of song thrushes (Turdus 

philomelos Brehm), which eat terrestrial gastropod molluscs.  Song thrush population 

size decreased by 48% between 1970 and 2008, although there might have been a 

partial reversal recently in this decline, as a 27% increase was recorded between 

1995 and 2008. There is also evidence of reduced reproductive success, with a 48% 

decline in the ratio of juvenile to adult song thrushes (Eaton et al., 2010), but it is not 

clear whether this change is due to a lack of food (Westgarth-Smith, 1998).  

 

The hedgehog (Erinaceus europaeus L.) population size in Britain has dropped from 

an estimated 30 million in the 1950s, to 1.5 million in 1995, and numbers are 

continuing to decrease. There are a range of reasons for this decline, including 

agricultural intensification, predation by badgers (Meles meles L.) (National 

Biodiversity Network - Hedgehog Street, 2011b) and road traffic accidents (Holsbeek 

et al., 1999), but caterpillars, beetles and earthworms have been found to comprise 

55% of hedgehog food (Yalden, 1976), so the decline in the number of hedgehogs 

could be a consequence of a decline in their invertebrate food.  

 

1.16 Air pollution and insects 

 

Many types of invertebrates, including butterflies, use pheromones to detect mates 

and to assess whether the potential mates have, or have not, copulated (Thomas, 

2011). Nectar feeding insects use floral scents to locate plants, and it is possible that 

butterflies travelling, or migrating longer distances, use smell to locate suitable 

habitat areas. Pheromones and floral scents travel through the air and are vulnerable 



43 

 

to degredation by pollutants, including oxidation by low altitude ozone, reducing the 

distance that these chemicals can travel and still be detected (Arndt, 1995; 

McFrederick et al., 2009). 

 

McFrederick et al. (2008) has shown how the scent trail from flowers has changed 

from several kilometres during pre-industrial environments with no air pollution to 

<200 m in the present day, with more polluted environments. This means that in a 

more polluted environment, a pollinating insect may need to travel further before 

finding a scent trail that can be followed to flowers. More time and energy spent 

foraging could reduce the energy that an insect can invest in reproduction. 

Pollination success could also be reduced if insects cannot find flowers so easily, 

which might cause plant communities in polluted areas to include less species that 

are insect pollinated and more species that are wind or self pollinated. 

 

1.17 Diseases and introduced organisms 

 

Diseases can also affect butterfly food plants, which may then affect butterfly 

populations. Dutch elm disease is caused by the fungus Ophiostoma novo-ulmi 

(Brasier) and the vectors are two species of bark beetles, Scolytus scolytus 

(Fabricius) and S. multistriatus (Marsham) (Harwood et al., 2011). The white-letter 

hairstreak butterfly (Satyrium w-album Knoch) breeds only on elm (Ulmus L.) trees. 

The population size of S. w-album at Monks Wood was small, although possibly 

partly due to under-recording, as this is a tree canopy species. However, this small 

population dropped abruptly in 1980, probably due to Dutch elm disease (Figure 

1.14). Nationally, populations of S. w-album are starting to recover as a result of 

breeding on elm sucker regrowth (Asher et al., 2001), but there is no evidence of this 

population recovery at Monks Wood.  
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Figure 1.14. Annual numbers of white-letter hairstreak (Satyrium w-album) counted 
at Monks Wood between 1973 and 2007. 
 
 

Sudden oak death is caused by the fungus Phytophthora ramorum (Dehnen-

Schmutz et al., 2010) and was first recorded in the UK in 2002 (Xu et al., 2009). Oak 

(Quercus robur L.) is the larval food plant for the purple hairstreak butterfly 

(Neozephyrus quercus L.) (Thomas, 1975), so if this disease was to spread it might 

threaten the purple hairstreak. 

 

The importation of plant diseases or insect pests can have serious consequences for 

native species. Dehnen-Schmutz et al. (2010) demonstrate that the horticultural 

industry is international, and is becoming a global market with an increasing risk of 

moving plant pathogens around the World. A globalised horticultural trade can be 

beneficial in achieving food security for an increasing global human population and 

may also be needed for agricultural plants to track a changing climate, but this needs 

to be balanced with the need for improved biosecurity mechanisms. 
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Non-native plant species can be a problem for insect populations as native insect 

species may not be able to live on them and so the area of land occupied by these 

plant species can become unavailable for native insect species. Non-native plants 

that are of concern include Rhododendron ponticum (L.), Japanese knotweed 

(Fallopia japonica Houtt) (Westgarth-Smith, 1994) and Himalayan balsam (Impatiens 

glandulifera Royle), although bumblebees feed from Rhododendron and Himalayan 

balsam flowers. 

 

The harlequin ladybird (Harmonia axyridis Pallas) was introduced to Europe from 

Asia between 1995 and 2002 for biological control of aphids and coccids, and is now 

present in thirteen European countries. The first record for the UK was in 2004 

(Brown et al., 2008). H. axyridis has increased in numbers, and is now up to 40% of 

the ladybird population in some parts of the UK, which makes it the most abundant 

ladybird species in the UK. At the same time, native ladybirds have declined, partly 

because H. axyridis is competing with them for food and eating their eggs, larvae 

and pupae (Brown et al., 2011). Therefore, it appears that H. axyridis is having a 

„seriously detrimental impact‟ on native coccinellids (Brown et al., 2008). 

 

The population size of the small tortoiseshell butterfly (Aglais urticae L.) has recently 

declined considerably in the UK. This decline might partly be due to a parasitic fly, 

Sturmia bella Meig. (Diptera: Tachinidae), which was first recorded in the UK in 1998 

(Gripenberg et al., 2011). 

 

The muntjac deer (Muntiacus reevesi Ogilby), which was introduced to the UK from 

China (Lu et al., 2007) may have a negative effect on the white admiral butterfly 

(Limentis camilla L.), because L. camilla lays its eggs low down on honeysuckle 

(Lonicera periclymenum L.) where muntjac can eat the leaves, eggs and larvae. 

Muntjac deer colonised Monks Wood nature reserve in the early 1970s, and by 1985 

they were effecting the regrowth of coppiced hazel (Corylus avellana L.), field maple 

(Acer campestre L.) and ash (Fraxinus excelsior L.), such that by 1995 coppicing 

was stopped in Monks Wood (Cooke and Farrell, 2001). Therefore muntjac may 

have contributed to stopping coppicing, a woodland management practice that is 

important for butterfly conservation (Warren, 1993), on a National Nature Reserve. 
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1.18 Long term biodiversity surveys 

 

Long term surveys of the abundance and timing of insect species are especially 

valuable to determine the effect of environmental change. These need to be 

accompanied by long term meteorological datasets. The UK has the World‟s two 

best insect datasets - the United Kingdom Butterfly Monitoring Scheme (2010) and 

the Rothamsted Insect Survey (Harrington and Woiwood, 2007), both of which were 

used in the present study. The Rothamsted Insect Survey started in 1966 and the 

UKBMS was piloted at Monks Wood from 1973 and became a national survey from 

1976. Both butterfly and aphid data are now being collected in continental European 

countries using the same methodologies as in the UK. However, relatively few 

mainland European aphid datasets have time series as long as that available from 

Rothamsted. Distributional data (Figures 1.10, 1.11 and 1.13) are also available for 

10267 vertebrate, invertebrate and plant species in the British Isles from the National 

Biodiversity Network (2011a). 

 

The 4th July Butterfly Count is run by the North American Butterfly Association 

(2010). The survey started in 1975 and data now come from about 450 sites (Ries, 

2008), so it is comparable in size and duration to the UKBMS. Like the UKBMS, the 

number of years of data from each site was very variable. The 4th July Butterfly 

Count collects annual data, so it is not possible to detect phenological change. 4th 

July Butterfly Count data have been used in studies of butterfly mimicry (Ries and 

Mullen, 2008) and migrant butterflies, including the monarch (Danaus plexippus L.) 

and painted lady (Vanessa cardui L.) (Vandenbosch, 2003 and 2007). AWS tried 

using 4th July Butterfly data provided by L. Ries, University of Maryland, USA, for two 

butterfly species from the eastern coastal states, but no evidence of the NAO could 

be detected in the abundance of these butterflies. 

 

The UK also has long term meteorological data, including the Central England 

Temperature Series, which are monthly data from 1659 to the present (Parker et al., 

1992 and Met Office Hadley Centre observation datasets, 2009). Monthly 

precipitation data from the England and Wales Precipitation dataset (Alexander and 

Jones, 2001 and Met Office Hadley Centre observation datasets HadUKP, 2010). 
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The British Atmospheric Data Centre (2011) and University of East Anglia Climatic 

Research Unit (2011) are also excellent sources of data. 

 

1.19 Conclusions 

 

Changes in the atmospheric composition of anthropogenic gases are already 

causing climate change and are predicted to cause further considerable changes to 

temperature by 2100. Climate change is already causing changes in the phenology, 

abundance and distribution of organisms and predicted future change is large. 

Climate change can operate through complex, and difficult to predict, ecological 

mechanisms. The NAO is a meteorological system that causes oscillations in 

weather conditions over the North Atlantic and surrounding continental areas. Much 

less is known about the ecological effects of the NAO than climate change, so this 

presents an opportunity to contribute to the ecological understanding of how the 

NAO affects insect populations.  

 

Increasing concentrations of carbon dioxide do not solely affect invertebrates 

through climate change. Increased carbon dioxide contributes to other ecological 

mechanisms including increasing the carbon to nitrogen ratio in food plants and by 

causing ocean acidification. Ocean acidification has the potential to cause a 

considerable reduction in global biodiversity as acidification effects organisms that 

have a calcareous skeleton, and this includes coral reefs, which are areas of very 

high biodiversity. The ecological consequences of climate change are now apparent 

and the ecological consequences of ocean acidification are likely to become 

apparent by about 2030 to 2050.  

 

There are ongoing attempts to reduce the emissions of greenhouse gases through 

international agreement and technological developments, accompanied by pressure 

from environmental campaign groups, although there is no evidence that this is 

reducing the rate of increase in the atmospheric concentration of carbon dioxide or 

that it will succeed against a rapidly increasing human population size. The failure to 

decisively find ways to reduce greenhouse gas emissions to a sustainable level is 

likely to have considerable negative consequences for global biodiversity. 
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UK insect populations are not just responding to climate change and the NAO, they 

are also responding to a range of environmental changes including habitat loss, 

agrochemicals, air pollution, disease and introduced organisms. While the population 

size of some insects is increasing, more species of insects are declining than are 

increasing. 60-70% of butterfly, moth and bee species are in decline in the UK. As 

this percentage is consistent across three major groups of insects it suggests that 

similar declines might be found in less well studied insect groups. Declines on this 

scale have potential negative consequences for populations of insectivores and crop 

pollination. These population declines mean that studies of insect ecology, including 

the present study, may have a conservation value, as they contribute to our 

knowledge of potentially vulnerable organisms. 
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1.20 Hypothesis and research questions 

 

The present study investigates the role of the NAO and climate change in influencing 

the population size and flight timing of individual insect species and communities of 

insect species. The insects used include the green spruce aphid (Elatobium 

abietinum Walker) and a range of butterfly species. The analysis is at different 

spatial scales, including site specific and national data. 

The hypothesis for this thesis is: the NAO affects insect populations in the UK. This 

hypothesis was tested with the following research questions. 

 

1. What effect does the NAO and climate change have on meteorological 

conditions?  

2. Does climate change and the NAO affect the population size and timing 

(phenology) of insects? 

3. Is there an association between the NAO and certain life history 

characteristics, including the number of generations (voltinism) or the length 

of the flight season?   

4. In what ways do the highly variable insect population sizes influence the 

accuracy of the results, and is it possible to control for the effect of population 

size fluctuations by identifying minimum sample sizes? 

5. What is the relative magnitude of meteorological and non-meteorological 

factors on butterfly populations?   

6. Can the NAO be used as a predictor of insect population size or flight timing?  

7. Having described how the NAO, climate change and other environmental 

factors influence insect ecology, is it possible to predict what future changes 

might occur?  
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Chapter 2 

 

Materials and methods 

 

2.1 Introduction 

 

The present study investigates the effect of the NAO on meteorological parameters 

including temperature and precipitation, and the effect of these variables on the 

abundance and flight timing of aphids and butterflies. Entomological data came from 

the World‟s best insect datasets, which have both local and national resolutions. 

Sample sizes were exceptionally large. A range of statistical tests were used to 

interpret the data. 

 

2.2 Entomological datasets 

 

Insect population data were obtained from the Rothamsted Insect Survey (2011) and 

the UK Butterfly Monitoring Scheme (UKBMS) (United Kingdom Butterfly Monitoring 

Scheme, 2010). The aphid data were from a trap at Rothamsted Research, 

Harpenden, Hertfordshire, UK, so although the data were from a site-specific trap, 

aphids were blown in from the surrounding area. The UKBMS analysis included the 

use of national data and site specific data from Monks Wood, Cambridgeshire, UK. 

Data for one species, the ringlet (Aphantopus hyperantus), from two other locations, 

Chippenham Fen and Holme Fen in Cambridgeshire, were also used. 

 

2.3 Why use entomological datasets? 

 

Some advantages of using insects to detect weather-related changes in abundance 

or phenology are listed below.  

 

1. Insects are poikilothermic, with a large surface area to volume ratio and 

although some species can partially regulate their internal temperature, they 

are much less effective at doing this than homeothermic organisms such as 

mammals. Consequently, poikilotherms are much more likely to respond to 

changes in their thermal environment than homeotherms. 
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2. Aphids and butterflies can fly, although the mobility of adult butterflies varies 

between species. Therefore they are able to change their distribution in 

response to climate change. 

3. Butterflies usually have one (univoltine) or two (bivoltine) generations per 

year. They are therefore likely to be directly influenced by weather within the 

preceding 12 months, unlike a large mammal with a life cycle of many years 

or decades, making it likely that there will be lag effects between weather and 

population size. 

4. Many species of butterflies are active during the winter months, including 

larval feeding, whereas some mammals, for example badgers (Meles meles), 

hibernate in well insulated deep underground burrows at the time of year 

when the NAO affects the weather. There are also some butterflies (e.g. the 

peacock, Inachis io) that hibernate as adults in the winter and thus will be 

inactive at that time. 

5. UK butterflies are a good group to study, because they have been extensively 

researched, so baseline information such as life histories have been 

accurately established. 

 

2.4 What is the quality and size of the datasets used?  

 

Below are listed some reasons why the Rothamsted Insect Survey and the UK 

Butterfly Monitoring Scheme are very high quality datasets. 

 

1. The Rothamsted Insect Survey data was a very large dataset, as it was daily 

resolution counts of aphid species from a suction trap at Rothamsted 

Research at Harpenden, Hertfordshire, UK. The dataset covered a very long 

time period from 1966 to the present, with almost no missing days. 

2. AWS visited Rothamsted Research and met R. Harrington who coordinates 

the survey. AWS also saw that there was a team of experienced aphid 

identification staff working in what appeared to be a dedicated laboratory, so 

identification accuracy should be very high. 

3. The Butterfly Monitoring Scheme datasets are large, come from many sites. In 

addition, many of the species are fairly distinctive, minimising the risk of mis-



52 

 

identification. Weekly, site-specific data are also available from the UK 

Butterfly Monitoring Scheme (2010) website for all transect sites. A total of 

1465 transect sites have been used by the UKBMS, although different sites 

were operational for different numbers of years, and therefore not all the sites 

were monitored for the whole time series. 

4. The best single site out of all the UKBMS sites was Monks Wood, 

Cambridgeshire, as there were continuous data from 1973 to the present day, 

whereas the earliest start date for all other sites was 1976. The Monks Wood 

dataset has very few missing weeks. 

 

2.5 Disadvantages of entomological datasets 

 

There are also problems with long-term entomological datasets: 

 

1. The United Kingdom Butterfly Monitoring Scheme (2010) provides access to 

weekly butterfly count data from 1465 sites. The regional distribution of these 

sites is England 1253 sites, Wales 81 sites, Scotland 119 sites and Northern 

Ireland 12 sites. This bias towards England may reflect the distribution of 

people who count butterflies, as well as the greater abundance and diversity 

of butterflies in southern England. 

2. The use of Rothamsted Insect Survey and UKBMS data involves developing 

an analysis using data that has already been collected - it is not possible to 

influence the data collection methodology, whereas most other strategies 

involve designing the experiments to provide the necessary data. 

3. The earliest start date for most UKBMS sites was 1976, however Monks 

Wood has data back to 1973, as this was where the survey was piloted. At the 

time of data analysis (March 2010), the most recent year where „Ind‟ totals 

(„Ind‟ = „individuals‟ = the total number of individuals of a species counted in a 

year and may involve estimates if there are missing weeks of data) had been 

uploaded onto the UKBMS website was 2007, so providing 34 years of data.  

Clutton-Brock and Sheldon (2010) indicate that you need three to four 

decades of data to explain why population sizes change, and they refer to 

Jane Goodall‟s study of chimpanzees (Pan troglodytes), which needed 50 
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years to obtain sufficient data. However, they do point out that the number of 

years of data required depends on how long the species lives. Butterflies have 

a much shorter life cycle than chimpanzees, and hence will be able to 

respond much more quickly to environmental change. Yet butterfly population 

size can fluctuate considerably from year to year, creating „noisy‟ data. 

Consequently the number of years of data available from Monks Wood was 

probably within the lower end of an acceptable range. However, there were no 

longer duration high quality butterfly datasets available. 

4. The Butterfly Monitoring Scheme was one of several datasets considered for 

investigating the role of the NAO in the control of insect populations. Dr L. 

Ries, University of Maryland, USA, provided data for two species from the 4th 

July Butterfly Survey in the USA. In this scheme, butterflies are counted close 

to the 4th July, so data covers only one or a few days per year, whereas the 

UKBMS scheme uses a weekly survey that runs over many months. Like the 

UKBMS, the 4th July Butterfly Survey data involves differerent numbers of 

years of data for different sites. Aphid data was also investigated from one 

suction trap in Valence, France, but the number of aphids caught was too low 

to be used. 
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2.6 Locations of research sites 

 

The present study uses aphid data from Rothamsted Research, Hertfordshire, UK 

and UKBMS data were mainly from Monks Wood, although data for one species, the 

ringlet (Aphantopus hyperantus), also came from Chippenham Fen and Holme Fen, 

all in Cambridgeshire (Figure 2.1). National resolution UKBMS data were also used. 

 

 

 
Figure 2.1. Map of part of the Midlands and East Anglia, UK, showing the location of 
survey sites. Grid lines are at 50 km intervals (www.streetmap.co.uk).  
 
