
 

 

 
 

 

 

 

 

CHARACTERISATION OF  

COLLAGEN-DERIVED BIOMATERIALS 
 

 

 

A thesis submitted for the degree of Doctor of Philosophy 

 

 

 By 

Lisandra Eunice de Castro Brás 

 

 

 

 

School of Health Sciences and Social Care – Biosciences 

Brunel University 

 

 

May 2009 



 

 

ABSTRACT 

 

 

One of the main problems in healthcare is the loss or failure of organs or tissues 

resulting from diseases, post-surgery complications, trauma or organ failure. As a 

result of tissue and organ shortage, there is a need for biomaterials designed to 

promote tissue regeneration resulting in good quality repair of tissues or organs, to 

maintain or repair biological function. Collagen, as one of the main proteins in the 

human body, has been extensively used in the development of biomaterials which can 

be used as tissue substitutes or can assist in tissue regeneration.  

Before commercialisation is allowed all biomaterials must prove to be functional and 

suitable for clinical use. Therefore, the evaluation of biomaterials requires rigorous 

and relevant testing. Biomaterials must be able to perform with an appropriate host 

response in a specific application. Tests must provide information to understand the 

host response, long-term outcome and issues pertaining to these.  

 

In the research reported in this thesis, an acellular porcine derived cross-linked 

collagen-based biomaterial (Permacol surgical implant) was analysed with a wide 

range of evaluation and compared to acellular noncross-linked and cellular, naturally 

cross-linked, equivalents. These matrices were characterized relating to their 

structure, composition and mechanical and biochemical properties. In addition, 

biological characterisation was performed through several studies designed to 

evaluate and compare biological responses in vitro, as well as in situ assessment of 

biocompatibility and effectiveness as a repair material and as bulking tissue.  

Permacol surgical implant was shown to be biocompatible, effective and efficient 

when used as bulking tissue and for soft tissue repair; furthermore, this biomaterial 

was resistant to enzymatic digestion and tolerant to bacterial presence suggesting that 

it could be used in some complicated clinical situations. 
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“The important thing is not to stop questioning. Curiosity has its 

own reason for existing.” 

Albert Einstein 
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1.0 INTRODUCTION  

 

 

 

A recurrent problem faced in healthcare is the loss or failure of organs or tissues. The 

clinical need for tissue and organ substitutes originates from diseases (age-related, 

inherited and infectious), congenital defects, tumour resection, post-surgery 

complications, trauma or organ failure. The healthcare costs for patients with tissue 

loss or organ failure exceeds billions annually (Bottano and Heidaran, 2001) and the 

number of deaths resulting from inadequate supply of suitable tissue or organ 

substitutes indicates the extent of the problem and the need for efficient, long-term, 

cost-effective solutions.  

The quest for the ideal tissue or organ substitute started over a century ago, scientists 

and surgeons have been pursuing biomaterials to promote tissue regeneration in 

replacement or repair of lost or damaged tissue to achieve biological function. Recent 

literature is replete with the investigation of such biomaterials. Tissue engineering is 

an emerging multidisciplinary field involving biology, medicine and engineering with 

the purpose of improving health and quality of life by restoring, maintaining or 

enhancing tissue and organ function (Metcalfe and Ferguson, 2007). The current gold 

standard for tissue replacement or repair is autografts, where a tissue is transplanted 

from one site to another on the same patient. Autologous grafts are not without 

disadvantages, including added surgical complexity, donor site morbidity, limited 

amounts of material for grafting procedures and, occasionally, absorption or partial 

absorption of the graft (Cillo et al., 2007).  

When autologous tissue is not available or suitable, allografts become the most 

common choice. The ideal tissue for transplantation would be sourced from a 

genetically identical donor (isograft) but, if this is not available and urgently needed, a 

non-identical but as close a match as possible member of the same species is used. 

Unfortunately, autografts and allografts are not easily available and are difficult to 

preserve, which makes xenografts (transplant from a different species) a valuable 

putative tissue replacement alternative. 

Xenotransplantation into humans offers a potential treatment for end-stage organ 

failure but it also raises many contentious medical, legal and ethical issues. A 
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continuing concern is disease transmission; other causes of concern are tissue/organ 

rejection and the fact that animals have different lifespan than humans and their 

tissues age at a different rate (Lavery, 2000). Because there is a worldwide shortage of 

tissue and organs for human clinical implantation, a high percentage of patients 

awaiting replacement tissue and organs die on the waiting list. Recent advances in 

understanding the mechanisms of transplanted tissue and organ rejection have brought 

science to a stage where it is reasonable to consider that tissue and organs from other 

species may be engineered to minimize the risk of rejection and could therefore be 

used as an alternative to human tissues, possibly reducing organ shortages. 

Techniques to replace or repair tissue/organs have historically relied solely on pure 

tissue grafting but developments in tissue engineering are beginning to provide 

alternative treatments. In addition to engineered organs, synthetic and natural 

biomaterials continue to be developed and many are nowadays in clinical use. There 

are two main approaches to tissue engineering for generating tissues or organs. One 

involves cell-free materials and the other relates to delivering cells in combination 

with synthetic or natural matrices to contribute to the regeneration process (Glowacki 

and Mizuno, 2008). In this thesis, only cell-free biomaterials will be considered. 

Tissue engineered biomaterials may originate from a wide range of sources both 

synthetic and natural. Materials frequently used as scaffolds include natural polymeric 

materials, synthetic polymers or ceramics, biodegradable polymers or polymers with 

adsorbed proteins or immobilized functional groups (Chung and Park, 2007). 

Examples of natural materials include hydroxyapatites, hyaluronan, polypeptides, 

glycosaminoglycans (GAGs), fibronectin and collagen (Metcalfe and Ferguson, 

2007). Common synthetic materials used in tissue engineering are polylactic acid 

(PLA), polyglycolic acid (PGA) and polycraptolactone (PCL) (Chung and Park, 

2007). A major disadvantage of synthetic materials is the lack of cell-recognition 

signals which influences cell-matrix interaction. Natural materials also have the 

advantage of inducing lower inflammatory reactions and, for many, being of low 

toxicity. 

An appropriate and effective scaffold needs to fulfill physical, mechanical and 

biological requirements (Hin, 2004), which can be grouped in four broad categories:  

1. Biocompatibility: be non-toxic, non-antigenic, induce low inflammatory and 

low immune reactions; 
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2. Sterilization: biomaterials must be able to withstand sterilization and retain 

their original structure and function; 

3. Function: biomaterials are designed dependent on the clinical application. To 

perform accordingly the material must either be non-degradable or undergo 

controlled degradation or remodelling whilst allowing enough time for 

adequate host tissue ingrowth and should integrate with the immediately 

surrounding host tissue and encourage neo-vascularisation; 

4. Manufacture: be cost effective and off-the-shelf. 

 

The extracellular matrix (ECM) comprises many of the required features for an ideal 

biomaterial; it is designed and manufactured by the resident cells of each tissue and 

organ and is in dynamic equilibrium with its surrounding microenvironment, which 

makes it the ideal biologic scaffold material (Badylak, 2007). The structural and 

functional properties of the ECM molecules provide cell-cell interaction and cell-

matrix interaction, as well as providing a dynamic, mobile and flexible substratum or 

conduit for blood vessels and for the diffusion of nutrients (Cen et al., 2008). The 

complex three-dimensional (3-D) structure of ECM has not been fully characterised, 

therefore, mimicking it in the laboratory has proved to be difficult. As an alternative, 

biologically intact ECM or ECM components have been used as biological scaffolds 

both in vivo and in vitro to facilitate appropriate cell growth and differentiation. 

Usual ECM constituents of connective tissue are collagen, hyaluran, elastin and 

GAGs. Collagen has a dominant role in maintaining the biologic and structural 

integrity of ECM. Collagen is the main constituent of skin, cartilage and tendons, as 

well as the organic component of teeth, cornea and bone. It constitutes approximately 

25 to 33% of the total protein in mammals (Harrington, 1996). Therefore, any 

procedure resulting in degradation, damage or loss of integrity of this protein has 

significant health implications (Watanabe, 2004).  

In the 1970s and the 1980s, because of the expansion of medical applications of 

biomaterials, research scientists focused their studies on collagen as a biomedical 

implant because of its excellent biocompatibility and weak antigenicity (Friess, 1998; 

Lee et al., 2001a). However, although it presents many benefits in tissue engineering 

there are limitations to its use, particularly, when in its native form, due to its 

biodegradability, lack of mechanical strength and ineffectiveness in the management 

of infected sites (Friess, 1998). Therefore, methods to eliminate or decrease these 



                                                                                                           INTRODUCTION 

 -4- 

deficiencies have been extensively studied through the course of tissue engineering 

history by improvement of physical, chemical and biological properties to develop the 

potential for collagen based applications. 

It is important to have knowledge of the native structure and chemical properties of 

collagen to understand the characteristics of isolated collagen materials and the effects 

resulting from treatments and modifications to improve its potential range of tissue 

restoration use. 

 

 

1.1 COLLAGEN  

 

The first widespread use of collagen in the surgical field was as suture material most 

commonly referred to as catgut (Lynn et al., 2004). Catgut is derived from intestinal 

tissue, from cattle or sheep, which was treated to eliminate all non-collagenous 

molecules and cross-linked to promote strength. Due to the extended historic use of 

collagen materials produced from different sources by an assortment of methods and 

because of the structural complexity of the protein, the term collagen is usually 

applied generically and may describe individual molecules, a native fibril in situ or in 

vitro, fibril aggregates or denatured gelatine (Friess, 1998). 

 

 

1.1.1 Collagen Molecule 

 

The collagens are a family of proteins that are the major components of vertebrate 

tissues. A collagen molecule is constituted by a unique triple-helix configuration of 

three chains of polypeptides subunits, known as α–chains, ending in non-helical 

carboxyl and amino terminals (telopeptides), one at each extremity (Figure 1.1). Each 

chain is a left-handed helix and the three helices are wound into a right-handed triple 

helix (Harrington, 1996). The triplet sequence Gly-X-Y is common within the triple 

helical domain, where Gly stands for glycine, X and Y are often proline and 

hydroxyproline (Cen et al., 2008). Glycine has the smallest side group and its 

repetition at every third position allows close package of the chains into a helix. The 
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amino acids in collagen molecules contain amine groups (-NH2), acids (-COOH) and 

hydroxyls (-OH). These groups, in conjugation with the amide bond of the polymer, 

are locations for possible chemical reactions on collagen.  

 
Figure 1.1 – Diagram of a collagen molecule.  

 

Collagen molecules assemble to form microfibrils, consisting of four to eight collagen 

molecules, which in turn form fibrils which have a variable diameter depending on 

tissue type and stage of development. Fibrils organize into collagen fibres, which can 

form even larger fibre bundles (Kavitha and Thampan, 2008). In their natural state, 

the collagen triple helices are stabilized by intra- and intermolecular cross-links and 

by interchain hydrogen bonds. When a collagen molecule is denatured these bonds are 

disrupted and results in gelatin formation. True collagenases cleave the collagen helix 

in fibrillar forms under physiological conditions of pH and temperature. Other 

enzymes can only degrade the soluble form of collagen (gelatin) and non helical 

regions (Varani et al., 2000). 

 

 

1.1.2 Collagen Types 

 

There are at least 20 genetically different vertebrate collagen types, which are 

generally associated with particular tissues (Metcalfe and Ferguson, 2007). Collagen 
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types vary in the length of the helix (from 600 to 3000 amino acids) and the nature 

and size of the non helical portions (Friess, 1998). Collagens have been classified into 

fibrillar, nonfibrillar and novel collagens. The fibrillar collagens include types I, II, 

III, V and XI. Of these, the first four are the main types, being present in dermis, 

tendon, bone, vessels, cornea and cartilage (Cen et al., 2008).  

Herein, only collagen type I will be discussed since it is undoubtedly the most 

abundant collagen type in nature and the majority of collagen derived biomaterials, 

for biomedical applications, are based on this type. 

Collagen type I is predominant in higher order animals especially in tendon, dermis, 

bone, dentin, fibrocartilage, cornea, intestine, large vessels and uterus (Friess, 1998). 

Collagen type I molecule contains three polypeptide α-chains, each consisting of more 

than 1000 amino acids. There are only minor differences between this collagen type 

from different vertebrate species (Friess, 1998), which partially explains its low 

antigenicity.  

The tertiary structure refers to the fundamental unit also known as tropocollagen: 

three polypeptide chains intertwine to form a right-handed triple-helix with an average 

molecular weight of 300kDa, a length of 300nm with a diameter of 1.5nm. 

Additionally, the regions at the amino and carboxyl terminal chain ends of the 

molecule are not incorporated into the helical structure and are denoted as 

telopeptides. The terminal regions are believed to contribute to most of the antigenic 

properties of collagen (Khor, 1997). 

 

 

1.1.3 Natural Cross-links 

 

The primary reason for the usefulness of collagen in biomedical application is that 

collagen can form fibres with considerable strength and stability through its self-

aggregation and intra- and intermolecular cross-linking (Lee et al., 2001a). Initially, 

the formation of cross-links is mediated by lysyl oxidase during fibril formation 

which is limited to the telopeptide regions. Intramolecular cross-links occur between 

two α–chains in the non-helical section of the same molecule by condensation of two 

aldehydes. Intermolecular cross-links form between the telopeptide region of one 

molecule and the helical region of an adjacent molecule (Friess, 1998). Natural cross-
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linking gives high tensile strength and proteolytic resistance to collagen, evidenced by 

its function as the primary structural protein in the body. Nevertheless, it is still liable 

to collagenolytic degradation by enzymes such as collagenase and telopeptide-

cleaving enzymes. Hence, it is often necessary to confer structural stability and 

collagenase resistance to implant materials by introduction of exogenous cross-linking 

into the molecular structure.  

 

 

1.1.4 Collagen Antigenicity 

 

Until 1954, collagen was mainly considered to be non-immunogenic. Although the 

clinical incidence of immune reactions to acellular collagen implants is not frequent, 

they do occasionally occur, and thus an understanding of their cause is essential for 

the design and application of new biomaterials (Lynn et al., 2004). 

Macromolecular features on an antigen molecule which interact with antibodies are 

referred to as antigenic determinants; these elicit different levels of interactions. 

Antigenic determinants of collagen can be divided into three categories (Lynn et al., 

2004): 

- Helical – antibodies depend on 3-D conformation to recognise the antigen (A-

determinants); 

- Central – recognition is based on amino acid sequences and the antigen 

determinant is located within the triple helix; 

- Terminal – when antigenic determinants are located in the non-helical 

telopeptide terminal regions (P-determinants). 

 

Collagen has shown a high degree of evolutionary stability in the triple helical region 

and variation in the amino acids sequence does not exceed more than a few percent 

between mammalian species. Because telopeptides show a greater degree of 

variability, many biomaterials are pre-treated to remove the non-helical telopeptides 

(Glowacki and Mizuno, 2008). 

The immune response to an antigen involves a wide range of molecules and cell types, 

in which the cascade of events from recognition to elimination of antigen is complex 

and comprises both humoral (antibody-mediated) and cell-mediated responses. It is 
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important to understand that certain antigenic determinants are often hidden epitopes, 

only interacting with antibodies when the triple helix has unwound. 

 

 

1.2 STRUCTURE AND PROPERTIES OF BIOMATERIALS 

 

The physical and mechanical properties of biomaterials must match as closely as 

possible the properties of the tissues to be substituted and those of the surrounding 

tissues. Although collagen, proteoglycans, water and cells constitute the bulk of the 

human body, it is the arrangement of these components that differentiates tissue types 

(Silver and Christiansen, 1999). When designing a biomaterial the clinical application 

needs to be considered with regard to characteristics and properties of the 

biomaterial(s) which include chemical, toxicological, electrical, morphological, 

physical and mechanical properties. 

Matrix components and structure will mostly define the interactions between host 

cells and biological scaffold. The behaviour of the collagen macromolecules 

constituting the biomaterial and their packing arrangement will ultimately dictate how 

the biomaterial will perform in situ. The orientation of collagen fibres within a tissue 

will change drastically the mechanical properties of the tissue. In addition to molecule 

orientation and matrix 3-D architecture, the surface properties of the matrix used as a 

biomaterial have a major role in determining host response and biocompatibility.  

After implantation, body fluids interact with the scaffold matrix, this interaction is 

dependent on surface signals and morphology, and eventually fluid-implant 

interaction will affect protein conditioning and cell adhesion to the matrix (Black, 

2006). 

In recognition of the importance of interfacial chemistry, considerable efforts have 

been made to design biomaterials with specific surface properties to optimize in vivo 

and in vitro performances, while retaining the desired bulk features. 

Cell attachment, migration, proliferation and differentiation are phenomena related to 

development and wound healing. Although much is known in this area, the 

mechanisms regulating these processes are not fully understood.  

Many studies have confirmed the importance of substrate topography in cell 

behaviour (Brown et al., 1998; Garcia et al., 2006; Ng and Swartz, 2003; Rhee and 
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Grinnell, 2007). Cells become oriented in response to the underlying surface, usually 

referred to as contact guidance. When developing a biomaterial one constant concern 

is designing it in a way to improve the ability of cells and tissue to attach, integrate, 

migrate and interact normally with the implant. There are several factors which will 

influence cell adherence to the substrate, including surface charge, composition, 

energy, oxidation level and morphology relevant to cell-matrix interactions (Silver 

and Christiansen, 1999). 

Adhesion of cells to a substrate involves several steps: attachment to the surface, 

reorganization of cytoskeletal components, formation of adhesion plates and 

deposition of an organized ECM (Grinnell and Lamke, 1984). Cells adhere to ECM 

collagen by one or more cell attachment factors that have specific receptors for ECM 

molecules such as collagen and fibrinogen (Friedl and Bröcker, 2000). Integrins are a 

family of cell surface adhesion proteins that mediate cell-to-ECM adhesion and cell-

to-cell adhesion. Proteins of the ECM, including collagen, bind to integrins in the 

extracellular region of a plasma membrane receptor (Batchelor and Chandrasekaran, 

2004). Adhesion proteins not only promote cell attachment but also induce cell 

migration and differentiation. Cell migration is thought to occur as a response to cell-

surface stimulation by ECM molecules (Silver and Christiansen, 1999).  

Cell-cell and cell-matrix interaction are essential in several biological processes, 

including successful transplantation and implantation. Cellular interactions are also 

fundamental for angiogenesis or neo-vascularisation of the biomaterial to occur. The 

scaffold ECM provides critical support for vascular endothelium, primarily through 

adhesive interactions mediated by integrins positioned on the endothelial cells (ECs) 

surfaces (Davis and Senger, 2005). These interactions together with focal adhesions 

and cells ability to stimulate multiple downstream signalling pathways regulate cell 

adhesion, proliferation and survival within the matrix (Metcalfe and Ferguson, 2007), 

culminating in vascularisation of the matrix.  

 

 

1.3 BIOCOMPATIBILITY OF BIOMATERIALS 

 

As medicine advances and the application of novel materials receives increasing 

interest, the market for biocompatible materials increases continuously. The ability of 
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potential materials to fulfill their purpose is dependent upon several features including 

biocompatibility, non-toxicity, sterility, integration with host tissue, local tissue 

reactions, structure/dimension retention, provide adequate correction without 

migration, easily manipulated by the surgeon, provide tissue bulk where required, be 

long lasting yet able to be removed if necessary, allow host tissue ingrowth with good 

aesthetic results, offer a rapid recovery time, be accessible and non-expensive.  

The evaluation of materials ability to perform, with an appropriate host response in a 

specific application, requires suitable testing, that is, tests must provide solutions to 

understand the host response, long-term outcome and issues pertaining to these.  

Biomaterials in clinical use must be approved by the US Food Drug Administration 

(FDA) and/or by the European Committee for Standardisation (CEN), which implies 

performing to certain standards by complying to the requirements of ISO 10993 (EN 

30993), which refers to biological evaluation of medical devices as shown in Table 

1.1 (Braybrook, 1997). However, host responses are complex and may be unique; it is 

this complexity which restricts the accuracy and reliability of existing tests. It is 

becoming all the more evident that severe limitation in the function and/or 

biocompatibility of a number of commercially available biomaterials may still exist. 

 

Table 1.1 – Contents of ISO 10933 (EN 30993): Biological evaluation of medical 

devices. 

Part 1 Guidance on selection of tests 

Part 2 Animal welfare requirements 

Part 3 Tests for genotoxicity, carcinogenicity and reproductive toxicity 

Part 4 Selection of tests for interaction with blood 

Part 5 Tests for cytotoxicity: in vitro methods 

Part 6 Tests for local effects after implantation 

Part 7 Ethylene oxide sterilisation residues 

Part 8 Clinical investigation (not part of EN 30993) 

Part 9 Degradation of materials related to biological testing 

Part 10 Tests for irritation and sensitisation 

Part 11 Tests for systemic toxicity 

Part 12 Sample preparation and reference materials 
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Many of the adverse responses to implants are associated with interactions between 

the surface of the biomaterial and host components of biological pathways and/or 

inflammatory mediators; in addition, residues or secondary products resulting from 

the implant remodelling or degradation may also induce an adverse response from the 

host. Adverse effects include complement depletion after activation of the 

complement system, resulting in an increased predisposition to infection, local 

inflammation and foreign body response to implant materials (Silver and 

Christiansen, 1999). Clinical reports describing epidemiological studies are sparse, 

since the number of complications associated with the use of implants is low and 

usually are related to isolated cases. Published studies are mainly retrospective 

reviews after the appearance of a number of clinical reports on unfavourable 

outcomes associated with major health concerns. 

 

 

1.4 HOST RESPONSE: BIOLOGICAL EFFECTS OF BIOMATERIALS 

 

The host response continuum is a cascade of responses that begin with the 

implantation procedure and with the presence of the foreign biomaterial. It includes 

inflammatory and wound healing responses, foreign body reactions and occasionally 

biodegradation and fibrous encapsulation. Assessment of biological responses is a 

measure of the magnitude and duration of the adverse effects in homeostatic 

mechanisms that determine the host response (Anderson, 2001). 

When a biomaterial is implanted it will cause a cellular and tissue response. The 

nature and level of the response must be considered when assessing the relative safety 

of the biomaterial. Cellular responses include: 

- Cell adaption, such as changes in the type and quantity of proteins 

synthesised; 

- Cell size and number; 

- Cell shape; 

- Cellular injury. 

 

Contact with foreign cells and/or implants may lead to host cellular changes and 

ultimately to cell death. In the presence of a stimulus, cells will try to adapt to the new 



                                                                                                           INTRODUCTION 

 -12- 

environment; cell degeneration is sometimes reversible and does not always 

culminates in cell death, although continuous exposure to the insult may lead to 

eventual death. 

When cell size increases without an increase in the number of cells in the tissue 

(hypertrophy) when in contact with an implant, it is usually as result of excessive 

synthesis of proteins (Silver and Christiansen, 1999), as hypertrophy usually results 

from a chemical change or stress. Hyperplasia, or increase in cell number, can occur 

in normal or pathological situations, a known example is the proliferation of 

fibroblasts in granulation tissue during wound healing. Hyperplasia may be due to any 

number of causes including chronic inflammatory response, hormonal dysfunctions, 

increased demand or compensation for damage or disease.  

In the presence of a new substratum cells may change in shape dependent on cell-

matrix interactions and cell adhesion to the substrate. Cell injury resulting from the 

presence of a biomaterial may originate from physical, chemical or immune factors, 

or combination of any or all of these.  

 

 

1.4.1 Biodegradation 

 

Most biomaterials are biodegradable, these are frequently used in applications 

requiring temporary presence in the body. Biodegradation occurs at different rates 

depending on matrix components and cross-linking level. Some implants will degrade 

within a short period of time, while others are slowly remodelled and degraded by the 

host cells. Biomaterial biodegradation is an important factor that should be considered 

during design of a material and that choice should relate to the intended clinical 

application. 

In situ biodegradation can not be neglected since it will affect the material’s physical 

and chemical properties leading to loss of integrity and ultimately to functional 

failure. Furthermore, the degradation of the matrix in situ may result in release of 

bioproducts with different properties from the bulk material in terms of biological 

response and may show some level of toxicity towards host cells and surrounding 

tissue. A well-known example in recent medical history is the in vivo degradation of 

silicone gel breast implants (Braybrook, 1997). 
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Degradation products may remain at the site of implantation or may be transported by 

cells or fluid to other parts of the body, including blood stream. The level of their 

biological acceptance depends on their nature and concentration. Even though toxicity 

tests are one of the requirements of ISO 10933, the effects of degradation products on 

the body can only be truly accessed on a case-by-case basis.  

When evaluating biodegradation the amount of degradation during a given period of 

time, the nature of the degradation products and the origin of the degradation products 

must be taken into account. Furthermore, it is also important to analyse degradation 

products in adjacent tissues and in distant organs. 

Biomaterial degradation is mostly accomplished by phagocytic activity. Macrophages 

may coalesce to form multinucleated foreign body giant cells; giant cells and 

macrophages are often the more prevalent cells in the process of implant material 

degradation. 

 

 

1.4.2 Wound Healing 

 

Wounds naturally heal by themselves and usually the only long-term effect is a scar 

which will become less noticeable with time. During development, the embryo shapes 

and remodels its tissues converting a single fertilized egg cell into a minute model of 

the adult organism. Surprisingly, wounds made early in gestation, in embryos of many 

species including humans, heal quickly and do not leave a scar (Wadman, 2005). As a 

result of these findings, researchers have been analysing embryogenesis in the hope of 

improving adult wound healing. Ideally wounds would heal without scarring and 

delayed or non-healing wounds would be provided with the necessary stimulus to 

progress towards a healing wound. While the means to provide perfect healing are not 

achieved and since clinicians are presented daily with numerous wounds, which will 

differ in type and level of severity, novel treatments to assist and improve wound 

healing are being developed and many of these treatments use biomaterials as support 

tissue for host tissue regeneration. 
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1.4.2.1 Acute Wounds 

 

Since a biomaterial is needed for repair, regeneration or replacement of a tissue, 

implantation results in tissue injury. It is this injury and the subsequent perturbation of 

homeostatic mechanisms that lead to the cellular cascades of wound healing.  

Wound repair is a complex process that does not occur in a haphazard manner but 

rather in a carefully regulated and systematic cascade that correlates with the 

appearance of different cell types in the wound during various stages of the healing 

process. The healing procedure requires temporal and spatial coordination of different 

processes, including haemostasis and inflammation, formation of new tissue, 

angiogenesis and matrix remodelling (Jackson et al., 2005; Krampert et al., 2005).  

Acute wounds are those without an underlying healing defect that usually occur 

secondarily to surgery or trauma in a healthy individual, healing quickly and 

completely.  

Repair of wounded tissue is a complex biological occurrence in which numerous cells, 

cytokines, growth factors, proteases and ECM components act together to restore the 

integrity of injured tissue (Kuhn et al., 2000). These events are also regulated by cell-

cell interaction and cell-matrix interaction. Cells that participate in wound healing 

include resident cells, such as epithelial cells, fibroblasts, dendritic cells and 

endothelial cells. In addition, newly recruited cells, including platelets, neutrophils, T 

cells, natural killer cells and macrophages from the circulation converge to the area 

and become involved (Lingen, 2001). 

 

Inflammation 

 

Contrary to an immune response, inflammation resulting from a host response to the 

presence of a biomaterial is a non specific defence mechanism. 

Tissue injury causes the disruption of blood vessels and plasma extravasates. A clot 

forms and platelets degranulate at the site of injury re-establishing haemostasis and 

providing a provisional ECM for cell migration (Ehrlich and Krummel, 1996). 

Platelets not only facilitate the formation of a clot but also secrete several mediators 

of wound healing that attract and activate macrophages and fibroblasts (Broughton et 

al., 2006; Singer and Clark, 1999). Inflammation results in vasodilatation and 
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increased vascular permeability. Interstitial flow is present in soft tissues as an 

important component of the microcirculation between blood and lymphatic vessels, 

and interstitial flow is increased during events such as inflammation and wound 

healing where an influx of inflammatory cells and active angiogenesis factors both 

contribute to increased fluid flux into the surrounding tissues (Ng et al., 2005).  

The predominant cell type present during inflammation varies with time of injury. In 

general, neutrophils predominate in the early stages (days to weeks) and eventually 

are replaced by monocytes as the predominant cell type (Stevens et al., 2002). Three 

factors account for this change in cell type: (a) neutrophils are short-lived and 

disintegrate after 24 to 48 hours post activation (Anderson, 2001); (b) following 

emigration from blood vessels, monocytes differentiate into macrophages, which are 

long-lived cells (up to months) (Stevens et al., 2002); (c) monocyte emigration may 

continue for days to weeks, depending on the injury and implanted biomaterial 

(Jackson et al., 2005).  

Macrophages are the major source of angiogenic activity in a healing wound; they 

make and secrete a vast array of enzymes and growth factors, and are central to both 

debridement and regulation of wound metabolism (Arnold and West, 1991). 

Macrophage angiogenic activity is switched on in a wound when oxygen tension is 

low and lactate is high from anaerobic metabolism (Folkman and Shing, 1992). At the 

same time, the extracellular environment is being modified by phagocytosis and 

secretion by inflammatory cells (Arnold and West, 1991). The degradation of the 

ECM, which is required so that ECs can migrate between the collagenous dermis, 

depends on the production of collagenase (Singer and Clark, 1999). Proteolysis is 

required to allow inflammatory cells to enter the wound site and to degrade the 

provisional fibrin clot. Proteinases are involved in cell migration, in wound 

contraction and in scar remodelling (Krampert et al., 2005).  

 

Proliferation 

 

The final phases of inflammation coincide with the migration of fibroblasts and ECs 

and the formation of granulation tissue. Angiogenesis and fibroplasia then take place, 

with fibroblasts being the predominant cell type producing collagen and ECM 

(Metcalfe and Ferguson, 2007). In the initial phase of capillary sprouting, the 

basement membrane of ECs in the parent blood vessel is degraded; most degradation 
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is mediated by EC proteinases and a variety of matrix metalloproteinases (MMPs) 

(Benbow et al., 1999; Carmeliet, 2004; Folkman, J., 1997). As angiogenesis proceeds 

ECM serves essential functions in supporting key signalling events involved in 

regulating EC migration, invasion, proliferation, morphogenesis, survival and 

ultimately blood vessel stabilization, all of which are critical for neo-vascularisation. 

During vessel sprouting ECM is degraded by proteinases, such that proteolytic 

remodelling of the ECM occurs in a balanced manner; insufficient breakdown 

prevents vascular cells from leaving their original position, but conversely excessive 

degradation removes critical support and guidance cues for migrating EC and, in fact, 

inhibits angiogenesis (Carmeliet, 2004). 

During angiogenesis ECs change their morphology from tubular to flat and elongated 

(growth of sprout) and back to tubular (established capillary blood vessels) (Folkman 

and Shing, 1992). Coincident with this spindle-shape transition, EC precursors align 

and connect into solid, multicellular, precapillary cord-like structures that form an 

integrated polygonal network (Davis and Senger, 2005). Differentiation and 

maturation of the ECs, lumen formation, recruitment of pericytes and coalescence of 

tubes into loops completes the process of new blood vessel formation (Rundhaug, 

2005). In the early stages of wound healing, a large number of immature vessels form 

(Carmeliet, 2003). Later, some are pruned and the remaining vessels mature. A 

number of clinical and experimental observations support the concept that the 

association between the vascular tube and the mural cells mediates vessel stabilization 

or maturation. Vessels are dependent upon exogenous survival factors for a critical 

period of time during their development. In the absence of associated pericytes or 

smooth muscle cells, the nascent endothelial tube requires vascular endothelial growth 

factor (VEGF) for survival (Darland and D'Amore, 1999). The sources of VEGF in 

wounds are quite abundant. A number of cell types, including macrophages, 

fibroblasts and endothelial cells are known to produce VEGF (Brown et al., 1998; 

Lingen, 2001). 

Early granulation tissue is composed largely of type III collagen, an isoform which 

provides the elasticity required for the increased cellularity in the healing wound. In a 

mature scar or normal skin, type I and III collagen are the majority of collagen 

present, and type I predominates (Epstein and Munderloh, 1978). Fibroblast is the 

most important cell synthesising collagen. Rough endoplasmic reticulum in the 



                                                                                                           INTRODUCTION 

 -17- 

fibroblast is the site of collagen synthesis (Deodhar and Rana, 1997; Sempowski et 

al., 1995). 

 

Maturation and Remodelling 

 

Granulation tissue is a contractible tissue that responds to agonists which stimulate 

smooth muscle. Wound contraction orientates an initial random collagen matrix. 

Fibroblasts are involved in ECM deposition as well as wound contraction. The 

gradual increase in ECM stiffness by fibroblast tractional forces is mandatory for their 

further evolution into myofibroblasts, which actively close the wound by contraction. 

Once epithelium has covered the wound, myofibroblasts normally disappear by 

apoptosis and the granulation tissue eventually evolves into a scar (Ng et al., 2005) . 

Remodelling and contraction of the granulation tissue result in an organized network 

of collagen and elastin fibres leading to the formation of scar tissue (Jackson et al., 

2005). Most critical to remodelling is conversion of the type III collagen matrix to a 

type I collagen, the predominant collagen isoform in normal tissue (Deodhar and 

Rana, 1997; Sempowski et al., 1995). 

As wounds mature, more collagen is deposited, cross-linked and organized. Over time 

most of the cellular components - vessels, fibroblasts, in particular myofibroblasts and 

inflammatory cells - slowly disappear leaving a relatively acellular scar (Arnold and 

West, 1991; Brown et al., 2002).  

 

 

1.4.2.2 Chronic Wounds and Infection 

 

Chronic skin wounds affect approximately 3% of individuals over 60 years of age and 

are a cause of disease and disability in the elderly population (Davies et al., 2007). A 

chronic wound is defined as one in which the normal process of healing is disrupted at 

one or more points in the phases of haemostasis, inflammation, proliferation and 

remodelling. In most chronic wounds, however, the healing process is thought to have 

stopped in the inflammatory or proliferative phases.  

Non-healing wounds are an important source of morbidity with high treatment costs; 

as a result, research for treatments and devices that would decrease the rate of 
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occurrence of chronic wounds is a priority for many scientists and clinicians. 

Research in chronic wound healing is closely connected with advances in tissue 

engineering. Biomaterials are being developed to assist in the repair of the damaged 

tissue by providing a new matrix to support cell proliferation and structure for new 

tissue deposition. 

Many factors can impair healing; local factors include the presence of foreign bodies, 

tissue maceration, ischaemia and infection. The majority of chronic wounds are 

colonized with bacteria but not all chronic wounds are infected. Wounds are 

considered to be infected when bacterial growth overwhelms the host immune system 

and compromises wound healing (Edwards and Harding, 2004). Therefore, 

biomaterials used on chronic wounds not only need to assist in the wound repair 

process but should also show some resistance to bacterial degradation and should not 

induce bacterial proliferation. Systemic factors that can delay healing include patients’ 

overall health condition and can be as diverse as advanced age, malnutrition, diabetes 

and renal disease, to name but a few. In addition to local and systemic factors, growth 

factors, cytokines, proteases, cellular and extracellular elements all play important 

roles in different stages of the healing process. Alterations in one or more of these 

components can account for the impaired healing observed in chronic wounds.  

Chronic inflammation is characterized by the presence of macrophages, monocytes, 

lymphocytes and plasma cells, with proliferation of blood vessels and connective 

tissue. Although the chemical and physical properties of a biomaterial may lead to 

chronic inflammation, movement in the implant site caused by migration of the 

biomaterial may also produce a chronic inflammatory response (Anderson, 2001). 

Lymphocytes and plasma cells are involved primarily in immune reactions and are 

key mediators of antibody production and delayed hypersensitive responses. 

A critical factor in the pathogenesis of many chronic wounds is a combination of the 

presence of bacteria, inflammatory cells and the resulting elevated amounts of 

proteolytic enzymes (Cavallini, 2007; Mustoe, 2004). Wound fluid harvested from 

chronic wounds has been shown to inhibit fibroblast proliferation (Falanga, 1993) and 

to degrade specific MMPs substrates (Trengove et al., 1999).  

MMPs form a multigene family, containing at least 16 members in humans, which 

share a structurally similar domain structure, in particular the zinc dependent catalytic 

domain and the activation peptide (Konttinen et al., 1999). These enzymes are 

secreted in their latent form, except membrane-type matrix metalloproteinases (MT-
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MMPs) and stromelysin 3 and are activated by proteolytic cleavage of a propeptide 

domain at the N terminus of the molecule (Benbow et al., 1999; Konttinen et al., 

1999). MMPs are responsible for controlled degradation of the extracellular matrix in 

several biological systems, as for example in embryogenesis, angiogenesis and wound 

healing. MMPs are produced by many different cells including fibroblasts, 

macrophage, neutrophils and eosinophils (Brandner et al., 2007). High levels of 

MMPs and low levels of their endogenous tissue inhibitors (TIMPs) have been found 

in chronic wound fluid and can add to the excessive proteolysis of tissue (Brandner et 

al., 2007). MMPs can cleave different native collagen types (collagenases), including 

dermal ECM collagen and denatured collagen (gelatinases); other MMPs can cleave 

other substrates as elastin, fibronectin, proteoglycans and laminin (Falanga, 2002). 

When choosing a biomaterial for implantation into chronic wound sites or into 

infected fields, it is critical to select a biomaterial with some resistance to proteolytic 

digestion. If implant infection or degradation occurs, the surgeon will have to remove 

the scaffold which will result in increased costs and patient morbidity. 

 

 

1.4.3 Immune Response 

 

Upon injury a biochemical cascade is activated which will lead to the process of 

wound healing and if appropriate to the activation of a specific mechanism of defence, 

an immune response. The immune system involves several cells, such as lymphocytes 

and plasma cells, as well as mediating factors so that immune responses involve a 

complex process. A constituent of the immune system is the complement system, an 

important element of the host’s defence mechanisms against foreign bodies (e.g. 

implants) and mediates an immunological response to injury. When blood contacts the 

surface of an implanted biomaterial, the complement system is activated, if the 

surface signals indicate a foreign-body, complements will induce a specific immune 

response and help recruit inflammatory cells (Batchelor and Chandrasekaran, 2004). 

Specific responses will depend on the exact features of the chemical composition and 

conformation or structure of the foreign material. The immune response will follow 

two mechanisms, cellular and humoral. In each case, the foreign body is referred to as 

an antigen and the host will produce antibodies against it.  
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The humoral responses involve production of antibodies by B-cells, which will move 

freely in the blood stream. The antibodies will attach to the antigen forming a 

complex; the antibody-antigen complex may then accumulate at the site, be 

transported to the lymph nodes by phagocytes or be catabolised by other cells (Black, 

2006). 

Cell-mediated responses entail another class of lymphocytes, T-cells. They produce 

and store different classes of antibodies, mainly bound to the cell surface membrane. 

These antibodies are highly specific and must be directly presented to the antigen. 

 

 

1.5 BIOMATERIAL DESIGN (COLLAGEN DERIVED) 

 

During the history of tissue engineering, various collagen-based biomaterials have 

been developed for the repair of skin wounds and soft tissue injuries. These 

biomaterials are available in several forms including dispersions, solutions, gels and 

sponges (Friess, 1998). The collagen used for the construction of such materials 

usually has an animal source and is often prepared by proteolytic enzymatic digestion 

under acidic conditions (Abraham et al., 2000). The resulting solubilised collagen can 

then be reconstituted as a solid, gel or sponge by increasing the pH of the solution and 

stabilising the collagen molecules by cross-linking (Oliver et al., 1980). A 

disadvantage of that process is the loss of the natural structure of the collagen by 

cleavage of intra- and intermolecular bonds, resulting in materials with low tensile 

strength with an amorphous structure and susceptible to reabsorption.  

A novel group of collagenous biomaterials are those in which the natural collagen 

keeps its 3-D architecture. The structure and matrix composition of a biomaterial will 

define host response, cell-cell and cell-matrix interactions. Host cell infiltration, cell 

proliferation, angiogenesis and deposition and organization of new host ECM are 

common events during the remodelling of biological scaffolds. 

It is important for a biomaterial to interact with the surrounding tissue in a beneficial 

way without delaying the healing process. An acellular scaffold should be 

biocompatible and should not induce tissue-specific reactivity. If structural proteins 

do evoke an antigenic reaction this should induce only a marginal inflammatory 

reaction, and should not result in immunological rejection of the material. 
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There are many factors which will affect the performance of a biomaterial in vivo; 

therefore, the design and manufacture of a biological prosthesis should be a careful 

exercise. The major factors to consider are functional purpose and host response. 

 

The following is a brief description of the main procedures used in the manufacture of 

collagen derived biomaterials. 

After harvest of collagenous tissues it is of the utmost importance to preserve the 

tissue before protein degradation occurs. The objective is to prolong the tissues 

structure and mechanical integrity and remove the cellular constituents. Methods 

usually include cell extraction and cross-linking. By creating new chemical bonds 

between the collagen molecules the tissue is reinforced and at the same time maintains 

its original configuration. Biological materials to be used as implants should be 

mechanically strong enough to maintain structural integrity during early implantation, 

especially if an inflammatory response occurs and the biomaterial is exposed to the 

proteolytic action of products from inflammatory cells. It is also thought that by cross-

linking proteins some of their antigenic epitopes will be masked, so that cross-linking 

decreases tissue reactivity. 

 

 

1.5.1 Cell Extraction 

 

In 1972 Oliver and co-workers showed that it was feasible to use a basic solution of 

trypsin-purified allogenic skin collagen for the repair of skin defects subcutaneously 

in animals (Oliver et al., 1972). The success of those experiments led to the study of 

acellular xenografs.  

Cell extraction methods vary with type of enzyme(s), extraction reagents, incubation 

period and washing buffers. 

Some enzymes used in cell extraction such as trypsin, pepsin or pronase, remove the 

terminal telopeptides of collagen molecules, the resulting material is called 

atelocollagen and benefits from the removal of the antigenic P-determinant located on 

the non-helical section of the molecule resulting in a decrease in antigenicity and 

lower immune responses (Friess, 1998). Telopeptide cleavage results in collagen 

whose triple helix is intact, in which both the amino (N)- and carboxyl (C)-
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telopeptides hold important roles in cross-linking and fibril formation. In addition, 

telopeptide removal increases significantly collagen solubility (Lynn et al., 2004). 

Later, Courtman and colleagues reported a cell extraction process which provided 

acellular bovine pericardia (Courtman et al., 1994). The cell extraction process 

removes lipid membranes and membrane-associated antigens as well as soluble 

proteins, with the main objective of decreasing the antigenic response to these 

xenograft materials. However, even with complete extraction of cellular proteins, a 

cross-species response directed toward the structural proteins could still be expected if 

acellular tissues were used as a xenograft (Liang et al., 2004). This cross-species 

response can be further reduced by modifying acellular tissues with a cross-linking 

reagent (Courtman et al., 2001). 

 

 

1.5.2 Cross-linking 

 

Oliver and colleagues found that in contrast to allografts, xenografts were absorbed 

and were associated with a prominent mononuclear reaction (Oliver et al., 1975). In a 

second experiment, they tested human derived implants treated with different 

concentrations of glutaraldehyde or formaldehyde and found that when implanted 

subcutaneously in rats, these implants resisted degradation and showed no evidence of 

a persisting cellular immune response (Oliver et al., 1980). 

