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Thesis Abstract 

The research described in this thesis examined age- and strength training-related changes in 

Achilles tendon stiffness and plantarflexor force production in prepubertal children. The 

measurement of both Achilles tendon stiffness and muscular force production requires in 

vivo moment arm lengths to be known. Currently, this is possible only by using expensive 

and time-consuming medical imaging methodologies. Therefore, the predictability of the 

Achilles tendon moment arm from surface anthropometric measurements was assessed in 

the first experimental study (Chapter 3). The results demonstrated that a combination of 

foot length and the distance between the calcaneal tuberosity and 1st metatarsal head could 

explain 49% of the variability in Achilles tendon moment arm length in 5 – 12 year-old 

children. This was considered to be unacceptable for further use, thus an ultrasound-based 

method was decided upon for obtaining moment arm length in subsequent experimental 

studies. In the second and third experimental studies (Chapters 4 and 5), age-related 

changes in tendon mechanical and structural properties were documented and their 

relationship with changes in force production ability were examined in prepubertal children 

(5 – 12 years) and adult men and women. In Chapter 4, Achilles tendon stiffness was shown 

to increase with age through to adulthood, and that changes in tendon stiffness were 

strongly and independently associated with body mass (R2 = 0.58) and peak force 

production capacity (R2 = 0.51),which may provide the tendon with an increasing 

mechanical stimulus for growth and microadaptation. These increases in tendon stiffness 

were associated with a greater increase in tendon CSA (~105%) than that found for tendon 

length (~60%), in addition to an increase in Young’s modulus (~139%), suggesting that gross 

increases in tendon size as well as changes in its microstructure underpinned the increase in 

stiffness. In Chapter 5, the relationships between Achilles tendon stiffness and both electro-
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mechanical delay (EMD) and rate of force development (RFD) were determined during 

maximal isometric plantarflexion contractions. Moderate correlations were found between 

tendon stiffness and both EMD (r = -0.66) and RFD (r = 0.58). RFD was significantly better 

predicted when muscle activation (estimated as the rate of EMG rise) was included in a 

regression model. These data clearly show that increases in tendon stiffness with age 

through to adulthood are associated with decreases in EMD and increases in RFD, and that 

the rate of muscle activation has an additional influence on RFD during growth. Given that 

1) Achilles tendon stiffness was lower in children than adults, 2) this lower stiffness was 

associated with a longer EMD and slower RFD, and 3) that strength training in adults had 

previously been shown to increase tendon stiffness and RFD, the adaptability of the 

developing Achilles tendon to a resistance training programme, and consequence of the 

potential changes on force production capacity were examined in the final experimental 

study (Chapter 6). Significant increases in Achilles tendon stiffness and Young’s modulus 

were found after 10 weeks of twice-weekly plantarflexor strength training in 8-9 year-old 

boys and girls, which demonstrates that the larger muscle force production provided a 

sufficient stimulus for tendon microadaptation. The training also resulted in a decrease in 

EMD, which was moderately correlated with the change in tendon stiffness (r = 55), but no 

change in RFD. Thus, the increasing tendon stiffness with training was associated with a 

decreasing EMD, but had no detectable effect on RFD. This would likely have a significant 

effect on the performance of tasks requiring rapid muscle force production. Together, the 

results of the present series of investigations demonstrate that the tendon loading 

experienced from both normal ageing and overloading (strength training) can increase 

tendon stiffness in children, and that these changes have a detectable effect on rapid force 

production.  
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1.1 Introduction 

Motor skill acquisition is a complex, progressive and multifactorial process in typically 

developing children (For review, see Thelen, 1995). When new skills are first acquired, 

children exhibit markedly different movement patterns and large movement variability 

compared to adults (Clark et al., 1988; Sutherland et al., 1988; Lasko-McCarthey et al., 

1990). With practice, movements become more coordinated and refined (Turvey, 1990; 

Shumway-Cook and Woollacott, 2007) as children acquire the ability to develop and apply 

task-appropriate forces. As a result, children’s movements become more adult-like as they 

develop (Sutherland et al., 1980b). However, even when movement kinematics in children 

appear adult-like, differences in the mechanical construction of a task can still remain. More 

specifically, due to the redundancy of the human system, the same movement kinematics 

can be produced with a different set of muscular forces or inter-muscular coordination 

patterns (Bernstein, 1967). Within this context, researchers have shown that children use 

different inter-muscular coordination patterns than adults to achieve the same movement 

outcome (Shiavi et al., 1987; Sutherland et al., 1988; Chao et al., 2002; Korff and Jensen, 

2007; Korff et al., 2009). 

 

Traditionally, differences in movement kinematics and kinetics have often been attributed 

to an ‘immaturity’ of the neuromotor system (McGraw, 1943; Forssberg, 1985). The 

contribution of the developing neuromotor system to motor skill acquisition is irrefutable 

(Sutherland et al., 1980a; Forssberg, 1999), however, maturation of the nervous system is 

only one amongst many factors contributing to motor skill acquisition during childhood. In 

order to gain a better understanding of the process of motor skill acquisition it is necessary 

to have an understanding of all the factors contributing to the construction of movement 
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and how they interact within the context of child development. Thus, researchers have 

recently begun to consider the role of non-neuromotor factors within the acquisition of 

movement skills during childhood (Wang et al., 2004; Brown and Jensen, 2006; Korff and 

Jensen, 2008; Korff et al., 2009a).  

 

One example is that a substantial redistribution of mass occurs between body segments 

during growth (Jensen, 1989). Such an alteration of inertial properties can result in age-

related differences in muscular force and power production (Brown and Jensen, 2003, 2006; 

Korff and Jensen 2008). In fact, adding mass to children’s limbs has been shown to produce 

a more adult-like construction of movement kinematics (Clark and Phillips, 1993) and 

muscular forces (Brown and Jensen, 2006). Thus, age-related differences in muscular force 

production may not always be reflective of an ‘immature’ neuromotor system, but can be 

reflective of functional adjustments essential in accounting for differences in body size and 

mass distribution between children and adults.  

 

Such findings also raise an interest as to what role the mechanical properties of the muscle-

tendon complex play in motor skill acquisition. It is well established that the mechanical 

properties of the muscle-tendon complex change during childhood(Kubo et al., 2001; 

Lambertz et al., 2003; Cornu and Goubel, 2001; O’Brien et al., 2010). As major physiological 

and mechanical determinants of strength, increases in muscle size (Ikai and Fukunaga, 1968; 

Malina, 1969) and moment arm length (Wood et al., 2006; O’Brien et al., 2009) during 

childhood contribute significantly to age-related changes in force production capacity 

(Blimkie, 1989; Blimkie and Sale, 1998). Less obvious are the potential influences of age-

related increases in the stiffness of the muscle-tendon complex (Kubo et al., 2001; Lambertz 
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et al., 2003; Cornu and Goubel, 2001; O’Brien et al., 2010). From research in adults we know 

that the mechanical properties of the tendon, in particular its stiffness, are important 

factors influencing force production. More specifically, tendon stiffness governs time delay 

for the transfer of muscular forces to the skeleton(Hill, 1950; Wilkie, 1950; Cavanagh and 

Komi, 1979; Muraoka et al., 2004b; Bojsen-Moller et al., 2005; Grosset et al., 2009). 

Furthermore, tendon stiffness is strongly associated with peak muscular force in adults 

(Muraoka et al., 2005), and it is able to adapt to changes in loading intensity (Kubo et al., 

2010; Kongsgaard et al., 2007; Seynnes et al., 2009).  

 

Such findings raise the question about the role of tendon stiffness in muscular force 

production capacity within motor development/motor skill acquisition. This role is of 

particular interest as tendons provide the link between muscle and bone and therefore 

largely govern the rate and mechanical efficiency with which force is transferred during 

movement. In fact, increases in tendon (Kubo et al., 2001b; O'Brien et al., 2010) and whole 

muscle-tendon stiffness (Cornu, 2001; Lambertz, 2003) have been reported with increasing 

age during childhood. Two mechanisms have been proposed for age-related increases in 

tendon stiffness. First, tendon stiffness depends largely on its dimensions (Proske and 

Morgan, 1987) such that a greater quantity of material in parallel (i.e. increased cross-

sectional area) increases its stiffness whilst more material in series (i.e. increased length) 

decreases stiffness; both parallel and series tendon growth occurs during normal childhood 

development (Elliott, 1965; O’Brien et al., 2010). In addition to the tendon’s physical size, a 

tendon’s stiffness is also influenced by its material properties (Parry et al., 1978a; 1978; 

Bailey et al., 1998). Young’s modulus is defined as a tendon’s stiffness normalised to its 

cross-sectional area and length, and can therefore be used to compare the material 
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properties of different tendons. Young’s modulus is largely determined by the underlying 

arrangement of the tendon’s collagen (Parry et al., 1978; Bailey et al., 1998), which show 

marked changes with both biological ageing (Vogel, 1980; Nakagawa et al., 1996; O'Brien et 

al., 2010) and mechanical loading (Michna, 1984; Michna and Hartmann, 1989). 

Microstructural changes with both developmental ageing and mechanical loading are also 

associated with increases in Young’s modulus (Kubo et al., 2001; Reeves et al., 2003; 

Kongsgaard et al., 2007; O’Brien et al., 2010). Changes in a tendon’s Young’s modulus during 

childhood may result from the tendons maturation, its response to mechanical loading, or 

both (O’Brien et al., 2010). Nonetheless, increases in both tendon cross-section and Young’s 

modulus contribute to age-related increases in tendon stiffness (O’Brien et al., 2010). In 

adults, similar increases have been documented as a result of chronic tendon loading (Kubo 

et al., 2001; Kongsgaard et al., 2007). To better understand typical tendon growth, it is of 

interest whether changes in stiffness or Young’s modulus during childhood are the result of 

actual tissue ‘maturation’ or simply a by-product of the increased loading with age. 

Increases in muscular strength (as a result of muscular, neural and mechanical changes) as 

well as body mass with age would both contribute to the chronic daily loading of a tendon 

and have both been postulated as factors causing age-related increases in absolute and 

relative tendon stiffness (O’Brien et al., 2010). Whilst it is known that increases in both 

dimensions and Young’s modulus of the patellar tendon occur between childhood and 

adulthood, there is still a substantial gap in our knowledge of typical tendon development 

young children and its impact on force development and, ultimately, movement 

performance. 
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The potential role of a changing tendon stiffness in the development of force production 

capacity in children raises the question as to whether increasing tendon loading through 

means of strength training could increase tendon stiffness and directly (and positively) 

influence force production in children. It is well established that resistance training improves 

strength by increasing muscle size and enhancing neural activation capacity in adults 

(Moritani and deVries, 1979; Van Cutsem et al., 1998; Aagaard and Thorstensson, 2003), 

and increasing muscle activation in children (Ramsay et al., 1990; Ozmun et al., 1994). 

Furthermore, resistance training is known to increase tendon stiffness(Reeves et al., 2003; 

Kongsgaard et al., 2007; Seynnes et al., 2009; Kubo et al., 2010) and to improve force 

production capacity in adults (Kubo et al., 2001a; Reeves et al., 2003b; Grosset et al., 2009). 

Little is known about the adaptability of the developing tendon to training-related increases 

in tendon loading. From a developmental perspective, it is of interest to determine whether 

the children’s tendons respond to resistance training in a similar way to that found in adults, 

given that children are capable of gaining muscular strength with training. Moreover, 

strength training is becoming an increasingly popular form of exercise amongst children 

(Faigenbaum et al., 1996; Guy and Micheli, 2001).Therefore knowledge of the effects of 

chronic loading on tendon adaptation is also of significant practical importance. Finally, it is 

of interest whether the relationship between training-induced increases in stiffness and 

force production characteristics in children are similar to those observed in adults 

(Kongsgaard et al., 2007; Kubo et al., 2010). Such findings would further our understanding 

of how the typically developing tendon may influence movement production in children.   

 

The overall purpose of this research was to gain a clearer understanding of the complex 

interactions between tendon mechanics and muscular force production during childhood. In 
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particular, it was of interest to examine the role of tendon stiffness within the context of 

age-related increases in force production capacities during childhood. In order to achieve 

this, four experiments were conducted. The first two experimental chapters are descriptive 

in nature and geared at understanding dimensional aspects of age-related increases in 

tendons stiffness. The purpose of the first experiment (Chapter 3) was to ascertain whether 

age-related changes in moment arm length (an essential measure used for deriving tendon 

stiffness and muscular force) scales as a function of body anthropometry. The purpose of 

the second experiment (Chapter 4) was to document changes in the mechanical and 

structural properties in order to differentiate between the contributions of physical tendon 

growth and tendon maturation on the tendon’s mechanical properties during childhood. 

The final two experiments were aimed at understanding the link between tendon stiffness 

and the acquisition of muscular force production capabilities during childhood. The third 

experimental study (Chapter 5) was designed to examine the relationship between force 

production and tendon stiffness in children, and more specifically to differentiate between 

neural and mechanical contributions to age-related changes in muscular force production 

characteristics. The purpose of the final experiment (Chapter 6) was then to examine the 

adaptability of the developing Achilles tendon to chronic increases in loading, and examine 

the effect that training-induced changes in tendon stiffness and muscle activation have on 

the force production capabilities in children. 

 

Before the experimental chapters are presented, the literature relevant to the background 

of the experimental research will be critically reviewed. Based on the overarching theme of 

this thesis, the topics of interest have been broadly sectioned into those relating to 

muscular force production, structure, function and mechanical properties of tendons, and 
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tendon adaptations with training. These topics are discussed within both a mature and 

developmental context. 
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CHAPTER 2: Critical Review of the Relevant Literature 
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2.1 Determinants of Force Production 

2.1.1 Somatic Determinants of Strength in Adults 

Strength, defined here as the peak moment or force achieved during muscular contractions 

under a specific loading condition, is often used as a key parameter in assessing functional 

performance. The physiological determinants of strength include both neural and muscular 

influences. Strength is also influenced by a leverage system (i.e. the moment arm) that 

provides a mechanical advantage to enhance the force applied to the skeleton. 

 

2.1.1.1 Muscle 

The basic function of a muscle is to produce force to cause movement or for stabilisation. 

The functions of muscle are achieved using a well-defined hierarchical filament organisation. 

The contractile unit of muscle is the sarcomere, composed of myosin and actin filaments 

that produce muscle shortening and extension according to the sliding filament theory 

(Huxley and Niedergerke, 1954; Huxley and Hanson, 1954). Repeating sarcomere units form 

myofibrils (muscle cells) and are enclosed by a sarcolemmal membrane which receives and 

conducts electrical signals to initiate myofibril contraction. Large numbers of myofibrils 

assemble together to form muscle fibres, and fibres are bound together into fascicles by 

perimysium which forms the muscle. Determinants of muscular strength include the 

muscles size and fibre composition, although the main influencing factor is thought to the 

muscle’s cross-sectional area (CSA; Ikai and Fukunaga, 1968; Close, 1972; Maughan et al., 

1983) which defines the number of sarcomeres in parallel. Most muscles have fibres that 

run at an angle (pennate) to the longitudinal axis of the muscle (i.e. direction of force 

transmission). Fibre pennation allows a greater number of fibres to run in parallel, thus 
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increasing the active CSA and peak force potential (Woittiez et al., 1984). Muscle pennation 

also allows a greater quantity of contractile tissue to attach to the tendon (or aponeuroses). 

 

In humans, skeletal muscle is made up of different fibre types that can be distinguished 

from each other based on their contractile and metabolic properties (Engel, 1962; Pullen, 

1977; Schiaffino et al., 1989). In humans, skeletal muscle fibres are classified as being type I 

(slow oxidative fibres; SO), type IIa (fast oxidative fibres; FOG) or type IIb (fast glycolytic 

fibres; FG) which are present in different proportions depending on the muscle’s function 

(Pette and Staron, 1997) and typically regarded as being genetically determined (Komi et al., 

1976; Bouchard et al., 1986). There is some evidence to suggest that different fibre types 

have different specific tensions (Harridge et al., 1996; Larsson et al., 1997; Bottinelli et al., 

1999) and, thus, the relative population of each fibre type may influence muscular strength. 

Differences between populations in their gross muscle size, architectural characteristics or 

fibre type may contribute to significant differences in force production capacity. 

 

 

Figure 2-1. Typical photograph of serial cross-sections of rat skeletal muscle showing 1) slow oxidative (SO), 2) 

fast oxidative glycolytic (FOG) and 3) fast glycolytic (FG) fibres. Fibres were identified by staining for mATPase 

activity using A) alkaline incubation and B) NADH-t reductase activity (from Armstrong and Phelps, 1984). 
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2.1.1.2 Neural 

Muscle fibres are organised into groups depending on their characteristics, which are 

innervated by the axonal projections of a single motor neuron (MN). Collectively, this is 

known as a motor unit (MU). The number of axonal projections, and hence fibres 

innervated, is positively related to the axonal diameter of a MN, which in addition also 

dictates action potential conduction velocity (Hursh, 1939; Henneman et al., 1965b). Its 

conduction velocity is matched to the contractile speed of the innervated fibres (Buller et 

al., 1960), thus small diameter MNs synapse with a small number of type I fibres to produce 

small forces and large diameter MNs synapse with a large number of type II fibres to 

produce larger forces. Like muscle fibres therefore, MUs can be grouped depending on their 

contractile speed, force producing attributes and sensitivity to fatigue. Henneman et al. 

(1965a, 1965b) also found that MN excitability was an inverse function of their diameter. As 

such, MUs were recruited in a size dependent, allowing incremental increases in force 

development with each additionally activated MU. Large MUs, recruited last, are necessary 

for movements requiring rapid or large forces to be developed, but due to their greater 

fatigability, only allow such forces to be maintained for short durations. Figure 2-2shows a 

representation of the innervation of muscle fibres by MNs to make up MUs of varying sizes 

and contractile properties. 

 

In the adult human, the nervous system can increase a muscle’s force output largely by (1) 

increasing the number of MUs active at a given time (Harrison, 1983) and/or (2) by 

increasing MN firing rate (Person and Kudina, 1972; Kernell, 2006). It is thought that all MUs 

are active at around 60% of a muscle’s maximum isometric force, with the remaining 40% 

achieved almost exclusively by increasing MU firing rate (Kukulka and Clamann, 1981; Van 



Chapter 2 

26 
 

Cutsem et al., 1998; Conwit et al., 1999; Herzog, 2000). Depending on the muscle, this can 

typically average 25 – 60Hz during maximal voluntary contractions (review; Enoka and 

Fuglevand, 2001). Thus, the neural influences on strength are substantive, so differences in 

the ability of different populations to activate muscle will strongly affect their force 

production capabilities. 

 

 

Figure 2-2. Innervation of heterogeneous skeletal muscle. The number of fibres innervated by a motor neurone 

(MN) is related to its axonal diameter. Axonal diameter also dictates its conduction velocity, which is matched 

to the contractile speed of the innervated fibres. Small diameter MNs therefore typically innervate a small 

number of slow, type I fibres (red MU) whilst large diameter MNs innervate a large number of fast, type II 

fibres (blue MU). 

 

 

2.1.1.3 Moment Arm 

In addition to the physiological determinants of muscle strength, the moment arm, defined 

as the perpendicular distance between the joint centre of rotation and the line of action of 

the muscle/tendon (Spoor and van Leeuwen, 1992), is an essential measure from which the 
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calculation of muscular forces from a joint moment is highly sensitive(Tsaopoulos et al., 

2007). The muscle gains a mechanical advantage from its tendon inserting onto the skeleton 

at a distance from the joint centre of rotation by reducing the force required to perform a 

task. Increasing the moment arm length increases the muscles mechanical advantage for 

maximum moment production, thus the apparent strength of the muscle will be greater. 

However, it will also reduce the joint angular excursion for a given muscle shortening 

distance, or reduce angular velocity for a given muscle shortening velocity. Therefore, 

differences in muscle-tendon moment arms between populations will influence the active 

joint moment (i.e. strength) generated for a given muscular force. 

 

2.1.2 Determinants of Strength in Children 

Strength increases dramatically with age such that a 2-fold increase is observed between 

the ages of 5 and 10 years (Blimkie, 1989). This can be attributed to changes in muscle size 

and architecture, muscle activation and moment arm length observed during childhood. 

 

2.1.2.1 Muscle 

Skeletal growth stimulates muscle lengthening during childhood. An overload in muscle 

tension developed as a result of bone growth prompts sarcomeres to be added in series in 

order to maintain the resting length of the existing sarcomeres for force 

production(Goldspink, 1964). Increases in muscle cross-sectional area(CSA) are also seen 

during childhood(Ikai and Fukunaga, 1968; Blimkie, 1989). As fibre number is thought to be 

fixed shortly after birth (Gollnick et al., 1981), increases in muscle size with development are 

mostly caused by fibre hypertrophy. In fact, fibre diameter increases three-fold from the age 

of one through to adolescence (Aherne et al., 1971; Colling-Saltin, 1980; Oertel, 1988). Both 
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the increase in length and CSA lead to an increase in muscle mass. Between the ages of 5 – 

17 years, muscle mass increases by 3.5-fold and 5-fold in girls and boys, respectively 

(Malina, 1969), which have a large influence on strength gains in childhood (Blimkie and 

Sale, 1998a).  

 

2.1.2.2 Hormonal Influences 

From the onset of puberty, boys exhibit large gains in strength to adulthood (Blimkie, 1989). 

This is largely due to a surge in levels of circulating androgens that promote muscle mass 

development. Moderate increases in testosterone levels are observed in early puberty, 

followed by a 20-fold further increase during mid- to late-stages of puberty. Circulating 

testosterone binds to androgen receptors in the myofibres to stimulate anabolic processes, 

such as protein synthesis, for muscle growth. Increases in muscle mass occur via the 

addition of sarcomeres in parallel. In contrast, strength gains in girls past the onset of 

puberty are minimal and plateau during post-puberty (Blimkie and Sale, 1998a). This is 

because increased levels of circulating oestrogens associated with the onset of puberty 

matures the skeleton, thus removing the stimulus provided by skeletal growth for muscle 

growth (Jones and Round, 2000).  

 

2.1.2.3 Architecture 

Fibre pennation angle has been found to increase as a function of age to adulthood (Blimkie 

and Sale, 1998a; Binzoni et al., 2001; Kannas et al., 2010), which should allow a greater 

number of fibres to fit in parallel within the muscle’s volume. As CSA is strongly correlated 

with strength in children also (Ikai and Fukunaga, 1968; Blimkie, 1989), increases in strength 

with development appear to be partly attributable to increases in pennation angle. An 
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increased pennation might also increase the amount of tissue connecting to the tendon and 

ultimately increase muscle force. 

 

2.1.2.4 Fibre type 

A considerable differentiation of muscle fibre type occurs between birth and one year of age 

(Oertel, 1988). By one year of age, fibre type proportions resemble that of an adult. 

Myotypology is deemed to be complete by the age of three in humans (Colling-Saltin, 1980; 

Elder and Kakulas, 1993), thus muscle-fibre composition in children is believed to be similar 

to that of adults. This is supported by the fact that muscle contractile characteristics, such as 

muscle contraction time and half-relaxation time, examined during electrical twitch 

stimulation, are similar across age groups (McComas et al., 1973; Davies et al., 1983; 

Belanger and McComas, 1989; Paasuke et al., 2000). Therefore, it is not considered that 

changes in muscle fibre type are a significant factor influencing differences in force 

production or movement behaviour between childhood and adulthood. 

 

2.1.2.5 Neural 

Maturation of the nervous system was first suggested as factor influencing force 

development with age by Asmussen and Heeboll-Nielsen (1955), who found that strength in 

children increased beyond that expected from muscle growth alone. The evidence for 

neurological influences on muscle strength in children has grown in recent years (albeit to a 

somewhat limited extent) and it is now widely accepted that neuro-motor maturation is an 

important parameter in the acquisition of strength with childhood development (Asmussen, 

1973; Blimkie, 1989).  
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Specifically, it has been postulated that children are not readily able to activate large motor 

units. Neuromuscular activation under both voluntary and evoked contractile conditions is 

less in children than adolescents and adults (Belanger and McComas, 1989; Stackhouse et 

al., 2005). For example, Blimkie (1989) found that 11-year-old boys activated a smaller 

percentage of their available MUs than 16-year-old boys when performing a maximal 

voluntary contraction (MVC). Similarly, Paasuke et al. (2000) reported an increase in the 

ratio between peak force and muscle CSA with age to adulthood and concluded that 

children did not fully recruit their MU pool. Halin et al. (2003) reported a greater relative 

decrease in muscular force and contractile velocity in men than boys in response to a 30 s 

sustained maximal contraction, concluding that maximum force development in boys 

involved less fast fatigable units than men. A similar suggestion was made by Falk et al. 

(2009) who noted a greater delay in children’s force development when compared to adults.  

 

Maximum MN firing rate does not appear to differ significantly between children and adults, 

although mean firing rate has been shown to be marginally greater in children (Piotrkiewicz 

et al., 2007). This is interesting as children also demonstrate a longer residual latency (delay 

in transmission at the neuromuscular junction;Thomas and Lambert, 1960). A slower 

motorneurone conduction velocity is exhibited in children when compared to adults 

(Thomas and Lambert, 1960; Oh, 1984). Possible differences in nerve fibre diameter (Jacobs 

and Love, 1985) and nerve myelination (Gutrecht and Dyck, 1970; Webster and Favilla, 

1984), may be attributable to this finding. These characteristics may influence muscle 

recruitment for force production. 

 

 



Chapter 2 

31 
 

2.1.2.6 Moment Arm 

The moment arm length of a muscle-tendon unit (MTU) increases with skeletal and 

muscular growth associated with childhood (Wood et al., 2006; O'Brien et al., 2009). This 

has a substantial effect on maximum moment generation and is a key factor underlying age-

related gains in muscular strength with development (Wood et al., 2006; Morse et al., 2008; 

O'Brien et al., 2009). From a developmental context, knowledge of muscle moment arms 

are important for understanding the mechanisms underpinning age-related increases in 

strength (Denis and Korff, 2009). 

 

2.1.2.7 Muscle-Specific Force 

To compare strength between individuals, muscular force is often expressed relative to 

muscle size, termed muscle-specific force, which provides a useful measure of intrinsic 

muscle strength. However, it is influenced in vivo by the neural drive activating the agonist 

muscle, antagonist coactivity levels and moment arm length. These variables must be 

accounted for to ensure accurate estimations of muscle-specific force (Maganaris et al., 

2001). Child–adult differences have been reported for specific muscle force (Blimkie, 1989; 

Paasuke et al., 2000). As the physiological determinants of muscle-specific force include a 

number of neural and muscular influences, differences in factors other than muscle size or 

fibre architecture must be responsible. During an MVC, antagonistic coactivation creates a 

negative moment which reduces the resultant recorded MVC by opposing the positive 

agonistic moment (Kellis, 1998; Maganaris, 1998). Some studies have demonstrated greater 

coactivation in children (Frost et al., 1997; Lambertz et al., 2003; Grosset et al., 2008) whilst 

others have not (Kellis and Unnithan, 1999; Bassa et al., 2005). The effect of coactivity on 

muscle-specific force is therefore likely to be dependent on the individual or muscle pair. In 
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addition, muscle density appears to be relatively constant, irrespective of anatomical site or 

age of the individual (Lohman, 1986) and as such is not considered to affect specific strength 

between children and adults either. Based on these findings together, it is likely therefore 

that neural factors are responsible for the differences in muscle-specific force between 

children and adults. 

 

2.1.3 Adaptation of Strength with Training in Adults 

2.1.3.1 Neural 

It is well documented that early gains in muscular strength with resistance training are 

attributable to improved muscle activation in adults(Moritani and deVries, 1979; Hakkinen 

and Komi, 1983; Figure 2-3). Changes in neural drive are associated with an increase in EMG 

activity (Hakkinen and Komi, 1983; Davies and Young, 1985), which may be reflective of, or 

at least associated with, the earlier activation of MUs in the development of force (Van 

Cutsem et al., 1998; Aagaard et al., 2002), a greater maximal firing frequency and the 

introduction of double motor unit discharges (Van Cutsem et al., 1998), an improved MU 

firing synchronisation (Milner-Brown et al., 1975; Moritani et al., 1987), a decrease in 

antagonist activity (Carolan and Cafarelli, 1992; Amiridis et al., 1996), an enhanced 

excitation-contraction coupling (Duchateau and Hainaut, 1984) and increased motor unit 

excitability (Sale et al., 1983). There are a number of reviews detailing these findings, 

therefore they will not be explored further here (Moritani, 1993; Aagaard, 2003; Duchateau 

et al., 2006).  As force production is reliant on motor unit activation, variations in neural 

drive will affect force production characteristics, and thus influence movement capacity. 
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2.1.3.2 Morphological 

Gross changes in muscle architecture have been shown to occur remarkably early after the 

onset of a resistance training program (Blazevich et al., 2003; Blazevich et al., 2007a; 

Blazevich et al., 2007b; Seynnes et al., 2007), followed by the potentially slower process of 

fibre hypertrophy (Moritani and deVries, 1979; Hakkinen and Komi, 1983; Figure 2-3). Such 

changes in muscle structure are considered the primary adaptation to long-term training. 

Preferential hypertrophy of type II fibres is commonly reported after strength training 

(Thorstensson et al., 1976a; Tesch, 1988; Staron et al., 1990; Campos et al., 2002). Due to a 

greater specific tension (Harridge et al., 1996; Larsson et al., 1997; Bottinelli et al., 1999) 

and contractile velocity (Edstrom and Kugelberg, 1968; Burke et al., 1971), a greater relative 

area of type II fibres could have consequences for whole muscle strength and RFD. 