 
2.7 Introduction to the Rothamsted Insect Survey 

 

The Rothamsted Insect Survey uses 12.2 metre tall suction traps (Macaulay et al., 

1988) which suck in 0.75 m3 of air per minute (Figure 2.2). The trap aperture is 12.2 

m above the ground surface so that the catch is less likely to be affected by 

turbulence and convection caused by surrounding vegetation. There are 16 of these 

traps operational in the UK and a total of 73 traps in Europe and Scandinavia. The 

traps operate all year, although during April to mid-November when aphids are most 

active the traps are sampled daily, whereas for the rest of the year they are sampled 

weekly (Harrington and Woiwood, 2007).  

http://www.streetmap.co.uk/
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The aphid data used in the present study was from the suction trap at Rothamsted 

Research, which has a long, continuous, dataset from 1966 to the present. 

Rothamsted Research is near Harpenden, Hertfordshire, UK, which is approximately 

30 km north of London (Figure 2.1) and at an altitude of approximately 120 m – 130 

m. Rothamsted Research is an agricultural research station surrounded by arable 

land, suburban housing, some small woodlands, golf courses and recreational parks, 

including cricket pitches (Figures 2.3 and 2.4). Aphid counts from suction traps are 

representative of large areas, with similarities in the numbers caught between traps 

hundreds of kilometres apart (Cocu et al., 2005). 

 

Following consultation with Dr R. Harrington, who coordinates the Rothamsted Insect 

Survey, data were provided for the green spruce aphid (Elatobium abietinum), as this 

species has a relatively short-duration flight period and compared to other aphid 

species caught at Rothamsted the flight period was early in the year, nearer the time 

when the NAO has most effect on the weather. In the UK, E. abietinum is active and 

feeds during mild winters, whereas in continental Europe it is more likely to over-

winter as an egg (Rothamsted Insect Survey, 2011). This mobility through the winter 

might increase the chance that this species would be influenced by weather 

associated with the NAO. Dr Harrington arranged for the data to be checked and 

sent to AWS.  
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Figure 2.2. An aphid suction trap. (Photograph provided to AWS by Dr R. 
Harrington).  
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Figure 2.3. Map showing the location of Rothamsted Research, formerly Rothamsted 
Experimental Station (www.streetmap.co.uk). This map provides some information 
on land use. 
 
 

 
 
 
Figure 2.4. Satelite image of Rothamsted Research (main buildings located in top, 
right of image) showing surrounding land use. Note the small woodlands, suburban 
gardens with large numbers of trees and arable fields, some of which appear to be 
subdivided into many research areas (www.google.co.uk).  

http://www.streetmap.co.uk/
http://www.google.co.uk/
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2.8 Butterfly Monitoring Scheme methodology 
 

The UK Butterfly Monitoring Scheme methodology involves walking a transect on a 

weekly basis from 1 April to 29 September. Transect lengths vary, although the 

transect at Monks Wood is 3 km long and takes between 60 and 90 minutes to 

complete.  The transect widths are usually about 5 m, although this can vary 

depending on the width of the paths followed. Some observers count the butterflies 

in an imaginary 5 m x 5 m quadrat as they walk the transect. Transects are done 

between 10.15 and 15.45 British Summer Time and require that shade temperature 

should be over 17°C, or if 60% of the route is sunny then transects can be done 

down to temperatures of 13°C (Pollard and Yates, 1993). 

 

Although the methodology has been designed to be relatively straightforward, there 

are some potential problems. Habitats can change with time, for example trees can 

grow and the increased shading from them can exclude butterflies as well as making 

it impossible for the observer to move through increasingly dense vegetation. The 

aim is to count the butterflies once in each of the 26 weeks, between 1 April and 29 

September. However, in practice this may not happen due to bad weather, observer 

illness or holidays. There can be identification problems: for example, distinguishing 

between small (Thymelicus sylvestris) and Essex skippers (T. lineola) and small 

(Pieris rapae) and green-veined whites (P. napi) (Pollard and Yates, 1993) is not 

easy, particularly if the butterfly is in flight. 

 

2.9 Sources and formats of UKBMS data  

 

UKBMS data were available in a range of formats. Weekly counts from each transect 

site were available from the United Kingdom Butterfly Monitoring Scheme (2010) 

web site. National annual collated indices for each species were provided by Dr D. 

Roy of the UK Centre for Ecology and Hydrology. A multi-species collated index was 

calculated using data from the UKBMS, but obtained from the UK Joint Nature 

Conservation Committee (2010). JNCC uses the multi-species index as a UK 

biodiversity indicator. 
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2.10 Introduction to the three UKBMS sites used 

 

2.10.1 Monks Wood  

 

Monks Wood is located in Cambridgeshire, UK, between Huntingdon and 

Peterborough (Figure 2.1). It is a National Nature Reserve (NNR) and Site of Special 

Scientific Interest, although the condition of the SSSI is described as „unfavourable 

recovering‟ (Nature on the Map, 2011).  Monks Wood is an ash (Fraxinus) and oak 

(Quercus) woodland (Natural England, 2011a) that is 157 hectares in size and is the 

largest wood in Cambridgeshire. It was historically managed as coppice with 

standards. „Much of‟ Monks Wood was clear-felled at the end of the First World War. 

Monks Wood was bought in 1953/4 by the Nature Conservancy (Cooke and Farrell, 

2001). The Nature Conservancy changed its name, first to English Nature, and then 

Natural England. 

 

Monks Wood ranges in altitude from 10 m to 40 m. Figures 2.5 and 2.6 show that 

Monks Wood is a fragmented area of woodland surrounded by agricultural land. 

Most of the agriculture is arable, and the colours of the fields in Figure 2.6 suggest 

cereal crops close to harvest. Further evidence for the photograph being taken in the 

summer (when cereal fields would be pale in colour) includes the trees having a full 

canopy of leaves and evidence of soil patterns, including ridges and furrows and 

possible trackways which would be more visible when the soil is dry, as differential 

drainage and water holding becomes apparent in vegetation in hot, dry conditions.  

Figure 2.7 shows the UKBMS transect route in Monks Wood and it is possible to 

identify the woodland rides followed by the transect in the satellite image (Figure 

2.6). Monks Wood Experimental Station is also visible in Figures 2.5 and 2.5. This 

was the site of the Monks Wood meteorological station, as well as the base for the 

scientists who developed the UKBMS, although the site is now closed.  
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Figure 2.5. Map of Monks Wood National Nature Reserve. Scale: Grid lines are at 1 
km intervals (www.streetmap.co.uk).  
 
 

 
 
 
Figure 2.6. Satelite image of Monks Wood National Nature Reserve showing the 
fragmented nature of the woodlands surrounded by agricultural land 
(www.google.co.uk).  
 
 

http://www.streetmap.co.uk/
http://www.google.co.uk/
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Figure 2.7. Map showing the Butterfly Monitoring Scheme transect route at Monks 
Wood (United Kingdom Butterfly Monitoring Scheme, 2010).  
 
 
2.10.2 Chippenham Fen and Holme Fen  

 

Chippenham Fen is located 6 km to the north of Newmarket in Cambridgeshire, UK, 

(Figures 2.1, 2.8 and 2.9). It is a National Nature Reserve, a Site of Special Scientific 

Interest (English Nature, 1999) and a Ramsar wetland site (Joint Nature 

Conservation Committee, 2008). Chippenham Fen is 117 hectares in size (Natural 

England, 2011b) and is described by the UKBMS (2010) as an area of fen, swamp 

and marsh with freshwater edges.  

 

Holme Fen is located 9 km south of Peterborough, in Cambridgeshire, UK (Figures 

2.1, 2.10 and 2.11). It is an area of mature broadleaved woodland (UKBMS, 2010). 

Holme Fen is a National Nature Reserve with an area of 266 hectares (Natural 

England, 2011c) and is part of the Great Fen project, which aims to restore 3000 

hectares of fenland, thereby linking Holme Fen with Woodwalton Fen National 

Nature Reserve (Great Fen, 2011).  
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Figure 2.8. Map showing the location of Chippenham Fen. Gridlines are at 1 km 
intervals (www.streetmap.co.uk). 
 
 

 
 
 
Figure 2.9. Satellite image of Chippenham Fen (www.google.co.uk). 
 
  

http://www.streetmap.co.uk/
http://www.google.co.uk/


63 

 

 

 
 
 
Figure 2.10. Map showing the location of Holme Fen. Gridlines are at 1 km intervals 
(www.streetmap.co.uk). 
 
 

 
 
 
Figure 2.11. Satellite image of Holme Fen (www.google.co.uk). 
 
 

  

http://www.streetmap.co.uk/
http://www.google.co.uk/
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2.11 Meteorological datasets 

 

2.11.1 North Atlantic Oscillation index 

 

The NAO index used throughout this analysis was published by the Climate 

Research Unit, University of East Anglia, UK (Climate Research Unit, 2004 and 

Osborn, 2010), which is based on air pressure data from Iceland and Gibraltar 

(Osborn, 2000). This NAO index was available in a monthly format, from which mean 

NAO indices for longer time periods were calculated - in particular a winter NAO 

index based on the mean of the January, February and March NAO indices. 

 

2.11.2 National meteorological datasets 

 

Monthly mean temperature data were obtained from the Central England 

Temperature Series (Parker et al., 1992 and Met Office Hadley Centre observation 

datasets, 2009). The Central England Temperature Series is “representative of a 

roughly triangular area of the UK enclosed by Lancashire, London and Bristol” (Met 

Office Hadley Centre for Climate Change, 2011). Monthly precipitation data were 

obtained from England and Wales Precipitation (Alexander and Jones, 2001 and Met 

Office Hadley Centre observation datasets HadUKP, 2010). 

 

2.11.3 Local meteorological datasets 

 

Monthly mean temperature data and monthly precipitation data for the Rothamsted 

meteorological station were provided to AWS by Dr R. Harrington for the period 1966 

to 2006. This meteorological station is at the same location as the suction trap used 

to catch the E. abietinum. 

 

Meteorological data were obtained for Monks Wood from the British Atmospheric 

Data Centre (2010), but this dataset was found to be incomplete. S. Martin, Weather 

Desk Advisor, Met Office, UK, provided meteorological data from the National 

Institute for Agricultural Botany (NIAB), located on the outskirts of north-west 

Cambridge. These data were in the form of monthly mean maximum temperatures, 

monthly mean minimum temperatures, monthly days of air frost, monthly 
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precipitation and monthly total sunshine duration (Met Office Historic Station Data, 

2010).  

 

2.12 Statistical tests 

 

SPSS was used to calculate Pearson correlation coefficients (r) and the associated 

probability (P). EXCEL was used to calculate coefficients of determination (r2), 

although it is unable to calculate P values. The r2 value is a measure of the 

percentage of the variability that has been explained, so r2 = 0.4 means that 40% of 

the original variability has been described, leaving 60% residual variability (StatSoft, 

2010). The coefficient of determination (r2) is the Pearson correlation coefficient (r) 

squared. Pearson correlation coefficients indicate whether a gradient is positive or 

negative, but the squaring process removes negative values so r2 does not indicate 

a positive or negative gradient. A graph is useful to identify the effect of outliers with 

both r and r2 values and to determine whether a gradient is positive or negative with 

r2.  

 

Multiple linear regression calculations were used to identify the relative influence of 

weather for up to twelve months previously on butterfly flight timing. Multiple linear 

regression analysis has an advantage compared to Pearson correlations, because 

collinearity diagnostics were available, in particular variance inflation factors (VIF). A 

VIF of >5.0 was considered to be too high a risk of collinearity. 

 

Binary logistic regression coefficients, β, were calculated when one variable was 

discontinuous – as with the number of butterfly generations. 

 

The generalised linear equation, y = mx + c, was used to obtain the value for the 

gradient, m. Multiplying m by number of years was used to determine how many 

weeks flight timing had advanced due to climate change. 

 

The statistical software, C2 (Juggins, 2007 and 2010), was used to construct the 

multi-proxy graphs. 
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Assistance was provided by M. Scholze, Brunel University, with statistical path 

analysis using the SAS procedure PROC TCALIS (SAS Institute Inc., Cary, NC, 

USA). 

 

2.13 Shannon-Wiener diversity index (H) 

 

Shannon-Wiener diversity indices (H) have been used in other butterfly studies 

(Munguira and Thomas, 1992) and were calculated using the formula: 

 

H = - (p1logep1 + p2logep2 + ….. pilogepi) 

 

Where Pi is the proportion of the ith species in the sample. The Shannon-Wiener 

diversity index has the effect of weighting the contribution to the sample made by the 

relative abundance of each species (Ricklefs, 1990). Shannon-Wiener diversity 

indices were calculated for each year from 1973 to 2007 at Monks Wood. 

 

2.14 Correspondence analysis 

 

Correspondence analysis (CA) is a form of multivariate analysis, which was done 

using the statistical package C2 (Juggins, 2007 and 2010). Correspondence analysis 

produces species and sample scores that explain different proportions of the 

variation in the data, with sample scores representing years. Species scores can be 

plotted against each other to search for clumping or outliers and identify whether 

fluctuations in the population sizes of different species were similar or different to 

other species or groups of species. Sample scores can be plotted against each other 

to identify specific years or groups of years where butterfly species are different or 

similar. Eigenvalues result from the correspondence analysis in C2, and give an 

indication of how much variation is described by each score. However, when 

calculated in C2, they are not percentages. The eigenvalues for the species scores 

and the sample scores are the same numbers (Steve Juggins, pers. comm.). 

 

Correspondence analysis can be vulnerable to producing an arch effect and 

detrended correspondence analysis (DCA) can be used to eliminate this. DCA 

divides the graphical output up into segments and then repositions each segment to 
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remove this arch effect. This has been described as „inelegant‟ (Palmer, 2010). As 

an arch effect did not occur in the Monks Wood data when analysed with CA, DCA 

was not used. 
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Chapter 3 

 

Temporal variations in English populations of a forest insect pest, the green 

spruce aphid (Elatobium abietinum), associated with the North Atlantic 

Oscillation and global warming 

 

This chapter has been published as: Westgarth-Smith, A.R., Leroy, S.A.G., Collins, 

P.E.F.  and Harrington, R. (2007) Temporal variations in English populations of a 

forest insect pest, the green spruce aphid (Elatobium abietinum), associated with the 

North Atlantic Oscillation and global warming. Quaternary International 173-174: 

153-160. 

 

Westgarth-Smith et al. (2007) was reviewed in Nature Reports Climate Change 

(Newton, 2008) and has received press coverage in nine publications. By January 

2012, Westgarth-Smith et al. (2007) had been cited nine times. 
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Temporal variations in English populations of a forest insect pest, the green 

spruce aphid (Elatobium abietinum), associated with the North Atlantic 

Oscillation and global warming 

 

3.1 Introduction 

 

Abrupt, sometimes persistent changes in Holocene terrestrial ecosystems are well 

known: for example the mid-postglacial declines in European elm (Ulmus L.) (e.g. 

Peglar 1993; Parker et al. 2002) and hemlock  (Tsuga canadensis (L.) Carr.) (Haas 

and McAndrews, 2000). Both these examples have been linked to insect pests and 

associated pathogens (e.g. Girling and Greig, 1985; Bhiry and Filion, 1996; Clark 

and Edwards, 2004) but there is still uncertainty over what made apparently stable 

forest populations vulnerable to such pests.  Climatic forcing may well be a 

significant contributing factor, either by directly weakening the trees, or by enhancing 

insect population growth and dispersal.  A more detailed understanding of the 

relationship between climate change and insect populations is clearly of relevance to 

palaeoecological studies, and in the context of the current phase of global warming. 

 

Here the response of Elatobium abietinum (Walker) (green spruce aphid) to short-

term climatic forcing over the last 41 years is examined.  Although detailed records 

of individual climatic variables (temperature, precipitation etc.) are available, the 

influence of the North Atlantic Oscillation (NAO) is used as a proxy for a range of 

climatic conditions.  In the mid-latitude, temperate, study area of southern England, 

ecosystems respond to the combined effects of several climatic variables rather than 

being dominated by a single variable. 

 

The NAO has a considerable influence on the weather in north-west Europe, 

Scandinavia, the Mediterranean basin, eastern side of North America and 

Greenland. The NAO is described by the NAO index, which is calculated from air 

pressure at two locations. The northern location is usually in Iceland, but the 

southern location can be in the Azores, Lisbon or Gibraltar, the choice of location 

being of little importance (Osborn, 2000).  
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A positive NAO index is associated with depression systems taking a more northerly 

route across the Atlantic, resulting in warmer autumn and winter weather in the 

British Isles, whereas a negative NAO index is associated with the depression 

systems travelling in a more southerly route across the Atlantic (Osborn, 2000). 

Consequently the NAO index shows a strong, positive association with temperatures 

at Rothamsted, in Hertfordshire, U.K., between October and March and a weaker 

association with temperatures in April and May. The NAO has a much weaker 

control over precipitation, with an almost significant correlation between the January 

NAO index and January precipitation, but no significant correlations between the 

winter (January to March) NAO index and precipitation averaged over several 

months (Table 3.1). 

 

3.1.1 NAO and organisms 

 

Weather conditions associated with the NAO have been shown to have an influence 

on a range of different groups of organisms. Marine Copepod population size in the 

Eastern North Atlantic and North Sea is influenced by winter temperature and wind 

speed, with meteorological factors interacting with interspecific competition 

(Fromentin and Planque, 1996). Cod (Gadus morhua L.) recruitment in the North 

Atlantic increased during the sustained negative phase of the NAO index in the 

1960s and then recruitment decreased during the more positive phase of the NAO 

index in the 1990s with water temperature as the most likely controlling factor 

(Parsons and Lear, 2001). Soay Sheep (Ovis aries L.) populations on Hirta, part of 

the St Kilda archipelago, Scotland, appear to be influenced by precipitation in March 

(Catchpole et al., 2000). Red Deer (Cervus elaphus L.) in Norway are affected by the 

NAO before birth, with warmer winters resulting in smaller birth size than those born 

following cold winters (Post et al., 1997). Reindeer and Caribou (both Rangifer 

tarandus L.) in Greenland and Russia show synchronous population changes 

associated with the NAO despite being geographically separated by a minimum of 

3300 km (Post and Forchhammer, 2006). Butterflies (Lepidoptera) appear to be 

influenced in a complex manner by weather, life history characteristics and 

morphological characteristics associated with partial thermoregulation (Westgarth-

Smith et al., 2005a, b and c).  
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3.1.2 Elatobium abietinum and its hosts 

 

Elatobium abietinum was selected for this study, as high temporal resolution data, 

extending over 41 years, are available.  This species was chosen for study from the 

range of species caught in a suction trap at Rothamsted, U.K., as it is one of the 

earliest aphid species to undertake its winged migration each year, and would 

therefore be flying nearer the time of year when the NAO influences U.K. weather.  