Protein cross-linking may be achieved by physical, chemical and enzymatic 

processes. Physical methods include freeze-drying, heating and/or exposure to 

ultraviolet or gamma radiation (Khor, 1997). Enzymatic processes are initiated by the 

enzyme lysyl oxidase, in collagen and elastin and are further mediated by specific 

enzymes (Reiser et al., 1992). Chemical cross-linking typically uses bifunctional 

reagents that interact with collagen at two different sites. In the studies reported in this 

thesis, the focus will only be on chemical methods of cross-linking. 

For years glutaraldehyde was the cross-linking reagent of choice and was widely used 

for the treatment of collagenous tissue for bioprostheses. Bioprosthetic heart valves 

were for several decades cross-linked with glutaraldehyde, although around 50% of 

implanted valves failed after 10 years of implantation because of tissue degeneration 

and calcification (Isenburg et al., 2005). In tissue, collagen is commonly found 
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associated with elastin, as in blood vessels where elastin is abundant (Khor, 1997); 

another example is in dermis where the complex of these proteins protects the body 

against mechanical injury by conferring elasticity to the skin. It was found that 

although glutaraldehyde could efficiently stabilize collagen it was unable to do the 

same to elastin, which leaves this protein highly susceptible to enzymatic degradation. 

Elastin is characterised by its lysine-derived cross-links – isodesmosine and 

desmosine (Lee et al., 2001a). These two compounds are tetra-functional, meaning 

that the elastin matrix must be cleaved at four distinct sites before these compounds 

can be solubilised. Extracellular elastin is naturally highly cross-linked (Tyagi and 

Simon, 1993), but in the presence of infection or inflammation elastin is susceptible to 

degradation. 

Although cross-linking with glutaraldehyde brought many advantages this reagent is 

known to markedly alter tissue stiffness and promote tissue calcification (Sung et al., 

1997). Toxicity and calcification in situ are the two major problems encountered with 

glutaraldehyde cross-linked bioprostheses (Glowacki and Mizuno, 2008). 

Calcification is caused by several factors such as the presence of phospholipids that 

can attract calcium ions, or voids and cavities in the tissue created by the removal of 

proteoglycans during processing or cellular degradation (Lee et al., 2001b). 

Glutaraldehyde-fixed tissues are predisposed to trap foreign particles that may lead 

to nucleation centres for calcium. Increased calcium uptake leads to a build-up of 

calcium phosphate, which in time mineralizes into calcium hydroxyapatite (Khor, 

1997).  

An alternative to aldehyde cross-linking is the use of hexamethylene diisocyanate 

(HMDI), a bifunctional molecule where the terminal isocyanate can react with amines 

of lysine on collagen to form the urea bond. This cross-linking reagent yields tissues 

which slowly degrade to non-toxic products (Friess, 1998). The cytotoxic effects and 

mechanical properties of collagen and tissue treated with HMDI have been 

investigated and appear to be well tolerated, being much less toxic than 

glutaraldehyde (Oliver and Grant, 1995). 
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1.6 CLINICAL APPLICATIONS 

 

With the purpose of finding efficient, novel, therapeutic agents for the constantly 

increasing number of patients with tissue/organs defects or loss, tissue engineering is 

being used as a research tool. Currently, natural biological materials are commercially 

marketed for tissue regeneration, repair or replacement (Table 1.2). On the basis of 

sales reports, it is estimated that thousands of ECM scaffolds are used annually 

(Derwin et al., 2006). Although there are several synthetic and biological 

biomaterials, originated from different primary sources, the focus in this thesis will 

only be on mammalian collagen derived biomaterials.  
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Table 1.2 – Partial list of commercially available biomaterials composed of ECM. 

Product Company Tissue type Cross-linked Form Application 

Acellular 

Oasis® Healthpoint 

Porcine small 

intestinal 

submucosa (SIS) 

No Dry sheet 

Partial and full 

thickness wounds, 

burns 

AlloDerm LifeCell Human dermis No Dry sheet 
Tissue 

reconstruction 

AxisTM dermis Mentor Human dermis No Dry sheet  

CollaMend Davol Porcine dermis Yes Dry sheet Hernia repair 

CuffPatchTM Arthrotek 
Porcine, collagen 

type I 
Yes 

Hydrated 

sheet 

Reinforcement of 

soft tissues 

Dura-Guard® Synovis 

Surgical 

Bovine 

pericardium 
 

Hydrated 

sheet 

Spinal and cranial 

repair 

Graft Jacket® Wright Medical 

Tech 
Human dermis No Dry sheet 

Repair of 

integument tissue 

OrthADAPTTM 
Pegasus 

Biologicals 

Horse 

pericardium 
Yes Hydrated 

Tendon and 

ligament repair 

Permacol® Tissue Science 

Laboratories 
Porcine dermis Yes 

Hydrated 

sheet 

Soft connective 

tissue repair 

RestoreTM DePuy Porcine SIS No Sheet 
Reinforcement of 

soft tissue 

Stratasis® Cook SIS Porcine SIS No Dry sheet 
Urinary 

incontinence 

SurgiMendTM TEI Biosciences 
Foetal bovine 

skin 
No Dry sheet 

Soft tissue 

reconstruction 

Surgisis® Cook SIS Porcine SIS No Dry sheet Soft tissue repair 

TissueMend® TEI Biosciences 
Foetal bovine 

skin 
No Dry sheet 

Surgical repair, 

rotator cuff 

reinforcement 

Veritas® Synovis 

Surgical 

Bovine 

pericardium 
No 

Hydrated 

sheet 
Soft tissue repair 

XenformTM TEI Biosciences 
Foetal bovine 

skin 
 Dry sheet Soft tissue repair 
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1.7 PERMACOL SURGICAL IMPLANT 

 

Permacol surgical implant (Tissue Science Laboratories, Aldershot, UK) is a sterile, 

moist, and tough but flexible sheet of acellular cross-linked porcine dermal collagen 

(Saray, 2003). After the initial mechanical process to remove the hair and epidermis, 

acetone is used to saponify the dermal material removing any lipids and fat deposits 

(Coons and Barber, 2006), after which the dermis is thoroughly washed with saline 

solution to remove the acetone. The cell extraction process is done by digestion with 

trypsin solution pH 7.0 to 9.0 to remove antigenic proteins and cellular elements such 

as hair follicles and sweat glands at a temperature lower than 23oC. The material is 

stabilised by cross-linking with a diisocyanate (HMDI) in an electroneutral 

environment and breaks down to urea. The cross-linking confers stability against 

attack by endogenous proteolytic enzymes such that they do not break down and 

become reabsorbed following implantation (MacLeod et al., 2004b). Ultimately, 

Permacol is stored immersed in sterile 0.1M phosphate buffer, pH 7.2 containing 

sodium azide, and sterilised by gamma radiation. The sheets are double vacuum 

packed and heat sealed in sachets of aluminium foil (inner) and polyester/polythene 

(outer) sachets and stored at room temperature. 

Unlike other medical collagen products in either injectable or dressing form, the 

original architecture of the collagenous fibrous material is preserved and Permacol is 

claimed to comprise 1 to 5% of elastin, present as fibres (US Patent no. 5,397,353).  

Permacol® surgical implant is commercialized for soft tissue reconstruction and 

repair. It has been used in a variety of surgical fields since 1998 (Harper, 2001; 

Liyanage et al., 2006; Smith et al., 2007) and it has been used successfully for the 

reconstruction of human soft tissue and as a supporting tissue in numerous 

gynecologic, urologic and general surgical procedures (Figure 1.2) involving the 

treatment of abdominal wall defects (Chaudhry et al., 2008; Liyanage et al., 2006; 

Parker et al., 2006; Pentlow et al., 2008; Richards et al., 2005), hernia repair 

(Abhinav et al., 2008; Inan et al., 2007; Saettele et al., 2007), soft tissue 

reconstruction (Benito-Ruiz et al., 2006; Cillo et al., 2007), stress incontinence and 

vaginal and rectal prolapse (Dench et al., 2006). 
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Figure 1.2 – Partial list of sites of Permacol® implantation in the body. 

 

 

In studies reported in this thesis, the properties and performance of collagen derived 

biomaterials in several in vitro and in vivo settings were investigated. The majority of 

the work performed focused on a specific acellular cross-linked dermal collagen 

scaffold (Permacol® surgical implant). Permacol®’s mechanical, biochemical and 

biological characteristics were compared to acellular noncross-linked equivalents and 

to natural, cellular, porcine dermal collagen. 

Although Permacol® surgical implant has been licensed for permanent implantation 

into humans since 1998, published basic-research studies are limited. Permacol® 

surgical implant clinical use has increased steadily in the last few years. In 2005, 

literature research using the parameters Permacol or Pelvicol (Permacol® surgical 

implant trade name used in the USA) resulted only in 29 published papers related to 

scientific research and clinical reports on Permacol® surgical implant. Three years 

later, using the same parameters in a literature research, 85 articles were found 

published, both in clinical and research fields.  
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Even though basic knowledge concerning this biomaterial has increased, there are still 

contradictory reports in the literature. A better understanding of the implant matrix 

and cell-matrix interactions is surely indispensable to accurately predict clinical 

outcomes. 
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2.0 COMMON MATERIALS AND METHODS 

 

 

 

2.1 IN VITRO STUDIES 

 

 

2.1.1 Reagents and Solutions 

 

Hydrex, Videne antiseptic solution and 70% Industrial Methylated Spirit (IMS) 

were purchased from NHS Logistics (Cotes Park Industrial Estate, Alfreton, 

Derbyshire DE55 4QJ, U.K.). 0.9% sodium chloride sterile solution was purchased 

from Baxter Health Care Ltd. (Newbury, Berks RG20 7QW, U.K.). Liquid paraffin 

BP was purchased from NHS pharmacy (Northwick Park Hospital, Harrow HA1 3UJ, 

U.K.). Hank’s Balanced Salt Solution (HBSS), 0.25% trypsin - 

ethylenediaminetetraacetic acid (EDTA) solution, Dulbecco’s Modified Eagle’s 

Medium (DMEM), Fetal Bovine Serum (FBS), Methylthiazolyldiphenyl-tetrazolium 

bromide (MTT), trypan blue solution (0.4% v/v), double processed tissue culture 

water and dimethylsulfoxide (DMSO) were purchased from Sigma-Aldrich Company 

Ltd. (Gillingham, Dorset SP8 4XT, U.K.). Penicillin-Streptomycin solution 

(5000:5000), dispase from Bacillus polymyxa and (10X) Dulbecco’s Phosphate 

Buffered Saline-without calcium, magnesium (PBS) were purchased from Invitrogen 

(Inchinnan Business Park, Paisley PA4 9RF, U.K.). MTT solution was prepared in 

PBS and dispase solution was prepared in HBSS with 200U/mL penicillin and 

200µg/mL streptomycin.  

All solutions were warmed in a water bath at 37oC before use, unless otherwise stated. 
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2.1.2 Primary Culture of Porcine Fibroblasts 

 

All cell culture procedures were aseptically undertaken in a biological safety cabinet 

class II (Microflow, Bioquell U.K. Limited, Hants SP10 5AA, U.K.).  

Using sterile techniques a split thickness skin biopsy was performed on the dorso-

lateral surface of Large White/Landrace crossbreed pigs. Skin was shaved and brush 

washed with Hydrex; soaked with Videne antiseptic solution for 5 minutes; 

thoroughly washed with 70% IMS and a layer of liquid paraffin spread to cover the 

area to be harvested. A compressed air powered dermatome (Zimmer Ltd., Swindon, 

Wiltshire SN2 6XY, U.K.) was used with a 5cm width plate and 0.612mm thickness 

to cut the biopsy. Skin biopsies were stored at 4oC in 0.9% sodium chloride sterile 

solution until used.  

Skin samples were washed twice in HBSS with 200U/mL penicillin and 200µg/mL 

streptomycin. The biopsy area was measured and placed in 20mL of dispase solution 

at 2mg/mL overnight at 4oC. Dispase is a neutral protease that provides an effective 

and gentle cleavage of the basement membrane zone region and does not damage cell 

membranes. The following day the preparation was allowed a few minutes at room 

temperature before being incubated at 37oC for 2 hours. The skin sample was again 

washed in HBSS with 200U/mL penicillin and 200µg/mL streptomycin and the 

dermis stripped from the epidermis. The dermis was cut into small pieces and 10mL 

of 0.25% trypsin-EDTA solution with 200U/mL penicillin and 200µg/mL 

streptomycin added, followed by incubation at 37oC for 2 hours. The dermis was 

scraped and 10mL of fibroblast medium (DMEM with 10% FBS, 200U/mL penicillin 

and 200µg/mL streptomycin) added. A centrifugation was performed at room 

temperature (400xg) for 4 minutes in a bench-top centrifuge (MSE Harrier 15/80, 

Sanyo Gallenkamp Plc., Leicestershire, U.K.). The supernatant was rejected and the 

pellet resuspended in 10mL of fresh fibroblast medium. This solution was carefully 

transferred to a 75cm2 culture flask (Sarstedt, 68 Boston Road, Leicester LE4 1AW, 

U.K.) and incubated at 37oC in a Galaxy R incubator (RS Biotech Laboratory 

Equipment Ltd., Riverside Business Park, Ayrshire, KA11 5AN, Scotland, U.K.) with 

95% O2, 5% CO2 and 100% humidity. Cells were cultured, with medium changes 

every two days, until the desired confluence was reached. 
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2.1.3 Sub-culture of Fibroblasts 

 

In order to maintain cell lines, fibroblasts were sub-cultured when approximately 80% 

confluence was reached to prevent the cells from entering the G0 phase of mitosis. If 

cells are allowed to grow to a confluent state they can sometimes stay in the G0 phase 

for a long period of time and some may never recover after sub-culture. 

The old medium was rejected and the flasks thoroughly washed with 5mL of PBS to 

eliminate any possible toxins and residues from the old medium. Cells were 

trypsinised with 4mL of trypsin-EDTA solution at 37oC with regular monitoring until 

all cells have detached from the base of the flasks and from each other. The contents 

of the flasks were carefully transferred to individual 15mL tubes containing 7mL of 

fresh fibroblast medium and slowly mixed to allow enzyme inactivation. A sample 

was taken for cell counting. Tubes were centrifuged at room temperature and the 

resulting pellet resuspended in sufficient fibroblast medium to prepare a new set of 

flasks, with a final volume of 10mL, in a 1 to 3 ratio. Subsequent media changes took 

place every 2 days and cells were not used after passage number 4 for any 

experiments (P = 4). 

 

 

2.1.4 Cell Counting 

 

Trypan blue is a vital stain used for assessment of cell viability; dead cells stain blue 

(trypan blue positive), while live cells exclude the dye. Trypan blue solution (0.4% 

v/v) was added in a 1:1 ratio to each cell culture sample and cells were counted within 

30 minutes to avoid a possible increase in the dead cell population due to the trypan 

toxicity. Cells were counted using disposable counting 10-chambers slides (Fast-Read 

102TM, Immune Systems Ltd., Paignton TQ4 7XD, U.K.). Each slide has a 

standardised depth providing accuracy and precision for the quantification of 

particulate material in a known volume of fluid.  
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2.1.5 Cell Preservation 

 

Preservation of cell cultures at low temperature is a technique widely used to maintain 

backups or reserves of cells without the associated effort and expense of feeding and 

caring for them. The success of the freezing process depends on four critical areas: 

proper handling and careful harvesting of the cultures, the use of the appropriate 

cryoprotectant agent, a controlled rate of freezing and storage under proper 

conditions. 

A wide variety of chemicals provide adequate cryoprotection, however, DMSO and 

glycerol are the most convenient and widely used. Some cell lines are adversely 

affected by prolonged contact with DMSO, but this can be reduced or eliminated by 

adding the DMSO to the cell suspension at 4oC and removing it immediately upon 

thawing. Although less toxic to cells than DMSO, glycerol can cause osmotic 

problems, especially after thawing.  

The cooling rate used to freeze cultures must be just slow enough to allow the cells 

time to dehydrate but, fast enough to prevent excessive dehydration damage. A 

cooling rate of -1oC to -3oC per minute is satisfactory for most animal cell cultures. 

The best way to control cooling rates is by using electronic programmable freezing 

units. 

Two vials of each primary culture were frozen. After harvesting a culture, 1mL of 

cold FBS was added and gently mixed with cells, this solution was divided into 2 

cryotubes. Concurrently a FBS with 20% DMSO solution was prepared on ice. 500µL 

of the latter were carefully added drop by drop to the cryotubes, resulting in a final 

concentration of 10% DMSO (v/v). Because an electronic programmable freezing unit 

was not available cells were immediately frozen at -70oC. 

When thawing of cells was necessary, the frozen vials were quickly thawed at 37oC; 

the medium containing the cryoprotectant discarded and replaced with fresh fibroblast 

medium and all contents removed to a 75cm2 culture flask which was placed in the 

incubator at 37oC. 
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2.1.6 MTT Cell Proliferation Assay 

 

Measurement of cell viability and proliferation forms the basis for numerous in vitro 

assays of a cell population’s response to external factors. The reduction of tetrazolium 

salts is now widely accepted as a reliable way to examine cell proliferation. The 

yellow tetrazolium MTT (3 - (4, 5 – dimethylthiazolyl - 2) - 2, 5 - diphenyltetrazolium 

bromide) is reduced by metabolically active cells by the action of mitochondrial 

dehydrogenase enzymes, to generate reducing equivalents such as NADH and 

NADPH. The resulting intracellular purple formazan can be solubilised and quantified 

by spectrophotometric means. The MTT Cell Proliferation Assay measures the cell 

proliferation rate and conversely, when metabolic events lead to apoptosis or necrosis, 

the reduction in cell viability. The MTT reagent yields low background absorbance 

values in the absence of cells. For each cell type the linear relationship between cell 

number and signal produced is established, thus allowing an accurate quantification of 

changes in the rate of cell proliferation. 

The MTT test was performed in 96-well-plates (Nunc, Sarstedt Ltd., Leicester, LE4 

1AW, U.K.); 100µL of each sample was placed in each well with 1/10 of tetrazolium 

MTT in a 5mg/mL concentration. Fibroblast medium was used as blank. Plates were 

left overnight at 37oC. Media was removed and 100µL of isopropanol added to 

dissolve the formed formazan crystals. The absorbance was read at 570nm in a 

Versamax plate reader (Molecular Devices Ltd., Wokingham, Berkshire, RG41 5TS, 

U.K.), using 630nm as the reference absorbance. 

 

 

 

2.2 IN VIVO STUDIES 

 

 

All in vivo assays were performed according to the regulatory guidelines of the U.K. 

Home Office which controls scientific procedures on animals in the U.K. and does so 

by the issue of licences under the Animal (Scientific Procedures) Act 1986. The 

regulations complied with in the studies conformed to the European Convention for 

the protection of Vertebrate Animals Used for Experimental and Other Scientific 
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Purposes (Strasbourg, Council of Europe) and achieved the standard of care required 

by the US Department of Health and Human Services Guide for the Care and the Use 

of Laboratory Animals. The Home Office Licence governing the studies directly 

specified the limits of severity of effects on the animals. 

 

 

2.2.1 Animals 

 

All animals were obtained from an established supplier at minimal disease status, 

accredited by the Home Office, transported in an air-conditioned van in boxes with 

moisturized food and bedding material. Male rats Wistar-HanTM and Sprague Dawley, 

250g – 300g, were purchased from Harlan U.K. Ltd. Shaws Farm, Blackthorn, 

Bicester, Oxon, OX25 1TP, U.K. They were examined for disease or injury on arrival 

into the test facility by the senior animal technician and during the acclimatisation 

period by the Named Animal Care and Welfare Officer (NACWO) and the person in 

day to day charge of animal husbandry before being admitted to the study. The 

animals were allowed to acclimatise for at least one week prior to use.  

 

 

2.2.2 Accommodation 

 

Animals were housed in groups, 4 rats per cage, until the day of surgery and were 

housed singly thereafter. Rats were individually identified by cage label. Lillico gold 

chips (Wm. Lillico & Son (Wonham Mill) Ltd., Surrey RH3 7YF, U.K.) were used as 

bedding. Cardboard tubes and wood sticks were given to each animal as 

environmental enrichment. At all times animals were allowed water and food ad 

libitum. A standard, RM1 (E), rat pellet-chow diet was provided (Special Diet 

Services, Witham, Essex CM8 3AD, U.K.). No known substances were expected to 

be present in the diet at levels which might adversely affect the results of the studies. 
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2.2.3 Environmental Monitoring 

 

The temperature 20oC (± 3oC) and humidity 55% (±15%) were monitored and light 

cycles were automatically controlled for 12 hours light/dark periods.  

 

 

2.2.4 Drugs 

 

Hypnorm (fentanyl/fluanisone) was purchased from Vetapharma Ltd. (Sherburn in 

Elmet, Leeds, LS25 6 NB, U.K.); Diazepam (5mg/mL) was acquired from Hameln 

Pharmaceuticals Ltd. (Gloucester Business Park, Gloucester, GL3 4AG, U.K.). 

Temgesic (buprenorphine 0.3mg/mL) was obtained from Schering-Plough Ltd. (Shire 

Park, Hertfordshire, AL7 1TW, U.K.). Lethobarb (Sodium pentobarbitone 

200mg/mL) was purchased from Fort Dodge Animal Health (Southampton, SO30 

4QH, U.K.). 0.9% (w/v) sodium chloride intravenous infusion was purchased from 

Baxter Health Care Ltd. (Newbury, Berks RG20 7QW, U.K.) 

 

 

2.2.5 Anaesthesia 

 

Anaesthesia was given to provide humane restraint, a reasonable degree of muscle 

relaxation to facilitate procedures and sufficient analgesia to prevent the animal 

experiencing pain. The small body size of the rat makes intravenous injection difficult 

and drugs are usually administered by the intraperitoneal (i.p.) or intramuscular (i.m.) 

routes. Since there is a wide variation in drug response between different strains of 

rat, gender and individuals, a drug combination that provides a wide margin of safety 

was used. Before any surgical procedure animals were weighed and general 

anaesthesia given according to animal weight. Animals were given an i.m. injection of 

Hypnorm (0.6ml/kg) (Flecknell, 1996), followed with an i.p. injection of diazepam 

(2.5mg/kg) (Green, 1982). Before surgical procedure the surgery site was clipped of 

hair and sterilised with Hydrex. Surgical drapes were used to isolate the operative 
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field and to keep the animal warm. Anaesthesia was maintained over the surgical 

procedure with i.m. injections of Hypnorm at the operator’s discretion. 

 

 

2.2.6 Recovery 

 

Following surgical procedures animals were subcutaneously injected with 3µg of 

buprenorphine analgesic (diluted 1/10 in 0.9% sodium chloride sterile solution). 

When the surgical procedure was longer than 30 minutes, 10mL of warm 0.9% (w/v) 

sodium chloride were given subcutaneously to prevent dehydration. Animals were 

kept warm and watched closely for the next 6 hours. The day of surgery was 

considered as day 0. During the following day (day 1) another dose of analgesic was 

given and each animal was carefully examined and records maintained on individual 

animal forms. Animals were returned to the animal accommodation. Post operatively, 

animals were observed daily for food and water intake, general wellbeing, appearance 

of incision site and any signs of undue stress or pain. Any abnormal behaviour was 

reported to the on duty NACWO. 

 

 

2.2.7 Humane End Points 

 

It is often possible to reduce the severity of the procedures by the use of appropriate 

end points. There are three possible end points to every experiment: experimental end 

point, error end point and humane end point. The first refers to an experiment that 

runs its course and allows adequate experimental data to be collected; the second 

“error end point” occurs when unforeseen events happen, invalidating the experiment 

thus leading to a premature termination of the experiment; thirdly a “humane end 

point” is undertaken when the animal is killed to limit its suffering.  
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2.2.8 Necropsy 

 

Animals were sacrificed by an overdose of an anaesthetic using a route and an 

anaesthetic agent appropriate for the size and species of the animal. At each 

termination animals were weighed and sodium pentobarbitone was injected i.p. When 

necessary a second injection of lethal anaesthetic agent was directly injected into the 

heart. 

After euthanasia an external examination was performed and any comments recorded 

on a post mortem (PM) form. The operative sites were identified and exposed and the 

complete operative site together with adjacent tissue removed. Depending on the aim 

of the study, all tissue removed was fixed for at least 5 days in 10% neutral buffered 

formalin (NBF) solution or divided into at least two pieces; in the latter only one 

piece was fixed and the remaining tissue was used for tensiometry and/or frozen in 

liquid nitrogen and kept at -80°C. 

 

 

2.2.9 Histology 

 

Tissue was fixed in 10% NBF to preserve cells and tissue constituents and to inhibit 

post-mortem changes by preventing autolysis and bacterial decomposition and 

putrefaction. Fixation also safeguards the tissue against the deleterious effects of the 

various stages of tissue processing and preparation of sections. Once tissue was fixed, 

blocks of tissue were taken from the fixed samples to include the material under test 

and adjacent tissue. These tissue blocks were processed to paraffin wax embedding by 

routine automated procedures (see Section 2.2.9.2). The latter involves the inclusion 

of each tissue block in a paraffin wax mass to enable thin sections to be cut. The 

observation of tissues with the microscope requires a section thin enough to allow 

transmission of light through it; for that reason two 5µm sections were cut from each 

block in a transverse orientation using a microtome (Anglia Scientific, Cambridge 

CB4 4SW, U.K.). One section was stained with haematoxylin and eosin (H&E) and 

the other with picro sirius red F3B (see Sections 2.2.9.3 and 2.2.9.4, respectively). 

Sections were visualised using an Olympus BX40 microscope (Olympus Optical Co., 

Ltd., London EC1Y 0TX, U.K.) with a CCD colour Olympus DP70 digital camera. 
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Sections were examined for general healing, cellular penetration and cellular density, 

vascularisation, tissue integration, implant structure retention and collagen 

degradation. 

When tissue mineralisation was observed specific stains were used to identify the 

mineral or minerals present. For calcium identification, von Kossa’s method and 

Alizarin Red S method were followed, as described respectively in Sections 2.2.9.5 

and 2.2.9.6. 

 

 

2.2.9.1 Reagents 

 

10% NBF, xylene and industrial methylated spirit 99% were purchased from Genta 

Medical (Marston Business Park, York YO26 7QF, U.K.). Toluene and paraffin wax 

were acquired from Bios Europe Ltd. (Lancashire WN8 9PS, U.K.). Di-(n-butyl) 

phthalate in xylene mounting medium (DPX) was acquired from Raymond A. Lamb 

Limited (Eastbourne BN23 6QE, U.K.). Haematoxylin Gill III was acquired from 

Surgipath Europe Ltd. (Peterborough PE3 8YD, U.K.). Hydrochloric acid, 

ammonium hydroxide and sulphuric acid were purchased from Fisher Scientific UK 

(Leicestershire LE11 5RG, U.K.). Eosin and sirius red F3B were purchased from 

BDH Laboratory Supplies (Poole BH15 1TD, U.K.). Silver nitrate, sodium 

thiosulphate and alizarin red S were purchased from Sigma-Aldrich Company Ltd. 

(Gillingham, Dorset SP8 4XT, U.K.).. 0.1% nuclear fast red in 5% aluminium 

sulphate was acquired from Pioneer Research Chemicals (Colchester, Essex, CO2 

8HX, U.K.). Acetone was purchased from Chemix (U.K.) Ltd. (Bolton, Lancashire, 

BL7 9EP, U.K.). 

 

 

2.2.9.2 Tissue Processing and Embedding 

 

Before tissue can be embedded in paraffin wax, dehydration is an essential step as 

paraffin wax will not penetrate tissues in the presence of water. This is achieved by 

immersing the tissue in increasing alcohol concentrations. Since paraffin wax is 
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almost insoluble in alcohol it is necessary to replace the latter with a reagent that is 

soluble with both substances (alcohol and paraffin wax) and which may be eliminated 

before proceeding with the wax impregnation of the tissues. Toluene was used as 

clearing agent because of its rapid action, its ability to raise the refractive index of 

tissue rendering it slightly transparent and its volatility to allow easy elimination 

during paraffin wax impregnation. Tissue was processed in a Tissue-Tek VIP 3000 

processor (Miles Scientific, Naperville IL60566, U.S.A.) using an overnight schedule 

as follows. 

 

  Solution    Time       Temp. Pressure/Vacuum 

1. Buffered formal saline    2.0 h          RT   Y 

2. 70% IMS    1.0 h          RT   Y 

3. 95% IMS     1.0 h          RT   Y 

4. 100% IMS     1.0 h          RT   Y 

5. 100% IMS     1.0 h          RT  Y 

6. 100% IMS     1.0 h          RT   Y 

7. 50% Absolute IMS/Toluene  1.0 h          RT  Y 

8. Toluene     0.5 h          RT   Y 

9. Toluene     1.0 h          RT   Y 

10. Toluene    0.5 h          RT   Y 

11. 56oC paraffin wax   0.5 h        60oC   Y 

12. 56oC paraffin wax   1.5 h        60oC   Y 

13. 56oC paraffin wax   1.5 h        60oC   Y 

 

All tissue blocks were handled and paraffin wax embedded using electrically heated 

forceps in the embedding centre to prevent paraffin wax and tissues from adhering to 

the forceps. For each tissue block a suitable sized embedding mould was chosen, 

filled with wax from the dispenser and any air bubbles removed; the tissue block was 

placed in the centre of the mould and gently pressed against the mould base ensuring 

all tissues areas were at the same level throughout the block. Moulds were placed in a 

cryo-console until the wax had solidified. Paraffin wax blocks were removed from the 

embedding moulds and cleaned free of excess wax; at this point blocks were ready to 

be sectioned. 
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2.2.9.3 Haematoxylin and Eosin Stain 

 

Haematoxylin and eosin (H&E) stain is the most widely used stain in histology for 

cellular morphology visualization. The staining technique comprises the application 

of the haematoxylin basic dye which stains the basophilic structures in a blue-purple 

colour and the acidic eosin stains eosinophilic structures pink. The basophilic 

structures contain nucleic acids, therefore chromatin-rich nucleus and ribosome will 

be stained by haematoxylin. Eosin stains connective tissue and generally intracellular 

or extracellular proteins, so most of the cytoplasm will stain pink.  

Sections were dewaxed for removal of all traces of wax, hydrated in decreasing 

concentrations of alcohol, to eliminate the clearing reagent, and stained in a Gill’s III 

haematoxylin solution, differentiated in acid-alcohol and counterstained with a 0.5% 

aqueous eosin solution. Before sections were cleared, all traces of water were 

removed by dehydration in ascending grades of alcohol. Xylene was used as clearing 

agent and slides were mounted in DPX mounting medium for permanent preservation. 

All slides were manually stained using the schedule described in Table 2.1. 
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Table 2.1 – Routine H&E staining. 

REAGENT TIME 

Xylene 1 5 minutes 

Xylene 2 2 minutes 
*Absolute IMS 2 minutes 

95% IMS 2 minutes 

70% IMS 2 minutes 
*Running tap water 2 minutes 

Gill’s III Haematoxylin 1.5 minutes 

Running tap water Up to 5 minutes 
*1% acid-alcohol (HCl in 70% IMS) 3 seconds 

Running tap water 4 minutes 

0.5% aqueous eosin 5 minutes 
*Running tap water 20 seconds 

*70% IMS 30 seconds 
*95% IMS 30 seconds 

Absolute IMS 2 minutes 
*Xylene 1 2 minutes 

Xylene 2 Until ready to mount 

DPX - 
* Slides were agitated during immersion. 

 

 

2.2.9.4 Picro Sirius Red Stain 

 

When sirius red, a strong acidic dye, reacts with collagen its normal birefringence is 

enhanced because the dye molecules attach to the collagen fibrils in such a way that 

their long axes are parallel. Well conserved and physiologically normal collagen 

shows bright birefringence using a polarised light microscope whereas denatured or 

degraded collagen appears black and non-birefringent. The staining method is 

schematized in Table 2.2. 
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Table 2.2– Routine picro sirius red staining. 

REAGENT TIME 

Xylene 1 5 minutes 

Xylene 2 2 minutes 
*Absolute IMS 2 minutes 

95% IMS 2 minutes 

70% IMS 2 minutes 
*Running tap water 2 minutes 

Picro sirius red 1 hour 

Running tap water 2 minutes 

Gill’s III Haematoxylin 1.5 minutes 

Running tap water Up to 5 minutes 

1% acid-alcohol (HCl in 70% IMS) 3 seconds 
*Running tap water 4 minutes 

*70% IMS 30 seconds 
*95% IMS 30 seconds 

Absolute IMS 2 minutes 
*Xylene 1 2 minutes 

Xylene 2 Until ready to mount 

DPX - 
* Slides were agitated during immersion. 

 

 

2.2.9.5 Von Kossa’s Stain 

 

Von Kossa’s technique is commonly used to demonstrate deposits of calcium or 

calcium salts, it stains the anions (usually carbonate or phosphate) so it is not specific 

for the calcium ion itself. In this method, tissue sections are treated with a silver 

nitrate solution and the silver is deposited by replacing the calcium, reduced by a 

strong light and thereby visualized as metallic silver. 

Tissue containing known positive calcium deposits or un-decalcified bone should be 

used as positive control. 
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This method stains calcium salts black or dark brown, the nuclei will stain red and 

cytoplasm pink. The staining protocol is schematized in the following table. 

 

Table 2.3 - Von Kossa’s method. 

REAGENT TIME 

Xylene 1 5 minutes 

Xylene 2 2 minutes 

Absolute IMS 2 minutes 

95% IMS 2 minutes 

70% IMS 2 minutes 

Running tap water 1 minutes 

Deionised water 2 minutes 

5% silver solution 

1 hour 

Placed in bright sunlight, or in 

front of a 60-watt lamp, with foil 

(or mirror) behind the jar to reflect 

the light 

Deionised water 
30 seconds 

Repeat step 3 times 

5% Hypo-sodium thiosulfate 5 minutes 

Running tap water 30 seconds 

Deionised water 1 minute 

Nuclear Fast Red 5 minutes 

Running tap water 1 minute 

70% IMS 30 seconds 

95% IMS 30 seconds 

Absolute IMS 2 minutes 

Xylene 1 2 minutes 

Xylene 2 Until ready to mount 

DPX - 
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2.2.9.6 Alizarin Red S 

 

Alizarin Red S, an anthraquinone derivative, may be used to identify calcium in tissue 

sections. The reaction is not strictly specific for calcium, since magnesium, 

manganese, barium, strontium and iron may interfere, but these elements usually do 

not occur in sufficient concentration to interfere with the staining. Calcium forms an 

Alizarin Red S-calcium complex in a chelation process. The end product stains 

orange-red and is birefringent under polarised light. 

Tissue containing known positive calcium deposits or un-decalcified bone can be used 

as positive control. The protocol is schematized in Table 2.4. 

 

Table 2.4 - Alizarin Red S method. 

REAGENT TIME 

Xylene 1 5 minutes 

Xylene 2 2 minutes 

Absolute IMS 2 minutes 

95% IMS 2 minutes 

70% IMS 2 minutes 

Deionised water 30 seconds 

Alizarin Red S solution 
30 seconds to 5 minutes until an 

orange-red colour shows 

Shake off excess dye and blot sections 

Acetone 20 seconds 

Acetone – Xylene (1:1) 20 seconds 

Xylene  Until ready to mount 

DPX - 

 

 

2.2.10 Tensiometry 

 

In studies where the implant integration with surrounding tissue was mechanically 

tested, an In-Spec 2200 portable tensiometer (Instron, Coronation Road, Bucks 
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HP12 3SY, U.K.) was used. Part of the tissue outside of the treatment area was 

attached to the movable end of the tensiometer and the test material attached to the 

fixed end of the tensiometer (Figure 2.1). The movable section of the tensiometer 

moved away from the fixed end at a constant speed of 0.167mm/sec until dissociation 

occurred either at the test material/tissue junction or in the associated tissues or within 

the test material.  

 

 
Figure 2.1– Tensiometer In-Spec 2200. 
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3.0 BIOPHYSICAL AND BIOCHEMICAL CHARACTERISTICS OF 

COLLAGEN DERIVED MATRICES 

 

 

 

There are many commercially available collagen derived biomaterials and more are 

being engineered with the purpose of developing the ideal tissue repair material. 

Collagenous biomaterials differ with respect to primary source, methods of 

preparation, type of cross-linking, structure, content and prescription of use. 

After implantation, a biomaterial is expected to, with time, perform and develop the 

same functions as the tissue it has substituted and to interact appropriately with the 

surrounding tissues. This may include maintaining initial shape or remodelling to the 

required shape, which ideally should be similar to the implanted architecture; transmit 

and absorb loads, sustain cells and act as a scaffold that supports tissue architecture. 

For a scaffold to perform appropriately it should fulfil several requirements, including 

being biocompatible and functional. Biocompatibility and functionality are dependent 

on the scaffold physical, mechanical, biochemical and biological properties, which 

includes low antigenic components, similar topography to the tissue to be replaced, 

cell adhesion surface signals, firmness and resistance to biodegradatation. 

Oliver and co-workers reported a cell extraction process which used a crystalline 

solution of trypsin to yield acellular dermal collagen, it was hypothesized that by 

eliminating cellular components cellular antigens were removed (Oliver et al., 1972). 

They also reported the use of aldehyde cross-linking to promote resistance to 

collagenase. With both processes – cell extraction and protein cross-linking – they 

aimed to produce a xenograft (porcine dermis implanted in rats) feasible to be used 

for repair of soft body tissue by increasing collagen stability and reducing or 

suppressing tissue antigenicity. Cross-linking agents have been reported to alter tissue 

antigenicity and provide resistance to enzymatic digestion (Courtman et al., 2001). By 

cross-linking the residual proteins it is expected to further reduce any cross-species 

reaction. Collagen low antigenicity makes it one of the proteins of choice for 

xenografts (Lynn et al., 2004). 
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3.1 STRUCTURE AND PROPERTIES OF COLLAGENOUS 

BIOMATERIALS 

 

 

 

3.1.1 Introduction 

 

Biomaterials derived from natural tissue normally consist of a tri-dimensional 

architecture, which keeps the original extracellular matrix structure but lacks cellular 

components. Acellular biological tissues can provide a natural micro-environment for 

host cell migration to accelerate tissue regeneration.  

Acellular xenografts will have species-specific differences in the primary structure of 

the residual proteins when compared to host proteins, which may evoke a significant 

immune response and eventually lead to implant rejection. However, it is likely that 

some xenogenic proteins elicit a stronger immune response than do others (Liang et 

al., 2004). 

When biological materials are chosen as biomaterials, these are expected to perform 

well due to the morphology of the ECM and surface signals which can improve cell-

matrix and tissue-matrix interactions. However, most biomaterials are pre-treated 

before implantation and these procedures may alter the structure and properties of the 

biomaterials.  

The mechanical properties of collagenous biomaterials are dependent on the 

properties of the collagen fibrils, including size and orientation, but also of the content 

of collagen within the material and of the presence of other components. Other factors 

such as cross-linking level, matrix porosity, extent of tissue hydration and cell 

presence will also influence materials properties. 

 

In this study some of the collagen matrices tested were treated with trypsin to remove 

cellular constituents and thus reduce the antigenic load within the biomaterial and by 

this minimize the immunologic degradation of the materials in situ. In addition, 

collagen matrices were cross-linked with HMDI not only to minimize cross-species 

reaction but also to increase resistance to proteolytic digestion.  
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Porcine collagen matrices were characterised through a series of tests related to their 

physical, mechanical and biochemical properties. 

 

 

3.1.2 Aims and Objectives 

 

 Characterize collagenous biomaterials related to their physical, mechanical 

and biochemical properties. 

 Compare cross-linked materials to analogous noncross-linked materials. 

 

 

3.1.3 Hypothesis 

 

Cell extraction and cross-linking of porcine dermal collagen alter its characteristics, 

specifically physical and structural properties. 

 

 

3.1.4 Materials and Reagents 

 

Sodium bicarbonate, potassium permanganate (KMnO4), 5% picrylsulfonic acid 

solution (TNBS), sodium acetate trihydrate, ninhydrin, hydrindantin, 

dimethylsulfoxide (DMSO), chloramine-T, citric acid, Evans blue, Trizma base, 

sodium chloride, calcium chloride dihydrate, phosphate buffered saline tablets (PBS), 

37% hydrochloric acid, phenylmethanesulfonyl fluoride (Ph-MeSO4F), oxalic acid, 4-

aminophenylmercuric acetate (APMA), sulphuric acid and hog pancreatic elastase 

were purchased from Sigma-Aldrich Company Ltd. (Gillingham, Dorset SP8 4XT, 

U.K.). Glacial acetic acid, sodium hydroxide, absolute ethanol and n-propanol were 

acquired from Fisher Scientific UK (Leicestershire LE11 5RG, U.K.). Collagenase 

type I, human neutrophil elastase, MMP-8 and Methoxysuccinyl-Ala-Ala-Pro-Val-ρ-

nitroanilide were purchased from Calbiochem (Merck Chemicals Ltd, Nottingham, 

NG9 2JR, U.K.). 390 MMP FRET Substrate I was purchased from Cambridge 



                                                                                                                     CHAPTER 3 

 -49- 

BioScience Ltd (Cambridge CB5 8LA, U.K.). Nitrogen was purchased from BOC 

gases (Manchester, M28 2UT, U.K.). Miller Elastin Stain was acquired from 

Surgipath Europe Ltd. (Peterborough PE3 8YD, U.K.). Weigert’s Haematoxylin 

solutions A and B were purchased from Pioneer Research Chemicals (Colchester, 

Essex, CO2 8HX, U.K.). 

Permacol® surgical implant (Permacol®), noncross-linked acellular dermal porcine 

collagen (NonXL), and dermal porcine collagen (Raw) were supplied by TSL plc.  

 

 

3.1.5 Methods 

 

3.1.5.1 Tensile Strength  

 

The mechanical properties of biomaterials depend on a number of factors. The force 

per unit required to deform a tissue to a fixed extension varies depending on how fast 

the deformation is applied. Therefore it is important to standardise conditions before 

testing for mechanical properties. When a force is placed on a material, there is an 

immediate elastic response and a time-dependant response. If a material does not 

present a time-dependant response it is considered to exhibit purely elastic behaviour, 

with a time-dependant response it exhibits visco-elasticity (Silver and Christiansen, 

1999).  

Tensile strength of Permacol®, NonXL and Raw collagen samples was determined as 

described in Section 2.2.10. The tensile strength of each material was characterised by 

measuring the load required to stretch the material until it failed or until the limit of 

extension of the tensiometer was exceeded. Six samples from different batches were 

used per type of matrix. 
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3.1.5.2 Water Uptake 

 

The water absorbency of a biomaterial is greatly influenced by its composition, 

molecular weight, degree of cross-linking and also by the properties of liquids to be 

absorbed. Swelling properties of biomaterials may be characterized by water 

absorption. The swelling behaviours of dried collagen matrices (Permacol®, NonXL 

and Raw) were carried out by immersion in deionised water at 25oC ± 1oC in a water 

bath. The water absorbed was determined by weighing the samples, after blotting to 

remove surface water, at various pre-determined time intervals. Swollen matrices 

were weighed with an analytical balance. 

The water absorbed by collagen matrices was quantitatively represented by the 

equilibrium water content (EWC): 

0

0

W
WW

EWC eq −=  

 

Here, Weq is the weight of the swollen matrix at time of equilibrium or maximum 

water uptake, and W0 is the initial dry weight of the matrix. 