Variations in muscle size, architecture and relative area assumed by each fibre type may 

also influence force production characteristics, and thus influence movement capacity. 

There are a number of reviews available that discuss morphological adaptations to strength 

training and their relative influences on force production (Blazevich and Sharp, 2005; 

Folland and Williams, 2007). 

 

2.1.4 Adaptation of Strength with Training in Children 

Resistance training also produces gains in muscular strength in children. Previous studies 

have highlighted the importance of sufficient intensity and volume over training duration 

(Blimkie and Sale, 1998b; Faigenbaum et al., 2007). For example, strength gains have been 

documented after a period of weekly training (Faigenbaum et al., 2007), although 

individuals training more frequently experience significantly greater strength gains still 
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(Faigenbaum et al., 2007). Faigenbaum (1999) found significant strength gains in children 

after 8 weeks of low repetition-high load and high repetition-low load resistance training.  

 

 

 

 

Figure 2-3. Classic model by Moritani and DeVries (1979) presenting the contributions of neural and 

hypertrophic factors in the time course of strength gains with strength training in adults 

 

 

These improvements appear to be down to improved coordination of the involved muscle 

groups via lowered co-contraction and an increase in MU activation ability, rather than 

structural changes in the muscle. Ramsey et al. (1990) did not find an increase in muscle CSA 

with an increase in maximal force production after a 20-week resistance training plan in 9 - 

11 year old boys. The authors conclude that strength gains found were a consequence of 

increased motor unit activation. A number of studies undertaking a shorter training duration 

have presented similar results and drawn similar conclusions (Weltman et al., 1986; Blimkie 

et al., 1989b; Faigenbaum et al., 1993; Ozmun et al., 1994; Damiano et al., 1995). It may be 
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that a longer training period is necessary to observe muscle hypertrophy in children, 

although it is clear that an improved ability to recruit muscle is a primary adaptation 

underpinning the strength increases. The lack of circulating androgen-type hormones in 

prepubescent children could be a reason that there is little evidence of fibre hypertrophy or 

increased muscle CSA after a period of resistance training in this population. Nonetheless, 

the evidence that strength training is effective for promoting strength gain in a 

prepubescent population provided by the results of previous studies is overwhelming. 

 

2.1.5 Characteristics of force development 

The ability to produce movement relies on the ability to produce muscular forces of 

requisite magnitude and with appropriate timing. The ability to react quickly to a stimulus 

(e.g. when tripping or falling) or to produce forces rapidly are often important factors in 

movement success, impacting on daily task (Pijnappels et al. 2005; Thelen et al. 1996) and 

sporting performance (Moritani 2002). Two important variables commonly used to 

characterise the ability to produce fast force are the electromechanical delay and the 

maximum rate of force development.  

 

2.1.5.1 Electromechanical Delay 

Each component of the neuromuscular force development process introduces a delay in the 

course of tension development. The accumulative delay between the onset of muscle 

excitation and the onset of muscle force has been termed the electromechanical delay 

(EMD; Norman and Komi, 1979). EMD is influenced by the transmission of an action 

potential (AP) across the muscle membrane, mechanisms associated with the excitation-

contraction coupling process, velocity of muscle contraction and the efficiency of force 
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transmission to the skeleton (Hill, 1950; Cavanagh and Komi, 1979; Norman and Komi, 1979; 

Muraoka et al., 2004b).  

 

The first significant delay is introduced by the transmission of the depolarising signal across 

the muscle. The motor end plate of the innervating motor neuron (neuromuscular junction) 

is situated approximately at the level of the muscle belly, thus this is the site that first 

depolarises. Sarcolemma depolarisation occurs between 3 – 5 m/s (Basmaijan and De Luca, 

1985; Zhou et al., 1995; Moritani et al., 2004). For a distance of 10 cm therefore (e.g. to the 

distal ends of the muscle), the propagation of the action potential (AP) could introduce a 25 

ms delay. The wave of electrical signal initiates a sequence of processes that result in the 

release of calcium (Ca2+) from the sarcoplasmic reticulum (SR), a structure with the muscle 

cell that regulates cytosolic levels of Ca2+ (Endo, 1970; Ford and Polodosky, 1968). This also 

introduces a small delay of 3 – 5 ms (Vergara and Delay, 1986). Finally, a major portion of 

EMD is thought to be the time taken in stretching the elastic structures (tendon) of the MTU 

to a suitable for tension for force transmission (Cavanagh and Komi, 1979; Muraoka et al., 

2004b). Figure 2-4 provides a more detailed overview of the processes underlying these 

influences of force production. 

 

EMD duration varies considerably between muscles (Komi, 1984; Zhou et al., 1995) and 

between children and adults (Asai and Aoki, 1996; Grosset et al., 2005). It has been 

correlated with fibre type proportion, such that muscles with a greater proportion of fast 

type II fibres have a shorter EMD (Nilsson et al., 1977). As a consequence, EMD decreases 

with training (Kubo et al., 2001; Grosset et al., 2009) and also increases with levels of fatigue 

correlated 
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Figure 2-4. Outline of the sequence of events underlying the production of muscular force for movement. 
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(Zhou et al., 1996; Yavuz et al., 2010), where fatiguable type II fibres are the first to be lost 

from muscle recruitment. EMD strongly influences the rapid generation of muscular forces 

necessary for successful movement and movement reaction times (Wilkie, 1950; Aagaard et 

al., 2002; Reeves et al., 2003a; Bojsen-Møller et al., 2005; Pijnappels et al., 2005; 

Holtermann et al., 2007; Blazevich et al., 2008; Pijnappels et al., 2008; Grosset et al., 2009; 

Nordez et al., 2009)and is necessary to account for when synchronising EMG and kinetic or 

kinematic data (Muraoka et al., 2004). Therefore, EMD should be accounted for on an 

individual basis when assessing muscle function and force production. 

 

2.1.5.2 Rate of Force Development 

In addition to the influence of EMD, the maximum rate of force development (RFD), defined 

as a change in force with a change in time, has implications for movement generation. RFD 

is an important parameter describing an individual’s capacity to develop explosive force. The 

ability to develop appropriate forces within a minimal time interval may be prerequisite for 

successful task completion. For example, the average reported time taken for a muscle to 

reach its maximum force is 300 - 400 ms (Sukop and Nelson, 1974; Thorstensson et al., 

1976b), whilst many fast movements may involve muscle contraction times considerably 

shorter than this (Aagaard et al., 2002). Although the importance of RFD is obvious for 

athletes who have a need to develop large forces rapidly (Moritani, 2002), it also has 

important consequences for the prevention of falls (Pijnappels et al., 2005). Level of neural 

activation, or efferent motor drive (Nelson, 1996; Van Cutsem et al., 1998; Aagaard et al., 

2002), the muscle’s size and physiological properties (Buller and Lewis, 1965; Harridge et al., 

1996; Andersen and Aagaard, 2006), and the mechanical properties of the MTU’s elastic 
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structures (Wilkie, 1950; Wilson et al., 1994; Bojsen-Møller et al., 2005) are all factors 

influencing RFD. 

 

Peak strength, associated with muscle size, influences the slope of the force-time curve 

(Hakkinen et al., 1985; Aagaard et al., 2002) if peak strength is attained in the same time 

interval. In order to directly compare RFD between individuals therefore, RFD is commonly 

normalised to peak force, as this removes peak muscle strength as a factor influencing RFD 

(Aagaard et al., 2002; Blazevich et al., 2008). Normalised RFD provides an insight into the 

neural and physiological determinants of maximal RFD.As previously discussed, muscular 

force development is dependent on the activation levels of the innervating motor neurones 

(Adrian and Bronk, 1929). The rate at which MUs can be activated is a key factor influencing 

rapid force development (Corcos et al., 1989; Nelson, 1996), i.e. a rise in RFD is accompanied 

by an increased MU firing rate (Grimby et al., 1981). 

 

Slower, type I, fibres activated early in the force production process have a slower shortening 

velocity than type II fibres (Edstrom and Kugelberg, 1968; Burke et al., 1971), probably due 

to a lower cross-bridge cycling rate (Metzger and Moss, 1990), and a slower RFD than fast 

type II fibres. The functional importance of this was demonstrated by Harridge et al. (1996) 

who found that a muscle’s maximum contractile RFD was related to its fibre type 

composition. There is also a growing body of literature demonstrating that  large motor units 

(innervating type II fibres) may be recruited at a lower firing threshold when faced with a 

task requiring rapid force development (Feiereisen et al., 1997; Linnamo et al., 2003; 

Wakeling, 2004; Hodson-Tole and Wakeling, 2009). The implications of these two processes 
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are particularly relevant when examining force development in children, due to their lower 

capacity for large MU recruitment. 

 

Children demonstrate a significantly slower RFD than adults (Belanger and McComas, 1989; 

Grosset et al., 2005), even when normalised to peak strength (Asai and Aoki, 1996; Falk et 

al., 2009). This suggests that children may have a significantly lower skeletal muscle maximal 

shortening velocity than adults (Fuchimoto and Kaneko, 1981; Belanger and McComas, 

1989) or a lesser ability to rapidly recruit fast type II fibres (Asai and Aoki, 1996; Grosset et 

al., 2005). Fibre type is determined early in life (Oertel, 1988) and is not thought to differ 

substantially between children and adults(not performing specific exercise training).As 

adults may have a greater potential for fibre hypertrophy - and there is some evidence that 

fast-twitch fibre hypertrophy is more achievable (Hakkinen et al., 1985a; Fry, 2004) - they 

may possess a greater relative area of fast twitch fibres. 

 

Another factor that has been shown to substantially influence muscular force production is 

the mechanical properties of elastic components within the muscle-tendon complex.  They 

influence RFD by affecting the efficiency of muscular force transmission to the skeletal 

(Wilkie, 1950; Hill, 1950; Bojsen-Moller et al., 2005). Although there are several elastic 

bodies within the MTU, the major elastic structure is the tendon. Thus, a detailed review of 

the structure and function of the tendon and its importance in force production is 

necessary.
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2.2 Tendon Properties 

2.2.1 Tendon Ultrastructure 

The tendon’s basic function is to transmit tensile forces from a muscle to a bone in order to 

produce a movement. Tendons are highly organised, hierarchical structures that are mainly 

composed of water and collagen. Collagen, synthesised by specialised fibroblasts called 

tenocytes, self-associate to form fibrils that run longitudinal to its axis. Several parallel fibrils 

embedded together within a tendon’s extracellular matrix (ECM) form fibres (Benjamin and 

Ralphs, 1996; O'Brien, 1997; Vogel, 2003), which group together to form fascicles and make 

up the gross tendon structure (Kastelic et al., 1978; Figure 2-5). Macroscopically, the parallel 

arrangement of collagen bundles gives the tendinous tissue a wavy configuration, known as 

crimp (Diamant et al., 1972; Dale et al., 1972). Straightening this waveform by applying a 

load allows tendons to elongate by ~4% (Rigby et al., 1959), thus providing a buffer against 

mechanical loading. In addition to this characteristic, the complex biological structure of the 

tendon provides it with a large inherent tensile strength. The extensibility and tensile 

strength of a tendon allows it to withstand forces generated through muscular loading 

whilst maintaining its structural integrity.  

 

 

Figure 2-5.Hierarchical structure of tendon (from Kastelic et al., 1978). 
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Many consider the collagen fibril to be the basic force transmitting unit of the tendon 

(Patterson-Kane et al., 1997b; Magnusson and Kjaer, 2003; Kannas et al., 2010). In fact, it 

was recently suggested that fibrils within mature tendon are continuous structures, after a 

lack of fibril ends were observed (Provenzano and Vanderby, 2006). Tendon fibrils vary in 

diameter as a function of anatomical location, age, species and exercise history (Diamant et 

al., 1972; Parry et al., 1978a; Strocchi et al., 1996; Patterson-Kane et al., 1997a; Patterson-

Kane et al., 1997b; Liao and Vesely, 2003; Edwards et al., 2005) and can be broadly 

separated into distinct groups depending on their size (small diameter fibrils  =  ~20 – 40 

nm, large diameter fibrils = ~165 – 215 nm) rather than displaying a continuous spectrum of 

diameter sizes (Figure 2-6). Tendons may exhibit a unimodal or multimodal distribution of 

fibril diameters (Dyer and Enna, 1976; Parry et al., 1978a; Patterson-Kane et al., 1997b; 

Edwards et al., 2005). The population distribution of fibril diameter size within a tendon 

largely determines its strength and mechanical properties (Parry et al., 1978a). Tendons 

with a high proportion of large diameter fibrils are associated with a greater overall tendon 

stiffness and strength as a result of having a greater (1) number of mature inter-fibrillar 

covalent (strong) cross-links (that have been converted from immature inter-fibrillar cross-

links) and (2) density of intra-fibrillar non-covalent (weak) cross-links. These bonds prevent 

the fibrils from sliding past each other when under stress (Parry et al., 1978a; Bailey et al., 

1998; Curwin, 2007). Tendons with a high proportion of small diameter fibrils have fewer 

intra-fibrillar and inter-fibrillar (covalent) cross-links but a greater fibril surface area 

provided by a large number of small diameter fibrils increases the chances for inter-fibrillar 

non-covalent (weak) crosslinks to form between fibrils and components of the ECM. As 

such, they are associated with a greater compliance (Parry and Craig, 1988; Derwin and 

Soslowsky, 1999; Battaglia et al., 2003; Liao and Vesely, 2003). 
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Figure 2-6. Micrograph of tendon cross-section showing the large (left) and small (right) diameter collagen 

fibrils. Images taken with a scanning electron microscope (Waugh, unpublished data) 

 

 

2.2.2 Tendon Development 

The fibril morphology within a tendon is important to its function. As such, it varies widely 

between tendons from different anatomical locations and between species (Parry et al., 

1978a) in addition to changing with maturation and ageing. Young tendons are primarily 

formed from uniformly sized small collagen fibrils (Greenlee and Ross, 1967; Parry et al., 

1978) which increase in diameter by laterally incorporating new microfibrils manufactured 

from ongoing fibrillogenesis (For review, see Zhang et al., 2005). As a result of this process, 

the mean average fibril diameter (MAFD) shows an increase until maturation (Schwartz, 

1957; Parry et al., 1978b; Scott et al., 1981; Cetta et al., 1982; Strocchi et al., 1991; Strocchi 

et al., 1996). The processes that regulate collagen synthesis are mechano-sensitive (For 

review, see Kjaer, 2004), therefore the increase in MAFD with age might suggest that 

tendon is adapting to increase its strength in response to greater muscular loading or 

change in functional demand with age. However, there is also evidence to suggest that 
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unloaded developing tendons have similar mechanical properties to loaded tendons and 

thus the processes underlying their development with maturation occurs irrespective of 

mechanical loading history (Eliasson et al., 2007). Tendon development must, therefore, 

involve other influencing factors (For review, see Zhang et al., 2005).  

 

2.2.3 Mechanical Properties 

The mechanical properties of tendon are used to describe its behaviour under loading 

conditions and have been the subject of extensive investigation (for reviews: Alexander, 

1981; Woo et al., 1986; Proske and Morgan, 1987; Zajac, 1989). Properties commonly 

reported include stress (σ; the magnitude of force [F] per unit area [A]; Equation 1) and 

strain (ε; a tendon’s displacement [x] with respect to its resting length [L]; Equation 2). The 

ratio between these characteristics provides information regarding the magnitude of 

material displacement that can be expected for a given deforming load and is termed 

Young’s modulus (E; Equations 3 and 4). Young’s modulus is a measure of a material’s 

stiffness relative to its dimensions. As a normalised measure, it provides a means of 

comparing material stiffness between different tendons and may allow inferences to be 

made regarding a tendon’s underlying microstructure. For example, a greater fibril diameter 

or density, improved collagen arrangement or greater fibrillar crosslinking, all of which are 

associated with a stiffer tendon (Parry et al., 1978a; 1978; Bailey et al., 1998), may be 

suggested as factors contributing to a tendon’s greater Young’s modulus. The most 

important property concerning force transmission is tendon stiffness. The mechanical 

stiffness of the tendon can be described as a tendon’s resistance to elongation when a 

muscular force is applied, and is measured as a tendon’s displacement attributable to a 

change in force (Equation 5). It is governed by both its material stiffness (i.e. Young’s 
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modulus) and dimensional characteristics (Proske and Morgan, 1987). According to Hookean 

law (that states the deformation of an elastic body is proportional to its deforming load) 

longer tendons are more compliant for a given Young’s modulus, because stiffness 

decreases as more material is arranged in series (k = 1/[k1 + k2 + k3…]). Conversely, tendons 

with a greater CSA are stiffer because stiffness increases as more material is arranged in 

parallel (k = k1 + k2 + k3…). 

 

  

 Equation 1 

 

                Equation 2 

 

 Equation 3 

  

 Equation 4 

   

 Equation 5 

 

 

2.2.4 Viscoelastic Properties 

Like many biological materials, collagenous tissues display non-linear elastic properties. 

These characteristics allow the tissue to elongate when subjected to a deforming load and 

return, unchanged, to its original resting length after the load is removed. The deformation 
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exhibited by a tissue is dependent upon its stiffness and the load (force) imposed on it. 

Tendons show nonlinear elasticity when placed under load (Figure 2-7a). More specifically, 

their stiffness increases as they are stretched (Gratz, 1931; Rigby et al., 1959). The reason 

for a lower stiffness at relatively low stresses is due to the un-crimping of the wavy collagen 

fibrils causing considerable tendon extension (Rigby et al., 1959; Abrahams, 1967; Diamant 

et al., 1972; Woo, 1982). Once the collagen fibrils have been straightened, the load-

deformation relationship becomes relatively linear, representing the physical stretching of 

the collagen fibrils (Diamant et al., 1972). Repeated loading within this force region poses no 

threat to permanent deformation, allowing collagen fibrils to maintaining a reproducible 

load-deformation relationship and to return to their original length once a deforming load 

has been removed (Rigby et al., 1959; Abrahams, 1967). Hence, this region is termed the 

elastic region. It is within this region that measures of tendon stiffness are typically made. 

Beyond this region, additional loading causes individual fibrils to fail and the tendon can be 

considered permanently lengthened, with a reduction in stiffness Abrahams, 1967 (Rigby et 

al., 1959). Microdamage accumulating from loading in this force region also reduces the 

functional CSA of the tendon, jeopardising the integrity of the tendon and predisposing it to 

rupture. The ultimate tensile strength (UTS) represents the maximum stress that a tendon 

can withstand before failing and has been positively correlated with both its MAFD (Parry et 

al; 1978) and CSA(Woo, 1982). The UTS of mature tendons are reportedly as much as 100 

MPa (Elliott, 1965; Butler et al., 1978; Bennett et al., 1986). 

 

In addition to its elastic properties, tendon exhibits viscous characteristics. Such properties 

mean that the tendon’s mechanical properties are dependent on its loading history, or have 

time-dependent mechanical behaviour (Butler et al., 1978; Taylor et al., 1990; Fung, 1993; 
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Magnusson et al., 1995). If a load is applied to a tendon repeatedly, an initially stiff tendon 

can become more compliant (Graf et al., 1994)until a steady state of stiffness is reached 

after a short period of cyclic loading, seen as a right-ward shift of the stress-strain curve 

(Figure 2-7b). The time-dependent effects of viscoelasticity should therefore be considered 

when assessing a tendon’s mechanical properties to minimise the variation in results (Taylor 

et al., 1990; Fung, 1993; Magnusson et al., 2001). The time-dependent effect is relatively 

short lived with no apparent effect on maximal load (Woo, 1982; Graf et al., 1994). 

 

a)  

 

                       b)            

 

Figure 2-7. Representative load-deformation curve showing a) non-linear tendon elasticity and b) the history-

dependent effects of repetitive loading on tendon mechanical properties. 
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2.2.4.1 Hill’s Muscle Model 

Tendons lie in series with muscle. Collectively, with other structures that aid the production 

and transfer of forces to the skeleton, they are termed the muscle-tendon unit (MTU). The 

MTU is commonly modelled as a three-component structure comprising of a contractile 

component (CC), representing the muscle’s myofilament interaction, in series with an elastic 

component (SEC). The SEC is mainly comprised of the tendon (passive SEC element) and the 

tendon aponeuroses and myofilament cross-bridges (active SEC element). These two 

components are situated in parallel with a second elastic component (PEC), made up of the 

connective tissues that surround the muscles fibres and fascicles, the sarcolemma and 

cytoskeletal elements (Enoka, 1994). Thus, according to this model, tendon properties will 

substantially affect the magnitude and rate of muscular force transferred to the skeleton. 

 

The majority of human movements require muscles to operate at a shortened length for 

force production. At these lengths, the PEC is slack and therefore its contribution to a 

muscle’s stiffness is often ignored (Jewell and Wilkie, 1958; Arnet, 1967). When the muscle 

is at rest, the PEC represents the muscle’s stiffness (Latash and Zatiorsky, 1993). When the 

muscle is active, it stiffens considerably because of the strong cross-bridge bonds between 

the myofilaments. Despite the SEC being stiff enough to resistance some stretch, when a 

muscle is active, its stiffness can be greater than that of the SEC, causing the SEC (as the 

more compliant of the two structures) to stretch. This stretching of the elastic components 

has implications for movement efficiency, discussed below. 
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2.2.4.2 Importance of Tendon Mechanical Properties on Force Production 

Tendon mechanical properties substantially influence human movement performance. In 

activities where MTUs are stretched rapidly before shortening, such as running or jumping, 

stiffer tendons may be associated with decreases or increases in movement speed or 

economy(Ker et al., 1987; Ettema, 1996; Lichtwark and Wilson, 2007). The optimum 

stiffness of the tendon will depend greatly on the force-time characteristics of the 

movement to be performed (Blazevich, 2011). However, tendon properties also impact on 

simple, isometric or concentric-only muscle actions. Compliant tendons stretch more for a 

given muscle force, thus the time required to stretch the tendon to a point where force can 

be effectively transferred to bone will be longer. This will impair rapid force production. 

Moreover, the greater time taken for force transmission will warrant a longer muscle 

activation period, which will likely increase the metabolic cost of performing a task (Hill, 

1970; Muraoka et al., 2004b).  

 

Essentially, the optimum stiffness of a tendon varies according to the force production 

requirements of the movement in question, and since effective stretch of a tendon during 

loading requires muscle forces to be applied with appropriate magnitude and timing, the 

tendon’s mechanical properties will also partly dictate the optimal muscle activation pattern 

(Lambertz, 2003). 

 

The mechanical properties of the muscle-tendon complex have been shown to influence 

force production characteristics as well as contributing to movement efficiency and 

performance in adults. Hill (1950) first postulated that the presence of elastic elements in 

series with the muscle were the cause of delay before slow production of tension whilst 
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Wilkie (1950) demonstrated the importance of the stiffness of an in-series elastic structure 

on the rate of moment development (RMD; Figure 2-8). Since this pioneering work, a clearer 

picture of the role of the tendon on force production has been constructed. Recently, 

Muraoka et al. (2004) found a significant negative relationship between tendon slack length 

(i.e. tendon tension) and EMD in adults whilst paired changes in EMD and stiffness of the 

elastic MTU components have been found after isometric (Kubo et al., 2001a), endurance 

and plyometric training in adults (Grosset et al., 2009). In addition, several authors 

postulated that increases in RFD observed after a training intervention were the result of 

increases in stiffness (Reeves et al., 2003). Bojsen-Møller et al. (2005) confirmed this 

relationship by demonstrating a significant correlation between stiffness of the vastus 

lateralis (VL) tendon and contractile RFD in vivo. Tendon stiffness has therefore been 

recognised as a key influencing factor in determining EMD and RFD. 

 

 

 

Figure 2-8. Representation of the rate of rise of isometric tension experience by a resistance strain gauge when 

being pulled by a) the arm alone and b) the arm with an inert compliant structure inserted between the arm 

and the resistive load (Wilkie, 1950). 
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As a consequence of this association, it may be suggested that tendon stiffness directly 

influences movement performance, as delay in muscle tension development may impact on 

movement regulation and coordination (Rack and Ross, 1984; Proske and Morgan, 1987; 

Mora et al., 2003; Pijnappels et al., 2005; Pijnappels et al., 2008; Granacher et al., 2010). It 

has been previously shown that an increased tendon stiffness is associated with greater 

joint power in adults (Bojsen-Møller et al., 2005; Arampatzis et al., 2007). This relationship 

may result of the greater recoiling force associated with stretching a stiffer tendon (see 

Wilson 1994) or from the more efficient transfer of muscular force. Bojsen-Møller et al. 

(2005) found that stiffness of the vastus lateralis (VL) tendon was positively correlated with 

maximum jump height, power, force and velocity (at peak power) obtained from squat and 

countermovement jumps in adults, and a similar relationship was shown for the Achilles 

tendon by Kubo et al. (2007). In addition, Wu et al. (2010) found that increases in Achilles 

tendon stiffness after 8 weeks of plyometric training in young adults were positively 

correlated with counter-movement jump height. Although little is known regarding the 

relationship between tendon stiffness and joint power production in children, age-related 

increases in tendon stiffness have been suggested as a factor underlying increases in both 

leg stiffness and jump performance with age (Wang et al., 2004; Korff et al., 2009a).Based 

on the relationships pointed out previously in regards to tendon stiffness, force production 

and movement performance in adults, it is possible that tendon stiffness impacts on 

movement performance in children This would have implications for movement efficiency.  

 

2.2.5 Methods of Measuring Muscle-Tendon Stiffness 

Stiffness can be described from the level of a single tendon fibril, to a multi-joint system 

encompassing the stiffness of all of its components. The stiffness of the limbs determines a 
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person’s movement outcomes and is a reflection of the combined stiffness of the tendons, 

ligaments, cartilage, and muscle that they are assembled from (Latash and Zatsiorsky, 1993). 

Understanding the individual contributions of these components is therefore valuable in 

assessing or predicting movement outcomes. In order to make inferences about previous 

findings, it is essential that we have some knowledge of the different methodologies used in 

measuring different aspects of stiffness (e.g. series elastic component stiffness, musculo-

tendinous or musculo-articular stiffness). In addition to in vitro methodologies, there are 

several in vivo techniques that are commonly used to measure tissue-specific stiffness.  

 

2.2.5.1 Estimating the Mechanical Properties of Soft Tissues from Mechanical Testing 

Prior to the 1990s, the elastic properties of biological tissues could only be estimated by 

means of mechanical testing on excised tissue (Rigby et al., 1959; Abrahams, 1967; Butler et 

al., 1978; Ker, 1981; Bennett et al., 1986), or on anaesthetised animals (Morgan et al., 1978; 

Rack and Westbury, 1984; Baratta and Solomonow, 1991), thus most of our knowledge of 

the mechanical properties of tendon comes from isolated material testing.  

 

 

Figure 2-9. Example materials testing machine for compression and tensile testing. 
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In vitro or mechanical testing involves mounting the tissue of interest securely into the 

clamps of a materials testing machine (Figure 2-9). The tissue is subjected to mechanical 

loading and the tension and deformation of the specimen measured. In order that the in 

vitro testing best replicates the in vivo physiological conditions, whole soft tissue units (i.e. 

soft tissue and bony attachments) undergo testing (Hukins et al., 1990; Leung et al, 2008). 

Limitations to this method include difficulties in securely fixing biological soft tissue without 

(1) the tissue slipping and (2) damaging the tissue in contact with the clamp, both of which 

influence the accurate determination of mechanical properties. In addition, different 

storage methods and handling of soft tissue prior to testing may affect its mechanical 

properties (Matthews and Ellis, 1968; Smeathers and Joanes, 1988). 

 

2.2.5.2 Estimating Tendon-Specific Stiffness using Ultrasonography  

Advances in imaging technology now allow accurate, non-invasive methods of assessing 

muscle and tendon properties in vivo (Henriksson-Larsen et al., 1992; Fukashiro et al., 1995; 

Maganaris and Paul, 1999). For estimating tendon stiffness using ultrasonography, the 

change in tendon length attributable to an applied muscular load (Equation 1) is usually 

measured by tracking the displacement of the muscle-tendon junction (MTJ) during a 

voluntary [typically ramped] maximal isometric muscle contraction. The corresponding 

tendon force is then calculated as the ratio between joint moment, obtained simultaneously 

(typically via dynamometry), and a tendon’s moment arm (An et al., 1983; Spoor and van 

Leeuwen, 1992; Ito et al., 2000; Maganaris et al., 2000). Tendon stiffness is calculated as the 

gradient of the slope produced from plotting the relationship between tendon force and 

MTJ displacement (Fukashiro et al., 1995; Maganaris and Paul, 1999; Figure 12). 
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Despite several methodological considerations that must be taken into account when using 

this method (Magnusson et al., 2001; Reeves et al., 2003a; Arampatzis et al., 2005; 

Maganaris, 2005), ultrasound-based measurement of tendon stiffness in vivo in humans has 

greatly enhanced our understanding of tendon stiffness and its adaptation with growth, 

aging, loading and immobilisation (Kubo et al., 2001a; Kubo et al., 2001b; Reeves et al., 

2003a; Maganaris et al., 2006; Seynnes et al., 2008; O'Brien et al., 2010). 

 

 
 

Figure 2-10. Ultrasonographic images visualising displacement of the muscle-tendon junction (MTJ) during a 

ramped isometric muscle contraction at rest (A), mid contraction (B) and maximal force (C). MTJ displacement, 

indicated by the red arrow, is plotted against the corresponding force to produce a force-elongation graph. 