Also E. abietinum has a single, well-defined flight period (Figure 3.1), which is about 

two months in duration and so relatively short compared to many other aphid 

species. In the U.K., E. abietinum is continuously parthenogenetic, over-wintering in 

the active stages. 

 

Elatobium abietinum lives on Picea spp., especially P. sitchensis (Bong.) Carr., but 

also P. abies (L.) H. Karst., P. pungens Engelm. and less frequently on Abies Mill. 

spp. (Harrington and Pickup, 2005). These tree species are not native to the British 

Isles. Picea sitchensis was introduced into the British Isles in 1831, P. abies was 

probably introduced before 1500 AD, different varieties of P. pungens were 

introduced between 1862 – 1912 and Abies alba (Mill.) was introduced in 1603 

(Mitchell, 1978). 

 

There is a practical relevance in understanding the ecology of E. abietinum, as this 

species is a significant pest of Picea spp. For example, Straw et al. (2000) found that 

P. sitchensis, grown in Wales, suffered 38.5% defoliation and 22.4% reduced height 

increment when artificially infested with E. abietinum at population densities 

equivalent to a moderate to severe outbreak. Furthermore a high infestation rate can 

reduce productivity in the following year as the aphids disrupt bud formation, which 

reduces the quality of foliage and photosynthetic ability, causing 12.2% decrease in 

the stem diameter increment and 23.8% decrease in the stem volume increment.  

 

Trees in the U.K. are rarely killed by E. abietinum (Williams et al., 2005). However E. 

abietinum has been introduced into the south-western USA (Campbell, 2005) where 

it can cause 24 - 41% mortality of Picea engelmannii (Parry) Engelm. and a 

combined infection with E. abietinum and the mistletoe, Arceuthobium microcarpum 
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(Engelm.) Hawksworth and Wiens, can cause 70% mortality of P. pungens (Lynch, 

2004). 

 

Associations between climate and tree pest species are of interest to 

palaeoecologists. For example, the summer drought related decline of hemlock 

(Tsuga canadensis) in eastern North America which occurred 5700 – 5100 years 

ago may be due to drought weakened trees being attacked by insect pests (Haas 

and McAndrews, 2000), especially the hemlock looper (Lambdina fiscellaria (Guen.)) 

and the spruce budworm (Choristoneura fumiferana (Clem.)) (Bhiry and Filion, 

1996). Similarly the mid-Holocene elm (Ulmus) decline appears to be a combined 

effect of elm disease which is an infection by the ascomycete fungus, Ophiostoma 

(Ceratocystis) ulmi (Buisman) carried by elm bark beetles, Scolytus scolytus (F.) and 

S. multistriatus (M.), as well as climate change and human activities (Parker et al., 

2002). 

 

Insect pest associated changes in tree growth rates are used to identify historical 

records of pest outbreaks in forests. For example, Choristoneura occidentalis 

(Freeman), another spruce budworm, outbreaks on Douglas-fir (Pseudotsuga 

menziesii var. glaucha Mirb. Franco) growing in British Columbia, Canada (Campbell 

et al., 2005) and the larch budmoth (Zeiraphera diniana Guénée) defoliation of larch 

(Larix decidua Mill.) in the French Alps (Rolland et al., 2001). 

 

Palaeoecology uses organism population changes as a proxy for meteorological 

changes, however, butterflies (Lepidoptera) in the U.K. show complex associations 

between their life history characteristics and the NAO index, such that species that 

are more positively correlated with the NAO index are more likely to have two 

generations per year (bivoltine) rather than one generation per year (univoltine) and 

have a longer flight season. This is because positive NAO index years tend to be 

warmer, allowing more time to complete two generations and for a longer flight 

period. There are also associations with the over-wintering stage such that species 

of butterfly that hibernate as adults show much less association with the NAO index 

than species that over-winter as larvae, this is probably because adult butterflies 

have completed their feeding before the onset of NAO controlled autumn and winter 
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weather, whereas larvae will feed on warm winter days (Westgarth-Smith et al., 

2005a, b and c).  

 

Analyses by Westgarth-Smith et al. (2005a, b and c) of the effect of the NAO index 

on butterfly populations were based on an annual collated index of butterfly 

population size. We wanted to extend this work to use a daily insect dataset, in 

particular to examine the influence of the NAO on phenology. Phenology is of 

particular current interest with biological events reportedly happening earlier in the 

spring, and also later in the autumn as a response to global warming. For example 

Roy and Sparks (2000) suggest that climate warming of 1 C could advance butterfly 

appearance by 2-10 days. 

 

We hypothesise that there is a correlation between the NAO index and the timing 

and size of the spring migration of the green spruce aphid, Elatobium abietinum 

(Walker). These associations may be of interest to foresters responsible for spruce 

(Picea) plantations and palaeoecologists investigating the associations between 

climate, tree population size and insect pests. 

3.2 Materials and methods 

 

Daily counts have been made of aphids since 1966 from a 12.2 m high suction trap 

(Macaulay et al., 1988) at Rothamsted Research near Harpenden, 30 km north of 

London, U.K. Air is sucked into the trap at a constant rate every day of the year and 

the traps operate with a very high level of reliability, such that trap breakdown events 

are exceptionally rare. With 41 years of data available, this is one of the longest 

invertebrate ecological datasets available in the World. This trap is one of a network 

of 16 suction traps distributed throughout England and Scotland, operated by the 

Rothamsted Insect Survey (Harrington and Woiwod, 2007). As part of their life cycle, 

aphids undergo a period of flight. This winged migration takes place at different times 

of year depending on the species.  

 

From the daily aphid data it was possible to calculate a total number of E. abietinum 

caught per year and to obtain the first and last date of capture. The dates were 
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recorded as Julian calendar dates, where, for example, 1 January is day 1 and 1 

June is day 152. The flight period is the inclusive number of days between the first 

and last date of capture.  

 

The mean flight day number was calculated by multiplying the number of aphids 

caught each individual day by the Julian date. These numbers were then summed 

for each year and divided by the total number of aphids caught in that year.  

 

Monthly NAO indices were obtained from the Climate Research Unit (2004) and 

Osborn (2006). This NAO index is based on atmospheric pressures in Iceland and 

Gibraltar and is available in a monthly form. The winter NAO index was calculated as 

a mean of the January, February and March NAO indices and an autumn and winter 

(October to March) NAO index, used in Table 3.1 only, was calculated from the 

mean of all monthly NAO indices from October to March. 

 

Monthly mean temperature data and monthly precipitation data were obtained from 

the Rothamsted meteorological station.  

 

The generalised linear equation y=mx+c was used to describe the trend lines for first 

flight day number and mean flight day number, when plotted against the winter NAO 

index. The gradient, m, was used to calculate the change in the day number 

associated with a change in the winter NAO index.  The intercept, c, can be used to 

estimate the day number for the first day of flight or mean flight day number at 

Rothamsted for a winter NAO index of zero.  
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3.3 Results 

 

The total number of E. abietinum caught per year in the Rothamsted suction trap 

ranged from 5 to 592. Log10 total numbers of E. abietinum caught per year suggest 

an upward trend with time, but with considerable oscillations from year to year 

(Figure 3.2). There is a significant positive correlation (Pearson correlation coefficient 

= 0.387, P. = 0.012) between the winter NAO index and the log10 total number of E. 

abietinum caught per year (Figure 3.3). 

 

There is a significant negative correlation between the winter NAO index and the first 

date of capture of E. abietinum (Pearson correlation coefficient = -0.407, P. = 0.008, 

Figure 3.4), but not the date of last capture (Pearson correlation coefficient = -0.034, 

P. = 0.834, Figure 3.4). As a result, the flight period is significantly positively 

correlated with the NAO index (Pearson correlation coefficient = 0.334, P. = 0.033, 

Figure 3.5). Mean flight date is significantly negatively correlated with the winter NAO 

index (Pearson correlation coefficient = -0.402, P. = 0.009, Figure 3.6). During the 

period 1966 to 2006, the first date of capture has advanced by 29.7 days, the mean 

flight day number has advanced by 17.5 days and the last date of capture by 19.7 

days (Figure 3.7).  
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Figure 3.1. Annual migration pattern for E. abietinum. Graph of log10 total daily 
counts for 1966-2006 against day number. 
 

 

 
Figure 3.2. Log10 total number of E. abietinum caught per year and the winter NAO 
index for the years 1966-2006. 
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Figure 3.3. Relationship between the log10 total number of E. abietinum plotted 
against the winter NAO index. Pearson correlation coefficient = 0.387, P. = 0.012. 
 

 

 
Figure 3.4. Relationship between first day of capture of E. abietinum and the winter 
NAO index (Pearson correlation coefficient = -0.407, P. = 0.008) and between the 
last day of capture of E. abietinum and the winter NAO index (Pearson correlation 
coefficient = -0.034, P. = 0.834). The linear equation for the trend line for the first day 
of capture is y = -4.7322x + 130.96.  
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Figure 3.5. Relationship between the total flight period of E. abietinum in each year 
and the winter NAO index (Pearson = 0.334, P. = 0.033). 
 

 

 
Figure 3.6. Relationship between the mean flight day number of E. abietinum and the 
winter NAO index (Pearson correlation coefficient = -0.402, P. = 0.009). The linear 
equation for the trend line is y = -2.6575x + 147.74. 
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Figure 3.7. First date of capture, mean flight date and last date of capture of E. 
abietinum for the period 1966-2006. 
 
 

 

 
Table 3.1. Pearson correlation coefficients showing the relationships between 
temperature and precipitation at different times of year and the log10 annual total 
number of E. abietinum caught in the Rothamsted suction trap. An October to March 
NAO index was used in calculating correlation coefficients with mean October to 
April temperature and precipitation and the winter (January to March) NAO index 
was used in calculating correlation coefficients with the mean January to April and 
mean May and June temperature and precipitation. 
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There are highly significant positive correlations between the log10 annual total 

number of E. abietinum and the mean October to April temperature (Pearson 

correlation coefficient = 0.517, P. = 0.001) and with the mean January to April 

temperature (Pearson correlation coefficient = 0.458, P. = 0.003). However the 

annual total number of aphids is not significantly correlated with the mean May to 

June temperature (Pearson correlation coefficient = 0.207, P. = 0.194).  There are no 

significant correlations between the total annual capture of E. abietinum and 

precipitation (Table 3.1). 

 

The data were tested for 1st order temporal autocorrelations and the only relationship 

found was a negative association for log10 annual total E. abietinum in successive 

years (Pearson correlation coefficient = -0.371, P. = 0.018). 

3.4 Discussion 

 

The warmer weather associated with a positive NAO index appears to result in E. 

abietinum starting to fly earlier in the year with an earlier peak in flight activity, also 

as the NAO index has become more positive with time, the flight season for E. 

abietinum has tended to start sooner. The last date of flight is unchanged by the 

NAO, so the more positive the NAO index, the longer the flight period. The lack of an 

association between the last date of flight and the NAO might be due to a much 

weaker link between weather and the NAO this late in the year, or to the fact that the 

end date of aphid flight is controlled by some other factor, including possibly a 

change in the nutritional quality of the phloem sap (Day et al., 2004).  

 

The highly significant correlation between the total annual capture of E. abietinum 

and mean January to April temperatures indicates that temperature during this 

period is important in controlling the population size of this species. A slight increase 

in the significance level of the correlation coefficient for mean October to April 

temperatures, when compared to mean January to April temperatures, might indicate 

that both autumn and winter temperatures are important. Temperatures in May and 

June do not appear to affect the population size of E. abietinum, which suggests that 

the population size was determined before the migration and also validates the 
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suction traps as a census method as the number of aphids caught is not a function of 

temperature determined flight ability. Moreover, precipitation appears to have no 

effect on E. abietinum population size. As the NAO has a much greater influence 

over temperature rather than precipitation (Table 3.1), it seems that the mechanism 

for control of E. abietinum population size by the NAO is through temperature rather 

than precipitation. 

 

These results suggest that the winter NAO index can be used as a proxy for the 

population size of E. abietinum in the Rothamsted area. Furthermore the winter NAO 

index can be used to predict the timing of the winged migration of E. abietinum with 

an increase of 1.0 in the winter NAO index resulting in a 4.7 day advance in first 

flight date and a 2.7 day advance in mean flight day number (Figures 3.4 and 3.6). 

For the Rothamsted area it is possible to calculate the actual date by using the 

intercept as a reference point. So with a winter NAO index of zero, it would be 

expected that E. abietinum would start flying on about Julian day number 131 (11 

May) and the mean flight day number would be day 148 (28 May). The aphid data for 

Rothamsted is considered to be representative of an area of 80 km radius 

(Harrington and Woiwod, 2007), so it would be necessary to recalculate this 

predictive model for different areas. With the winter NAO index predicting the scale 

and timing of the migration of E. abietinum, it may be possible to use the winter NAO 

index as a proxy for the amount of E. abietinum damage to Picea populations. 

 

A general upward trend in the number of E. abietinum caught per year occurs during 

the period 1966-2006. During the same period, the winter NAO index has become 

more positive (Figure 3.2), the mean annual temperature at Rothamsted increased 

by 1.46ºC and the mean annual temperature from the Central England Temperature 

Series increased by 1.19ºC Series (Manley, 1974 and Hadley Centre, 2003). It is 

possible that the global warming trend will be manifested in the U.K. by an 

increasingly more positive NAO index, which will in turn be associated with greater 

flight activity of E. abietinum and probably increasing aphid damage to spruce trees. 

While it is possible that this upward trend in the population of E. abietinum in part 

reflects an increase in the percentage of coniferous forests that has occurred in 

Great Britain during the period 1950 – 1990, the majority of the increase in sitka 

spruce has been in Scotland (Forestry Commission, 2005). However the percentage 
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of conifers has been considerably reduced during the 1990s, but an associated 

decline in E. abietinum is not apparent (Figure 3.2). 

 

The dataset used for this chapter has some limitations, including a very large range 

in sample size. A future line of enquiry might include averaging aphid data for years 

with similar NAO indices. Flight times could be calculated for years with a winter 

NAO index of 0.00 to 0.99, 1.00 to 1.99, etc. This would eliminate datapoints based 

on very small sample sizes. It may also be possible to merge data from nearby 

suction traps, although there are likely to be latitudinal differences in the weather. 

The effect of latitudinal temperature differences on flight timing could be a surrogate 

for climate change and make it possible to investigate the interaction of the NAO and 

climate change on the ecology of E. abietinum. 

 

3.5 Conclusion 

 

The present study has shown a strong link between the winter NAO index and the 

phenology of the aphid, E. abietinum. A positive NAO index is associated with larger 

populations that start flying earlier in the year and which have a longer flight period. 

Furthermore there is evidence that global warming is resulting in the winter NAO 

index becoming more positive, therefore high population sizes of E. abietinum may 

become more common. The winter NAO index has considerable potential as a 

predictor of the scale and timing of infestations of E. abietinum and the associated 

damage to Picea, as well as the potential for use as a proxy in palaeoecological 

studies of insect pest damage to trees. 
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Chapter 4 

 

The role of the North Atlantic Oscillation in controlling UK butterfly population 

size and phenology 

 

This chapter is a manuscript currently under review for publication in the journal 

Ecological Entomology: Westgarth-Smith, A.R., Roy, D.B., Scholze, M., Tucker, A. 

and Sumpter, J.P. The role of the North Atlantic Oscillation in controlling UK butterfly 

population size and phenology. 
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The role of the North Atlantic Oscillation in controlling UK butterfly population 

size and phenology.  

 

4.1 Introduction 

 

Climate change is affecting UK butterfly populations, with the northern distributional 

limits of some species moving northwards (Hill et al., 2002; Asher et al., 2001; Asher 

et al., 2011) and most species flying earlier (Sparks and Yates, 1997; Roy and 

Sparks, 2000). It is predicted that projected climate change might cause future 

population changes (Roy et al., 2001). Insects are excellent organisms to investigate 

the influence of weather as they are poikilothermic and are therefore strongly 

influenced by climatic conditions. The present study investigates the effect of the 

North Atlantic Oscillation (NAO) on butterfly ecology, using data from the United 

Kingdom Butterfly Monitoring Scheme (2010), which currently contains 16.4 million 

butterfly records and is one of the best long-term biodiversity datasets in the World. 

 

The North Atlantic Oscillation (NAO) exerts a considerable control on the weather in 

the North Atlantic, Mediterranean, Europe and Scandinavia (Hurrell and Desser, 

2010). The NAO is described by the NAO index, which is calculated from air 

pressures in Iceland and a location within the region of the Azores high pressure 

area. The NAO exerts a stronger control on temperature than on precipitation and 

has its greatest influence on weather in the autumn and winter. A positive NAO index 

is associated with depression systems taking a more northerly route across the 

Atlantic, so UK weather is milder with slightly higher precipitation – in other words 

slightly more maritime in nature and a negative NAO index is associated with 

depression systems taking a more southerly route, so UK weather tends to be colder 

and drier, or slightly more continental in nature (Osborn, 2000).  

 

The NAO index is associated with a range of meteorological factors including 

temperature, precipitation, cloud cover and storms, and so can be a more useful 

means of describing the variability of the weather experienced by an organism than a 

single variable such as temperature (Stenseth, et al., 2003, Hurrell and Deser, 

2010). In effect, the NAO index is a synthesis of a range of weather features that 

interact to affect organisms. The NAO exerts most of its control on the weather 
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before the butterfly flight season (Table 4.1), making it potentially more useful than 

mean annual temperature to explain butterfly ecology, as mean annual temperature 

is the mean for all 12 months, including months that are later in the year, after the 

butterflies have finished flying.  

 

A study of the spring arrival time of 81 migratory bird species in Finland showed that 

most species arrived earlier in years with a positive NAO index, and therefore 

characterised by mild, rainy, weather. This association was significant for 79% of the 

species and the correlations were stronger for earlier, rather than later, phases of the 

migration (Vähätalo et al., 2004). Spring migrant birds have also been found to arrive 

earlier in years with a positive NAO index in the Czech Republic (Hubalek, 2003) and 

on Helgoland (Hüppop and Hüppop, 2003). However, the arrival time of trans-

Saharan migrant birds to the Mediterranean area can also be influenced by factors 

including vegetation growth in their over-wintering and passage areas and different 

weather conditions, depending on whether they take a western or an eastern route 

through the Mediterranean (Robson and Barriocanal, 2011), indicating that there can 

be many environmental variables in different geographical regions that can control 

the phenology of migrant species. 

 

In freshwater habitats, warmer water associated with a positive NAO index results in 

earlier emergence of sea trout (Salmo trutta L.) fry in the English Lake District (Elliott 

et al., 2000). Graphs in that paper suggest that the NAO is associated with about a 

3ºC variation in water temperature, which is associated with about five weeks of 

variation in the emergence date. Mayfly (Ephemeroptera) nymphs in Wales were 

found to grow faster during positive phases of the NAO, as the water temperature of 

the streams that they inhabit is warmer (Briers et al., 2004).  