 

The degree of swelling at each time point was calculated in percentage according to 

the following formula: 

%100
W

 W- W
  (%)   

0

0t ×=swellingofDegree  

 

Where Wt is the sample weight at time t and W0 the initial dry weight. 

 

 

3.1.5.3 Cross-linking Quantification 

 

The in vivo degradation rate of a biological prosthesis may be controlled by its cross-

linking degree. 

Two methods were used to quantify levels of cross-linking in collagen matrices. 
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3.1.5.3.1 Trinitrobenzene-sulfonic Acid Method 

 

Okuyama and Satake proposed, in 1960, the use of trinitrobenzene-sulphonic acid 

(TNBS) as a reagent specific for primary amino groups, since then several methods 

were described using this reagent for free amino group quantification (Okuyama and 

Satake, 1960). TNBS method is a spectrophotometric assay of the chromophore 

formed by the chemical reaction of TNBS with free primary amino groups (Figure 

3.1). The intensity of the colour formed, measured in terms of absorbance, is linearly 

related to the concentration of the free amino groups present in the tested sample. 

 

 
Figure 3.1 – Reaction of TNBS with primary amines, originating TNP-protein 

derivatives. 

 

Samples were dehydrated in desiccators for 72 hours or until completely dry. Dry 

weights were measured from 6 samples of each collagen matrix (Permacol, NonXL 

and Raw collagen). 

Samples were put individually in screw-capped tubes and 400µL of deionised water 

added to each; 4 extra tubes per matrix were prepared as negative controls to these 

only water was added. Tubes were left overnight at room temperature. 

To each tube 400µL of a 4% sodium bicarbonate solution, pH 8.0, and 400µL of 

aqueous 0.1% TNBS solution were added. Tubes were kept in the dark since TNBS 

solution is photosensitive. Tubes were heated at 40oC for 2 hours and then left to cool 

down to room temperature. Reaction was terminated by hydrolysis with 1.2mL of 6N 

HCl at 60oC for 90 minutes. After allowing tubes to cool down to room temperature, 

the resulting solution was mixed just prior to absorbance measurement at 420nm, 

which gives the content of the TNP-amine complex. Values were normalised by 

subtracting the absorbance of the negative controls. 



                                                                                                                     CHAPTER 3 

 -52- 

3.1.5.3.2 Ninhydrin Method 

 

The ninhydrin method was introduced in 1948 by Moore and Stein for quantitative 

determination of amino acids (Moore and Stein, 1954). Ninhydrin reacts with amino 

groups (Figure 3.2) producing a chromophore named Ruhemann’s purple (RP) with a 

maximum absorbance at 570nm and a coefficient of extinction of 22000L.mol-1.cm-1 

(Friedman, 2004). 

 

 
Figure 3.2 – Reaction of ninhydrin with amino acids. 

 

Before performing the ninhydrin assay, samples were hydrolysed overnight in 6M 

HCl. Samples were dehydrated in desiccators for 72 hours or until completely dry. 

Dry weights were measured from 6 samples of each collagen matrix (Permacol®, 

NonXL and Raw collagen). Each sample was placed in 15mL glass containers with 

screw-caps, to each sample 1.5mL of the acid solution was added, the solution should 

not use more than 10% of the total volume of the container. Container lids were left 

slightly unscrewed to avoid excessive pressure. Tubes were placed in an oven (Weiss 

Gallenkamp, Loughborough LE11 3GE, U.K.) at 100oC overnight. 

 

For every experimental day a ninhydrin solution was prepared fresh. Table 3.1 shows 

the working solutions used for this method. 
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Table 3.1 – Buffer and solutions used in the ninhydrin assay. The final concentrations 

are represented in brackets. 

 Sodium Acetate Buffer Ninhydrin Solution 

Solute sodium acetate trihydrate (4M) 
ninhydrin (112mM) +  

hydrindantin (9.3mM) 

Solvent 1 deionised water 
DMSO (dissolve under a stream of 

nitrogen) (75%) 

Solvent 2 
glacial acetic acid 

(10%) 

sodium acetate buffer (25%) 

(bubbled with nitrogen for 2min,  

sealed and stored) 

pH 5.5 - 

Storage 4oC 4oC 

 

 

One ml of the hydrolysate was placed in a screw-cap tube with 1mL of ninhydrin 

solution, 4 negative controls per matrix were prepared with ninhydrin solution and 

water instead of hydrolysate. Tubes were placed in a boiling water bath for 10 

minutes, after which they were cooled on an ice bath. To each tube 5mL of 50% n-

propanol was added to inactivate the reaction. Tubes were briefly mixed and 

immediately after, sample absorbances were read at 570nm. Absorbance was 

normalised using the negative controls values. 

 

 

3.1.5.4 Matrix Components and Structure 

 

Matrix components and surface properties are a significant determinant of the 

capacity of host cells to adhere and migrate into the matrix. 

Collagen matrices were observed using histological analysis via light microscopy and 

scanning electron microscopy. 
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3.1.5.4.1 Histology 

 

Strips of each collagen matrix were cut (out of the package) and fixed in 10% NBF 

for histological analysis as described in Section 2.2.9. From each wax block 2 sections 

of 5µm thickness each were cut and put onto glass slides in a hot plate at 60oC for at 

least 4 hours. Slides were allowed to cool down before any staining process. 

One section was stained with H&E following the protocol as in Table 2.1. The other 

slide was stained with a modified picro/Miller stain (Table 3.2). 

Haematoxylin stains basophilic structures such as nucleic acids, with a blue-purple 

colour and the alcohol-based acidic eosin colours eosinophilic components bright 

pink; eosinophilic structures are usually intra- and extracellular proteins.  

Miller’s stain is composed of three dyes: Victoria blue 4R, new fuchsin (an iron 

resorcin lake) and crystal violet. The complex formed from the basic fuchsin, binds to 

the elastic fibres, resulting in a blue-black staining. Picro sirius red stains collagen 

fibres red and collagen is birefringent under polarised light. 
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Table 3.2 – Modified picro/Miller stain. 

REAGENT TIME 

Xylene 1 5 minutes 

Xylene 2 2 minutes 

Absolute IMS 2 minutes 

95% IMS 2 minutes 

70% IMS 2 minutes 

Running tap water 2 minutes 

Acid potassium permanganate* 5 minutes 

Deionised water 1 minute (rinse until clear) 

1% Oxalic acid 2 minutes 

Deionised water 1 1 minute (rinse until clear) 

Deionised water 2 4 minutes 

70% IMS 1 minute 

95% IMS 1 minute 

Miller’s stain 1 hour 

95% IMS 1 minute 

Running tap water 2 minutes 

Weigert’s Haematoxylin** 10 minutes 

Running tap water 1 minute (wash) 

1% acid-alcohol (HCl in 70% IMS) 5 seconds 

Running tap water 5 minutes (wash) 

Deionised water 30 seconds  

Picro sirius red 45 minutes 

Deionised water 10 seconds (blot dry) 

70% IMS 10 seconds 

95% IMS 10 seconds 

Absolute IMS 10 seconds 

Xylene 2 minutes 

DPX - 

*Acid potassium permanganate (0.5% KMnO4 in 3% H2SO4). 

**Weigert’s Haematoxylin (1:1 (v/v) Weigert’A:Weigtert’s B). 
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3.1.5.4.2 Pore Size 

 

Pore size has been shown to be a major determinant for the type of ingrowth that can 

occur within a biological prosthesis. Biologic prostheses should have microstructure 

with high porosity for cell migration and ingrowing, pore size between 20 to 200µm 

are considered appropriate for cellular penetration (Wang and Hon, 2003). In addition, 

pores must be interconnected to allow ingrowth of cells, diffusion of nutrients, 

removal of waste products and vascularisation. Pore size was measured with 

DPController software (Olympus Optical Co., Ltd.), at an objective magnification of 

forty times. 

 

 

3.1.5.4.3 Scanning Electron Microscopy  

 

Scanning electron microscopy (SEM) is a method for high-resolution imaging of 

surfaces. An incident electron beam is raster-scanned across the sample's surface, and 

the resulting electrons emitted from the sample are collected to form an image of the 

surface. The electrons interact with the atoms that make up the sample producing 

signals that contain information about the sample's surface topography together with 

composition and other properties such as electrical conductivity.  

Imaging is typically obtained using secondary electrons for the best resolution of fine 

surface topographical features. Secondary electrons are electrons generated as 

ionization products. Alternatively, imaging with backscattered electrons gives contrast 

based on atomic number to resolve microscopic composition variations as well as 

topographical information. Backscattered electrons (BSE) consist of high-energy 

electrons originating in the electron beam that are reflected or back-scattered out of 

the specimen interaction volume. Heavy elements (high atomic number) backscatter 

electrons more strongly than light elements (low atomic number), and thus appear 

brighter in the image. BSE are used to detect contrast between areas with different 

chemical compositions.  

The advantages of SEM over light microscopy include greater magnification (up to 

100,000X) and much greater depth of field. 
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For conventional imaging, the SEM requires that specimens be conductive for the 

electron beam to scan the surface and that the electrons have a path to ground. 

Therefore, samples need to be pre-treated before SEM analysis: 

 

1. Slides with fixed tissue sections (5µm) were dewaxed in xylene and allowed to 

dry.  

2. Each slide was mounted on an aluminium stub and introduced into the 

chamber of a sputter coater (2000V, 20mA, 5nm/min) to provide a very thin 

film of gold and increase conductivity before SEM examination. 

3. Samples were inserted in the electron microscope (Zeiss SupraTM 35VP 

Gemini, Oxford Instruments) and each sample analysed for secondary electron 

imaging and back scattered electron imaging. 

 

3.1.6 Statistical Analysis 

 

One-way analysis of variance (ANOVA) was used to compare tensile strength 

parameters, degree of swelling, cross-linking level and pore size between types of 

matrices; results were presented as average ± standard deviations. For all statistical 

analysis a P value less than 0.05 was considered statistically significant, when P<0.05 

a Bonferroni post-hoc test was performed for comparison within groups. Statistical 

analysis was performed using SPSS Statistics 16.0 (SPSS Inc. Chicago, USA). 

Graphical representation of data was performed using Graphpad Prism statistics 

software, version 4 (GraphPad Software, Inc., USA).  

 

 

3.1.7 Results 

 

3.1.7.1 Tensile Strength 

 

Tensile strength was analysed for Permacol®, NonXL and Raw collagen. Sutures 

snapped in all samples, therefore, matrix failure was not observed in any sample. 
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Results are displayed in the following tables, average and standard deviations were 

calculated per type of matrix. 

 

Table 3.3 – Tensiometry results for Permacol® surgical implant. 

Matrix 
Maximum 

Load (kg) 

Extension at Maximum 

Load (mm) 

Total Extension 

(mm) 

Permacol® 1 3.899 41.690 41.910 

Permacol® 2 3.745 43.620 44.390 

Permacol® 3 3.001 39.340 39.900 

Permacol® 4 2.796 47.040 50.100 

Permacol® 5 1.305 24.630 28.450 

Permacol® 6 3.575 35.640 35.870 

Mean 3.054 38.660 40.103 

SD 0.958 7.879 7.421 

 

Noncross-linked samples presented higher maximum loads compared to Permacol® 

and Raw collagen, but lower extensions. 

 

Table 3.4 – Tensiometry results for NonXL implants. 

Matrix 
Maximum 

Load (kg) 

Extension at Maximum 

Load (mm) 

Total Extension 

(mm) 

NonXL 1 3.645 41.040 43.330 

NonXL 2 3.100 38.370 39.000 

NonXL 3 2.366 36.050 37.860 

NonXL 4 3.522 33.630 34.120 

NonXL 5 3.550 44.150 44.730 

NonXL 6 3.594 36.850 37.310 

Mean 3.296 38.348 39.392 

SD 0.496 3.760 3.966 
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Table 3.5 – Tensiometry results for Raw collagen. 

Matrix 
Maximum 

Load (kg) 

Extension at Maximum 

Load (mm) 

Total Extension 

(mm) 

Raw 1 3.506 37.640 37.770 

Raw 2 2.161 35.610 39.520 

Raw 3 1.320 60.410 61.730 

Raw 4 3.361 33.500 33.850 

Raw 5 2.881 31.920 32.100 

Raw 6 3.627 39.440 39.630 

Mean 2.809 39.753 40.767 

SD 0.906 10.478 10.717 

 

 

There were no significant differences between the types of matrix for all parameters 

analysed. 

 

Figure 3.3 shows the mean values for the stress-strain curves for each matrix. At the 

beginning of the curve a flat region is observed [A-B] where the matrix has not fully 

responded to the load applied. Once the matrix starts responding it stretches 

originating a nearly linear region [B-C], the curve transits to a non-linear behaviour 

[C-D] that leads to the curve peak (maximum load). Complete failure is observed 

when neither load or extension increase [E]. 
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Figure 3.3 – Graphical representation of stress-strain curves per type of matrix. Mean 

values were used per each matrix, resulting in slightly irregular curves. D represents 

the maximum load, the extension from B to D is the extension at maximum load and 

from B to E total extension. 
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3.1.7.2 Water Uptake 

 

Water uptake was assessed through degree of swelling of each matrix and equilibrium 

water content. ECW was higher for the NonXL matrix (1.18 ± 0.03), followed by 

Raw collagen (1.11 ± 0.03) and finally Permacol® (1.10 ± 0.01) (Figure 3.4). 

 

Permacol NonXL Raw
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Figure 3.4 – Equilibrium water content per collagen type, mean values and standard 

deviations were calculated. * P<0.05. 

 

Permacol® and Raw samples showed a similar profile of water uptake, although 

Permacol® matrix reached equilibrium quicker, there was no statistical difference 

between these matrices. NonXL collagen water uptake rate was slower and it took 

longer for this matrix to reach equilibrium, although it presented the highest degree of 

swelling at equilibrium. NonXL degree of swelling over time was statistically 

different from Permacol® (P<0.01) and Raw collagen (P<0.05) samples. The degree 

of swelling was plotted against time (Figure 3.5). 
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Figure 3.5 – Percentage of degree of swelling of collagen matrices. 

 

 

3.1.7.3 Quantification of Cross-linking in Collagen Samples 

 

3.1.7.3.1 TNBS Method 

 

After addition of the aqueous TNBS solution samples developed an orange colour, 

this was visible throughout the reaction. When the reaction was terminated, by 

lowering the pH using acid and heating the samples for 90 minutes, Permacol® and 

NonXL samples were completely solubilised after the incubation period; Raw 

samples were still visible although with less volume. Just before absorbance 

measurement samples were mixed in a vortex, after this step Raw samples solubilised, 

although not completely; since Raw solutions were turbid, these were quickly 

centrifuged before absorbance measurement. 

The next table shows results after values had been normalised. Mean and standard 

deviations (SD) were calculated. 
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Table 3.6 – Absorbance was measured at 420nm to quantify the content of free amino 

groups present in the collagen matrices. Values were normalized by subtraction of the 

negative controls. 

Absorbance/mg tissue 

Permacol® 1 0.011 NonXL 1 0.020 Raw 1 0.021 

Permacol ®2 0.014 NonXL 2 0.019 Raw 2 0.022 

Permacol® 3 0.011 NonXL 3 0.020 Raw 3 0.019 

Permacol® 4 0.015 NonXL 4 0.020 Raw 4 0.023 

Permacol® 5 0.013 NonXL 5 0.017 Raw 5 0.021 

Permacol® 6 0.014 NonXL 6 0.022 Raw 6 0.021 

Mean 0.013 Mean 0.019 Mean 0.021 

SD 0.002 SD 0.002 SD 0.001 

 

 

Permacol® showed the lowest values for free amino groups in the matrix, which is not 

surprising since this collagen biomaterial is cross-linked, free amino group values 

were statistically significant (P<0.001) when compared to NonXL and Raw matrices. 

Raw collagen presented the highest number of free amino groups, implying that of the 

3 types of collagen matrices tested this is the one with the lowest level of cross-

linking. Although the NonXL samples are not cross-linked they were trypsinized to 

remove any cellular components, the enzyme treatment probably affects the collagen 

structure eliminating some amino groups. The following figure shows the mean 

values with standard deviations for all collagen matrices. 

 



                                                                                                                     CHAPTER 3 

 -64- 

TNBS

Permacol NonXL Raw
0.000

0.005

0.010

0.015

0.020

0.025

**
A

bs
 4

20
nm

 / 
m

g 
tis

su
e

 
Figure 3.6 – Free amino group content in the collagen matrices, quantified by the 

TNBS assay. 

 

 

3.1.7.3.2 Ninhydrin Method 

 

After addition of the ninhydrin solution to the samples a purple coloration was 

observed confirming the production of the chromophore Ruhemann’s purple. 

Ninhydrin assay showed a significant difference in the free amino group content of 

the NonXL collagen when compared to the other 2 matrices tested. The differences 

observed with this assay were not as significant as observed with TNBS, furthermore, 

the ninhydrin method quantified more free amino groups in the NonXL samples while 

with TNBS assay the absorbance readings showed higher amino content in the Raw 

matrix. Values were plotted in a graph; absorbance was calculated per mg of sample 

dry weight (Figure 3.7). 
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Figure 3.7 – Ninhydrin assay: absorbance readings per mg of dry weight of tissue. 

 

 

3.1.7.4 Matrix Components and Structure 

 

3.1.7.4.1 Histology 

 

The collagen samples tested were composed mostly of thick fibres and were not very 

porous, which indicates that samples were harvested probably from the reticular 

dermis. 

Histological analysis of the collagen matrices revealed considerable differences 

between their structures. In Raw collagen, although the fibres are compact except for 

hair follicles, there is not much space visible between collagen fibres, the overall 

structure does not show specific fibre orientation or pattern. In these samples cellular 

material is visible especially surrounding the hair follicles (Figure 3.8).  

All matrices tested were very similar in composition, being almost entirely constituted 

by collagen alone. Raw samples showed elastin residues, although at very low 

concentrations. 
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Figure 3.8 – Pictures represent sections from Raw collagen. The top figure was 

stained with H&E and the bottom figure with picro sirius red (40X). 

 

In the noncross-linked collagen there is no evidence of cellular material; collagen 

fibres are more visible probably because of the increase in fissures since the 

interstitial tissue has been removed (Figure 3.9). 

 



                                                                                                                     CHAPTER 3 

 -67- 

 
Figure 3.9 – Noncross-linked porcine collagen sample stained with H&E (top) and 

picro sirius red (bottom) (40X). 

 

The process of cross-linking induces ligation between the proteins present in the 

sample; this makes samples more compact and well structured. Collagen fibres in 

Permacol® are well defined, with spatial orientation and with a better resolution 

(Figure 3.10). 
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Figure 3.10 – Permacol samples stained with H&E (top) and picro sirius red 

(bottom) (40X). 

 

All collagen matrices showed birefringent collagen, which is indicative of good 

quality, non-denatured, collagen as observed with picro sirius red staining. 
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3.1.7.4.2 Pore Size 

 

Pore size varied within each type of collagen matrix and between collagen matrices. 

NonXL showed increased pore size as expected, as a consequence of the cell 

extraction method. Permacol® had the lowest mean pore size which might be a result 

of the cross-linking method. Mean and standard deviations were calculated (Table 

3.7). 

 

Table 3.7 – Pore size (µm) of each collagen matrix. 

 Mean ± SD Range 

Permacol® 15.2 ± 3.53 [11.0 – 21.0] 

NonXL 20.3 ± 1.79 [18.0 – 23.1] 

Raw 17.2 ± 5.26 [10.0 – 21.3] 

 

 

3.1.7.4.3 SEM 

 

Differences in collagen matrix structure and molecule orientation were confirmed by 

SEM. Raw collagen showed an amorphous structure and fibres were not as well 

defined as observed in the other two matrix types. Permacol® and NonXL collagen 

fibres were well defined and a pattern was visible at lower magnification (Figure 

3.11). At higher magnification NonXL collagen fibres looked damaged and were less 

defined compared to the Permacol® matrix. 
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Figure 3.11 – Scanning electron microscopy images of Permacol®, NonXL and Raw 

collagen matrices. Left column: 500X; Right column: 6000X. 

 

 

3.1.8 Discussion 

 

Currently there is a wide range of biomaterials available for tissue repair or tissue 

substitution. Surgeons can choose from synthetic and natural biomaterials and these 

prostheses are further categorised depending on source, manufacturing process, 

XL XL 

NonXL NonXL 

Raw Raw 
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components and clinical applications. Before a decision is made on which prosthesis 

is more suitable for a particular patient, surgeons must be well informed regarding 

properties, prescription and probable outcomes of a specific biomaterial. Therefore, it 

is of most importance for a biomaterial to be well characterized. 

 

Tensile strength showed some variation between matrices although differences were 

not significant. Samples were resistant to the force applied and there was no matrix 

failure, in all samples tested sutures snapped with the tension applied. 

When assessing water uptake in the different collagen matrices, NonXL showed a 

slightly higher value compared to the other 2 biomaterials indicative of a higher 

absorbance capacity. The swelling ratios for the NonXL samples were initially lower 

and equilibrium was reached later for this matrix; this may be explained by the low 

cross-linking density in these samples caused by the cell extraction process, which 

may result in difficulty to initially retain the absorbed water within the matrix but with 

time NonXL matrices absorbed more water at equilibrium than Permacol and Raw 

samples. Permacol® and Raw collagen samples showed similar profiles and similar 

ECWs, which implies that the cross-linking level of Permacol® is probably similar to 

Raw porcine collagen. 

During cross-linking quantification by TNBS assay, where the content of free amino 

groups in the collagen matrices is determined, Permacol® samples showed a 

significant lower amount of free amino groups, which is related to a higher level of 

cross-linking. Ninhydrin assay was also used for cross-linking quantification but 

results were different from the TNBS assay. With this method there was no significant 

difference between Permacol® and Raw collagen samples, suggesting that in this case 

the ninhydrin method is not sensitive enough to detect differences in the cross-linking 

levels between these two types of collagen matrices. 

TNBS assay showed a higher content of free amino groups (indicative of a lower 

cross-link level) in the Raw collagen samples, followed by NonXL collagen and 

finally Permacol®. NonXL samples are enzymatically digested, which affects the 

collagenous material not only by eliminating the cellular fraction but also by breaking 

some of the intra- and intermolecular cross-links of the collagen molecules. Following 

this line of thought one would expect NonXL samples to show to lowest level of 

cross-link but the enzymatic digestion may affect the amino groups since trypsin is 
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responsible for cleaving peptide bonds following a positively-charged amino acid 

residue, which releases the N-terminus of the peptide. The N-terminus is required for 

the TNBS reaction; if during trypsinization some of the N-terminii were cleaved from 

the collagen molecules, the amount of TNP-derivatives will be lower. Ninhydrin 

assay showed contrary results, NonXL samples presented the lowest level of cross-

linking. Furthermore, results obtained with the ninhydrin assay were much lower than 

the values obtained with the TNBS assay. Permacol® showed the lowest number of 

free amino groups, which relates to a higher level of cross-linking, in both 

methodologies. This discrepancy between TNBS and ninhydrin assays has been 

reported before by Panasiuk and colleagues (Panasiuk et al., 1998), they found that 

these methods were not correlated and considered results obtained with the TNBS 

method more accurate than those from ninhydrin assay. 

In accordance with the cross-linking quantification assays, pore size was also lower in 

Permacol® samples. The cross-linking of collagen molecules increases the physical 

proximity between fibres and as a consequence pore size and the space between 

natural septae diminishes. Except for NonXL samples, the average pore size of 

matrices was bellow 20µm. Although the literature recommends scaffolds with pore 

size between 20 and 200µm (to facilitate cell migration), raw collagen samples 

showed an average pore size of 17.2 ± 5.26µm; porcine dermal collagen is natively 

cell populated, this implies that scaffold pore size can have a wide range and high 

pore size is not essential for cellular penetration, other factors such as cell type and 

matrix composition and structure will also influence cell migration. 

Histological and SEM analyses showed differences in the matrix structures and fibre 

orientation. Raw collagen contained a compact structure compared to the noncross-

linked collagen and Permacol®, this was expected given that the two latter matrices 

undergo enzymatic treatment which could result in more fissures where the interstitial 

tissue was previously, because of the compact and slightly amorphous structure of 

Raw matrix, fibres were not well defined and were difficult to discern. Cross-linking 

imparts a superior resolution of fibres and the matrix structure is more organized as 

observed in the Permacol® surgical implant samples. 
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3.1.9 Conclusion 

 

The physical, mechanical and structural properties of the collagen matrices tested in 

this study varied depending of the treatment(s) used in the processes performed to 

create the biomaterials. Structurally, Raw collagen was very different from the other 

two matrices, the cell extraction process is quite aggressive, depleting the matrix of all 

non-collagenous tissues. Despite the differences in structure and collagen fibre 

orientation, water uptake profile was not statistically different between Permacol® 

surgical implant and Raw porcine collagen. There was a significant difference 

between the free amino group content of Permacol® and the other matrices, 

independent of the method used (TNBS or ninhydrin); however, it is important to note 

that average values were not very different between matrices, e.g. Permacol® = 0.013 

± 0.002, Raw = 0.021 ± 0.001; Permacol® = 0.0051 ± 0.0004, Raw = 0.0055 ± 0.0001 

using the TNBS and ninhydin assays respectively. This suggests that Permacol® 

surgical implant is not highly cross-linked and it is possible that the cross-linking 

process mainly establishes the intra- and intermolecular bonds that were cleaved 

during cellular extraction, adding only a few more cross-links between molecules. 

Nevertheless, the pore size decreased after cross-linking which is a typical effect of 

cross-linking. 
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3.2 PROTEOLYTIC DIGESTION OF COLLAGEN BASED BIOMATRICES 

 

 

 

3.2.1 Introduction 

 

The growing demand for natural products with applications in the clinical field has 

directed interest to the study of biomaterials with multiple functions, such as collagen. 

Mature native collagens are insoluble in water and therefore they can only be 

degraded by a few specific enzymes. Collagen degradation occurs in various 

physiological and pathological conditions, such as embryonic development, tumour 

invasion and wound healing. Wounds heal by a complex cascade of events including 

coagulation, inflammation, granulation tissue formation and tissue remodelling. 

During the inflammatory phase neutrophils and macrophages accumulate in the 

surrounding tissue and secrete and activate a range of proteases including matrix 

metalloproteinases (MMPs) and serine proteases (Jackson et al., 2005). 

MMPs are a homologous group of zinc-dependent extracellular endopeptidases, 

responsible for the breakdown of the major protein components of the ECM (Netzel-

Arnett et al., 1991) and are produced by several cell types, including leukocytes. 

Neutrophils provide host defence against foreign bodies including bacterial and fungal 

infection, but they can also cause pathological tissue destruction mediated by the 

release of proteolytic enzymes, which are stored in intracellular granules. These 

granules are divided into primary and secondary depending on the type of enzymes 

they store; primary granules contain high quantities of serine proteases, including 

neutrophil elastase, the secondary granules store neutrophil collagenase, also named 

MMP-8 (Kafienah et al., 1998; Siedle et al., 2002). These enzymes are present in 

increased amounts when a chronic wound is formed. MMP-8 has been reported to 

hydrolyse collagen type I and collagen type III, although it shows higher substrate 

specificity towards collagen type I (Mallya et al., 1990b). Neutrophil elastase has 

been associated with a variety of inflammatory diseases and has been implicated in 

non-healing wounds. Though all wounds require elastase for proper healing, the 
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presence of high levels of this enzyme in non-healing wounds has been associated 

with the degradation of proteoglycans, collagen, growth factors and fibronectin. 

Excessive accumulation of these enzymes interferes with the remodelling of the ECM, 

cell migration and impairs healing. Consequently, when using biomaterials in 

problematic areas, especially within a chronic wound, it is useful to predict their 

performance and to choose a material which would present some resistance to 

proteolytic digestion. 

A substantial amount of literature has covered the progress of cross-linking treatments 

to modify the mechanical and degradation properties of collagen implants in order to 

improve the resistance against enzymatic degradation. Physical, enzymatic, chemical 

and combination treatments have been extensively developed, characterised and 

applied in both in vitro and in vivo studies. The biomaterials tested in this study were 

cross-linked with HMDI and 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide 

hydrochloride (EDC), to increase resistance to proteolytic digestion. 

 

 

3.2.2 Aims and Objectives 

 

 Assess the resistance of collagen derived matrices to proteolytic enzymes. 

 Compare cross-linked to noncross-linked materials. 

 Compare two cross-link reagents. 

 

 

3.2.3 Hypothesis 

 

Cross-linking of collagen derived biomaterials increases matrix resistance to 

proteolytic activity. 
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3.2.4 Materials and Reagents 

 

DMSO, Trizma base, sodium chloride, calcium chloride dihydrate, 

phenylmethanesulfonyl fluoride (Ph-MeSO4F), 4-aminophenylmercuric acetate 

(APMA) and hog pancreatic elastase were purchased from Sigma-Aldrich Company 

Ltd. (Gillingham, Dorset SP8 4XT, U.K.). Sodium hydroxide and EDTA were 

acquired from Fisher Scientific UK (Leicestershire LE11 5RG, U.K.). Collagenase 

type I, human neutrophil elastase, MMP-8 and Methoxysuccinyl-Ala-Ala-Pro-Val-ρ-

nitroanilide were purchased from Calbiochem (Merck Chemicals Ltd, Nottingham, 

NG9 2JR, U.K.).  

Permacol®, noncross-linked acellular porcine collagen (NonXL), dermal porcine 

collagen (Raw) and EDC cross-linked acellular dermal porcine collagen (EDC-XL) 

were supplied by TSL plc.  

 

 

3.2.5 Methods 

 

3.2.5.1 Collagenase Digestion 

 

The degradation of native collagen is initiated by the action of collagenases. 

Therefore, collagenase digestion of cross-linked matrices is usually the method of 

choice to predict the rate of collagen fibre degradation in vivo (Speer et al., 2006).  

Lyophilised collagen matrices (Permacol, NonXL, Raw and EDC-XL collagen) were 

weighed and added to a 2mL bacterial collagenase solution (21U/mL) in assay buffer 

(50mM Tris, 10mM CaCl2, pH 7.4). Experiments were carried out in triplicate and the 

same number of samples were used as negative controls (matrix and assay buffer 

only). Samples were incubated at 37oC for 3h, 8h and 24h. Inactivation of reaction 

was performed by adding 0.2mL of 10mM EDTA pH 8.0. Samples were washed in 

deionised water and lyophilised. New dry weights were recorded and percentage of 

weight loss (digested tissue) calculated by the following equation: 

%100   % ×
−

=
Wi

WfWiLossWeight  
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Here Wi represents the initial dry weight and Wf the final dry weight. 

 

 

3.2.5.2 Porcine Pancreatic Elastase Assay 

 

Elastase is a serine protease that has been associated with a variety of inflammatory 

diseases and has been implicated in a destructive proteolysis in non-healing wounds. 

Though all wounds require a certain level of elastase for proper healing, the presence 

of high levels of elastase in non-healing wounds has been associated with the 

degradation of elastin, proteoglycans, collagen, growh factors and fibronectin 

necessary for wound healing (Trengove et al., 1999). Following the same principle as 

in the collagenase assay, elastase was used to assess elastin stability. Permacol is 

HMDI cross-linked to provide resistance to enzyme degradation. Permacol, process 

intermediates and EDC cross-linked collagen were tested for resistance to elastase. 

 

Several enzyme concentrations and incubation times were tested before appropriate 

standard conditions were protocolled. 

Permacol, NonXL, Raw and EDC-XL collagen were lyophilised and dry weights 

measured. At least 8 samples were used per collagen matrix (4 samples to be tested 

and 4 to act as negative controls) per time point. Porcine aorta was used as positive 

control since this tissue contains high amounts of elastin. 

Samples weighing 50 ± 0.5mg were placed in amber-eppendorf tubes with 1mL of 

0.2M Tris buffer, pH 8.0. To half the tubes (tested samples) 0.14U of elastase were 

added per mg of tissue. 

Tubes were incubated in a water bath at 37oC for 24, 48, 72 and 96 hours. After 

incubation reactions were terminated by adding elastase inhibitor – Ph-MeSO4F – in a 

concentration three times superior to the elastase. Tubes were left in the dark at room 

temperature for 15 minutes  

Samples were rinsed 3 times in deionised water and lyophilised. The new dry weights 

were measured and percentage of weight loss calculated as described before. Samples 

were hydrated in deionised water overnight and fixed in 10% NBF for histological 

analysis. A picro/Miller stain was performed to visualise collagen and elastin within 

the matrix. 
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3.2.5.3 Human Neutrophil Elastase Assay 

 

Human neutrophil elastase (HNE) is a strong basic glycoprotein with specificity for 

small hydrophobic amino acids; therefore, HNE has broad substrate specificity and 

can degrade a wide range of extracellular proteins including elastin, proteoglycans, 

immunoglobulines, denatured collagens, fibronectin and laminin (Siedle et al., 2002). 

It has also been shown to cleave native collagen types I and III in the helix (Mallya et 

al., 1990b) and telopeptides of collagen types I, II and III (Kafienah et al., 1998). 

 

Before test samples were used human neutrophil elastase (HNE) assay was performed 

with Elastase Substrate I (MeOSuc-Ala-Ala-Pro-Val-ρNA) to confirm enzyme 

activity. 

Human neutrophil elastase was reconstituted in 100mM Tris pH 5.5 with 500mM 

NaCl, divided into aliquots and stored at -20oC. A 50mM MeOSu- stock solution was 

prepared by dissolving the substrate in DMSO and stored at -20oC. 

Immediately before the assay, the substrate stock solution was dissolved in an equal 

volume of 200mM Tris, pH 8.0. Six concentrations of enzyme were used (100ng, 

250ng, 500ng, 1µg, 2.5µg and 5µg) and two controls were prepared, one with 

MeOSu- only and the other with 1µg of HNE only. 

A 96-well plate was prepared with 430µL of the reaction buffer (100mM Tris, pH 7.5 

with 500mM NaCl) in each well. To rows 1 to 6, 20µL of the diluted substrate 

solution was added. Each row was incubated with a different enzyme concentration. 

To the 7th row 20µL of the diluted substrate solution was added and to the 8th row no 

substrate was added, instead 1µg of HNE was placed in each well. 

The well-plate was incubated at 25oC and the change in absorbance monitored at 

405nm for a period of 2 hours to observe the hydrolysis of nitroanilide. 

 

The dry weights of lyophilised test samples (Permacol®, NonXL and Raw) were 

measured and recorded. Porcine aorta was used as positive tissue. Negative controls 

were prepared from each type of collagen matrix and from porcine aorta. Control 

matrices were incubated in the respective enzyme-free buffer solution under the same 

conditions as in the digestion studies. Enzyme concentration and incubation times 
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were manipulated until elastin digestion was observed in the positive control; at that 

point the experimental conditions were used as test conditions for all samples. 

Before digestion samples were hydrated in deionised water for 1 hour following 

which samples were placed in individual tubes and 550µL of reaction buffer added. 

To test samples and positive control 50µg of HNE (21U/mg) was added (Trengove et 

al., 1999). Samples were incubated at 25oC ± 2oC for 48 hours. Each sample was 

rinsed in deionised water and lyophilised, new dry weights were measured and 

percentage of weight loss calculated. Samples were once again hydrated overnight 

and fixed in 10% NBF for histological analysis after picro/Miller stain. 

 

 

3.2.5.4 MMP-8 

 

MMP-8 or human neutrophil collagenase is one of the few proteolytic enzymes that 

catalyses extracellular fibrillar collagen (Kafienah et al., 1998). MMP-8 is mainly 

produced by neutrophils, where it is concentrated in secretory granules that are 

degranulated on neutrophil activation. This enzyme was also identified at low levels 

in monocytes and in alveolar macrophages (Tyagi and Simon, 1993). MMP-8 has 

been reported to degrade type I collagen at a higher rate than type III collagen (Hasty 

et al., 1987; Mallya et al., 1990a; Nwomeh et al., 1999). 

MMP-8 is observed as soon as 24 hours after a wound healing process is activated 

and it is present in the wound area up to 7 days after injury. At its highest levels 

MMP-8 concentration varies between 500 and 2500ng per millilitre of wound fluid 

(Aiba-Kojima et al., 2007). 

 

MMP-8 was acquired in its inactive form; therefore, organomercurial activation was 

necessary just prior to use. A 0.02M solution of APMA was prepared in 0.1M NaOH 

and pH adjusted to 11.0. MMP-8 was activated in this solution in a ratio of 1:10 

(APMA:MMP-8) for 2 hours at 37oC. 

Lyophilised porcine collagen samples (Permacol®, NonXL and Raw) were weighted 

(approximately 6mg) and incubated in 100mM Tris buffer pH 7.5 (assay buffer) with 

MMP-8 at various concentrations (0.5 – 3µg) for different periods of time at 37oC, 

negative controls were prepared from each matrix type. After rinsing samples with 
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deionised water, samples were once again lyophilised and new dry weights measured. 

Percentage of digested tissue was calculated. 

 

 

3.2.6 Statistical Analysis 

 

Two-way analysis of variance (ANOVA) was used to compare percentage of digested 

tissue between type of matrix and incubation period. Levene’s test of equality of error 

variances was used to test the assumption that variances are equal; if Levene’s P<0.05 

and variances statistically different one-way ANOVA analysis was used to compare 

matrices per incubation time and Tamhane’s post-hoc test performed to compare 

groups. For all statistical analysis a P value less than 0.05 was considered statistically 

significant. Statistical analysis was performed using SPSS Statistics 16.0 (SPSS Inc. 

Chicago, USA). Graphical representation of data was performed using Graphpad 

Prism statistics software, version 4 (GraphPad Software, Inc., USA).  

 

 

3.2.7 Results 

 

3.2.7.1 Collagenase Digestion 

 

Dry weight loss increased with time of incubation for all collagen types tested. 

Permacol® and Raw collagen samples showed similar results at all time points. 

NonXL samples lost higher amounts of collagen at 8h and 24h compared to the other 

3 matrices. EDC-XL matrices showed the lowest weight loss at all time points; after 

3h incubation samples did not show weight loss and after 8h and 24h of collagenase 

digestion EDC-XL samples showed only marginal weight loss. Percentage of weight 

loss was calculated per incubation time and values were normalised with values 

obtained from control samples (Figure 3.12). 
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Figure 3.12 – Percentage of weight loss for collagen matrices after collagenase 

digestion. Mean and standard deviations were calculated and used for graphical 

representation. *P<0.05, **P<0.005, ***P<0.001. 

 

When comparing matrix weight loss at each incubation time, the amount of collagen 

digested from NonXL samples was statistically different from the other matrices at 8h 

(P<0.05) and 24h (P<0.01). The difference between EDC-XL samples and the other 

collagen matrices at 24h was also significant (P<0.001). Each matrix was individually 

analysed and incubation times compared. Except for the EDC-XL samples all 

matrices showed a significant increase of collagen digestion after 24h incubation. The 

increase in weight loss of NonXL samples from 3 to 8h was also significant. 

Incubation time is a significant factor for matrix digestion when other variables are 

constant, such as enzyme concentration. 
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3.2.7.2 Porcine Pancreatic Elastase 

 

Percentage of dry weight loss increased with the incubation time in all collagen 

matrices tested. The noncross-linked samples had the highest values of weight loss at 

all incubation times, followed by the untreated, raw collagen samples. Permacol and 

EDC-XL showed higher resistance to elastase digestion and the percentage of weight 

loss was lower compared to the other matrices.  

The weight of control samples also changed; at 24 and 48h the control Raw collagen 

samples increased weight. Permacol control samples increased weight at all 

incubation times. Noncross-linked collagen control samples increased weight at 24, 

48 and 72h. EDC-XL control samples did not increase weight, contrarily these 

samples lost weight. Due to this change in the control samples, values were 

normalised for the tested collagen matrices.  

 

Figure 3.13 shows results for elastase digestion, normalised values were used, error 

bars represent standard deviations. 
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Figure 3.13 – Normalised percentage of weight loss, after elastase digestion, for all 

collagen matrices at different incubation periods. Mean and standard deviations were 

calculated and used for graphical representation. **P<0.005, ***P<0.001. 

 

 

There was a statistical difference between groups when analysing each incubation 

time point. A significant difference was observed between matrices at all time points, 

except at 24h and 48h where Permacol® weight loss was not significantly different 

from NonXL and EDC-XL weight losses. NonXL and Raw collagen weight losses 

were not significantly different at 48h and 72h.  

When analysing type of matrix a significant difference was observed with incubation 

time. With Permacol® and Raw collagen matrices there was evidence of significant 

differences between incubation times except between 72 and 96 hours. NonXL 
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samples did not show a significant difference in weight loss between 48h and 72h 

incubation but all other groups within this matrix showed significant differences. 

EDC-XL samples did not show significant differences independent of incubation 

time. 

 

Histological analysis did not show elastin in the control samples of Permacol®, 

NonXL and EDC-XL collagen, and only very marginal amounts of elastin were 

present in the control samples of Raw collagen (Figure 3.14). With time, a slight 

variation in the fibres structure was observed, interstitial space seemed to increase, 

this was observed in all matrices. 

 

 

 

Figure 3.14 – Raw collagen control samples at different incubation times; arrows 

show elastin in blue (picro/Miller stain, 200X). 

 

To test elastase activity and substrate specificity porcine aorta was used as positive 

control (Figure 3.15). 

 

24H 48H 

72H 96H 
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Figure 3.15 – Porcine aorta used as positive control for elastase digestion after 48 

hours incubation. Left: control sample, incubated with buffer only, blue=elastin, 

pink=collagen, 200X. Right: reaction with 1mg/mL elastase, 400X. Picro/Miller stain. 

 

 

Elastin was not visible in any of the collagen matrices after elastase digestion, 

independent of incubation time.  

In all controls and samples tested collagen was naturally birefringent and non-

degraded (Figure 3.16). 

 

 

 

 

 

 

 

 

 

 

- + 
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Figure 3.16 – Collagen matrices after 96h elastase assay, picro/Miller stain under 

polarised light, 200X. 

 

 

3.2.7.3 Human Neutrophil Elastase 

 

HNE-substrate assay showed increased hydrolysis of nitroanilide over time and 

hydrolysis rate was dependent on enzyme concentration. The reaction was very fast 

for 2.5µg and 5µg of enzyme and since the first absorbance reading was taken after 10 

minutes of incubation, the substrate had been exhausted by then. For 100ng, 250ng 

Permacol®-ctr Permacol®-test 

Raw-ctr Raw-test 

NonXL-ctr NonXL-test 
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and 500ng the reaction was still active going after 2 hours incubation. When testing 

1µg of HNE it was possible to observe substrate consumption until approximately 1 

hour. The absorbance values were converted into concentration using the nitroanilide 

coefficient of extinction (ε=8800M-1cm-1) at 410nm (Trengove et al., 1999). 

Concentrations were plotted against time, mean ± SD values were used (Figure 3.17). 
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Figure 3.17 – Hydrolysis of nitroanilide over time with different concentrations of 

enzyme. 

 

Several enzyme concentrations (1µg to 50µg) were tested but elastin digestion was 

only observed in the positive tissue with 50µg of HNE. Lower concentrations had no 

effect on porcine elastin; 50µg was the minimal enzyme concentration with which 

elastin digestion was observed. 

Control tissue, porcine aorta, showed approximately 17% of weight loss after 

digestion with human neutrophil elastase. Noncross-linked samples lost 10% of their 

dry weight after digestion. Permacol® and Raw collagen not only did not show any 

weight loss but had an increase in weight (Figure 3.18). 
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Figure 3.18 – Graphical representation of the variation of dry weight of collagen 

samples after digestion with human neutrophil elastase for a period of 48h. 