Tendon stiffness is measured as the gradient of the linear region of the graph (between points B and C here), 

or the ratio between the Δ force and Δ length. 
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2.2.5.3 Estimating Muscle-Tendinous Stiffness using the Quick Release Method 

The quick release (QR) method characterises the stiffness of the SEC, achieved by releasing 

the moveable parts of an ergometer at a higher angular velocity than the maximal 

shortening velocity of the muscle in question (Pérot et al., 1999; Lambertz et al., 2001). The 

joint recoil velocity in the period immediately after the release of the ergometer, before 

reflex changes in muscle activity are initiated, is related to the stiffness of the SEC of the 

muscle-tendon unit (Angel et al., 1965; Goubel and Pertuzon, 1973). Angular muscle-tendon 

stiffness can then be estimated from the limb’s inertia, angular acceleration and angular 

displacement attained in the period when the SEC is supposed to recoil. Based on the 

concept that, due to covariance, there is a linear relationship between the activation levels 

of synergistic muscles (and that this relationship is independent of the velocity and inertia of 

the movement), angular stiffness can be transformed into linear stiffness (Bouisset, 1973). 

Stiffness index is then calculated from the slope of the relationship between musculo-

tendinous stiffness and joint moment or EMG amplitude (Cornu and Goubel, 2001; Lambertz 

et al., 2003).  

 

2.2.5.4 Estimating Musculo-Articular (Muscle-Joint) Stiffness from Sinusoidal Perturbation 

Based on the concept of mechanical impedance (i.e. how much a body resists motion when 

a force is applied), musculo-articular stiffness can be quantified from the limb-system’s 

response to sinusoidal perturbations (Cannon and Zahalak, 1982; Winters and Stark, 1988). 

As mechanical impedance varies with angular velocity, or frequency, of an applied force, this 

implies that impedance of the joint also changes with the frequency of an applied force. The 

passive elastic properties of the joint can be quantified by plotting the ratio between the 

joint displacement and the joint moment developed in resisting motion, against the 
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imposed oscillation frequency to a establish a frequency-response relationship (i.e. bode 

diagrams; Tognella et al., 1997). The resonant frequency of the system is identified as the 

frequency displaying the least phase lag between joint position and moment generated 

(indicating the lowest impedance) as less force is required to move a body at this frequency 

(Cannon and Zahalak, 1982). As the resonant frequency is directly related to stiffness, 

stiffness can be estimated from the frequency-response relationship of the system (Kearney 

and Hunter, 1982; Cornu and Goubel, 2001). 

 

Musculo-articular stiffness can also be estimated by externally perturbing a limb weighted 

with varying loads and recording the oscillation response due to its own elasticity. This 

technique is based on the assumption that the muscle-tendon unit (MTU) can be modelled 

on a damped spring system (Shorten, 1987) and thus stiffness is calculated directly from the 

oscillation frequency. This technique is useful in allowing the stiffness of a system to be 

estimated under specific loading conditions.  

 

2.2.5.5 Estimating the Active and Passive Components of the SEC from the Alpha Method 

The alpha method was developed to differentiate between the stiffness of the tendinous 

components and stiffness of the muscle-tendon complex cross-bridge attachments within 

the SEC of the MTU, based on the assumption that these components can be modelled as 

two springs in series (Morgan, 1977). This method hypothesises that tendon stiffness is 

constant (i.e. linear) at forces exceeding 20% maximal isometric muscle force. In addition, 

the force-extension relationship of a single cross-bridge is assumed to be linear (Ford et al., 

1977), and that the total muscle force is directly related to the number of formed cross-

bridges. However, in demonstrating that tendon stiffness increases non-linearly after a 
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threshold of muscular force, Ettema and Huijing (1994) suggested instead that the alpha 

method distinguished between the force dependent and force independent components 

(i.e. active and passive) of SEC stiffness. Despite its adaptation for use in vivo, the alpha 

method has not been widely used to determine active and passive components of SEC 

stiffness (Cook and McDonagh, 1995; Svantesson et al., 2000; Foure et al., 2010). 

 

2.2.6 Muscle-Tendon Stiffness in Children 

There is a body of evidence demonstrating a positive relationship between musculo-

tendinous stiffness and the performance of movements utilising a stretch shorten cycles 

(SSC) such as running and jumping in adults (Belli and Bosco, 1992; Wilson et al., 1991; 1992; 

Kyrolainen and Komi 1995, Kubo et al., 1999). Due to its influence on movement 

performance in adults, it is of substantial interest for researchers to document the 

development of musculo-tendinous stiffness in children. For example, it has been suggested 

previously that differences in stiffness between children and adults are likely to contribute 

to the significantly longer EMD and lower RFD found in the elbow flexor (Asai and Aoki, 

1996) and plantarflexor muscle groups (Grosset et al., 2005) of children compared to adults. 

These relationships are important to establish in children in future research in order to 

further our understanding of movement performance differences and efficiency between 

children and adults. 

 

2.2.6.1 Development of Musculo-Tendinous Stiffness during Childhood 

Cornu and Goubel (2001) used the QR method to quantify musculo-tendinous (MT) stiffness 

of the elbow flexors in children aged 9 and 15 years and found stiffness to be similar to 

values published for adults. This suggests that elastic tissue stiffness increases in parallel 
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with the gains in force production capacity associated with upper body growth during 

development. Interestingly, the relationship between peak strength and tendon stiffness 

has been identified in the lower body in adults (Muraoka et al., 2004b) but this relationship 

has not been examined in children. Conversely, Lambertz et al. (2003) identified increases in 

plantarflexor MT stiffness with age in typically developing prepubertal children (aged 7 – 10 

years) using the QR method. To address the contrast in results found for development of MT 

stiffness in different limbs, the author suggests that the upper and lower limbs might be 

influenced by different neuromuscular activation capacities in the muscle groups concerned.  

 

2.2.6.2 Development of Tendon-Specific Stiffness during Childhood 

Musculo-tendinous (MT) stiffness characterises both the active (Huxley and Simmons, 1971) 

and passive (Shorten, 1987) components of the SEC. In many cases, the tendon (passive SEC) 

comprises a substantial component of MT stiffness and in addition, has previously 

demonstrated a greater stiffness than its aponeuroses (Ettema and Huijing, 1989; Lieber et 

al., 1991). Because of this, it is common to regard the tendon as a separate entity, thus 

quantify the mechanical properties of the tendon separately is of interest.  

 

Animal-based studies show that tendon stiffness increases with both age (Elliott, 1965; Woo 

et al., 1980; Danielsen and Andreassen, 1988; Shadwick, 1990; Nakagawa et al., 1996) and 

body mass (Pollock and Shadwick, 1994) during growth. The limited data on human tendon 

development is consistent with these previous findings in mammals. Kubo et al. (2001) was 

the first to document changes in tendon-specific stiffness as a function of age during 

development in humans using the ultrasound method. They compared stiffness of the VL 

tendon in young (~11 years) and old (~15 years) boys to adults and found stiffness increased 
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significantly as a function of age. Following these findings, O’Brien et al. (2010) compared 

the stiffness and Young’s modulus of boys and girls (~9 years) to those of adult men and 

women. Stiffness and Young’s modulus was calculated from a force region common to all 

participants, as a method of normalising for individuals producing markedly different forces. 

Both stiffness and Young’s modulus were found to be greater in adults compared to children 

but were not significantly different between boys and girls or women and men.  Thus, it 

appears that, at least for the patellar tendon, stiffness increases with age from late 

childhood through to adulthood.  

 

There are numerous gaps in our understanding of normally developing young tendons. First, 

little is known in regards to the stimulus for tendon growth and microadaptation. The 

influence of the tendon loading from body mass(Pollock and Shadwick, 1994)or muscle 

strength(Muraoka et al., 2005), rather than ageing per se, might be a more important factor 

underpinning the age-related increase in tendon stiffness. This is important as the 

identification of ‘normally developing’ tendons might require this knowledge. Second, it is 

not yet known whether other tendons (including those important for locomotion, such as 

the Achilles) develop similarly to the patellar tendon (O’Brien et al., 2010), so a substantial 

research effort is required to document the development of other tendons.  Third, there is a 

lack of data detailing the development of tendons in children younger than 9 years of age, 

thus the temporal response from early childhood through to adulthood is incomplete. Given 

these shortcomings in our knowledge, more research is required to fully understand the 

normal development of tendon stiffness in childhood.   
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2.2.6.3 Development of Musculo-Articular Stiffness during Childhood 

Another type of stiffness is that exhibited by joints. Active joint stiffness is commonly 

referred to as musculo-articular stiffness as it depends on levels of muscle activation, 

whereas passive joint stiffness is measured when all associated muscles are relaxed and can 

thus be considered to represent the combined stiffness of all of the structures spanning it. 

Knowledge of musculo-articular/joint stiffness is of functional importance as it helps in 

determining resistance to external perturbation (Akeson et al., 1987) as well as a possible 

role in efficient movement control movement (Hasan, 1986) via active stabilisation of the 

limb-joint system using co-activating agonist- antagonist muscle pairs  (Ghez et al., 1983).  

 

Lebiedowska and Fisk (1999) assessed knee joint stiffness in 87 children ranging between 5 

and 18 years of age. Using the free oscillation technique, joint stiffness was found to 

increase as a function of body stature, and thus age. The joint stiffness of the oldest children 

were comparable to previously published values for adults (Mansour and Audu, 1986). 

Normalising stiffness to body stature (Lebiedowska et al., 1996) removed the relationship 

with age, thus joint stiffness was considered to be invariant with growth. Cornu and Goubel 

(2001) used sinusoidal perturbations to find musculo-articular stiffness of the elbow flexors 

was also lower in children than adults, but did not find like differences in MT stiffness. This 

finding suggests an increase in the stiffness of structures that cross the joint with 

development that were not examined, whilst also demonstrating the complexity of joint 

stiffness. Increases in passive joint stiffness with age may be related to an improved force 

producing ability. 
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Results from the literature generally demonstrate that stiffness of the elastic structures 

within the MTU increase with age during childhood. It has been suggested that mechanical 

loading from body mass and increased muscle force generating capacity with maturation 

may provide a progressive, dual stimulus for tendon stiffness adaptation with age (O'Brien 

et al., 2010), as have been identified for animals and adults, respectively (Pollock and 

Shadwick, 1994; Muraoka et al., 2005). Development of joint stiffness may also be 

associated with simultaneous development of elastic tissue stiffness but further research is 

required to quantify this relationship. 
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2.3 Responsiveness of Tendon to Adaptation from Mechanical Loading 

2.3.1 Adaptation of the Mature Tendon to Chronic Heavy Loading 

It is widely accepted that chronic loading or unloading results in an adaptation of tendon 

mechanical properties (Review: Kannus et al., 1997). Such adaptations have been shown to 

include an increase in stiffness (Woo et al., 1980; Narici et al., 1996; Kubo et al., 2001a; 

Reeves et al., 2003a; Wu et al., 2010), ultimate tensile strength (Woo et al., 1980; Vilarta 

and Vidal Bde, 1989) and CSA (Woo et al., 1980; Michna and Hartmann, 1989; Birch et al., 

1999; Rosager et al., 2002; Kongsgaard et al., 2007), and decrease in strain (Urlando and 

Hawkins, 2007). In humans, Kongsgaard et al. (2007) found a ~15% increase in patellar 

tendon stiffness after 12 weeks of heavy knee extension exercise, the findings of which 

were replicated by Seynnes et al. (2009), who found a 24% increase in patellar tendon 

stiffness after a 9-week resistance training intervention. In both studies, the increase in 

stiffness was attributed to an increase in patellar tendon CSA, which indicates that changes 

in the tendon dimensions rather than microstructural adaptations underpinned the change 

in stiffness. Kubo et al. (2010) found a ~30% increase in patellar tendon stiffness in young 

adults after an intensive resistance training program performed 5 days per week. 

Interestingly, none of these studies using young untrained adult subjects reported increases 

in patellar tendon stiffness of the magnitude reported in an elderly population. Reeves et 

al.(2003a) found an increase of ~65% in patellar tendon stiffness after 14 weeks of thrice-

weekly resistance training in older (74.3 ± 3.5 years) men and women. With such variation in 

results, it is clear that a variety of factors must determine the magnitude of tendon 

adaptation to a loading regime, possibly including training intensity, duration and volume, 

the degree of tendon strain, age of the individual, tendon function and anatomical location 

(Kongsgaard et al., 2007; Arampatzis et al., 2010; Kubo et al., 2010). 
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2.3.2 Adaptation of the Mature Tendon to Chronic Habitual Loading 

In addition to strength training, the chronic tendon loading that occurs as a result of 

habitual movement performance has been shown to be sufficient for inducing adaptation of 

tendon mechanical properties. The effects of chronic loading were first documented by 

Conkrite (1936), who noticed that tendons in the dominant hand were thicker than those in 

the non-dominant hand. Increases in tendon stiffness have been reported by a number of 

authors in various animals in response to running training (rabbit, Viidik, 1967; swine, Woo, 

1982; guinea fowl, Buchanan and Marsh, 2001), the changes attributed to qualitative rather 

than quantitative changes in collagen arrangement. Conversely, a number of studies have 

not found changes in tendon mechanical properties after running training (Swine, Woo et 

al., 1981; Rat, Huang et al., 2004; Legerlotz et al., 2007). In humans, adaptations to tendon 

mechanical properties in response to chronic habitual loading have often been examined 

retrospectively in individuals who have undertaken long-term running training, with mixed 

results. Kubo et al. (2000) found stiffness of the VL tendon was ~20% greater in runners than 

non-runners whilst Rosager et al.(2002) reported a greater Achilles tendon CSA in men who 

habitually ran than those who did not, and without differences in tendon stiffness between 

groups. Westh et al. (2008) also failed to find differences in patellar tendon stiffness or CSA 

between habitual women distance runners and non-runners. It appears that years of 

habitual training may be required for significant tendon adaptation to habitual loading 

(Hansen et al., 2003). This may be due to tendons of the lower extremity having adapted 

sufficiently to the significant loading experienced through daily activities such as walking 

and stair climbing or that the forces experienced are not great enough to stimulate tendon 

adaptation. 
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The positive relationship found between peak muscular force capacity and tendon stiffness 

(Scott and Loeb, 1995; Muraoka et al., 2005) has been hypothesised to reflect a mechanism 

by which substantial tendon elongation, resulting from an increase in muscular loading, 

prompts tendon adaptation. An increase in tendon stiffness in response to greater muscular 

loading is probably required to avoid excessive tendon strain and subsequent rupture 

(Muraoka et al., 2005) whilst maintaining a muscle fascicle length optimum for efficient 

force development and transfer (Zajac, 1989; Reeves et al., 2004).  

 

2.3.3 Adaptation of the Developing Tendon to Loading 

There have been surprisingly few studies attempting to document the effect of chronic, 

exercise-induced loading on a developing tendon’s mechanical properties, despite the 

potential influence an increases in tendon stiffness on the rate of force development and 

transfer during movement. Curwin et al. (1988) examined the effects of an 8-week 

treadmill-based running intervention on tendon properties in 3-week old roosters. The 

authors found a 46% increase in the rate of collagen deposition and a decrease in levels of 

pyridinoline, an indictator of the maturational status of collagenous tissue, when compared 

to non-running controls. Together, these results suggest an increase in collagen turnover 

which is indicative of an accumulation of younger collagen and may result in reduced 

tendon stiffness. Birch et al.(1999) examined the effects of 5 months of high-intensity 

treadmill running on the properties of the superficial digital flexor (SDFT) and common 

digital extensor tendons (CDET) in the horse, as weight-bearing and positional tendons, 

respectively. Interestingly, the CDET showed significant hypertrophy post-training whereas 

the SDFT, as the equine equivalent of the human Achilles tendon, did not differ to the 

control group. Although an element of tendon hypertrophy could be a result of normal 
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growth with development, Kasashima et al. (2002) also found tendon hypertrophy of the 

SDFT in the developing equine athlete in response to 13 months of treadmill running. Given 

that tendon stiffness appears to substantially influence force production characteristics, it 

might be hypothesised that an increase in tendon stiffness resulting from a heavy strength 

training programme should affect electromechanical delay and rates of force development 

favourably. Despite this, the receptiveness of the developing tendon to adaptation from a 

training intervention has not previously been examined in children. 

 

2.4 Summary 

A complex network of biological mechanisms underpin the age-related increases in force 

production capacity in children. A number of these factors also change dramatically during 

childhood development. Muscle growth and increases in muscle-tendon moment arms have 

substantial implications for strength gains during childhood, and thus for movement 

performance. In addition, maturation of the nervous system causes significant 

improvements in the recruitment of muscle for force production, and hence increases 

strength and rapid force production. The time course and extent of change of these factors 

are relatively well documented. The mechanical properties of the tendon, in particular, its 

stiffness, have been shown to be different in children than adults, although the cross-

sectional development of stiffness (together with the factors that prompt stiffness 

development) during childhood has not been previously investigated and may be different 

for tendons with different functions or locations. The influence of tendon stiffness on force 

production during childhood is also not known, despite the importance of tendon stiffness 

on rapid force development being highlighted in adults. Understanding the role of tendon 

stiffness in force production may provide valuable insight the mechanisms underpinning 
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age-related differences in movement performance. Lastly, the plasticity of the developing 

tendon to different loading regimes is largely unknown. Determining the adaptive potential 

of the developing tendon’s mechanical properties to chronic loading, unloading or different 

levels of cyclic strain may have important implications movement performance.  
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CHAPTER 3: Can Achilles Tendon Moment Arm be predicted from 

Anthropometric Measures in Prepubescent Children? 
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3.0 Abstract 

Muscle-tendon moment arm length is an essential variable for accurately calculating muscle 

forces from joint moments, however their accurate measurement requires specialist 

knowledge and expensive resources. Recent research has shown that the patellar tendon 

moment arm length is related to leg anthropometry in children. Here, we asked whether the 

Achilles tendon moment arm (MAAT) could be accurately predicted in prepubescent children 

from surface anthropometry. Age, standing height, mass, foot length, inter-malleolar ankle 

width, antero-posterior ankle depth, tibial length, lower leg circumference, and distances 

from the calcaneus to the distal head of the 1st metatarsal and medial malleolus were 

determined in 49 prepubescent children. MAAT was calculated by differentiating tendon 

excursion, observed using ultrasonography, with respect to ankle angle change over an 

angular displacement of 20°. Pearson’s product-moment correlation coefficients and 

coefficients of determination were calculated and a backwards stepwise regression analysis 

was performed to identify predictors of MAAT. When all variables were included, the 

regression analysis predicted 49% of MAAT variability. Foot length and the distance between 

calcaneus and 1st metatarsal were the only significant predictors, accounting for 49% of 

MAAT variability (p<0.05). The regression model predicted moment arm values with 3.8 ± 4.4 

mm absolute error, which would result in significant error (mean = 14.5%) when estimating 

muscle forces from joint moments. It was concluded that MAAT cannot be accurately 

predicted from anthropometric measures in children, as they account for less than half the 

variation in moment arm length.  

 
 
 
A paper relating to this chapter is now in print and can be found at: 
 http://dx.doi.org/10.1016/j.jbiomech.2011.03.023 

https://cas.brunel.ac.uk/owa/redir.aspx?C=e56dc12bbeb045b6a57009c2ff0d8f6d&URL=http%3a%2f%2fdx.doi.org%2f10.1016%2fj.jbiomech.2011.03.023�
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3.1 Introduction 

Muscular strength, which can be defined as the maximum moment developed by a muscle 

group about a joint during a voluntary contraction, increases during childhood (Blimkie, 

2001). The mechanisms underpinning the development of age-related gains in muscular 

strength include neuro-maturation (Savelsburgh, 2003), increases in muscle size (Kanehisa 

et al., 1995; Morse et al., 2008), changes in muscle architecture (Binzoni et al., 2001) and 

increases in moment arm length (Wood et al., 2006; Morse et al., 2008; O'Brien et al., 

2009). 

 

The moment arm of a muscle-tendon unit is defined as the perpendicular distance between 

the line of muscle/tendon force action and the rotational centre of the corresponding joint 

(Spoor and van Leeuwen, 1992).  Its measurement is vital for quantifying changes in muscle 

force production during growth (Wood et al., 2006), where the changing moment arm 

impacts on joint moment magnitude. In addition, moment arm is both an essential 

parameter in many musculoskeletal models (Delp et al., 1990) and is also used in the 

calculation of other important parameters such as tendon stiffness and Young’s modulus 

(O'Brien et al., 2010). Muscle moment arms can be obtained using imaging techniques such 

as magnetic resonance imaging (Spoor and van Leeuwen, 1992; Maganaris et al., 1998; 

Reeves et al., 2003b; Sheehan, 2007), X-ray videofluoroscopy (Baltzopoulos, 1995; Kellis and 

Baltzopoulos, 1999) and ultrasonography (Ito et al., 2000; Fath et al., 2010). Given that such 

techniques require specialist knowledge and resources, it is not always feasible for 

developmental researchers to use them to obtain accurate moment arm lengths. As a result, 

previous authors have estimated moment arms in children using allometric scaling 

(Kanehisa et al., 1995; Kubo et al., 2001b). This practice is based on the assumption that 
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moment arm length scales proportionally with stature or the geometry of the corresponding 

segments, and that these relationships are constant between children and adults. However, 

this assumption has not been explicitly confirmed. 

 

In adults, the strength of the relationship between moment arm length and body 

anthropometrics depends on the muscle or tendon of interest. For example, strong 

relationships between moment arm length and surface anthropometry have been 

demonstrated for elbow (Murray et al., 2002) and trunk flexors and extensors (Reid et al., 

1987; Moga et al., 1993; Jorgensen et al., 2003; Seo et al., 2003). However, such a 

relationship could not be shown for the knee extensors (Tsaopoulos et al., 2007; O'Brien et 

al., 2009). Despite this lack of relationship in adults, it has been demonstrated that the knee 

extensor moment arm in children can be accurately predicted from the segment lengths of 

the lower limb (O'Brien et al., 2009). This finding raises the question as to whether moment 

arm lengths of other functionally important muscle groups can be accurately predicted in 

children from anthropometric measures.  

 

The plantarflexor muscle group plays a major functional role in common motor tasks such as 

quiet standing and balance performance (Shambes, 1976; Roncesvalles et al., 2001) as well 

as dynamic movements including walking, running and jumping (Cupp et al., 1999; Fukunaga 

et al., 2001; Lichtwark et al., 2007). The ability to predict the moment arm of this muscle 

group in children would allow researchers to estimate muscle forces from joint moments 

and develop accurate paediatric musculoskeletal models without the need for specialised 

equipment. In addition, simple moment arm determination is of substantial practical 

interest and could be helpful for further understanding the mechanisms underpinning age-
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related increases in plantarflexor strength (Denis and Korff, 2009) and the developmental 

differences in plantarflexor moment during locomotor activities such as bicycling (Korff et 

al., 2009b). Therefore the purpose of the present study was to determine whether Achilles 

tendon moment arm can be accurately predicted from surface anthropometric 

characteristics in prepubescent children.  
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3.2 Method 

3.2.1 Ethics and Participant Information 

Forty-nine prepubescent children aged 5 to 12 years (mean = 8.0 ± 1.7 years) volunteered to 

participate in this study (26 boys, 23 girls). Prepubertal status was determined for children 

over 8 years of age according to Mirwald et al. (2002). The average age from peak height 

velocity, an indicator for maturational offset (Malina and Bouchard, 1991), in this age group 

was 3.92 years (± 0.53 years). All children were free from musculoskeletal and orthopaedic 

disorders and were not involved in competitive sports. Ethical approval was granted by the 

Human Research Ethics Committee of the School of Sport and Education, Brunel University. 

Written parental consent was given by a guardian. Children provided written assent to 

participate in the study. All procedures were explained to the participants in a child-

appropriate manner, and they were made aware of their right to withdraw from the study 

at any time without penalty.  

 

3.2.2 Anthropometric Measurements 

The surface anthropometric variables used to predict Achilles tendon moment arm were (1) 

standing height, (2) body mass, (3) foot length, (4) inter-malleolar ankle width, (5) antero-

posterior ankle depth, (6) tibial length, (7) lower leg circumference (largest calf measure), 

(8) distance from the insertion of the Achilles tendon into the calcaneus to the distal head of 

the 1st metatarsal, and (9) distance from medial malleolus to the insertion point of the 

Achilles tendon into the calcaneus. These variables were measured to the nearest millimetre 

using bone callipers and a flexible tape measure (coefficient of variation of 0.81%). The 

definitions of these measures were based on the work of Norton and Olds (1996) and are 
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given in Table 3-1. These measurements, in addition to age (years), were used as potential 

moment arm predictors. 

 

Table 3-1. A description of the anthropometric variables collected and their method of collection. *Definitions 

provided by Norton and Olds (1996). 

 

 

 

3.2.3 Measurement of Achilles Tendon Moment Arm 

Achilles tendon moment arm (MAAT) was determined by the tendon excursion method using 

ultrasonography (Ito et al., 2000; Maganaris et al., 2000; Fath et al., 2010). Moment arms 

Measure Method 

 

Foot length* 

 

Linear distance from the longest toe to the most posterior point on the 

heel of the foot with the participant standing with weight distributed 

between the feet. 

Inter-malleolar ankle width*  Distance between the centres of the medial and lateral malleoli, 

measured using bone callipers with the participant standing with feet 

slightly apart. 

Antero-posterior ankle depth*  Distance in the sagittal plane between the Achilles and tibialis anterior 

tendons at the height of the medial malleolus. 

Tibial length*  Distance between the lateral malleolus and the centre of the lateral 

epicondyle, measured with a flexible tape with the participant standing. 

Lower leg circumference*  Largest record from a flexible measuring tape measure taken at the 

mid-belly region of the triceps surae group with the participant 

standing. 

Calcaneal – 1st Metatarsal  Linear distance between the Achilles tendon insertion onto the 

calcaneus (determined by palpation) and the distal head of the 1st 

metatarsal on the medial side of the foot, measured with the 

participant standing. 

Calcaneal – Medial Malleolus Distance between the Achilles tendon insertion onto the calcaneus and 

the centre of the medial malleolus. 
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derived from this method at a neutral (0o) ankle angle have been shown to be reliable and 

to correlate well with those obtained from MRI measures (Fath et al., 2010).  

 

3.2.4 Procedure 

Participants were seated in an isokinetic dynamometer (Biodex Multi-joint System 3, Shirley, 

New York). The lateral malleolus of the right ankle was aligned with the centre of rotation of 

the head unit. The footplate was positioned perpendicularly to the horizontal axis so the 

foot was perpendicular to the tibia (neutral ankle angle). The hip angle was set at 85o and 

the knee was fully extended. Stabilisation straps were firmly tightened over the foot, thigh 

and chest to minimise movement of the upper body or leg. To pre-condition the triceps 

surae muscle-tendon unit, 5-8 sub-maximal and maximal voluntary isometric plantarflexion 

contractions were performed (Schatzmann et al., 1998). The right foot was then passively 

rotated between 20° dorsiflexion and 30° plantarflexion at a constant angular velocity of 

10°·s-1 to familiarise the participant with the task. With the exception of one, all participants 

were comfortable with this range (the range of motion was reset to 15° dorsiflexion and 30° 

plantarflexion for the remaining participant). The ankle was then passively rotated through 

the range of motion at a constant angular velocity of 10°·s-1 three times, starting from a 

dorsiflexed position. Participants were instructed to relax the muscles of their lower limbs 

during the passive rotations to minimise the influence of muscle forces on the moment arm 

calculations. This was monitored by visually inspecting real-time muscle activity from the 

gastrocnemius medialis (GM) and tibialis anterior (TA) muscles using electromyography 

(Telemyo 2400R, NorAxon U.S.A Inc, Arizona, USA). 
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3.2.5 Instrumentation 

GM MTJ excursion during the passive rotation was visualised using 2D B-mode 

ultrasonography with a 45-mm linear array probe (Megas GPX, Esaote, Italy) operating at a 

frequency of 10 MHz. The probe was positioned perpendicularly to the skin surface and 

orientated to image the GM MTJ. Water-based gel (Henley’s Medical, Hertfordshire, UK) 

was used to enhance the acoustic contact and, therefore, the contrast of the images. The 

probe was secured to the skin by means of a custom-made foam holder and micropore 

medical tape. An echoabsorptive strip was positioned on the skin immediately above the 

GM MTJ to provide a suitable marker on the ultrasound image for identification of any 

probe movement with respect to the skin during data collection (Figure 3-1). 

 

 

Figure 3-1. Graphical representation of the set-up and method for calculation of the Achilles tendon moment 

arm using the tendon excursion method. The muscle-tendon junction (MTJ) of the gastrocnemius medialis 

muscle (located within the red lines) is shown on a representative ultrasonographic image. Excursion of the 

MTJ during ankle rotation was made in reference to an echoabsorptive marker (grey line) placed on the skin to 

identify movement of the ultrasound probe with respect to the skin. 



Chapter 3 

76 
 

3.2.6 Data Processing 

Data were captured using Cortex software v1.1.4 (Motion Analysis, Santa Rosa, USA). 

Ultrasound images were digitally captured at 25 Hz using a digital video-converting frame 

grabber (ADVC-55, Grass Valley, France). Peak Motus digitising software (v9, Vicon Motion 

Systems, Colorado, USA) was used to manually identify the GM MTJ in each video field. 

Scaled GM MTJ position data were low-pass filtered using a fourth-order, zero-lag 

Butterworth filter with a cut-off frequency of 3.25 Hz, as determined by residual analysis 

(Winter, 1990b). Ankle joint position data were sampled at 1000 Hz using a 12-bit A/D card 

(NI PCI-6071E, National Instruments, Texas, USA) and low-pass filtered at 14 Hz using a 

fourth-order zero-lag Butterworth filter. Joint position and ultrasound data were 

synchronised using an electrical trigger input (Stimulator DS7A, Digitimer Ltd., Hertfordshire, 

UK). The filtered joint position data were down-sampled to match the ultrasound data.  