 

In England, warm weather associated with a positive NAO index causes the spring 

migration of the green spruce aphid, Elatobium abietinum (Walker), to start earlier, 

continue for longer and contain more aphids (Westgarth-Smith et al., 2007). There is 

also preliminary evidence that the NAO influences UK butterfly population size 

(Westgarth-Smith et al., 2005a, 2005b and 2005c). 
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In marine environments, Copepod population size in the Eastern North Atlantic and 

North Sea is affected by the NAO through temperature and wind speed interacting 

with interspecific competition between two species of Copepod (Fromentin and 

Planque, 1996). Jellyfish (Cnidaria: Scyphozoa) population size in the North Sea 

appears to be negatively associated with the North Atlantic Oscillation index (Lynam 

et al., 2004), although the controlling mechanism is unclear. 

 

The NAO also affects plants, with highly significant negative associations between 

the NAO index and the leafing dates of eleven tree species and the flowering dates 

of nine plant species in the UK (D‟Odorico et al., 2002). The NAO has an impact on 

UK agriculture, as demonstrated by the association between the NAO index and the 

quality and economic value of wheat (Triticum spp.) (Kettlewell et. al. 1999). 

 

The aims of the present study were to investigate whether the NAO influenced 

butterfly abundance and phenology and whether there was an interaction with life 

history variables, including the number of generations and duration of the flight 

season. Was it possible to identify a mechanism where weather associated with the 

NAO in specific months influenced butterfly phenology, and if so, was the 

mechanism different for univoltine (one generation per year) and bivoltine (two 

generations per year) species?  

 

4.2 Materials and methods 

 

4.2.1 Meteorological datasets 

 

Monthly NAO indices were obtained from the Climate Research Unit (2004) and 

Osborn (2010). This NAO index uses air pressure data from Iceland and Gibraltar. A 

winter NAO index was calculated as a mean of the January, February and March 

NAO indices. Monthly mean temperature data were obtained from the Central 

England Temperature Series (Parker et al., 1992 and Met Office Hadley Centre 

observation datasets, 2009) and monthly precipitation data were from England and 

Wales Precipitation (Alexander and Jones, 2001 and Met Office Hadley Centre 

observation datasets HadUKP, 2010). 
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4.2.2 The UK Butterfly Monitoring Scheme 

 

The UK Butterfly Monitoring Scheme was piloted in Monks Wood in Cambridgeshire, 

UK, during 1973-75, and was then extended nationally from 1976, with a steadily 

expanding number of survey sites in the UK. The technique involves walking a 

standard line transect on a weekly basis from the start of April to the end of 

September when weather conditions are suitable for butterfly activity. All butterflies 

seen by the observer in a 5 metres wide strip are identified and counted (Pollard and 

Yates, 1993; United Kingdom Butterfly Monitoring Scheme, 2010).  

 

Butterfly data for 1976-2009 are available as a multi-species annual collated index, 

calculated from UK abundance data for 49 species (Brereton et al., 2011) and 

annual collated indices for each species. These collated indices are calculated from 

all Butterfly Monitoring Scheme sites in the UK and are a national, annual index of 

abundance. Weekly butterfly counts are also available from each Butterfly Monitoring 

Scheme transect site (United Kingdom Butterfly Monitoring Scheme, 2010). The 

peak flight week was the week when the most butterflies were seen for the entire 

national dataset. 

 

Butterfly life history information, including the typical number of generations per year 

and the usual months when adults fly, was obtained from Pollard and Yates (1993).  

 

4.2.3 Choice of species 

 

Although species-level annual collated indices were available for most UK species (n 

= 57), those species that do not have data for the entire time series from 1976-2009 

were excluded from the present study. Also the three main migrants - Colias croceus 

(Geoffroy), Vanessa atalanta (L.) and V. cardui (L.) - were excluded as these species 

spend part of their life cycle outside the UK and therefore in different meteorological 

conditions. Therefore annual collated indices for 35 species were used in the current 

study. Of these 35 species, 23 species are univoltine and 12 are bivoltine. Bivoltine 

species may be more strongly affected by the NAO as their two generations are 

spread through a longer period of the year than univoltine species, and so are more 

active at times of the year when the NAO affects the weather. 
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None of the 35 species had precisely defined peak flight weeks in all 34 years 

between 1976 and 2009. It can, for example, be difficult to precisely identify a peak 

flight week if a similar number of butterflies were counted in two adjacent weeks. 

However, abundant, univoltine species with shorter flight seasons resulted in more 

accurately defined peak flight weeks in more years than species that were bivoltine, 

less abundant or had a longer flight season. Accurate determination of the peak flight 

week for some bivoltine species was reduced if one generation was quite small, or 

by the presence, in some years, of a third generation. Voltinism is also affected by 

latitude, so a species can be bivoltine in southern Britain and univoltine further north. 

Thus, high quality datasets suitable for analysis of flight timing are available for only 

a rather limited number of butterfly species, most of which are univoltine, and only 

two are bivoltine. 

 

Six butterfly species were chosen to investigate the association between the NAO 

and peak flight week. These species had enough high quality data throughout the 

entire time period studied. These were four univoltine species: Anthocharis 

cardamines (orange tip), Melanargia galathea (marbled white), Aphantopus 

hyperantus (ringlet), Pyronia tithonus (gatekeeper or hedge brown); and two bivoltine 

species: Lasiommata megera (wall brown) and Polyommatus icarus (common blue).  

The four univoltine species chosen cover two seasons of the year, with A. 

cardamines flying in the spring when the NAO has the maximum control over the 

weather, but not so early that too many butterflies are missed because they are 

flying before the survey starts, or the weather is too unstable to calculate an accurate 

peak flight week. M. galathea, A. hyperantus and P. tithonus fly in the summer. The 

first generations of L. megera and P. icarus fly in the late spring and their second 

generations in the summer (Figure 4.1). Therefore, all six species peak at different 

times, and hence should provide an indication of how the NAO affects butterfly 

populations throughout the spring and summer.  

 

4.2.4 Statistical analysis of data 

 

Pearson correlation coefficients (r) and probabilities (P) were used. Percentage 

control of variability was calculated using a coefficient of determination (r2) multiplied 
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by 100. Multiple linear regression analysis was used to identify which month‟s 

weather had the most influence on peak flight week - regression coefficients (b), 

probabilities (P) and overall model coefficients of determination (r2) were calculated. 

Variance inflation factors (VIF) were used as a test for collinearity, with a VIF of <5.0 

considered to be free from collinearity. Binary logistic regression coefficients (β) were 

calculated when using the number of generations, as this was a discontinuous 

variable. 

 

Associations between the winter NAO index and the first and second generation 

peak flight week numbers were investigated by path analysis. Here we considered 

two models with the following direct and indirect dependencies: (i) second generation 

peak flight week numbers are connected only indirectly to the winter NAO index 

(winter NAO index  first generation  second generation), and (ii) they are 

connected directly and indirectly to the winter NAO index (winter NAO index  first 

generation  second generation and winter NAO index  second generation). 

 

The software used for Pearson correlation coefficients, multiple linear regression 

analysis and binary regression analysis was SPSS. Coefficients of determination 

were calculated using Excel. The statistical software, C2 (Juggins, 2007 and 2010), 

was used to construct the multi-proxy graphs (Figures 4.1 and 4.2A). Statistical path 

analysis was performed using SAS procedure PROC TCALIS (SAS Institute Inc., 

Cary, NC, USA). 

 

4.3 Results 

 

4.3.1 The NAO, climate change and weather 

 

During the period 1976 to 2009, mean annual temperature recorded in the Central 

England Temperature Series increased by 1.22 °C. Although the winter NAO index 

fluctuated considerably during this period, there was no overall increase or decrease 

(Figure 4.2A).  

 

There was a highly significant Pearson correlation between the winter NAO index 

and mean annual temperature (r = 0.544, P = 0.001, Figure 4.2B). To identify the 
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months in which the NAO affects the weather in the UK, Pearson correlation 

coefficients were calculated between monthly NAO indices, mean monthly 

temperatures and monthly precipitation. There were highly significant positive 

Pearson correlation coefficients (P = <0.001) between monthly NAO indices and 

mean monthly temperatures in December to February and significant positive 

correlations (P = <0.050) in October, March and April (Table 4.1). The correlation for 

November was not quite significant (P = 0.059). The association between the NAO 

and precipitation was weaker, although there were significant positive correlations 

between monthly NAO indices and monthly precipitation in January (P = 0.026) and 

February (P = 0.021) (Table 4.1).  

 

 

 
Table 4.1. Pearson correlation coefficients (r) and probabilities (P) between monthly 
NAO indices, mean monthly temperatures and monthly precipitation. September is 
the last month of the year when butterflies are counted by the UK Butterfly 
Monitoring Scheme, so the table runs from October of the previous year (dataset 
used was 1975-2008) to September of the current year (dataset used was 1976-
2009).  
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Figure 4.1. Flight seasons of four univoltine butterfly species, A. cardamines, M. 
galathea, A. hyperantus, P. tithonus and two bivoltine species, L. megera and P. 
icarus. Data are annual mean number of each species counted per week from all UK 
Butterfly Monitoring Scheme sites for 1976-2009. The week numbers are those used 
by the United Kingdom Butterfly Monitoring Scheme (2010), so week 1 is the first 
week of April and week 14 is the first week of July. 
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Figure 4.2. Mean annual temperature and the winter NAO index between 1976 and 
2009. (A) Mean annual temperature has increased by 1.22 °C (r = 0.620, P = 
<0.001) between 1976 and 2009. (B) Association between the mean annual 
temperature and the winter NAO index (r = 0.544, P = 0.001). 
 

 

4.3.2 The relationship between the NAO and butterfly abundance 

 

The multi-species collated index was used to assess the association between the 

collective abundance of many species and the winter NAO index. There was no 

significant association between the winter NAO index and the multi-species annual 

collated index (r = 0.137, P = 0.439, r2 = 0.0189), suggesting that the NAO does not 

affect the total population size of all butterfly species in the UK. 

 

Pearson correlation coefficients were calculated between the annual collated indices 

for all 35 individual species and the winter NAO index, to determine if there were 

associations for individual species. Only one species, L. megera, showed a 

significant positive correlation (r = 0.348, P = 0.043). However, bivoltine species (β = 
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10.346, P = 0.006) and those with a longer flight period (r = 0.248, P = 0.151) tended 

to have a stronger positive correlation between the population index and the winter 

NAO index (Table 4.2). 

 

 

Table 4.2. 35 species of butterflies ranked by the Pearson correlation coefficient (r) 
between their annual collated indices and the winter NAO index. The table also 
includes the typical number of generations per year and the duration of the flight 
season in months. Species with a more positive association with the winter NAO 
index were more likely to be bivoltine (β = 10.346, P = 0.006) and have a longer flight 
period (r = 0.248, P = 0.151). 
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4.3.3 The relationship between the NAO and butterfly phenology 

 

The analysis so far has concentrated on the effect of the winter NAO on butterfly 

abundance, based on collated indices. However, the NAO might also affect the 

timing, or phenology, of the butterfly flight period.  

 

The six species chosen to investigate the effect of the NAO on phenology had large 

sample sizes: A. cardamines ranging from 348 individuals counted in 1976 to 7715 

individuals counted in 2009 and the number of sites ranged from  24 in 1976 to 617 

in 2009; M. galathea ranged from 694 individuals in 1978 to 48092 in 2006 and the 

number of sites ranged from 11 in 1976 to 377 in 2007; A. hyperantus ranged from 

623 individuals in 1977 to 111994 individuals in 2009 and the number of sites ranged 

from 25 in 1977 to 740 in 2009; P. tithonus ranged from 6845 individuals counted in 

1978 to 107994 individuals in 2004 and the number of sites ranged from 33 in 1976 

to 647 in 2008; L. megera ranged from 484 individuals counted in 1977 to 4600 in 

1990, and the number of sites ranged from 33 in 1976 to 187 in 2004. L. megera is in 

decline in the UK (Asher et al., 2011), hence explaining the maximum count being 

relatively early in the time series, despite the number of survey sites increasing after 

1990; P. icarus ranged from 1610 individuals counted in 1977 to 65165 in 2003 and 

the number of sites ranged from 35 in 1976 to 781 in 2009. 

 

The peak flight timing for all four univoltine species and both generations of the two 

bivoltine species was earlier in years with a more positive winter NAO index (Figures 

4.3 and 4.4).  The winter NAO is associated with variations in the peak flight week of: 

3.50 weeks for A. cardamines (r = -0.429, P = 0.011); 1.46 weeks for M. galathea (r 

= -0.284, P = 0.103); 1.76 weeks for A. hyperantus (r = -0.375, P = 0.029); 1.86 

weeks for P. tithonus (r = -0.424, P = 0.012); 3.66 weeks for the first generation of L. 

megera (r = -0.577, P = <0.001); 3.03 weeks for the second generation of L. megera 

(r = -0.606, P = <0.001); 2.72 weeks for the first generation of P. icarus (r = -0.382, P 

= 0.026); 2.58 weeks for the second generation of P. icarus (r = -0.405, P = 0.018). 

Each of the correlation coefficients calculated between the peak flight week and the 

winter NAO index (Figures 4.3 and 4.4) showed stronger associations than the 

correlation coefficients between the annual collated indices and the winter NAO 

index (Table 4.2) for the same species. 
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Figure 4.3. Flight phenology and the winter NAO index for the four univoltine 
species. (A) The relationship between the peak flight week for M. galathea (r = -
0.284, P = 0.103) and A. cardamines (r = -0.429, P = 0.011) and the winter NAO 
index and (B) the relationship between the peak flight week for P. tithonus (r = -
0.424, P = 0.012) and A. hyperantus (r = -0.375, P = 0.029) and the winter NAO 
index. Each data point is the annual peak flight week number for 1976 to 2009. 
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Figure 4.4. Flight phenology and the winter NAO index for the two bivoltine species. 
(A) The relationship between the first (r = -0.577, P = <0.001) and second generation 
(r = -0.606, P = <0.001) peak flight weeks for L. megera and the winter NAO index 
and (B) the relationship between the first (r = -0.382, P = 0.026) and second 
generation (r = -0.405, P = 0.018) peak flight weeks for P. icarus and the winter NAO 
index. Each data point is the annual peak flight week number for 1976 to 2009. 
 

 

L. megera and P. icarus are bivoltine species with the first generation flying nearer 

the time when weather is affected by the NAO than the second generation, yet both 

generations showed significant or highly significant correlations between the timing 

of the peak flight weeks and the winter NAO index. Therefore an analysis was made 

of the role of the timing of the first generation with respect to the timing of the second 

generation (Figure 4.5). There were highly significant Pearson correlations between 

the timing of the first and second generations for L. megera (r = 0.676, P = <0.001) 

and for P. icarus (r = 0.528, P = 0.001). L. megera and P. icarus path coefficients for 

the model I direct path (winter NAO index  first generation peak flight week  

second generation peak flight week) were higher than for the model II direct and 

indirect paths (winter NAO index  first generation peak flight week  second 
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generation peak flight week and winter NAO index  second generation peak flight 

week), suggesting that the primary cause of the timing of the second generation of 

both species was the affect of weather associated with the winter NAO on the timing 

of the first generation. All path coefficients, variance estimates and P values are 

shown in Table 4.3.  

 

 

 
 
Figure 4.5. Second generation peak flight week number against first generation peak 
flight week number for (A) Lasiommata megera (r = 0.676, P = <0.001) and (B) 
Polyommatus icarus (r = 0.528, P = 0.001). Data are from all UK sites between 1976 
and 2009. Each datapoint is for one year, but some datapoints are superimposed. 
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Table 4.3. Path analysis. Model I: winter NAO index  peak 1  peak 2; Model II: 
winter NAO index  peak 1  peak 2 and winter NAO index  peak 2; peak 1 = 
first generation peak flight week number; peak 2 = second generation peak flight 
week number; SE = standard error; path coefficients in bold are statistically 
significant at the 5% level. 
 

 

The winter NAO index was a mean for a three month period, because it was 

calculated from the January to March NAO indices. Therefore, multiple linear 

regression analysis was used to increase the resolution to specific months when 

weather influenced phenology. Overall model r2 values were higher for monthly 

temperatures than for monthly precipitation. This analysis showed significant and 

highly significant negative regressions between the peak flight weeks and mean 

monthly temperatures for A. cardamines in April, M. galathea and A. hyperantus in 

April, May and June and P. tithonus in June and July (Table 4.4). The first generation 

peak flight week for L. megera showed negative regressions with P = <0.100 for all 

four months between February and May and the second generation for L. megera 

showed a significant negative regression with May temperature. First generation P. 

icarus showed a significant regression with June and July temperatures (Table 4.5). 