 

Histology showed elastin degradation in the control tissue, collagen from both 

adventitia and intima showed some level of degradation, but degradation was more 

evident in the latter (Figure 3.19 and Figure 3.20). 

 

 
Figure 3.19 – Porcine aorta digested with human neutrophil elastase, showing elastin 

degradation (picro/Miller, 100X). 
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Figure 3.20 – Porcine aorta digested with human neutrophil elastase under polarised 

light, showing some collagen degradation (picro/Miller, 100X). 

 

Negative control aorta showed high levels of elastin in the media layer and the 

elastica interna is still visible (Figure 3.21). 

 

 
Figure 3.21 – Negative control of porcine aorta during human neutrophil elastase 

assay (picro/Miller, 100X). 
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Collagen matrices did not show any histological evidence of elastin and collagen 

degradation. 

 

 

3.2.7.4 MMP-8 

 

No tissue digestion was observed in the collagen samples, independent of enzyme 

concentration and incubation time used. 

 

 

3.2.8 Discussion 

 

During implantation some tissue damage will occur including rupture of blood 

vessels, this will lead to a wound healing process. The presence of an implant and the 

process of tissue regeneration attract inflammatory cells to the implantation site which 

will accumulate in the surrounding tissues and may penetrate into the implant. Theses 

cells secrete and activate a range of proteases including MMPs and serine proteases 

with proteolytic activity that may affect the structural integrity of implants. This 

chapter studied enzymatic digestion of dermal collagen matrices and evaluated matrix 

resistance to enzymatic degradation. 

 

Permacol® and Raw samples showed similar results for collagenase digestion, once 

again suggesting that Permacol® has similar level of cross-link to un-processed 

porcine dermal collagen. NonXL matrices showed statistical differences in percentage 

of digested tissue compared to the other collagen matrices. EDC-XL collagen was 

slightly digested after 8h incubation with collagenase, but tissue digestion did not 

increase with increasing incubation periods. 

When analysing matrices resistance to porcine elastase, the weight gain observed in 

the control samples was unforeseen. Although a volume increase was expected after 

incubation, after an overnight lyophilisation samples should return to their original 

weight or even lose some. This increase in weight may be caused by accumulation of 

salts from the buffer or from the inhibitor reagent within the matrix; over time this 
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effect is diminished. Histology did not show any structural difference in the control 

samples over incubation time. 

The positive control tissue confirmed that the elastase was active and digested all the 

elastin present in porcine aorta and probably some of the collagen. 

Permacol, Raw collagen and NonXL collagen tested showed some difference in the 

structure and configuration of fibres over the incubation time; the space between 

fibres increased and fibre thickness seemed to have decreased over time. 

Since elastin was not found in the control samples, except for the Raw collagen, the 

weight loss (in some cases 40% of the original weight) suggests that elastase is 

digesting the collagen. Porcine pancreatic elastase has a strong specificity for alanine, 

leucine and valine hydrolyzation, but this enzyme has also been reported to hydrolyze 

peptide bonds near glycine residues (Lee, 2001). Consequently, since every third 

residue in collagen molecules is glycine, it is possible that elastase is damaging the 

collagen. Contrary to what was observed with collagenase EDC-XL tissue digestion 

increased with time of incubation; although, the weight loss observed was marginal. 

 

A more specific elastase assay was performed using human neutrophil elastase. Once 

more, except for Raw collagen, elastin was not observed in the collagen matrices 

tested. This may be result of chance but it also suggests that Permacol® surgical 

implant and its noncross-linked equivalent do not have elastin or have marginal 

amounts of elastin. Raw collagen is trypsinized to extract cellular content and 

originates NonXL collagen samples. Although trypsin is suppose to leave elastin and 

native collagen unaffected (Lee et al., 2001a), the absence of elastin in Permacol® and 

NonXL samples suggests some loss of elastin during the manufacturers process. 

Human neutrophil elastase did not digest Permacol® and Raw collagen samples, these 

samples increased weight during the HNE assay but tissue digestion was recorded in 

NonXL samples. HNE has been reported to cleave rat type I collagen fibrils at 

0.01U/mL, although at a slower rate than neutrophil collagenases (Kafienah et al., 

1998). In this study 1.75U/mL of HNE were used, which suggests that the weight loss 

present in NonXL samples is derived from breakdown of the helices of collagen type 

I. This can be explained by the treatments performed in this matrix; contrary to 

Permacol® this matrix was not cross-linked, therefore, resistance to enzymatic 

digestion has not been conferred. In addition, NonXL samples were subjected to 
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trypsin digestion as a decellularisation process leaving them more susceptible to 

degradation by proteolytic enzymes. 

 

MMP-8 did not digest the collagen samples under the conditions tested. MMP-8 is 

known to cleave collagen type I (Aiba-Kojima et al., 2007; Mallya et al., 1990b; 

Netzel-Arnett et al., 1991; Nwomeh et al., 1999), which is the main collagen type in 

dermis. MMP-8 levels in chronic wound fluids have be found to have a high variation 

from 100ng to 2500ng per mL of wound fluid (Aiba-Kojima et al., 2007), in this 

study 500ng of enzyme were used per mg of tissue, which might not be enough for 

digestion of fibrillar collagen without the presence of other enzymes. MMPs are 

present not only in non-healing wounds but also during normal wound healing 

(Nwomeh et al., 1999), in both cases collagen degradation is dependent on the 

activation of several enzymes, usually activation is temporal and more than one MMP 

are present at the same time (Nwomeh et al., 1999; Rayment et al., 2008; Siedle et al., 

2002; Welgus et al., 1990). Although MMP-8 is observed at high levels at wound 

sites, its enzymatic specificity may depend on other enzymes. 

 

 

3.2.9 Conclusion 

 

Tripsinisation of collagen samples results in increased susceptibility to collagenase 

digestion. NonXL samples are acellular but not cross-linked, after incubation in a 

bacterial collagenase solution these samples showed tissue degradation. Chemical and 

natural cross-linked samples, Permacol® and Raw collagen respectively, had similar 

profiles and, after the enzymatic assay, percentage of weight loss due to collagenase 

digestion was lower in Permacol than for NonXL matrices. EDC-XL samples 

showed more resistance to collagenase and elastase digestion, suggesting that this 

cross-linking agent confers higher resistance to enzymatic digestion. 

In the assay presented here, hog pancreatic elastase seems to be elastin-specific 

although the weigh loss observed in the tested samples suggests that after all elastin 

has been digested the elastase digests collagen. Noncross-linked matrices were more 

vulnerable to the elastase digestion (both porcine and human); therefore, these data 

suggest that cross-linking of porcine collagen materials confers resistance to elastase. 
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The pancreatic elastase assay gives further evidence to this hypothesis, since 

Permacol® samples showed increased resistance to elastase degradation when 

compared to NonXL and Raw collagen. 

Collagenase-2 (MMP-8), under the conditions tested, did not degrade collagen type I 

matrices - Permacol®, NonXL and Raw collagen matrices.  
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3.3 ASSESSMENT OF FLUID FLOW PATTERNS IN COLLAGEN 

MATRICES 

 

 

 

3.3.1 Introduction  

 

Physiological interstitial flow is the movement of fluid through the extracellular 

matrix of a tissue, often between blood vessels and lymphatic capillaries; it includes 

interstitial fluid and transcellular fluid. It provides convection necessary for the 

transport of large proteins through the interstitial space and constitutes an important 

component of the microcirculation. In addition to its role in transport, interstitial flow 

also provides a specific mechanical environment to cells in the ECM, by playing an 

important role in determining interstitial organization and architecture (Ng et al., 

2005). Many cell types, including fibroblasts and smooth muscle cells, reside within a 

3-D environment and are exposed to interstitial fluid forces, therefore, if a biomaterial 

does not encourage and maintain interstitial flow this may affect cell adhesion and 

infiltration into the material matrix.  

Aside from its role in tissue architecture, enhanced fluid percolation in a biomaterial 

is essential for nutrient exchange, toxin removal and vascularisation. 

Evans blue dye (EB) has been used for many years as an indicator of vascular 

macromolecular transport due to its unique binding properties. EB is widely used to 

study blood vessel and cellular membrane permeability as it is non-toxic, it can be 

administered as an intra-vital dye and has a high affinity to serum albumin – using 

this protein as its transporter molecule (Fry, 1977). The EB–albumin conjugate (EBA) 

can be: (i) identified macroscopically by the blue colour within tissue (Matsuda et al., 

1995); (ii) observed by red auto-fluorescence in tissue sections examined by 

fluorescence microscopy (Brussee et al., 1997); and (iii) assessed and quantified by 

spectrophotometry (Hamer et al., 2002; Hawkins and Egleton, 2006). Evans blue dye 

is not only easy to use but it can also be removed from the vascular system by 

diffusion into the extra vascular tissues while still bound to albumin.  
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In this study, a flow chamber assay was developed to examine the effects of a solution 

particularly rich in calcium in two types of collagen matrices. A second procedure 

was performed where Evans blue dye was used to observe interstitial flow through 

collagen matrices in a rat model. 

 

 

3.3.2 Hypotheses 

 

Fluid flow pattern is different between cross-linked collagen matrices and noncross-

linked collagen matrices. Cross-linked collagen offers resistance to fluid flow and can 

act as a membrane, retaining calcium salts when in contact with calcium solutions. 

 

 

3.3.3 Aims and Objectives 

 

 Compare Permacol® and noncross-linked matrices related to interstitial fluid 

flow in a rat model. 

 Determine fluid flow pattern in cross-linked collagen. 

 

 

3.3.4 Materials and Methods  

 

Permacol® surgical implant (thickness 1.0mm) and noncross-linked collagen 

(NonXL) (thickness 1.5mm) were supplied by TSL plc. Collagen matrices were used 

from the same batch to eliminate possible variations. 

Evans blue dye, calcium chloride and Trizma® base were purchased from Sigma-

Aldrich Company Ltd. (Gillingham, Dorset SP8 4XT, U.K.); 0.9% sodium chloride 

was acquired from Baxter Health Care Ltd. (Newbury, Berks RG20 7QW, U.K.) and 

sterile Millex®-SV 5.0µm filter units were purchased from Millipore (UK) Ltd 

(Watford, Herts. WD18 8YH); collagenase type I was acquired from Calbiochem 

(Merck Chemicals Ltd., Nottingham, NG9 2JR, U.K.). 
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3.3.4.1 Studies Design  

 

Ussing Chamber 

An Ussing Chamber was modified and used to test fluid flow through Permacol® and 

NonXL collagen. Ussing Chambers are well established perfusion chambers, made 

from solid acrylic with eight entry ports for fluid lines, electrodes or agar bridges. The 

fluid compartments in each side of the chamber are separated by the membrane being 

studied. Four sharp stainless steel pins on one side of the chamber hold the membrane 

in position and mate with holes in the opposite chamber interface. Six entry ports 

were sealed with several layers of parafilm and two entry ports left open, one in each 

side of the chamber. One entry port was used for fluid entry and the other for fluid 

drainage. The entry port was connected by a tube to a Gilson Minipuls II peristaltic 

pump with a head speed of 5rpm (Anachem, LU1 3JJ, U.K.), which allowed constant 

fluid flow from a reservoir. The reservoir was kept at 37oC and was filled with a 

2.7mM CaCl2, pH 7.0 solution, since this calcium molarity has been reported as the 

calcium concentration found in intertistial fluid (Diem and Lentner, 1970).  

Collagen matrices were cut into 1cm x 1cm pieces and (one at each time) placed in 

the chamber, immobilization of matrix was obtained by perforation with the stainless 

steel pins. After placement of the collagen matrix, the chamber was quickly closed to 

avert matrix dehydration. The pump was turned on at a speed of 9.1mL/min and the 

chamber was checked for any liquid leak, if outflow was not observed the time was 

recorded as t0 and the pump/chamber apparatus left working for 3 and 6 hours. The 

speed of fluid flow at the exit was measured. 

At the end of each experiment matrices were fixed in 10% NBF and processed for 

routine histology. 

 

Evans Blue Dye 

Female Sprague-Dawley rats (inbred) were used with weights between 270 – 370g. 

The study comprised 48 animals distributed into four experimental groups, as in Table 

3.8. 
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Table 3.8 – Experimental groups and time points design. 

End time-point 1 hour 3 hours 24 hours 72 hours 

Permacol 2 4 8 8 

Noncross-linked collagen 2 4 8 8 

control 1 1 1 1 

  

A 0.5% solution of Evans blue dye was prepared in 0.9% saline solution and sterilized 

by filtration through a 5.0µm filter. 

All matrices were trimmed to 1.5cm x 2.0cm sizes just prior implantation. 

 

 

3.3.4.2 Surgical Procedure  

 

Animals were anaesthetised according to the procedure described in Section 2.2.5. 

All surgery was done using sterile techniques. The following surgical procedure was 

followed for all animals: 

 

1. A ventral midline incision was made from just below the level of the rib cage 

extending approximately 1.5cm distally. 

2. Skin was elevated and retracted to create one subcutaneous “pocket” on one 

side of the midline. 

3. Haemostasis was maintained by careful dissection – no electrocautery was 

used. 

4. The collagen matrices (Permacol® or NonXL collagen) were placed in the 

pocket. 

5. The ventral midline incision was closed with interrupted sutures. 

6. 0.5% Evans blue solution was injected intra-dermally in two opposite sites, 

just touching the side of the collagen matrices, 0.1% (volume) of Evans blue 

solution was injected per body mass, e.g. an animal weighting 300g would 

receive in total 0.3mL of 0.5% Evans blue solution. 

7. Once recovered from anaesthetic, animals were returned to the animal 

accommodation, singly housed. 
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3.3.4.3 Necropsy  

 

Animals were euthanased (as described in Section 2.2.8) and implants removed. 

Implants were macroscopically observed and areas showing Evans blue infiltration 

measured by ImageJ software (U. S. National Institutes of Health, Bethesda, 

Maryland, USA). Implants from 1 hour and 3 hours groups were divided in two, one 

half was fixed in 10% NBF for histological analysis and the other half immediately 

frozen in liquid nitrogen and kept at -80oC for cryostat sectioning. Implants from 24 

hours and 72 hours groups were stored in a sterile vial with 2mL of 0.2M Tris pH 8.0. 

 

 

3.3.4.4 Histology 

 

Tissue kept for histological analysis was processed and embedded according to 

Section 2.2.9.2 and 5µm sections made from each wax block. All sections were pre-

treated as described in Table 3.9 before microscopical analysis. Sections were 

observed using a light microscope for Evans blue dye infiltration.  

 

Table 3.9 – Treatment of sections with Evans blue dye. 

Reagent Time 

Xylene 1 5 minutes 

Xylene 2 2 minutes 

Absolute IMS 2 minutes 

95% IMS 2 minutes 

70% IMS 2 minutes 

Running tap water 2 minutes 

70% IMS 30 seconds 

95% IMS 30 seconds 

Absolute IMS 2 minutes 

Xylene 1 2 minutes 

Xylene 2 2 minutes 

DPX Mount 
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To perform cryo-sectioning, frozen tissues (previously stored at -80oC) were removed 

from the freezer and immersed in liquid nitrogen, samples were kept submerged until 

just immediately after cryo-sectioning. Frozen tissue was quickly removed from the 

liquid nitrogen and cut into 0.5cm x 0.5cm blocks with appropriate plane faces for 

sectioning. Each block of tissue was mounted in specimen holders, which were 

standing vertically in dry ice. To attach the block of tissue to the specimen holder 

water was added, drop by drop, to the interface of tissue/holder; in this way the tissue 

is envolved by an ice coating which keeps it secure. Specimen holders (with tissue) 

were then placed inside the cryostat. A cryostat (JUNG CM3000, Leica) was used to 

obtain 8µm sections in glass slides which were dipped into acetone and allowed to dry 

while inside the cryostat. Slides were stored at -20oC until observed under the 

microscope.  

 

 

3.3.4.5 Evans Blue Dye Measurement  

 

Implants stored in Tris buffer were denatured at 70oC for 30 minutes and allowed to 

cool down to room temperature. Once cool 18mg of collagenase type I was added to 

each sample and solutions were incubated at 37oC for 24 hours. 

All samples were centrifuged at 400xg for 5 minutes and supernatant removed to a 

new tube. Evans blue labelled albumin (EBA) amounts were quantified by absorbance 

readings of the supernatants at 620nm, 0.2M Tris pH 8.0 was used as blank (Abraham 

et al., 1996; Hamer et al., 2002; Harada et al., 2005; Hawkins and Egleton, 2006). 

 

 

3.3.5 Statistical Analysis 

 

Absorbance readings were compared between groups using an unpaired t-test, a P 

value less than 0.05 was considered significant. 
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3.3.6 Results  

 

Samples used in the Ussing chamber assay did not show any deposits of calcium after 

3h and 6h of a calcium solution flowing through matrices. 

Although the fluid exited the chamber at a slightly lower speed than its entrance, there 

was no significant difference between both matrices tested. 

One animal from group NonXL 72 hours died post operatively due to anaesthetic 

problems. 

One hour post intradermal injection of Evans blue both type of implants showed some 

dye absorption which extended through the total thickness of the implants (Figure 

3.22). There was no statistical difference between the dyed areas of Permacol and 

NonXL implants. 

 

 
Figure 3.22 – Permacol implant one hour post implantation. 
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After 3 hours dye absorption was higher both in colour and areas affected. NonXL 

implant showed more dye absorption compared to Permacol implants (Figure 3.23 

and Figure 3.24), but differences were not significant. 

 

 
Figure 3.23 – NonXL implant after 3 hours of implantation. 

 

 
Figure 3.24 – Permacol implant 3 hours post implantation. 
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After 1 day and 3 days implantation all implants had absorbed Evans blue dye which 

was visible throughout the total area and thickness of implants, no difference was 

observed in the absorption level between implant type (Figure 3.25 and Figure 3.26). 

 

 
Figure 3.25 – NonXL implant 72 hours post implantation. 

 

 
Figure 3.26 – Permacol surgical implant 72 hours post implantation. 
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Control animals showed, at all time points, Evans blue dye uniformly spread through 

the area of injection, after 72 hours animals showed a light blue colour underneath the 

skin over the whole body (Figure 3.27). 

 

 
Figure 3.27 – Control animal 72 hours after being injected intradermally with Evans 

blue dye. 

 

Paraffin wax embedded and cryo-sections were observed with a light microscope. In 

the first, the blue dye was too light and differentiation between stained and non 

stained areas was difficult. In the cryo-sections Evans blue dye was observed 

extending through all depth of implants, the blue colour was not intense enough to 

produce good quality pictures.  

 

After collagenase digestion Evans blue labelled albumin was measured as described in 

Section 3.3.4.5. Results are represented in Table 3.10. Since collagen matrices had 

different thicknesses, results were calculated per volume (mL). Mean (X) and 

standard deviations (SD) were calculated for all groups. 
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Table 3.10 – EBA quantification at 620nm. 

24 Hours 72 Hours 

Permacol NonXL Permacol NonXL 

OD620nm OD/mL OD620nm OD/mL OD620nm OD/mL OD620nm OD/mL 

0.480 1.60 0.350 0.78 0.150 0.50 0.186 0.41 

0.143 0.48 0.253 0.56 0.146 0.49 0.213 0.47 

0.176 0.59 0.236 0.52 0.094 0.31 0.359 0.80 

0.417 1.39 0.388 0.86 0.260 0.87 0.321 0.71 

0.321 1.07 0.413 0.92 0.269 0.90 0.353 0.78 

0.418 1.39 0.423 0.94 0.328 1.09 - - 

0.326 1.086 0.344 0.764 0.208 0.693 0.286 0.636 

0.139 0.463 0.081 0.180 0.091 0.302 0.081 0.180 

 

 

Figure 3.28 shows the graphical representation for EBA readings per volume of 

matrix. 
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Figure 3.28 – Results for EBA absorbance at 620nm, error bars represent standard 

deviations. 
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3.3.7 Discussion  

 

Due to matrix composition some materials may produce some resistance to flow of a 

fluid, this resistance is created by the matrix and its interactions with fluids attempting 

to flow through it. In the study reported here a cross-linked matrix was tested against 

its non-cross-linked equivalent. Matrices were tested in a modified Ussing chamber 

under the same conditions; the speed of the fluid leaving the chamber was compared 

between both matrices to predict if one matrix was producing more resistance to flow 

than the other. This was not observed at any stage; although fluid was leaving the 

chamber at a slightly lower speed than the entrance speed, this decrease was observed 

for both matrices. 

Because calcification was occasionally observed in Permacol® surgical implants after 

implantation in rats, and calcification was not observed in NonXL implants, it was 

suggested that the cross-linked structure of Permacol® was acting as a filter and, with 

time, calcium deposits were accumulating within the collagen. To test this theory 

calcium solution, at the same concentration as encountered in interstitial fluid (Diem 

and Lentner, 1970), was used in this study. Both matrices types were capable of liquid 

absorption and fluid moved through the entire depth of matrix. Although both 

matrices were in contact with the calcium solution for 6 hours, calcium deposits were 

not visible within the collagen. This suggests that for matrix calcification, Permacol® 

needs to be in contact with calcium for long periods of time or calcification only 

occurs in situ. Permacol calcification will be further discussed in detail in Chapter 

5.2 and Chapter 5.3. 

In a different experiment, interstitial fluid flow through Permacol® was observed by 

using Evans blue dye, a dye that combines strongly with albumin, NonXL implants 

were used as controls. There was no difference in areas infiltrated with EBA between 

implant types; moreover, after digestion of collagen matrices there was no evidence of 

significant differences between the amounts of EBA absorbed by the collagen 

matrices. 
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3.3.8 Conclusion 

 

This study showed that Permacol® surgical implant and NonXL collagen offer similar 

resistance to calcium chloride solution, under the conditions tested. Calcium deposits 

were not observed within the collagen matrices in the Ussing chamber assay. In vivo, 

both matrix types showed equal permeability to interstitial fluid. Both hypotheses 

tested in this study were disproved since there was no apparent difference between 

cross-linked and noncross-linked collagen matrices. 
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4.0 CELL PROLIFERANTION AND INFILTRATION IN COLLAGEN 

MATRICES 

 

 

 

Biomaterials must be thoroughly tested before permission is granted for human use 

therefore, biological prostheses biocompatibility is evaluated to provide assurance that 

the final biomaterial will be safe for human use and will perform appropriately. 

Biological performance has two aspects, material response and host response 

(biocompatibility). During the last 40 years this evaluation has been primarily carried 

in animal models (Braybrook, 1997). However, such tests are time consuming, 

expensive and many times limited for ethical reasons. The ISO 10993-2 recommends 

that animal experiments shall not be performed before appropriate tests, if available, 

are carried out. For these reasons in vitro models have been established to evaluate 

material cytotoxicity, matrix degradation, apoptosis induction, cell-cell interaction, 

cell-matrix interaction, cell adhesion, migration and proliferation in the matrix of 

potentially implantable scaffolds. 

Cell culture refers to the growth of initially matrix-free, disassociated cells. Exposure 

to biomaterials may be through direct contact, diffusional contact or by inclusion of 

particles or extracts from materials in the culture media (indirect contact) (Black, 

2006). Tissue culture uses portions of living tissue, maintained in a viable state in 

vitro, this method usually requires a substrate instead of a suspension solution. 

Exposure to the biomaterial is similar to that for cell culture. 

For cell culture or tissue culture results to be relevant and useful while analysing 

material or host response of a biomaterial, care is needed while designing an 

experiment. There are factors that cannot be overemphasized such as replication, 

sterilization, controlled conditions, selection of the appropriate cell type and 

consideration of the dosage and time of exposure of cells to biomaterial. The latter is 

important because cells may tolerate materials at low levels or for short periods of 

time, but they may be adversely affected if dosage and exposure are increased. 
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4.1 AN IN VITRO ASSESSMENT OF FIBROBLAST INTERACTION WITH 

DIFFERENT PORCINE COLLAGEN SUBSTRATES 

 

 

 

4.1.1 Introduction 

 

Several biocompatible materials have been studied for their suitability as matrices for 

tissue engineering. These include natural polymers and their synthetic analogues. 

Collagen is regarded as one of the most useful biomaterials. The excellent 

biocompatibility and safety due to its biological characteristics, such as 

biodegradability and weak antigenicity have made collagen a primary resource in 

medical applications (Friess, 1998; Lee et al., 2001a). In vivo, collagen promotes 

natural cell interactions such as cell migration and proliferation, it is biocompatible 

and it can be remodelled. In addition to the low cross species immunogenicity, the use 

of collagen is perpetuated by the possession of lesser known bioactive influences not 

observed when using synthetic material which can influence adhesion, spreading and 

morphology (Jarman-Smith et al., 2004). Collagen represents the chief structural 

protein accounting for approximately 30% of all vertebrate body protein; it is the 

major constituent of the extracellular matrix (Friess, 1998). In vivo, the ECM of the 

connective tissue is remodelled continuously, allowing modification and infiltration of 

cells. ECM degradation and remodelling results from the action of proteolytic 

enzymes, which are secreted primarily by fibroblasts (Jarman-Smith et al., 2004). 

Fibroblasts synthesize, organize and maintain connective tissues during development 

and in response to injury and fibrotic disease (Grinnell, 2003). The performance of 

these activities depends on the capability of cells to exert mechanical force and to 

remodel the ECM. When fibroblasts are cultured within an ECM such as collagen or 

fibrin, cells experience a more intricate physical environment and a different 

topography from cells on two-dimensional (2-D) surfaces (glass or plastic tissue 

culture substrata). Fibroblasts exhibit unique features when they interact with 3-D 

collagen matrices and the interaction between cells and the matrix leads not only to 

changes in cell shape but also to matrix remodelling and contraction (Brown et al., 
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1998; Grinnell et al., 1999; Tomasek et al., 1992; Xu et al., 1998). Hence, culturing 

fibroblasts within a 3-D environment has proven to be a valuable tool in studying 

numerous cellular functions under conditions that resemble the in vivo situation more 

closely than fibroblast monolayer cultures (Bell et al., 1979). 

In a 3-D matrix, attached fibroblasts do not have a flat shape and lamellar extensions, 

as occurs on 2-D surfaces, but range in shape from dendritic (lower mechanical load) 

to stellate to bipolar (greater mechanical load), depending on matrix stiffness and 

tension (Eckes et al., 2000; Grinnell, 1994; Jiang and Grinnell, 2005). Similar 

morphological features have been described for cells in tissues. 

Fibroblasts in 3-D matrices initially spread without forming stress fibres and have few 

focal adhesions. Over time fibroblasts interact with the matrices and cells penetrate 

into the substance of the matrix and become entangled with matrix fibrils (Rhee and 

Grinnell, 2007). Harries and co-workers showed that matrix contraction occurs as a 

consequence of motile activity by cells trying to migrate through the matrix (Harris et 

al., 1981). Depending on the surgical purpose, contraction is not always desirable in 

an implanted material; in certain situations the implant structure should be preserved 

intact for a prolonged period of time while it provides support and strength, for 

instance when used as a bulking material. Therefore, in such a case, it is vital to 

prolong the materials’ original structural and mechanical integrity. Methods to 

achieve this typically focus on creating new additional chemical bonds between the 

material molecules so that these supplementary links reinforce the tissue robustness. 

Ideally, the treatment should maintain the original character of the tissue, such as its 

flexible mechanical properties, whilst preventing significant shrinkage (Khor, 1997). 

The methods used to achieve this principle have the generic label of ‘cross-linking 

processes’. Cross-linking may be effected by chemical, physical or enzymatic 

techniques. All contribute to increase the mechanical stability of biomaterials.  

 

Permacol surgical implant has shown variability in cellular penetration and density 

and subsequent vascularisation after in vivo implantation. Since it is not known if the 

cross-linking process compromises cell adherence, the current study now described 

was designed to assess the ability of this cross-linked collagen matrix to support cell 

adhesion, infiltration and proliferation over time, whilst retaining its original 

structure. Moreover, fibroblast-matrix interactions were assessed using cross-linked 
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and noncross-linked collagen matrices. Comparison of Permacol with manufacture 

process intermediates (varying in strength of cross-linking) should elucidate the effect 

of the cross-linking process in cellular ability to attach and penetrate collagen 

matrices or even to survive on the surface.  

 

 

4.1.2 Hypothesis 

 

The variability observed in cellular density and cellular penetration of Permacol 

surgical implants is due to the cross-linking process used in their preparation. 

 

 

4.1.3 Aims and Objectives 

 

 Compare fibroblast attachment, infiltration and penetration into three dermal 

collagen matrices – normal porcine collagen, acellular porcine collagen and 

cross-linked acellular porcine collagen (Permacol surgical implant).  

 Evaluate pre-treatment of collagen matrices as a factor influencing cellular 

proliferation. 

 

 

4.1.4 Materials and Methods 

 

All collagen matrices were supplied by TSL plc. Samples were supplied moist in 

sterile saline in double vacuum packed aluminium foil/polyethylene sachets which are 

impermeable to oxygen and are sterilised by gamma irradiation. All samples were 

kept at 4°C until needed. 

In this study three biomaterials were tested: (i) Permacol surgical implant (hereafter 

referred as XL); (ii) the manufacturer’s product preceding the cross-linking process – 

noncross-linked acellular collagen (NonXL); and (iii) dermal porcine collagen (Raw). 

Each collagen matrix was derived from the same batch to eliminate variations. 
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Eight discs of 1.6cm in diameter (2.01cm2 area) were cut from each of the collagen 

matrices; of these, 4 discs were left soaking overnight in PBS (PT-PBS) and the 

remaining 4 in fibroblast medium (PT-FM) supplemented with antibiotics (as 

described in Section 2.1.2). The next day 4 more discs with the same dimensions were 

prepared from each collagen matrix and since they were not pre-treated with any 

solution, were labelled as “Non-soaked”. 

Two 24-well plates were used (Nunc, Fisher Scientific UK Ltd., Leicestershire LE11 

5RG, U.K.) for this experiment. Each well (∅=1.6cm) received a collagen disc. The 

first plate was prepared with the XL and NonXL samples as in Figure 4.1 and the 

second plate had in the first 3 columns the Raw samples, one empty column and the 

last 2 columns were incubated with fibroblasts only, as control wells. 

 

 
Figure 4.1– 24-well plate with collagen matrices fitted in the bottom of each well. PT-

FM matrices showed a pink coloration. N = non-soaked matrix. 

 
Primary cultures of porcine fibroblasts were used (see Section 2.1.2) in all in vitro 

experiments. All experiments were repeated at least twice. A sample of the porcine 
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skin used for cell extraction was fixed in 10% NBF as control tissue. Routine 

histological analysis was performed as described in Section 2.2.9. 

 

Early passage porcine fibroblasts (P≤4) were seeded on the top of each disc, at a 

density of 1x106 cells/well (i.e., 5x105 cells/cm2 in a volume of 0.5mL). The volume 

in each well was made up to 2mL with fibroblast medium (FM). Plates were 

incubated at 37°C with 5% CO2 and 100% humidity. Cells were cultured for 28 days 

with medium changes every 2 days. At each medium change the old medium was 

stained with trypan blue (1:1) for dead cell counting (Section 2.1.4) and viable cells 

were quantified by the means of a MTT test (Section 2.1.6).  

At the end of the study all samples were fixed in 10% NBF for histological analysis 

and the empty plates were observed in an inverted reflected-light microscope 

(Axiovert 25 CA, Carl Zeiss) to look for fibroblast attachment to the plastic surface. 

A porcine skin biopsy was fixed in 10% NBF and processed for histological analysis 

to assess porcine dermal collagen structure and collagen/cells interaction.  

 

 

4.1.5 Results 

 

At the end of the study, plates were observed for fibroblast attachment to the base of 

each well. All control wells showed 100% fibroblast attachment and confluence. The 

wells with the PT-PBS matrices showed the lowest numbers of attached fibroblasts: 

only one well of the XL samples showed marginal numbers of fibroblasts in 

monolayer; the NonXL wells were cell free; and wells with Raw matrices had 

marginal amounts of attached fibroblasts, predominantly at the edges of the well. 

Non soaked matrices showed moderate quantities of cells at the edges of all XL wells, 

the same was observed in the NonXL and Raw wells with the exception that, in these, 

fibroblasts were also visible at the centre of the wells. 

Wells holding PT-FM samples contained the highest number of fibroblasts attached to 

the plastic surface and cells were observed in monolayer both at the edges and centre 

of all PT-FM wells. 

The next illustration represents the cell attachment to the base of the wells. 
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Figure 4.2 – Schematic representation of cell attachment to the base of each well. 

 

At each medium change old medium was kept for cell counting and cell viability 

tests. Manual cell counting was performed with trypan blue for differentiation 

between dead and viable cells.  

The number of cells microscopically observed in the medium was not high, 

suggesting that cells were preferably attached. Also, viable fibroblasts were more 

frequently detected than dead cells. In all samples pre-treated with PBS the number of 

viable cells in the medium was very low. Non-soaked XL matrices showed initially 

some viable cells in the medium but those numbers decreased rapidly after the first 

week. XL matrices pre-treated with fibroblast medium contained the highest quantity 

of viable cells in suspension. NonXL samples showed mostly low numbers of viable 

fibroblasts with the exception of the PT-FM samples at 21 days. Raw matrices 

showed the lowest number of viable cells in suspension. These results are schematised 

in Table 4.1. 

XL NonXL Raw 
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Table 4.1 – Viable cells present in the medium suspension (fibroblasts/mL medium) 

over the time course of the study. 

 XL NonXL Raw 

PT-PBS 

Low number of viable 
cells throughout the study. 
 

 

Low number of viable 
cells throughout the study. 
 

 

Low number of viable 
cells after day 4. 

 

PT-FM 

Viable cells present 
initially but the numbers 
decrease after day 7(*). 
 

 

Low number of viable 
cells except at day 21(*). 

 

Low number of viable 
cells throughout the study. 
 
 

 

Non-
soaked 

Viable cells present 
initially but the numbers 
decrease after day 7 (*). 

 

Low number of viable 
cells except at day 21(*). 
 

 

Low number of viable 
cells throughout the study. 
 

 
 

 

Cells that stained blue with trypan blue were counted as dead cells. XL samples pre-

treated with FM had a high number of dead fibroblasts at 7 days but dead cells were 

minimal thereafter. Non-soaked XL matrices showed low numbers of dead cells, 

except at 21 days. All 3 types of collagen matrices pre-treated with PBS showed very 

low quantities of dead cells in the medium. Independent of the treatment, all NonXL 

samples had low numbers of dead fibroblasts in suspension; the same was observed 

for the Raw samples with the exception of the non-soaked samples at 21 days.  

 

An MTT proliferation assay was used to assess cell viability in the medium. To obtain 

a true sample absorbance a baseline wavelength of 630nm was used as a reference 

absorbance; after this first step a second beam of light having a wavelength of 570nm 

was directed through the sample to obtain a measured sample absorbance; by 

analysing the reference absorbance and the measured sample absorbance we obtained 

a true sample absorbance. 

In the XL samples, cell viability remained fairly constant throughout the experiment, 

independently of the pre-treatment used. NonXL and Raw samples did not show cell 

proliferation in the medium during this study when pre-treated with FM or when 

untreated matrices were used. NonXL samples pre-treated with PBS demonstrated a 

constant cell proliferation rate until day 14, after which there was an increase in cell 
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proliferation. In the Raw collagen matrices pre-treated with PBS the amount of viable 

cells in suspension increased over the time course of the study. Figure 4.3 to Figure 

4.5 show the MTT test results; values were normalized by subtraction of the mean cell 

proliferation value obtained from the controls, mean and standard deviation values 

were calculated per each matrix per parameter tested. 
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Figure 4.3 – MTT test results for fibroblasts when incubated with XL samples for a 

period of 28 days. 
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Figure 4.4 – MTT test results for fibroblasts when incubated NonXL samples with for 

a period of 28 days. 
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Figure 4.5 – MTT test results for fibroblasts when incubated with Raw samples for a 

period of 28 days. 

 

Sections of porcine dermal collagen used as histological control tissue showed 

collagen populated with high numbers of fibroblasts (Figure 4.6). 

 

 
Figure 4.6 – Porcine skin used as control tissue. Collagen is populated with high 

numbers of fibroblasts (H&E, 40X). 
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The histopathological analysis of the collagen substrates showed absence of 

fibroblasts in both XL and NonXL samples pre-treated with PBS. The PT-PBS Raw 

collagen samples had variable results: 2 samples did not show cells at the surface or 

within the matrix, in 1 sample a low number of fibroblasts were visible at the matrix 

surface and the 4th sample presented a layer of fibroblasts covering the top of the 

matrix (Figure 4.7). 

 

 
Figure 4.7 – Fibroblasts covering the surface of a PT-PBS Raw matrix, 28 days post 

incubation (H&E, 100X). 

 

 

Samples pre-treated with FM showed a higher affinity to fibroblast infiltration and 

attachment; XL and NonXL samples had fibroblasts attached to their surface while 

Raw samples showed cells at the surface as well as some level of cellular penetration 

(Figure 4.8 to Figure 4.10). 
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Figure 4.8 – Fibroblasts at the surface of XL samples pre-treated with fibroblast 

medium (H&E, 200X). 

 

 
Figure 4.9 – Fibroblasts at the surface of NonXL samples pre-treated with fibroblast 

medium (H&E, 100X). 
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Figure 4.10 – Fibroblasts at the surface and infiltrating a Raw collagen sample pre-

treated with fibroblast medium (H&E, 100X). 

 

 

Non-soaked matrices showed the highest numbers of cell attachment and cell 

penetration for all collagen matrices tested. XL samples and Raw samples both 

allowed fibroblast proliferation at the surface with some fibroblast infiltration (Figure 

4.11 and Figure 4.12, respectively). 
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Figure 4.11 – Non-soaked XL sample with fibroblasts at the surface and penetrating 

through natural fissures (H&E, 100X). 

 

 
Figure 4.12 – Non-soaked Raw sample with fibroblasts at the surface and penetrating 

through natural fissures (H&E, 100X). 
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Non-soaked NonXL matrices did not show cellular penetration but had fibroblasts 

attached to the surface (Figure 4.13). 

 

 
Figure 4.13 – Non-soaked NonXL matrix showing fibroblasts at the surface without 

cell penetration (H&E, 100X). 

 

 

Independent of pre-treatment and type of collagen matrix, 28 days post incubation 

collagen was of good quality and showed no degradation or remodelling of the 

matrix; furthermore, collagen structure was not altered throughout the experiment 

(Figure 4.14). 
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Figure 4.14 – Highly birefringent collagen under polarized light showing a non-

denatured XL collagen matrix, 28 days post incubation (picro sirius red, 100X). 

 

 

4.1.6 Discussion 

 

Fibroblasts are commonly present in dermis; hence, one would expect fibroblasts to 

easily infiltrate dermal collagen derived biomaterials. This was not observed during 

this study. 

Plate-wells where PT-PBS collagen samples were placed showed the lowest number 

of fibroblasts. Since there were no cells attached to the plastic surface at the end of the 

experiment it was reasonable to expect fibroblasts to be in suspension or attached to 

the collagen matrices but none of these outcomes were observed. Samples pre-treated 

with PBS showed low numbers of viable cells throughout the study despite the 

number of dead fibroblasts counted being low during the incubation period. PT-PBS 

Raw collagen was the only matrix that showed fibroblast attachment to its surface but 

this was observed only in 2 samples. These results suggest that: i) the fibroblast 

population used as inoculum in the PT-PBS wells died in the early stages of the study 

and the remaining fibroblasts proliferated at a slow rate; or ii) pre-soaking the 
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collagen matrices with PBS impaired cell attachment, cells remained in suspension 

and were removed at the first medium change.  

Fibroblast death or inability of attachment resulting from pre-treating a matrix with 

PBS was intriguing and unexpected. PBS is extensively used as a washing buffer 

during cell culture. While sub-culturing the primary cultures of porcine fibroblasts the 

old medium was rejected and PBS was used to thoroughly wash the flasks to 

eliminate any possible toxins and residues from the old medium. It is known that 

attached cells can not be left in PBS for long periods of time without any medium, 

otherwise cells will start floating and lose their ability to attach to the surface. Since 

cells need Ca2+ to attach to a substratum, in the presence of PBS only, cell-receptors 

will dislodge from the specific ligands. In this study, cells were not left in PBS for 

more than a few seconds and cells were seeded in fibroblast medium. 

It is well known that the extracellular environment influences cell behaviour with 

respect to morphology, cytoskeletal structures and functionality. Surface charge, 

surface energy and surface oxidation are physicochemical properties that affect cell 

response (den Braber et al., 1996). One possible explanation for lack of cellular 

attachment to or penetration into the matrices is that the pre-treatment of the tested 

collagen matrices with PBS changed the chemical surface properties of the matrices 

interfering with protein attachment. Cells do not attach easily in a direct way to the 

surface of a substratum; instead the proteins from the serum that supplements the 

medium are rapidly adsorbed by the substratum translating its structure and 

composition into biological language. Later, cell-receptors attach to the protein 

ligands. Thus, the capacity of materials to adsorb such proteins from serum, in an 

active state, determines their ability to support cell adhesion and proliferation. Protein 

adsorption may be promoted or impaired by enthalpic and entropic changes within the 

surface-water-protein system (Wilson et al., 2005). Changes may result from partial 

dehydration of protein and sorbent surfaces, redistribution of charged groups in the 

interface and conformational changes in the protein molecule (Haynes and Norde, 

1994). The salt concentration in PBS may have altered the osmolarity of the collagen 

matrices and/or the surface charge, decreasing serum protein attachment and 

therefore, fibroblast adhesion. 

These results may also be connected to the matrices structure. As observed in Section 

3.2 these collagen matrices have a tendency to accumulate salts from the buffers. PBS 

salts may have been retained within the matrices and were later solubilised by the 
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fibroblast medium, causing an increase in the salts concentration of the medium and 

making the medium a hypertonic solution which would cause osmotic stress leading 

to cell shrinking as result of an osmotic adaptation. 

 

Raw collagen samples have not been exposed to chemical treatments; this may 

explain the fibroblast attachment in the PT-PBS samples. Raw collagen ECM contains 

other components besides collagen, including glycosaminoglycans (GAGs) which are 

thought to support fibroblast attachment, migration and proliferation in vitro (Ojeh et 

al., 2001). 

 

Neither the decellularization process nor the cross-linking processes seem to 

compromise cell adherence, since XL and NonXL matrices had very similar results. 

Pre-treatment of samples with FM did not impair cell attachment as fibroblasts were 

observed forming a monolayer at the surface of all 3 matrices; in the Raw samples a 

low level of cellular migration was observed through the natural fissures of collagen. 

When no pre-treatment was used all matrices behaved similarly, each providing a 

surface for cell attachment. Both XL and Raw samples showed localized cell 

penetration. 