 

3.2.7 Calculation of Achilles Tendon Moment Arm 

According to the TE method (An et al., 1983; Ito et al., 2000), moment arm can be calculated 

as the mathematical derivative of tendon excursion with respect to the angular 

displacement of the corresponding joint. Following the recommendations of Fath et al. 

(2010), a third-order polynomial was fitted to approximate the relationship between tendon 

excursion and ankle displacement over an angular displacement of 20° (from 10° 

dorsiflexion to 10° plantarflexion; 0° corresponds to the neutral ankle position). Only the 

data from the third passive plantarflexion were used. The mean (± standard deviation) 

coefficient of determination (R2) for the approximated tendon elongation-angular 

displacement relation was 0.993 (± 0.0036) across the 49 participants. For each participant, 

the fitted polynomial was then analytically differentiated at the neutral ankle position to 
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obtain the MAAT. The researcher’s coefficient of variation for calculating MAAT using this 

procedure was 3.66%. 

 

3.2.8 Statistical Analysis 

Coefficients of determination (R2) were computed to describe the strength of the 

relationship between MAAT and each of the anthropometric variables. To determine 

whether MAAT could be predicted from a combination of the anthropometric parameters, a 

backwards stepwise multiple regression analysis was performed. The threshold of 

significance for inclusion of a parameter into the regression model was set at p ≤ 0.05. 
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3.3 Results 

The mean (±SD) calculated MAAT length for the present participants was 30.0 ± 6.1 mm. The 

individual relationships between MAAT and the individual anthropometric predictor 

variables are shown in Figure 3-2; coefficients of determination (R2) ranged from 0.24 for leg 

circumference to 0.42 for both foot length and the distance between the calcaneus and 1st 

metatarsal (dcalc-met). The regression analysis indicated that the inclusion of all 

anthropometric variables accounted for 49% of MAAT variability, however the only 

significant correlates of MAAT were foot length and dcalc-met(p<0.05), which, when combined, 

accounted for 49% of the variability of the MAAT across the 49 participants. The regression 

equation (equation 1) for predicting MAAT from foot length and dcalc-met was:  

 

MAAT (mm) = (0.117 × Foot Length) + (0.180 × dcalc-met) – 19.618  Equation 1 

(NB. All measurements were made in mm). 

 

The standard error of the estimate relating to Equation 1 was 4.57 mm (15.2%). The mean 

absolute difference (± SD) between actual and estimated (from equation 1) moment arms 

for the 49 participants was 3.8 ± 4.4 mm. 
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Figure 3-2. Relationship between the Achilles tendon moment arm (MAAT) length and various anthropometric 

predictors. R2 are unadjusted values. Height (standing), IM: inter-malleolar; AP: antero-posterior; dcalc-met: 

distance between the calcaneus and 1st metatarsal; dcalc-MM: distance between the calcaneus and medial 

malleolus. 
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3.4 Discussion 

The aim of this study was to determine whether Achilles tendon moment arm (MAAT) could 

be predicted from surface anthropometric characteristics in prepubescent children. The 

results show that only half of the variability of MAAT (49%) across the participants could be 

accounted for by variation in anthropometric measures. Foot length and dcalc-met were the 

only significant predictors of MAAT and accounted for the vast majority (96%) of the 

explained variance of the regression model that included all variables. The predictive ability 

of MAAT is therefore poorer than that of patellar tendon moment arm (MAPT) shown 

previously in a similar population (O’Brien et al., 2009). While the regression model 

explained less than 50% of the variance in MAAT, O’Brien et al. (2009) found that 83% of 

variance in MAPT could be explained by tibial length. The discrepancy in the predictability of 

the two moment arms raises the question as to why the MAAT is less predictable than the 

MAPT in children.  

 

A possible explanation for the difference in predictability between MAPT and MAAT is the 

difference in the anatomical complexity of the predictors. The tibia, as the segment which is 

immediately distal to the knee, is a single long bone whose growth is relatively predictable 

(Anderson et al., 1963).  On the other hand, the foot segment, immediately distal to the 

ankle, comprises numerous long and irregular bones (tarsals, metatarsals and phalanges). As 

a consequence, the age-related increase in the superficial measures related to foot length 

are likely to be less predictable than that of tibial length, which might in part explain the 

lesser predictability of MAAT compared to MAPT. Based on this speculation, it is possible that 
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the lengths of individual bones within the foot (e.g., calcaneus) could be better predictors of 

MAAT. However they cannot be accurately measured using surface anthropometry.  

Another possible explanation for the lesser predictability of MAAT compared to MAPT is that 

triceps surae volume (or more specifically the antero-posterior muscle thickness) might 

influence the orientation of the Achilles Tendon and its moment arm with respect to the 

ankle joint. Conversely, MAPT is unlikely to be affected by muscle thickness because the 

patellar tendon directly connects the patella to the tibial tuberosity. The assumption that 

muscle thickness might have influenced these results is supported by the fact that the ratio 

between muscle CSA and moment arm length in children is not the same as in adults 

(Kanehisa et al., 1995; Morse et al., 2008) and that the MAAT length increases during a 

muscle contraction as a result of the increase in muscle thickness, altering the tendon line of 

action (Maganaris, 2004). In spite of these factors, the addition of lower leg circumference 

to the regression model did not improve the moment arm estimation. Therefore, the 

influence of muscle thickness on MAAT length during both passive and active conditions in 

children warrants further study. 

 

The practical implications of the present findings are substantial.  Moment arm length is a 

necessary measure for the derivation of muscle-tendon forces from joint moments. Errors in 

the estimation of moment arms strongly influence the accuracy of muscle-tendon force 

estimates from joint moment measurements. The average absolute difference between the 

actual and predicted MAAT (equation 1) was 3.8 mm. This mean difference would strongly 

influence the accuracy of muscle-tendon force estimates from joint moment measurements. 

Based on this mean difference, over- or underestimating the average actual moment arm by 

the mean difference between actual and predicted moment arm would result in errors of 



Chapter 3 

82 
 

muscle force calculation by -11.2% and +14.5% respectively. In fact, the difference between 

the actual and predicted MAAT in one participant was large enough to overestimate muscle 

forces by 34.4%. Thus the errors associated with using surface anthropometry to predict 

MAAT in children are unacceptably large.   

The tendon excursion method, which is based on a principle of virtual work, assumes that 

any forces acting across the joint of interest during its rotation are negligible (Storace and 

Wolf, 1979; An et al., 1984). However, Fath et al. (2010) found an increase in joint moment 

during dorsiflexion due to both increases in active (reflex muscle activation due to muscle 

stretch) and passive forces (stretching the elastic components of the muscle-tendon unit), 

which may result in an underestimation of tendon elongation for a given joint rotation and 

subsequent calculation of a smaller moment arm. Despite the fact that this method has not 

yet been validated in children, the potential issues associated with its use are arguably 

lower in children. Firstly, children have a greater ankle plantarflexion–dorsiflexion flexibility 

than adults (Soucie et al., 2011). As such, the passive forces associated with stretching the 

elastic components of the MTU will be lower. Additionally, and theoretically, a more 

compliant tendon would also take up more of an imposed muscle-tendon unit length 

change thus reducing the likeliness of reflex muscle activity associated with muscle stretch 

(Liddell and Sherrington, 1924). 

 

3.4.1 Conclusion 

In summary, the Achilles tendon moment arm length at rest in a neutral ankle position could 

not be accurately predicted from surface anthropometric characteristics in prepubescent (5 

to 12 years) children. Whilst the regression analysis indicated some moderate relationships, 
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the error associated with the regression model was too large to allow for accurate 

predictions of Achilles tendon moment arm. Thus, estimating the moment arm from surface 

anthropometry should not be considered when quantifying Achilles tendon moment arm in 

children.  
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CHAPTER 4: Age-related Changes in the Mechanical Properties of the 

Achilles tendon 
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4.0 Abstract 

The transfer of muscular forces to the skeleton is influenced by the stiffness of the adjoining 

tendon. Tendons stiffness adapts in response to chronic loading, therefore it was 

hypothesised that growth-related increases in body mass and force production capabilities, 

as well as changes in tendon dimensions, would be associated with the age-related 

increases in tendon stiffness during childhood. Achilles tendon stiffness, Young’s modulus, 

tendon dimensions, peak stress, strain, force and body mass were determined in fifty-two 

prepubertal children (aged 5 to 12 years) and19 adults. Achilles tendon elongation, 

measured using ultrasonography, and peak plantarflexor moment from dynamometry were 

obtained during maximal isometric plantarflexion contractions. Peak force was calculated 

from plantarflexor moment using the Achilles tendon moment arm (MAAT), estimated using 

the tendon excursion method. Tendon stiffness was calculated as the slope of the force-

elongation curve and Young’s modulus was calculated by normalising stiffness to resting 

tendon length and CSA. The relationship between tendon stiffness and age, body mass and 

peak force was determined separately for children and all ages combined (i.e. children + 

adults) using multiple regression analyses. Variables relating to either stiffness or Young’s 

modulus were documented descriptively as a function of age and effects sizes calculated 

between groups. Strong relationships were found between body mass and peak force with 

tendon stiffness and Young’s modulus in children, indicating that age-related adaptations 

most likely result from chronic increases in tendon loading and are not a true ‘ageing’ effect. 

Changes in tendon stiffness during childhood were largely attributable to CSA hypertrophy 

and increased Young’s modulus with age, both of which are likely to be influenced by force 

producing ability. In addition, peak stress increased from childhood to adulthood due to 

greater increases in strength than CSA with age; however peak strain remained constant as 
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a result of parallel increases in tendon length and peak elongation. The differences in 

Achilles tendon properties found between adults and children are likely to influence force 

production so determining the impact of this is an important area of future research. 
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4.1 Introduction 

Tendons are spring-like structures that play an integral role in movement by transferring 

muscular forces across joints to bones. Their mechanical properties, and in particular their 

stiffness, affect force production and complex motor performance (Bojsen-Moller et al., 

2005; Arampatzis et al., 2006). Importantly, tendon mechanical properties adapt in 

response to chronic increases (Kubo et al., 2001a; Wu et al., 2010) or decreases (Reeves et 

al., 2003a; Maganaris et al., 2006) in loading.  

 

During childhood, the stiffness of weight-bearing tendons has been shown to increase with 

age from 9 years to adulthood in humans (Kubo et al., 2001b; O'Brien et al., 2010), the 

findings of which are consistent with those relating to load bearing animal tendons (Woo et 

al., 1982; Shadwick, 1990). Changes in body mass and force production capabilities, as inter-

related mechanisms that increase with age, have been postulated to contribute to these 

observed increases in tendon stiffness with age (O’Brien et al., 2010) but have not been 

explored previously as potential underlying mechanisms. Body mass increases substantially 

from childhood to adulthood, requiring the weight-bearing tendons to tolerate higher loads. 

Although changes in body composition occur with prepubertal age (Ruxton et al., 1999), 

muscle mass tends to increase in proportion with body mass (Fomon et al., 1982; Malina 

and Bouchard, 1991; Maynard et al., 2001). Muscle mass is directly associated with force 

production capacity, but is not the only determinant of muscular strength. Age-related 

increases in muscular strength are also influenced by improvements in the individual’s 

ability to recruit and coordinate the available muscle mass for force production (Stackhouse 

et al., 2005; Falk et al., 2009). As a result, strength does not increase in direct proportion to 

body mass (Asmussen and Heeboll-Nielsen., 1955; Blimkie, 1989). Therefore, both body 
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mass and force production capabilities may contribute independently to age-related 

increases in chronic loading (Proske and Morgan, 1987). Consequently, tendons may adapt 

based on their requirement to transmit higher forces from the muscular to the skeletal 

system safely and effectively. 

 

In addition to a requirement to tolerate greater loads, a tendon’s stiffness is also dependent 

on its dimensions. Based on Hookean law, thicker tendons (greater CSA) are associated with 

higher stiffness as more spring-like material is arranged in parallel, whereas longer tendons 

are associated with lower stiffness as more spring-like tissue is arranged in series (Proske 

and Morgan, 1987). Because these dimensions change with age (Jozsa and Kannus, 1997; 

O’Brien et al., 2010), increases in tendon stiffness must also be set in the context of tendon 

growth. By normalising tendon stiffness to its dimensions (i.e. calculating the Young’s 

modulus) in an attempt to account for dimensional differences between individuals, it is 

possible to monitor changes in a tendon’s material properties independent of changes in 

dimensions. For example, previous research has shown that Young’s modulus increases with 

age (O’Brien et al., 2010), suggesting that in addition to dimensional growth, the tendon’s 

intrinsic material properties undergo a maturation process also. In animals, this is caused by 

a number of processes acting to improve collagen density within the tendon (Elliott, 1965; 

Parry et al., 1978a; Curwin et al., 1988; Bailey et al., 1998; Bayer et al., 2010), initiated by 

mechanical loading (Kjaer, 2004). Increases in tendon stiffness with age have therefore been 

attributed to both maturational and dimensional tendon adaptations (O’Brien et al., 2010). 

Such changes have not been documented in younger children (<9 years), so the 

development of tendon properties throughout childhood is not yet known.   
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Expanding on previous research, the primary purpose of this study was to partition out the 

contributions of age, body mass and muscular strength on prepubertal developmental 

increases in tendon stiffness. Within this context, the influence of age, body mass and 

muscular strength on tendon stiffness irrespective of tendon size i.e. with Young’s modulus, 

was also examined. This allowed the relative importance of tendon size and Young’s 

modulus on age-related changes in tendon stiffness to be examined. The secondary purpose 

of this study was to document the development of parameters directly influencing or 

pertaining to either stiffness or Young’s modulus (including the tendon’s dimensions, 

elongation due to peak force and mechanical stress and strain) in order to better 

understand the mechanisms underpinning their change with age. Understanding such 

changes may help to provide an explanation into differences in movement performance 

(Asai and Aoki, 1996; Chao et al., 2002; Ganley and Powers, 2005; Grosset et al., 2005; Korff 

and Jensen, 2007; Falk et al., 2009) and movement efficiency (DeJaeger et al., 2001; 

Schepens et al., 2001; 2004) between children and adults. Within this context, a final 

purpose of the present study was to examine the elastic energy storage capacity of the 

Achilles tendon.  

 

Although some data are available to describe the age-related mechanical adaptations in the 

patellar tendon, a lack of data exists detailing such changes in the functionally important 

Achilles tendon. The Achilles tendon contributes substantially to the movement outcome of 

dynamic tasks such as walking, running and jumping (Fukunaga et al., 2001; Lichtwark and 

Wilson, 2005; Ishikawa et al., 2007) and plays a significant role in quiet standing and balance 

control (Roncesvalles et al., 2001; Loram and Lakie, 2002). Moreover, it encounters 

considerable loading during these everyday tasks.  
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4.2 Methods 

4.2.1 Ethics and Participant Information 

Fifty-two prepubertal children between the ages of 5 and 12 years (27 boys, 25 girls; mean 

age 8.12 ± 1.66 years), 10 men (25.7 ± 3.6) and 9 women (25.2 ± 3.5) volunteered to 

participate in this study (for participant information, see Table 4-1). Peak height velocity, as 

an indicator of maturational offset (Malina and Bouchard, 1991), was estimated in children 

over 8 years of age to confirm their prepubertal status (Mirwald et al., 2002). The minimum 

age from peak height velocity found in this subgroup of children was -1.9 years. All 

participants were free from neuromuscular or musculoskeletal disorders and were not 

involved in any competitive sports. The study was approved by the Human Research Ethics 

Committee at Brunel University. Testing conformed to the guidelines set out in the 

Declaration of Helsinki. Children provided written assent to participate in the study and 

parents/guardians provided written informed consent. All procedures were explained to the 

participants in a child-appropriate manner. All participants were made aware of their right 

to withdraw from the study at any time without penalty.  

 

Table 4-1. Participant characteristics (mean ± SD). 
 

Group N Age (years)ab Height (cm)ab Mass (kg)abc 

CG5–6 16 6.1 ± 0.7 120.7 ± 4.1 21.2 ± 2.4 

CG7–8 18 8.3 ± 0.7 134.9 ± 5.2 29.0 ± 6.5 

CG9–10 16 9.5 ± 0.9 138.2 ± 5.4 32.2 ± 5.3 

Adult Men 10 26.8 ± 1.8 179.6 ± 6.5 78.6 ± 11.7 

Adult Women 9 24.8 ± 3.2 167.6 ± 5.6 64.3 ± 7.8 

 

CG5-6,CG7-8 andCG9-10 represent children aged5 – 6, 7 – 8 and 9 – 10 years, respectively. Significant difference 

(p< 0.05) between a) adults (M and W) and all child age groups, b) CG5-6 and other child age-groups and c) adult 

men (M) and women (W).  
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4.2.2 Overview 

The participants visited the laboratory on one occasion during which a comprehensive 

familiarisation of the procedures preceded data collection. Standing and sitting height (for 

determining peak height velocity) and body mass were measured before familiarisation. 

During data collection, participants performed maximal isometric plantarflexion 

contractions during which Achilles tendon elongation was measured using ultrasonography. 

Tendon stiffness was calculated as the slope of the relationship between tendon elongation 

and plantarflexor force (corrected for antagonist activity). Force was calculated as the ratio 

of plantarflexor moment, obtained from dynamometry, and Achilles tendon moment arm, 

estimated from tendon excursion during passive ankle rotations (Fath et al., 2010). Young’s 

Modulus was subsequently estimated by normalizing tendon stiffness to both resting 

tendon length and CSA. An overview of the testing protocol is shown in Figure 4-1. 

 

4.2.3 Familiarisation 

To familiarise the participants with the equipment and the isometric plantarflexion required 

for testing, five to eight sub-maximal isometric plantarflexion contractions were performed 

with the instruction to “rotate the foot away from the body using the ball of the foot whilst 

keeping the heel in contact with footplate”. Participants then typically performed 3 – 5 

further contractions with maximal effort to ensure their maximum force was identified. 

These contractions also provided a task-specific warm-up, important for pre-conditioning 

the tendon to ensure consistency of load-deformation properties during data collection 

(Rigby et al., 1959; Viidik et al., 1982; Schatzmann et al., 1998; Maganaris and Paul, 1999). A 

minimum of 30 s separated two consecutive contractions. A 5-minute passive rest period 
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was given to the participants between the familiarisation period and the testing protocol to 

minimise fatigue. 

 

 

Figure 4-1. Overview of experimental protocol. Participants performed submaximal and maximal voluntary 

contractions (MVCs) as a task-specific warm-up. Children performed 2 – 3 MVCs whilst adults always adults 

performed 3 MVCs. A dorsiflexion MVC was completed to allow antagonist coactivity to be quantified from the 

tibialis anterior moment-EMG relationship. The ankle was then passively rotated through its range of motion in 

order to determine Achilles tendon moment arm (MAAT). 

 

 

4.2.4 Measurement of Plantarflexor Moment 

The moment about the ankle joint was measured using an isokinetic dynamometer (Biodex 

Medical Systems, New York, USA). Participants were seated on the dynamometer chair with 

relative hip and knee angles set to 95o (between trunk and thigh) and 0o (i.e. full extension), 

respectively. The dynamometer footplate was positioned perpendicularly to the inertial 

horizontal axis to provide a relative ankle angle of 90o between the foot and the tibia 

(neutral ankle angle). The lateral malleolus of the right fibula was aligned with the 

dynamometer’s rotational axis by adjusting the length of the dynamometer arm. Due to a 
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degree of compliance within the chair and dynamometer head unit, translation of the 

footplate with respect to the chair was noticeable during plantarflexion contractions during 

pilot testing. This translation resulted in the lateral malleolus misaligning with the centre of 

rotation of the dynamometer head unit and changed the ankle angle considerably, a 

problem observed previously (Arampatzis et al., 2008). To minimise joint rotation due to 

unwanted dynamometer movement, participants were initially seated with the knee flexed, 

which upon straightening (i.e. performing a leg press manoeuvre) locked the knee joint and 

allowed the leg to act as a passive strut (see Figure 4-2). Subsequent ankle plantarflexion 

deformed of the dynamometer system only minimally. To reduce the risk of leg, upper body 

or heel movement affecting the dynamometer readings, stabilisation straps were applied 

tightly over the foot, thigh and torso. Furthermore, the participants were instructed to cross 

their arms over their chest. This protocol resulted in a mean ankle angle change of 5 - 6˚ in 

children and adults (for details, see the section “Correction for muscle-tendon junction 

movement due to joint rotation during MVC”, pages 83-84) as opposed to ~10oreported 

previously for adults (Magnusson et al., 2001; Muramatsu et al., 2001). 

 

 

Figure 4-2. Representation of the leg press manoeuvre (pressing from a flexed to a fully extended knee angle) 

used to minimise dynamometer-chair movement during the maximal plantarflexor contractions. 
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The results from pilot testing revealed that, despite extensive practice, many of the children 

found it difficult to perform slowly ramped maximal plantarflexion contractions and produce 

a uni-modal moment-time profile. Thus children were instructed to produce their MVCs 

with a maximum rate of force development. The rate at which children can produce force 

voluntarily is markedly lower than adults (Asai and Aoki, 1996), therefore the resolution of 

the force-tendon elongation curves created with an ultrasound sampling frequency of 25 Hz 

proved adequate for reliable data capture. The rate at which adults can produce force 

voluntarily was too high for reliable data capture, therefore adults performed ramped 

contractions over 3-4 seconds. Despite different instructions, the time taken to reach 

maximum torque was not very dissimilar between children and adults (children - 2.27 ± 

0.77-s; adults – 3.02 ± 0.87-s). Plantarflexor moment was recorded during two 4-s MVCs 

with verbal encouragement (McNair et al., 1996). A third trial was allowed if the peak 

moment achieved in the first two trials differed by more than 5%. The performance of only 

two plantarflexion MVCs (where possible) was used to reduce the testing time for the 

younger children. Trials were separated by a 30 s rest period. Plantarflexor moment and 

ankle joint position were sampled at 1000 Hz using a 12 bit A/D card (NI PCI-6071E, National 

Instruments, Texas, USA) and low-pass filtered using a fourth-order, zero-lag Butterworth 

filter with a cut-off frequency of 14 Hz, as determined by residual analysis (Winter, 1990a).  

 

4.2.5 Measurement of Tendon Elongation 

Tendon elongation was measured as the displacement of the GM MTJ from rest during the 

MVC trials. The GM MTJ was visualised using B-mode ultrasonography with a 45-mm linear 

array probe (Megas GPX, Esaote, Italy; 10-MHz transducer scanning). Water-based gel 

(Henley’s Medical, Hertfordshire, UK) deposited between the ultrasound probe and skin 
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enhanced acoustic transmission so that clear images could be taken without depressing the 

dermal surface. The probe was placed perpendicularly to the skin’s surface above the MTJ 

and the scanning interface was orientated to clearly display both the separation between 

the aponeuroses of the GM and soleus (SOL) muscles and the GM MTJ simultaneously. 

Following these criteria allowed GM MTJ movement to be suitably visualised during active 

conditions. The probe, cupped by a custom made foam holder, was secured in position 

using micropore medical tape. An echoabsorptive strip placed on the skin above the GM 

MTJ provided a reference point to identify probe movement relative to the skin during the 

trials by casting a linear shadow through the images (see Figure 4-3 for a visual 

representation of the experimental setup relating to ultrasonography of the GM MTJ). 

 

 

 

Figure 4-3. Experimental setup for measuring tendon elongation and tendon resting length. Elongation of the 

tendon was measured as movement of the muscle-tendon junction (MTJ) in reference to the echoabsorptive 

marker. The resting tendon length was calculated as the distance between the tendon insertion point on the 

calcaneal bone (A) and ultrasound mid-probe (B), adjusted for the distance of the MTJ from the mid-probe 

(Tendon Length = LengthAB + LengthBC). 
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Ultrasound images were digitally captured at 25 Hz using a digital video converting frame 

grabber (ADVC-55, Grass Valley, France). Peak Motus digitising software (v9, Vicon, Oxford, 

UK) was used to manually identify the GM MTJ in each video field. GM MTJ positional data 

were low-pass filtered using a fourth-order, zero-lag Butterworth filter with a cut-off 

frequency of 3.25 Hz(Winter, 1990b).  

 

4.2.6 Correction for Muscle-Tendon Junction Movement due to Joint Rotation during MVC 

Ankle joint rotation during plantarflexion results in movement of the MTJ, leading to an 

underestimation of tendon elongation and an overestimation of tendon stiffness 

(Magnusson et al., 2001; Arampatzis et al., 2008). Despite efforts to reduce heel movement, 

small rotations still occurred. Therefore the MTJ displacement due to ankle displacement 

was estimated as the product of angular rotation (rad) and moment arm length (Magnusson 

et al., 2001; Rosager et al., 2002), based on a linear relationship between tendon 

displacement and joint rotation (Fukunaga et al., 1996).    Three infrared LED motion 

capture cameras (MotionAnalysis, Santa Rosa, USA) were positioned on one side of the 

dynamometer, focusing on the medial aspect of the participant’s foot when positioned on 

the footplate. Two reflective markers (5 mm x 5 mm) were positioned along the length of 

the footplate with further markers positioned on the calcaneal tuberosity and the distal end 

of first metatarsal of the foot. The instantaneous change in angle between the footplate and 

the foot (defined as the line connecting the calcaneus and metatarsal markers) during the 

MVC was considered to be the change in ankle angle during the isometric contraction. The 

movement of the MTJ attributable to the ankle rotation was then subtracted from that 

recorded during the MVC to provide a corrected measure of MTJ displacement. Coordinate 

data were captured using Cortex software v1.1.4 (MotionAnalysis, Santa Rosa, USA). Motion 
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capture markers were sampled at 100 Hz and low-pass filtered using a fourth-order zero-lag 

Butterworth filter with a 7-Hz cut-off frequency. Filtered data were down-sampled to 25 Hz 

to match the frequency of the ultrasound data.  

 

4.2.7 Moment Arm Estimation 

Achilles tendon moment arm (MAAT), defined as the perpendicular distance from the joint 

centre of rotation to the line of Achilles tendon action, was calculated using the tendon 

excursion method (An et al., 1984; Fath et al., 2010). For this purpose, the dynamometer 

was set to passively rotate the right foot between 20° dorsiflexion and 30° plantarflexion at 

a constant angular velocity of 10°·s-1. The participants were encouraged to relax during the 

rotation to minimise muscular activity and were provided with an emergency stop device in 

case they experienced discomfort. With the exception of one, all participants were 

comfortable with this range (for the remaining participant, the range of motion [ROM] was 

reset to 15° dorsiflexion and 30° plantarflexion). The ankle was rotated three times through 

the ROM, starting with a dorsiflexion movement. The third plantarflexion movement in the 

trial was subsequently used for deriving the moment arm.  

 

Ankle joint position was sampled at 1000 Hz using the dynamometer, and the data were 

low-pass filtered at 14 Hz using a fourth-order zero-lag Butterworth filter. A third-order 

polynomial was fitted between tendon excursion and ankle displacement over an angular 

displacement of 20° (from 10° dorsiflexion to 10° plantarflexion). The mean coefficient of 

determination for this approximation was R2 = 0.993 ± 0.0036 across participants. The 

polynomial was then analytically differentiated at the neutral ankle position to obtain the 
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MAAT at this ankle position (Fath et al., 2010). The coefficient of variation (CV) for calculating 

MAAT from digitising each trial three times was 4.5%. 

 

4.2.8 Electromyographic Measurement of Muscle Activity 

During maximal contractions, it is common that antagonist muscle activity accompanies 

agonist muscle activation (Magnusson et al., 2001; Mademli et al., 2004). Both agonist and 

antagonist activity contribute to the net moment recorded by the dynamometer. As a result, 

the force derived from the moment measured by the dynamometer is an underestimation 

of the actual force developed by the agonist muscle. To account for this co-activation during 

testing, the TA EMG-moment relation was determined during a ramped dorsiflexion 

contraction, performed after the plantarflexion trials. Using this relationship, the antagonist 

moment during plantarflexion was estimated. The TA, as the major dorsiflexor muscle, was 

assumed to represent antagonist co-activation during plantarflexion.  

 

In children, the electrode placement area was rubbed vigorously with an alcohol-based 

antiseptic using a disposable pad. This method of preparing the skin has been 

recommended to achieve low impedence EMG signals in children(Damiano et al., 2000). In 

adult participants, the skin was prepared by shaving and lightly abrading the area prior to 

disinfecting the area (Konrad., 2005). Self-adhesive electrodes (Kendall H59P, Covidien plc, 

Ireland) were placed approximately in parallel with the orientation of the underlying 

fascicles using a bipolar setup with a centre-to-centre inter-electrode distance of 20 mm. A 

ground electrode was positioned on the anterior tibia. Real-time EMG signals sent via 

telemetric transmission to a remote receiver at 1000 Hz (Telemyo 2400R, NorAxon U.S.A 

Inc, Arizona) were captured synchronously with the other analogue signals. A three-way 
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pre-amplified lead wire connected to the ground and TA electrodes acted as a ground 

reference for the whole measurement system. Signals were amplified (base gain = 500, 

input impedance = 100 MΩ, CMRR ≤100 dB), digitally filtered (Spike2 v5.12a software, 

Cambridge Electronic Design, UK) using a 10-500 Hz band pass filter, and smoothed by 

means of calculating the root mean square over a 100 ms window. 