 

There was a highly significant positive association between March precipitation and 

the peak flight week for A. cardamines and a significant positive association between 
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February precipitation and the peak flight week for M. galathea. There were no 

significant regressions between monthly precipitation and the peak flight week for A. 

hyperantus, P. tithonus or the first or second generation peak flight weeks for L. 

megera and P. icarus (Tables 4.4 and 4.5). 
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    Temperature   Precipitation   

    r
2
 b P r

2
 b P 

A. cardamines October 0.715 0.113 0.451 0.371 -0.015 0.077 

 

November 

 

0.151 0.429 

 

0.003 0.727 

 

December 

 

-0.095 0.505 

 

-0.003 0.764 

 

January 

 

-0.169 0.132 

 

0.002 0.833 

 

February 

 

-0.156 0.343 

 

0.006 0.574 

 

March 

 

-0.189 0.325 

 

0.031 **0.004 

 

April  

 

-0.941 **<0.001 

 

0.010 0.315 

  May   -0.204 0.439   0.004 0.674 

M. galathea October 0.726 0.256 *0.017 0.384 -0.001 0.854 

 

November 

 

0.124 0.358 

 

0.002 0.802 

 

December 

 

0.025 0.794 

 

0.004 0.583 

 

January 

 

-0.058 0.479 

 

<0.001 0.939 

 

February 

 

0.054 0.674 

 

0.016 *0.033 

 

March 

 

0.208 0.153 

 

0.010 0.130 

 

April 

 

-0.434 **0.004 

 

0.005 0.420 

 

May 

 

-0.412 *0.050 

 

0.002 0.763 

 

June 

 

-0.320 *0.037 

 

0.005 0.432 

 

July 

 

0.012 0.934 

 

-0.007 0.307 

  August   -0.157 0.337   -0.001 0.903 

A. hyperantus October 0.744 0.231 0.015 0.405 -0.004 0.451 

 

November 

 

0.022 0.854 

 

0.002 0.688 

 

December 

 

-0.052 0.538 

 

0.001 0.925 

 

January 

 

0.033 0.648 

 

0.005 0.371 

 

February 

 

0.033 0.774 

 

0.011 0.100 

 

March 

 

-0.055 0.663 

 

0.012 0.065 

 

April 

 

-0.375 **0.005 

 

-0.004 0.526 

 

May 

 

-0.382 *0.041 

 

0.002 0.736 

 

June 

 

-0.322 *0.019 

 

0.005 0.372 

 

July 

 

-0.057 0.666 

 

-0.011 0.075 

  August   -0.050 0.727   0.001 0.847 

P. tithonus October 0.734 0.136 0.120 0.298 0.001 0.850 

 

November 

 

0.062 0.585 

 

-0.001 0.857 

 

December 

 

0.065 0.427 

 

0.002 0.761 

 

January 

 

-0.069 0.319 

 

0.003 0.598 

 

February 

 

-0.077 0.482 

 

0.005 0.475 

 

March 

 

0.152 0.215 

 

0.005 0.398 

 

April 

 

-0.099 0.394 

 

0.006 0.330 

 

May 

 

-0.163 0.343 

 

-0.002 0.764 

 

June 

 

-0.270 *0.036 

 

0.008 0.153 

 

July 

 

-0.343 *0.011 

 

0.007 0.276 

  August   -0.028 0.836   0.004 0.457 

         
Table 4.4. Multiple linear regression analyses between mean monthly temperatures, 
monthly precipitation and the peak flight week for the univoltine species - A. 
cardamines, M. galathea, A. hyperantus and P. tithonus. r2 = overall model 
coefficient of determination, b = regression coefficient, P = probability, * = probability 
<0.05, ** = probability <0.01. 
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    Temperature   Precipitation   

    r
2
 b P r

2
 b P 

L. megera - first generation October 0.786 0.061 0.561 0.246 -0.007 0.315 

 

November 

 

-0.178 0.183 

 

0.002 0.825 

 

December 

 

-0.093 0.351 

 

0.002 0.761 

 

January 

 

-0.059 0.459 

 

-0.003 0.682 

 

February 

 

-0.207 0.077 

 

-0.008 0.375 

 

March 

 

-0.269 0.062 

 

0.012 0.159 

 

April 

 

-0.283 0.054 

 

-0.009 0.292 

 

May 

 

-0.462 *0.025 

 

0.007 0.462 

  June   0.045 0.762   -0.003 0.655 

L. megera - second generation October 0.743 -0.036 0.724 0.312 -0.002 0.797 

 

November 

 

-0.031 0.814 

 

0.003 0.680 

 

December 

 

0.060 0.518 

 

0.006 0.415 

 

January 

 

-0.209 *0.014 

 

-0.005 0.416 

 

February 

 

-0.082 0.516 

 

-0.006 0.405 

 

March 

 

0.037 0.790 

 

0.003 0.657 

 

April 

 

-0.149 0.273 

 

0.004 0.531 

 

May 

 

-0.484 *0.024 

 

0.005 0.498 

 

June 

 

0.006 0.968 

 

-0.004 0.511 

 

July 

 

-0.182 0.222 

 

-0.004 0.630 

 

August 

 

0.013 0.934 

 

-0.001 0.851 

  September   0.109 0.471   -0.013 0.063 

P. icarus - first generation October 0.573 -0.193 0.249 0.297 <0.001 0.970 

 

November 

 

0.035 0.867 

 

-0.001 0.887 

 

December 

 

-0.042 0.789 

 

0.005 0.582 

 

January 

 

-0.022 0.862 

 

0.001 0.866 

 

February 

 

-0.221 0.224 

 

-0.003 0.777 

 

March 

 

-0.210 0.347 

 

0.018 0.059 

 

April 

 

-0.422 0.068 

 

-0.002 0.808 

 

May 

 

-0.287 0.358 

 

-0.004 0.715 

  June   -0.316 0.185   -0.015 0.080 

P. icarus - second generation October 0.784 0.012 0.920 0.225 -0.009 0.263 

 

November 

 

0.069 0.657 

 

0.007 0.467 

 

December 

 

0.057 0.604 

 

-0.006 0.526 

 

January 

 

0.108 0.246 

 

0.007 0.375 

 

February 

 

-0.218 0.145 

 

0.011 0.313 

 

March 

 

-0.176 0.283 

 

0.019 0.065 

 

April 

 

-0.290 0.074 

 

0.010 0.323 

 

May 

 

-0.120 0.612 

 

0.005 0.638 

 

June 

 

-0.700 **<0.001 

 

0.003 0.755 

 

July 

 

-0.472 *0.011 

 

-0.001 0.917 

 

August 

 

0.031 0.865 

 

<0.001 0.958 

  September   0.119 0.500   -0.003 0.710 

         

Table 4.5. Multiple linear regression analyses between mean monthly temperatures, 
monthly precipitation and the peak flight week for each of the two generations for the 
bivoltine species - L. megera and P. icarus. r2 = overall model coefficient of 
determination, b = regression coefficient, P = probability, * = probability <0.05, ** = 
probability <0.01. 
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4.4 Discussion 

 

4.4.1 The NAO, climate change and weather 

 

Identification of when the NAO has the most effect on temperature and precipitation 

were pre-requisites to describe how the NAO influences butterfly populations. The 

NAO influenced temperatures from October to April, with the strongest association 

between December and February. The NAO had a greater influence over 

temperature than precipitation, but showed significant influence over precipitation in 

January and February (Table 4.1).  

 

Butterflies have emerged earlier with recent climate warming (Roy and Sparks, 2000; 

Sparks and Yates, 1997) and mean annual temperature in the UK has increased by 

1.22 °C during the period 1976-2009 (Figure 4.2). Although there was a highly 

significant correlation between the winter NAO index and mean annual temperature 

(r = 0.544, P = 0.001), the winter NAO index did not show an upward trend during 

the time series, so would appear not to have made a major contribution to the overall 

temperature increase. The NAO is an oscillatory set of weather parameters, and is 

different from climate change. Conclusions as to whether there is an association 

between rising temperatures due to climate change and the NAO can be influenced 

by the time window studied, particularly with shorter time series. It is likely that 

climate change and the NAO combine to influence the phenology of butterfly flight, 

although Wallisdevries and Van Swaay (2006) hypothesise that climate warming 

combined with high nitrogen deposition can advance spring plant growth, leading to 

microclimatic cooling, which can effect butterfly species that hibernate as eggs or 

larvae. Such suggestions indicate that the relationship between weather and 

butterflies can be complex. 

 

4.4.2 The role of the NAO in butterfly abundance 

 

The multi-species collated index did not show an association with the winter NAO 

index. However, multi-species indices are averages of the response of many species 

to a range of environmental factors, and hence could mask effects on some 

individual species, so Pearson correlation coefficients were calculated to investigate 
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the relationship between the annual collated indices for each of 35 individual species 

with the winter NAO index (Table 4.2). A significant relationship was found for only 

one species (L. megera), but bivoltine species tended to have stronger associations 

with the winter NAO than univoltine species. Similarly, the population abundance of 

species with relatively long flight periods tended to be more positively associated 

with the NAO. 

 

An explanation for bivoltine species showing positive associations with the winter 

NAO is that warmer weather, associated with a positive NAO index, provided a 

longer time to complete two or more generations. Altermatt (2010b) has shown that 

climatic warming increases voltinism in European butterflies and moths and Välimäki 

et al. (2008) discuss the issue of seasonal weather, time constraint and number of 

generations. The low correlations with univoltine species may imply that as the flight 

season is shorter, weather is less important in providing sufficient time to complete 

this life stage and the negative associations shown by some univoltine species 

suggest these species require cold winters, perhaps for dormancy. It is possible that 

the winter NAO index can be used to predict the relative abundance of univoltine and 

bivoltine species, and it is also possible that increased temperatures associated with 

climate change might favour bivoltine species more than univoltine species.  

 

Therefore, the NAO appears to have a complex relationship with butterfly life cycle 

parameters and abundance, which was difficult to detect using multi-species 

indicators. As the NAO plays such an important role in UK weather, then it is 

perhaps questionable how suitable multi-species indices are for monitoring 

ecological change. There may be an important, and difficult, practical dilemma to 

develop an index of entomological population change that integrates complex 

ecological traits and can identify conservation problems. 

 

4.4.3 The role of the NAO in butterfly phenology 

 

The NAO influenced the timing, or phenology, of the butterfly flight season for all six 

species studied in detail. The peak flight weeks for A. cardamines, M. galathea, A. 

hyperantus, P. tithonus (Figure 4.3) and the peak flight weeks for both the first and 

second generations for L. megera and P. icarus (Figure 4.4) were earlier in positive 
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NAO index years. These results were similar to those found for the green spruce 

aphid, E. abietinum, which flew earlier in years with a more positive winter NAO 

index (Westgarth-Smith et al., 2007). The higher correlation coefficients between 

peak flight week and the winter NAO index rather than annual collated indices and 

the winter NAO index indicated that the NAO had a stronger relationship with 

butterfly phenology than abundance. The NAO index is very difficult to predict, and 

hence although the winter NAO index can be used to predict flight timing, it would be 

difficult to predict the winter NAO index in December, but by the end of March it 

would be feasible to predict the flight timing, because by then the winter NAO index 

is known.  

 

Temperature had a greater effect on flight timing than precipitation. Warmer 

temperatures during the period April to July resulted in all six species of butterfly 

flying earlier, with temperatures in later months being associated with later flying 

species. Previous studies (Sparks and Yates, 1997; Roy and Sparks, 2000) have 

also found that warmer spring weather is associated with earlier butterfly flight timing 

and Sparks and Yates (1997) showed how flight timing of four UK butterfly species 

was earlier in years when temperatures in April were higher. The present study also 

suggested that higher precipitation in February and March can delay the flight timing 

of two of the univoltine species. The NAO is significantly positively correlated with 

both temperature and precipitation in February (Table 4.1), so to some extent the 

effect of higher temperature making a flight season earlier should be partly offset by 

higher precipitation, making the flight season later. However, as temperatures were 

more strongly correlated with the NAO for more months than precipitation, the 

mechanism for control of the flight timing by the NAO was probably mainly through 

temperature. So while other authors have shown associations between weather in 

specific months and flight timing, our new contribution has been to link these 

associations to the NAO. 

 

It appears that a factor in determining the timing of the second generation of bivoltine 

species is the timing of the first generation and was presumably due to the length of 

time needed for eggs laid in the first generation to hatch, develop as larvae, pupate 

and then emerge as adults, rather than weather conditions at the time of, or shortly 

before, the second generation emerged as adults. Effectively the NAO indirectly 
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controlled the phenology of the second generation by controlling the phenology of 

the first generation. We believe that this is the first time an association between the 

timing of the first and second generations for bivoltine species has been described 

using butterfly ecological datasets. 

 

In conclusion, the use of multi-species indicators hides the complexity of response of 

individual species. Butterfly species that were bivoltine and had a longer flight period 

were more likely to respond positively to the NAO than univoltine species with a 

short flight period. Warmer weather associated with a more positive winter NAO 

index caused butterflies to fly earlier. With bivoltine species, the NAO controls 

temperature, which controls the timing of the first generation, then the timing of the 

first generation controls the timing of the second generation.   
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Chapter 5 

The North Atlantic Oscillation and butterfly ecology at Monks Wood, 

Cambridgeshire, UK 

5.1 Introduction 

This chapter investigates the role of the NAO in butterfly ecology at a single site, 

Monks Wood National Nature Reserve in Cambridgeshire, UK. Brief mention is also 

made of the populations of Aphantopus hyperantus (ringlet) at Chippenham Fen and 

Holme Fen, also both in Cambridgeshire. Monks Wood is the UKBMS site with the 

longest time series and the highest quality data of any site within the survey. This 

puts Monks Wood at the global leading edge of potential long term invertebrate 

survey sites, the only equivalent schemes of a similar quality in the UK are the 

Rothamsted Insect Survey of aphids and some of the bird surveys organised by the 

British Trust for Ornithology (British Trust for Ornithology, 2011 and Eaton et al., 

2010). I tried using data from the 4th July Butterfly Survey run by the North American 

Butterfly Association (2010), but found that the UKBMS data are of significantly 

higher quality, as the UKBMS uses weekly data whereas the 4th July count is for a 

few days close to 4th July.  

 

Monks Wood is provided with considerable legal protection as a National Nature 

Reserve and Site of Special Scientific Interest, yet it also represents a fragmented 

area of woodland habitat in an intensively farmed landscape. Chamberlain et al. 

(2000) demonstrated how the area sprayed with herbicides in England and Wales 

increased from the 1960s, the area of insecticide application increased from the mid-

1970s and the area of fallow land, which might have contained more larval food 

plants and nectar sources, decreased during the 1970s. Insecticides and herbicides 

can drift in the wind into nature reserves such as Monks Wood (Lawton et al., 2010). 

The UKBMS dataset matches the same time period as this period of agricultural 

intensification and meant that Monks Wood was surrounded by an environment that 

was increasingly less hospitable to butterflies through the time of the survey. 

Thomas et al. (2004) describe how a higher percentage of butterfly species as 

compared to plants and birds have suffered declines in Britain. 
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The Monks Wood dataset consists of weekly counts, with large sample sizes for 

some species, and so is an excellent resource to investigate the potential effect of 

climate change and the NAO on the phenology of flight. While analyses of national 

datasets have the advantages of even larger sample sizes and the elimination of 

site-specific vagaries, changes may be occurring at a local level that are not obvious 

when the national resolution annual collated indices are analysed. Site-specific 

analyses also have some other major advantages that are discussed below.  

 

5.1.1 The advantages of an analysis of site-specific Butterfly Monitoring 

Scheme data from Monks Wood 

 

The Butterfly Monitoring Scheme was piloted in Monks Wood National Nature 

Reserve from 1973-1975 (Pollard, 1977), and then butterflies have been counted at 

this site from 1976 to the present. The earliest start date for any of the other UKBMS 

sites was 1976, so Monks Wood has the longest time series of any site. Most 

UKBMS sites contain some missing weeks of data due, for example, to the person 

counting the butterflies being on holiday or ill. However, Monks Wood has very few 

missing weeks of data. Therefore Monks Wood is the best survey site in the World‟s 

best butterfly survey scheme.  

 

A site-specific study of butterflies means that it was possible to make a reliable 

assessment of the NAO on total flight period. In contrast, progressively more sites 

have been added to the national dataset over the years, and more sites mean more 

butterflies counted, which has the effect of increasing the estimate of the length of 

the flight season. Butterfly phenology is influenced by latitude, so if more northern 

sites were counted in one year, this would alter estimates of the flight timing. By 

using data from one site, this latitudinal effect was removed. 

 

Site-specific studies allow calculation of a mean flight week number, which is more 

accurate than a peak flight week number. Calculating a mean flight week number 

using the entire national database is difficult, because different numbers of sites 

were being counted in each week. Also calculation of the mean flight week number 

requires that the UKBMS survey period is longer than the flight period for the 

butterfly species. For example, in the national database there are reports of meadow 
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brown (Maniola jurtina) butterflies still flying in the last week of September, so some 

will probably still be flying in the first week of October and will not be counted by the 

UKBMS, which finishes at the end of September, however none were counted in the 

final week at Monks Wood during the period 1973-2007. 

 

The national dataset includes about 1500 transect sites that were operational for 

different numbers of years. Consequently it is likely that several thousand people 

have taken part in the survey during the period 1976 to the present. Many of these 

will be highly skilled naturalists, all of them are making a significant contribution 

through their time and effort in taking part in the survey, and without their help the 

excellent UKBMS database would not exist. However, there will be some recorders 

whose identification skills will be less good, but at Monks Wood, the transect was 

supervised and surveyed by some of the most senior professional entomologists in 

the UK, so identification quality should be very high. 

 

Single site studies enable the use of a range of mathematical tools, including 

diversity indices, multivariate analysis, and correlations involving total number of 

species or total number of butterflies of all species – all of which are exceedingly 

difficult to do with data from different numbers of sites in each year. 
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5.1.2 Research questions 

 

The following hypothesis was tested in this chapter: do the NAO and climate change 

affect the weather and ecology of butterflies at Monks Wood? This hypothesis was 

investigated through the following specific research questions: 

 

1. What influence does the NAO have on the weather at Monks Wood? 

2. Is there any evidence of climate change at Monks Wood? 

3. Is the relative abundance of butterflies at Monks Wood changing with time? 

4. Does the NAO have an effect on the overall diversity or abundance of the 

butterfly community at Monks Wood? 

5. How does sample size influence the ability to estimate the timing of the flight 

season, and therefore which species might be more appropriate to investigate 

the potential influence of the NAO? 

6. Is it possible to estimate the relative magnitude of the effect of climate change 

compared to the effect of the NAO on flight timing? 

 

5.2 Materials and Methods 

 

Weekly butterfly counts for Monks Wood were obtained from the United Kingdom 

Butterfly Monitoring Scheme (2006) web site for the period 1973 to 2007. At the time 

that this analysis was done, the UKBMS web site showed weekly counts to 2009, but 

the calculation of annual totals (the „Ind‟ or „individuals‟ column) was complete only 

up to and including 2007, so this analysis does not use data for 2008 and 2009. The 

annual totals („Ind‟) for each species were usually the same number as the total of 

weekly counts unless a week had been missed, when it could include estimated 

numbers for the missing week. In the rare situation where it was not possible to 

calculate an „Ind‟ then „NI‟ („no index‟) was recorded. Data quality was excellent, with 

butterflies counted in almost every week from the first week of April to the last week 

of September in every year. 

 

Meteorological data were obtained for Monks Wood from the British Atmospheric 

Data Centre (2010), but this dataset was found to be incomplete. Sarah Martin, 
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Weather Desk Advisor, Met Office, UK, provided meteorological data from the 

National Institute for Agricultural Botany (NIAB), located on the outskirts of north-

west Cambridge. These data were in the form of monthly mean maximum 

temperature, monthly mean minimum temperature, monthly days of air frost, monthly 

precipitation and monthly total sunshine duration (Met Office Historic Station Data, 

2010).  

 

There were no data for mean monthly temperatures. As mean temperatures would 

probably be a better indication of the conditions affecting insect growth and 

development than mean maximum and minimum temperatures, mean monthly 

temperatures (Tmean) were calculated as a mean of the mean monthly minimum 

(Tmin) and mean monthly maximum temperatures (Tmax) for each month. Mean 

annual maximum temperatures, mean annual minimum temperatures and mean 

annual temperature were calculated as a mean of twelve monthly values. Annual 

precipitation, annual numbers of days of air frost and annual sun hours were 

calculated as a total of twelve months.  