The results reported here are partially in agreement with a study performed by 

Jarman-Smith and colleagues where the ability of Permacol to support human 

primary fibroblast outgrowth from explant was compared to tissue culture plastic and 

PET (polyethylene terepthalate). The authors reported that the collagen matrix showed 

the least amount of cell retention compared to the other two matrices; however, the 

general trends were similar for all three scaffolds (Jarman-Smith et al., 2004). They 

found that fibroblasts remained preferably at the surface of the matrices and did not 

penetrate, which is in agreement with our results. They pre-treated all matrices with 

FM, PBS and cysteine and used non pre-treated matrices as controls. They found the 

highest viable cell activity in the PT-FM samples, and PT-PBS and PT-cysteine 

samples gave better results than the non pre-treated matrices. This last result is not in 

accordance to the findings reported here, where normal, non pre-treated, Permacol 

sustained fibroblast attachment and proliferation on the surface while PT-PBS 

samples did not. 
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It was observed that fibroblasts cultured on cross-linked and noncross-linked collagen 

matrices for a period of 28 days, remained mainly on the surface of the matrices and 

did not penetrate easily into the matrix. Their growth and attachment was supported 

by all three types of collagen matrices analysed. Under constant in vitro conditions 

fibroblasts may not produce collagenases necessary for the remodelling of the matrix 

and subsequent infiltration of cells; this may explain why cellular penetration was 

rarely observed. However, an in vivo environment is rather different, especially at a 

wound site where collagenolytic proteases can be produced not only by fibroblasts but 

also by immune cells migrating into the area - increasing the rate of collagen 

degradation and matrix remodelling. Kimuli and co-workers assessed the potential of 

Permacol® as a matrix for urological tissue engineering; they cultured normal human 

urothelial (NHU) and smooth muscle (SM) cells individually and in co-culture 

(Kimuli et al., 2004). NHU attached and formed a monolayer on the surface of 

Permacol®, but SM cells only colonized the surface of Permacol® when co-cultured 

with NHU cells. To further investigate this they used the highly invasive EJ bladder 

cancer cell line, which formed a monolayer of cells on the surface by day 1, 

penetrated the matrix by day 7 and further penetration was observed until 14 days 

when the matrix degenerated. They hypothesized that SM cells failed to infiltrate 

Permacol® because of its level of cross-linking and that EJ cells were able to do it due 

to their proteolytic activity, to test this hypothesis they digested Permacol® with 

collagenase prior to cell seeding. Collagenase digestion failed to facilitate Permacol® 

penetration by SM cells, although it led to a rapid and widespread invasion by EJ 

cells. These results and the results obtained in this study, where Permacol® and 

NonXL collagen had similar results, suggest that cross-linking is not the major factor 

in preventing cells from penetrating the matrix. 

 

It is important for a biomaterial to provide physical, chemical and biological features 

for cellular attachment, proliferation and infiltration. These features are associated 

with nutrient supply, waste product removal and neo-vascularisation; if a biomaterial 

does not allow nutrient access to its interior there will be no point in cells populating 

those areas. Geometrical surface properties such as shape, size and topography of a 

surface, can also influence cellular interactions (den Braber et al., 1996; Desai, 2000; 

Vidaurre et al., 2007). The macro- and micro-structural properties of biomaterials are 

of high importance. They affect not only cell survival, growth, reorganization, 
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intracellular signalling and migration, but also cell morphology and gene expression 

that relate to cell growth and preservation of native phenotypes (Figallo et al., 2007; 

Leong et al., 2003). It was thought that the cross-linking process of Permacol 

surgical implant might affect the collagen structure, fibre alignment and orientation, 

and decrease pore size but, as discussed in Chapter 3.0, the cross-linked collagen 

shows natural fissures, with enough pore diameter for cell migration. 

In the next chapter the ability of some cells to penetrate Permacol surgical implant in 

localized areas will be discussed, especially where natural septae are present, but 

seem incapable of consistently achieving an even spread or regular pattern. 

 

 

4.1.7 Conclusion 

 

In the study presented here fibroblasts were cultured using three different types of 

dermal collagen matrices as a 3-D substratum. Cells remained mainly on the surface 

of the matrices and did not penetrate easily into the matrix, independent of the type of 

matrix or pre-treatment performed. Fibroblasts growth and attachment was supported 

by all three types of collagen matrices analysed. 

Permacol surgical implant has been designed for permanence when implanted in 

vivo and since fibroblasts did not remodel or change in any way Permacol matrix, 

the present results suggest that this biomaterial can be used as a bulking material 

without fear of the material shrinking or contracting. In addition, Permacol surgical 

implant’s apparent resistance to contraction is likely to be of importance for the 

reduction of scarring when used in wound healing. Nevertheless, in vivo studies are 

required to corroborate these hypotheses. 



                                                                               CHAPTER 4 – IN VITRO MODELS 

 -127- 

4.2 ASSESSMENT OF SKIN EXPLANT OUTGROWTH INTO COLLAGEN 

SUBSTRATES 

 

 

 

4.2.1 Introduction 

 

Explant culture is a common method utilized to establish primary cell cultures. This 

technique isolates cells from one or more pieces of tissue. In brief, the tissue is 

harvested in a sterile manner (explant), often minced, and pieces placed in a cell 

culture dish containing growth media especially selected to facilitate cellular 

migration of the cells of interest from the explant. Over time, progenitor cells migrate 

out of the tissue onto the surface of the dish. These primary cells can then be further 

expanded and transferred into new culture flasks/plates. 

Explant culture is commonly performed in plastic Petri dishes or well-plates; these 

can be supplemented with spacers for mesh supports and media or the explant can be 

placed on stainless steel mesh or grids, or supporting substrates. These substrates 

facilitate the attachment of the explant to the culture vessel as well as promoting the 

maintenance of the differentiated phenotype. 

 

In contrast to cell culture which implies the relatively homogeneous isolation and 

culture of specific types of cells in defined media and under controlled conditions, 

explant culture utilizes slices or small segments of organs or tissues which contain 

multiple cell types. Explant culture offers several significant advantages for studies of 

cellular biology. These include preservation of the histiotypic relationships among 

cells of an organ without any disturbance of the cellular or tissue architecture which is 

caused by enzymatic, chemical or mechanical separation (Resau et al., 1991). During 

explant outgrowth, the cell phenotype remains intact and the effect of the adjacent 

basement membranes and cells on each other helps to maintain typical cell-cell 

interaction.  
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We have studied earlier how fibroblasts behave when seeded on Permacol surgical 

implant, acellular noncross-linked collagen and dermal porcine collagen. In a similar 

experiment, porcine skin biopsies were used to evaluate explant outgrowth in the 

same three porcine collagen matrices. In the first experiment fibroblasts remained 

mainly at the surface of the matrices and cellular penetration was rarely observed. It is 

not known if those results were related to cell isolation techniques, which may affect 

cell phenotype and therefore histiotypical features. This study will assess explant cell 

migration into the collagen matrices, the type of cells migrating and cell-matrix 

interaction. 

 

 

4.2.2 Hypothesis 

 

Permacol surgical implant, acellular noncross-linked collagen and dermal porcine 

collagen are capable of supporting porcine skin explant outgrowth. 

 

 

4.2.3 Aims and Objectives 

 

 Compare the effect of enzymatic cell isolation versus explant culture techniques, 

relative to cell attachment, proliferation and penetration into collagen matrices. 

 Assess the ability of cross-linked and noncross-linked collagen matrices to 

support skin explant outgrowth over time. 

 

 

4.2.4 Materials and Methods 

 

Experimental procedures were similar to the protocol followed in Chapter 4.1. As 

before, all collagen matrices were supplied by TSL plc.  
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Permacol surgical implant (XL), noncross-linked acellular collagen (NonXL) and 

dermal porcine collagen (Raw) were tested. Each collagen matrix was derived from 

the same batch to eliminate variations. 

 

Four discs, 2cm in diameter (3.14cm2 area) were cut from each of the collagen 

matrices; discs were left soaking overnight in fibroblast medium (PT-FM) 

supplemented with antibiotics. The next day 4 more discs with the same dimensions 

were prepared from each collagen matrix and since they were not pre-treated with any 

solution, were labelled as “Non-soaked”. 

Two 12-well plates were used (Nunc, Fisher Scientific UK Ltd., Leicestershire LE11 

5RG, U.K.) for this experiment. Each well (∅=2.0cm) received a collagen disc. The 

first plate was prepared with the PT-FM samples and the second plate with the non-

soaked samples. 

A skin biopsy was isolated as in Section 2.1.2 and skin explant containing both 

epidermis and dermis were cut into 0.5cm x 0.5cm pieces. Three pieces of skin 

explant were placed on top of each matrix disc; collagen matrices and skin were 

soaked with fibroblast medium and moved to an incubator, at 37°C with 5% CO2 and 

100% humidity, for 6 hours to allow skin attachment to the matrices. Three skin 

pieces were placed in a plastic Petri dish, to act as control, and treated in the same 

manner as the test matrices. Part of the skin biopsy was fixed in 10% NBF and 

processed for histological analysis to be used as control for tissue morphology and 

cell-type location and density. 

 

The volume in each well was made up to 1mL with fibroblast medium (FM) and 

plates returned to the incubator. Skin in the control dish was submerged in FM. 

Explant cultures were kept for 21 days with medium changes every 2 days.  

The control plate was microscopically observed for cell outgrowth at various times 

throughout the study. 

At the end of the study all samples were fixed in 10% NBF for histological analysis 

and the empty plates were observed using an inverted reflected-light microscope to 

look for cell attachment to the plastic surface. 
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4.2.5 Results 

 

At day 2 a bacterial contamination occurred but a decision was made to continue the 

experiment for 20 days and observe the interaction of bacteria with the collagen 

matrices tested. The experiment was repeated and the explant outgrowth observed. 

Results from the explant outgrowth experiment will be described first followed by the 

results obtained when the bacterial contamination occurred. 

 

 

4.2.5.1 Skin Explant Outgrowth 

 

After day 3 cells outgrowth was observed from the skin explants placed in the control 

plate and cells continued to proliferate until the end of the study. 

Histology from the skin biopsy showed dermal collagen easily populated by cells 

(Figure 4.15). 

 

 
Figure 4.15 – Porcine skin biopsy (H&E, 20X). 
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At the end of the experiment plates were observed for cell attachment to the plastic 

surface. Wells where non-soaked matrices were placed had low numbers of cells 

attached to the plastic surface. The same was observed for PT-FM Raw samples. XL 

and NonXL samples pre-treated with fibroblast medium had minimal amounts of cells 

attached to the plastic surface of the wells. 

The histopathological analysis of the collagen matrices showed cells only at the 

surface of the collagen matrices, but cellular penetration was not observed. Non-

soaked samples had low numbers of cells attached to the surface. Non-soaked XL 

samples showed cells at the surface but these did not form an even monolayer (Figure 

4.16). 

 

 
Figure 4.16 – Non-soaked XL collagen matrix with low number of cells in monolayer 

at the surface of the matrix (H&E, 200X). 

 

 

Non-soaked NonXL did not show cell attachment or penetration and non-soaked Raw 

collagen matrices showed only a few cells attached to the surface (Figure 4.17). 
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Figure 4.17 – Non-soaked Raw sample with very low cell attachment (H&E, 200X). 

 

All PT-FM collagen matrices had cells attached to their surface, although at marginal 

numbers (Figure 4.18 to Figure 4.20). 
 

 
Figure 4.18 – PT-FM XL collagen with cells derived from explant outgrowth at the 

surface, 21 days post implantation (H&E, 200X). 
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Figure 4.19 – PT-FM NonXL collagen with cells derived from explant outgrowth at 

the surface, 21 days post incubation (H&E, 200X). 

 

 
Figure 4.20 – PT-FM Raw collagen with fcells derived from explant outgrowth at the 

surface, 21 days post incubation (H&E, 200X). 
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Skin explants were also processed for routine histology. The majority of the skin 

explants showed cells within the extracellular matrix, although cell numbers were not 

as high as found normally in skin (Figure 4.21). Half of the explants from the non-

soaked XL group had only a few cells within the extracellular matrix but cells were 

visible forming a monolayer at the surface of the explant (Figure 4.22). 

 

 
Figure 4.21 – Skin explant showing cells within the matrix (H&E, 100X). 
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Figure 4.22 – Skin explant with a low number of cells within the matrix but with cells 

at the surface (H&E, 40X). 

 

All collagen matrices showed good, non-denatured, collagen after 3 weeks incubation 

with skin explants. 

 

 

4.2.5.2 Skin Explant and Bacteria 

 

At day 2 a bacterial contamination occurred most likely due to poor skin sterilization, 

resulting in contaminated explant. Plates were visibly contaminated with some of the 

explants floating in the medium.  

 

When using Raw collagen as a substrate, bacteria were able to attach to both sides of 

the matrix, producing a biofilm at the surface, but not easily penetrating the matrix. 

This surface layer degraded the collagen in contact with it, and it was possible to see a 

first wide (compared to the other matrices) layer formed by degraded collagen and 

bacteria (Figure 4.23). 
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Figure 4.23 – Surface layer of bacteria in raw collagen. There is some level of 

penetration of bacteria into the matrix and the collagen at the surface was degraded 

(picro sirius red stain, right image: polarized light, 200X). 

 

Although there was a small degree of bacterial penetration, bacteria mainly stayed at 

the surface of Raw collagen samples (Figure 4.24). 

 

 
Figure 4.24 – A layer of bacteria at the surface of Raw collagen, not penetrating into 

the matrix (H&E, 200X).  
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NonXL samples showed some bacterial penetration with a low level of collagen 

degradation but mostly bacteria were seen on the surface of the collagen. There were a 

few extraordinary situations where bacteria were found in clusters inside the matrix, 

but it is not possible to see how they reached such a level of penetration (Figure 4.25).  

 

 
Figure 4.25 – NonXL collagen matrices after 21 days incubation. Figure A shows 

high amounts of bacteria on the surface of the collagen matrix, with little penetration 

A 

B 
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(H&E, 200X). Figure B shows bacteria in the centre of a NonXL implant, although 

the surface of the matrix is cell free (H&E, 100X).  

Permacol samples showed high concentrations of bacteria on the surface of the 

matrix; when the bacterial load was high bacteria were observed penetrating through 

the natural septae of collagen (Figure 4.26). 

 

 
Figure 4.26 – Permacol samples showing bacterial penetration after 3 weeks 

incubation (H&E, 100X). 

 

 

Although both noncross-linked and Permacol samples showed high numbers of 

bacteria on the surface, with some level of penetration, picro sirius red stain under 

polarized light showed good quality collagen in all Permacol samples and 

degradation in the noncross-linked samples was very low (Figure 4.27 and Figure 

4.28). 
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Figure 4.27 – Permacol implant with some bacterial penetration but non degraded 

collagen (picro sirius red, 100X). 

 

 
Figure 4.28 – Noncross-linked implant surface with a high bacterial load but no 

collagen degradation (picro sirius red, 100X). 

 

 

4.2.6 Discussion 

 

The cells observed outgrowing from the porcine skin explants showed a fibroblast-

like morphology. Morphologically there was no difference between the cells obtained 

by enzymatic extraction and the cells from the explants. Nevertheless, explant 

outgrowth produced less cells than cell seeding after enzymatic digestion. 

Non-soaked matrices had low efficiency as support for explant outgrowth. Permacol 

was the only non pre-treated matrix that supported cell outgrowth. Noncross-linked 

matrices did not sustain cell outgrowth and non-soaked Raw samples showed only a 

few cells on the surface.  
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In this study only one soaking regime was chosen – fibroblast medium – taking into 

consideration the results obtained in Chapter 4.1 it was decided to exclude pre-

treatment with PBS. When the collagen matrices were pre-treated with fibroblast 

medium, the proliferation of cells from skin explant demonstrated that all samples 

were capable of supporting the outgrowth of cells. 

As observed previously, cells failed to infiltrate the biomaterials and remained as a 

monolayer on the surface. For uses in tissue engineering it is important for cells to be 

able to penetrate into the matrix. It can not be concluded that the decellularization 

process or the cross-linking procedure influence cell attachment, proliferation and 

infiltration, since raw collagen behaved similarly to Permacol and noncross-linked 

collagen. 

It is important to consider that an in vitro experiment is a controlled environment and 

very different from an in vivo situation, which will always be influenced by multiple 

variables in a complex system. Therefore, in vivo studies are necessary to elucidate 

why cells do not infiltrate these collagen matrices as readily as expected. 

 

When bacterial contamination occurred, it was decided to isolate those plates in an 

empty incubator and allow the bacteria to interact with the collagen matrices during 

20 days. The medium was changed every two days and occasionally every day since 

bacterial proliferation rate was very high. 

Although the experiments were carried out over almost 3 weeks there was only slight 

penetration of bacteria into the matrices. Regardless of some sporadic penetration of 

cells into the matrices, in general bacteria remained at the surface or in the medium 

and this was independent of the soaking regime.  

When follicular pores were present bacteria would infiltrate through these but 

translocation from pores into adjacent tissue was not observed. Occasionally, bacteria 

appeared isolated in the centre of a matrix; this outcome was intriguing since there 

were no pores connecting that location to the surface. One explanation is that the 

transverse section cut the bottom of a follicular pore which had been invaded by 

bacteria. 

 

The cross-linking process seems to confer a higher level of resistance to bacterial 

degradation, since all cross-linked samples were not degraded by bacteria. The 
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processed but noncross-linked matrix was more resistant to bacteria when compared 

to the raw, non-processed collagen, possibly because of the absence of interstitial 

tissue. 

Despite the small level of penetration and some degradation, it is obvious that bacteria 

do not easily invade collagen matrices, independent of the treatment used in each 

matrix.  

Raw collagen samples used in this study showed low numbers of cells. This is not in 

agreement with what was observed in normal skin, which had numerous cells, 

indicating that collagen in normal situations is well vascularised. The difference 

between normal skin and raw collagen is a sign that the storage process is by itself 

partially decellularising the samples; this may signify that the trypsinization step 

adopted by the manufacturers may be excessive where this storage regime is used. 

 

 

4.2.7 Conclusion 

 

Dermal porcine collagen (Raw) and acellular dermal collagen (NonXL) require 

matrices pre-treatment with fibroblast medium before being able to support cell 

outgrowth from skin explants. Under the same conditions, Permacol supported cell 

attachment and proliferation with and without matrix pre-treatment.  

When in presence of bacteria, collagen dermal matrices were only marginally 

infiltrated by the micro-organisms, bacteria usually kept to the surface or where in 

suspension. A low level of collagen degradation was observed in the NonXL and Raw 

collagen matrices, but not in the Permacol. 

The apparent resistance of Permacol® to bacterial digestion suggests that this 

biomaterial may perform well in infected areas, and this could have many surgical 

benefits. 
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4.3 AN IN VITRO MODEL FOR ASSESSMENT OF PERMACOL 

SURGICAL IMPLANT PERFORMANCE IN A CONTAMINATED 

FIELD 

 

 

 

4.3.1 Introduction 

 

In the light of observations made from Chapter 4.2, where skin explant 

unintentionally infected collagen matrices in culture, it was decided to examine the 

interaction of Permacol surgical implant with bacteria. 

Chronic wounds are an important source of morbidity, affecting more than 1% of the 

U.K. population and with treatment costs above £1 billion per year (Davies et al., 

2001; Edwards and Harding, 2004; Hill et al., 2003; Thomas and Harding, 2002). 

Chronic wounds do not occur in laboratory animals; therefore, pre-clinical 

experimental study of this condition has been difficult. There are two factors that may 

explain the absence of chronic wounds in laboratory animals; first it is not common to 

find truly aged animals and second, the majority of animals are loose skinned and 

their open wounds heal almost completely by wound contraction (Mustoe, 2004). In 

humans, chronic skin wounds are common in the elderly population, occurring in the 

setting of some degree of local tissue ischemia but can also result from traumatic 

tissue loss and surgical procedures (Falanga, 1993).  

Non-healing wounds are biologically characterized by prolonged inflammation, 

defective re-epithelialization and impaired matrix remodelling (Davies et al., 2001; 

Young et al., 2006). The hallmark feature of chronic inflammation is ongoing tissue 

damage often caused by the inflammatory cells present – mainly neutrophils, 

macrophages and lymphocytes – and the microbiological bioburden (Di Vita et al., 

2006; Kingsley, 2003). The wound healing course can be divided into three phases: 

inflammation, proliferation and maturation; a high bioburden can disrupt the orderly 

healing sequence, producing a chronic inflammatory and therefore a non-healing 

wound (Kingsley, 2003).  
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A critical factor in the pathogenesis of most chronic wounds is the combination of the 

presence of bacteria, the leukocytes attracted by the latter and the high proteolytic 

environment that will result from that situation. The high level of leukocytes at the 

wound surface produces proteases and oxidants that degrade the extracellular matrix 

and cytokines, inhibiting cell migration and impairing cellular closure (Mustoe, 2004; 

Xu et al., 2007). Furthermore, in all chronic wounds there is an interaction between 

patient and the bacteria present in the wound. This interaction varies from 

contamination through colonization on to local infection (critical colonization) and 

finally to spreading infection. The concept of critical colonization is relatively recent 

and defines a transition state between bacterial surface colonization that does not 

impair the healing process and invasion of the bacteria into viable tissue (Edwards and 

Harding, 2004; Kingsley, 2003). 

A contaminated wound refers to a wound with a bacterial bioburden that is not 

harmful to the host and where micro-organisms are not replicating and pose no threat 

to healing (Bergin and Wraight, 2007; Edwards and Harding, 2004). Colonized 

wounds display replicating micro-organisms adherent to the wound that impede 

wound healing but there is no further tissue damage (Edwards and Harding, 2004). 

Wound infection can be characterized by the presence of replicating organisms within 

a wound with subsequent host injury (Edwards and Harding, 2004; Kingsley, 2003). 

The exact level of bacterial bioburden necessary for a contaminated wound become an 

infected wound is not known; but will depend on a multitude of microbial and host 

factors, including the type of bacteria present and the patient general health and 

immune condition (Bowler et al., 2001). However, the 105 rule has been long 

established and states that a level of bacteria equal to or greater than 105 CFU per 

gram of wound tissue is sufficient to confirm clinical infection (Bergin and Wraight, 

2007; Edwards and Harding, 2004; Kingsley, 2003). The clinical relevance of this 

theory has been questioned, since the required density of a given organism to became 

infectious varies with the type of organism, as well as being influenced by the 

organism’s interactions with surrounding microflora (Bowler et al., 2001; Bowler, 

2003). 

Analysis of microflora associated with chronic wounds has revealed a large number of 

aerobic and anaerobic species from a range of genera. Typical pathogens of infected 

wounds are methicillin-sensitive Staphylococcus aureus, Pseudomonas aeruginosa 

and Escherichia coli (Bergin and Wraight, 2007; Brook and Frazier, 1998; Daeschlein 
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et al., 2007; Davies et al., 2007; Edwards and Harding, 2004; Kingsley, 2003; 

Valencia et al., 2004). In addition to bacteria, yeasts can occasionally be isolated from 

chronic wounds, Candida spp. being most commonly isolated from deep tissue (Hill 

et al., 2003; Sapico et al., 1980). 

Research in chronic wound healing is intricately linked with developments in tissue 

engineering. Until recently surgical procedures to replace soft tissue loss would 

exclusively rely on grafting. Currently novel materials from natural or synthetic 

sources used as skin substitutes have the potential to provide alternative treatments. 

Implantation of synthetic materials into contaminated fields has lead to high rates of 

infection (Alaedeen et al., 2007; Gaertner et al., 2007). Biologic meshes seem to be a 

better alternative; the possible benefits of biomaterials include more appropriate host 

tissue ingrowth, vascularisation and infection tolerance/resistance. If a patient shows 

clinical signs of mesh infection, the surgeon is often required to remove the mesh, 

resulting in added procedures and potential morbidity for the patient (Albo et al., 

2006; Carbonell et al., 2005). The ability of a biomaterial to resist or tolerate infection 

is of extreme clinical significance. The performance of a biological mesh in an 

infected field depends on the level of bacterial attachment, the composition and 

durability of the biomaterial and the interaction with the host’s tissue and local 

responses. 

A variety of modern wound dressings have been developed that claim to restore the 

bacterial burden to an acceptable level promoting healing (Bergin and Wraight, 2007). 

Permacol surgical implant has been used in the treatment of infected diabetic leg 

ulcers (data not published) but hitherto Permacol performance in the presence of 

specific bacterial overload has not been tested. 

Studies in poly-microbial chronic infections suggest that the specificity of micro-

organisms is more important than bacterial bioburden. Based on this assumption, 

Permacol surgical implants were cultured, in the present experiment, with each of 

the following clinically relevant pathogens individually: methicillin-sensitive 

Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli and Candida 

albicans. Some authors support the idea that rather than the presence of a particular 

bacterium, it is the number of different bacterial species that correlates positively with 

delay of healing (Bowler et al., 2001; Edwards and Harding, 2004; Hill et al., 2003); 

therefore, Permacol was also incubated with a poly-microbial culture containing the 
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4 micro-organisms mentioned above, thus presenting a worse case scenario and 

potentially greatest challenge. 

 

 

4.3.2 Hypothesis 

 

Permacol surgical implant will perform well, and maintain their structure and 

composition, in the presence of micro-organisms commonly present in infected 

chronic wounds. 

 

 

4.3.3 Aims and Objectives 

 

 To assess Permacol surgical implant performance when cultured with chronic 

wound pathogens, with regard to collagen degradation, cellular penetration 

and matrix remodelling.  

 Analyse Permacol surgical implant for bactericidal or bacteriostatic 

properties. 

 

 

4.3.4 Materials 

 

Hycolin was purchased from Solmedia Ltd. (Colchester Rd, Romford RM3 0AQ, 

U.K.). Nutrient broth medium, purified water, 90 mm ∅ CAB (Columbia Agar with 

horse Blood) plates, 90 mm ∅ SDAC (Sabouraud Dextrose Agar with 

Chloramphenicol) plates and 90 mm ∅ CLED (Cysteine Lactose Electrolyte 

Deficient) plates were purchased from OXOID (Oxoid Limited, Wade Road, 

Hampshire, RG24 8PW, U.K.). 

All micro-organisms used were obtained as reference bacterial culture purchased from 

the National Collection of Type Cultures (NCTC) (Colindale Avenue, London NW9 

5EQ, U.K.): Staphylococcus aureus (NCTC #6571), Pseudomonas aeruginosa 
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(NCTC #10662), Escherichia coli (NCTC #10418) and Candida albicans (NCTC 

#3179). 

 

 

4.3.5 Methods 

 

This study was performed in the laboratories of the Department of Microbiology of 

Northwick Park Hospital.  

Experiments were carried out with one micro-organism (m.o.) at each time, for the 

individual culture experiments and on different days to avoid cross-contamination.  

Before each experiment all surfaces and instruments were disinfected with a 2% 

solution of Hycolin, a phenolic disinfectant.  

 

Permacol was cultured with each of the following micro-organisms separately 

Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli and Candida 

albicans as well as in a poly-microbial culture containing all 4 micro-organisms. 

 

A confluent growth suspension was obtained for each m.o. in an overnight culture. In 

summary, an inoculating loop was held inside a flame for a few seconds to bring it to 

redness and then cooled (flame sterilization technique by a Bunsen burner); once 

cooled, the loop was used to isolate a colony-forming unit (CFU) of the required m.o. 

from an agar plate (plates were previously prepared by the Department of 

Microbiology staff upon reception of the NCTC strains). The CFU was inoculated 

into 10mL of nutrient broth medium and this suspension was left to grow overnight at 

37°C with 100% air in a LEEC incubator (LEEC Ltd. Colwick Industrial Estate, 

Nottingham NG4 2AJ, U.K.). Candida albicans has a slower growth rate, compared 

to the other tested micro-organisms and consequently, was incubated for 36 hours. 

On the following day the micro-organism growth (test suspension) was determined by 

measurement of the optical density (OD). Nutrient broth medium was used as blank. 

A spectrophotometer (CECIL CE1011, 1000 series) was used at a wavelength of 

500nm to quantify the amount of turbidity of the culture. The amount of light 

scattered from the solution is proportional to the cell number, the instrument measures 

the light that it is not scattered by the sample – the optical density of the sample.  
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A sensitivity test was performed according to the British Society for Antimicrobial 

Chemotherapy (BSAC). It was necessary to standardize the method used since the 

density of the inoculum is an important factor determining the inhibition of microbial 

growth. Therefore, the standardised BSAC method requires the use of a consistent 

density of inoculum. A semi-confluent growth was chosen because an incorrect 

inoculum is easily detected by eye.  

The OD of the test suspension was measured followed by dilution to an appropriate 

density (Table 4.2). 

 

Table 4.2 – The inoculum was diluted by transferring the appropriate volume of the 

test suspension (µL) to 5mL of sterile distilled water (SDW), within 15min of 

measuring the optical density. 

Optical 

Density 

Coliform 

Enterococci 

Staphylococci 

Moraxella spp. 

Pseudomonas spp. 

Haemophilus spp. 

Haemolytic streptococci 

Strep. pneumoniae 

0.01 – 0.05 250* 125 Neat 

0.06 – 0.15 125 80 250 

0.16 – 0.35 40 20 125 

0.36 – 0.60 20 10 80 

0.60 – 1.00 10 10 (in 10mL SDW) 40 
*This dilution was also chosen for Candida albicans. 

 

After performing the appropriate dilution the new test suspension was mixed and left 

at room temperature for a few minutes. In the meantime, 5 sterile flasks were prepared 

by the flame sterilisation technique with 5 pieces of Permacol (1 x 1 x 0.15cm) in 

each flask and 10mL of nutrient broth medium. Four of the flasks were inoculated 

with 125µL of the new test suspension (T1 to T4) and the other flask was kept as 

negative control. Positive controls were obtained by culturing 125µL of the new test 

suspension of the relative m.o. in 10mL of nutrient broth medium. Positive controls 

were made in triplicate (C+
1 to C+

3) (Figure 4.29).  
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Figure 4.29 – Schematic design of each experiment. The left picture represents the test 

flasks with 5 pieces of Permacol and the m.o. inoculum, in the centre the positive 

control with m.o. only and the picture at the right shows the negative control without 

m.o. and with Permacol. 

 

All flasks were incubated at 37°C with 100% air. At 1, 2, 4, 6 and 8 hours one piece 

of Permacol from each flask was removed and fixed in 10% NBF for histological 

analysis, H&E and picro sirius red stains were performed. To count the number of 

CFU present on the piece of Permacol® at each time point a sample of each microbial 

suspension was used according to the Miles and Misra technique. Serial dilutions 

were prepared and agar plates divided into numbered sections. 

CAB plates contain a multiple-purpose medium suitable for the cultivation of 

fastidious organisms and as such were used to culture Staphylococcus aureus, a β–

hemolytic gram-positive coccus, and Pseudomonas aeruginosa a gram-negative 

pathogen. CLED medium is recommended for diagnosis of urinary bacteriology and 

gives clear colonial differentiation of all urinary pathogens; therefore, CLED plates 

were used for Escherichia coli growth, a facultative anaerobic gram-negative 

bacterium which can be found in urinary tract infections. SDAC plates were chosen to 

grow Candida albicans since this is a medium used for isolation of fungi and yeasts. 

When Permacol was incubated with the poly-microbial culture CAB plates were 

used for CFU growth. 

The inoculum used from each dilution in the respective section of the plate was 

exactly 20µL. After inoculation, plates were allowed to dry and were incubated for 18 

hours at 37°C with 100% air. Sections where more than 20CFU were present without 

any confluence were utilised to make the viable counts. Viable counts per m.o. per 
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time point were obtained by taking the average of counts for the same dilution in the 

test (T1 to T4) and control (C+
1 to C+

3) flasks. 

The number of CFU per mL of medium was calculated through the following 

equation: 

mL
Lfactordilutioncounted CFU numbermLCFU µ

µ
 10  

L 20
     / 3×

×
=  

 

Growth curves were obtained for each m.o to determine which growth phase was 

taking place at the time of Permacol inoculation. Fresh medium was inoculated with 

a CFU and the population growth was monitored over 24 hours. It was important to 

ensure that the inoculum used in the sensitivity test contained micro-organisms that 

were dividing regularly and were at the beginning or halfway through the exponential 

phase. This guaranteed that Permacol was cultured with micro-organisms that were 

growing exponentially. 

During each experiment an extra plate was used to inoculate the medium from the 

negative control (Permacol only). This plate was divided in 5 sections (1, 2, 4, 6 and 

8 hours) and 20 µL of the medium was inoculated at each time point. 

 

 

4.3.6 Statistical Analysis 

 

Bacterial counts were normalized using a log10 transformation. Data are expressed as 

mean ± standard deviation (SD). A two-tail paired t-test was used to compare each 

test to the respective control; a P<0.05 was taken as statistically significant. 

 

 

4.3.7 Results 

 

Permacol had no significant influence on the growth of any of the micro-organisms 

assessed. A two-tail t-test was employed to compare the test sample at a given time 

point to the control sample at the same time point (two paired groups). This test 

calculates the difference between each set of pairs and if pairing is effective both 
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measurements should vary together. There was no significant difference in bacterial 

growths when cultured in the presence of Permacol or when the m.o. was cultured by 

itself, pairing was significantly effective for the 4 groups analysed. 

Figure 4.30 to Figure 4.33 show the microbial growth for each m.o. tested. Average 

values were used per time point and standard deviations calculated. 

When a poly-microbial culture was used it was not possible to count the CFU since 

clear colonial differentiation was not obtained, colonies from the different organisms 

grew co-localised with each other (Figure 4.34). 
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Figure 4.30 – Growth of Staphylococcus aureus when cultured with and without 

Permacol for a period of 8 hours. 
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Pseudomonas aeruginosa
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Figure 4.31 – Growth of Pseudomonas aeruginosa when cultured with and without 

Permacol for a period of 8 hours. 
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Figure 4.32 – Growth of Escherichia coli when cultured with and without Permacol 

for a period of 8 hours. 
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Candida albicans
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Figure 4.33 – Growth of Candida albicans when cultured with and without Permacol 

for a period of 8 hours. 

 

 
Figure 4.34 – CAB plate cultured with the poly-microbial suspension. Pseudomonas 

aeruginosa colonies (arrows) are visible underneath the other species colonies. 

 

 

The histological analysis revealed similar results to those obtained previously with the 

skin explant study (section 4.2). Micro-organisms were visible on the surface of the 

collagen matrix at increasing concentrations during the incubation time. 

Staphylococcus aureus reached the highest concentrations at all time points, but 

bacteria were mainly at the edges of the implant (Figure 4.35) and cellular penetration 

was marginal reaching on average only 5% of the depth of the matrix (Figure 4.36). 
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Figure 4.35 – Staphylococcus aureus (arrows) at the edges of the collagen matrix after 

8 hours incubation (H&E, 400X). 

 

 

 
Figure 4.36 – Staphylococcus aureus infiltrating the collagen matrix 8 hours post 

inoculation. Bacteria penetration reached a maximum of 85.1µm; this represents 5% 

of Permacol cellular penetration (H&E, 1000X). 

 

Permacol 

Permacol 
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Pseudomonas aeruginosa and Escherichia coli did not penetrate the collagen matrix 

and were observed mainly in clusters at the surface of Permacol (Figure 4.37 and 

Figure 4.38 respectively). 

 

 
Figure 4.37 – Pseudomonas aeruginosa (arrows) at the edges of Permacol, 8 hours 

post inoculation. Dash line outlining Permacol edge (H&E, 1000X). 

 

 

Permacol 
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Figure 4.38 – High density of Escherichia coli at the surface of Permacol, 8 hours 

post inoculation (H&E, 1000X). 

 
Candida albicans did penetrate Permacol, even at low concentrations, although 

penetration levels were minimal (Figure 4.39). 

 

 
Figure 4.39 – Candida albicans within the collagen fibres of Permacol, 8 hours post 

inoculation (H&E, 1000X). 

Permacol 
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When the 4 micro-organisms were inoculated together growth was not inhibited and 

the micro-organisms coexisted easily. After 8 hours of incubation in the poly-

microbial suspension Permacol surface was extensively covered with micro-

organisms but microbial penetration was still marginal (Figure 4.40).  

 

 
Figure 4.40– Permacol 8 hours post inoculation with the poly-microbial culture. 

Microbial penetration is marginal (picro sirius red, 1000X). 

 

 

Independent of the level of microbial penetration, collagen was not degraded at any 

time throughout this experiment (Figure 4.41). Collagen was highly birefringent, an 

indication of good quality, non-degraded, collagen. 

There was no CFU growth in the negative control plates. 
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Figure 4.41– Permacol after 8 hours incubation with the 4 micro-organisms tested. 

There was no collagen degradation or matrix remodelling (picro sirius red, 400X). 

 

 

4.3.8 Discussion 

 

A number of putative human pathogenic micro-organisms, including Pseudomonas 

aeruginosa, Staphylococcus aureus, Candida albicans and Escherichia coli, have 

been reported to produce enzymes which can degrade collagen, (Harrington, 1996; 

Pichova et al., 2001; Waldvogel and Swartz, 1969). Therefore, collagen derived 

biomaterials should be tested against potential pathogens before being surgically used 

in an infected field.  

 

Staphylococcus aureus and Escherichia coli individually had an exponential growth 

throughout the experiments. Pseudomonas aeruginosa took 4 hours to acclimatise to 

the new culture conditions but after adaptation there was an exponential growth. 

Candida albicans showed a slower growth rate compared to the other micro-

organisms; nevertheless, its cellular density consistently increased. 
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The negative control plates were used to guarantee that: i) each batch of medium used 

was sterile; ii) nutrient broth medium did not degrade or change the configuration of 

Permacol surgical implant; iii) Permacol surgical implant was sterile and iv) the 

technique used for removal of each piece of Permacol surgical implant, at each time 

point, was not promoting cross-contamination. Since all negative control plates were 

clean after 8 hours of incubation it is reasonable to assume that none of the variables 

mentioned above influenced the results.  

The Miles and Misra technique was chosen in preference to OD measurements in 

order to calculate the viable CFU and test Permacol for bactericidal or bacteriostatic 

effects. Bactericidal refers to a substance (or a condition) capable of killing bacteria 

while a bacteriostatic agent will only inhibit the growth of bacteria and not necessarily 

kill them. 

 

There was no significant difference in the growth rates of any of the micro-organisms 

when cultured alone or with Permacol surgical implant. Permacol did not show a 

bactericidal or bacteriostatic effect and microbial growth was not influenced by its 

presence. 

Permacol structure and microbial presence were established by H&E staining. 

Permacol morphology was unaffected by the microbial load during the experiments. 

Furthermore, the major constituent of Permacol – collagen – was tested for 

degradation by picro sirius red staining and showed highly birefringent collagen, 

which is an indication of good quality, non degraded collagen. Therefore, none of the 

organisms tested here alone or in combination were capable of degrading or 

denaturing the Permacol® matrix under the test conditions used. 

 

The results from this study show that the micro-organisms as tested here do not have 

enough collagenolytic action to degrade Permacol surgical implant. There are two 

possible explanations for these results: the strains tested do not produce collagenases 

or they do produce collagenases but the cross-link of Permacol protects it from 

microbial digestion (from the particular strains tested). 

Other bacterial models could be designed to confirm the potential resistance of 

Permacol to microbial proteases, for example, normal porcine collagen could be 

used, in a similar study, to analyse whether the cross-linking process is accountable 
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for the observed Permacol resistance to bacterial collagenolysis. It was decided not 

to proceed with this line of research, since, from a clinical point of view, it is not 

feasible to isolate and identify all strains of microbes present in a wound. That would 

be extremely time-consuming and laborious, factors that would hinder a clinician 

when dealing with infected, non-healing wounds. Moreover, infected wounds can 

have a diverse microflora, making it difficult to predict each pathogen. Therefore, for 

any constructs or matrix to be used in the treatment of such wound, it is essential to 

have a biomaterial that can tolerate the presence of bacteria and that will not be easily 

degraded or contribute, as a nutritious matrix, to bacterial spread and increased 

density. 

 

 

4.3.9 Conclusion 

 

In the in vitro study presented here, Permacol surgical implant showed tolerance to 

the presence of Pseudomonas aeruginosa, Staphylococcus aureus, Candida albicans 

and Escherichia coli and was not degraded by any of the extracellular proteases of 

these micro-organisms. In addition, Permacol® surgical implant did not increase the 

microbes’ growth rate. 
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5.0 BIOCOMPATIBILITY AND PERFORMANCE OF COLLAGEN 

DERIVED BIOMATERIALS IN A RODENT MODEL 

 

 

 

After detailed analysis of biomaterials by physical and biological in vitro testing, on 

occasion the data collected is not sufficient to satisfy all questions and more tests are 

required to provide further information related to host and material responses and a 

more complex environment than provided by in vitro techniques is required. Although 

the use of species other than human involves many limitations and concessions, it is 

the common judgement that such tests, where materials are in direct contact to 

systemic physiological processes, are a necessary practical and ethical precedent to 

human clinical testing.  

Biomaterials have a history of generally safe and satisfactory use. Regardless of tissue 

engineering improvement and advance on biomaterials durability, they are not perfect 

and many have a lifespan of only a few years. Biomaterials related complications 

continue to occur either soon after implantation or later on; therefore, it is essential to 

have detailed information on their performance in vivo and when possible, human 

explanted materials (or autopsy) should be carefully examined to evaluate 

performance of the implanted material. The purpose of biological testing is to provide 

preliminary data for biomaterials, prior to their use in humans. 

Reactions to biomaterials may occasionally differ from animal to animal and from 

human to human; nevertheless, biomaterials will produce responses in vivo which are 

more or less typical of the materials employed to manufacture them, in the same way 

treatments used in the manufacture process should also lead to a characteristic 

response (Braybrook, 1997).  

The same biomaterials may produce different outcomes depending on the 

implantation site; different locations in the body will be subject to diverse mechanical 

loads and stress, such as those induced by constant body or fluid movements in 

contrast to sites normally at rest. 

Usually the clinical site chosen for initial non-functional testing is soft tissue; this 

assessment is based on the supposition that cytotoxic effects have a general action and 

because soft tissues are easy to approach surgically in animals (Black, 2006). Non-
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functional tests focus on the direct interaction between the biomaterial and its 

components and the chemical and biological properties of the surrounding 

environment. If the biomaterial is intended for use in high load locations and/or if it 

will have an active function rather than a non-active bulking purpose, then a 

functional test is needed. Several animal species are used depending on the material to 

be tested and on the clinical application. 
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5.1 ASSESSMENT OF THE IN VIVO BIOCOMPATIBILITY AND 

GENERAL PERFORMANCE OF A SILVER COATED – DRESSING IN 

A RAT MODEL 

 

 

 

5.1.1 Introduction 

 

The human body is protected from the external environment by an outer layer of skin 

and subcutaneous tissue. When skin is wounded due to injuries or disease, a set of 

complex biochemical events takes place to repair the damage and the body attempts to 

cover the wound to prevent infection by the growth and migration of epithelial cells. 

This natural method is slow and depends on the health condition of each individual 

and explains why infection of the wound can occur. Infected wounds are a major 

clinical problem and are implicated in delay in rate of wound healing. Wound 

management by clinicians helps wound healing by the cleansing and removal of dead 

tissue from the wound and by the application of appropriate local dressings onto the 

wound to create a moist environment.  

Even though topical antimicrobial agents have been utilised in wound care for 

thousands of years, during the 20th century the discovery and development of 

antibiotics provided potent antimicrobial agents with high specificity, revolutionising 

clinical therapy. However, emergence of antibiotic-resistant strains of pathogens has 

led to the need to find alternative treatments. 

Modern wound dressings are constantly being developed to restore infection to an 

acceptable level and with this promote healing. Silver containing matrices are one 

such new group of dressings and are available in a variety of forms, all having free 

silver ions as the active ingredient. 