 

The EMG-moment relationship for the TA was determined from a sub-maximal ramped 

isometric dorsiflexion trial, completed after the final plantarflexion MVC with the instruction 

to slowly pull the foot towards themselves. The data were adjusted for the lag between the 

onset of EMG and force (electromechanical delay), calculated from the point at which the 

EMG signal exceeded ±2 SD of the signal baseline to the point at which force signal 

exceeded ±2 SD of the signal baseline (Linford et al., 2006). A third-order polynomial was 

fitted to the EMG-moment data corresponding to the greatest level of TA EMG observed 

throughout the plantarflexion trials (R2 of 0.96 ± 0.03 [mean ± SD]; Figure 4-4). The resulting 

regression equation was then used to estimate the antagonist moment present during the 

plantarflexion trials from the TA EMG amplitude, after adjusting the data for the same 

electromechanical delay found in the dorsiflexion contraction. The moment corresponding 

to the level of EMG was subsequently added to the net moment in each plantarflexion trial 

to provide a corrected plantarflexor moment. 
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Figure 4-4. Example tibialis anterior (TA) moment-EMG relationships obtained during ramped dorsiflexion 

contractions for a child (8 yo; left panel) and adult (right panel), respectively. Also shown are the regression 

equations and R2 values. 

 

 

4.2.9 Calculation of Tendon Force 

Tendon force (F) was calculated using the equation , where M is the corrected 

plantarflexor moment and r is the Achilles tendon moment arm length at a neutral ankle 

position. The tendon force calculated therefore represents the combined force of all of the 

plantarflexor muscles being transmitted through the tendon. The GM has been shown to 

contribute approximately 18% of the maximum voluntary force of the plantarflexor group 

(Fukunaga et al., 1992). MTJ displacement is commonly documented at the tendon’s 

junction with the GM, due to clearer imaging of this location. As a consequence, previous 

studies have adjusted the transmitted plantarflexor force to approximate the contribution 

of the GM only, thus estimating GM-specific tendon stiffness (Mahieu et al., 2007; Reeves et 

al., 2005). Here, we assumed that movement of the GM MTJ was representative of that of 

TA EMG (mv) 

Child      Adult 
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the Achilles tendon. As the adjustment of plantarflexor group force to GM-specific force is a 

ratio, the resulting relationships between tendon stiffness and other independent variables 

would remain unchanged. 

 

4.2.10 Calculation of Tendon Stiffness 

The slope of the line fitted to the force-elongation data points corresponding to 10% and 

90% of peak force was obtained to represent the average stiffness for the trial. The final 

stiffness value was calculated as the mean stiffness from the MVC trials adhering to the 

following criteria: 1) the peak force of a trial was within ±5% of the maximum recorded 

value achieved, and 2) the time curve was uni-modal. Uni-modal was defined here as a 

force-time curve where no fall in force is greater than 10% of MVC. This interval provided 

the most reliable tendon stiffness data across trials in children (mean CV of 7.6%, calculated 

from 20 children with three MVCs adhering to the criteria outlined below). 

 

4.2.11 Measurement of Resting Tendon Length and Peak Strain 

The resting length of the Achilles tendon was defined as the linear distance from its 

insertion on the calcaneal tuberosity to the GM MTJ, taken at a neutral ankle angle under 

passive conditions. This distance was calculated using a combination of motion capture and 

ultrasound imaging (pages 81-82, Figure 4-3). The 2D coordinates of two reflective markers, 

placed in series on the midline of the ultrasound probe handle were acquired (in addition to 

the marker on the calcaneal tuberosity) using the motion capture cameras. In knowing these 

coordinates and the perpendicular distance of each of the mid-probe markers from the 

probe’s scanning interface, 2D coordinates of the middle of the scanning interface – a point 

easily identifiable on the ultrasound image – were calculated. The horizontal distance 
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between the midline of the probe and the MTJ on the ultrasound image was then added to 

the newly calculated coordinates. The linear distance between the coordinates of the MTJ 

and the calcaneus maker was then determined by means of the Pythagorean theorem. The 

reliability of calculating tendon length from the start of each plantarflexion, across the three 

plantarflexion contractions, was 2.4%. 

 

Tendon strain (ε; deformation of the tendon with respect to resting length) was calculated 

according to the following equation: 

 

 ε = (Le / Lo) × 100       Equation 1 

 

where Lo and Le represent the resting length and elongation of the Achilles tendon, 

respectively. 

 

4.2.12 Measurement of Tendon Cross-Sectional Area and Peak Stress 

The Achilles tendon CSA was measured in the region encompassing its narrowest point and 

therefore the region that experiences the greatest stress (Voigt et al., 1995). This location 

has been described to be approximately 30 mm proximal to the tendon insertion in adults 

(Magnusson et al., 2001) therefore was used as a guide only in the present study. The 

narrowest CSA was identified here by visual inspection and palpation of the tendon. Using a 

modified silicon ultrasound gel pad (Aquaflex 2x9-cm, Parker Labs Inc., NJ, USA) to provide 

the greatest probe-to-skin contact area, three transverse US images revealing the Achilles 

tendon CSA were taken at discrete intervals in the region. The tendon perimeter was traced 

using specialist software (Esaote, Italy). The reliability of obtaining the smallest CSA was 
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verified by removing and then replacing the silicon pad and probe after each set of 

transverse images had been obtained. The area of interest was not visible during the 

process of collecting the images, neither did the silicon pad leave marks on the skin. The CV 

calculated from 3 individuals was 4.1%. The researcher’s CV for determining the CSA was 

3.8%, calculated from the CSA obtained by analysing 30 images three times. An example 

image is shown in Figure 4-5.  

 

 

Figure 4-5 Representative images of the Achilles cross-sectional area (CSA) for a child and an adult. 

 

Stress (σ), determined as the magnitude of force per unit area, was calculated using the 

smallest recorded CSA from each participant according to the equation: 

 

  σ = (F / A) × 100      Equation 2 

 

where F is the Achilles peak force (N) and A is the Achilles tendon cross sectional (mm2) 

area. 
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4.2.13 Calculation of Young’s Modulus 

Young’s modulus is a measure of a material’s stiffness normalised to its dimensions (i.e. the 

magnitude of material displacement for a given load). To allow the direct comparison of the 

mechanical properties of the tendon between individuals, independent of tendon 

dimensions, Young’s modulus (E) was calculated as the ratio of stress over strain between 

10% and 90% MVC according to the equation:  

 

  E = σ / ε      Equation 3 

 

4.2.14 Statistical Analysis 

All data were analysed using SPSS statistical software (v16.0, SPSS Inc., Chicago, USA). 

Regarding the first purpose of this study, the relationship between each independent 

variable (IV; age, tendon force and body mass) with each dependent variable (DV; stiffness 

and Young’s modulus) was determined (coefficients of determination [R2] were derived to 

quantify the strength of each relationship). The relationship between each IV and DV was 

approximated using the method of least squares (Table 4-2). The order of the polynomial 

chosen to represent each pair of variables was the order with the least number of terms 

which, when adding an addition term to, did not improve the R2 value by more than 0.02 

(2%). This kept the equation to the data restrained. For variables that were best represented 

by a non-linear polynomial, higher order terms of the polynomial of interest from the 

corresponding IV were included in the regression analysis as separate IVs (i.e. squaring or 

cubing data in order to represent each term of the polynomial explaining the data). 

Partitioning non-linear data in this manner allowed a linear regression to be performed. All 

IVs were then included in a stepwise multiple regression analysis (p< 0.05 for inclusion into 
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the model) to determine whether a combination of parameters provided a better prediction 

of Achilles stiffness for children and all ages combined. A separate multiple regression was 

then performed to ascertain the predictiveness of Young’s modulus from the same 

independent variables.  

 

Regarding the second purpose of this study, the variables relating to tendon stiffness and 

Young’s modulus were also descriptively documented according to chronological age. To 

establish the practical importance of changes in variables throughout childhood, children 

were grouped according to ages 5 – 6, 7 – 8 and 9 – 10 years (subsequently referred to as 

CG5-6,CG7-8, CG9-10) and the effects sizes(Cohen's d; Cohen, 1988) for each variable were 

calculated between neighbouring age groups. In addition, an overall effects size was 

calculated between CG5-6 and adults. A multivariate analysis of variance (MANOVA) was 

performed to examine differences in all measured variables with respect to gender for all 

groups.
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4.3 Results 

No sex differences were found for any measured variable for any age group, therefore all 

data for subsequent analyses were pooled. Results reported are for pooled data. Polynomial 

curves fitted to the independent variables age, body mass and force for stiffness and 

Young’s modulus can be found in Table 4-2. 

 

 

Table 4-2. Polynomial equations fitted to each independent variables and stiffness or Young’s modulus. 

 

 Variable Population Equation R2 

Stiffness Age Children 

All ages combined 

Y = -0.6718x2 + 29.02x - 52.436 

Y =  0.0193x3 - 1.4228x2 + 36.965x - 77.107 

0.37 

0.68 

 Mass Children 

All ages combined 

Y =  3.0391x - 30.084 

Y =  0.0005x3 - 0.1361x2 + 12.731x - 116.72 

0.58 

0.75 

 Force Children 

All ages combined 

Y = -9E-06x2 + 0.0888x + 22.38 

Y = -7E-06x2 + 0.0822x + 25.754 

0.51 

0.76 

Young’s 

modulus 

Age Children 

All ages combined 

Y =  66.924x - 17.57 

Y =  -2.6247x2 + 108.91x – 177.89 

0.29 

0.55 

 Mass Children 

All ages combined 

Y =  16.213x + 75.04 

Y = -0.156x2 + 23.888x - 13.025  

0.25 

0.49 

 Force Children 

All ages combined 

Y = -4E-05x2 + 0.3478x + 87.561 

Y = -3E-05x2 + 0.3324x + 96.937 

0.39 

0.58 
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The coefficients of determination (R2) for the relationship between Achilles tendon stiffness 

and age, body mass and peak force in children were 0.37, 0.58 and 0.51 respectively. These 

values increased to 0.68, 0.75 and 0.76 when adults were included in the analyses (Figure 4-

7). The regression analysis indicated that body mass and peak force were predictors of 

tendon stiffness in children, explaining 66% of its variability. The inclusion of age did not 

greatly improve the predictability interpretation (age, p = 0.805). Similarly, body mass and 

peak force best predicted stiffness for all ages combined, explaining 78% of the variability in 

Achilles tendon stiffness. The coefficients of determination (R2) for the relationship between 

Young’s modulus and age, body mass and peak force in children were 0.33, 0.28 and 0.42 

respectively, increasing to 0.57, 0.52 and 0.61 for all ages combined (Figure 4-8). Peak force 

was the sole variable able to significantly predict Young’s modulus in children (43%) and all 

ages combined (61%). Predictive equations for tendon stiffness and Young’s modulus for 

both populations are given in Table 4-3.  

 

Table 4-3. Regression equation constants for predicting Achilles tendon stiffness and Young’s modulus from 

mass and force. Constants presented for a variable should be multiplied by the variable associated with it in the 

form of y = a + bx + cx2. Coefficients of determination (adjusted R2) are also represented. 

 

  Mass2 Mass Force2 Force Constant R2 value 

Stiffness Children - 4.145 - 0.032 -28.423 0.66 

 All ages combined -0.036 5.026 -3.921×10-6 0.047 -37.893 0.78 

Young’s 

Modulus 

Children 

All ages combined 

- 

- 

- 

- 

- 

-3.485×10-5 

0.224 

0.332 

169.471 

96.937 

0.43 

0.61 
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The mean (± standard deviation) for tendon CSA, tendon length, peak stress, strain, 

elongation and force, moment arm length, tendon stiffness and Young’s modulus are 

presented descriptively by age group in Table 4-4. A representative graph of the force-

elongation relationship for a subgroup of CG9-10 children and a subgroup of adults - from 

which the tendon’s stiffness can be obtained- is presented in Figure 4.6. Large positive 

effect sizes were calculated between CG5-6 and CG7-8, and small to medium positive effect 

sizes calculated between CG7-8 and CG9-10for all variables except peak elongation and peak 

strain. Large positive effect sizes were observed between children and adults for all bar one 

variable examined; peak strain did not differ with increasing developmental age to 

adulthood. 

 

 

Figure 4-6. Mean force-elongation curve for five adults and five CG9-10 children. Error bars are included to give 

an indication of the range within an age group and represent the standard deviation of the mean. 
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Figure 4-7. Relationship between Achilles tendon stiffness and peak force body mass and age for children (filled 

circles) and adults (open circles). Lines of best fit are for children (solid line) and all ages combined (dashed 

line).  
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Figure 4-8. Relationship between Achilles tendon Young’s modulus and peak force, mass and age for children 

(filled circles) and adults (open circles). Lines of best for are for children (solid line) and all ages combines 

(dashed line).  
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Table 4-4. Descriptive characteristics of the variables associated with calculating the mechanical properties of 

the Achilles tendon. Effects size (shown in italics)represents the difference between groups in SD units. 

 

CSA, cross-sectional area; MAAT, Achilles tendon moment arm; MVC, maximum voluntary contraction 

Variable CG5-6  CG7-8  CG9-10  Adults 

 
Tendon CSA  
(mm2) 
 
 
 

 
29.5 ± 6.5 

 
 

 
 

1.42 

 
39.1 ± 7.0 

 
 

 
 

0.38 
 

3.59 

 
41.6 ± 6.3 

 
 

 
 

2.21 

 
58.9 ± 11.1 

Tendon Length  
(mm) 
 
 
 

118.4 ± 23.4  
 
1.25 

147.3 ± 23.0  
 

0.11 
 

2.90 

149.9 ± 26.1  
 

1.53 

192.5 ± 28.5 

Peak Elongation  
(mm) 
 
 
 

10.7 ± 3.8  
 

0.04 

12.0 ± 3.6  
 
-0.03 

 
1.88 

11.9 ± 3.7  
 

1.54 

17.4 ± 2.9 

MAAT 
(mm) 
 
 
 

25.3 ± 5.0  
 

1.12 

31.2 ± 5.5  
 

0.45 
 

1.99 

33.5 ± 4.8  
 

0.12 

33.8 ± 3.9 

Peak Force  
(N) 
 
 
 

1046 ± 459  
 

1.47 

1743 ± 489  
 

0.22 
 

5.87 

1840 ± 394  
 

4.86 

4742 ± 763 

Peak Strain  
(%) 
 
 
 

8.6 ± 1.9  
 

-0.09 

8.4 ± 2.6  
 

-0.04 
 

0.36 

8.3 ± 3.1  
 

0.40 

9.2 ± 2.2 

Peak Stress  
(N/mm-2) 
 
 
 

34.6 ± 12.6  
 

1.02 

46.9 ± 11.7  
 

-0.23 
 

3.20 

44.5 ± 9.7  
 

2.79 

81.2 ± 17.0 

Stiffness  
(N/mm) 
 
 
 

89.8 ± 33.4  
 

1.24 

135.2 ± 40.0  
 

0.67 
 

4.25 

162.2 ± 40.5  
 

2.29 

259.2 ± 44.2 

Young’s Modulus  
(MPa) 
 
 
 

342.1 ± 118.8  
 

1.60 

588.6 ± 189.1  
 

0.24 
 

3.56 

633.2 ± 179.0  
 

1.25 

871.5 ± 162.4 

Energy Storage  
(J/kN-1) 
 

5.2 ± 1.9  
 

0.34 

5.9 ± 2.1  
 

0.16 
 

1.64 

6.2 ± 2.1  
 

1.02 

8.1 ± 1.6 
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4.4 Discussion 

The primary aim of this study was to assess the contributions of age, body mass and 

muscular strength on the development of Achilles tendon stiffness. As a major weight-

bearing tendon, it was not surprising to find that stiffness of the Achilles tendon was well 

correlated with body mass in children, based on the knowledge that mass increases with 

age. The relationship found between tendon stiffness and mass is consistent with previous 

reports in animals (Pollock and Shadwick, 1994). Increasing body mass would have provided 

a progressive increase in tendon loading during weight-bearing tasks such as walking, 

running and stair climbing (Ishikawa et al., 2007; Lichtwark et al., 2007; Spanjaard et al., 

2008). Achilles tendon stiffness has also been shown to correlate with muscular strength in 

adults (Scott and Loeb, 1995; Muraoka et al., 2005), and thus an increase in stiffness with 

age was also hypothesised to reflect increases in muscular force capacity with age. We 

found a moderate correlation between peak force and tendon stiffness in children, 

irrespective of body mass. The relationship between peak force and tendon stiffness has 

been postulated to reflect an injury prevention mechanism, whereby excessive tendon 

elongation caused by an increase in muscular loading prompts adaptation of the tendon to 

avoid strain and rupture (Scott and Loeb, 1995; Muraoka et al., 2005). Finally, we found 

tendon stiffness to increase with age, however this effect could largely be explained by the 

age-related increases in body mass and force producing ability and thus was not considered 

a true ‘ageing’ effect.  

 

4.4.1 Age-Related Increases in Tendon Stiffness 

The regression analysis demonstrated that 58% of tendon stiffness could be predicted by 

body mass. This proportion increased to 66% when peak force was added to the model. 
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From these results we might speculate that the additional 8% of variability in tendon 

stiffness that can be accounted for when including peak strength as a separate variable 

might represent the neuromuscular aspect of muscular strength improvements with age. It 

has been shown previously that muscular strength increases at a rate that surpasses 

increases in muscle mass with growth (Asmussen and Helboll-Nielsen, 1955), a phenomenon 

that has been subsequently explained in terms of neuro-motor maturation, rather than the 

muscle’s microstructure (Asmussen, 1973; Blimkie, 1989; Falk et al., 2009). Nevertheless, 

based on these results, we conclude that body mass and peak strength have separate and 

additive effects on tendon stiffness in developing children.  

 

4.4.2 Age-Related Increases in Young’s Modulus 

The regression analysis also demonstrated that 43% of Young’s modulus could be predicted 

from peak force in children. Interestingly, the inclusion of body mass did not improve 

Young’s modulus predictability. These results indicate that the ability to generate larger 

muscular forces with age provides the mechanical stimulus required for improving the 

structural integrity of tendon material. As a consequence of growth, greater muscular forces 

are required to propel segments of increasing mass with growth (Jensen and Bothner, 

1998), therefore greater chronic mechanical loading is experienced during activities such as 

locomotion to further stimulate structural and biochemical changes in the tendon (Elliott, 

1965; Curwin et al., 1988; Michna and Hartmann, 1989; Kjaer, 2004; Bayer et al., 2010). 

 

4.4.3 Maturation or Growth? 

In an attempt to differentiate between the effects of maturation and dimensional growth on 

changes in Achilles tendon stiffness with age, the tendon’s length, CSA and Young’s modulus 
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were determined. In the present study, both tendon length and CSA were shown to increase 

by ~60% and ~105% respectively between CG5-6and adults. A greater increase in CSA than 

tendon length with development is evidence of a dimensional bias underpinning the age-

related increase in tendon stiffness. It can therefore be assumed that tendon hypertrophy is 

a major adaptation influencing tendon stiffness and possible consequence of chronic 

loading with age. Nonetheless, Young’s modulus was also found to increase (~139%) with 

age, which is suggestive of structural changes playing a central role in age-related increases 

in tendon stiffness. Increases in fibril diameter, fibril density and the relative proportions of 

small-to-large fibrils have been previously shown to accompany tendon maturation in 

mammals (Bailey and Robins, 1976; Parry et al., 1978a; 1978; Bailey et al., 1998). These 

modifications improve the tensile strength of the tendon by means of greater intrafibrillar 

crosslinking (Parry et al., 1978a; Svendsen and Thomson, 1984) and thus can increase its 

stiffness without dimensional changes. In addition, mechanical loading stimulates further 

structural and biochemical changes in the tendon (Elliott, 1965; Curwin et al., 1988; Michna 

and Hartmann, 1989; Kjaer, 2004; Bayer et al., 2010). Based on the significant correlation 

between Young’s modulus and peak force, loading in the form of an increase in force 

producing ability with development appears to be a potent stimulus for improving the 

structural integrity of tendon material. From these results, it can be concluded that both 

maturational and dimensional adaptations occur with age to increase Achilles tendon 

stiffness. Moreover, strength development with age appears to drive these adaptive 

mechanisms. 
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4.4.4 Changes in Tendon Characteristics as a Function of Age 

Lastly, the parameters underlying the mechanics of the tendon were descriptively 

documented in order to gain an insight into their importance and role during different 

stages of the prepubertal period. Peak elongation was found to increase in proportion with 

resting tendon length with age, resulting in a consistent peak strain across all age groups. 

This result contrasts the findings of Kubo et al. (2001) who found peak elongation to be 

similar between boys and men in the VL tendon (although they did not report tendon strain 

(%) values). This discrepancy could be attributed to differences in the properties or growth 

rates of the Achilles compared to the patellar tendon, or between age groups. However, an 

important functional consequence of the greater maximum tendon elongation (~17 mm in 

adults vs. ~11 mm in children in the present study) and stiffness found in adults is an 

enhanced capacity for energy absorption, normalised to peak force (~5.2 J/kN-1 in CG5-6vs. 

~8.1 J/kN-1 in adults, calculated from the results), resulting in superior movement efficiency. 

In fact, this finding may partly explain the difference in movement efficiency between 

children and adults during activities involving the stretch shortening cycle (DeJaeger et al., 

2001; Schepens et al., 2001; Schepens et al., 2004). 

 

Peak stress increased with age as a result of strength gains exceeding those of tendon 

hypertrophy (~350% vs. ~105%). This might suggest that children are more protected from 

stress-related Achilles tendon injuries than adults; certainly the prevalence of such injuries is 

much higher in the adult population (Houshian et al., 1998). However, because their Young’s 

modulus is lower, the ultimate tensile strength (i.e. the point at which the tendon would 

fail) will also be lower (Almeida-Silveira et al., 2000). Children’s Achilles tendons may 

therefore operate very close to their physiological limits and with little safety margin, 



Chapter 4 

116 
 

although the risk of tendon rupture has been linked more so to age- and exercise-related 

microdamage accumulation over time (Kannus and Jozsa, 1991; Patterson-Kane et al., 

1997b; Smith et al., 1999; Young et al., 2009). On a separate note, the lack of sex differences 

found between adults in the current study probably reflects the closer matching of body 

mass and maximum strength between the sexes compared to previous studies (Kubo et al., 

2003; Onambele et al., 2007). 

 

The ranges of the Achilles tendon stiffness found in the present study were marginally lower 

than those previously reported for adults (Magnusson et al., 2001; Rosager et al., 2002; 

Muraoka et al., 2004a). This is most likely due to the different peak force ranges used to 

determine stiffness between studies (e.g. 10 – 90% MVC in the present study vs. 90 – 100% 

used by Magnusson et al., 2001 and Rosager et al., 2002). The use of a wider range of forces 

in the present study would mean more of the less steep (early) part of the curvilinear force-

elongation curve is included in determining stiffness (Baratta and Solomonow, 1991), and 

thus contribute to a smaller stiffness. This effect would have been enhanced differences in 

strength between children and adults been accounted for by calculating stiffness over a 

force range common to every participant, dictated by the weakest participant (O'Brien et 

al., 2010). In the present study, 10 – 90% of the force achieved by the weakest individual 

would have equated to 0.5 – 4.5% of the maximum force attained by the strongest 

individual and was thus deemed an inappropriate method of normalising stiffness. 

 

The instructions given for plantarflexion moment production were also different for children 

and adults based on the difficulty children experienced in performing ramped contractions. 

This resulted in a marginally faster production of joint moment in children than adults which 
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may have influenced the mechanical properties of the tendon. Tendons display time-

dependent viscoelastic properties, which can influence their mechanical properties over the 

duration of a contraction. For example, a greater force-relaxation, or tendon ‘creep’ was 

detected during long (~10 s) ramped contractions than for shorter (~3 s) ramped 

contractions, resulting in a lesser calculated tendon stiffness from the slower contraction 

(Pearson et al., 2007).To best knowledge, the effects of a ~3 s contraction on tendon 

elongation have not been compared to contractions performed with a maximum rate of 

force development (i.e. adults vs. children). However, as the time to peak force during a 

maximal voluntary contraction is markedly longer in children than in adults (Asai and Aoki, 

1996; Falk et al., 2009), the resulting rate at which force was developed here was not very 

dissimilar between children and adults, thus the different instructions given to children and 

adults for MVC production are not believed to have had a significant influence on the 

results.  

 

Tendon stiffness has been identified as a major factor influencing muscular force production 

and transmission characteristics in adults (Bojsen-Moller et al., 2005; Muraoka et al., 2005). 

The mechanical properties of the tendon should therefore have the same potential to 

influence movement performance in children. Indeed, the time lag between muscle 

activation and muscle force production (i.e., electromechanical delay) is greater - and the 

maximum rate of force development slower - in children than in adults (Asai and Aoki, 1996; 

Grosset et al., 2005), and have previously been shown to be correlated with tendon stiffness 

in adults (Muraoka et al., 2005). The significance of tendon stiffness on these characteristics 

of force production has yet to be established in children and thus warrants further 

investigation. 
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4.4.5 Conclusion 

This is the first study to document changes in the mechanical properties of the Achilles 

tendon as a function of age in prepubertal children, and the first to describe tendon 

properties in children younger than 9 years. Achilles tendon stiffness increased relatively 

linearly throughout childhood as a result of linear increases in Young’s modulus and tendon 

hypertrophy with development. In fact, body mass, in conjunction with peak force 

producing ability, were suggested as the primary influences underlying both the dimensional 

and maturation aspects of tendon stiffness. Peak stress increased from childhood to 

adulthood due to greater increases in strength than tendon hypertrophy with age whilst 

peak strain remained constant as a result of parallel increases in tendon length and peak 

elongation. The differences identified in Achilles tendon properties between adults and 

children are most likely due to chronic increases in tendon loading with development. 

Determining the impact of changing tendon properties on movement performance is an 

important area for future research.  
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CHAPTER 5: The Influence of Tendon Stiffness and Muscle Activation Rate 

on Muscle Force Production in Children and Adults 
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5.0 Abstract 

Differences in force production capacity between children and adults are often attributed to 

neuromuscular immaturity. However, tendon stiffness, which influences both electro-

mechanical delay (EMD) and the contractile rate of force development (RFD) in adults, is 

less in children and thus has the potential to influence their muscular force production 

characteristics. The purpose of this study was to determine the relative neural and 

mechanical contributions to age-related changes in muscular force production by examining 

the effects of both tendon stiffness and rate of muscle activation on EMD and contractile 

RFD. Achilles tendon stiffness, EMD (time between the onset of muscle activity and 

moment), RFD (slope of the force-time relation) and rate of EMG rise (RER; slope of the 

EMG-time relation) were determined for plantarflexion contractions performed with a 

maximum RFD in forty-seven prepubertal children (age = 8.3 ± 1.6 yrs) and nineteen adults 

(age = 25.7 ± 2.8 yrs). Age-related differences in tendon stiffness, EMD, RFD and RER were 

examined between children, grouped according to chronological age (5 – 6, 7 – 8 and 9 – 10 

years), and adults. Relationships were determined between 1) tendon stiffness and EMD, 2) 

tendon stiffness and RFD, and 3) RER and RFD. Furthermore, regression analyses were used 

to determine the relative influence of tendon stiffness, RER and age on RFD. Achilles tendon 

stiffness increased significantly (~300%) from age group 5 – 6 through to adulthood. EMD 

decreased significantly with increasing age and was negatively correlated with tendon 

stiffness in children, adults and for all ages combined (r = -0.66, -0.74 and -0.82 respectively, 

p < 0.05). RFD calculated to 50, 200 and 400 ms was significantly lower in children than 

adults and was related to tendon stiffness in children and all ages combined (p< 0.05). The 

relationship between normalised (to peak force) RFD and tendon stiffness was weaker in 

children, but was still significant across all age groups (p< 0.05). The regression analysis 
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indicated that both RER and tendon stiffness influenced RFD cumulatively accounted for 

61% of the variance in RFD in children. These results demonstrate the importance of both 

neural and mechanical factors for rapid force development in prepubertal children. The 

longer EMD and slower RFD found in children indicate a less effective development and 

transfer of muscular forces. These findings significantly add to our understanding of the 

mechanisms underpinning age-related improvements in muscular force production and may 

have further implications with respect to the interpretation of age-related differences in 

complex movement performance. 
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5.1 Introduction 

Children often adopt different inter-muscular coordination patterns than adults when 

performing complex motor tasks(Shiavi et al., 1987; Sutherland, 1988; Frost et al., 1997; 

Chao et al., 2002; Korff et al., 2009a; Lazaridis et al., 2010). Age-related differences in inter-

muscular coordination are often attributed to an ‘immature’ nervous system in children 

(McGraw, 1943; Forssberg, 1985). While maturation of the nervous system is undoubtedly a 

major factor contributing to age-related differences in inter-muscular coordination and 

mature movement kinematics(Sutherland et al., 1980a; Forssberg, 1985; Shumway-Cook 

and Woollacott, 1985; Forssberg, 1999; Sundermier et al., 2001; Chao et al., 2002), 

researchers have recently started to consider the possibility that changes in non-

neuromotor factors during childhood, such as changing anthropometry (Brown and Jensen, 

2006; Korff and Jensen, 2008) and mechanical properties of the musculo-skeletal system 

(Wang et al., 2004; Korff et al., 2009a), may influence movement production during 

development. 

 

The mechanical properties of the muscle-tendon complex are important factors influencing 

muscular force production and movement performance in adults, (Reeves et al., 2003a; 

Bojsen-Moller et al., 2005; Kongsgaard et al., 2007). Within this context, tendons play an 

integral role in movement by transferring muscular forces across joints to the bones, the 

rate of which is strongly influenced by tendon stiffness (Fukunaga et al., 1996; Muraoka et 

al., 2004b; Bojsen-Moller et al., 2005). Tendon stiffness influences the ability to generate 

explosive forces by affecting both the time lag between muscle activation and muscle force 

production (termed electromechanical delay; EMD), and the maximum rate of force 

development (RFD). These factors are regulated by the time taken to stretch the tendon by 
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an actively shortening muscle (Cavanagh and Komi, 1979; Muraoka et al., 2004b). Indeed, 

significant relationships between muscle-tendon stiffness and both RFD (positive 

relationship, Reeves et al., 2003a; Bojsen-Moller et al., 2005) and EMD (negative 

relationship, Cavanagh and Komi, 1979; Muraoka et al., 2004b; Grosset et al., 2009)have 

been previously shown in adults. EMD and RFD are therefore important descriptors of rapid 

force development performance. 