 

The NAO index data used was from the Climate Research Unit (2004). 

 

5.3 Results 

 

5.3.1 Associations between the NAO and NIAB meteorological data 

 

To find what effect the NAO has on weather, Pearson correlation coefficients were 

calculated between monthly and winter NAO indices and meteorological parameters 

obtained from the National Institute for Agricultural Botany in Cambridge. 
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Table 5.1. Pearson correlation coefficients and probabilities between monthly NAO 
indices and monthly mean maximum temperatures (Tmax), monthly mean minimum 
temperatures (Tmin) and monthly mean temperatures (Tmean) for the period 1973-
2007 at the National Institute for Agricultural Botany, Cambridge.  
 

 
 
 
Table 5.2. Pearson correlation coefficients and probabilities between monthly NAO 
indices and monthly precipitation, monthly days of air frost and monthly sunshine 
duration for the period 1973-2007 at the National Institute for Agricultural Botany, 
Cambridge. 
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Table 5.3. Pearson correlation coefficients between the winter NAO index and mean 
annual maximum, mean annual minimum and mean annual temperatures, annual 
precipitation, annual days of air frost and annual total sunshine duration for the 
period 1973-2007 at the National Institute for Agricultural Botany, Cambridge. 
 

 

There were significant and highly significant positive Pearson correlation coefficients 

between monthly NAO indices and monthly mean maximum temperatures, monthly 

mean minimum temperatures and monthly mean temperatures in all except one case 

for January to May inclusive, October and December (r = 0.335-0.812, P = <0.001-

0.049, Table 5.1).  

No significant correlation coefficients were found between monthly NAO indices and 

monthly temperatures for June to September, although the correlation coefficient 

between the September NAO index and September mean maximum temperature is 

almost significant (r = 0.302, P = 0.077, Table 5.1).  

There appeared to be very little association between monthly NAO indices and 

monthly precipitation, although the correlation for February is close to significant (r = 

0.286, P = 0.095), and a significant correlation for June precipitation (r = -0.354, P = 

0.037). However, this apparent association might be random, as this is an unusual 

time of year for the NAO to influence the weather (Table 5.2). 

 

There were highly significant correlations between monthly NAO indices and the 

number of days of air frost for January, February and December (r = -0.465 to -

0.787, P = <0.001-0.005) and significant and highly significant correlations between 

monthly NAO indices and sunshine duration in January, March, June and September 

(r = 0.384 – 0.588, P = <0.001-0.023) (Table 5.2). 
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The winter NAO index showed highly significant correlation coefficients between 

mean annual maximum, mean annual minimum and mean annual temperatures (r = 

0.478-0.536, P = 0.001-0.004) and annual number of days of air frost (r = -0.678, P = 

<0.001) . There was a significant correlation between the winter NAO index and 

annual total sunshine duration (r = 0.364, P = 0.032), but not annual precipitation (r = 

0060, P = 0.734) (Table 5.3). 
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5.3.2 Climate change in Cambridge 

 

Temperature data from the National Institute for Agricultural Botany (NIAB), 

Cambridge, were plotted against year to investigate whether there was evidence of 

climate change. 

 
 
Figure 5.1. Change in annual mean maximum (r = 0.605, P = <0.001), and mean 
minimum (r = 0.675, P = <0.001) and annual mean (r = 0.655, P = <0.001) 
temperatures for 1973-2007 at the National Institute for Agricultural Botany, 
Cambridge. 
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Figure 5.1 shows highly significant evidence (P = <0.001) for a warming trend at 

NIAB, with increases in annual mean maximum temperature, annual mean minimum 

temperature and mean annual temperature. However, the warming trend has not 

been consistent throughout the time series, as there was some evidence for cooling 

between 1976 and 1986 or 1987. 

 

5.3.3 Total number of individuals of each butterfly species counted at Monks 

Wood 

 

Figure 5.2 gives the relative abundance of each species of butterfly at Monks Wood, 

which was useful information in identifying the species with the largest sample sizes 

and therefore those species more suitable for detecting trends associated with the 

NAO.  

 
The Butterfly Monitoring scheme recorded individuals of 33 species of butterfly at 

Monks Wood during the period 1973-2007, although data for two species, 

Thymelicus sylvestris and T. lineola, were combined as these species were 

considered difficult to distinguish from each other (Pollard and Yates, 1993). The five 

most frequently counted species, in declining order, were Aphantopus hyperantus, 

Maniola jurtina, Pieris napi, Pyronia tithonus and Pararge aegeria. Figure 5.2 shows 

the total number of each species counted from 1973-2007, although the annual 

numbers counted for some species, for example Aphantopus hyperantus, changed 

considerably through the time series. 
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Figure 5.2. Total number of individuals of each species of butterfly recorded at 
Monks Wood by the UKBMS during the period 1973-2007. There was an overall total 
of 79284 butterflies for the entire time series. 
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5.3.4 Total number of butterfly species and total number of butterflies at 

Monks Wood 

 

The annual total number of butterfly species and the annual total number of 

butterflies of all species were plotted against year (Figures 5.3 and 5.4). The 

population size of one species, A. hyperantus, increased considerably during the 

time series (Figure 5.5) and the annual total count of all species, excluding A. 

hyperantus decreased (Figure 5.6). This was a considerable change in the butterfly 

community at Monks Wood, so populations of A. hyperantus at two other 

Cambridgeshire nature reserves (Chippenham Fen and Holme Fen) were also 

investigated (Figures 5.7 and 5.8).  
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Figure 5.3. Total number of butterfly species recorded each year at Monks Wood 

between 1973 and 2007 (r2 = 0.2368, r = -0.487, P = 0.003, m = -0.0793).  
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Figure 5.4. Total number of butterflies of all species recorded at Monks Wood each 
year. The correlation coefficient for the period 1978-2007 inclusive is r = 0.138, P = 
0.466, data from 1973-1977 was excluded from this correlation as there appeared to 
be a gradient change at 1977-78, with the annual number of butterflies counted 
between 1973 and 1977 being less than half the annual number counted from 1978 
onwards. 
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Figure 5.5. Total number of all species of butterfly excluding Aphantopus hyperantus 
and total number of A. hyperantus only counted at Monks Wood each year between 
1973 and 2007. There were more A. hyperantus counted in 1997, 2001 and 2007 
than all butterfly species excluding A. hyperantus. 
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Figure 5.6. Annual total of all species excluding A. hyperantus from 1978 to 2007 
with a possible prediction of future changes (r2 = 0.3386, r = -0.582, P = 0.001). A 
linear trendline is included and extrapolated to zero.  
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Table 5.4. Records of butterflies that have been present at Monks Wood in the past. 
For locally extinct species, the last year that it was recorded is given in brackets. 
Two species – the brown argus (Aricia (Plebeius) agestis) and the marbled white 
(Melanargia galathea) became extinct and then recolonised Monks Wood 
(Greatorex-Davies et al., 2006). 
 

 

The total number of butterfly species recorded by the UKBMS at Monks Wood each 

year during the period 1973 to 2007 varies from19 to 27, but there has been a highly 

significant decline in the number of species recorded per year from an average of 24 

to 21 species per year (r = -0.487, P = 0.003). An average rate of one less butterfly 

species being seen at Monks Wood every 12.6 years (Figure 5.3). The species that 

appear to have become locally extinct at Monks Wood, based on UKBMS data are: 

Pyrgus malvae, Leptidea sinapsis, Satyrium w-album and Lasiommata megera, 

although Greatorex-Davies et al. (2006, Table 5.4) suggests that three of these 

species are extant with only L. sinapsis locally extinct – which suggests that it can be 

quite difficult to demonstrate a local extinction. Species that have decreased include 

Gonepteryx rhamni and Coenonympha pamphilus. Species that appear to have 
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colonised Monks Wood are Aricia agestis and Melanargia galathea. Species that 

have increased in numbers are Thymelicus sylvestris/T. lineola, Ochlodes venata, 

Neozephyrus quercus, Polygonia c-album, Pararge aegeria, and Aphantopus 

hyperantus. Species only recorded once were Colias croceus and Argynnis paphia. 

 

Since the 19th century, about 17 species of butterfly have become extinct at Monks 

Wood (Greatorex-Davies et al., 2006, Table 5.4), with most of the known local 

extinction dates being in the 1960s and 1970s. However, the UKBMS data suggests 

that a further three of the extant species have more recently become extinct. This 

suggests that there were 46 species in the 19th century, 7 became extinct before 

Monks Wood was designated an NNR, and after designation as an NNR an 

additional 13 species have become locally extinct and one species (Limentis camilla) 

has colonised. This is the equivalent of a 30% loss of species while Monks Wood 

has been managed as a National Nature Reserve. There are limitations to the 

accuracy of these species numbers when Monks Wood was designated as a NNR in 

1953 as illustrated by Greatorex-Davies et al. (2006) suggesting that there were 39 

or 40 species and Thomas (2010) saying that there were 35 species.  

 

The total number of individuals of all species increased during the 1970s and then 

there was no significant change from 1978 to 2007 (r = 0.138, P = 0.466, Figure 5.4).  

However, one species, Aphantopus hyperantus has increased considerably, such 

that in 2001 and 2007 there were more A. hyperantus than the combined total of all 

the other species (Figure 5.5). The total annual count of all species excluding A. 

hyperantus has dropped from 2984 in 1979 to 734 in 2001 and 952 in 2007- a 68-

75% decrease (Figure 5.6). Figure 5.6 shows the total number of individuals of all 

species, excluding A. hyperantus, from 1978 onwards extrapolated using a linear 

trendline to the point where it reaches zero. The graph was started from 1978, rather 

than the peak of 1979, as the high population size in 1979 might unreasonably 

increase the gradient of the graph. The population would appear to reach zero 

before 2050, suggesting all species of butterfly would be extinct by this point, except 

for A. hyperantus. However, there are currently other species that are increasing in 

numbers, such as O. venata and T. lineola/T. sylvestris, so perhaps the predicted 

2050 date is the date of complete replacement of one butterfly community with 

another community? 
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The population size of A. hyperantus and all butterflies excluding A. hyperantus was 

also investigated at Chippenham Fen and Holme Fen (Figure 5.7 and 5.8). These 

sites were chosen because they are in the same county as Monks Wood and have 

high quality data. Both sites had over 500 A. hyperantus counted in at least one 

year, suggesting that they contain reasonably good A. hyperantus habitat. 

Chippenham Fen, Holme Fen and Monks Wood (Figures 5.7 and 5.8) all showed 

increases in A. hyperantus populations in the 1980s and this also occurred in the 

national data (Figure 5.9). However, numbers at Chippenham Fen and Holme Fen 

did not reach 50% of the total butterfly population size, as occurred at Monks Wood. 

Also, the numbers of A. hyperantus at Chippenham Fen declined from the early 

1990s and at Holme Fen they declined in the late 1980s. There was no evidence of a 

decline at Monks Wood or in the annual collated index. 
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Figure 5.7. Total number of A. hyperantus and total number of all species excluding 

A. hyperantus at Chippenham Fen, Cambridgeshire, UK. No data were available for 

1985. 
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Figure 5.8. Total number of A. hyperantus and total number of all species excluding 
A. hyperantus at Holme Fen, Cambridgeshire, UK. 
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Figure 5.9. Changes in the national, annual collated index for A. hyperantus between 
1976 and 2007. National collated indices are only available from 1976 onwards as 
this was when the butterfly survey was expanded from the pilot site of Monks Wood 
to a national survey. 
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5.3.5 The NAO and the total number of butterfly species and total population 

size of all butterfly species 

 

The total number of butterfly species and total number of butterflies of all species at 

Monks Wood were plotted against the winter NAO index to investigate whether 

weather associated with the winter NAO can control the number of species or the 

total number of butterflies. 

 
 

 

Figure 5.10. The association between the total number of butterfly species recorded 
at Monks Wood and the winter NAO index (r2 = 0.0268, r = -0.164, P = 0.347). 
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Figure 5.11. The association between the total number of butterflies of all species 
counted per year at Monks Wood and the winter NAO index (r2 = 0.0169, r = 0.130, 
P = 0.455).  
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Weather associated with the NAO did not appear to influence the total number of 

butterfly species seen each year (Figure 5.10) or the total number of butterflies of all 

species counted per year (Figure 5.11).  

 

5.3.6 Shannon-Wiener diversity index (H) 

 

Shannon-Wiener diversity indices were calculated for each year from 1973-2007 at 

Monks Wood. 

 

 

 
 
Figure 5.12. The Shannon-Wiener diversity index between 1973 and 2007 at Monks 
Wood National Nature Reserve (r2 = 0.091, r = -0.302, P = 0.078). 
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Figure 5.13. The association between the Shannon-Wiener diversity indices for 
butterflies at Monks Wood and the winter NAO index for the period 1973-2007. (r2 = 
0.0055, r = 0.075, P = 0.669). 
 
 

The Shannon-Wiener diversity index appeared to be decreasing through the time 

series, although this decrease is not significant and there was considerable annual 

variation (r = -0.302, P = 0.078, Figure 5.12). Diversity would be expected to be 

decreasing as the number of species is decreasing (Figure 5.3) and one species (A. 

hyperantus) has increased in number to become a very large proportion of the 

butterfly community (Figure 5.5). A community where one species is especially 

abundant will have a lower diversity. There was no significant association between 

the Shannon-Wiener diversity index and the winter NAO index (r = 0.075, P = 0.669, 

Figure 5.13).  
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5.3.7 Associations between the population sizes of individual species of 

butterfly at Monks Wood and the winter NAO index 

 

Annual count data for each species of butterfly at Monks Wood were correlated with 

the winter NAO index and then detrended butterfly count data were correlated with a 

detrended winter NAO index (Table 5.5). The detrending method used was to 

subtract the previous annual butterfly count, or the previous winter NAO index, from 

the current year. So the detrended data were the change from one year to the next. 
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Table 5.5. Pearson correlation coefficients between non-detrended and detrended 
butterfly monitoring scheme counts for each species at Monks Wood and the winter 
NAO index. * = significant correlations, ** = highly significant correlations. Thecla 
betulae was excluded as there was insufficient data for this species. 
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Of the 31 species investigated, seven species (Table 5.5) showed significant 

Pearson correlation coefficients (P = <0.05) between the winter NAO index and the 

annual count of each species. There were four significant associations with non-

detrended data and six with detrended data. Three of the seven species had 

significant associations with both non-detrended and detrended data.  

 

A total of 62 correlation coefficients were calculated between individual species 

abundance and the winter NAO index (Table 5.5). If the data were completely 

random, then 5% of Pearson correlation coefficients might be expected to be 

significant at the 5% level, by chance. Therefore three correlations might be 

significant, by chance alone. However, as 10 correlations involving seven species 

showed statistically significant relationships, it is likely that the associations between 

abundance of these species and the winter NAO index were not due to chance.  

 

5.3.8 Correspondence analysis 

 

Correspondence analysis using the software C2 was used to analyse the annual 

butterfly count data (the „Ind‟ values). Unfortunately C2 will not accept columns of 

species abundance data with any missing values. The Monks Wood dataset had 

some missing values, including both Gonepteryx rhamni and Inachis io in 2001, 

probably caused by access restrictions to the site due to an outbreak of foot and 

mouth disease in farm animals. Pyronia tithonus had one data point missing for 

2007, presumably due to data missing for one week (week 17), in mid-flight season, 

for a species that can be present in very large numbers. These three missing values 

were replaced with the mean of the number counted in the year before and the year 

after the missing value. There were no data, other than an „NI‟ (no index), for Thecla 

betulae and there were 27 years of missing data for unknown whites, so both T. 

betulae and unknown whites were excluded from the correspondence analysis. 
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Figure 5.14. Correspondence analysis: species score 2 against species score 1 for 
the Monks Wood butterfly data. Eigenvalue for species score 1 is 0.2482 and 
species score 2 is 0.0707. Ts/Tl, Thymelicus sylvestris/T. lineola; Ov, Ochlodes 
venata; Pm, Pyrgus malvae; Ls, Leptidea sinapsis; Cc, Colias croceus; Gr, 
Gonepteryx rhamni; Pb, Pieris brassicae; Pr, Pieris rapae; Pn, Pieris napi; Ac, 
Anthocharis cardamines; Nq, Neozephyrus quercus; Sw, Satyrium w-album; Sp, 
Satyrium pruni; Lp, Lycaena phlaeas; Aa, Aricia agestis; Pi, Polyommatus icarus; 
Ca, Celastrina argiolus; Lc, Limentis camilla; Va, Vanessa atalanta; Vc, Vanessa 
cardui; Au, Aglais urticae; Ii, Inachis io; Pc, Polygonia c-album; Ap, Argynnis paphia; 
Pa, Pararge aegeria; Lm, Lasiommata megera; Mg, Melanargia galathea; Pt, Pyronia 
tithonus; Mj, Maniola jurtina; Ah, Aphantopus hyperantus; Cp, Coenonympha 
pamphilus.   
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Figure 5.15. Correspondence analysis: sample score 2 against sample score 1 for 
the Monks Wood butterfly data. Contour lines have been added to show the change 
with time. A = years 1995-2007, B = years 1984-1994, C = years 1973-1983. 
Eigenvalue for sample score 1 is 0.2482 and sample score 2 is 0.0707. 
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Most of the species in the species score graph appeared as one group, suggesting 

that the abundance of most butterfly species at Monks Wood fluctuated in a relatively 

similar manner (Figure 5.14). The main outlier species were Melanargia galathea, 

Aricia agestis and Colias croceus. These species had many years when no 

individuals were counted, so it is likely to be the very low numbers of these species, 

rather than necessarily any unusual behaviour, that has resulted in them being 

outliers. 

 

Sample score analyses suggest that the butterfly species composition at Monks 

Wood has been changing in a fairly consistent manner throughout the time series 

(Figure 5.15). Contours have been drawn on the graph to make it easier to see this 

change. This change with time is described by sample score 1, which has a relatively 

high eigenvalue of 0.2482, which means that points that are distributed along this 

axis represent an important proportion of the change in species composition and 

abundance. Replacing the labels showing years in the sample score graph to labels 

showing the winter NAO index showed no evidence of a pattern. 

 

5.3.9 The NAO and flight phenology at Monks Wood 

 

Total weekly count data for a single species, Maniola jurtina, at Monks Wood were 

used to investigate how weather associated with the winter NAO index affected the 

phenology of the flight season. M. jurtina was chosen because it was the second 

most abundant species at Monks Wood (Figure 5.2). By selecting species on the 

basis of abundance, bias in species choice was minimised. M. jurtina flies during the 

summer and numbers can be higher than spring species. Also it is a relatively 

abundant, easy-to-see species, as it flies low down, perching on grass or flowers, 

unlike some hairstreaks, that fly high in the canopy, and hence can be considerably 

more difficult to both see and accurately identify. 