Silver has been used in clinical settings as an antimicrobial for over a century, and 

silver sulphadiazine (SSD) is still a common antimicrobial used in the treatment of 

chronic wounds (Klasen, 2000b; Klasen, 2000a). Silver exerts its antimicrobial effects 

by binding to negatively charged components in proteins and nucleic acids, thereby 

implementing structural changes in bacterial cell walls, membranes and nucleic acids, 
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which affects viability (Cooper, 2004; Klasen, 2000b; Klasen, 2000a). Hence, silver 

ions that bind to the DNA of bacteria and bacterial spores block transcription, and 

those that bind to cell surface components interfere with the respiratory chain at the 

cytochrome level; as a result, silver ions reduce the ability of bacteria to replicate 

(Bergin and Wraight, 2007). Silver can be delivered as metallic, nanocrystalline or 

ionic form and is effective against a broad range of anaerobic, aerobic, Gram- and 

Gram+ bacteria, yeasts, filamentous fungi and viruses.  

 

The results from the in vitro assessment of Permacol surgical implant performance in 

a contaminated field were promising, showing Permacol surgical implant tolerance 

to typical wound pathogens. Conversely, this biomaterial did not exert a bactericidal 

or bacteriostatic effect and microbial growth was not influenced by its presence. Since 

Permacol surgical implant does not seem to have an effect on the pathogens tested or 

be affected by them, it comes as a prospective dressing to be used in contaminated 

fields. 

TSL plc. are developing a second generation of Permacol® surgical implant that is 

protected from the effect of bacterial infection in the first ten to fourteen days post-

implantation, by treatment with a silver coating. It is important to assess if the silver 

coating does not detrimentally affect the standard in vivo characteristics and 

biocompatibility of Permacol® surgical implant. Additionally, it is imperative that the 

dressing sustains release of low concentrations of silver ions over time. Different 

concentrations of nanocrystaline silver (NPI) coated Permacol® were tested for 

biocompatibility and in vivo characteristics when implanted subcutaneously in a rat 

model. Non-coated Permacol® surgical implant was also included as control. 

 

 

5.1.2 Hypotheses 

 

Silver coated-Permacol and Permacol surgical implant in vivo performances will be 

comparable, related to host tissue and cellular response when implanted 

subcutaneously in a rat model. 

Silver is not detrimental to Permacol in vivo performance. 
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5.1.3 Aims and Objectives 

 

 Study silver coated-Permacol implant biocompatibility and general in vivo 

performance when implanted subcutaneously in a rat model. 

 Analyse and compare different concentrations of silver coated-Permacol. 

 Evaluate silver coated-Permacol® as a future asset for implantation in infected 

areas. 

 

 

5.1.4 Materials and Methods 

 

The study was performed in compliance with the Good Laboratory Practice 

Regulations 1999 (S.I. No 3106), as amended by 2004 regulations (SI 994) which are 

based on the principles of good laboratory practice as adopted by the Organisation for 

Economic Co-operation and Development, ENV/MC/CHEM (98) 17. They are in 

conformity with, and implement the requirements of Directives 2004/09/EC and 

2004/10/EC.  

Various stages of the study, including the protocol, critical animal phases and the final 

report were audited by the NPIMR Quality Assurance Unit in compliance with facility 

quality assurance standard operating procedures. 

 

Permacol surgical implant, nanocrystaline silver coated-Permacol® (0.03% NPI-

Permacol® and 0.05% NPI-Permacol®) and 0.05% PVA-Permacol® were supplied by 

TSL plc. in sterile sealed packages. PVA (polyvinyl acetate) was used as the delivery 

agent for nanocrystaline silver; therefore, it was added to the experiment as control. 
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5.1.4.1 Study Design 

 

The rat was chosen as the species for this study because of published and in-house 

knowledge of dermal pathogeneses in this species. Additionally, the rat is the lowest 

evolutionary animal in which this work could reasonably be carried out.  

Twenty-four male Wistar-HanTM rats were randomly distributed between 4 

experimental groups and divided in 2 experimental end-points (Table 5.1).  

 

Table 5.1 – Study groups and time point design. 

Test material 2 weeks  4 weeks  

0.03% NPI-Permacol® 3 rats 3 rats 

0.05% NPI-Permacol® 3 rats 3 rats 

0.05% PVA-Permacol® 3 rats 3 rats 

Permacol® 3 rats 3 rats 

 

All test materials were cut into 2.5cm x 2.5cm pieces and left in sterile saline solution 

until implantation. Pieces of all biomaterials were kept and fixed with 10% NBF for 

histological analysis and to act as controls. 

 

 

5.1.4.2 Surgical Procedure 

 

Animals were anaesthetised according to the procedure described in Section 2.2.5. 

All surgery was done using sterile techniques. The following surgical procedure was 

followed for all animals: 

 

1. A ventral midline incision was made from just below the level of the rib cage 

extending approximately 1.5cm distally. 

2. Skin was elevated and retracted to create one subcutaneous “pocket” on each 

side of the midline. 

3. Haemostasis was maintained by careful dissection – no electrocautery was 

used. 



                                                                                                                    CHAPTER 5 

 -166- 

4. The collagen matrices were placed one in each pocket, such that each animal 

received 2 pieces of the same type of test material. 

5. The ventral midline incision was closed with interrupted sutures. 

6. Once recovered from anaesthetic, animals were returned to the animal 

accommodation, singly housed. 

The day of surgery for each rat was considered as Day 0. 

 

 

5.1.4.3 Necropsy 

 

Animals were euthanased and a composite of skin, subcutaneous tissue, implant and 

underlying muscle was harvested en bloc and fixed in 10% NBF for routine histology.  

 

 

5.1.5 Statistical Analysis 

 

Because of the low number of samples per group (N=3) a non-parametric test would 

have little power, therefore, a one-way analysis of variance (ANOVA) was chosen to 

compare statistically significant mean differences between all groups, followed by a 

Bonferroni post test to compare pairs of group means. Statistical analysis was 

performed using SPSS Statistics 16.0 (SPSS Inc., Chicago, USA). Graphical 

representation of data was performed using Graphpad Prism statistics software, 

version 4 (GraphPad Software, Inc., USA). 

 

 

5.1.6 Results 

 

Non implanted matrices were histologically analysed to check for structural 

differences among them and to be kept as controls for comparison of matrices before 

and after implantation. All collagen materials tested showed the same structural 

matrix, the only difference being a brown granular coat (silver coating) in the NPI-
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coated samples, 0.05% NPI-Permacol presented a thicker and darker layer of coating 

material (Figure 5.1 and Figure 5.2). 

 

 
Figure 5.1 – 0.03% NPI-Permacol matrix before implantation (H&E, 100X). 

 

 
Figure 5.2 – 0.05% NPI-Permacol matrix before implantation (H&E, 100X). 
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All samples examined comprised 5µm histological sections stained either with 

haematoxylin and eosin (H&E) or with picro sirius red F3B. 

Sections were examined, using a light microscope with polarising ability, for the 

following features: acute inflammation, chronic inflammation, seroma, cellular 

density, integration with surrounding tissue, cellular penetration, macrophages and 

giant cell presence. 

Semi-quantitative analysis included quantification of inflammatory cells, neo-

vascularisation and cellular density (fibroblasts). A minimal of seven fields per slide 

were counted at an objective magnification of forty times. Fields were randomly 

selected within the collagen implant itself and at the interface between the implant and 

surrounding host tissue. The extent of cellular penetration was quantified (in 

percentage of the depth of the entire test sample) by measuring minimal and maximal 

cell penetration per implant thickness (in the same area). A minimum of six randomly 

selected fields per slide were measured with DPController software (Olympus Optical 

Co., Ltd.), at an objective magnification of ten times. For descriptive purposes, a 

semi-quantitative histological scoring criterion was generated (Table 5.2). 

 

Table 5.2 – Scoring criteria used for the semi-quantitative histological analysis, units 

are described per field view. 
              Level 

 

Criterion 

Absent Marginal Minimal Moderate 
Complete/ 

Severe 

0 1 2 3 4 

Cellular density No cells [1 – 30] cells [31 – 60] cells [61 – 90] cells 
More than 90 

cells 

Cellular 

penetration 
No cells 

1% – 25% 

penetration 

26% – 50% 

penetration 

51% - 75% 

penetration 

More than 

75% 

penetration 

Neo-

vascularisation 

No 

vessels 
[1 – 5] vessels 

[6 – 10] 

vessels 

[11 – 15] 

vessels 

More than 15 

vessels 

Macrophages and 

giant cells 
No cells [1 – 2] cells [3-4] cells [4 – 5] cells 

More than 5 

cells 
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Tissue integration was scored with regard to the amount of actual tissue micro-

interdigitation (fibroblasts, fibrin, collagen) seen between the edges of the implant and 

the immediately adjacent host tissue.  

In the text the term mild is used and this is a classification between minimal and 

moderate. 

There was no evidence of extrusion of the implants or implant migration within the 

implantation site, despite the absence of any anchoring suture. 

The control implants (Permacol®) after 14 days of implantation showed marginal 

acute inflammatory response and marginal macrophage-rich chronic response at the 

edges of the implants. There was evidence of cell penetration into the implants in 

some areas, but the majority of the implant was cell free (Figure 5.3). One of the 

animals had a sub-clinical seroma. Integration with the surrounding tissue was good 

for this time with the fibroblastic layer emanating from the host tissue integrated with 

the edge of the Permacol®. Cellular density and cellular penetration were poor, except 

in natural pores. At the edges of the implants a few fully formed vessels were visible. 

There was no adverse reactivity in any of the host tissues adjacent to the implant. 

 

 
Figure 5.3 – Permacol implant between panniculus layer of the skin and the 

underlying rectus abdominus muscle layer, two weeks post implantation (H&E, 20X). 

 

Permacol 

Muscle 
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0.05% PVA-Permacol implants at 14 days showed marginal acute inflammatory 

response around the implant and a low cellular penetration, except in pores. 

Integration was marginal with the surrounding tissue and the cellular density was 

slightly higher than in the Permacol implants. Neo-vascularisation was present 

within the edges of the implant (Figure 5.4). 

 

 
Figure 5.4 – 0.05% PVA-Permacol implant with fully formed vessels (arrows) after 

14 days of implantation (H&E, 100X). 

 

Fourteen days post implantation integration with the adjacent tissue was marginal in 

the 0.03% NPI-Permacol implants; and there was no reactivity in the host tissue. 

Cellular penetration was moderate, although cellular density was low; vessel sprouts 

and fully formed vessels were present (Figure 5.5). High numbers of macrophages 

were current where silver granules were present, in these areas integration with the 

surrounding tissue increased. Macrophages were visible ingesting the silver particles 

(Figure 5.6). 
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Figure 5.5 – Mild cellular penetration in 0.03% NPI-Permacol implants after 14 days 

of implantation, black arrows show fully formed vessels (H&E, 100X). 

 

 
Figure 5.6 – Silver granules at the edge of a 0.03% NPI-Permacol® implant. 

Macrophages ingesting nanocrystaline particles of silver in detail (H&E, 400X). 
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One animal from the 0.05% NPI-Permacol®-14 days’ group had to be resutured on 

day 3 of the study and did not recovered from the anaesthesia. The implant and 

surrounding tissue were removed and processed for histological analysis. On day 3 

cells penetrated the implant further than observed in the 14 days implants. Cellular 

density was mild, especially on the periphery of the implant (Figure 5.7). No vessels 

were observed. 

 

 
Figure 5.7 – Cells penetrating a 0.05% NPI-Permacol® implant after 3 days of 

implantation (H&E, 100X). 

 

 

In this implant silver granules were especially visible and in some zones they seemed 

to be diffusing to the interior of the matrix (Figure 5.8). 
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Figure 5.8 – Silver granules (arrows) in the edge of a 0.05% NPI-Permacol® implant 

after 3 days of implantation (H&E, 200X). 

 

 

Both remaining animals implanted with 0.05% NPI-Permacol® showed poor cellular 

penetration and low cellular density 14 days post implantation (Figure 5.9). 

Integration with the surrounding tissue was good. Natural pores were well populated 

with cells and showed mature vessels. One of the implants showed a marginal acute 

inflammatory response. Both implants presented vessel sprouts and formed vessels in 

their margins. 

 

Permacol 
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Figure 5.9 – Poor cellular penetration in a 14 day 0.05% NPI-Permacol implant 

(H&E, 200X). 

 

Figure 5.10 and Figure 5.11 show comparison, for each of the parameters assessed, 

between Permacol®, 0.05% PVA-Permacol®, 0.03% NPI-Permacol® and 0.05% NPI-

Permacol® implants at 14 days post implantation. Minimal and maximal values of 

cellular penetration were used to create the graph. Mean and standard deviations were 

calculated. 

 

Permacol  0.05% PVA-Permacol  0.03% NPI-Permacol 0.05% NPI-Permacol
0%

25%

50%

75%

100%

 
Figure 5.10 – Cellular penetration levels 14 days post implantation. Mean values, for 

both minimal and maximal levels of cellular penetration, were used per animal. 

Permacol 
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Figure 5.11 – Schematic representation of parameters analysed at 14 days post 

implantation, according to the scoring criteria described in Table 5.2. 

 

The parameters analysed showed no significant difference between all groups and 

between pairs of groups. 

 

Integration with surrounding tissue increased in Permacol implants at 28 days post 

implantation. Cellular penetration was 100% through the natural fissures of the 

material, but much lower in the remaining implant. Cellular density was mild (Figure 

5.12) and many vessel sprouts and formed vessels were visible in the edges of the 

implants. One Permacol implant showed marginal acute and chronic inflammatory 

response and a few giant cells were present (Figure 5.13). 
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Figure 5.12 – Permacol implant after 28 days of implantation (H&E, 100X). 

 

 
Figure 5.13 – Giant cell (arrow) and mature vessel (arrow head) in a Permacol 

implant after 28 days of implantation (H&E, 200X). 

 

 

Permacol 

Host tissue 
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One animal from the 0.05% PVA-Permacol® group (28 days) was sacrificed one week 

earlier than protocol due to continuous chewing of the abdominal zone. Since the 

implant was exposed several times, some parts of it were dry and with a yellow 

coloration. Probably because of the open wound an acute and chronic inflammatory 

response was visible between the implant and the skin. 

All other implants from this group showed good integration with adjacent tissues, 

poor cellular density and marginal cellular penetration. Despite the reduced number of 

cells present, there were many fully formed vessels in the edges of the implants 

(Figure 5.14).  

 

 
Figure 5.14 – 0.05% PVA-Permacol® implant 28 days post-implantation with mature 

vessels in its edge (H&E, 200X). 

 

28 days after implantation a few silver granules were visible only at the edges of the 

0.03% NPI-Permacol® implants (Figure 5.15). Integration was moderate, cellular 

density and cellular penetration were marginal, neo-vascularisation was mild with the 

majority of the vessels present in the borders whereas the implant centre was mostly 

acellular, except where natural pores were present. 
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Figure 5.15 – 0.03% NPI-Permacol® implant after 28 days of implantation, arrows are 

indicating silver granules (H&E, 200X). 

 

As in the 0.03% NPI-Permacol® implants, the silver granules in the 0.05% NPI-

Permacol® implants at 28 days post implantation were present in small quantities in 

the implant edges and completely absent from the centre of the implants (Figure 5.16). 

0.05% NPI-Permacol® implants after 28 days implantation showed moderate levels of 

integration with the surrounding tissue. Cellular density was marginal as well as 

cellular penetration. Vessel sprouts and mature vessels were visible in the implant 

borders.  
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Figure 5.16 – Poor cellular density in a 0.05% NPI-Permacol® implant after 28 days 

of implantation. Black arrow indicates silver granules; green arrow shows vessel 

sprouts (H&E, 100X). 

 

On examination under polarised light, normal, non-denatured collagen patterning was 

demonstrated in all 4 materials at both time points (Figure 5.17). 
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Figure 5.17 – Implants stained with picro sirius red: a) Permacol implant 14 days post 

implantation (100X); b) 0.05% PVA-Permacol® implant 14 days after implantation (100X); 

c) 0.03% NPI-Permacol® implant 28 days post implantation (100X); d) 0.05% NPI-

Permacol® implant 28 days post implantation (100X). 

 

 

Figure 5.18 and Figure 5.19 show the histological results 28 days post implantation. 

Minimal and maximal values of cellular penetration were used to create the graph. 

Mean and standard deviations were calculated. 

 

b) a) 

d) c) 
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Figure 5.18 – Cellular penetration 28 days post implantation. Mean values, for both 

minimal and maximal levels of cellular penetration, were used per animal. 
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Figure 5.19 – Schematic representation of parameters analysed at 28 days post 

implantation, according to the scoring criteria described in Table 5.2. 

 

The parameters analysed showed no significant difference between all groups and 

between pairs of groups. 

 

The following figures show comparison of each histometric parameter between both 

time-points for all variants of Permacol® tested. 
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Figure 5.20 – Results for cellular penetration through the study. Mean values, for both 

minimal and maximal cellular penetration, were used per animal. 
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Figure 5.21 – Graphic representation of the histometric parameters analysed along the 

study, according to the scoring criteria described in Table 5.2. 

 

There was no significant difference between groups and within groups. 
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5.1.7 Discussion 

 

Silver is a broad-spectrum antimicrobial agent that has been used topically for 

centuries (Bergin and Wraight, 2007; Burd et al., 2007). The metal interferes with 

microbial respiratory cytochromes, electron transport and DNA replication (Cooper, 

2004; Klasen, 2000b; Klasen, 2000a). Silver’s mechanism of action enables it to be 

effective against gram-positive and gram-negative aerobic and anaerobic bacteria, 

yeast, fungi and viruses (Lu et al., 2008; Smetana et al., 2008; Vlachou et al., 2007). 

Therefore, implants coated with nanocrystalline silver particles may reduce bacteria 

colonization when applied into infected sites. 

This study was designed with several aims; first to define any effects silver coating 

would have on Permacol® structure; second to see if silver coating would influence 

Permacol® standard performance in vivo; and third, decide whether Permacol® is a 

suitable dressing for sustained silver release in a contaminated field. 

All modified collagen matrices retained the same structure and configuration as 

Permacol surgical implant sheet. Therefore, the coating process had no effect on 

Permacol® structure. The pre-implantation silver coated matrices showed an 

interrupted coat of silver granules at the implant margins, and these were also seen 

around the walls of the natural pores within the matrix. The silver granules seemed 

darker and the coat layer slightly thicker in the 0.05% PVA-Permacol® matrix, which 

may be a result of silver concentration. 

The implant recovered from the animal that died 3 days post implantation showed a 

higher level of cellular density compared to all the other implants. Cells were visible 

penetrating the matrix and reaching 40% of the implant in thickness. This indicates 

that the silver coating does not impede cellular penetration of Permacol in the early 

stages of implantation. Silver granules were observed spreading to the inside of the 

matrix, but it was impossible to determine whether they were carried by cells or by 

interstitial fluid. At 14 and 28 days post implantation silver granules present in the 

implants were approximately 10% and 5% respectively, of the initial quantity. If 

silver coating is to be maintained for longer periods of time during implantation, the 

coating process should be revised. 

Although 2 weeks post implantation macrophages were visible ingesting the 

nanocrystaline silver particles, at 4 weeks collagen matrices were not degraded which 
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suggests that the earlier presence of macrophages was caused by the presence of the 

silver particles and not by the collagen implants. Four weeks post implantation 

macrophages were absent although there were silver particles present, especially at 

the edges of the implants. Silver was observed at low levels, which may explain the 

absence of macrophages. 

At 14 days post implantation Permacol implants were associated with marginal acute 

inflammatory response, while at 28 days marginal acute and chronic inflammation 

was evident in only one of the implants. However, while integration with the 

surrounding tissue increased, there were giant cells present. The decrease of the 

inflammatory response over time is in keeping with the normal wound healing process 

and was also observed by Macleod and colleagues in a study where Permacol® was 

implanted subcutaneously in a rat model (MacLeod et al., 2005). Giant cells were 

present only in the Permacol® implants at 4 weeks, thus their presence is not related to 

the silver coating. 

In all matrices, implant/tissue integration and neo-vascularisation were higher after 28 

days of implantation; these results suggest that these two parameters may be 

correlated. 

Cellular penetration mean values were similar at both end time points for all matrices 

tested. This did not happen for cellular density, which increased over time in the 

Permacol® samples, was constant in the 0.05% PVA- Permacol® implants and 

decreased in both dressings treated with silver. Cellular penetration does not seem 

dependent on cellular density since implants with marginal cellular density were 

occasionally penetrated 100% in depth. 

0.03% NPI-Permacol® and 0.05% NPI-Permacol® implants showed similar 

characteristics throughout the study reported here. Both silver concentrations 

appeared non-toxic and although in the earlier stages of implantation marginal levels 

of inflammation were observed, these subsided over time. 

Silver-dressings are designed to have controlled and prolonged release of silver during 

the treatment time. Many factors will influence the clinical performance of this 

approach: the concentration of silver, type of silver, silver distribution, mode and 

strength of silver binding to the material and dressing affinity to moisture. 

Silver-delivery dressings can be categorised in two major groups: those that have 

silver content on the surface (silver coating) or impregnated into the dressing such that 
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those particles are delivered to the wound rapidly from the dressing; and those that 

have high absorptive capacities and keep the silver content until the dressing absorbs 

wound exudate or moisture (Burd et al., 2007). The first group deliver silver to the 

wound site after direct contact while the second group releases silver according to the 

amount of moisture absorbed. Silver coated-Permacol® belongs to the first group and, 

as observed in this experiment, 3 days post implantation nanocrystalline silver was 

rapidly being removed from the surface of the material. Moreover, 14 days post 

implantation high numbers of macrophages were present and ingesting the silver 

particles. In an infected wound macrophages may be too “busy” digesting bacteria to 

respond to the nanocrystalline silver particles, allowing it enough time to reduce 

bacteria levels. To confirm that silver-coated Permacol® is of significant value as an 

anti-microbial dressing an in vivo model of infected wound would have to be used. 

 

 

5.1.8 Conclusion 

 

In the rodent model reported here 0.03%-NPI Permacol® and 0.05%-NPI Permacol® 

showed similar results in all parameters assessed. Integration with the surrounding 

tissue was marginally higher in these materials compared to Permacol® and 0.05% 

PVA-Permacol®. 

All collagen matrices assessed in this study did not show affinity with host cells; 

cellular density and cellular penetration were at low levels after 2 and 4 weeks 

implantation. Nevertheless, the inflammatory response was marginal and subsided 

with time.  

The in vivo performance of Permacol does not seem to be affected when coated with 

0.03% and 0.05% nanocrystalline silver. However, if silver coating is to be 

maintained for longer periods of time during implantation, the coating process should 

be revised since sustained release of silver ions was not observed. Furthermore, 

macrophages were activated by the presence of the nanocrystalline silver. 

Nanocrystalline silver has been shown to have antimicrobial properties and anti-

inflammatory activity, augmenting the induction of apoptosis of inflammatory cells 

(Bhol and Schechter, 2005). Nanocrystalline silver has therefore been promoted as a 

potential therapeutic agent for treating inflammatory diseases but it may not be 
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beneficial when bacterial infection and severe inflammation are present, since 

inflammatory cells are vital to eliminate pathogens and induction of apoptosis in these 

cells has to be a timely controlled process. 
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5.2 ASSESSMENT OF THE BIOCOMPATIBILITY OF PERMACOL 

SURGICAL IMPLANT AND A NONCROSS-LINKED EQUIVALENT IN 

A RODENT MODEL 

 

 

 

5.2.1 Introduction 

 

The use of artificial and natural tissue substitute matrices for repair and replacement 

of tissue defects, both trauma associated and post elective surgery is a common 

treatment for many conditions. Surgeons need repair materials which are 

biocompatible, non-toxic, permanent, integrate into host tissue, maintain volume and 

are non degradable when a bulking material is required, are easily manipulated and 

are “off-the-shelf”. Autologous fat comprises many of the features of the ideal soft-

tissue substitute, but a variable degree of resorption makes it difficult to predict the 

necessary transfer volume, this process increases theatre time, autologous tissue has 

limited availability and the retrieval of sufficient material may also increase 

morbidity. Intrinsic drawbacks of autologous materials have motivated research to 

synthesize new biomaterials – artificial and natural. Many artificial materials do not 

fulfil enough of the required parameters to the level necessary to be effective. Newer, 

mostly natural, biologic materials are now available and in increasing use. Many of 

these off-the-shelf biomaterials are composed of extracellular matrix, which purport 

advantages due to their natural 3-D structure and diverse protein content.  

Permacol® surgical implant is an acellular dermal porcine biomaterial and its use is 

steadily increasing both in numbers and types of clinical applications. Acellular tissue 

matrices have the benefit of containing intact structural proteins which promote cell 

ingrowth with reduced inflammatory response; in addition, to reduce antigenicity and 

improve stability, Permacol® surgical implant is chemically cross-linked. Porcine and 

human dermis show differences with respect to microvascular architecture, degree of 

density and dermal-epidermal integration; however, porcine dermis is to a large extent 

structurally and immunologically similar to human dermis (MacLeod et al., 2004a). 

One of the main criteria in determining the success of a biomaterial is tissue 
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biocompatibility. Tissue reaction to an implant may vary from complete integration 

with native tissue to severe inflammatory and immune responses culminating in 

rejection of implant. Collagen is well known for its low antigenicity and this makes it 

an ideal material for tissue engineering.  

Although previous studies showed Permacol® surgical implant as biocompatible and 

being mostly accepted by the host tissue with marginal inflammatory response 

(Harper, 2001), there was limited cellular infiltration. Furthermore there is a temporal 

change in cellular density/penetration and subsequent vascularisation of Permacol 

surgical implant.  

It was hypothesized that the apparent resistance to cellular penetration in Permacol® 

surgical implant was a result of cross-linking. Permacol® surgical implant and a 

noncross-linked equivalent were compared for biocompatibility, cellular response and 

implant structure/resilience, in a rat model. 

 

 

5.2.2 Hypothesis 

 

Permacol surgical implant and noncross-linked acellular collagen do not have similar 

biocompatibility and tissue integration when implanted subcutaneously in a rodent 

model. 

 

 

5.2.3 Aims and Objectives 

 

 To study the effect of cross-linking in Permacol implant, by comparing the 

end-product with the product before the cross-linking process (noncross-linked 

acellular collagen); by evaluation of strength of implant/host tissue integration, 

tissue reaction, cellular penetration, vascularisation and general healing, in a 

rodent model.  

 Establish whether there is good early vascularisation in the 3 months implants, 

if there are mature vessels present in the 6 and 12 months implants and if an 

increase in the vascularity is related to apoptotic stimuli. 



                                                                                                                    CHAPTER 5 

 -189- 

 Assess Permacol® surgical implant suitability as a subcutaneous implant for 

soft tissue repair and as a bulking material. 

 Assess Permacol surgical implant performance for the first time in a long 

term in vivo study, in a rat model. 

 

 

5.2.4 Materials and Methods 

 

The study was performed in compliance with the Good Laboratory Practice 

Regulations 1999 (S.I. No 3106), as described in Section 5.1.4. 

Permacol surgical implant and noncross-linked acellular collagen (NonXL) were 

supplied by TSL plc. as 5cm x 5cm sheets, Permacol surgical implant had a 

thickness of 1.536 ± 0.072mm and NonXL thickness was 1.51 ± 0.105mm. Collagen 

matrices were derived from the same batch to eliminate variations. 

 

 

5.2.4.1 Study Design 

 

The rat was chosen as the species for this study because of published and in-house 

knowledge of dermal pathogeneses in this species. Additionally, the rat is the lowest 

evolutionary animal in which this work could reasonably be carried out.  

 

Three experimental end-points were chosen – 3, 6 and 12 months post implantation, 

groups G1, G2 and G3 respectively. One experimental group (6 animals) and one 

control group (2 animals) were designed for each time point, resulting in a total of 24 

male Wistar – HanTM rats. For direct comparison between collagen matrices each 

animal was implanted with both Permacol and NonXL collagen; implant location 

was performed randomly, i.e., one type of implant was not specifically placed on the 

animal’s left or right side subcutaneous pocket. Animals were randomised, identified 

with numbers and distributed within the 6 groups.  

Since animals from group G3 had to be kept in cages for 12 months it was decided to 

allow them 30 minutes of exercise twice a week, to improve their quality of life and 
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make sure that the sedentary environment would not induce health problems and 

interfere with the study. A “playground” area was designed with various toys and 3 

animals were placed together in the common area, at each time, to interact and 

exercise. 

 

 

5.2.4.2 Surgical Procedure 

 

Permacol surgical implant and NonXL collagen were cut into 3.5cm x 1.5cm pieces 

and left in sterile saline solution until implantation. Pieces of both biomaterials were 

kept and fixed with 10% NBF for histological analysis as a pre-implantation control. 

 

Animals were anaesthetised according to the procedure described in Section 2.2.5. All 

surgery was done using sterile techniques. The following surgical procedure was 

followed for all animals: 

 

1. A ventral midline incision was made from just below the level of the rib 

cage extending approximately 1.5 cm distally. 

2. Skin was elevated and retracted to create one subcutaneous “pocket” on 

each side of the midline. 

3. Haemostasis was maintained by careful dissection – no electrocautery was 

used. 

4. The collagen matrices were placed one in each pocket and implant-type 

location recorded. 

5. The previous step was not performed on the control animals. 

6. The ventral midline incision was closed with interrupted sutures. 

 

The day of surgery for each rat was considered as Day 0. 
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5.2.4.3 Necropsy 

 

Animals were euthanased and a composite of skin, subcutaneous tissue, implant and 

underlying muscle was harvested en bloc (as described in Section 2.2.8). From the 

block of tissue recovered one third (longitudinally) was used fresh for integration 

strength testing by way of a tensiometer, another third was frozen in liquid nitrogen 

and kept at -80 oC and the remainder was fixed in 10% NBF for routine histology and 

immunohistochemistry (see Section 2.2.9 and Section 2.2.10 respectively). 

 

 

5.2.4.4 Tensiometry 

 

Peritoneal wall outside of the treatment area was sutured to the mobile end of the 

tensiometer and the treatment material was sutured to the static end of the 

tensiometer. Tension was applied at a constant load until dissociation occurred either 

at the treatment/peritoneal wall junction or in the associated tissues. 

 

 

5.2.5 Scanning Electron Microscopy 

 

To further pursue some of the results obtained, a few samples were observed with the 

use of a scanning electron microscope. SEM was performed as previously described 

in Section 3.1.5.4.3. 

 

 

5.2.6 Statistical Analysis 

 

Histometric scores (integration, cellular density, cellular penetration, inflammatory 

cells and neo-vascularisation) were analysed per matrix type and per end-point using a 

two-way ANOVA with repeated measurements to look for interaction between 

factors. These tests were performed in conjugation with Levene’s test to check for 
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homogeneity of variances; when variances were significantly different two separate 

one-way variance analysis were performed instead. A one-way ANOVA was used to 

compare implant thickness in all groups per time point, followed by a post hoc test to 

compare results between groups and to compare each group to pre-implanted 

Permacol®. One-way ANOVA was also used to analyse mineralisation occurrence 

and tensiometry results over time. When the ANOVA (one-way and two-way) results 

were significant, least significant difference (LSD) and Bonferroni post hoc tests were 

used to identify differences within groups; when the variances were unequal 

Tamhanes’s T2 post hoc test was used. P<0.05 was considered as statistically 

significant for all tests applied. Statistical analysis was performed using SPSS 

Statistics 16.0 (SPSS Inc. Chicago, USA). Graphical representation of data was 

performed using Graphpad Prism statistics software, version 4 (GraphPad Software, 

Inc., USA).  

 

 

5.2.7 Results 

 

One animal from group G3 had to be re-sutured 2 days post surgical procedure and 

did not recovered from the anaesthesia. At the end of each time point all animals were 

healthy with body weight values as expected. There were no situations which the 

NACWO or the PPL License Holder were unable to deal with and therefore nothing 

was referred to the named Veterinary Physician. 

 

 

5.2.7.1 Tensiometry 

 

Tensiometry results are displayed in Table 5.3 to Table 5.8. Tensiometry studied the 

resistance of the complex between implant and tissue to a constant force applying a 

separation moment measured as the maximum tension the material can withstand 

without integration failure. The individual materials within the complex may also fail. 

Separation means separation between the implant and the surrounding tissue. The 

graft tension orientation was always the same; each matrix was sutured to the static 



                                                                                                                    CHAPTER 5 

 -193- 

end of the tensiometer. Maximum load refers to the maximum force, applied to the 

complex between implant and tissue, sustained during the test. Extension at maximum 

load is the amount of stretch or elongation the complex undergoes until the maximum 

load point is reached. Total extension is the stretch or elongation the complex 

undertakes until separation or failure. 

At 3 months post implantation the maximum load mean of Permacol was 0.551 ± 

0.208kg, this value was lower for the noncross-linked collagen implants which had a 

maximum load mean of 0.378 ± 0.128kg. The mean extension at maximum load was 

slightly higher in the Permacol implants (23.12 ± 7.449mm) when compared to the 

noncross-linked samples (16.41 ± 5.214mm). A greater maximum load indicates 

greater integration between the implant and the adjacent tissue and/or a greater tensile 

strength of the materials. All Permacol implants and 4 of the noncross-linked 

implants failed by separating from the surrounding tissue. One noncross-linked 

implant did not fail and the travel limit of the tensiometer was exceeded. In another 

noncross-linked implant the sutures connecting the implant/tissue complex to the 

movable end of the tensiometer snapped before any form of failure had been 

registered. 

 

 

Table 5.3 – Tensiometry results for Permacol samples, 3 months post implantation. 

Animal 

number 

Max 

Load (kg) 

Ext at Max 

Load (mm) 

Total Extension 

(mm) 
Separation 

2 0.616 24.41 51.10 Yes 

4 0.153 8.125 23.37 Yes 

6 0.585 26.73 43.92 Yes 

11 0.771 24.93 43.56 Yes 

12 0.568 27.59 59.36 Yes 

16 0.611 26.95 46.30 Yes 

Mean 0.551 23.12 44.60  

SD 0.208 7.449 11.960  
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Table 5.4 – Tensiometry results for noncross-linked acellular collagen, 3 months post 

implantation. 

Animal 

number 

Max 

Load (kg) 

Ext at Max 

Load (mm) 

Total Extension 

(mm) 
Separation Comments 

2 0.537 19.68 53.70 Yes  

4 0.242 14.38 - Yes 
Unable to record 

total extension 

6 0.245 11.29 30.08 No Suture snapped 

11 0.470 22.60 74.49 No 
Travel limit 

exceeded 

12 0.307 10.05 34.42 Yes  

16 0.465 20.43 38.70 Yes  

Mean 0.378 16.41 46.28   

SD 0.128 5.214 18.107   

 

 

At 6 months post implantation Permacol implants showed slightly lower maximum 

load values (0.592 ± 0.353kg) and lower total extension (48.57 ± 17.871mm) 

compared with noncross-linked collagen implants (0.823 ± 0.474kg and 59.1 ± 

10.043mm, respectively), the extension at maximum load was similar for both implant 

types. In this group, 3 Permacol implants failed by separation and the other 3 did not 

reached failure point, one because the muscle split and sutures snapped in the other 2. 

Four of the noncross-linked collagen implants failed by separation at 6 months post 

implantation, in 1 implant the muscle split and sutures snapped in the other. 
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Table 5.5 – Tensiometry results for Permacol implants, 6 months post implantation. 

Animal 

number 

Max Load 

(kg) 

Ext at Max 

Load (mm) 

Total Extension 

(mm) 
Separation Comments 

1 0.445 14.19 30.98 Yes  

7 0.335 48.67 66.84 No Muscle split 

8 0.146 27.63 34.96 No Suture snapped 

9 0.817 51.15 68.55 Yes  

10 0.691 35.01 - Yes 
Unable to record 

total extension 

13 1.119 32.64 41.51 No Suture snapped 

Mean 0.592 34.88 48.57   

SD 0.353 13.715 17.871   

 

Table 5.6 – Tensiometry results for noncross-linked collagen implants, 6 months post 

implantation. 

Animal 

number 

Max Load 

(kg) 

Ext at Max 

Load (mm) 

Total Extension 

(mm) 
Separation Comments 

1 0.634 33.19 69.74 Yes  

7 1.083 27.50 53.93 No Muscle split 

8 1.653 34.12 61.52 Yes  

9 0.534 46.72 70.02 Yes  

10 0.691 35.01 44.12 No Suture snapped 

13 0.341 19.10 55.24 Yes  

Mean 0.823 32.61 59.10   

SD 0.474 9.123 10.043   

 

Twelve months post implantation there was a pronounced increase in the mean of the 

maximum load values (0.946 ± 0.198kg) of Permacol surgical implants, suggesting 

an increase of tissue integration. Extension at maximum load diminished in these 

implants and total extension increased moderately (Table 5.7). The noncross-linked 

implants mean values decreased for all parameters analysed (Table 5.8). In group G3 

4 Permacol implant separated from the surrounding tissue; one Permacol implant 
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and one noncross-linked implant failed because sutures tore through the implant; the 

muscle ripped in one Permacol implant and in 3 noncross-linked implants. 

 

Analysis of results did not show any statistical difference between the tensiometry 

parameters analysed per time point and per implant type. 

 

Table 5.7 – Tensiometry results for Permacol surgical implants, 12 months post 

implantation. 

Animal 
Max Load 

(kg) 

Ext at Max 

Load (mm) 

Total Extension 

(mm) 
Separation Comments 

26 1.240 44.27 56.31 Yes  

28 1.041 37.59 77.71 Yes  

29 0.826 15.95 56.94 Yes  

30 0.740 17.43 25.37 No 
Sutures teared 

implant 

31 0.883 36.31 63.20 No Muscle split 

Mean 0.946 30.31 55.91   

SD 0.198 12.81 19.12   

 

Table 5.8 – Tensiometry results for noncross-linked collagen implants, 12 months 

post implantation. 

Animal 
Max Load 

(kg) 

Ext at Max 

Load (mm) 

Total Extension 

(mm) 
Separation Comments 

26 0.574 19.51 28.74 No Sutures tear implant 

28 0.548 20.01 78.96 Yes 
Muscle split, travel 

limit exceeded 

29 0.587 26.39 63.31 No Muscle split 

30 0.553 57.8 78.95 No 
Few muscle fibres 

attached, travel limit 

exceeded 

31 0.746 19.8 50.52 No Muscle split 

Mean 0.602 28.70 60.10   

SD 0.082 16.52 21.19   
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5.2.7.2 Histopathology 

 

Samples from the control animals showed no reactivity in the tissue or any problem 

that could have resulted from the surgical procedure. 

 

Autopsy showed no evidence of inflammation around the implants. From each sample 

two transverse sections were made, one stained with haematoxylin and eosin and the 

other stained with picro sirius red. Sections were examined, using a light microscope 

with polarising ability, for the following features: general healing, cellular density, 

neo-vascularisation, integration with surrounding tissue, cellular penetration, implant 

structure retention, inflammatory response and collagen degradation. 

The semi-quantitative histometric grading system used was as described in Section 

5.1.6. 

 

All animals were healthy with body weights as expected at the respective end-time 

point. 

 

Group G1 – 3 months: 

 

No evidence of an acute inflammatory response was seen in the tissues surrounding 

any of the implants or within the implants. 

At 3 months post implantation integration with the surrounding tissue was low to 

moderate in the Permacol implants (Figure 5.22 and Figure 5.23) and low to 

minimum in the noncross-linked collagen implants (Figure 5.24). When comparing 

the values of tissue integration of both matrices there was no significant difference 

between Permacol and noncross-linked collagen, although Permacol reached 

moderate levels of integration in 2 implants. Two of the noncross-linked collagen 

implants showed a fibrous layer surrounding the implant which was not an obstacle 

for cellular penetration (Figure 5.25), suggesting that it may be part of the integration 

process rather than encapsulation. 
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Figure 5.22 – Permacol® implant poorly integrated with the host tissue after 3 months 

implantation (H&E, 20X). 

 

 
Figure 5.23 – Permacol® implant moderately integrated with cells emanating from the 

surrounding tissue, 3 months post implantation (H&E, 100X). 
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Figure 5.24 – Noncross-linked collagen implant 3 months post implantation showing 

low integration with the surrounding tissue (H&E, 100X). 

 

 
Figure 5.25 – Fibrous layer surrounding a NonXL implant, 3 months post 

implantation (picro sirius red, 40X). 
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After 3 months post implantation, Permacol® implants showed mostly ≤20% cellular 

penetration in 4 implants. Cellular penetration was scored with regard to depth of 

cellular infiltration into the implant. In the other 2 Permacol® implants cellular 

penetration varied between levels 30% and 50% and in a few zones reached 100% 

(Figure 5.26). 

 

 
Figure 5.26 – Permacol implant 3 months post implantation with 100% cellular 

penetration (H&E, 40X). 

 

 

The noncross-linked implants after 3 months of implantation showed moderate 

cellular penetration, reaching occasionally, in all implants, 100% of cellular 

penetration (Figure 5.27). Implants with a higher number of cells achieved a superior 

level of penetration, but complete cellular penetration was still possible in implants 

with a low cellular density. 
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Figure 5.27 – NonXL implant, 3 months post implantation, with 100% cellular 

penetration and a minimum cellular density (H&E, 40X).  

 

 

Cellular density was generally low in both collagen matrices, except in two implants 

from each matrix where a minimum cellular density was accomplished (Figure 5.28 

and Figure 5.29); these implants also showed higher levels of cellular penetration. 
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Figure 5.28 – Minimal cellular density in a NonXL implant, 3 months post 

implantation (H&E, 100X). 

  

 

 
Figure 5.29– Feature of a Permacol® implant with a level of 2.5 cellular density, 3 

months post implantation (H&E, 100X).  
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For both Permacol (Figure 5.30) and noncross-linked variant neo-vascularisation 

was observed both in the edges and centre of implants, although vessel sprouts and 

fully formed vessels were more commonly present in the edges of the implants. The 

number of fully formed vessels was superior to the number of vessel sprouts. 

 

 
Figure 5.30 – Fully formed vessel (FV) with blood cells in the lumen and vessel 

sprouts (VS) in a Permacol® implant, 3 months post implantation. Giant cell (G) and 

macrophages (M) are also present (H&E, 400X). 

 

 

Vessels were particularly localized in the borders of the noncross-linked implants, but 

all noncross-linked implants showed vessel sprouts and mature vessels in the centre 

(Figure 5.31). 
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Figure 5.31 – Fully formed vessels (FV) and vessels sprouts (VS) in a NonXL 

implant, 3 months post implantation (picro sirius red, 400X). 

 

Macrophages and giant cells were present in five of the six Permacol implants, at 3 

months post implantation (Figure 5.32). Giant cells form around fragments of tissue, 

which could be fragments from the implant or fragments resulting from tissue 

damaged during the surgical procedure. The occurrence of these cells suggest the 

presence of unwanted fragments of tissue/material but it is not clear which 

tissue/material they are engulfing or its origin – host or implant. Macrophages and 

giant cells are normally associated with an inflammatory response, although, in this 

case, no other inflammatory cells are present suggesting that their presence may be 

related to a different source rather than an inflammation. Giant cells can result from a 

foreign body type reaction. 

Noncross-linked implants had lower numbers of macrophages and giant cells were not 

present. 
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FV 
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Figure 5.32 – Macrophages and formation of a giant cell (arrow) in a Permacol 

implant after 3 months implantation (H&E, 400X). 