 

It is well documented that EMD is longer, and RFD lower in children than in adults (Asai and 

Aoki, 1996; Grosset et al., 2005; Falk et al., 2009; Grosset et al., 2009). Tendon stiffness is 

also lower in children (Kubo et al., 2001b; O'Brien et al., 2010), and in Chapter 4 was shown 

to vary with age-related parameters such as body mass and peak force capacity. Given the 

relationships identified between tendon stiffness and force production characteristics in 

adults, it can be hypothesised that previously observed differences in the rate of force 

transfer between children and adults (Asai and Aoki, 1996; Grosset et al., 2005; Falk et al., 

2009) are partly dependent upon tendon stiffness. In addition to the influence of tendon 

stiffness, RFD depends on the rate of muscle activation (Komi, 1986; Corcos et al., 1989; 

Nelson, 1996; Aagaard et al., 2002). Neuromuscular capacity is important in the context of 

force development in children (Ramsay et al., 1990; Paasuke et al., 2000; Halin et al., 2003; 

Grosset et al., 2008) and a lower RFD found in children has been partly attributed to a lower 

rate of muscle activation (Falk et al., 2009).In an effort to explain the differences observed 

in movement performance between children and adults (Asai and Aoki, 1996; Chao et al., 

2002; Ganley and Powers, 2005; Grosset et al., 2005; Korff and Jensen, 2007; Falk et al., 

2009), the overall purpose of this study was to tease out neural and mechanical 

contributions to developmental changes in force production capacity.  
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The specific aims of this study were to document age-related changes in Achilles tendon 

stiffness and EMD and RFD for the gastrocnemius medialis (GM),and describe how these 

variables are interrelated in typically developing prepubescent children and adults. Here, 

the hypothesis that EMD and RFD are related to tendon stiffness was tested. Additionally, 

the relative contributions of tendon stiffness and rate of muscle activation (as non-

neuromuscular and neuromuscular factors) on plantarflexor RFD in children compared to 

adults was determined. It was hypothesised that the rate of muscle activation would have a 

separate and additive effect to tendon stiffness on RFD in children. By examining the 

hypotheses set out here, the present study has the potential to shed light on the possible 

mechanisms that underpin previously observed age-related differences in inter-muscular 

coordination during complex motor tasks. 
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5.2 Methods 

5.2.1 Ethics and Participant Information 

Forty-seven prepubertal children between the ages of 5 and 12 years (25 boys, 24 girls; 

mean age 8.3 ± 1.6 yrs), 10 men (27.0 ± 1.9 yrs) and 9 women (25.3 ± 3.4 yrs) volunteered to 

participate in this study. Prepubertal children were chosen in order to control for 

musculoskeletal changes that may occur as a result of increased circulating androgens with 

the onset of puberty (Blimkie, 1989). Prepubertal status was determined for children over 8 

years of age in terms of offset from peak height velocity (Mirwald et al., 2002). All children 

within this age subgroup were determined as prepubertal. The minimum age from peak 

height velocity was calculated to be -1.9 years. All participants were free from known 

neuromuscular and musculoskeletal disorders and did not partake in competitive sports. 

Children provided written assent and parents/guardians provided written consent to allow 

their child’s participation in the study. All study procedures were explained in a child-

appropriate manner, and the children were made aware of their right to withdraw from the 

study at any time without penalty prior to commencing the study. The study was approved 

by the Human Research Ethics Committee at Brunel University and conformed to the 

guidelines of the Declaration of Helsinki.   

 

5.2.2 Overview 

The dynamometer was adjusted to each participant’s anthropometry and their skin 

prepared for electromyography (EMG) prior to data collection as per the methods described 

in Chapter 4 (pages 85-87). Tendon stiffness was calculated as per the methods described in 

Chapter 4 (page 88). Briefly, plantarflexor moment was obtained from dynamometry during 

maximal voluntary isometric contractions (MVC). Antagonist coactivity was accounted for by 
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quantifying the EMG-moment relationship for the TA muscle and adding the associated 

moment to the plantarflexor moment. Plantarflexor muscle force was obtained by dividing 

the coactivation-adjusted plantarflexor moment by the Achilles tendon moment arm 

(MAAT). MAAT was obtained by measuring the tendon’s excursion using ultrasonography as 

the ankle was passively rotated through a range of motion, and calculated as per the 

recommendations of Fath et al. (2010). Elongation of the tendon resulting from muscular 

loading was measured using ultrasound imaging of the GM MTJ during a maximum 

voluntary contraction (MVC). The measured displacement of the GM MTJ was then 

corrected for distal tendon movement (quantified by motion analysis), resulting from small 

heel movements during the MVC. Tendon stiffness was calculated as the slope of the 

plantarflexor force-tendon elongation relationship between 10 – 90% of the maximum 

plantarflexor force. EMD, RFD and RER were measured during three MVC trials performed 

with a maximum RFD.  Relationships between age, tendon stiffness, EMD, RFD and RER 

were then determined. 

 

5.2.3 Measurement of Electromechanical Delay 

Electromechanical delay (EMD) in the GM muscle was calculated as the time lag between 

the onset of GM EMG activity and onset of plantarflexor moment (Figure 5-1). EMD of the 

GM was assumed to be most influenced by Achilles tendon stiffness because of the 

substantially greater tendon length (as opposed to the soleus), through which forces are 

transferred, and the fact that tendon stiffness was calculated from movement of the GM 

MTJ (encompassing a long tendon length). Despite the soleus muscle, as the largest 

contributor of plantarflexor force, having a shorter EMD than the GM (Komi et al., 1987), 

the GM contributes substantially to plantarflexor force production at a fully extended knee 
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angle (Cresswell et al., 1995). GM EMD is therefore of substantial functional importance. 

According to Muraoka et al. (2004), tendon slack, which influences EMD, is fully taken up at 

a +10o (plantarflexion) ankle angle and fully extended knee. They demonstrated that the 

difference in EMD at this position compared to more dorsiflexed ankle positions was not 

significantly different, therefore the use of a neutral ankle angle (foot at 90o to the tibia) 

here would have minimised the influence of tendon slack on EMD (Muraoka et al., 2004). 

MVCs were performed with the instruction to rotate the foot away “as hard and as fast as 

possible”. Participants were reminded not to dorsiflex the foot immediately prior to 

plantarflexion as this masked the onset of plantarflexor moment. Trials displaying decreases 

in moment immediately prior to plantarflexion at the time of collection were discarded and 

re-performed. Furthermore, decreases in moment greater than 0.5 Nm from baseline, as 

identified during data analysis, were also discarded. The procedures relating to both the skin 

preparation for EMG, and GM EMG recording were identical to those presented for the TA 

muscle in Chapter 4 (pages 85-87). GM EMG signals were digitally filtered using a 10-500 Hz 

band pass filter (Spike2 v5.12a software, Cambridge Electronic Design, UK). Mean (± SD) 

baseline GM EMG activity and moment were calculated at rest over a 200 ms window and 

the threshold for onset of both signals was set at ±2 SD from the baseline mean (Linford et 

al., 2006) with the signal remaining above the threshold for a minimum of 10 ms (De Luca, 

1997). The mean EMD of the three MVCs for each individual was used for statistical 

analyses.  
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Figure 5-1. Example electromyogram and moment traces used to calculate electromechanical delay (EMD). 

 

5.2.4 Measurement of Rate of Force Development (RFD) 

RFD was calculated using a custom written program (Matlab v7.14, MathWorks, Cambridge, 

UK) with data obtained from three MVCs. Muscle force was calculated as the ratio of joint 

moment to moment arm length, and RFD to 50, 200 and 400 ms was calculated as the 

change in force (from force onset) divided by the time interval (Δforce/Δtime). The 

calculation of RFD to different time intervals is of functional importance as the capacity of a 

muscle to develop forces within a minimal time frame may be an important determinant of 

successful movement. In addition, RFD measured to these intervals provides an insight into 

the underlying physiological mechanisms that influence the RFD at different stages of a 

muscular contraction (Andersen et al., 2005; Andersen and Aagaard, 2006). Peak strength is 

known to influence the slope of the force-time curve (Hakkinen et al., 1985b; Aagaard et al., 

2002), thus normalising RFD to peak force removes peak muscle strength as a factor 

influencing RFD and allows force production rate to be directly compared between 
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individuals (Blazevich et al., 2008). Normalised RFD (RFDnorm) was calculated to 30%, 50% 

and 70% of each individual’s peak force (subsequently referred to as RFD30%, RFD50% and 

RFD70%) to approximate early, mid- and late force development respectively (Aagaard et al., 

2002). In addition, RFD to 90% (RFD90%) of peak force was calculated for the purpose of 

testing the hypothesis that RFD would best correlate with tendon stiffness when measured 

using the same force intervals. RFD and RFDnorm are reported in kN·s-1 and %MVC·s-1, 

respectively. 

 

5.2.5 Measurement of Rate of Rise of EMG Amplitude (RER) 

Absolute RER was calculated from GM EMG onset to 25, 75 and 150 ms. Normalised RER 

(RERnorm) was calculated to 30%, 50% and 70% of peak EMG amplitude (subsequently 

referred to as RER30%, RER50% and RER70%) to represent early, mid- and late EMG rise 

respectively. Therefore RER is reported in %peak EMG·s-1. For the determination of RER, the 

root-mean-square of the band-pass filtered GM EMG data was calculated over a 50 ms time 

window (Aagaard et al., 2002; Blazevich et al., 2008).  

 

5.2.6 Statistical Analysis 

All data were analysed using SPSS statistical software (v16.0, SPSS Inc, Chicago, USA). 

Children were grouped according to age and are subsequently referred to as CG5-6,CG7-8 and 

CG9-10 (ages 5 – 6, 7 – 8 and 9 – 10 years, respectively). Table 5-1 provides a description of 

each group’s statistics. A multivariate analysis of variance (MANOVA) was used to test all 

dependent variables (stiffness, EMD, RFD and RER) for a main effect of age. In case of 

significance, a one-way ANOVA was performed for each dependent variable, and Tukey-

Kramer post-hoc tests were performed to identify the location of the significant differences 
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between age-groups (as group sizes were unequal). Statistical significance was accepted at 

p< 0.05.  

 

Table 5-1. Descriptive statistics for participant cohorts (mean ± SD). 

 

Group N Age (years) Height (m) Mass (kg) 

CG5-6 13 6.2 ± 0.6 1.20 ± 0.04 21.3 ± 2.5 

CG7-8 17 8.4 ± 0.6 1.35 ± 0.05 29.5 ± 6.7 

CG9-10 15 9.6 ± 0.7 1.39 ± 0.06 32.7 ± 5.6 

Adult Men 10 26.8 ± 1.8 1.80 ± 0.06 78.6 ± 11.7 

Adult Women 9 24.8 ± 3.2 1.68 ± 0.06 64.3 ± 7.8 

 

 

For determining the relationship between (1) tendon stiffness and EMD, (2) tendon stiffness 

and RFD, and (3) RER and RFD, a polynomial was fitted to the data for children (all ages), 

adults and all ages combined (i.e. children and adults). Furthermore, the coefficients of 

determination (R2) were derived to quantify the strength of these relationships. The order of 

the polynomial chosen to best represent the relationship between each pair of variables 

was based on the criterion that adding an additional term did not improve the R2 value by 

more than 0.02 (2%). The polynomials representing the relationship between tendon 

stiffness and RFD for children, adults and all ages combined can be found in Table 5-2.  

 

Finally, separate stepwise multiple regression analyses were performed to determine the 

contributions of tendon stiffness and RERnorm on RFDnorm for children, adults and all ages 

combined. The significance level for inclusion of an independent variable into the model was 

set at p< 0.05. For variables fitted with a non-linear polynomial (using the criteria set 
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above), higher order terms of the polynomial were included as separate independent 

variables in the regression analysis to represent the non-linear aspect of the data and allow 

a linear regression to be performed. Age was also included in the regression as a separate 

independent variable, to assess whether age per se was a suitable predictor of RFD. 
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5.3 Results 

The results of the MANOVA revealed a main effect of age on the dependent variables. 

Specific results from the follow-up ANOVAs and post hoc tests are presented in the section 

relevant to each dependent variable. 

 

5.3.1 Achilles Tendon Stiffness 

The ANOVA revealed a main effect of age on tendon stiffness (F(3, 61) = 46.08,  p <  0.05). 

Achilles tendon stiffness was significantly lower for CG5–6 (85.7 ± 29.8 N/mm)than for all 

other age groups. Furthermore, stiffness was significantly (p< 0.05) greater in adults (259.33 

± 41.9 N/mm) than for CG7–8(146.1 ± 42.1 N/mm) and CG9–10(165.4 ± 39.9 N/mm). 

 

5.3.2 Electromechanical Delay (EMD) 

The ANOVA revealed a main effect of age on EMD (F(3, 61) = 22.22,  p < 0.05). EMD in CG5–6 

(96.2 ± 16.1 ms) was significantly longer (p< 0.05) than for CG7–8 (80.9 ± 15.2 ms), CG9–10 

(74.6 ± 11.4 ms) and adults (48.6 ± 15.5 ms). No difference in EMD was observed between 

CG7–8 and CG9–10, but both groups had a significantly longer EMD than adults (p< 0.05).  

 

According to the criteria set, the relationship between EMD and tendon stiffness was best 

approximated by a first order polynomial for all groups. EMD was strongly and negatively 

correlated with tendon stiffness in children, adults and for all ages combined (r = -0.66, -0.61 

and -0.83 respectively; see Figure 5-2). Thus, EMD was found to decrease as tendon stiffness 

increased from childhood through to adulthood. 
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Figure 5-2. Relationship between Electromechanical delay (EMD) and Achilles tendon stiffness. Filled and open 

circles represent child and adult participants, respectively. Regression lines for children (dashed line), adults 

(dotted line) and all ages combined (solid line) are shown.  

 

Figure 5-3. Differences in the rate of force development (RFD) from onset of force to a) 50, 200 and 400 ms and 

normalised RFD (RFDnorm) to b) 30%, 50% and 70% of peak force between age groups and adults. Results 

shown are for group means. Vertical bars represent standard deviations (SD). Asterisks indicate statistical 

significance between two groups (p < 0.05). 
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5.3.3 Rate of Force Development (RFD) 

The ANOVA revealed a main effect of age on RFD (F(3, 61) = 18.13 – 137.52, p< 0.05). RFD 

(measured to 50, 200 and 400 ms) and RFDnorm (RFD30%, RFD50% and RFD70%) were 

significantly lower in all children’s groups than in adults (p< 0.05). CG9-10 had a significantly 

greater RFD to 400 ms than CG5-6. No other differences in RFD or RFDnorm were observed 

between age groups (Figure 5-3).  

 

The relationship between RFD and Achilles tendon stiffness for children and adults was best 

described by a first order polynomial. A second order polynomial best approximated this 

relationship for all ages combined. The polynomial equations for each group can be found in 

Table 5-2. The coefficients of determination (R2) quantifying the proportion of variance of 

RFD and RFDnorm explained by Achilles tendon stiffness were 0.34, 0.43 and 0.70, and 0.21, 

0.29 and 0.56, respectively, for children, adults and all ages combined (Table 5-2). The 

relationship between stiffness and RFD90% is shown graphically only (Figure 5-4) as the 

relationship was regarded as being too poor for a polynomial description. 

 

5.3.4 Rate of EMG Rise (RER) 

The ANOVA revealed a main effect of age on RER (F(3, 61) = 6.63 – 49.10, p< 0.05). RER to 25 

ms was not significantly different between groups. RER was significantly greater in adults 

compared to CG5-6 and CG7-8 when calculated to 75 ms after EMG onset (p< 0.05) and also 

greater in adults than all child age groups when calculated to 150 ms (p< 0.05). RER30% was 

significantly greater in adults than CG5-6 and CG7-8(p< 0.05) and greater in adults than all 

child age groups for RER50% and RER70% (p< 0.05). CG9-10 were significantly different from CG7-
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8 for RER30% (p< 0.05), but no other differences in RER or RERnorm were found between age 

groups (Figure 5-5).  

 

Based on the outlined criteria, all relationships between RER and RFD were linear. The 

coefficients of determination quantifying the strength of the relationship between absolute 

RER and RFD for children, adults and all ages combined were 0.21, 0.10 and 0.50, 

respectively, whilst and those for RERnorm and RFDnorm were 0.33, 0.22 and 0.61 (Table 5-3). 

 

Table 5-2. Equations describing the relationship between tendon stiffness and RFD to different time intervals 

and RFD normalised to peak force for children and combined ages. 

 

Group Interval Equation R2 value 

    

Children RFD 50 ms  Y = 2.664 x stiffness + 287.424  0.12 

 RFD 200 ms Y = 8.807 x stiffness + 756.157 0.15 

 RFD 400 ms Y = 12.873 x stiffness + 441.912 0.34 

 RFD30% Y = 0.114 x stiffness + 109.530 0.03 

 RFD50% Y = 0.249 x stiffness + 107.620 0.10 

 RFD70% Y = 0.345 x stiffness + 86.884 0.21 

    

Adults RFD 50 ms  Y = 24.971 x stiffness – 2442.708  0.20 

 RFD 200 ms Y = 43.975 x stiffness – 597.033 0.43 

 RFD 400 ms Y = 22.933 x stiffness – 3264.286 0.37 

 RFD30% Y = 0.447 x stiffness + 95.834  0.29 

 RFD50% Y = 0.421 x stiffness + 137.904 0.28 

 RFD70% Y = 0.274 x stiffness + 157.831 0.10 

    

All Ages RFD 50 ms  Y = 0.127 x stiffness2 – 28.053 x stiffness + 1952.616  0.61 

 RFD 200 ms Y = 0.229 x stiffness2 – 36.171 x stiffness + 2666.007 0.69 

 RFD 400 ms Y = 0.125 x stiffness2 – 6.960 x stiffness + 1014.115 0.70 

 RFD30% Y = 0.0021 x stiffness2 – 0.295 x stiffness + 126.24 0.47 

 RFD50% Y = 0.0017 x stiffness2 – 0.0084 x stiffness + 113.607 0.54 

 RFD70% Y = 0.601 x stiffness + 57.786 0.56 
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Figure 5-4. Relationship between Achilles tendon stiffness and rate of force development to a) 200 ms and b) 

400 ms, and normalised rate of force development to c) 30%, d) 50%, e) 70% and f) 90% of peak force. Filled 

and open circles represent children and adults, respectively. Regression lines for children (solid line), adults 

(dotted line) and all ages combined (dashed line) are shown.  
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Figure 5-5. Differences in the normalised rate of EMG rise (RERnorm) from onset of EMG activity to a) 25, 75 

and 150 ms, and to b) 30%, 50% and 70% of peak EMG amplitude between age groups and adults. Results 

shown are for group means. Vertical bars represent standard deviations (SD). Asterisks indicate statistical 

significance between two groups (p < 0.05). 

 

Table 5-3. Coefficients of determination (R2) for the relationships between RFD and RFDnorm and RER and 

RERnorm for children, adults and all ages combined. All relationships were best described using a linear 

polynomial according to the criteria outlined in the statistical analysis. 

 

RFD30%, RFD50% and RFD70% represent the rate of force development calculated to 30, 50 and 70% of peak force 

respectively. RER30%, RER50% and RER70% represent the rate of EMG rise calculated to 30, 50 and 70% of peak 

EMG amplitude, respectively. 

 RFD Children  RFD Adults  RFD All Ages 

 50 ms 200 ms 400 ms  50 ms 200 ms 400 ms  50 ms 200 ms 400 ms 

RER 25 ms 0.13 0.15 0.07  0.10 0.10 0.05  0.08 0.07 0.04 

RER 75 ms 0.16 0.21 0.09  0.10 0.07 0.01  0.18 0.19 0.15 

RER 150 ms 0.14 0.20 0.12  0.11 0.03 0.00  0.41 0.50 0.48 

 RFD30% RFD50% RFD70%  RFD70% RFD50% RFD70%  RFD30% RFD50% RFD70% 

RER30% 0.25 0.29 0.06  0.16 0.22 0.03  0.43 0.60 0.46 

RER50% 0.21 0.33 0.08  0.16 0.12 0.04  0.41 0.61 0.51 

RER70% 0.11 0.28 0.11  0.08 0.00 0.01  0.33 0.51 0.53 
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5.3.5 Predictability of RFD from tendon stiffness, age and RER 

The results of the stepwise multiple regression demonstrated that both tendon stiffness and 

RER were significant predictors of RFD. These two variables accounted for up to 61% of the 

variance in RFD in children (RFD70%) and 56% in adults (RFD30%). The proportion of accounted 

variance was 72% when both children and adults were combined. Age was not a significant 

predictor of RFD predictability for any group. Predictive regression equations can be found 

for all populations in Table 5-4. 

 

Table 5-4. Regression equations for the prediction of RFD to 30, 50 and 70% MVC from stiffness and RER for 

children, adults and all ages combined. 

 

RFD30%, RFD50% and RFD70%: RFD calculated to 30, 50 and 70% of MVC, respectively. RER30%, RER50% and RER70% 

represent RER calculated to 30, 50 and 70% of peak EMG amplitude. 

 

Group Variable Equation R2 

    

Children RFD30% Y =  0.221 x RER50% + 86.773 0.29 

 RFD50% Y = 0.422 x RER50% - 0.292 x RER70% + 0.311 × stiffness + 69.790 0.50 

 RFD70% Y = -0.203 x RER30% + 0.523 x RER50% - 0.235 x RER70% + 0.427 × stiffness + 57.904 0.61 

    

Adults RFD30% Y= 0.171  x RER50% + 0.460 x stiffness + 18.696 0.45 

 RFD50% Y= 0.422 x stiffness + 137.584 0.28 

 RFD70% Y= -0.496 x stiffness + 308.162 0.10 

    

All ages RFD30% Y = -0.154 x RER50% + 0.327 x RER70% + 0.001 × stiffness2 + 73.997 0.70 

 RFD50% Y = 0.235 x RER50% + 0.310 × stiffness2 + 80.260 0.72 

 RFD70% Y = 0.183 x RER50% + 0.406 × stiffness + 45.957 0.70 
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5.4 Discussion 

The major findings of the present study were that (1) Achilles tendon stiffness, EMD, RFD 

and RER increased substantially with age to adulthood, (2) plantarflexor EMD was negatively 

correlated with Achilles tendon stiffness, and (3) tendon stiffness and RER have an additive 

effect on the prediction of RFD in children. These results extend previous findings in adults 

(Aagaard et al., 2002; Bojsen-Moller et al., 2005; Cavanagh and Komi, 1979; Muraoka et al, 

2004), by demonstrating that the development of force production capabilities during 

childhood depend on both increased rates of muscle recruitment and changes in tendon 

mechanical properties. These findings significantly add to our understanding about the 

mechanisms underpinning age-related improvements in muscular force production, which 

has vast implications with respect to the interpretation of age-related differences in the 

execution of complex motor tasks.  

 

5.4.1 Factors Influencing EMD 

EMD is influenced by a number of factors, including mechanisms associated with the 

excitation-contraction coupling process (Cavanagh and Komi, 1979; Norman and Komi, 

1979; Nordez et al., 2009) and can be modified by training (Grosset et al., 2009) or by 

inducing local muscle fatigue (Paasuke et al., 1999). However, the time taken to stretch the 

tendon is thought to account for the majority of the EMD (Cavanagh and Komi, 1979; 

Norman and Komi, 1979; Muraoka et al., 2004b). In the present study, tendon stiffness 

increased with age to adulthood, which is consistent with previous findings (Kubo et al., 

2001; O’Brien et al., 2010; results of Chapter 4). EMD decreased with age through to 

adulthood, in agreement with that previously shown for the elbow flexor (Asai and Aoki., 

1996) and triceps surae muscle groups (Grosset et al., 2005). EMD was found to correlate 
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strongly and negatively with tendon stiffness in both children and adults. This study is the 

first to directly quantify the relationship between these variables, and supports the results 

of Muraoka et al. (2004b), who found a significant relationship between tendon slack length 

and EMD, and suggests that differences in tendon stiffness between children and adults 

underpin age-related changes in EMD. The results allow for the speculation that previously 

observed age-related changes in EMD (Asai and Aoki., 1996; Grosset et al., 2005) are at least 

partially due to age-related changes in tendon stiffness. In Chapter 4, it was shown that the 

development of tendon stiffness was largely attributable to the tendon growth and 

maturation associated with changes in age-related factors rather than age per-se. In 

combination with the present results, it can be concluded that tendon stiffness, and not age, 

is the predominant factor associated with decreases of EMD during childhood.  

 

5.4.2 Factors Influencing RFD 

RFD calculated to 50, 200 and 400 ms was significantly lower in children than in adults. This 

finding is in agreement with that found previously (Asai and Aoki, 1996; Grosset et al., 2005; 

Falk et al., 2009; Cohen et al., 2010). However, the single difference in RFD found presently 

between child groups is in relative contrast to that reported by Grosset et al. (2005), who 

found RFD increased significantly per year of age for children between 7 and 11 years. It is 

possible that methodological differences between the studies could account for these 

discrepancies in findings. Firstly, Grosset et al. (2005) used supramaximal electrical 

stimulation to find RFD, which has been shown to recruit muscle differently to voluntary 

contractions (Enoka, 2002; Jubeau et al., 2007; Zhou et al., 1995). Voluntary recruitment of 

motor units typically follows Henneman’s size principle, activating motor units on an 

ascending size basis with increasing force requirements (Henneman et al., 1965a, 1965b). 
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Electrical stimulation is thought to reverse this recruitment order based on the concept that 

large diameter axons are more excitable to imposed electrical stimulus (review: Gregory and 

Bickel; 2005). Action potentials generated from the depolarisation of large diameter motor 

neurones (from large motor units) arrive at the muscle first due to a faster conduction 

velocity. As these motor neurones typically innervate a large number of (fast type II) muscle 

fibres, a greater rise in muscle force will be initially generated. Secondly, RFD was not 

calculated to different time intervals, but the maximal curve gradient (i.e. maximal RFD) 

identified manually and RFD calculated to this point from the point of force onset. As a 

consequence, RFD was calculated over different intervals for each individual. These 

differences in methodology are likely to have a substantial effect on the outcome of RFD. 

 

Once normalised to peak force, RFDnorm was still greater in adults than in children but 

differences between groups were reduced. This finding demonstrates that much of the 

difference found between absolute RFD for children and adults was associated with the 

adults’ greater peak force capacity. Normalising RFD to peak force provides an insight into 

the muscle’s activation rate and physiological properties as well as the mechanical 

properties of the tendon (Wilkie, 1950; Grimby et al., 1981; Harridge et al., 1996; Aagaard 

and Thorstensson, 2003). One factor that influences RFD is the muscle’s maximal shortening 

velocity. Contractile velocity is significantly slower in children than adults (Fuchimoto and 

Kaneko, 1981; Belanger and McComas, 1989; Asai and Aoki, 1996). As a result of this, the 

time taken to reach their own peak force will be longer for children, impacting on RFD. 

Muscle fascicle length is a determinant of its shortening speed, as it determines the number 

of in-series sarcomeres. It is possible that the shorter GM muscle fibres in children (Morse et 

al., 2008) have less in-series sarcomeres, causing whole-muscle shortening velocity to be 
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slower, again limiting maximal RFD. Moreover, ATPase activity, which is an important 

determinant of contractile speed (Barany, 1967; Reiser et al., 1985), has been shown to be 

lower in infant rats than adult rats (Drachman and Johnston, 1973; Lowey et al., 1993) and is 

likely to be a factor regulating contractile speed in humans also (Resnicow et al.).  These 

factors potentially contribute to the lower contractile velocity (and hence lower RFDnorm) 

observed in children and thus increase the time required to stretch the tendon for 

transferring forces to bone.  

 

The relationship between tendon stiffness and RFD has been identified previously. Wilkie 

(1950) found that RFD decreased when a compliant structure was placed between a 

resistive load and a force-developing body. In agreement with these findings, Bojsen-Moller 

et al. (2005) found a greater knee extensor RFD in individuals with a stiffer vastus lateralis 

tendon. The low to moderate coefficients of determination found presently between 

Achilles tendon stiffness and plantarflexor RFD for adults is consistent with these previous 

findings and supports the idea that greater stiffness of the elastic structures enhances the 

effective transmission of contractile forces effectively (Leiber et al., 2000; Maganaris et al., 

2004; Magnusson et al., 2003). The significant relationship demonstrated between RFD and 

tendon stiffness in children adds to the literature by extending the concept of mechanical 

influences of the tendon on force development in a prepubescent population. Given the 

importance of this relationship for the rapid production of muscular forces in adults, this 

finding is likely to have significant effects on muscular force production in children also, of 

which may have important consequences for movement performance. Further, this 

relationship might suggest that age-related differences in movement production may be a 
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functional rather than ‘immature’ adjustment to account for differences in tendon 

properties. 