 

The most abundant species at Monks Wood was A. hyperantus, but the sample size 

varied considerably through the time series and this sample size variation had too 

large an influence on estimates of flight duration, with a longer flight time associated 

with more individuals counted (Figure 5.16). Also, the association between flight 
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duration and number of individuals counted appearing to change for less than, and 

more than, about 300 individuals per year (Figure 5.17).  

 

 

 

 
Figure 5.16. The flight duration of Aphantopus hyperantus and the annual number of 
this species counted at Monks Wood between 1973 and 2007.  
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Figure 5.17. The flight duration of A. hyperantus plotted against the annual number 
counted. The trendline is a log10 trendline (r2 = 0.6549). 
 
 

M. jurtina had the advantage that it was not recorded on the first survey week, so the 

problem found with species such as G. rhamni, A. urticae, I. io and P. c-album, that 

were already flying at the start of each year‟s survey, and therefore too early to 

obtain a first flight week, was eliminated. This problem of describing phenological 

changes for species with hibernating adults, including A. urticae and G. rhamni, was 

identified by van Strien et al. (2008) using data from the Dutch Butterfly Monitoring 

Scheme. As these species fly so close to the months that the NAO influences UK 

weather, it is unfortunate that the UKBMS does not start earlier in the year, as these 

species might show strong associations with the NAO. The species that fly early in 
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the year usually do not fly in large enough numbers on individual sites to investigate 

phenological change and the numbers recorded each week can be highly variable 

due to variable weather early in the year. 

 

The week number of first and last flight for M. jurtina was obtained for each year, 

from which it was possible to calculate the flight duration. The mean flight week was 

calculated by multiplying the number counted in each week by the week number. 

These numbers were then summed and divided by the total number of butterflies 

counted in that year. The total number of butterflies was the total from all weeks, not 

the total from the „Ind‟ column, which is in part based on predictions of the number of 

butterflies in any weeks with missing data. There were few missing data at Monks 

Wood, so the „Ind‟ column is similar to the total obtained from summing the weekly 

data. 

 

5.3.10 Maniola jurtina and the NAO 

 

This section investigates whether there is evidence for weather associated with the 

winter NAO or climate change controlling the flight timing of M. jurtina. M. jurtina is 

univoltine and the second most abundant species at Monks Wood. 
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Figure 5.18. The flight season of Maniola jurtina, demonstrated by plotting the mean 
number of M. jurtina counted per week for 1973-2007 against the time of year (week 
1 represents the first week of April, and week 26 is the last week of September. 
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Figure 5.19. Changes in the flight season of M. jurtina with time at Monks Wood 
National Nature Reserve. The first (r = -0.226, P = 0.192), mean (r = -0.001, P = 
0.996) and last (r = -0.321, P = 0.060) flight weeks are plotted against the year.  
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Figure 5.20. The relationship between flight time of M. jurtina and the winter NAO 
index at Monks Wood National Nature Reserve. The week of first flight (r2 = 0.3078, r 
= -0.555, P = 0.001, m = -0.4921), mean flight (r2 = 0.3551, r = -0.596, P = <0.001, m 
= -0.3274) and last flight (r2 = 0.0432, r = -0.208, P = 0.231, m = -0.1716) are plotted 
against the winter NAO index using data from 1973-2007.  
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Figure 5.21. The relationship between the flight period of M. jurtina and the winter 
NAO index. Data for 1973-2007 (r2 = 0.0943, r = 0.307, P = 0.073). 
 
 

Weekly data for 1973-2007 from Monks Wood showed that M. jurtina is univoltine, 

with a clearly defined flight period starting at about week 9 and finishing at about 

week 25 (Figure 5.18). There is limited evidence for a role of climate change; 

although the first (r = -0.226, P = 0.192) and last flight weeks (r = -0.321, P = 0.060) 

have become earlier through the time series, the mean flight week has not changed 

(r = -0.001, P = 0.996) (Figure 5.19).  

 

M. jurtina appears to fly earlier in years with a more positive winter NAO index. This 

association is strongest with both mean (r = -0.596, P = <0.001) and first flight (r = -

0.555, P = 0.001), whereas the association with the date of last flight was not 

significant (r = -0.208, P = 0.231) (Figure 5.20). The gradient was steepest for the 
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week of first flight (m = -0.4921), less for the mean flight (m = -0.3274) and least for 

the last date of flight (m = -0.1716). Therefore the association between the winter 

NAO index and phenology for M. jurtina appears to diminish later in the year and 

further from the winter period, when the NAO has the strongest effect on the 

weather.  

 

The mean flight week had a slightly higher Pearson correlation coefficient with the 

winter NAO index than the week of first flight. This may be because first and last 

flight week numbers were influenced by small numbers of butterflies at the extremes 

of the flight season. Mean flight dates were influenced more by weeks containing 

larger numbers of butterflies and which were nearer the peak of the flight season. 

 

The time interval between the first and last flight was used to calculate a flight 

season duration which was plotted against the winter NAO index. As the NAO index 

becomes more positive, both the first and last flight start earlier, but as the gradient 

of first flight is steeper, the flight duration increases. So the more positive the winter 

NAO index, the longer the flight season although the relationship was not quite 

significant at the 5% level (r = 0.307, P = 0.073, Figure 5.21). 
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5.3.11 Relative magnitude of the effect of the NAO compared to climate change 

on the flight timing of Maniola jurtina at Monks Wood 

 

Coefficients of determination were calculated for M. jurtina flight timing against year 

(as a proxy for climate change) and against the winter NAO index and were 

converted into a percentage of the variability explained by climate change and the 

winter NAO index.  

 

 
 
Table 5.6. Percentage of the variability in flight timing explained by climate change 
and by the winter NAO.  
 
 

Table 5.6 suggests that for M. jurtina the winter NAO has a stronger effect than 

climate change on first and mean flight, but not last flight week numbers. 
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5.4 Discussion 

 

5.4.1 What influence does the NAO have on the weather at Monks Wood? 

 

The NAO appeared to control temperature between October and May, with the 

strongest degree of control of temperatures from December to February inclusive. As 

the NAO controls temperature, it also influences the number of days of air frost 

during the period December to February inclusive. The NAO appeared to exert a 

weak control of precipitation in February and sunshine duration in February, March, 

August and September. 

 

The winter NAO index showed a highly significant correlation with annual 

temperatures and annual days of air frost, a significant correlation with annual total 

sunshine hours and no association with precipitation. The correlation coefficient 

between the winter NAO index and air frost days has a higher correlation coefficient 

than the correlation between the winter NAO index and annual temperatures, 

because most of the air frost days are in the months when the NAO has the largest 

influence on the weather.  

 

5.4.2 Is there any evidence of climate change at Monks Wood? 

 

Annual temperatures appeared to decrease during the period 1973-1986 and then to 

increase until the end of the data series in 2007. The initial decrease in temperatures 

may be due to sulphate aerosol pollution causing increased reflection of radiation 

back into space and therefore causing cooling (Bauer et al., 2008; Earth System 

Research Laboratory, 2011). The temperature increase from 1986 onwards is due to 

climate change and a reduction in aerosol pollution in part due to clean air 

legislation. 

 

The Copenhagen Accord (United Nations Framework Convention on Climate 

Change, 2009) “recognises the scientific view that the increase in global temperature 

should be below 2 degrees Celsius” although it does not seem to specify the 

baseline reference year. The mean annual temperature rise at NIAB between 1973 

and 2007 was 1.5ºC, and if trends continue would be 2ºC by 2018, so to be 
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meaningful the actions resulting from the Copenhagen Accord must be very swift 

and effective, and as far as Cambridge is concerned, this target is highly unlikely to 

be met. If the rate of temperature increase remains constant then by 2100 mean 

annual temperature in Cambridge would be about 5.6°C higher than 1973, however 

this is assuming a linear increase and could be an underestimate as the annual rate 

of increase in carbon dioxide in the atmosphere is increasing (Figure 1.3), so there 

might be an increasing rate of temperature increase.  

 

A >5°C warming would be the equivalent of a change in latitude between 

Cambridgeshire and southern Europe or North Africa, which might mean that the 

temperature at Monks Wood would be less suitable for the English oak (Quercus 

robur) and more appropriate for the cork oak (Quercus suber L.) – which currently 

grows in Spain (Lacambra et al., 2010; AWS pers. obs.). 

 

5.4.3 Is the relative abundance of butterflies at Monks Wood changing with 

time? 

 

There was considerable variation in the relative abundance of some species of 

butterfly at Monks Wood. The most abundant species was Aphantopus hyperantus, 

followed by Maniola jurtina. However, A. hyperantus went from being relatively 

uncommon to comprising over 50% of the butterflies counted during the time series. 

This population increase may be due to increasing atmospheric nitrogen deposition, 

which can change grassland plant communities by increasing coarse grasses (e.g. 

Brachypodium sylvaticum (Huds.) Beauv.) and reducing floral abundance and 

diversity (Pollard et al., 1998) to Monks Wood. The low population size in the mid-

1970s is in part due to the effect of the 1976 drought (Sutcliffe et al., 1997), although 

populations were low in 1974 when annual precipitation was high. Populations of A. 

hyperantus at two other East Anglian National Nature Reserves initially showed the 

increase seen at Monks Wood, but then they declined, whereas the population at 

Monks Wood did not decline, suggesting that site-specific factors can also influence 

population size. Further enquiries might relate to patterns of nitrogenous fertiliser 

usage in surrounding fields, as Chippenham Fen is a Ramsar wetland and it is 

possible that less fertilisers are used in a buffer zone.  
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The low total number of butterflies of all species counted during the 1970s might be 

an effect of testing the recording technique at that time. When the route was being 

piloted it was sometimes walked more than once per week and average weekly 

numbers were calculated. Averaging can remove extreme high and extreme low 

values. However, low butterfly numbers were also recorded at Chippenham and 

Holme Fens in the 1970s and early 1980s, suggesting the involvement of a national, 

not local, factor. In 1974, the Nature Conservancy Council started to manage Monks 

Wood for butterfly conservation, including by widening the rides (woodland tracks) 

(Pollard, 1982), and this might also have contributed to the increase in butterfly 

numbers. Monks Wood has, however, gone from low total butterfly abundance with 

high species diversity, to a higher butterfly abundance but with a lower diversity. 

 

As the total number of butterflies of all species has remained fairly constant from 

1978, this means that the total number of butterflies of all other species excluding A. 

hyperantus is in decline. Extrapolating a trendline suggests that all other species 

might be extinct by the mid-2040s, although as some species, such as Ochlodes 

venata, are also increasing, a complete local extinction of all species other than A. 

hyperantus is unlikely. 

 

Thomas (2010) says that when Monks Wood was designated a nature reserve in 

1953, it had 35 species of butterflies (although this might be 39-40 species; Table 

5.4; Greatorex-Davies et al., 2006). However, within 30 years, eleven of these 

butterfly species had become locally extinct and were no longer present at Monks 

Wood, although none of their larval food plants had declined (Thomas, 2010). 

However, plants are also needed for nectar, as shown by the fact that butterfly 

diversity on roadside verges correlates with nectar availability (Munguira and 

Thomas, 1992). Further, nectar source plant decline viewed at a national scale has 

been shown to be a problem for bumblebees (Carvell et al., 2006), so perhaps 

butterfly population size is limited by adult food supply than larval food supply?  

 

Unfortunately the extinction rate was highest before the UKBMS started, limiting the 

ability of the UKBMS to describe historical biodiversity loss. During the period of the 

UKBMS one less butterfly species was seen on average every 12.6 years, however 

Greatorex-Davies et al. (2006, Table 5.4) suggests that the last extinctions were in 
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the mid-1970s, so perhaps some of the lower number of species recorded in some 

years from 1993 to 2007 was due to the lower probability of seeing a declining 

species rather than an actual extinction (Figure 5.3). The changing number of 

species with time at Monks Wood is known, although when accompanied by 35 

species present in 1953 represents one of the longest published time series of insect 

decline – although Corke (1999) has published a two century decline in Epping 

Forest, Essex, UK. What appears new with the present study is to publish an 

average extinction rate for Monks Wood.  

 

With most of the butterfly extinctions at Monks Wood happening during the 1960s 

and 1970s, it suggests that they were associated with agricultural intensification, and 

therefore indicating that butterflies at Monks Wood are vulnerable to what happens in 

the surrounding countryside. There could be various mechanisms for this 

vulnerability including pesticides and fertilisers blowing into the reserve, or the loss of 

ability of butterflies from surrounding areas to fly into the nature reserve. An 

important question is, which, if any, butterfly species can survive in an isolated 

nature reserve. Insect metapopulations usually require a combination of large habitat 

size, good habitat quality and reduced habitat isolation (Samways, 2007). 

Binzenhöfer et al. (2008) show that for the small blue butterfly (Cupido minimus 

Fuessly) living in a fragmented landscape, this process is complex with long term 

survival of metapopulations in lower habitat quality compensated for by higher 

connectivity within habitat patches. 

 

5.4.4 Does the NAO have an effect on the overall diversity or abundance of 

the butterfly community at Monks Wood? 

 

The NAO does not appear to have an effect on the abundance of the whole butterfly 

community, although it does have an effect on the population sizes of some species. 

The NAO also does not have an effect on overall butterfly biodiversity, but there 

have been decreases in diversity and number of species with time. I believe that this 

is the first time that it has been shown that for butterfly community abundance and 

diversity, long term environmental changes are ecologically more important than the 

NAO. 
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Weather associated with the winter NAO appears to influence the population size of 

the same species at the site-specific level of Monks Wood (Table 5.5) as it does at 

the national level using annual collated indices (Table 4.2). Butterfly abundance data 

from Monks Wood were used in calculating the annual collated indices, but so also 

were data from very many other UKBMS sites. Therefore it appears that the pattern 

of changes in the population sizes of individual species associated with the NAO at 

Monks Wood was probably not due to chance. Hence, it was possible to detect the 

influence of the NAO on butterfly abundance at the resolution level of a species but 

not at the community level. 

 

Other authors (Conrad et al., 2002; 2004 and Greatorex-Davies et al., 2006) have 

described how the population sizes of insect species have changed with time. 

However, the new contribution of this work is to use multi-species statistics – total 

number of species, total butterflies, diversity indices and correspondence analysis - 

to look for evidence of an association with the winter NAO index.  

 

5.4.5 How does sample size influence the ability to estimate the flight season 

timing, and therefore which species might be more appropriate to investigate 

the potential influence of the NAO? 

 

Larger sample sizes enable more accurate determination of the mean flight week 

number. The most abundant butterfly species was A. hyperantus; however, the 

annual numbers counted of this species varied considerably, and the relationship 

between numbers counted and estimated flight period changes at lower numbers. 

This problem was resolved by using data for M. jurtina, which was the second most 

abundant species at Monks Wood to investigate possible effects at the species level. 

Future work might include merging weekly data for M. jurtina from several sites to 

further increase sample size. A larger sample size for M. jurtina might demonstrate a 

significant correlation between the winter NAO index and total flight period. 

 

As many species of butterfly are declining in numbers, this could mean that site-

specific butterfly monitoring scheme data will reduce in value for understanding 

butterfly ecology, because the sample sizes may become too small. 
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5.4.6 Is it possible to estimate the relative magnitude of the effect of climate 

change compared to the effect of the NAO on flight timing? 

 

M. jurtina flew earlier and for longer in more positive NAO index years. This species 

flies during the summer, well after the period when the weather is affected by the 

NAO, so weather associated with the NAO is presumably affecting the non-adult life 

stages. Although other authors have shown associations between temperature and 

the behaviour of M. jurtina (Cormont et al., 2011), this is the first time that evidence 

of an association between the NAO and M. jurtina flight timing and flight season 

duration has been published. 

 

For M. jurtina, the NAO appears more important than climate change in determining 

flight phenology. This is the first time that an attempt has been made to estimate the 

relative effects of climate change and the NAO on a butterfly species. However, 

whether other species of butterfly are similarly more affected by the NAO than by 

climate change, or the reverse, is currently unknown. 

 

5.5 Summary 

 

Both the NAO and climate change affect the weather at Monks Wood. The total 

number of butterflies recorded at Monks Wood was low from 1973-1977, but then 

increased and remained fairly constant from 1978 to 2007, although the total number 

of species, and probably also diversity, have declined. One species, A. hyperantus, 

has increased considerably in population size, suggesting declines in some of the 

remaining species. The effect of the NAO is difficult to detect in the abundance and 

diversity of the whole butterfly community, but is detectable in the abundance of 

some bivoltine species. The NAO influences the flight timing of Maniola jurtina at 

Monks Wood. 30% of butterfly species have become locally extinct at Monks Wood 

while it has been classified as a National Nature Reserve, with the highest rate of 

extinction being during the 1960s and 1970s. This was a period of agricultural 

intensification and suggests that the butterflies of Monks Wood are vulnerable to 

agricultural practices outside the reserve. Unfortunately, the UKBMS started too late 

to record this main period of butterfly species loss. It is possible that a similar 
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magnitude species loss has occurred in other, much less well monitored, 

invertebrate groups at Monks Wood. 
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Chapter 6 

 

General discussion 

 

6.1 Overview 

 

The main aim of this study was to use long-term butterfly and aphid population 

datasets to assess whether the North Atlantic Oscillation affects UK insect 

populations. National and local resolution data as well as single and multi-species 

data were used. Warm weather associated with a positive NAO index causes insects 

to fly earlier and also influences the population size of some species. There is an 

interaction between the NAO and butterfly life cycles which determines how much 

influence the NAO has on population size. Evidence is also presented showing the 

role of climate change and long-term environmental change on insect populations, 

and an evaluation has been made of the relative ecological importance of these 

effects.  

 

6.2 The NAO and insects 

 

The NAO affects UK weather from October to May, although its main influence is 

from December to March, and it exerts a greater control on temperature than 

precipitation. A positive NAO index is associated with warmer weather, slightly more 

rain and slightly more sunshine. As a result of the effect of the NAO on temperature, 

there is also a significant positive association between the winter NAO index and the 

number of frost-free days.  

 

Warmer weather in years with a positive winter NAO index causes both butterflies 

and the green spruce aphid, E. abietinum, to fly earlier. The NAO causes both 

warmer and wetter weather which can work against each other, with wetter weather 

associated with later flight. The warmer weather that causes the change in 

phenology can occur before the flight season. The warmer weather associated with a 

positive NAO index can also act indirectly, by influencing the flight timing of the first 

generation of the bivoltine butterfly species, Lasiommata megera and Polyommatus 

icarus, which in turn can affect the flight timing of the second generation. The NAO 
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influences the flight date of M. galathea, A. hyperantus, P. tithonus and M. jurtina by 

affecting the non-adult stages as the adult stages are after the time of year when the 

NAO affects the weather. Further investigation might include laboratory studies of 

the sensitivity of larvae, pupae and the process of metamorphosis to temperature. 