 

 

On examination under polarized light, normal, non-denatured collagen patterning was 

present in both collagen matrices (Figure 5.33). 
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 a) 

 b) 
Figure 5.33 – Implants stained with picro sirius red under polarized light, after 3 

months of implantation. a) Noncross-linked collagen, 100X. b) Permacol®, 100X. 

 

 

The next graph shows the results for the 3 months group. Means and standard 

deviations were calculated. 
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Figure 5.34 – Histometric scores for the 3 months group, according to the scoring 

criteria as described in Table 5.2. 

 

 

 

Group G2 – 6 months: 

 

Acute inflammatory response was not observed in any of the implants and in the 

surrounding tissues. 

At 6 months post implantation noncross-linked implants showed low to minimum 

integration with surrounding tissue, while tissue integration in Permacol implants 

was low to moderate (Figure 5.35 and Figure 5.36).  
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Figure 5.35 – NonXL implant with a low level of integration at 6 months post 

implantation (H&E, 20X). 

 

 

 
Figure 5.36 – Permacol implant, 6 months post implantation, showing a moderate 

level of integration with the surrounding tissue (H&E, 100X). 
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Five of six of the noncross-linked implants reached 100% cellular penetration at 6 

months post implantation (Figure 5.37), the minimum level of cellular penetration 

achieved in these implants was 30%. Permacol® implants showed lower levels of 

cellular penetration compared to the noncross-linked samples (Figure 5.38).  

 

 

 
Figure 5.37 – NonXL implant, 6 months post implantation, with 100% cellular 

penetration regardless of the number of cells present (H&E, 40X). 
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Figure 5.38 – Permacol implant after 6 months implantation with low cellular 

density and low cellular penetration (H&E, 40X). 

 

 

Cellular density for Permacol® was low in 5 of the 6 implants of this group (Figure 

5.39). As observed at 3 months the noncross-linked implants were slightly more 

cellular than the cross-linked implants (Figure 5.40). 
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Figure 5.39 – Low cellular density in a Permacol implant, 6 months post 

implantation (H&E, 20X). 

 

 

 
Figure 5.40 – Moderate cellular density in a NonXL implant, 6 months post 

implantation (H&E, 100X). 
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Vessel sprouts and formed vessels were observed in the edges and centre of the 

implants, although more frequently in the edges. At 6 months post implantation the 

number of mature vessels present in both matrices was undoubtedly superior to the 

number of vessel sprouts observed (Figure 5.41 and Figure 5.42). Permacol implants 

had more vessels present than noncross-linked implants.  

 

 

 
Figure 5.41 – Formed vessel (FV) and vessel sprout (VS) in a NonXL implant, 6 

months post implantation (H&E, 200X).  
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Figure 5.42 – Formed vessel (FV) and vessel sprouts (VS) in a Permacol implant, 6 

months post implantation (H&E, 200X). 

 

 

One implant of the noncross-linked collagen matrix showed slight collagen 

degradation; despite this fact cells were still present in this area of the implant (Figure 

5.43); the other 5 noncross-linked implants had naturally birefringent, non-denatured 

collagen. Normal, non-denatured collagen was observed in all Permacol implants 6 

months post implantation.  
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a)

b)  

Figure 5.43 – Degraded collagen in a NonXL implant, 6 months post implantation. a) 

Degraded collagen stained darker pink (H&E, 100X). b) Degraded collagen delimited 

by yellow line (Picro sirius red, 100X). 
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Noncross-linked and Permacol® implants showed low numbers of mast cells and one 

Permacol implant had giant cells and macrophages at one aspect. Permacol 

implants (4 of 6 implants) at 6 months post implantation showed mineralisation or 

early stages of mineralisation mainly in the centre of the implants (Figure 5.44). 

 

 
Figure 5.44 – Mineralisation in the centre of a Permacol implant after 6 months 

implantation (H&E, 20X). 

 

Interestingly there was not a cellular response to the mineralised area; no cells were 

visible surrounding the mineralised tissue, even in implants where the mineralisation 

was quite prominent (Figure 5.45). 
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Figure 5.45 – Mineralised tissue in the centre of a Permacol implant, 6 months post 

implantation, without a cellular response (H&E, 100X). 

 

To identify the mineral deposits von Kossa’s and Alizarin Red stains were performed. 

Connective tissue known to have calcium was used as positive control (Figure 5.46). 

Calcium deposits stain black with Von Kossa and when stained with Alizarin red 

calcium shows enhanced birefringence. 

 

  
Figure 5.46 – Connective tissue with calcium deposits. a) von Kossa, 100X. b) 

Alizarin red S, 100X. 

 

a) b) 
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The unknown mineral present in the Permacol implants was identified as calcium 

salts (Figure 5.47 and Figure 5.48).  

 

 
Figure 5.47 – Permacol implants with calcium deposits (Von Kossa’s, 100X). 

 

 
Figure 5.48 – Permacol implants with calcium deposits (Alizarin Red S, 100X). 
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Figure 5.49 shows the results for the 6 months group. Mean and standard deviations 

were calculated for all parameters analysed. 
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Figure 5.49 – Histometric scores for the 6 months group, according to the scoring 

criteria described in Table 5.2. 

 

 

Group G3: 12 months 

 

Implants were easily identified 12 months post implantation. Control group showed 

no sign of the surgical procedure, samples taken for histology showed perfectly 

healthy skin and abdominal wall. 

No evidence of an inflammatory response was observed at this time point. 

Permacol® surgical implants showed moderate integration with the surrounding tissue, 

fibrin micro-interdigitations were observed connecting the implant to the immediately 

adjacent host tissue (Figure 5.50). Noncross-linked collagen had minimal integration 

with the surrounding tissue (Figure 5.51). 
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Figure 5.50 – Integration with surrounding tissue in a Permacol® implant, 12 months 

post implantation (H&E, 200X). 

 

 
Figure 5.51 – Integration with surrounding tissue in a noncross-linked implant, 12 

months post implantation (H&E, 200X). 
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Cellular density was minimal in Permacol® implants and cells penetrated 100% in 

depth all implants (Figure 5.52). Although cellular penetration reached 100% in the 

noncross-linked implants, cellular density was marginal in 3 implants and minimal in 

the other 2 (Figure 5.53). 

Cells were seen more often within the matrix than in the natural fissures between the 

collagen fibres. 

 

 
Figure 5.52 – Minimal cellular density in a Permacol® implant, 12 months post 

implantation (H&E, 100X). 
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Figure 5.53 – Marginal cellular density in a noncross-linked implant, 12 months post 

implantation (H&E, 100X). 

 

 

One Permacol® implant showed lymphocytes and giant cells surrounding an artefact 

(Figure 5.54); under polarized light (image in the corner) it was possible to confirm 

that the artefact did not belong to the implant and was probably remains of a swab.  
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Figure 5.54 – Lymphocytes in one aspect of a Permacol implant, in their proximity 

an artefact (arrow) is being ingested by giant cells (arrow heads) (H&E, 200X). 

 

Mast cells were observed at low numbers in 3 Permacol implants and in 2 noncross-

linked collagen implants (Figure 5.55); these findings suggest a foreign body 

response, although leukocytes numbers were low. 
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Figure 5.55 – Mast cells in a noncross-linked implant (H&E, 400X). 

 

Mature vessels and vessel sprouts were observed at marginal values in the centre of 

Permacol implants to support cellular density and in minimal values at the edges 

(Figure 5.56). Noncross-linked implants showed less vascularisation and vessels were 

observed mainly at the edges of implant. 
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Figure 5.56 – Vessels in the centre of a Permacol implant, 12 months post 

implantation (H&E, 100X). 

 

One Permacol implant showed an interesting feature of integration at one extremity; 

fragments of collagen were separated (not digested or remodelled) from the main 

matrix and were integrated within the surrounding tissue (Figure 5.57). Nearby, 

macrophages and a giant cell were present. 
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Figure 5.57 – Fragments of a Permacol implant separated from the matrix and 

integrated within surrounding tissue (picro sirius red, 100X). Macrophages (M) and a 

giant cell (GC) were observed within the matrix. 

 

In the same Permacol implant mineralisation was present distributed through 3 main 

focuses (Figure 5.58), mineral deposits were concentrated in the centre of the matrix 

and covered approximately 10% of the implant. This was the only implant showing 

mineral deposition 12 months post implantation. 

 

 

M 

GC 



                                                                                                                    CHAPTER 5 

 -226- 

 
Figure 5.58 – Mineralisation in a cross-linked implant, 12 months post implantation 

(H&E, 20X). 

 

 

As observed before mineralisation was not detrimental to cellular density and did not 

caused an immune or inflammatory response. In addition, collagen was not degraded 

under the mineral deposits (Figure 5.59). 

 

Mineralised 
area 

Host 
tissue 

Permacol 
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Figure 5.59 – Good quality collagen in a cross-linked implant despite of calcium 

deposits in the matrix (blue arrows) (picro sirius red, 100X). 

 

Implants did not show evidence of collagen degradation in group G3, independent of 

the type of matrix. Although, NonXL implants showed a decrease in implant 

thickness and the edges of the implants were rounder when compared to Permacol 

implants, suggesting some absorption of the collagen. 

Figure 5.60 shows the results for the 12 months group. Mean and standard deviations 

were calculated. 

 

Integration Cellular Minerals Macrophages Giant Mast Vessels Cellular
0

1

2

3

4 Permacol

NonXL

density cells cells penetration
 

Figure 5.60 – Histometric scores for the 12 months group, according to the scoring 

system described in Table 5.2. 
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The next table shows the results from the statistical analysis; NS stands for a non 

significant difference. Integration was statistically significant for both factors – 

implant type and implantation time – but the interaction between factors was not 

significant, i.e., the biomaterials did not respond differently through time. 

 

Table 5.9 – Statistical results for both implant types throughout the study. 

 Integration 
Cellular 

density 

Cellular 

penetration 
Macrophages Vessels 

Type of matrix P<0.05 NS NS NS NS 

Time P<0.05 NS P<0.05 P<0.001 P<0.05 

Implantation 

site * Time 
NS P<0.01 NS NS P<0.01 

 

 

The factors tested showed a significant interaction for cellular density, meaning that 

matrices types were populated in a different way along the study, this trend is 

graphically represented in the next figure , while cellular density increased over time 

in Permacol® implants, the opposite was observable in the NonXL implants. 

Cellular penetration was not significantly different between implants variants along 

the study, but the 12 months group was significantly different when compared to the 

other groups. 

Macrophage presence and neo-vascularisation were statistically different between 

time points, in specific groups 3 months and 12 months respectively. Vessels presence 

showed interaction between implant type and time points. 

 

Figure 5.61 to Figure 5.63 show comparison between the 3, 6 and 12 months results. 

The mean and standard deviation were calculated for each parameter analysed. 
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Figure 5.61 – Comparison between results of all groups. Scoring system used as 

described in Table 5.2. 
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Figure 5.62 – Cellular penetration throughout the course of the study. Mean values, 

for both minimal and maximal cellular penetration, were used per animal. 
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Figure 5.63 – Implants thickness along the study. ** P<0.005, *** P<0.001. 

 

 

5.2.7.3 Scanning Electron Microscopy 

 

Since it was difficult to visualize if the calcium salts, found in the mineralised 

implants, were deposited on top of the collagen fibres or if they were integrated with 

the fibres, scanning electron microscopy (SEM) was performed on those samples. 

Secondary electron imaging showed mineral deposits on the collagen fibres (Figure 

5.64), non-implanted Permacol was used as control. INCA program was used to 

identify the composition of the mineralised samples (Figure 5.65). 
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Figure 5.64 – Secondary imaging analysis of Permacol surgical implant. Top row 

shows a mineralised implant 6 months post implantation, in a rat model, and the 

bottom row shows control, non-implanted, Permacol (SEM, left column: 500X, right 

column: 6000X). 
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Figure 5.65 – Components analysis of the mineralised samples. 

 

Backscattered electron imaging was performed to localize each of the elements found 

during the composition analysis (Figure 5.66). 

 

Comment: 
C= carbon from 

the collagen;  

O= oxygen from 

the collagen;  

P= phosphate 

from the mineral; 

Ca= calcium from 

the mineral; 

Si= silica from the 

glass-slide. 
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Figure 5.66 – Backscattered 

electron image analysis of 

Permacol surgical implant. Top 

five images refer to a mineralised 

implant 6 months post implantation; 

the bottom five images are the 

control tissue – Permacol not 

implanted. 

 

 

Legend:  
 
White C= carbon from the collagen 
 
Blue O= oxygen from the collagen 
 
Green P= phosphate from the 

mineral 

 
Red Ca= calcium from the mineral 

C Ka 1 O Ka 1 

P Ka 1 Ca Ka 1 



                                                                                                                    CHAPTER 5 

 -234- 

The elements present in the mineralised areas were calcium and phosphate, 

confirming that this mineral is hydroxyapatite. 

 

 

5.2.8 Discussion 

 

The range of biomaterials commercially available for treatment, augmentation and 

replacement of lost or damaged tissues markedly increased in the past decade. An 

ideal biomaterial should be biocompatible, non-toxic, allow formation of strong new 

host tissue in the defect with good aesthetic results, offer a rapid recovery time, be 

easily manipulated and adjustable to body surfaces, provide adequate correction 

without migration, provide tissue bulk where required and be long lasting yet able to 

be removed if necessary. 

This study evaluated Permacol® surgical implant suitability as a subcutaneous implant 

for soft tissue repair and as a bulking material. Additionally, the effect of cross-

linking in Permacol was assessed by comparing the end-product with the product 

before the cross-linking process (noncross-linked acellular collagen). 

 

The apparent reduction in cellular presence between 3 months and 6 months post 

implantation was intriguing. Although at 6 months post-implantation both matrices 

showed a slight decrease in cellular presence, the maximum tensiometer loads at 

failure were higher than those of 3 months post-implantation demonstrating good 

strength of integration. Statistically there was not a significant difference for the 

tensiometry results between both matrices tested. Histopathology showed that 

integration with the surrounding tissue increased slightly at 6 months post 

implantation in the Permacol implants but this trend was not observable for the 

noncross-linked samples. Cellular density decreased again at 12 months post 

implantation for noncross-linked implants but cellular penetration increased. 

Permacol showed an increase both in cellular density and penetration at 12 months 

post implantation.  

Cellular ingrowth failure in Permacol® implants has been reported by other authors 

(MacLeod et al., 2005; Valentin et al., 2006) and the cross-linking process was 

suggested as one of the causes for the paucity of cellular penetration and cellular 
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density. If this was true, we would expect noncross-linked implants to show a higher 

extent of cell penetration since the trypsinisation process used to decellularize the 

matrix should leave the implant more permeable to cellular infiltrates. 

Integration with surrounding tissue increased for both matrices in group G3, 

suggesting that at long term implants are incorporated by the host although 

remodelling of collagen was not observed. There was no significant variation in 

Permacol® implants thickness throughout the study, suggesting that implants 

maintained their volume when implanted subcutaneously. This result is consistent 

with those of Kelley and colleagues; they implanted Permacol® subcutaneously in a 

mouse model and reported that volume and weight of implants remained unchanged 

for 12 months (Kelley et al., 2005). Noncross-linked implants had significant 

difference in thickness at 12 months post implantation (compared to the other time 

points), so it is likely that with time these implants are absorbed since they lack cross-

linking. 

Cellular penetration was greater in the noncross-linked implants, even in the implant 

where a fibrous layer was visible between the implant and host tissue. Fibrous 

encapsulation was described by Valentin and co-workers as a host response to 

Permacol® surgical implant over a 112-day study (Valentin et al., 2006); however, in 

the study reported here this feature was not observed over a period of 12 months. 

Macrophages and giant cells were observed at 3 months post implantation in 5 and 3 

of the 6 Permacol implants, respectively; these values decreased at 6 months but 

macrophage presence increased once more 12 months post implantation. The presence 

of macrophages and giant cells are usually related to non-immunological foreign body 

reactions, although their presence can also be activated by immunological factors such 

as low toxicity organisms, infection and in hypersensitivity reactions. Macrophages 

are the main cell present in a chronic inflammatory reaction and are usually 

accompanied by lymphocytes and plasma cells, the last two cell types were not 

present in numbers that would indicate a chronic inflammatory reaction.  

Mast cells were observed at 6 and 12 months post implantation in both matrices. 

These cells are a tissue-based inflammatory cell of bone marrow origin that is 

associated with innate and acquired immunity with immediate and delayed release of 

inflammatory mediators (Prussin and Metcalfe, 2003). In the skin, mast cells appear 

in higher number near blood vessels, hair follicles, sebaceous glands and sweat 
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glands. Human skin contains approximately 10,000 mast cells per cubic millimetre 

(Metcalfe et al., 1997).  

The presence of macrophages and mast cells suggest a cellular reaction, but their low 

numbers do not seem to be related to an inflammatory response. 

Collagen degradation and implant remodelling were not observed in either type of 

collagen matrices at the time points investigated, except for a small degree of collagen 

degradation in one noncross-linked implant. Noncross-linked implants showed a 

decrease in thickness after 12 months implantation, which may be related to implant 

absorption, although there was no cellular evidence of that. Macleod and co-workers 

reported some evidence of absorption over a 20 week period study where Permacol® 

was subcutaneously implanted in a rat model; they have also described poor 

vascularisation of the implants after 2 weeks implantation (MacLeod et al., 2005). In 

the study reported here, absorption of the implants was not observed and both 

matrices tested showed minimal vascularisation both at the edges and centre of the 

implants, inclusive at 12 months post implantation. 

Mineralisation (calcium deposits) was observed in 4 of 6 Permacol implants at 6 

months post implantation and in 1 implant at 12 months. This phenomena has been 

observed before in another in-house study and was also reported by Kelley and 

colleagues (Kelley et al., 2005). Since mineral deposition was not observed in any of 

the noncross-linked implants the results suggest that mineralisation may be associated 

with the cross-linking process. Although some cross-linking agents are known to 

cause mineralisation (eg. glutaraldehyde), currently available literature supports 

hexamethylene diisocyanate (HMDI), the cross-linking agent used in Permacol, as 

not causing mineralisation (Friess, 1998; Oliver and Grant, 1995). 

HMDI may not be the direct source of mineralisation but may cause it in the course of 

the structural changes induced by cross-linking. Since cross-linking increases the 

number of chemical bonds between the collagen fibres, the protein fibres lose some of 

their ability to move as individual chains; mineralisation may occur as a result of this 

new configuration, which may somehow impede the flow of the minerals/salts present 

in the interstitial fluid thus causing retention of these elements within the implants. 

Or, if the interstitial fluid does not easily flow through the implant, the implant may 

eventually dry in the centre, although the tests performed in Section 3.3 showed that 
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interstitial fluid was able to go through Permacol, including at the centre. 

Nevertheless, that experiment was carried out only for 3 days. 

SEM studies showed that non implanted Permacol did not have calcium or 

phosphate deposits, which refutes the hypothesis that mineralisation occurs due to the 

cross-linking process itself. The SEM results support the hypothesis of mineral 

deposition in situ over time, especially since the mineral was found to be 

hydroxyapatite, a common mineral in bone ECM. ECM mineralisation is a 

physiological process in growth plate cartilage, teeth and bone; when present in any 

other body parts it is considered a pathological process. Hydroxyapatite contains 

calcium (Ca) and inorganic phosphate (Pi) ions and is deposited both within and 

between collagen fibrils. When studying ectopic mineralisation Murshed and co-

workers discovered that the extracellular concentration of Pi and the concentration of 

ECM mineralisation inhibitors are prime factors for ECM mineralisation (Murshed et 

al., 2005). If Permacol® calcification was a consequence of a cellular response, Pi 

extracellular concentrations would increase in the body and ECM mineralisation 

should be seen in both implant types as well as in other body parts, which has not 

been observed here. This suggests that tissue/cellular response to the implant was not 

the cause for the presence of calcification. 

When mineralisation was observed at 6 months it was thought that it would increase 

long term but this was not the case in the study reported here. At 12 months only one 

of five Permacol implants showed mineralisation; it is not known if mineral 

deposition decreases over time or if the other four implants belonging to group G3 

had ever been mineralised. 

Interestingly, mineralisation did not cause any immune or inflammatory response 

from the host. Despite the cellular paucity in samples with calcium deposits, there was 

no adverse effect in any of the surrounding tissue and the implant/host complex was 

retained without detriment. This suggests that Permacol mineralisation is not 

detrimental to its performance in vivo. Implant mineralisation increases matrix rigidity 

which, depending on the site of implantation, may not be desirable for aesthetic 

purposes. Apart from this study, to the author’s best knowledge, the only known long-

term in vivo study with Permacol (published to date) was performed with mice for 12 

months by Kelley and co-workers (Kelley et al., 2005). They reported dystrophic 

calcification and bone formation at 12 months. The implantation site may be a pre-
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requisite for mineralisation occurrence; in the study presented here and in Kelley and 

colleagues reported study, Permacol was implanted subcutaneously in a considerable 

stable and stationary position, this factor may be a cause for mineralisation. If 

implants were under regular motion or pressure, the results might be entirely different. 

 

 

5.2.9 Conclusion 

 

In the rat model reported here, Permacol and noncross-linked acellular collagen 

showed similar results for integration with surrounding tissue and cellular population. 

Even after 12 months implantation, matrices did not show degradation, breakdown or 

remodelling of the collagen, except for 1 noncross-linked implant that presented some 

collagen degradation at 6 months. The noncross-linked matrix also showed some loss 

of implant thickness at 12 months post implantation which may be related to collagen 

absorption. 

Results imply that the number of cells in the implant does not influence the level of 

penetration since there were several implants with a low cellular density but with cells 

penetrating 100% in depth of the implant.  

The majority of the neo-vascularisation was found in the borders of the implants, all 

implants showed vessel sprout presence and fully formed vessels were observed in 

twenty two of the twenty three implants. 

This study has demonstrated that cross-linking is not detrimental to the general in vivo 

performance of Permacol with respect to tissue integration, biocompatibility, cellular 

penetration, cellular density, neo-vascularisation and cellular apoptosis. In general, 

cellular response was similar in both matrices, disproving the hypothesis tested in this 

study. 
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5.3 IMPLANTATION SITE INFLUENCE IN IMPLANT CELLULAR 

RESPONSE IN A RODENT MODEL 

 

 

 

5.3.1 Introduction 

 

During the last decade, tissue engineering has been increasingly discussed as a 

promising option to circumvent the limitations of existing techniques for tissue 

reconstruction. To improve wound healing, skin substitutes and biomaterials have 

been systematically investigated.  

Permacol® surgical implant has been used in most of the major surgical specialities 

and since 1998 has been used in over 100 different types of procedures (Harper, 2001; 

Liyanage et al., 2006). However, some in vivo studies have shown that there can be 

significant variability in cellular density and cellular penetration and subsequent 

vascularisation of Permacol®. Some authors believe that the pore size of a biomaterial 

is critical to its performance, Macleod and colleagues used the diamond CO2 laser to 

treat Permacol® surgical implant and assess if by increasing the porosity of the matrix 

the rate and degree of vascularisation of Permacol® would be enhanced (MacLeod et 

al., 2004c). They found that while laser treatment encouraged fibrovascular ingrowth 

into the new pores (made by laser), the surrounding untreated matrix remained poorly 

vascularised. Since matrix cellular density was not altered by laser treatment it was 

hypothesized that cellular response to Permacol® may depend on the site of 

implantation and the relative vascularity of surrounding host tissue.  

Adult muscle is highly vascularised, with copious blood vessels being essential for 

adequate oxygenation of the tissue and for supporting increased metabolic demands. 

The vascular system is structured to optimize tissue support through the processes of 

convection and diffusion. Simply described, the large vessels of the systemic circuit 

allow bulk flow delivery to the small vessels within a muscle, at high pressure. The 

small vessels modulate flow distribution to the capillary network bathing the cells. 

The capillary network, in turn, allows diffusive exchange between the vascular vessels 

and the intracellular area of the muscle fibres. Blood flow can change nearly 100-fold 
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from rest to maximal aerobic exercise (Prior et al., 2004). The contractile activity of 

skeletal muscle fibres increases capillary perfusion, which enables dilation of the 

terminal arterioles increasing the capillary surface area for diffusion and consequently 

promotes the extraction of available oxygen (Segal, 2005). 

The function and high vascularity of skeletal muscle makes it an ideal candidate for 

Permacol® implantation when testing for cellular response dependent on surrounding 

tissue vascularisation. 

Another highly vascularised organ is the liver. The liver receives its blood supply 

from the hepatic artery and the portal vein before these vessels narrow into many 

small branches with close association to the biliary tree. The association of these 

vessels, hepatic artery, portal vein and bile duct, is named the portal tract. Each intra-

hepatic bile duct is accompanied by a branch of the hepatic artery and is surrounded 

by a well-developed vascular network, i.e., the peribiliary vascular plexus (Masyuk et 

al., 2003). Terminal branches of the hepatic portal vein and hepatic artery drain 

together and combine as they enter sinusoids in the liver. Sinusoids are distensible 

vascular channels lined with highly fenestrated or "holey" endothelial cells and 

bounded circumferentially by hepatocytes (Young et al., 2006). Liver architecture 

allows blood to flow through the sinusoids and empty into the central vein of each 

lobule; therefore, blood flows constantly from the portal tract to the hepatic venules, 

making this organ a highly vascularised tissue. 

 

This study was designed to further understand Permacol® and host tissue interaction 

by Permacol® implantation into two highly vascular sites, liver and muscle. 

 

 

5.3.2 Hypothesis 

 

Implantation site has an effect on the cellular response and general performance of 

Permacol® surgical implant. 
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5.3.3 Aims and Objectives 

 

 Study the biocompatibility and in vivo performance of Permacol surgical 

implant in two significantly vascular sites, in a rodent model.  

 Compare Permacol surgical implant performance in sites with high 

vascularity to its performance in subcutaneous location in the rat.  

 

 

5.3.4 Materials and Methods 

 

Permacol surgical implant was supplied by TSL plc. as 5cm x 5cm sheets with 1.536 

± 0.072mm thickness. Permacol surgical implant, for all implantations, was derived 

from the same batch to eliminate variations. 

 

 

5.3.4.1  Study Design 

 

Male Sprague-DawleyTM rats were used with weights between 300 and 400g. Two 

treatment groups were constructed and divided between 3 time points. This resulted in 

a total of 16 animals for the complete study as in Table 5.10. 

 

Table 5.10 – Study groups and time point design.  

 Termination time point 

Months 3 6 12 

Group M1 L1 M2 L2 M3 L3 

Animals 3 3 3 3 2 2 

 

Permacol surgical implant was implanted in the scalenus posterior muscle in groups 

M1, M2 and M3 and into the liver in groups L1, L2 and L3. 
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5.3.4.2 Surgical Procedure 1 

 

1. Rats from group M were induced to and maintained under general anaesthesia. 

2. A dorsal cranio-caudal skin incision was made just lateral to the spine from a point 

1cm distal to the edge of the scapula extending approximately 1.5cm distally. 

3. The scalenus posterior muscle was identified. 

4. The scalenus posterior muscle was divided longitudinally to provide an 

intramuscular “pocket”. This procedure was performed on each side of the spine. 

5. Haemostasis was maintained by careful dissection – no electrocautery was used. 

6. Permacol surgical implant (approximately 1.0cm x 1.0cm) was implanted into 

both scalenus posterior muscle pockets (2 implants per animal). 

7. The muscle pockets were closed with vicryl absorbable sutures. 

8. The skin incision was closed with interrupted sutures. 

 

 

5.3.4.3 Surgical Procedure 2 

 

1. Rats from group L were induced to and maintained under general anaesthesia. 

2. A ventral midline incision was made from just below the level of the rib cage 

extending approximately 1.5cm distally.  

3. Another midline incision was made through the peritoneal wall.  

4. A lateral liver lobe was identified and carefully exposed. 

5. A small incision was made in the liver and an internal pocket opened with 

microsurgical blunt-ended scissors. The exposed organ was kept moist with saline 

sterile solution at all times. 

6. Permacol surgical implant (approximately 0.8cm x 0.8cm) was implanted into the 

liver pocket. 

7. The pocket was carefully closed with microsurgical absorbable sutures. 

8. The peritoneal wall was closed with vicryl absorbable sutures. 

9. The ventral incision was closed with interrupted sutures. 

10. To replace any loss of fluids, 5mL of 0.45% NaCl and 5% glucose solution was 

injected subcutaneously. 
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The day of surgery was considered as Day 0. As described in the previous chapter 

animals from the 12 months group were allowed 30 minutes of exercise twice a week. 

 

 

5.3.4.4 Necropsy 

 

At the relevant times animals were euthanized and implants identified. In groups M 

the implant and the surrounding muscle were harvested en bloc. Scalenus posterior 

muscle not in contact with the implants was harvested to be used as control. In groups 

L the liver lobe with the implant was harvested and another lobe harvested to be used 

as control. All samples were fixed in 10% NBF and processed for routine histological 

analysis. 

 

 

5.3.5 Statistical Analysis 

 

Histometric scores (integration, cellular density, cellular penetration, inflammatory 

cells and neo-vascularisation) were analysed per implantation site and over time using 

a two-way ANOVA to look for interaction between factors. These tests were 

performed in conjugation with Levene’s test to check for homogeneity of variances, 

when P<0.05 and variances were significantly different two separate one-way 

variance analysis were performed instead and Tamhane’s T2 post-hoc test used. A 

one-way ANOVA was used to compare implant thickness in all groups per time point, 

followed by Bonferroni’s test to compare results between groups and to compare each 

group to pre-implanted Permacol®. One-way ANOVA was also used to investigate 

adhesion formation and mineralisation occurrence over time. When the ANOVA 

(one-way and two-way) results were significant a Bonferroni post hoc test was used to 

identify differences within groups. Statistical analysis was performed using SPSS 

Statistics 16.0 (SPSS Inc. Chicago, USA). Graphical representation of data was 

performed using Graphpad Prism statistics software, version 4 (GraphPad Software, 

Inc., USA).  
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5.3.6 Results 

 

During the surgical procedure one animal died from the anaesthesia and another had 

to be sacrificed because of liver damage as a result of the surgical procedure. Both 

animals were replaced. All other animals recovered well from surgery. 

At the end of each time point animals were healthy with body weight values as 

expected.  

From each sample taken for histological analysis two transverse sections were made, 

one stained with haematoxylin and eosin and the other stained with picro sirius red. 

Sections were examined, using a light microscope with polarising ability, for the 

following features: general healing, cellular density, vascularisation, integration with 

surrounding tissue, cellular penetration, implant structure retention, giant cell 

presence and collagen degradation. 

The grading system used was as described in Table 5.2. 

 

 

Group M1 

 

After retracting the skin surrounding the operative site, one of the Permacol implants 

was found at the surface of the spinotrapezius muscle associated with fascia and a 

layer of cutaneous maximus muscle; the other 5 implants were not visible. 

 

At 3 months post implantation no inflammatory reaction was present. Integration with 

the surrounding tissue was minimal (Figure 5.67). 
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Figure 5.67 – Minimal Permacol integration with the surrounding tissue after 3 

months implantation (H&E, 40X). 

 

Cellular density was low and cellular penetration varied from 10% to 40% (Figure 

5.68). 

 
Figure 5.68 – Approximately 10% of cellular penetration in a Permacol implant, 3 

months post implantation (H&E, 100X). 

Permacol 

Muscle 

Muscle 

Permacol 
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From the 6 pieces of Permacol implanted in group M1 (2 per animal) 2 showed 

accumulation of minerals, both in the edges and centre of the implant. Interestingly, 

these 2 pieces were implanted in different animals. A Von Kossa’s stain was 

performed to confirm the mineralised areas as being calcium deposits (Figure 5.69). 

ImageJ software (Rasband, W.S., ImageJ, U. S. National Institutes of Health, 

Bethesda, Maryland, USA) was used to calculate the calcified area per implant. One 

implant showed calcium deposits in 30% of its area, while in the other 40% of the 

area was calcified.  

 

 
Figure 5.69 – Beginning of mineralisation in a Permacol implant 3 months post 

implantation (Von Kossa’s, 20X). 

 

 

Cellular density, for group M1, was low reaching a 1.5 level. A few vessel sprouts 

were observed at the edges of the implants, in these areas integration with surrounding 

tissue was moderate (Figure 5.70). Macrophages were visible in 2 implants. All 

implants of group M1 showed good quality collagen, including the implants with 

mineralised areas (Figure 5.71). 

 

Permacol  
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Figure 5.70 – Vessel sprouts (VS) and macrophage (M) present in an implant, 3 

months post implantation (H&E, 200X). 

 

 
Figure 5.71 – Permacol surgical implant 3 months post implantation. The left image 

shows the mineral deposits in dark pink, the same section under polarised light is 

visible in the right image, collagen is still birefringent in the mineralised areas (picro 

sirius red, 200X). 

 

The muscle used as control tissue showed no tissue reactivity. 

Non-implanted Permacol had an average thickness of 1.536 ± 0.072mm. After 3 

months intramuscular implantation the implant thickness decreased slightly reaching a 

mean value of 1.2 ± 0.23mm. 

VS 

 M 
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The figure below shows the results for group M1 (mean values from all 6 implants). 

 

Integration Cel. density Vessels Macrophages Mineralisation
0

1

2

3

4

 

Figure 5.72 – Results for group M1, error bars show standard deviation. Graph was 

plotted according to the scoring system described in Table 5.2. 

 

 

Group M2 

 

Six months post implantation Permacol implants were deep into the muscle layers 

and were difficult to locate (Figure 5.73). 

 

 
Figure 5.73 – Permacol surgical implant intramuscularly, 6 months post 

implantation. 

 

Permacol 
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Integration with surrounding tissue was mostly moderate (Figure 5.74).  

 
Figure 5.74 – Moderate integration of Permacol with the surrounding tissue (H&E, 

100X). 

 

 

Cellular density decreased to a marginal level (level 1) when compared to group M1; 

in general cells were populating the edge of the implant except when natural pores 

were present in the centre, which enable cells to penetrate further into the implant 

(Figure 5.75). 

 

Permacol 

 

Muscle 
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Figure 5.75 – Cells easily populated the natural pores of the implant even when these 

were located in the centre of the implant. Fully formed vessels were present (V) and 

deposition of minerals (Mi) was visible in one aspect of the implant (H&E, 40X). 

 

 

Cellular penetration was predominantly low and varied from 0% to 33%, except when 

natural pores were present. At 6 months post implantation Permacol implants 

showed a mean thickness of 1.2 ± 0.189mm. 

All implants showed vessel sprouts and fully formed vessels at the edges of the 

implant (Figure 5.76) and occasionally in the centre, as seen in Figure 5.75, when 

cellular population increased. 

 

V 

Mi 
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Figure 5.76 – Vessel sprouts and fully formed vessels at the edge of a Permacol 

implant, 6 months post implantation (H&E, 200X).  

 

 

Four of the 6 Permacol implants showed calcium accumulation at different levels 

(5%, 20%, 40% and 40%) at 6 months. Calcium deposition was not restricted to the 

centre of the implant, 3 of the implants showed minerals both in the edges and centre 

(Figure 5.77 and Figure 5.78). 
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Figure 5.77 – Beginning of mineralisation (Mi) in the centre of a Permacol implant, 

6 months post implantation. Cells and vessel sprouts (VS) are visible in the 

mineralised area (H&E, 200X). 

 

 
Figure 5.78 – Mineralisation at the edge of a Permacol implant, 6 months post 

implantation (H&E, 40X). 
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No tissue reactivity was observed in the control tissue or in the implantation site. All 

implants showed good quality collagen under polarised light. Fibres with minerals 

showed no collagen degradation, minerals were bright-pink under polarised light 

(Figure 5.79). 

 

 
Figure 5.79 – Non-denatured collagen. Minerals are bright-pink under polarised light 

(picro sirius red, 200X). 

 

Figure 5.80 shows the results for the group M2 (mean values from all 6 implants). 
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Figure 5.80 – Results for group M2, error bars show standard deviation. Scoring 

system used as described in Table 5.2. 
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Group M3 

 

Twelve months post implantation one of the animals had one implant at the surface of 

the spinotrapezius muscle associated with fascia and a layer of cutaneous maximus 

muscle, the other 3 implants were deep into the muscle layers and were difficult to 

localize. 

One animal developed a pressure wound in the tail and was found one morning 

without the extremity of the tail, the wound healed and the animal was fine until 

termination day. 

 

Histological analysis of the implants showed mineralised tissue in all 4 implants, 

mineralised areas were approximately 30%, 55%, 60% and 70% of the area of 

implant. When mineralisation was observed at the edges of the implant integration 

with surrounding tissue was minimal, otherwise integration was mostly moderate 

(Figure 5.81).  

 

 
Figure 5.81 – Mineralisation in a Permacol® implant after 12 months intramuscular 

implantation (H&E, 20X). 

 

Muscle adjacent to the implants was healthy and well cellularised, there was no tissue 

inflammation and calcium deposition was not observed in the surrounding tissues. 
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Good quality, non degraded collagen was observed under polarised light in all 

implants, inclusive of areas where mineral deposition was present. 

Mature vessels and vessel sprouts were present at the edges of the implants, including 

in the proximity of mineralised matrix (Figure 5.82). It was difficult to identify 

vessels in the centre of the implants since most central areas were calcified. 

 

 
Figure 5.82 – Vessels (V) were present in the edges of implants, although cellular 

density was not high and mineralised tissue (Mi) was in the proximities. Fibrin (F) 

fibres were present between the implant and the muscle, probably as part of the 

integration process (H&E, 200X). 

 

In one animal implants had minimal cellular density and cellular penetration varied 

from 10% to 60%. Both implants from the other animal showed minimal cellular 

density and cellular penetration reached, in a few localised areas, 100%, but it was 

mostly 50%.  

Macrophages were observed in one aspect of an implant, near mineral deposits 

(Figure 5.83). 
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Figure 5.83 – Arrows show macrophages in one aspect of a Permacol implant, 12 

months post implantation (H&E, 200X). 

 

None of the implants showed inflammatory or immune responses. Despite the 

mineralised areas, implants kept their configuration and the mean thickness of 

implants was 1.275 ± 0.159mm. 

The figure below represents graphically the histometric results for group M3. 
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Figure 5.84 – Results for Permacol implanted intramuscularly for a period of 12 

months. Scoring system used as described in Table 5.2. 
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Group L1 

 

In this group each animal received one piece of Permacol surgical implant, placed in 

a pocket made in a lobe of the liver. After 3 months, animals were sacrificed and the 

operative site identified and exposed. In all animals the liver looked healthy and the 

implant was visible at the surface of the liver lobe covered entirely by the peritoneum. 

In 2 animals a second liver lobe was attached to part of the implant (Figure 5.85). In 

the third animal omentum fat adhesions were visible macroscopically (Figure 5.86). 

Although the liver lobe was kept moist at all times the surgical procedure caused 

damage to the peritoneum and the liver lobe was sutured as a result of the procedure.  

It is likely that adhesions formed between the liver lobe and the omentum as a result 

of the surgical procedure. Corroborating this theory is the fact that there was no 

adhesion observed in the other surfaces of the lobe used to create the pocket. 

 

 
Figure 5.85 – Permacol implant (arrow) 3 months post implantation. The implant 

was at the surface of the lobe and a second lobe was present attached to the implant.  
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Figure 5.86 – Permacol implanted into the liver, 3 months post implantation. 

Adhesions are visible between the implant and the bowel.  

 

The adhesion observed was not directly connected to the Permacol surface; which 

adds to the hypothesis that the adhesion was caused by the surgical procedure and not 

by the implant. Permacol was covered by a layer of collagenous tissue termed 

Glisson’s capsule - this capsule is the normal outer surface of the liver. The adhesion 

observed formed between the Glisson’s capsule and the omentum. The vessels 

observed in the border of the omentum are a typical feature of an adhesion (Figure 

5.87). 
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Figure 5.87 – Permacol implant 3 months post implantation. The dotted line shows 

the division between the collagenous capsule – with arranged fibres – and the fibrous 

tissue constituting the adhesion between the liver and the omentum (H&E, 100X). 

 

There was no inflammatory response present in the surrounding tissue or implants and 

Permacol was well tolerated by the liver.  

Figure 5.88 shows the control tissue. The liver is a solid organ composed of tightly 

packed (pink-stained) plates of epithelial cells termed hepatocytes, separated by fine 

vascular sinusoids (pale-stained) through which blood flows.  
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Figure 5.88 – Control tissue. Detail of liver showing a portal tract containing 3 main 

structures: hepatic portal vein (PV), hepatic artery (A) and bile duct (B) (H&E, 

200X). 

 

Cellular density was low (level 1) and cellular penetration varied between 5 and 15% 

(Figure 5.89). There was no presence of mineralisation or inflammatory response. 
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Figure 5.89 – Marginal cellular penetration in a Permacol implant, 3 months post 

implantation (H&E, 100X). 

 

None of the implants was completely at the surface of the liver; each implant had at 

least one side still inserted in the liver. The Permacol visible at the surface was the 

implant region closest to the opening of the pocket. Implants had minimal to moderate 

integration with the surrounding tissue (Figure 5.90). 
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Figure 5.90 – Permacol implant partially inserted into the liver with minimal (black 

arrows) and moderate (blue arrows) integration (H&E, 40X). 

 

Macrophages were present in one aspect of an implant (Figure 5.91). 

 

 
Figure 5.91 – Group of macrophages in an implant, 3 months post implantation 

(H&E, 400X).  
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All implants showed natural birefringence under polarised light, an indicator of good 

quality collagen; there was no degradation of the implants (Figure 5.92). Implants 

showed an average thickness of 1.59 ± 0.083mm. 

 

 
Figure 5.92 – Liver portal tracts (PT), collagenous tissue (CT) and Permacol implant 

after 3 months implantation in the liver (picro sirius red, 40X). 

 

The figure below shows the results for group L1 (mean values for all 3 implants). 
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Figure 5.93 – Results for group L1, error bars show standard deviations. Scoring 

system used as described in Table 5.2. 
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Group L2 

 

Permacol implants were visible at the surface of liver 6 months post implantation; a 

second lobe was attached to the implants (Figure 5.94). 

 

 
Figure 5.94 - Permacol implant 6 months post implantation in liver. 

 

There was no tissue reactivity or inflammatory response in the control tissue or in the 

implantation site. Once more, probably as a result of the surgical procedure, adhesions 

between omentum and the liver were macroscopically observed in 2 of the implants; 

one of these implants also had a second lobe attached and in this animal the adhesion 

was much smaller when compared to the other animal.  

 

Although cellular density was very low, integration with the hepatic tissue was 

moderate. Cells were mostly present in a fibrous layer surrounding the implants; a 

small fraction of these cells infiltrated the implant and in a few aspects reached 

approximately 30% of cellular penetration (Figure 5.95).  
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Figure 5.95 – Moderate cellular integration of a Permacol® implant with hepatic 

tissue, with approximately 30% of cellular infiltration (H&E, 200X). 

 

Macrophages and giant cells were observed at the edge of one implant but there was 

no degradation or remodelling of the implant (Figure 5.96). 
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Figure 5.96 – Macrophages and giant cells observed at the edge of an implant, 6 

months post implantation (H&E, 200X). 

 

Vessels were observed at the edges of the implant to sustain cellular population (see 

Figure 5.95). Good quality collagen was present in all implants; there was no 

degradation of the implants, although the mean thickness of the implant decreased 

slightly to 1.56 ± 0.043mm.  

Figure 5.97 shows the results for group L2 (mean values for all 3 implants). 
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Figure 5.97 – Results for group L2 (error bars show standard deviation). Scoring 

system used as described in Table 5.2. 
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Group L3 

 

Animals were healthy 12 months post implantation with body weights as expected. 