 

Age-related increases in RFD raise the question as to the influencing mechanisms that 

determine it. One specific aim of the present study was to gain a clearer understanding of 

the mechanisms underpinning age-related differences in RFD. Interestingly, tendon stiffness 

was best correlated with RFD at markedly different stages of force development in children 

and adults. This suggests the possibility of age-related differences in the dominant 

mechanisms that influence RFD at different stages of a contraction. It would appear from 

the results that tendon stiffness is relatively unimportant in the early rise of force in 

children. It is possible that the low stiffness associated with the uncrimping of collagen 

fibrils during the early stages of force development (i.e. toe region of the tendon force-

elongation relationship) in combination with greater overall tendon compliance, causes slow 

and inefficient transfer of muscular forces in children.  

 

5.4.3 Influence of the Rate of Muscle Activation (RER) 

RER (to 75 and 150 ms) was greater in adults than in children (with the exception of CG9-10 

to 75 ms) but was also greater in CG9-10 than CG5-6 and CG7-8. It was assumed that the 

temporal increase in EMG amplitude reflected an increase in both the firing frequency of 

motor units and the increasing recruitment of larger, high threshold motor units. The 

capacity to activate large motor units (typically innervating type II fibres) has been 

postulated to be lower in children than in adults (Ramsay et al., 1990; Stackhouse et al., 

2005; Falk et al., 2009). As the depolarising potentials are greater in amplitude for larger 

motor units (Milner-Brown and Stein, 1975), individuals who are able to recruit these motor 
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units earlier during fast force production should display a steeper EMG-time relation. The 

greater EMG amplitudes exhibited by CG9-10 compared to CG5-6 and CG7-8 therefore suggests 

that aspects of neural maturation may occur around this age. As adults demonstrate a 

significantly greater RER to 150 ms than CG9-10, it would appear that improvements in the 

ability to rapidly recruit muscle continue through to adulthood.  

 

RERnorm was also greater in adults than in children. This finding is consistent with that found 

for the elbow flexors (Falk et al., 2009), and suggests that the ability to recruit motor units 

for fast force production is influenced by the maturational status of the neuromuscular 

system (Belanger and McComas, 1989). Children also have a slower motorneurone 

conduction velocity than adults (Thomas and Lambert, 1960; Oh, 1984) due to possible 

differences in nerve myelination (Gutrecht and Dyck, 1970; Webster and Favilla, 1984) and 

nerve fibre diameter (Christ and Brand-Saberi, 2002). Moreover, the residual latency (delay 

in transmission at the neuromuscular junction) is greater in children (Thomas and Lambert, 

1960). As a result of these differences, the frequency of neurone firing is lower (Paasuke et 

al., 2000), a factor that has previously been linked to RFD (Nelson, 1996). There is a growing 

body of literature postulating that under certain circumstances, large motor units may be 

preferentially recruited when faced with a task requiring rapid force development 

(Feiereisen et al., 1997; Linnamo et al., 2003; Wakeling, 2004; Hodson-Tole and Wakeling, 

2009), possibly due to a reduced depolarisation threshold at faster shortening velocities 

(Christova and Kossev, 2000). In conjunction with the greater firing rate seen in adults 

(Piotrkiewicz et al., 2007), this would act to enhance the early rate of muscle activation. It is 

therefore concluded that the rate of muscle activation is slower in children caused by an 

inability to reach their own peak activation at the same rate as adults. 
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The rate of motor unit firing at the onset of a contraction is an important factor influencing 

RFD (Corcos et al., 1989; Nelson, 1996), and simultaneous increases in RER and RFD have 

been observed after a period of strength training (Van Cutsem et al., 1998; Aagaard et al., 

2002; Del Balso and Cafarelli, 2007; Blazevich et al., 2008). Falk et al. (2009) found RFDnorm 

was moderately correlated with RERnorm(r = 0.40) for the elbow flexors of young boys (age 

9.6 ± 1.6 years). In the present study, RER was positively related to RFD in children (best R2 

of 0.33 for RER50% and RFD50%), suggesting that neural drive substantially influences the rate 

of muscular force development and, especially in the early (RFD30%) to mid (RFD50%) stages 

of a muscle contraction. The relationship between RER and RFD in adults was not as strong 

as that found in children (best R2 of 0.22 found for RER30% and RFD50%), indicating that the 

adults ability to produce explosive force was not heavily reliant on the ability to rapidly 

increase neural drive. 

 

5.4.4 Influences of Tendon Stiffness and Neural Drive on Determining Rate Force 

Development 

According to the results of the regression analysis, both muscle activation rate and tendon 

stiffness play an important role in determining RFD in children and adults. As mentioned 

previously, tendon stiffness does not appear to have a determining role in early force 

production in children, but is a significant factor in determining their mid- to late RFDnorm. 

Interestingly, RER is a key determinant during all stages of RFDnorm examined in children. 

Tendon stiffness was the sole determinant of mid- to late RFDnorm in adults, but the 

significant influence of RER on early RFDnorm caused an additive effect, increasing the 

amount of variability of RFDnorm that could be accounted for from a maximum of 29% to 45% 

(for RFD30%). The additive effects of tendon stiffness and RERnorm significantly improved the 
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prediction of RFDnorm from a maximum of 28% to 61% for RFD70% in children, highlighting the 

importance of both factors for rapid force production in children. Despite their combined 

influence however, a significant proportion of the variance in RFDnorm remained 

unaccounted for, suggesting that factors not examined in the present study must play a 

relatively central role in rapid force production. For example, Edman and Josephson (2007) 

suggest that 60% of the force rise time can be attributable to the processes underlying 

muscle activation (e.g. calcium kinetics, cross-bridge cycling rate), and the remaining 40% 

represents the time taken in stretching the series elastic structures for force transfer. It is 

likely therefore that other physiological process impact on rapid force production, and that 

the significance of these processes differs between children and adults.  

 

5.4.5 Conclusion 

This is the first study to identify significant relationships between tendon stiffness and 

parameters relating to rapid force development (EMD and RFD) in prepubertal children. 

EMD was negatively related to tendon stiffness in both children and adults. Contrary to that 

found in adults, muscle activation rate was more important than tendon stiffness in the 

early rise of force in children, whilst tendon stiffness was found to influence the later rise. 

Nonetheless, together RER and tendon stiffness were able to account for a significant 

proportion of RFD variability, highlighting the role of both neural and mechanical factors in 

for rapid force production in children. Based on the relationships presented in the present 

study, it can be concluded that the significant differences in tendon stiffness and muscle 

activation rate found between children and adults partly explain differences in force 

development and might therefore influence complex movement performance. 
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CHAPTER 6: Resistance Training Increases Tendon Stiffness and Influences 

Rapid Force Production in Prepubertal Children 
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6.0 Abstract 

As increases in muscular strength occur with age or training, a synchronous adaptation in 

the tendon must be achieved in order to transmit greater forces efficiently to the bone and 

to minimise the risk of tendon injury. Tendons have been shown to adapt to chronic loading 

in adults and, in addition to an increased rate of muscle activation, are thought to strongly 

influence muscular force production. It was therefore hypothesised that resistance training 

could alter tendon mechanical properties in children, and that such changes would impact 

on force development. Twenty prepubertal children (aged 8.9 ± 0.3 years) were divided into 

control (non-training) and experimental (training) groups. The training group completed a 

10-week resistance training intervention consisting of 2 - 3 sets of 8 - 15 plantarflexion 

resistance efforts performed twice-weekly on a recumbent calf raise machine as part of a 

class-based physical education lesson. Achilles tendon stiffness (slope of the tendon force-

elongation curve), electromechanical delay (EMD; time between the onset of muscle activity 

and force), rate of force development (RFD; slope of the force-time curve) and rate of EMG 

rise (RER; slope of the EMG-time curve) were measured during isometric plantarflexion 

contractions performed with a maximum rate of force development before and after 

training. No changes were found for any variable in the control group, however tendon 

stiffness and Young’s modulus increased significantly in the experimental group (~35% and 

~33%, respectively); tendon CSA was unchanged. Peak tendon stress showed a trend 

towards increasing after training as a consequence of increased plantarflexor force 

production, whereas peak tendon elongation and strain showed a trend to decrease. A 

decrease in EMD (~13%) was found after training for the experimental group which 

paralleled the increase in tendon stiffness (r = 0.59). Nonetheless, RFD and RER were 

unchanged after training. The present data show that the Achilles tendon adapts to 
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resistance training in prepubertal children. Such adaptation was associated with changes in 

muscular force production, and therefore has the potential to influence movement 

performance. The mechanisms underpinning rapid force production in children appear to be 

different to those found in adults as RFD was not influenced by the changes in tendon 

stiffness, and may help explain further differences in movement performance between 

these populations. 
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6.1 Introduction 

Resistance training is becoming an increasingly popular mode of exercise amongst children 

(Faigenbaum et al., 1996; Guy and Micheli, 2001). Its benefits in this population include 

cardio-respiratory fitness (Blimkie, 1993), increased bone mineral density (Morris et al., 

1997; Nichols et al., 2001) and enhanced psychosocial health (Hass et al., 2001; Falk and 

Eliakim, 2003).  Additionally, resistance training promotes strength gains (Faigenbaum et al., 

1993; Ozmun et al., 1994; Kubo et al., 2001b) beyond those associated with normal growth 

(Blimkie et al., 1989a). These strength gains have been attributed to an improved 

coordination of the involved muscles and an increased motor unit activation (Ramsay et al., 

1990; Ozmun et al., 1994). Androgenic and hypertrophic factors as muscular hypertrophy is 

rarely observed (Weltman et al., 1986; Ramsay et al., 1990; Ozmun et al., 1994; Faigenbaum 

et al., 2007). 

 

As age- or training-related increases in muscular strength occur (Blimkie et al., 1989a; 

Ramsay et al., 1990), a synchronous tendon adaptation must be achieved so that: (1) these 

greater forces can be efficiently transmitted to the bone without tendon injury, and (2) 

there is a similar tendon elongation under increased load so that skeletal muscle fibres 

continue to work within their normal operating range (Wilson et al., 1994; Ishikawa and 

Komi, 2008). Previous research has shown that tendons adapt to chronic increases in 

loading by increasing their ultimate tensile strength (Woo et al., 1980; Vilarta and Vidal Bde, 

1989) and/or stiffness (Woo et al., 1980; Narici et al., 1996; Kubo et al., 2001a; Reeves et al., 

2003a; Wu et al., 2010), often with an increase in CSA (Woo et al., 1980; Michna and 

Hartmann, 1989; Birch et al., 1999; Rosager et al., 2002; Kongsgaard et al., 2007). In Chapter 

4, it was demonstrated that age-related increases in body mass and muscular strength, 
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which consequently increase tendon loading, correlate well with age-related increases in 

stiffness of the Achilles tendon in prepubescent children. This finding is consistent with the 

relationship observed between muscular strength and tendon stiffness in adults (Scott and 

Loeb, 1995; Muraoka et al., 2005; Arampatzis et al., 2007). Such results support the idea 

that tendons can adapt in response to changes in chronic loading in children, as has been 

indicated in other young mammals (Curwin et al., 1988; Kasashima et al., 2002). 

Nonetheless, the hypothesis that tendons can adapt in response to strength training in 

children has yet to be explicitly examined, so it is not known whether such training alters 

tendon mechanical properties in addition to that associated with normal growth and 

development. It is also not known whether changes in tendon CSA accompany any changes 

its mechanical properties. This is a particularly pertinent question as increases in muscle 

strength in response to training have been shown to occur without muscular hypertrophy; a 

lack of hypertrophic adaptation in the tendon could have a substantial impact on the 

potential for tendon adaptation. Thus, the main purpose of this study was to examine the 

effects of chronic plantarflexor strength training on both the mechanical properties and CSA 

of the Achilles tendon in prepubescent children. Given that children are able to increase 

their muscular strength in response to short-term resistance training, it was hypothesised 

that their tendons would be receptive to chronic increases in loading. 

 

Understanding the relational change in muscle strength and tendon stiffness is important as 

tendon stiffness impacts on rapid muscular force production and thus may impact on 

movement capacity. For example, both electro-mechanical delay (EMD) and the rate of 

force development (RFD) are largely governed by the time taken to stretch the series elastic 

component of the muscle-tendon complex (Wilkie, 1950; Cavanagh and Komi, 1979; Bojsen-
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Moller et al., 2005), of which the tendon is often a major component (Gray and Carter, 

1860). A delay in transferring rapidly generated forces may impact on balance and stability 

(Mora et al., 2003; Granacher et al., 2010), risk of fall (Pijnappels et al., 2005; 2008) and 

movement reaction times (Wilkie, 1950; Aagaard et al., 2002; Reeves et al., 2003a; Bojsen-

Moller et al., 2005; Holtermann et al., 2007; Blazevich et al., 2008; Grosset et al., 2009; 

Nordez et al., 2009). Despite previous data indicating that RFD and EMD can be augmented 

with specific training in adults, and is typically attributed either to an increased tendon 

stiffness or rate of muscle activation (Van Cutsem et al., 1998; Aagaard et al., 2002; Reeves 

et al., 2003a; Barry et al., 2005; Del Balso and Cafarelli, 2007; Gruber et al., 2007; Grosset et 

al., 2009; Wu et al., 2010), the same relationship has not been examined in young children. 

Therefore, a second purpose of the study was to measure the effects of plantarflexor 

strength training on EMD and RFD, and to determine whether any changes are related to 

changes of tendon stiffness. The rate of activation, estimated as the rate of rise in the 

electromyogram amplitude (RER), was also measured in order to examine its possible 

influence on RFD (Corcos et al., 1989; Nelson, 1996).  
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6.2 Methods 

6.2.1 Ethics and Participant Information 

Ten boys and 10 girls (aged 8.9 ± 0.3 years) volunteered to participate in the study after 

receiving a presentation at their school regarding the project (to which parents and 

guardians were invited and encouraged to ask questions). To participate in the study, 

written assent was provided by the children and written consent was provided by the 

guardians. Physical activity readiness questionnaires were completed for each child by the 

guardians to ensure all participants were free from known neuromuscular or 

musculoskeletal disorders, were not involved in competitive sports or had previous 

resistance training experience. Institutional ethical approval was granted by the Human 

Research Ethics Committee at Brunel University. The research was conducted in accordance 

with the guidelines set in the Declaration of Helsinki. 

 

Based on which school class (out of two) they were enrolled in, the children were chosen at 

random and divided into control and experimental groups (each containing 5 girls and 5 

boys). Prepubertal status was confirmed by estimating the age of the children from peak 

height velocity (an indicator of maturational offset) using body anthropometry (Mirwald et 

al., 2002). The minimum age from peak height velocity found for participants in this study 

was -3.7 years. Each participant visited the university on two separate occasions to allow 

pre- and post-training data to be collected before and after a 10-week ankle plantarflexion 

training period.  
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6.2.2 Pre- and Post-training Data Acquisition. 

Comprehensive methodologies for calculating Achilles tendon stiffness, Young’s modulus, 

tendon stress, strain and CSA can be found in Chapter 4 (pages 88-91). Data acquisition for 

the subsequent calculation of EMD, RFD and RER was identical to that presented in Chapter 

5(pages 113-116) and thus will not be detailed here.  

 

Briefly, GM MTJ elongation, measured using ultrasonography, and peak plantarflexor 

moment, measured using an isokinetic dynamometer, were obtained during maximal 

isometric plantarflexion contractions (MVCs). Displacement of the GM MTJ was corrected 

for distal tendon movement (caused by heel movement) using motion capture. Tendon 

force was calculated as the ratio of plantarflexor moment (corrected for antagonist 

coactivity) and Achilles tendon moment arm (estimated using the tendon excursion 

method). Tendon stiffness was calculated as the slope of the force-elongation curve 

between 10 – 90% peak force. Electromechanical delay (EMD), rate of force development 

(RFD) and rate of electromyographic (EMG) signal rise (RER) were calculated from each MVC 

trial. RFD was calculated to 25, 50, 75, 100, 150, 200, 250, 300 and 400 ms and to every 10% 

of MVC up to 90% MVC. RER was calculated to 25, 50, 75, 100, 150 and 200 ms and to every 

10% of peak EMG amplitude up to 70% peak EMG amplitude. These intervals were chosen 

to maximise the chances of identifying changes in RFD after the training intervention, based 

on previous findings (Aagaard et al., 2002; Blazevich et al., 2008; results of Chapter 5). All 

procedures outlined above were carried out pre- and post-training.  
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6.2.3 Resistance Training Programme - Familiarisation 

Children in the experimental group were familiarised with the recumbent (45o incline) calf 

raise machine (Body Solid, Model GLPH1100, Forest Park, IL, USA) on two separate 

occasions prior to the start of the 10-week training period. During the first session, 

participants were taught the correct technique on an unloaded machine (foot plate mass of 

30 kg). Once seated in the machine, participants placed the balls of their feet on the 

footplate of the machine and were instructed to extend the knees to a near-extended 

position (Figure 6-1). They then slowly raised and lowered the footplate through a full but 

comfortable range of motion using concentric then eccentric ankle plantarflexion 

contractions. In addition to providing a greater safety and longer muscle contractile (and 

thus tendon loading) period, slow movement speeds reduced the likelihood of changes in 

rate of muscle activation, a key factor influencing rapid force production (Corcos et al., 

1989; Nelson, 1996). On the second occasion, participants completed a single set of 6 - 8 

repetitions on an unloaded machine, and scored their perceived effort from 1 - 10 (1: easy, 

10: hard). The number of repetitions prescribed for the initial training session was then 

based on their perceived effort during this set. Participants were given the opportunity to 

ask questions at any point during the sessions. 

 

6.2.4 Resistance Training Programme - Design 

For the duration of the study, training was performed twice-weekly (Sailors and Berg, 1987; 

Faigenbaum et al., 1993) as part of a class-based physical education lesson. The lesson was 

arranged as circuit training, where nine stations were organised to accommodate small 

groups of 3 - 4 children (27 - 28 children per class). For the class containing the experimental 

group, the plantarflexion exercise was set up as one of the stations. This station was 
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replaced with a resting station for the class containing the control group. The remaining 

stations were varied throughout the programme to help maintain participant motivation 

and typically included activities not specific to the lower extremity (basketball shooting, 

football dribbling, hockey slalom, sit-ups, etc.). Each lesson began with 2 - 3 minutes of low 

intensity aerobic exercise as a warm-up (e.g. marching on the spot, star jumps etc). Groups 

rotated between stations at the sound of the investigator’s whistle, which was blown when 

all the children at a resistance machine station had each completed one set of repetitions. 

Rotations continued until all scheduled sets had been completed by the 10 experimental 

participants. 2 – 3 minutes of dynamic stretching was performed after the lesson.  

 

 
Figure 6.1. Resistance machine setup. Children performed plantarflexion contractions by pushing the footplate 

with the balls of their feet. 

 

The participant-instructor ratio at the resistance machine was always 1:1 to ensure that the 

appropriate technique, applied load and number of repetitions were adhered to and 
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recorded. Two further supervisors monitored activity at the remaining 8 stations. 

Participants started with a load they could only perform 8 - 10 repetitions (8 - 10 RM) at 

using the correct form. When 15 repetitions could be completed with this load, using the 

correct form, additional load was added in increments of 2.5 kg to generate a new 8 - 10 RM 

(Pediatrics, 2001). In the first two weeks, 2 sets of 8 – 15 repetitions were performed with 

an emphasis on safety and technique rather than maximal loading. In the remaining eight 

weeks, three sets of repetitions were performed (Faigenbaum et al., 2006). The frequency 

and intensity of the resistance training programme was based on progressive loading to 

generate substantial strength gains, and was in accordance with the current 

recommendations for strength training in primary school children (CSMF., 2001). The mean 

(± SD) load (kg) lifted (i.e. load added to the weight stack) during the 10-week training 

schedule is shown in Table 6-1. 

 

Table 6-1. The 10-week training schedule and mean (± SD) weight lifted per session. 

 

 

Two sets of 8–15 RM were completed per session during weeks 1 and 2, increasing to 3 sets during weeks 3 – 

10. Pre- and post-training testing occurred during weeks 0 and 11, respectively. Loads reported are in kg. 

 

 

6.2.5 Statistical Analysis 

During the course of the training intervention, the family of one child from the experimental 

group (female) relocated and one child from the control group (female) was absent for the 

Week 1/2  3 4 5 6 7 8 9 10 

Day 1 30.0 ± 0  32.5 ± 0 34.5 ± 1.1 41.7 ± 3.3 49.1 ± 2.7 51.0 ± 1.8 52.2 ± 1.1 60.0 ± 0 59.4 ± 1.6 

Day 2 30.0 ± 0  32.5 ± 0 37.3 ± 0.7 44.7 ± 2.9 47.3 ± 1.6 50.0 ± 0 60.0 ± 0 59.5 ± 2.0 62.5 ± 0 
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post-training testing. Therefore statistical analyses were performed on data from 9 

experimental and 9 control participants (each with 4 girls and 5 boys). 

 

All data were analysed using SPSS statistical software (SPSS v16.0, Chicago, USA). 

Differences in anthropometry, tendon variables and force production characteristics 

between the control and experimental groups at baseline were tested for using 

independent t-tests. Changes in mean body mass, standing height, peak force production 

and EMD from pre- to post-training were examined with paired t-tests for both groups. For 

the post-training test, tendon-related dependent variables were calculated in two different 

ways. The first way of calculating peak Achilles tendon stress, strain, elongation, stiffness 

and Young’s modulus was based on the peak forces measured during the post-training test. 

The second way of calculating these measures was based on the MVC values obtained 

during the pre-training test. This latter method of calculating the tendon-related variables 

was performed to allow for a direct comparison of these measures before and after training, 

independent of training-related strength gains by removing strength changes from pre- to 

post testing as a confounding factor influencing the results. These variables are 

subsequently referred to as MVCpre. A2 x 2 mixed design analysis of variance (ANOVA) was 

used to analyse for differences in time (pre; post) and group (control; experimental) for 

each dependent variable measured (tendon variables for both pre and post MVC forces, RFD 

and RER).In the case of a significant time-by-group interaction, paired t-tests were 

performed to compare the pre to post values for each the experimental and the control 

groups. For these t-tests, Bonferroni adjustments were performed to control for type I error. 

Statistical significance was accepted at p< 0.05.  
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Finally, in order to further examine the relationship between tendon stiffness and EMD, a 

polynomial was fitted to the data showing the relative changes of EMD and stiffness of each 

individual after the training intervention. 
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6.3 Results 

Training compliance was 92.6% and 96.7% for children in the control and experimental 

groups, respectively. Neither body mass nor standing height changed significantly for either 

group between pre- and post-training. There was a significant difference found between the 

control and experimental groups for pre-training stiffness (p < 0.05). No significant 

differences were found for any other variables measured at pre-training testing (p> 0.05). 

 

F-statistics and levels of significance for time-by-group interactions from the ANOVAs can be 

found for each dependent variable in Table 6-2. Significant time-by-group interactions were 

found for stiffness (p = 0.005) and Young’s modulus (p = 0.004) calculated from post-test 

MVC forces. Post hoc t-tests revealed a significant increase in tendon stiffness (p< 0.001) 

and Young’s modulus (p = 0.001) from pre- to post-testing in the experimental group. Pre- to 

post-training differences in stiffness and Young’s modulus were non-significant for the 

control group (p = 0.378 and p = 0.320, respectively). Time-by-group interactions were also 

significant for stiffness (p = 0.004) and Young’s modulus (p = 0.020) calculated from pre-

training MVC forces. Post hoc t-tests revealed a significant increase in tendon stiffness (p = 

0.001) and Young’s modulus (p = 0.004) in the experimental group. These differences were 

not significant for the control group (p = 0.659 and p = 0.378, respectively).No time-by-

group interactions were found as a result of training for any RER or RFD interval (Table 6-2). 

 

Group mean and individual changes in Achilles tendon stiffness and Young’s modulus (based 

on peak force at pre-training) are presented in Figure 6-2. Mean (± SD) and % changes in 

tendon CSA, length, peak stress, peak strain, peak elongation, stiffness and Young’s modulus 
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for both groups are shown in Table 6-3. In addition stress, strain, elongation, stiffness and 

Young’s modulus calculated using pre-training MVC force can also be found in Table 6-3. 

 

 

Table 6-2. ANOVA results for each tendon variable, RFD and RER. 

 

Dependent Variable F  df1, df2 p 

Stress 0.317 1, 16 0.581* 

Strain 1.533 1, 16 0.234* 

Elongation 1.867 1, 16 0.191* 

CSA 0.417 1, 16 0.528* 

Force 0.670 1, 16 0.425* 

Stiffness 10.730 1, 16 0.005* 

Young’s modulus 11.419 1, 16 0.004* 

Strain (MVCpre) 1.889 1, 16 0.188* 

Elongation (MVCpre) 2.253 1, 16 0.153* 

Stiffness (MVCpre) 11.056 1, 16 0.004* 

Young’s modulus (MVCpre) 6.675 1, 16 0.020* 

RFD (ms) 1.333 – 0.010  1, 16 0.265 – 0.920 

RFD (%) 0.778 – 0.020 1, 16 0.391 – 0.890 

RER (ms) 3.538 – 0.037 1, 16 0.078 – 0.849 

RER (%) 3.021 – 0.017 1, 16 0.101 – 0.899 

 

F – F statistic; df1, df2 - degrees of freedom for group and n number respectively; p – level of significance 
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  CONTROL     EXPERIMENTAL 

 

Figure 6-2. Mean (black) and individual (grey) changes in tendon stiffness and Young’s modulus for control and 

experimental participants at pre- and post-training. * significant change relative to control, p< 0.05. 

 

EMD decreased by an average 9.8 ms (~-13%) in the experimental group after training (pre: 

76.3 ± 11.0 ms, post: 66.5 ± 10.2 ms; p< 0.05) but remained unchanged in the control group 

(pre: 74.5 ± 10.8 ms, post: 74.2 ± 12.3 ms). Changes in EMD were moderately, negatively 

correlated with tendon stiffness in the experimental group (r = 0.59) and the control and 

experimental participants combined (r = 0.55), as shown in Figure 6-3. Absolute and relative 

 

 

 

* 

* 
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(to peak EMG) RER were unchanged after training for all time intervals (Figure 6-4). RFD was 

also unchanged after training for all time intervals and levels of force (Figure 6-5). 

 

 

 

 

 

 

Figure 6-3. Relationship between pre- to post-training changes in tendon stiffness and electromechanical delay 

(EMD). Filled circles represent the experimental group and open diamonds represent the control group. Trend 

lines for the experimental group (solid line) and the control and experimental group combined (dashed line) 

are shown. A significant relationship was found between the changes in tendon stiffness and EMD for the 

control and experimental group combined (p< 0.05). Cont, control group; Exp, experimental group. 
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Table 6-3. Pre- and post-training training Tendon characteristics. 

 

 
MVCpre: variable normalised to pre-training MVC force. * significant change relative to control, p< 0.05. 
 

  Control  Experimental 

Tendon 

Characteristics 
 Pre Post Δ%  Pre Post Δ%  

 

Tendon CSA  

(mm2) 

  

40.7 ± 7.2 
 

41.8 ± 7.9 
 

2.7 
  

35.8 ± 6.3 
 

36.7 ± 5.9 
 

2.5 
 

Tendon length 

(mm) 

 151.6 ± 32.9 153.8 ± 29.4 1.4  160.3 ± 21.3 164.5 ± 24.3 2.6  

Peak Elongation  

(mm) 

 11.8 ± 4.0 12.6 ± 2.5 7.4  11.6 ± 2.6 10.37 ± 2.4 -10.3  

 

Elongation MVC 

pre(mm) 

 11.8 ± 4.0 11.5 ± 2.1 -2.0  11.6 ± 2.6 9.2 ± 2.1 -20.2  

Peak Strain  

(%) 

 8.1 ± 3.2 8.5 ± 2.8 5.4  7.3 ± 1.6 6.2 ± 1.4 -13.6  

Strain MVC pre 

(%) 

 8.1 ± 3.1 7.8 ± 2.9 -3.2  7.3 ± 1.6 5.5 ± 0.6 -23.9  

Peak Stress 

(N/mm-2) 

 47.1 ± 14.1 51.7 ±  14.9 9.8  44.6 ± 9.6 50.8 ± 7.0 14.0  

Stiffness  

(N/mm) 

 162.5 ± 41.8 170.3 ± 39.1 4.8  138.4 ± 36.7 187.0 ± 44.0 35.2 * 

Stiffness MVC pre 

(N/mm) 

 162.5 ± 41.8 167.3 ± 37.8 2.9  138.4 ± 36.7 177.6 ± 41.3 28.4 * 

Young’s Modulus  

(MPa) 

 629.4 ± 235.3 673.2 ± 281.2 7.0  642.0 ± 

171.2 

859.4 ± 206.0 33.9 * 

Young’s Modulus  

MVC pre (MPa) 

 629.4 ± 235.3 649.3 ± 271.7 3.2  642.0 ± 

171.2 

827.6 ± 187.6 28.9 * 
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Figure 6-4. Rate of EMG rise (RER) at pre- and post-training, calculated as % peak amplitude EMG per second a) 

measured to 25, 50, 75, 100, 150 and 200 ms after EMG onset, b) the time taken (ms) to reach relative (to 

peak) EMG levels. Pre-training values are represented by open circles and post-training values are represented 

by filled circles. There were no statistically significant changes in RFD with the training intervention. 

    

 

 

 

 

 

% peak EMG  

Time from EMG onset (ms) 

a) 
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        CONTROL                                                    EXPERIMENTAL 
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  CONTROL      EXPERIMENTAL 

 

 

 

 

Figure 6-5. Rate of force development (RFD) at pre- and post-training, calculated as % MVC per second, 

measured to 25, 50, 75, 100, 150, 200, 250, 300 and 400 ms after EMG onset and b) to reach % MVC, displayed 

in intervals of 10%. Pre-training values are represented by open circles and post- training values are 

represented by filled circles. There were no statistically significant changes in RFD with the training 

intervention. 