 

There is a stronger association between the date of first flight of E. abietinum and M. 

jurtina and the winter NAO index than the date of last flight and the winter NAO 

index. This is due to the first flight date being nearer the time of year when weather 

is influenced by the NAO, and results in the flight season having a longer duration in 

more positive NAO years – this association was found to be significant for E. 

abietinum and almost significant for M. jurtina. Further work might include adding 

data from several sites for M. jurtina, to determine if the association between the 

NAO index and total flight season is significant with a larger sample size.  

 

The NAO affects the population size of E. abietinum and some, but not all, butterfly 

species. Thus it is not possible to detect the influence of the NAO on butterflies at a 

community level through number of species, total number of butterflies, Shannon-

Wiener diversity index or correspondence analysis. Longer-term population changes 

of individual species could, however, be detected with these methods, suggesting 

that long-term community level changes are of a greater magnitude than weather 

associated with the NAO.  

 

The NAO influences butterflies in a complex manner, with species that are bivoltine 

and have a longer flight season being more likely to have a population size 

associated with the NAO. The reason for this may be that bivoltine species need a 

longer summer season to complete two generations, and weather associated with 

the NAO can influence the length of the flight season.  

 

E. abietinum is a forestry pest species and a positive NAO index is associated with a 

larger population size and probably more damage to spruce trees. Pieris brassicae 

and P. rapae are two butterfly species that are pests (Cartea et al., 2009), but neither 

species show significant associations between their population size and the NAO. It 

is very difficult to predict the NAO index in advance, but by March, when the winter 

NAO index is known, there is potential to use the NAO as a predictor of flight timing 
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and population size. Further work would include the effect of the NAO on the growth 

rate of spruce trees and butterfly parasitoid population size. Faster tree growth could 

mask the effect of more E. abietinum, and more butterfly parasitoids could mask the 

effect of an association between the NAO and butterfly pest population size.  

 

6.3 Climate change and insects 

 

Climate change has caused an increase in temperature at Rothamsted of 1.46°C 

during the period 1966-2006 which has caused the mean flight date for E. abietinum 

to advance by 17.5 days. This means that aphids have advanced their flight by 11.99 

days°C-1. If UK temperatures increased by 6°C, then this might lead to a 72 day 

change in aphid flight date. This could have serious consequences for butterflies, 

because as nectar source flowers become rarer in the countryside, aphid honeydew 

(a food source for some butterfly species) might make up a higher proportion of 

butterfly energy sources and such a large change in phenology might cause a mis-

timing of honeydew availability for butterflies. Increasing atmospheric carbon dioxide 

concentrations could increase the carbon to nitrogen ratio of sap and therefore might 

reduce the nutritional value of honeydew as a butterfly food source. Therefore 

climate change can have a double effect on nutrition by causing mis-timing and 

reducing food quality. Further investigations might be on the effect of a reduced 

protein, higher sugar diet on butterfly growth and osmotic balance. 

 

If climate change continues at the same rate, then this has the potential to lead to 

considerable ecological changes. However, predicting temperatures to the end of the 

21st century is difficult especially as atmospheric carbon dioxide concentration is 

increasing in an accelerating manner. It also assumes that there are no phase shifts, 

perhaps associated with changes in the thermohaline circulation or a different range 

of atmospheric aerosol pollutants. Some butterfly species are likely to increase the 

number of generations per year as temperature increases, but this can create 

difficulties in monitoring the effect of climate change on phenology, as distinguishing 

between the second and third generations can be difficult.  

 

  



157 

 

6.4 Long-term butterfly population changes 

 

The total number of butterflies at Monks Wood was low in the mid-1970s, but then 

increased and remained fairly constant from the 1980s onwards. However, the total 

number of butterfly species and probably also butterfly species diversity has declined 

at Monks Wood. A. hyperantus has increased from very low numbers to making up 

more than 50% of the entire butterfly population. Therefore Monks Wood has gone 

from a relatively low abundance, high diversity site in the mid-1970s to a higher 

abundance, lower diversity site towards the end of the time series. 

 

The loss of species diversity suggests that either Monks Wood is too small or too 

isolated to be independent of environmental change in the intensively farmed East 

Anglian countryside, or that it is vulnerable to changes in woodland management, in 

particular the decline in coppicing. Monks Wood is the largest area of woodland in 

Cambridgeshire, so if it is too small to maintain biodiversity, then most woodlands in 

Cambridgeshire are probably too small. For butterfly conservation to be effective, 

existing woodlands may need inter-connecting in a manner similar to the Great Fen 

project. Lawton et al. (2010) summarise future conservation of habitats with the 

words: “more, bigger, better and joined” and environmental restoration needs to be 

large – on a “landscape scale”. However it can take many decades, if not centuries, 

for recently planted woodland to develop into woodland with the habitat 

characteristics needed to support butterflies, so it may be a long time before 

woodland planting will benefit butterflies through increased habitat area and 

connectivity.  

 

Future research might try and identify the minimum size of woodland needed to 

sustain a diverse butterfly population and identify the width of a buffer zone needed 

to exclude edge effects, such as those caused by nitrogen fertilisers, insecticides 

and road pollution. Corke (1999) suggests that the loss of butterfly species from 

Epping Forest might be due to particulate pollution from coal fires, so diesel 

particulates might also influence butterfly population size.  As well as being 

surrounded by intensively farmed agricultural areas, Monks Wood is only 600 m to 

the east of the A1(M) road, and as the prevailing wind is from the south-west, this 

means that road vehicle pollution will be blown onto the reserve.  
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Butterfly population size is very variable from one year to the next. Presumably this 

means that there is a relatively high chance of local extinction, which means that 

effective conservation requires a network of inter-connected smaller populations 

within a woodland - so metapopulation dynamics are important. This network would 

be superimposed on a dynamic woodland system. To maintain several areas of 

woodland at each of these changing stages means that quite a large woodland 

would be needed. 

 

Monks Wood is continuing to lose butterfly species, although species loss was 

fastest during the 1960s and 1970s, which corresponds to a period of agricultural 

intensification just before the UKBMS started. The rate of extinction may now have 

reduced, but this could be a result of the more vulnerable species becoming extinct 

first, and it is not clear if local extinctions will stop when the butterfly population has 

reduced to the range of species capable of surviving in woodland in an intensively 

farmed area. Monks Wood has lost 30% of its butterfly species while classified as a 

National Nature Reserve. If butterflies can be used as indicators of general insect 

diversity, then Monks Wood may also have lost 30% of non-butterfly insect species 

since becoming an NNR. UKBMS data are disproportionately based on „good‟ 

butterfly sites rather than the wider countryside, and so the annual collated indices 

probably underestimate the loss of total number of individual butterflies at a 

landscape scale. 

 

It is questionable how long a site can retain classification as a National Nature 

Reserve and Site of Special Scientific Interest with such a large species loss. It is not 

clear what the political and social accountability is to deal with wildlife conservation 

that is funded by the taxpayer, and which seems ultimately to be failing. Viewed at 

the scale of England, Lawton et al. (2010) say that species and habitats are 

continuing to be lost, yet is also correct in saying that “conservation efforts have not 

been a waste of time - without them the losses would have been even greater”. 

However, he did not point out that conservation efforts can create a societal 

perception that the situation is under control and therefore fail to make the “step-

change in nature conservation”, which they correctly identify is needed. It might also 

be interesting to calculate a national rate of biodiversity loss with and without the 
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actions of nature conservationists – it is possible that the differences between both 

these rates might be quite small and the relative influence of farming practices may 

be much larger than the role of conservation activities. 

 

This loss of both species and biomass is probably occurring in other, non-butterfly, 

insect groups and is probably an international problem, with the potential to 

negatively affect populations of insectivorous organisms. The international dimension 

is relevant because some of our insectivorous birds (and some butterflies) migrate 

across many countries. We value some of these insectivores highly – for example, 

garden song birds. A response to this problem might require some scientists to make 

the cultural shift from describing and explaining what is happening to the political 

process of implementing change or working in teams with people with these skills. 

As an example of teamwork, the successful re-introduction of the large blue butterfly 

(Maculinea arion) in south-west England involved 23 organisations and individuals 

with different skills (National Trust, 2011). The scientific community and the peer-

reviewed literature are international, and this might facilitate a response to 

international problems. Furthermore, the political process now has a strengthening 

international dimension through European legislation (e.g. the European Union 

Directive 92/43/EEC on the conservation of natural habitats of wild fauna and flora), 

international conventions (e.g. the Bern Convention on the Conservation of 

European Wildlife and Natural Habitats) and the United Nations, so perhaps the 

framework is developing for a response to international environmental problems. 

However, if conservation measures are on balance failing in the UK, what is the 

chance of success at an international level where the habitats concerned are 

geographically further away from the decision makers? 

 

Butterfly conservation at Monks Wood might benefit from reinstating coppicing. This 

would require control of deer populations and perhaps development of a larger 

market for coppice products – possibly including burning the coppiced wood in a 

power station. However this should be hazel (Coryllus avellana) coppice with 

standards, probably oak, (Quercus robur), rather than short rotation coppice using 

high yielding varieties of willow (Salix L.) and poplar (Populus L.), which would be 

densely planted without standards, require the use of glyphosphate herbicides 

(Defra, 2004), and be harvested with large machines that create pollution, crush soil 
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and vegetation. Pollution within woodlands can be reduced by using horse transport, 

but the main practical option for moving timber from woodlands to power stations 

requires the use of lorries.  

 

Future conservation work could be to re-introduce locally extinct butterfly species 

into Monks Wood, both to replace species and possibly „assisted colonisation‟ of 

species such as the black-veined white (Aporia crataegi L.) and mazarine blue 

(Polyommatus semiargus) as a response to climate change (Carroll et al., 2009). 

However, re-introduced organisms can be genetically different, as they come from 

different geographical regions (Porter and Ellis, 2011), and re-introducing species is 

pointless if the factors that caused the original extinction have not been identified 

and corrected. Re-introduction programmes can concentrate on colourful, distinctive, 

organisms but ignore small, non-distinctive organisms such as flies (Diptera).  It is 

possible that the habitat restoration prior to re-introducing a butterfly species may 

help less distinctive species, but habitat restoration can be a significant change, for 

example felling trees to re-instate coppicing, and accompanied by microclimatic 

changes of opening the canopy, this could cause extinction of poorly monitored 

species. 

 

Two of the most important butterfly habitats are grasslands and coppiced woodland, 

both of which are maintained by human activities. What butterfly species composition 

would be expected several thousand years ago before humans started grazing and 

coppicing and when human population densities were low? Were grasslands and 

open areas in woodlands maintained by fire, grazing by deer and perhaps beaver 

(Castor fiber L.), or were butterfly populations much lower? Are we now reducing 

butterfly populations back to what they were prior to human activity? 

 

Butterfly extinction was probably highest at Monks Wood during the 1960s and 

1970s, during the period of agricultural intensification. Species loss was occurring at 

Epping Forest from at least 1805 (Corke, 1999). Does this mean that to reinstate 

butterfly populations, agricultural techniques need to return to what they were in the 

1950s (or perhaps pre-World War II) or even to eighteenth century techniques? The 

human population size has now grown. Could improved, modern, organic farming 

techniques make it possible to feed a higher population density? 
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6.5 The relative magnitude of parameters affecting insect populations 

 

Many factors affect butterfly populations – the NAO is just one of these factors. 

However, it is possible to put several of these environmental effects into a relative 

order using the size of the correlation coefficients. Long-term environmental change 

(includes habitat loss) appears to have the greatest magnitude of effect on 

butterflies, followed by the influence of the NAO and climate change on flight 

phenology. However, temperatures associated with the NAO are more important 

than precipitation. Finally, of lowest magnitude, the effect of the NAO on butterfly 

population size with the relative magnitude of the effect being higher for bivoltine 

species with a longer flight season. 

 

In declining order, the relative magnitude for E. abietinum is the effect of climate 

change on phenology, followed by the effect of the NAO on phenology, which is 

about the same magnitude as long term population change, which might be due to a 

range of factors including climate change, and finally the effect of the NAO on 

population size, with temperature between October and April having more effect than 

precipitation. 

 

6.6 Long-term insect surveys 

 

The UKBMS and the Rothamsted Insect Survey of aphids are probably the World‟s 

two best insect surveys. The UKBMS started in 1973 at Monks Wood and 1976 at 

other sites, and the Rothamsted Insect Survey started in 1966, and both surveys 

provide enough years of data to assess trends. The minimum number of years 

depends on the consistency of trends, but might be about 30 years. Therefore, both 

surveys have just a few more than the minimum number of years. More years of data 

would statistically strengthen conclusions, but environmental factors might change 

with time, and the rate of change might accelerate, making the identification of trends 

more complex. This problem already exists, with low numbers of butterflies counted 

at Monks Wood in the 1970s, which then increased in the 1980s.  
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There is a significant split in the UKBMS data between site-specific data and the 

national, annual collated index. Brereton et al. (2011) have used indices for separate 

habitats in England and Scotland to show long term butterfly population changes. 

There are parallels with the European butterfly indicator for grassland species (Van 

Swaay et al., 2010) and the bird multi-species indicators, which are divided into birds 

that occupy farms, woodlands, water and wetland birds and seabirds (Eaton et al., 

2010). Habitat specific analyses are useful as they allow prioritisation of conservation 

activity and funding on specific habitat types. 

 

The analysis done by Brereton et al. (2011) could be extended to include more multi-

species statistical techniques such as correspondence analysis and the Shannon-

Wiener diversity index. At present these techniques can be used more easily on site-

specific data rather than the annual collated index. However, a multi-site data format 

needs developing that can be analysed using multi-species statistical techniques. A 

multi-site index might be the sum or mean of the butterflies from several sites, but 

would be vulnerable to bias through the choice of which sites to include or exclude. 

However, bias can be reduced by selecting sites by duration of the dataset. A 

National Nature Reserves multi-site species indicators could be developed to 

evaluate whether the National Nature Reserve system is, or is not, succeeding in 

maintaining UK butterfly populations.  

 

The fastest rate of loss of butterfly species appears to have been before the start of 

the UKBMS, which limits the value of the UKBMS to describe species loss and 

perhaps provide information that may eventually be used to re-introduce these 

species. Butterfly species loss in Epping Forest, near London, was underway by 

1805 (Corke, 1999), so it would be useful to understand butterfly population change 

during the past two centuries. Although some older distributional records are 

accessible via the NBN Gateway, a useful project would be to find naturalists 

notebooks from before the start of the UKBMS, scan them and make them available 

on the internet. Where possible, this information should be accompanied by old 

photographs showing habitats, old maps or other historical documents as this 

information might facilitate future habitat restoration. Older naturalists who were 

making observations prior to agricultural intensification, and if possible before World 

War II, could be interviewed - a process that could be done in conjunction with 
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human geographers who have specialist skills in interviewing techniques and 

validating the quality of verbal information. 

 

Long-term biological surveys are high value resources for identifying changes in 

species ecology. It is important to maintain surveys on sites and to avoid periods 

when data are not collected. The closure of the Monks Wood experimental station 

potentially made this survey vulnerable, although fortunately the butterfly recording 

has continued, but the meteorological recording has been of a variable standard. 

Losing good quality meteorological data from the site of probably the World‟s best 

butterfly survey is a considerable loss. Hopefully the UKBMS will be maintained for 

decades to come, but as the organisations that support this survey keep being 

changed (for example the Nature Conservancy being renamed English Nature and 

then Natural England, and the Institute of Terrestrial Ecology being renamed Centre 

for Ecology and Hydrology. Monks Wood Experimental Station being closed and 

staff relocated to Wallingford), this continuity may not be easy to maintain. That the 

UKBMS has survived these changes suggests considerable dedication on behalf of 

those managing the scheme and the many thousands of volunteer recorders, but 

with so many major changes in the past, it is reasonable to assume that there will be 

future changes, and it is hoped that the UKBMS will continue to operate. 
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6.7 General conclusions 

 

1. The NAO is positively associated with UK temperatures between October and 

May, with the strongest control between December and March. There is also 

a strong, positive association between the NAO and the number of frost days 

and a weak positive association with precipitation and sunshine duration. 

2. The NAO is positively associated with the population size of the green spruce 

aphid, Elatobium abietinum, and some butterfly species. The population sizes 

of butterfly species that are bivoltine, and have a longer flight season, are 

more likely to be positively associated with the winter NAO index than are 

those of univoltine species. 

3. The NAO does not affect the total population size of all butterfly species, 

number of species, species diversity or correspondence analysis for 

butterflies. 

4. the NAO cannot be detected at a butterfly community level. Longer term 

environmental change has a greater effect at a butterfly community resolution 

than weather associated with the NAO. 

5. The NAO has a stronger effect on flight phenology rather than abundance of 

E. abietinum and butterflies. 

6. Both E. abietinum and butterfly species fly earlier in positive NAO index years, 

because the weather is warmer. Higher precipitation can delay the butterfly 

flight season. As a positive NAO is associated with higher temperatures and 

higher precipitation, so precipitation can partly offset the effect of temperature, 

making the flight season earlier.   

7. Both E. abietinum and probably also M. jurtina have a longer flight season in 

positive NAO index years. 

8. There is evidence of climate change in East Anglia, with temperatures 

increasing by 1.46°C at Rothamsted during the period 1966-2006, 1.5°C at 

the National Institute of Agricultural Botany during the period 1973-2007 and 

the Central England Temperature Series shows an increase of 1.22°C during 

the period 1976-2009. This rate of increase suggests that, if trends continue, 

Cambridge could exceed the Copenhagen Accord maximum increase of 2°C 

in temperature by 2018. 
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9. Climate change is causing E. abietinum to fly earlier, with a 17.5 day advance 

in flight timing associated with a 1.46°C temperature increase during the 

period 1966-2006. Aphid honeydew is an important energy source for some 

butterfly species and if temperatures continue to rise a phenological change of 

this magnitude might lead to a mis-timing between honeydew availability and 

phenology of butterfly flight.  

10. For one species, Maniola jurtina at Monks Wood, the NAO appears to have a 

greater effect on flight timing than climate change. 

11. The total number of butterflies at Monks Wood has remained relatively 

constant since 1980. However, one species, Aphantopus hyperantus, has 

increased considerably and now accounts for over 50% of the butterflies 

counted, which means that the population size of other species has 

decreased. 

12. On average, one less species of butterfly is seen at Monks Wood every 12.6 

years, and there is some evidence that species diversity is reducing. Species 

loss has been under-recorded by the UKBMS as the fastest rate of species 

loss was before the UKBMS started. 
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