Time from force onset (ms) 
a) 

% MVC 

b) 
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6.4 Discussion 

6.4.1 Training-Induced Changes in Achilles Tendon Mechanical Properties 

The main purpose of the present study was to examine the effects of plantarflexor strength 

training on the mechanical properties of the Achilles tendon in prepubescent children, with 

the secondary purpose to examine their relationship with muscle force production 

characteristics (EMD and RFD). The main finding was that the mechanical properties of the 

Achilles tendon were significantly altered by 10 weeks of twice-weekly resistance training in 

previously untrained prepubertal children. Tendon stiffness was found to increase by ~35%, 

which is similar to the 30% increase in Achilles tendon stiffness reported by Kubo et al. 

(2007) for adults who completed 12 weeks of resistance training, despite a far greater 

training intensity used by those adults. These increases are somewhat greater than 

previously shown for the patellar tendon. Seynnes et al. (2009) reported a ~24% increase in 

patellar tendon stiffness after 9 weeks of resistance training, whilst Kongsgaard et al. (2007) 

found a ~15% increase in patellar tendon stiffness after 12 weeks of heavy knee extension 

exercise in young adults. Nonetheless, it is less than the 65% increase in patellar tendon 

stiffness found in an elderly population after 14 weeks resistance training (Reeves et al., 

2003). Compared to these previous findings, the present results suggest that the developing 

Achilles tendon is at least as, if not more, responsive to chronic increases in loading as 

mature tendons. These results concur with the existing literature by demonstrating an 

increase in tendon stiffness after short-term resistance training, and expand on previous 

results by confirming, for the first time, that this is also the case in children.  

 

Importantly, no change in tendon CSA was detected after the training. As Young’s modulus 

is a measure of normalised (to tendon dimensions) stiffness, the consequence of increased 
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stiffness and constant CSA was a significant increase (33%) in Young’s modulus. The lack of 

change in tendon CSA found here after training is consistent with a number of studies in 

animals (Huang et al., 2004; Legerlotz et al., 2007), and both younger (Kubo et al., 2001a; 

Magnusson et al., 2003) and older human adults (Reeves et al., 2003a) after short (< 16 

weeks) periods of heavy resistance training. From these results, it is likely that chronic 

loading over an extended period of time may be required to induce an increase in tendon 

CSA (Conkrite, 1936; Rosager et al., 2002). Increases in Young’s modulus are indicative of 

adaptation in the underlying microstructure and collagen arrangement. Some research has 

shown that microstructural changes include an increase in collagen content (Heikkinen and 

Vuori, 1972; Curwin et al., 1988), leading to an increase in mean fibril diameter (Michna and 

Hartmann, 1989; Enwemeka et al., 1992; Patterson-Kane et al., 1997b; Edwards et al., 2005) 

and better alignment of collagen fibres with the direction of force transmission (Elliott, 

1965), facilitating a denser packing of collagen material (Reed and Iozzo, 2002). These 

micro-adaptations improve tensile strength and stiffness (Parry et al., 1978a; Bailey et al., 

1998; Birch et al., 1999; Derwin and Soslowsky, 1999; Battaglia et al., 2003; Provenzano and 

Vanderby, 2006; Rigozzi et al., 2010). Together, these results highlight the developing 

tendon’s preference for qualitative adaptations rather than quantitative changes in collagen 

in order to alter its mechanical properties under loading, much like that observed with 

muscle adaptation to short-term resistance training (Blazevich et al., 2007b). 

 

As a number of tendon properties are calculated from a force range based on a percentage 

of maximum attained force, or from peak force, training-induced increases in maximum 

force at post-testing causes these variables to be calculated from a new force range or peak 

force. For the purpose of removing strength gains as a confounding factor influencing these 
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variables, post-training tendon stiffness, Young’s modulus, strain and elongation were also 

calculated over the pre-training force range. The relative changes in tendon stiffness and 

Young’s modulus were 28% and 29% respectively. This change is only slightly less than that 

found using post-training forces, suggesting that absolute changes in mechanical properties 

as a result of a training intervention were not substantially influenced by strength 

improvements. Although forces are not required for the calculation of tendon strain or 

elongation, both variables are dependent on the force levels as this defines the tendon’s 

deformation, depending on its stiffness. Based on peak force attained at pre-training, there 

were moderate, albeit non-significant, decreases in tendon elongation and strain. These 

small changes in tendon deformation under loading may have consequences for movement 

efficiency and the likelihood of injury, although further examination is required to verify 

this. 

 

6.4.2 Changes in Electromechanical Delay 

An important functional outcome of the training was that EMD was significantly decreased 

(~13%) in the experimental group. This decrease was moderately correlated with the 

magnitude of change in tendon stiffness (r = 0.59). We have previously shown that Achilles 

tendon stiffness was well correlated with EMD in children (Chapter 5), thus the moderate 

decrease in EMD found in the present training group is likely to be partly attributable to the 

increase in tendon stiffness. These results are consistent with those of Kubo et al. (2001a), 

who found a significant decrease in EMD along with a significant increase in tendon stiffness 

after 12 weeks of isometric training in adults. Furthermore, they are in agreement with 

Grosset et al. (2008), who found paired changes in EMD and musculo-tendinous stiffness 

after 10 weeks of either endurance or plyometric training in adults. These results indicate 
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that stiffness of the Achilles tendon is indeed a major determinant of plantarflexor EMD 

(Cavanagh and Komi, 1979), although the possibility of other factors influencing EMD that 

may have changed as a consequence of training may also be partly responsible for the 

decreased EMD observed. As the ability to produce movement relies on the ability to 

produce muscular force, a decrease in EMD of 10 ms, as found here from a short-term 

resistance training, would help to improve the magnitude of muscular force attainable 

within a time frame, thus improving the likelihood of a successful rather than unsuccessful 

movement outcome (Moritani, 2002; Pijnappels et al., 2005; Pijnappels et al., 2008). 

 

6.4.3 Lack of Change in Rate of Force Development 

It was hypothesised that both RFD and tendon stiffness would increase concurrently in 

children as a result of resistance training, based on the positive relationship found between 

these variables in adults (Reeves et al., 2003; Bojsen-Moller et al., 2005) and the 

simultaneous increases reported after a period of resistance training (Thorstensson et al., 

1976a; Narici et al., 1996; Van Cutsem et al., 1998; Aagaard et al., 2002; Gruber et al., 2007; 

Holtermann et al., 2007; Blazevich et al., 2008). However, despite the significant increase in 

tendon stiffness as a result of resistance training, RFD remained unchanged. A moderate 

relationship between tendon stiffness and RFD was shown in children (R2 = 0.34) in Chapter 

4 (page 122) for RFD calculated to 400ms. However, this relationship was demonstrated 

over a substantial range of Achilles tendon stiffness values (~200% difference in means 

between 5 – 6 and 9 – 10 year old children, ~500% difference in stiffness between the least 

and most stiff children). Using the equations presented in that study (Chapter 5, page122, 

Table 5-2) to predict the change in RFD due to change in tendon stiffness, it can be shown 

that RFD to 50, 200 and 400 ms, for example, would increase by 110.1, 347.3 and 562.3 N·s-
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1, respectively. These estimates are in agreement with the findings of the present study (see 

Figure 6-5), and show that only modest increases in RFD are likely with the magnitude of 

tendon stiffness changes achieved with the training performed. In fact, the range of values 

predicted (± 1SD) overlap considerably (e.g. 50 ms = 600.4-766.8 N·s-1 vs. 694.1-893.5 N·s-1 

for pre- and post-training values, respectively), suggesting that a statistically significant 

changes would not have been detected. Potentially, longer or more intensive training 

periods might yield more favourable results with respect to RFD adaptations resulting 

directly from increases in tendon stiffness.  

 

The mechanisms underpinning RFD in children were therefore speculated to involve factors 

other than tendon stiffness. A positive correlation has been observed previously between 

RFD and RER in children (Falk et al., 2009; results of Chapter 5). Other studies have reported 

simultaneous increases in the rate of muscle activation and RFD after resistance training in 

adults (Aagaard et al., 2002; Barry et al., 2005; Del Balso and Cafarelli, 2007; Blazevich et al., 

2008). Together, these results support the previous suggestion of a parallelism between 

these variables (Bell and Jacobs, 1986; Komi, 1986). Here, RER did not change as a result of 

training. Previous studies have also found a lack of change in EMG variables with training 

performed with a slow movement velocity (Narici et al., 1996; Blazevich et al., 2008). It is 

possible therefore that the lack of change in RER may possibly be due to performing the 

training with a slow movement velocity. The lack of change of RER may also represent a lack 

of improvement in the ability to recruit large motor units for force production. Motor unit 

recruitment has been shown to remain significantly unchanged after short-term resistance 

training in children (Ramsay et al., 1990), although other neurological adaptations have 

been demonstrated (Ozmun et al., 1994). It is also known that children do not have the 
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same capacity for motor unit recruitment compared to adults (Asmussen, 1973; Belanger 

and McComas, 1989; Paasuke et al., 2000). It can be concluded, therefore, that short-term 

training using slow movement velocities does not significantly improve neural drive in 

children and thus may inhibit the ability to improve RFD. Training with a fast movement 

velocity may be required to substantiate this conclusion.   

 

6.4.4 Practical Implications 

Tendon stiffness is thought to influence movement performance substantially and an 

increased tendon stiffness in a paediatric population maybe beneficial for several reasons. 

First, the time taken to stretch a stiff tendon to a point where forces are transmitted to the 

bone is shorter than that for a more compliant tendon. Thus, a stiffer tendon might improve 

both rapid force development and subsequent fast movement performance. Hence, the 

muscle may also be required to be active for a shorter time period in order to complete a 

task, which would reduce the metabolic cost of the activity involved (Hill, 1970; Muraoka et 

al., 2004b). Second, a tendon’s stiffness influences the proportion of a muscle-tendon unit’s 

length change completed by the tendon and muscle, respectively (Proske and Morgan, 

1987). This influence has potential implications for movement efficiency by influencing both 

the length of the active muscle fibres (Proske and Morgan, 1987; Lichtwark and Wilson, 

2007) and the elastic energy storage capacity of the tendon (Biewener et al., 1998). Finally, 

tension-sensitive mechanoreceptors located in the muscle (golgi tendon organs and muscle 

spindles), which provide important proprioceptive feedback (Mora et al., 2003; Granacher 

et al., 2010), would be influenced by the tendon’s stiffness and subsequent length change of 

the muscle fibres. This feedback may be greater when tendons are stiffer, which could 

influence spatial awareness of the limbs (Proske and Morgan, 1987) and impact on the 
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regulation of balance and motor control. Conversely, it is possible that training-induced 

increases in tendon stiffness without concurrent muscle adaptations may cause some 

functional negative effects, such as a capacity for elastic energy storage (Lichtwark and 

Wilson, 2007). 

 

6.4.5 Conclusion 

In summary, the present results demonstrate, for the first time, that tendons show a 

considerable adaptive response to strength training in prepubertal children. An increase in 

Achilles tendon stiffness was found without changes to the tendon’s CSA, therefore 

microstructural changes in the tendon must have occurred to increase Young’s modulus. A 

decrease in EMD was associated with the increase in tendon stiffness, however RFD was 

unchanged, suggesting that mechanisms other than tendon stiffness, such as the rate of 

muscle activation, might regulate RFD in children. Nonetheless, tendon adaptation in 

response to chronic increases in loading improves fast muscular force production in children 

and therefore has the potential to influence movement performance. The findings from this 

study may help to explain the differences in movement performance between children and 

adults.
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7.1 Introduction 

Motor skill acquisition is a multifactorial process (McGraw, 1943; Zelazo et al., 1972; 

Hopkins and Westra, 1988; Thelen, 1995). The maturational status of the nervous system 

(McGraw, 1943; Forssberg, 1985, 1999) and coordinative aspects of movement(i.e. 

neuromotor coordination: Turvey, 1990; Shumway-Cook and Woollacott, 2007),are 

important contributors to observed differences in movement performance between 

children and adults. In addition to the maturation of the neuro-motor system, the 

importance of non-neuromuscular factors, such as changes in segmental mass distribution 

(Jensen, 1989)as a contributor to motor skill acquisition in children (Brown and Jensen, 

2006; Korff and Jensen, 2008) has been highlighted. Expanding on these recent findings the 

main purpose of this research was to examine the role of the mechanical properties of the 

muscle-tendon complex in the acquisition of force production capabilities in children.  For 

this purpose, four experiments were conducted. First, we sought to gain an understanding 

of dimensional factors influencing age-related increases in tendon stiffness. To achieve this 

goal, the predictiveness of the Achilles tendon moment arm (a measure necessary to 

calculate tendon stiffness) was documented as a function of superficial anthropometric 

characteristics. Secondly, age-related increases in tendon stiffness were documented with a 

particular focus on differentiation between growth-dependent and maturational changes. 

The final two experimental chapters were then conducted with the goal of specifically 

creating the link between tendon stiffness and force production capabilities in children. In 

Chapter 5, the relationship between tendon stiffness and force production characteristics in 

children were examined in relation to that found in adults. This relationship was further 

examined in Chapter 6 by assessing the effect of a period of strength training on this 

relationship in children. The Achilles tendon was targeted for particular examination 
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because of its significance in many activities of daily living and exercise-related tasks. 

Children from 5 to 12 years of age were studied in order that a more complete 

understanding of the role of tendon stiffness could be gained throughout childhood. An 

overview of each experimental study and the main findings is presented in Table 7.1. 
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Table 7-1. Overview of thesis findings.

Chapter Study Title Methodology Results Conclusion 

Chapter 3 
(Study 1) 

Can Achilles tendon 
moment arm be predicted 
from anthropometric 
measures in prepubescent 
children? 

49 children (5 – 12 years). Achilles tendon 
moment arm (MAAT) was estimated from tendon 
excursion using ultrasonography. Superficial 
anthropometric measures of the lower leg and 
foot, age, standing height and body mass were 
used as predictive variables. 

Foot length and the distance 
between the calcaneus and first 
metatarsal were significant 
predictors of MAAT. However, only 
49% of MAAT variability could be 
predicted using these variables. 

MAAT could not be accurately 
predicted from superficial 
anthropometric measurements in 
children. 

Chapter 4 
(Study 2) 

Independent effects of age, 
body mass and muscular 
strength on the mechanical 
properties of the Achilles 
tendon in prepubertal 
children. 

52 children (5 – 12 years) and 20 adults (10 men 
and 10 women). Tendon mechanical properties 
were measured and relationships with body 
mass, peak force and age were determined. 
Tendon dimensions and mechanical properties 
were also documented as a function of age. 

Stiffness and Young’s modulus 
increased throughout childhood and 
into adulthood. Body mass and 
tendon force could account for 66% 
and 39% of the variability in tendon 
stiffness and Young’s modulus, 
respectively, in children.  

Increases in tendon stiffness with 
age during childhood are largely 
attributable to the effects of 
increasing body mass and peak 
force  production leading to both 
an increased tendon CSA and size-
specific stiffness (Young’s 
modulus).  

Chapter 5 
(Study 3) 

The influence of tendon 
stiffness and muscle 
activation rate on muscle 
force production in children 
and adults. 

48 children (5 – 12 years) and 20 adults (10 men 
and 10 women). Tendon stiffness, electro-
mechanical delay (EMD), rate of force 
development (RFD) and rate of muscle activation 
(RER) were measured and relationships between 
the variables were documented.  

EMD, RFD and RER were significantly 
different between children and 
adults. EMD and RFD were 
significantly correlated with tendon 
stiffness. Together, RER and tendon 
stiffness best predicted RFD in 
children.  

Tendon stiffness impacts 
considerably on EMD whilst both 
RER and tendon stiffness appear to 
have separate but additive 
influences on force production in 
children.  

Chapter 6 
(Study 4) 

Resistance training 
increases tendon stiffness 
and influences rapid force 
production in prepubertal 
children. 

10 experimental and 10 controls. Achilles tendon 
mechanical properties were measured before 
and after 10 weeks of dynamic plantarflexor 
resistance training. 

Increases in peak force, tendon 
stiffness and Young’s modulus 
occurred in response to the training. 
EMD decreased and RFD and RER 
remained unchanged after training. 

Resistance training causes 
adaptation of the developing 
Achilles tendon. Increases in 
tendon stiffness were associated 
with decreases in EMD, but did not 
influence RFD.  
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7.1.1 Predictability of Achilles Tendon Moment Arm with Age-Related Development in 

Children 

Moment arm measurements on a large number of individuals can be challenging, as 

obtaining estimations of this measure typically requires specialist knowledge and expensive 

resources. Given that the distance between the centre of joint rotation and a tendon should 

increase with skeletal growth, it was hypothesised that there should be a relationship 

between the dimensions of a joints anatomic landmarks and muscle-tendon moment arm 

length. The purpose of the first study (Chapter 3) was to determine the predictability of the 

Achilles tendon moment arm from superficial anthropometric measurements. It was found 

that 47% of the variability in MAAT could be accounted for by using a combination of foot 

length and the distance between the calcaneus and 1st metatarsal head. The calculation of 

force is sensitive to small variations in MAAT, therefore it was decided that MAAT could not 

be predicted accurately enough from the anthropometric measures that were collected in 

children for calculating precise tendon forces. For example, the greatest difference in 

predicted and actual MAAT found in this study would have resulted in an error in the 

prediction of calculated tendon forces of ~32%, which would undoubtedly have a significant 

effect on tendon stiffness calculations. This finding, in conjunction with the wide range of 

MAAT lengths found (17 – 38 mm) in the age range studied (5 – 12 years), demonstrates that 

simple allometric scaling should not be used to estimate MAAT in children. In fact, due to the 

unpredictable nature of the MAAT, it was considered essential that each child’s own MAAT be 

used in calculating tendon stiffness in the subsequent studies. Although the choice to 

measure each of the anthropometric measurements was carefully considered and based on 

their theoretical relationship to MAAT, the possibility exists that body anthropometric 
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measurements that were not collected in this study may provide better predictions in 

children. Other researchers may choose alternative measurements in future studies. 

 

7.1.2 Changes in Tendon Stiffness with Age-Related Development in Children 

One of the primary aims of this thesis was to document Achilles tendon stiffness as a 

function of both age and age-related parameters such as body mass and peak muscle force 

(i.e. strength). This was deemed important as there is a lack of information describing the 

development of tendon stiffness (particularly of the Achilles) during childhood (Cornu and 

Goubel, 2001; Kubo et al., 2001b; Lambertz et al., 2003; O'Brien et al., 2010). As a result, 

there are no normative data references for researchers or clinicians. In Chapter 4, Achilles 

tendon stiffness and its relationship with age-related parameters were described over a 

wide range of prepubertal ages (5 – 12 years). Changes in tendon stiffness of the 

magnitudes were found (300% from childhood to adulthood), which could be expected to 

have a substantial impact on the functional performance of the muscle-tendon unit in 

several ways. Firstly, a more compliant tendon elongates further under load compared to a 

stiffer tendon. This might result in a greater elastic storage (E = ½ kx2, where E is the energy 

stored, k is the tendon stiffness and x is the elongation of the loaded tendon) and 

potentially an improved movement economy (Alexander and Bennet-Clark, 1977; Cavagna 

et al., 1977)in some stretch-shorten cycle activities (Bobbert et al., 1986; Blazevich, 2011). 

The advantages associated with a stiffer tendon include a smaller overall fascicle shortening 

and slower shortening velocity for a given joint angle displacement or angular velocity. 

According to the force-length and force-velocity relationships, this would positively impact 

on peak force production. A stiffer tendon would also allow a greater speed of tendon 

recoil, based on a greater restoring force when the tendon is stretched, according to 
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Hooke’s law (F = -kx). This relationship provides important joint power for the fast 

completion of a task (Ker et al., 1988). In addition, a shorter time would be required to 

stretch the tendon for effective force transmission (Komi, 1986; Aura and Komi, 1987)due to 

a shorter EMD and greater RFD, thus a shorter muscle activation period would be required 

in order to achieve the same movement outcome as that with a compliant tendon. 

Importantly, this should incur a lesser metabolic cost. With the above relationships and 

associations in mind, it would appear that the tendon has to compromise between the 

conflicting requirements of appropriate force transmission and movement efficiency (Proske 

and Morgan, 1987). Nonetheless, the lesser Achilles tendon stiffness found in children 

necessitates that muscle forces must be applied with a different magnitude and timing than 

that in adults in order to stretch the tendon appropriately for successful movement 

outcomes. Further research is therefore necessary to quantify the relationships between 

tendon stiffness, muscle activation strategies and movement efficiency (Lichtwark and 

Wilson, 2007) in children. Such research would provide a real indication of whether the 

mechanisms influencing movement efficiency are different in children and adults. 

 

7.1.3 Increases in Tendon Stiffness: Influence of Age and Force Transfer Requirements. 

Increases in both body mass and plantarflexor force production with age were found to be 

more strongly related to increases in Achilles tendon stiffness and Young’s modulus in 

children than age per se (Chapter 4). During daily activities and locomotor tasks, increases in 

muscle force requirements would likely provide a constant mechanical stimulus that would 

require steady tendon adaptation in order to maintain the same muscle-tendon dynamics 

and hence functional performance. In Chapter 6, it was also shown that peak muscle force 

production and body mass each likely provided an independent stimulus for tendon 
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adaptation, because muscle force production increased after 10 weeks of strength training 

without concomitant increases in body mass; the training resulted in a substantial increase 

in tendon stiffness (35%) and Young’s modulus (33%). Importantly, these changes were 

found to occur without a detectable increase in tendon CSA (i.e. tendon hypertrophy), 

which shows that, similar to skeletal muscle adaptation, adaptations in the tendon’s 

mechanical properties in children can occur without significant hypertrophy. The adaptation 

of the developing human tendon observed in response to resistance training is an important 

and novel finding. The practical implications of this finding are vast, and include the 

potential to increase a tendon’s stiffness with specific resistance training in order to 

minimise the movement consequences of neuromuscular and musculoskeletal disorders 

that are associated with a decrease in MTU stiffness, such as hypermobility (e.g. Ehlers-

Danlos syndrome, Marfan syndrome), or for enhancing athletic or general movement 

performance in children, based on the information outlined in the previous section. The 

potential effects of strength training in children, especially in clinical populations, should be 

the subject of considerable future research. 

 

7.1.4 Separating the Effects of Tendon Stiffness and Muscle Recruitment on Force 

Production 

To understand how humans control both simple and complex movements, knowledge of 

muscle force production characteristics is imperative. Until now, the importance of tendon-

specific stiffness on movement production in children has received little attention. The 

present data show that the tendon’s mechanical properties are an important determinant 

of muscle force production in this population, and have the potential to influence motor 

control strategies. Despite only a weak relationship being found between RFD and tendon 
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stiffness, which is consistent with that found in adults (Bojsen-Moller et al., 2005), the 

relationship between EMD and tendon stiffness was clearer: an increased tendon stiffness 

was associated with a shorter EMD. A shorter EMD reduces the interval between a stimulus 

and the onset of muscle force and thus reduces the time required to generate a specific 

force or successfully complete a task (for example, regaining balance after a perturbation). 

Thus, it might be speculated that having a stiffer tendon would be beneficial for balance 

recovery following a perturbation or for other tasks requiring short response times. This is 

an important avenue for future study. 

 

7.1.5 Possible Limitations 

The use of ultrasonography has proven an invaluable tool in determining the structure, 

function and mechanics of soft tissues in vivo. However, there are some limitations to its use 

in imaging tendon elongation in real time. One possible limitation is that variations in the 

orientation of the ultrasound probe with respect to the plane in which excursion of the MTJ 

occurred can induce an error. Off-plane observations would cause an underestimation of 

the tendon’s elongation (Loram et al., 2006; Wilson et al., 2009), which has repercussions 

for calculating tendon stiffness. Extensive practice of imaging the GM MTJ was done during 

pilot testing, resulting in highly reliable data, thus this limitation is likely to be minimal. 

Other limitations include a requirement to manually digitise the position of the MTJ during 

active conditions, which is particularly time consuming and allows for measurement 

subjectivity. Although an automated tracking algorithm (Lee et al., 2008) was trialled to limit 

investigator-dependent subjectivity, there were several drawbacks associated with it, 

including the fact that it had not yet been validated for use in active muscle conditions. Thus 
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it was not used in the present research. Extensive practise of the manual digitisation 

procedure during pilot testing allowed a high reliability to be obtained (CV = 4.5%).  

 

There are also several limitations to the tendon excursion (TE) method for determining 

MAAT(Fath et al., 2010). One such limitation central to this thesis is that MAAT, used in 

calculating tendon stiffness, increases as a function of muscle contraction intensity 

(Maganaris, 2004) and is not detected using the TE method. Maganaris et al, (2004) found a 

22 – 27% increase in the MAAT during a maximal isometric contraction using MRI. As there is 

a strong correlation between MAAT calculated using TE and COR (Fath et al., 2010), 

consideration was given to scaling up the MAAT by a similar factor to represent an active 

MAAT. However, this was ultimately deemed unnecessary because the same method of 

analysis was used for all participants, thus any results or relationships found in the research 

conducted would not have been affected. Leaving the data unscaled also allowed direct 

comparison with previously published data (which were also not scaled).  

 

7.1.6 Conclusion 

The main findings from the four experimental studies (Chapters 3 – 6) include that there is 

an age-related increase in Achilles tendon stiffness that continues through to adulthood, but 

that this increase was strongly and independently associated with body mass and peak force 

production capacity rather than age per se. It is likely that the increased loading stimuli 

provide the tendon with a constantly increasing mechanical stimulus during standing, 

locomotion and other tasks. The age-related increase in tendon stiffness was associated 

with increases in tendon CSA and Young’s modulus, although the increase in Young’s 

modulus is suggestive of microstructural tendon adaptation from mechanical loading also 
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(Chapter 4). Achilles tendon stiffness was strongly linked with force production 

characteristics in children. A moderate proportion of EMD and RFD variability could be 

predicted from tendon stiffness in both children and adults, although RFD predictability was 

significantly better when rates of muscle activation (i.e. RER as calculated in the present 

research) were also included in a regression model (Chapter 5). In the final study, significant 

increases in Achilles tendon stiffness were found in children after 10 weeks of resistance 

training without a detectable increase in tendon CSA. This finding demonstrates that chronic 

loading from brief, high muscle forces provides sufficient stimulation for tendon adaptation 

in children. In support of the relationships found in Chapter 4, this finding also shows that 

body mass and peak muscle force have independent influences on tendon stiffness, because 

peak strength increased significantly as a result of the training whilst body mass remained 

unchanged. EMD was reduced as a consequence of both age- and training-induced increases 

in tendon stiffness, but RFD was unchanged after the strength training. This latter result 

shows that more substantial increases in tendon stiffness might be required before 

significant changes in RFD are identified. It is also suggestive that other factors such as the 

rate of muscle activation is a primary determinant of RFD in children; the training did not 

induce a change in the rate of muscle activation. Although movement performance was not 

the focus of the present research, the changes in muscle force production and tendon 

properties with both ageing and strength training in the children could be expected to 

substantially influence it. Thus, tendon stiffness should not be overlooked as a factor 

contributing to differences in performance between adults and children and deserves to be 

fully investigated in future research. 
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Information sheets  – Chapter 6. 

 
Dear Parent, 
 
Researchers at Brunel University are investigating the influence of strength training on movement 
efficiency and muscle force production in prepubescent children. As part of a collaboration with 
Ravenor Primary school, your child has been invited to participate in a project organised by the 
School of Sport and Education at Brunel University, looking at strength and stiffness of the lower leg 
with age and training.  
 
A 10-week study will be conducted where the children complete a resistance training session during 
their P.E lessons.  Such training has been shown to have substantial health benefits in children and is 
very safe to do; the programme has been specifically designed for the children in year 4.  The 
training will be performed in circuit fashion, where the children perform several repetitions of an 
exercise before moving immediately to another.  The exercise programme will be completed twice a 
week for 10 weeks during the school day. A leaflet outlining the benefits of this type of training has 
been included with this letter for your information.  
 
In addition to training, the project will require the pupils to come to our biomechanics department 
at Brunel’s Uxbridge campus on two occasions – before and after the 10 weeks of training. This will 
be organised as part of a science morning/afternoon where children will learn about the effects of 
exercise on the body by participating in some simple but interesting experiments e.g. see how much 
oxygen they breathe whilst cycling on a stationary bike. There is also the possibility of having a 
lesson on our indoor climbing wall! A mini-bus will be arranged to transport the children between 
school and the University. 
 
On their visits to Brunel, each student will have their strength tested. The strength test uses 3-
Dimensional motion capture cameras (like the ones used in the CGI movies!) to look at movement, 
and an ultrasound machine to record videos of the muscle during the test - all whilst our strength 
testing machine tells us the strength of the muscle. The experience is a very fun, interesting & 
informative one! Children who complete the study will be awarded with a personalised certificate as 
well as an ultrasound picture of their leg muscles.  
 
The data we collect from this project will be used for research purposes, and the data will be 
disseminated through published work and oral presentation.  We therefore ask for you and your 
child’s written informed consent to participate. If you agree to your child taking part after reading 
the attached research participation form, I would appreciate if you could fill out the attached 
consent and screening forms. 
 
Thank you in advance for your time and cooperation. Please contact Mrs Hancell or myself if you 
have any further questions. 

 
Sincerely, 
 

 
Charlotte Waugh 
Brunel University 
School of Sport and Education 
Uxbridge, Middlesex, UB8 3PH 
E-mail: charlotte.waugh@brunel.ac.uk 
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Appendix III 

Consent forms  – Studies 1, 2 and 3. 
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Consent forms – Chapter 6. 
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