During necropsy Permacol® was easily identifiable at the surface of the liver lobe, 

another liver lobe was attached to Permacol® and both implants showed a small 

omentum adhesion.  

Inflammatory or immune responses were not observed in the implants or in the 

surrounding hepatic tissue (Figure 5.98). 

 

 
Figure 5.98 – Permacol® implant semi-inserted in the liver pocket, another liver lobe 

is attached to the surface of the implant. Arrow shows the fibrin capsule observed 

only between the adherent liver lobe and Permacol® (H&E, 20X). 

 

 

Both implants showed moderate integration with the immediately adjacent hepatic 

tissue, cellular density was very low and cellular penetration reached a maximum of 

10% (Figure 5.99). Vessels were observed only in one implant at the edges. 
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Figure 5.99 – Moderate integration of Permacol® with hepatic tissue, cellular density 

and cellular penetration are low (H&E, 200X). 

 

 

There was no evidence of mineralisation in both implants, at 12 months post 

implantation. 

 

Fibrin was observed between implants and hepatic tissue and it is not clear if it is part 

of the Glisson’s capsule. In this small layer of fibrin large numbers of what seem to be 

bile ducts were present (Figure 5.100). 
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Figure 5.100 – Small layer of fibrin between hepatic tissue and Permacol®, numerous 

ducts (arrows) are visible along this layer (H&E, 400X). 

 

There was no collagen degradation and implants kept their configuration with a 

thickness of 1.664 ± 0.084mm. 

Figure 5.101 shows the results for Permacol implanted in the liver after a period of 

12 months. 
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Figure 5.101 – Histometric results for Permacol implanted into liver, 12 months post 

implantation, according to the scoring system described in Table 5.2. 
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Table 5.11 shows the statistical results for this study. Integration was statistically 

significant for both factors – implantation site and time – but the interaction between 

factors was not significant, i.e., Permacol® integration in both implantation sites did 

not respond differently to time. This can be easily verified in Figure 5.104 where the 

level of integration increased similarly over time in both implantation sites. 

 

Table 5.11 – Statistical significance for each factor analysed and for the interaction 

between factors.  

 Integration 
Cellular 

density 

Cellular 

penetration 
Macrophages Vessels 

Implant 

site 
P<0.05 P<0.001 P<0.001 NS P<0.05 

Time P<0.05 P<0.05 NS NS NS 

Implantion 

site * Time 
NS P<0.05 NS NS NS 

 

 

Cellular density was significantly different for both factors and for the interaction 

between these, meaning that the implantation sites tested influenced Permacol® 

cellular density over time. Results were not significantly different for cellular 

penetration, macrophage presence and neo-vascularisation for the time points used in 

this study; in addition, there was no evidence of an interaction between implantation 

site and time for these parameters. However, cellular penetration was significantly 

influenced per implantation site and implant location also had a significant effect in 

neo-vascularisation. 

 

Figure 5.102 and Figure 5.103 show the results per site of implantation.  
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Figure 5.102 – Histopathology results per site of implantation, statistical significance 

was compared between groups (error bars show standard deviations, * = P<0.05 and 

*** = P<0.001). Scoring system used as described in Table 5.2. 
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Figure 5.103 – Cellular penetration per site of implantation. Mean values, both for 

minimal and maximal cellular penetration, were used per animal. 

 

 

Implant thickness was measured along the course of this study to evaluate implant 

contraction, shrinking or absorption. The figure below shows the results for the 

variation of thickness of Permacol® surgical implant in both implantation sites. 

Results were compared to pre-implanted (out of the package) Permacol® and to 

Permacol® implanted subcutaneously. 

There was no significant difference between pre-implanted Permacol® and Permacol® 

implanted subcutaneously, at all time-points. A significant difference was observed at 

12 months post implantation between pre-implanted and intra-liver Permacol® and 

between subcutaneously and intra-liver implanted Permacol®. Permacol® implanted 

intramuscularly showed significant differences when compared to the other 3 

Permacol® groups, at all time-points. 
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Figure 5.104 – Permacol® surgical implant thickness measurements in 3 test groups 

(according to site of implantation) per time-point. All groups were compared to pre-

implanted Permacol® (in red). 

 

 

5.3.7 Discussion 

 

It was hypothesized that cellular response to Permacol® may depend on the site of 

implantation and the relative vascularity of surrounding host tissue. Adult muscle and 

liver comprise highly vascularised tissues and, therefore, were chosen as test 

implantation sites. 

In surgical procedure 1 a parasagittal section was made to avoid the spinal cord, 

Permacol was implanted distal and inferior to the scapula to avoid dislocation from 

body movements. One implant was later found at the surface of the spinotrapezius 

muscle, which suggests that during surgery this implant was not positioned deep 

enough and the animal movements displaced it. 

For muscle, three months post implantation no inflammatory response was observed 

in the implants or surrounding tissue and, except for a few macrophages present in 2 

implants, inflammatory cells were absent. This was also observed at 6 and 12 months 
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time points. These results were similar to Permacol® subcutaneous implantation, 

except at 12 months where macrophage levels were minimal.  

Even though cellular density was marginal at 3 months post implantation and 

decreased to lower levels at 6 months in the muscle groups, cellular penetration 

reached, in some places, 40% and increased over time. Both cellular density and 

cellular penetration reached higher levels after 12 months implantation. Again there 

was significant difference between the implantation sites in these parameters. As 

observed when Permacol® was implanted subcutaneously, the extension of cellular 

penetration does not seem related to the level of cellular density.  

While in Section 5.2 neo-vascularisation seemed related to cellular density, a 

reasonable assumption since an acellular tissue has no need for a vascular network, in 

the muscle groups vessel sprouts and mature vessels were present at higher numbers 

when cellular density was at its lowest level. Nevertheless, this fact may be explained 

by the increase in cellular penetration, as a consequence of which the number of 

vessels observed at the centre of implants increased. 

Integration associated with the fibroblastic layer emanating from the host tissue to the 

edge of the implant was minimal to moderate in the 6 groups tested; furthermore, 

integration levels were significantly different both over time and between 

implantation sites.  

Once more, while integration increased the population of cells decreased in all 

implants from 3 to 6 months, suggesting that tissue integration is not related to cell 

presence, a finding consistent with the previous study (Section 5.2).  

 

Implant contraction and shrinking were analysed by implant thickness measurements 

along the study. Permacol® implanted intramuscularly showed significant differences 

when compared to all Permacol® groups, at all time-points. It is not clear if this 

difference is related to the mineralisation observed in this group. In the liver groups, a 

significant difference was observed only at 12 months post implantation between pre-

implanted and intra-liver Permacol®. 

There are technical factors that can influence this result, such as the embedding and 

sectioning techniques. In the first case, if the implant is not embedded perpendicular 

to the surface of the mould subsequent sections will not be in a transverse plane as 

expected. During sectioning the position of the blade in relation to the block will have 

great influence, if these are not perfectly parallel the thickness of each tissue layer 
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may be incorrect. These factors may increase or reduce the observed thickness of the 

implant but since the decrease in the thickness was present in all implants of the 

intramuscular groups and sometimes in an accentuated way, results suggest a 

contraction of the collagen. This contraction may be a result of the implant 

calcification or a consequence of a cellular response. 

It is known that fibroblasts have a natural ability to contract collagen, as in wound 

healing during wound contraction. In response to injury, many interstitial fibroblasts 

acquire morphological and biochemical features of contractile cells, named 

myofibroblasts, synthesizing and depositing type I collagen into the wound 

provisional matrix. They subsequently contract the type I collagen matrix, facilitating 

wound closure (Nho et al., 2006). An increase in matrix density results in a 

corresponding decrease in matrix volume. This theory – cell contraction – is one of 

two existing theories to explain the mechanism of wound contraction. It is unlikely, 

though, that Permacol® contraction resulted from fibroblastic activity, since 

deposition of new collagen and remodelling of the biomaterial matrix was not 

observed. 

The second theory is referred to as cell locomotion and proposes the process of cell 

translocation through ECM as the origin of tension on the matrix which will bring the 

wound edges together (Roy et al., 1999; Sethi et al., 2002). It is presumed that the 

centripetal tractional forces exerted by extending pseudopodia at the leading edge of 

migrating fibroblasts bring the wound edges closer (Tomasek et al., 2002). If the 

matrix is restrained, in response to force exerted by the cells, collagen fibrils become 

oriented in the same plane as the underlying restraint; under these conditions 

mechanical loading develops within the matrix (Grinnell, 2003). When the matrix 

becomes sufficiently rigid to resist the force exerted by the cells, equilibrium is 

achieved and a subpopulation of the cells enters apoptosis or becomes quiescent 

(Desmouliere et al., 1995; Grinnell, 2000). 

During the surgical procedure a pocket was made in the posterior scalenus muscle, 

damaging its structure and a natural wound healing process was activated. It is 

possible that, during the proliferation phase, fibroblasts exerting traction forces 

aligned collagen fibrils contracting Permacol® while contracting the surrounding 

matrix. Although the precise mechanisms involved in the Permacol® implant 

contraction are unknown, the cell locomotion theories could explain the matrix 

contraction and partially the low cellular density observed. Intra-liver Permacol® 
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implants showed lower cellular density at all time points, which may explain why 

there was no implant contraction in those groups. 

 

Calcium deposition increased over time in intramuscular implants, 2 of the 6 implants 

showed mineralisation 3 months post implantation and at 6 months mineralisation was 

evident in 4 of the 6 implants and in the final time point all implants had mineral 

deposits. These occurrences are difficult to explain since there was no cellular 

response or pathology associated with the mineralised collagen and some animals had 

both a mineralised implant and a non-mineralised implant. Calcification of implants 

was observed in the previous study (Section 5.2). In the discussion it was suggested 

that the implantation site may be a pre-requisite for mineralisation occurrence. These 

results give further evidence in favour of that hypothesis. Skeletal muscle fibre cells 

are activated through the calcium release channel, which induces the sliding 

interaction between actin and myosin fibres, contained within the muscle cell, so that 

they move towards each other, thereby shortening (contracting) the muscle cell. 

Permacol® surgical implant shows a tendency to store calcium deposits, which was 

increased when placed in a site where calcium is more abundant. Muscle cells store 

high amounts of calcium in the sarcoplasmic reticulum, which releases calcium when 

the muscle fibres are activated; therefore, intramuscularly implantation may promote 

implant calcification. This could explain the temporal change in implant 

mineralisation when comparing subcutaneous to intramuscular implantation. In the 

first, mineralisation was observed only at 6 months while in the latter study 

mineralisation occurred as early as 3 months post implantation. These results support 

the hypothesis of calcium deposition in situ over time and add to the idea that 

mineralisation is related to the interstitial fluid and that Permacol® acts as a 

membrane, retaining minerals in places where its structure is more compact and 

dense, probably as a result of cross-linking.  

 

In surgical procedure 2, Permacol® was implanted into a pocket made in the liver. At 

all end-time points implants were partially at the surface of the liver lobe where they 

had been implanted and some had another lobe attached to the Permacol®. Omentum 

fat adhesions were visible in 1, 2 and 2 implants respectively at 3 months, 6 months 

and 12 months post implantation.  
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Liver consists of a continuous parenchymal mass and is entirely covered by Glisson's 

capsule, an adherent membranous sheet of collagenous and elastic fibres. The main 

blood vessels and ducts were observed through the liver within a branched 

collagenous framework - portal tracts – showing a good structure of the liver with no 

lasting damage from the surgical procedure. Mammals maintain a constant liver-to-

body mass ratio and in response to injury the liver is capable of natural regeneration 

(Khan and Mudan, 2007). In a normal adult liver, mature differentiated hepatocytes 

are quiescent; however, upon receiving a regenerative stimulus 95% of hepatocytes 

undergo cell division while maintaining their metabolic function (Hata et al., 2007; 

Khan and Mudan, 2007). A resected rat or mouse liver undergoes compensatory 

hyperplasia in which the initial liver mass (and its functions) is restored within 

approximately 1 week after surgery (Hata et al., 2007). The most commonly used 

model is the 70% partial hepatectomy model in rodents, which was originally 

described by Higgins & Anderson in 1931 (Higgins and Anderson, 1931). 

Based upon the literature it is possible that the surgical procedure undertaken in the 

liver groups induced a natural tissue regeneration process in the liver and as a result of 

that process implants were pushed through the pockets towards the surface. 

Implants were still partially enclosed in the hepatic tissue, including when adhesions 

were observed. These results suggest that (i) the liver regeneration was not complete, 

since not all areas of the implants were at the border of the liver, or (ii) the liver 

accepted the implant presence and Permacol would remain between the collagenous 

membrane (Glisson’s capsule) and the hepatic tissue. 

There was no inflammatory response present within the surrounding tissue and 

implants; the only inflammatory cells observed were Kupffer cells (hepatic 

macrophages) but at low numbers. Permacol surgical implant was well tolerated by 

the liver tissue. 

Cellular density within the implant was low and decreased over time. Regardless of 

this, integration with surrounding tissue was mild to moderate attesting again to the 

notion that regular cellular presence is not essential for tissue integration to occur. 

Cells are present in higher numbers in the early stages of implantation but it is not 

known if this immediate increase in cellular density is enough to establish future good 

integration, or if implant/tissue integration origins from the regular but lower number 

of fibroblasts observed throughout the study in the interface of implant and adjacent 



                                                                                                                    CHAPTER 5 

 -278- 

host tissue. There is a substantial gap between the time-points in this study, so it is not 

known the level of cellular density between the observations time. New blood vessels 

were observed at 6 and 12 months post implantation at the periphery of the implants; 

neo-vascularisation was not present in the centre of the implants but these areas were 

cell free, which explains vessel absence.  

Mineralisation was not observed in any of these implants in liver, giving further 

evidence of the hypothesis that the implantation site influences mineral deposition. 

All implants showed natural birefringence under polarised light, an indicator of good 

quality, non-denatured collagen; implants maintained their structure and were not 

remodelled. In this study there was no tissue reactivity in the control tissues or 

implantation sites. 

 

 

5.3.8 Conclusion 

 

In the rodent model reported here the collagen matrix does not support high cellular 

population; cellular density and cellular penetration were at low levels in the implants 

when implanted in both tissue types. Nevertheless, there was no inflammation and 

there was no evidence of immune response; this demonstrates that Permacol does not 

cause a foreign body type reaction. Permacol is recognised as being a purified, 

generic dermal collagen matrix. Consequently progenitor cells from the liver and 

muscle are not stimulated by physical/topographical signals from the matrix to 

differentiate into specialist cell types. Despite the levels of cellular density and 

cellular penetration being marginal to minimal, integration with the surrounding tissue 

increased over time and reached moderate levels, suggesting that the presence of cells 

within the matrix, at all times, is not necessary for good integration to occur. Even in 

the mineralised areas implants showed no collagen degradation, collagen was highly 

birefringent under polarised light and implants were not remodelled or degraded. 

It has previously been hypothesised that cellular response to Permacol could be 

influenced by the implantation site. In this study two different highly vascular sites 

were chosen, muscle and liver, and the cellular response was low in both models, 

which is in accord with the results obtained in the subcutaneous study reported in 

Section 5.2. These results suggest that, as a non specialized tissue, Permacol does 
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not necessarily promote movement or differentiation of cells within the matrix, 

independent of the surrounding tissue. 
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5.4 EXPERIMENTAL EVALUATION OF TWO BIOLOGIC PROSTHESES 

FOR ABDOMINAL HERNIA REPAIR IN A RAT MODEL 

 

 

 

5.4.1 Introduction 

 

Abdominal wall defects caused by trauma, incisional hernias and tumour resection are 

a common and challenging problem for surgeons. Surgical repair of these types of 

defects can be further problematic if the wound extends through a large area and in 

the presence of contamination. The best operative approach for repair of these defects 

is still controversial, but the rising number of published papers in this area has 

increased the amount of information regarding commercially available prosthetic 

materials, and by doing so gives surgeons a very useful tool to help them choose the 

most suitable material for a particular patient and the best operative approach.  

There are several methods available for abdominal wall defects repair. Primary 

closure is widely used but in cases of large defects adequate tissue for direct closure is 

generally not available and most surgeons agree that in such a case the defect should 

be repaired in a tension-free manner using a prosthetic mesh material (Saettele et al., 

2007). The use of prosthetic biomaterials significantly reduces tension and has 

considerably decreased recurrence rates after repair of abdominal wall defects. These 

biomaterials have also provided support for the closure of difficult abdominal hernias.  

Several synthetic and biologically derived materials have been used clinically to 

repair abdominal hernias. The ideal hernia repair material should have an adequate 

strength for the intended surgical application, be easily manipulated (surgeon 

friendly), non-toxic, biocompatible, allow fibroblast ingrowth and neo-vascularisation 

and withstand sterilization. 

Non-absorbable synthetic materials are commonly employed, polypropylene mesh 

being the most used (Catena et al., 2007; Hammond et al., 2008). Although these 

meshes increase abdominal wall strength by mechanical tension, it usually results in 

mesh contraction, which potentially causes serious complications such as adhesions, 

fistula formation, skin erosion and increased susceptibility to infection. In addition, 
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mesh extraction can be difficult due to dense tissue incorporation. Therefore, the use 

of non-absorbable synthetic meshes in contaminated fields has been strongly 

discouraged on the basis of high rates of morbidity (Liyanage et al., 2006; Parker et 

al., 2006). 

Absorbable meshes have also been used for abdominal hernias repair, including 

synthetic and natural materials. Biological prostheses are derived from bovine, 

porcine and human sources. Normally, these are collagen based and treated to remove 

cellular elements; additionally some biomaterials are cross-linked to delay the 

degradation of the collagen by blocking collagenase-binding sites (Gaertner et al., 

2007). 

An ideal material for abdominal hernia repair would provide strength, flexibility, host 

tissue incorporation, vascularisation, less adhesion formation and infection tolerance. 

Therefore, it is essential for the clinician to choose a material that produces the least 

amount of foreign-body reaction and also does not allow easy bacterial attachment 

(Albo et al., 2006; Carbonell et al., 2005).  

AlloDerm (LifeCell Corp., New Jersey, USA) is an acellular dermal matrix derived 

from donated human skin and classified as banked human tissue. It is treated to 

remove both the epidermis and cellular components while maintaining an intact 

basement membrane and collagen. Bard CollaMend Implant (Davol Inc., Cranston, 

Rhode Island, USA) is a porous lyophilised acellular porcine dermal collagen 

dressing. It is processed to remove all non-collagenous cellular components and is 

cross-linked to increase strength and endurance. 

 

The purpose of the study reported here was to compare and evaluate two biologic 

prosthetic biomaterials, commercially available and recommended for repair of 

abdominal wall defects, one cross-linked and the other noncross-linked and to 

compare them to Permacol®, for abdominal hernia repair in a rat model. 

 

 

5.4.2 Hypothesis 

 

AlloDerm and Bard CollaMend Implant are safe and clinically efficient matrices for 

use in ventral hernia repair, in a rodent model. 
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5.4.3 Aims and Objectives 

 

 Assess AlloDerm and Bard CollaMend Implant biocompatibility in a rat 

model. 

 Compare AlloDerm and Bard CollaMend Implant as regenerative tissue 

matrices in a ventral hernia repair model. 

 Compare AlloDerm and Bard CollaMend Implant performances to Permacol® 

surgical implant, in a ventral hernia repair model. 

 

 

5.4.4 Materials and Methods 

 

The study was performed in compliance with the Good Laboratory Practice 

Regulations 1999 (S.I. No 3106), as described in Section 5.1.4. 

AlloDerm was purchased from LifeCell Corporation as a 5cm x 10cm sheet; thickness 

0.79 - 1.78mm. AlloDerm is supplied in a foil bag within a non-sterile inner peel-

pouch. 

Bard CollaMend Implant (hereafter nominated simply as CollaMend) was provided 

by TSL plc., as a 20.3cm x 25.4cm sheet; CollaMend was lyophilized and double-

packed in a Tyvek® envelope within a peel-open aluminium foil pouch, which is 

impermeable to moisture and oxygen. 

 

 

5.4.4.1 Study Design 

 

Since there was limited availability of materials, the study was designed to include the 

largest possible number of items per group, i.e., the area of each biomaterial was 

divided in order to yield the maximum number of grafts (with a constant area), which 

resulted in 18 grafts from AlloDerm and 27 grafts from CollaMend. Six treatment 

groups were constructed and divided between 3 time-points as in Table 5.12.  
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Table 5.12 – Study groups and time point design. A= AlloDerm, C= CollaMend. 

 Termination time point 

Months 1 3 6 

Group A-1 C-1 A-2 C-2 A-3 C-3 

Animals 6 9 6 9 6 9 

 

Male Wistar-HanTM rats were used with weights between 250 and 310g. Body 

weights were recorded in the day of surgery and at the termination day. Animals were 

randomly distributed within the 6 groups. 

 

Both dermal matrices were pre-treated according to the manufacturer’s instructions. 

AlloDerm was re-hydrated in a two-step bath. The tissue was submerged and soaked 

in 0.9% saline solution for a minimum of 5 minutes or until the backing separated 

from the AlloDerm. Using sterile non-toothed forceps the backing was discarded and 

the tissue aseptically transferred to a second bath of saline solution where it remained 

completely submerged for 30 minutes or until the tissue was fully re-hydrated. 

According to its manufacturers, complete re-hydration should be achieved in 10 to 40 

minutes, depending on thickness of the tissue. AlloDerm must be used within 4 hours 

of re-hydration. 

AlloDerm has a basement membrane and a dermal surface; when applied to the 

wound bed in a grafting procedure, or as an implant, the dermal surface must be 

placed against the wound bed or against the most vascular tissue. There was some 

difficulty in identifying the dermal side, therefore 3 animals per group were implanted 

with the “dermal side” facing the wound bed, and the other 3 implanted with the 

“dermal side” facing the skin. 

CollaMend was completely hydrated before use by immersion in a 0.9% sterile saline 

solution for a minimum of 3 minutes. 

After complete hydration both dermal materials were aseptically trimmed to the 

desired dimensions. Pieces of non-implanted material were fixed in a 10% NBF 

solution for histological analysis. 
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5.4.4.2 Surgical Procedure 

 

1. Rats were induced and maintained under general anaesthesia according to the 

procedure described in Section 2.2.5. 

2. A ventral midline incision was made from just below the level of the rib cage 

extending approximately 1.5cm distally. 

3. Skin was elevated and retracted to allow access to a site at the mid lateral 

aspect of the caudal peritoneal wall. 

4. Using a template, a 3cm x 0.5cm piece of peritoneal wall was excised to leave 

the peritoneum intact (Figure 5.105). 

5. A piece of biomaterial, 5cm x 2.5cm, was placed to cover and overlap the 

excision equally at each aspect. This procedure was performed only in one 

side of the midline, the other side underwent creation of a ventral hernia defect 

without biomaterial implantation; therefore, was used as control. 

6. The biomaterial was secured by absorbable sutures through test material into 

peritoneal wall. 

7. The ventral midline incision was closed with interrupted sutures. 

8. Once recovered from anaesthetic, animals were returned to the animal 

accommodation, singly housed. 
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Figure 5.105 – Ventral hernia repair model. Two defects were created leaving the 

peritoneum intact, one defect was covered with the biomaterial tested and the second 

defect was left to heal naturally as control. 
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5.4.4.3 Necropsy 

 

Animals were euthanased with an intra-peritoneal injection of sodium pentobarbitone 

and the operative sites identified and exposed. The complete operative site together 

with adjacent tissue was removed and one third (longitudinally) was resected to be 

used fresh for integration strength testing by way of a tensiometer, another third was 

frozen in liquid nitrogen and kept at -80oC for possible later examination, and the 

remainder was fixed in 10% NBF for routine histology.  

From the opposite, control side of the animal, a similar sized piece of peritoneal wall 

was excised and divided in two halves, one was fixed and the other stored at -80oC. 

 

 

5.4.5 Statistical Analysis 

 

Histometric scores (integration, cellular density, cellular penetration, inflammatory 

cells and neo-vascularisation) were analysed per matrix type and over time using a 

two-way ANOVA to look for interaction between mesh type and time-point. These 

tests were performed in conjugation with Levene’s test to check for homogeneity of 

variances; when variances were significantly different two separate one-way variance 

analysis were performed instead. One-way ANOVA was also used to analyse the 

tensiometry results over time. When the ANOVA (one-way and two-way) results 

were significant, least significant difference (LSD) and Bonferroni post hoc tests were 

used to identify differences within groups; when the variances were unequal 

Tamhanes’s T2 post hoc test was used. P<0.05 was considered as statistically 

significant for all tests applied. Pearson correlation was used to find associations 

between parameters. Statistical analysis was performed using SPSS Statistics 16.0 

(SPSS Inc. Chicago, USA). Graphical representation of data was performed using 

Graphpad Prism statistics software, version 4 (GraphPad Software, Inc., USA).  

 

Results are presented individually per biomaterial tested and in the end compared and 

discussed collectively. 
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5.4.6 Results – AlloDerm  

 

There were no situations which the NACWO or PPL License Holder were unable to 

deal with and therefore nothing was referred to the named Veterinary Physician. 

 

 

5.4.6.1 Tensiometry 

 

Tensiometry studied the resistance of the AlloDerm/surrounding tissue complex to a 

constant force applying a separation moment, measured as the maximum tension the 

material can withstand without integration failure. The individual materials within the 

complex may also fail. 

Tensiometry results are displayed in Table 5.13 to Table 5.15. Two AlloDerm 

implants separated from the adjacent host tissue at 1 month post implantation, the 

remaining implants failed by splitting of the muscle or suture failure. Separation 

means separation between the implant and the surrounding tissue. The graft tension 

orientation was always the same; AlloDerm was sutured to the fixed end of the 

tensiometer. 

 

Table 5.13 – Tensiometry results for AlloDerm implants at 1 month post implantation. 

Animal 

number 

Max Load 

(kg) 

Ext at Max 

Load (mm) 

Total Extension 

(mm) 
Separation 

A1.1 0.669 41.79 69.27 No (suture snapped) 

A1.2 0.808 22.25 61.97 No (muscle split) 

A1.3 0.984 23.73 32.86 No (muscle split) 

A1.4 1.231 33.81 61.22 Yes 

A1.5 0.969 35.26 73.80 Yes 

A1.6 0.827 13.33 76.19 No 

Mean 0.915 28.362 62.552  

SD 0.194 10.415 15.757  
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Group A-2 showed a lower mean value for maximum load, but there was no 

significant difference between groups for all parameters analysed. Only one implant 

separated from the adjacent tissue in group A-2; the other implants remained attached 

to the surrounding tissue while the muscle tore. In one animal the travel limit of the 

tensiometer was exceeded, separation did not occur, stretching of AlloDerm was 

observed for all implants. 

 

Table 5.14 – Tensiometry results for AlloDerm implants at 3 months post 

implantation. 

Animal 

number 

Max Load 

(kg) 

Ext at Max 

Load (mm) 

Total Extension 

(mm) 
Separation 

A2.1 0.895 35.44 47.29 No (muscle split) 

A2.2 0.780 28.03 72.62 Yes 

A2.3 0.729 16.14 33.00 No (muscle split) 

A2.4 0.380 16.57 54.12 No (muscle split) 

A2.5 0.578 28.20 64.14 No (muscle split) 

A2.6 0.190 58.49 79.85 
No (travel limit 

exceeded) 

Mean 0.592 30.478 58.503  

SD 0.266 15.617 17.217  

 

 

During the tensiometry analysis it was difficult to identify the implant in 2 animals 

from group A-3. Since this was a potential area for sample variability which would 

lead to results which were not comparable, the tensiometry results for those samples 

were ignored. It was later confirmed by histological analysis that the implants in those 

animals were not present. 

In group A-3 implants did not separate from the adjacent tissue; the travel limit was 

exceeded in two of the implants and in the other two implants AlloDerm was 

delaminated and tore. 
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Table 5.15 – Tensiometry results for AlloDerm implants at 6 months post 

implantation. *P<0.05. 

Animal 

number 

Max Load 

(kg) 

Ext at Max 

Load (mm) 

Total Extension 

(mm) 
Separation 

A3.1 0.425 25.74 32.68 No (travel limit exceeded) 

A3.2 0.855 20.46 32.54 
No (AlloDerm 

delaminated) 

A3.5 1.506 22.52 32.68 No (travel limit exceeded) 

A3.6 0.499 11.34 18.73 
No (AlloDerm 

delaminated) 

Mean 0.821 20.015 29.158*  

SD 0.494 6.178 6.952  

 

Maximum load and extension at maximum load values were compared between the 3 

groups and there was no evidence of a significant difference between time-points. 

Total extension was significantly different between the groups A-1 and A-3, and 

between A-2 and A-3. 

 

 

5.4.6.2 Histopathology 

 

Sections were examined for implant presence, acute inflammation, chronic 

inflammation, seroma, fibrosis, giant cells, tissue integration, cellular penetration, 

cellular density, neo-vascularisation and collagen degradation. 

 

Strips from AlloDerm before implantation were taken and processed for comparison 

with the implanted AlloDerm. Histology of the pre-implanted AlloDerm showed good 

non-denatured collagen and no cells were visible in the matrix (Figure 5.106). 
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Figure 5.106 – AlloDerm (picro sirius red, 100X). 

 

All animals lived until necropsy and biomaterial harvest. All animals were healthy 

with body weight values as expected.  

 

 

Group A-1 – 1 month 

 

Four animals developed seroma 8 days post implantation, which contributed to the 

inflammatory responses observed. Another animal developed a small open wound that 

did not affect his health and behaviour, but may have contributed to the absence of a 

seroma; the inflammatory response in this implant was severe. After necropsy a sub-

clinical seroma was found in the remaining animal. In 3 of the animals that developed 

seroma the Alloderm was implanted with the dermal side facing the wound, in the 

other 2 animals the implant dermal side was facing the skin.  

Two implants showed remains of a severe acute and chronic inflammatory responses 

(Figure 5.107). AlloDerm was heavily invaded by inflammatory cells but in places 

where the inflammatory response was absent the implant was cell free (Figure 5.108). 

In both implants the inflammatory response was between the AlloDerm and the 
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peritoneal wall. The remaining implants had moderate levels of acute and chronic 

inflammatory responses. 

 

 
Figure 5.107 – AlloDerm implant, 1 month post implantation, showing severe acute 

and chronic inflammatory responses (H&E, 20X).  

 

 
Figure 5.108 – AlloDerm implant 1 month post implantation, areas where the 

inflammatory response has not reached are cell free (H&E, 40X).  

Peritoneal 
wall 

AlloDerm 

AlloDerm 
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Lymphocytes, macrophages and polymorphs were present in all implants (Figure 

5.109). Lymphocytes were present in a large number and active, which indicates some 

immune response. In 3 implants neutrophils were acting as a barrier, surrounding the 

implant and separating it from the adjacent tissue (Figure 5.110). Giant cells and 

fibrotic activity were present in 4 implants. 
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a) 

b) 

c) 

Figure 5.109 – Polymorphs and lymphocytes in a 1 month post implantation 

AlloDerm implant: a) Neutrophils, b) Eosinophils, c) Lymphocytes, (H&E, 400X). 
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Figure 5.110 – Neutrophils barrier (arrows) separating an AlloDerm implant from the 

surrounding tissue, 1 month post implantation (H&E, 40X). 

 

 

At 1 month post implantation, when cellular density was high, blood vessels were 

visible to support the inflammation. In these places AlloDerm lost its original 

configuration and was remodelled (Figure 5.111). Implant cell free areas kept the 

original structure (Figure 5.112). 

 

AlloDerm 
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Figure 5.111 – Remodelled AlloDerm with formed vessels (arrows) at 1 month post 

implantation (H&E, 100X). 

 

 
Figure 5.112 –AlloDerm with cell free areas maintaining its original configuration, 

cellular areas were remodelled, 1 month post implantation (H&E, 100X).  

 

AlloDerm 
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Control tissue showed no reactivity to the surgical procedure. On examination under 

polarized light, normal, non-denatured collagen patterning is demonstrated in the 

controls.  

 

At 1 month post implantation the collagen from the AlloDerm implants was losing its 

natural birefringence especially at the edges which indicates collagen degradation 

(Figure 5.113). Collagen degradation was probably a consequence of the high cellular 

activity caused by the inflammatory response observed. 

 

 
Figure 5.113 – Degraded collagen in an AlloDerm implant, under polarized light 

(picro sirius red, 20X). 

 

The next figure shows a graphical representation of results for 1 month post 

implantation. At this time point implants that were not fully present were partially 

degraded as a result of a severe inflammatory response. Seroma refers to the number 

of animals that developed seroma during the study time, independently if the seroma 

was absorbed or not. 
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Figure 5.114 – AlloDerm results at 1 month post implantation.  

 

 

Group A-2 – 3 months 

 

At 3 months post implantation 3 of the implants were intact, whereas the others were 

only partially present (Figure 5.115 and Figure 5.116). 

 

 
Figure 5.115 – AlloDerm implant fully present after 3 months implantation (H&E, 

20X). 
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Figure 5.116 – Remains of an AlloDerm implant after 3 months implantation (H&E, 

20X).  

 

Three of the animals from this group developed seroma in the second week of the 

study, in one animal the dermal side of AlloDerm was facing the skin and in the other 

two was facing the wound. Most implants showed remains of marginal to moderate 

acute and chronic inflammatory response, these responses were significantly different 

from the values obtained at 1 month post implantation. Because of the inflammatory 

response, implants were heavily populated with cells and AlloDerm configuration 

changed when a high cellular density was observed but, as observed in the 1 month 

post implantation implants, areas where AlloDerm maintained its original 

configuration were cell free (Figure 5.117). 

 

Peritoneal wall 

AlloDerm 

Subcutaneous tissue 
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Figure 5.117 – AlloDerm implant at 3 months post implantation; the arrow indicates 

AlloDerm in its initial configuration (H&E, 40X). 

 

 

Lymphocytes were visible in an excessive number and were active which indicates a 

significant immune response. A barrier, mainly constituted by lymphocytes, was 

visible surrounding the implants (Figure 5.118). Despite the lymphocyte barrier 

cellular penetration achieved 100% in all implants. 
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Figure 5.118 – Lymphocyte barrier between the implant and the surrounding tissue 

(H&E, 400X). 

 

Macrophages were visible in a large number, especially in the edges of the implants; 

giant cells were present in 5 implants (Figure 5.119a). Giant cells formed around 

fragments of the implant as a result of a chronic inflammation. Mature vessels and 

vessel sprouts were present to support cells (Figure 5.119b). Integration with the 

surrounding tissue, at 3 months post implantation, was moderate to complete and after 

statistical analysis the integration increase was considered significantly different 

compared to results at 1 month post implantation.  
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a) 

b) 

Figure 5.119 – AlloDerm implant 3 months post implantation: a) giant cells digesting 

the implant (H&E, 400X); b) vessels in the centre of the implant (H&E, 100X).  

 

 

The AlloDerm implanted in animal A2.4 had hair in one of the sides; this side was 

implanted facing the skin. After 3 months implantation, the implant was almost 

entirely present with visible hair follicles (Figure 5.120).  
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Figure 5.120 – Hair follicles present in an AlloDerm implant, 3 months post 

implantation (H&E, 200X). 

 

At 3 months post implantation implants with moderate inflammatory response showed 

collagen degradation demonstrating implant breakdown (Figure 5.121). 

 

 
Figure 5.121 – Collagen degradation in an AlloDerm implant, 3 months post 

implantation (picro sirius red, 40X). 
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All tissue controls showed a healed wound, reactivity was not observed in these 

tissues. 

Figure 5.122 shows the 3 months post implantation results. Histometric results for 

parameters: inflammation, integration, cellular density, cellular penetration and neo-

vascularisation were scored as described in Section 5.1.6. 
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Figure 5.122 – AlloDerm results 3 months post implantation (error bars show 

standard deviation).  

 

 

Group A-3 – 6 months 

 

At 6 months post implantation it was difficult to identify the implants; in two animals 

AlloDerm was absent but remains of the sutures were visible identifying the 

implantation site (Figure 5.123).  
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Figure 5.123 – No visible AlloDerm at 6 months post implantation (H&E, 20X). 

 

Three animals from this group developed seroma, in one animal the seroma had to be 

drained because of its large size. From these animals 2 were implanted with the 

dermal side of AlloDerm facing the wound and one with the dermal side facing the 

skin. All further data refers to the 4 samples that still had the implant present at 6 

months post implantation. 

 

Implants showed complete integration in 3 samples and moderate integration in one 

(Figure 5.124). Although integration at 6 months implantation did not show a 

significant difference from the values obtained at 3 months post implantation, 

integration in group A-3 increased significantly when compared to group A-1. 

 

Suture 
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Figure 5.124 – AlloDerm implant, 6 months post implantation, well integrated with 

the surrounding tissue (H&E, 100X). 

 

 

Cellular density reached moderate levels and cellular penetration was 100% in all 

AlloDerm implants (Figure 5.125). Cellular density in this group was significantly 

different from the 3 months group. Neo-vascularisation was present to support the 

cells. 

 

 

AlloDerm 

Host tissue 
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Figure 5.125 – Complete cellular penetration of an AlloDerm implant (H&E, 100X). 

 

Macrophagic activity was present in 3 of the implants and 1 of these had giant cells.  

On examination under polarized light, normal, non-denatured collagen patterning was 

present (Figure 5.126). Given that at 1 and 3 months post implantation there was 

collagen degradation, the normal birefringent collagen patterning observed at 6 

months is probably caused by deposition of new collagen, although implants show 

both mature (thick fibres) and new collagen (thin fibres). 
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Figure 5.126 – AlloDerm implant stained with picro sirius red, 6 months post 

implantation (100X). 

 

 

All tissue controls showed healed wounds, reactivity was not observed in these 

tissues. 

 

Figure 5.127 shows the results for the 6 months post implantation group. 
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Figure 5.127 – AlloDerm results at 6 months post implantation. Histometric results 

were scored according to the system described in Table 5.2. 

 

 

Figure 5.128 shows comparison between 1, 3 and 6 months results, mean values are 

used. Cellular density and cellular penetration were not quantified at 1 month post 

implantation because at this time-point cells were mainly present as a result of the 

inflammatory response. 
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Figure 5.128 – AlloDerm results at 1, 3 and 6 months post implantation, P<0.05 = *, 

P<0.01 = ***. Histometric results were scored according to the system described in 

Table 5.2. 

 

 

5.4.7 Results – CollaMend  

 

One animal from group C-2 and one animal from group C-3 died post operatively. All 

other animals recovered well from surgery. 
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During the surgical procedure CollaMend was found to be an inflexible, stiff material 

which was difficult to suture into place.  

Sixteen days post surgery one animal from group C-2 had an open wound lateral to 

the middle incision caused by the friction between the implant and the skin, there was 

evidence of implant extrusion and the animal had to be sacrificed. Since the implant 

was detached from the surrounding tissues tensiometry was not performed in this 

sample.  

 

Approximately 4 weeks post-implantation 6 animals were noted to have folded 

implants which were visible externally. It is probable that natural body movements 

caused the implants to fold and implant physical properties did not allow return to its 

original orientation. As a result of which seroma developed between the implant and 

the peritoneal wall (Figure 5.129). Eventually animals with seroma chewed through 

the skin overlying the implants which were then exposed such that the animals had to 

be terminated prematurely (Table 5.16). 

 

 

 
Figure 5.129 – CollaMend implant folded, the remains of seroma (arrows) are visible 

surrounding the implant and in the overlap region. 
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Table 5.16 – Animals with earlier termination time points. 

Group Termination day Cause 

C-2 16 Implant extrusion 

C-1 19 Seroma/open wound 

C-1 27 Seroma/open wound 

C-2 35 Seroma/open wound 

C-3 40 Seroma/open wound 

C-2 49 Seroma/open wound 

C-2 64 Seroma/open wound 

 

 

5.4.7.1 Tensiometry 

 

Although tensiometry was performed in all samples, data was analysed only from 

groups of animals with the same termination day; mean and standard deviation were 

calculated. 

In group C-1 CollaMend was easily separated from the surrounding tissue (Figure 

5.130).  

 

 
Figure 5.130 – Tensiometry of animal from group C-1. 
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Seven animals from group C-1 reached the protocol experimental end-time point; 

tensiometry was not performed in one sample since the implant detached from the 

host tissue while suturing it to the fixed end of the tensiometer. During tensiometry 

testing implant was separated from the host tissue in 5 of the 6 implants tested (Table 

5.17). The remaining implant failed because sutures broke before separation occurred. 

 

Table 5.17- Tensiometry results for CollaMend implants, 1 month group. 

Animal 
Max Load 

(kg) 

Extension 

at Max. 

Load (mm) 

Total 

Extension 

(mm) 

Separation Comments 

C1.1 0.293 42.12 64.48 Yes Implant and tissue 

connected only by 

sutures 

C1.2 0.304 19.39 76.38 Yes 

C1.4 0.280 37.85 38.44 Yes 

C1.6 0.286 14.64 45.32 No Sutures snapped 

C1.7 - - - - * 

C1.8 0.035 22.22 26.32 Yes  

C1.9 0.212 39.71 42.83 Yes  

Mean 0.235 29.322 48.962   

SD 0.103 11.909 18.258   

* CollaMend separated from tissue while suturing it to the tensiometer. 

 

 

In group C-2 CollaMend was easily separated from the surrounding tissue as observed 

at 1 month post implantation, integration with the host tissue was low. Only 4 animals 

from the initial 9 were sacrificed at 3 months post implantation.  

The tensiometer results presented here may be biased since they include the sutures 

originally holding the CollaMend to the peritoneal wall, as well as or rather than 

integration of CollaMend with the surrounding host tissue alone. Separation was 

observed in 3animals. 

 

 

 

 



                                                                                                                     CHAPTER 5 

 -313- 

Table 5.18 – Tensiometry results for CollaMend implants, 3 months group.  

Animal 
Max Load 

(kg) 

Extension 

at Max 

Load (mm) 

Total Extension 

(mm) 
Separation Comments 

C2.3 0.236 20.14 44.20 Yes  

C2.6 1.120 22.54 50.09 Yes Implant and 

tissue connected 

only by sutures C2.7 0.280 12.40 50.13 Yes 

C2.9 0.267 15.52 48.26 No Muscle split 

Mean 0.476 17.650 48.170   

SD 0.430 4.554 2.787   

 

 

In group C-3 two of the CollaMend implants failed by tearing while performing 

tensiometry, one implant tore through the sutures and the other in the centre (Figure 

5.131). The travel limit of the moving end of the tensiometer was exceeded in 3 of the 

7 CollaMend implants tested (Table 5.19). Maximum load and extension at maximum 

load mean values were higher than at 1 and 3 months. 

 

 
Figure 5.131 – Schematic representation of CollaMend mode of failure at 6 months 

post implantation. 

 



                                                                                                                     CHAPTER 5 

 -314- 

Table 5.19- Tensiometry results for CollaMend implants, 6 months group. 

Animal 
Max 

Load (kg) 

Extension at 

Max 

Load (mm) 

Total 

Extension 

(mm) 

Separation Comments 

C3.1 0.744 19.14 33.76 No  

C3.2 0.936 48.34 54.47 No  

C3.3 0.808 10.75 25.00 Yes  

C3.5 0.398 13.51 78.97 NoA 
Travel limit 

exceeded 
C3.6 1.318 49.95 78.97 No 

C3.7 0.960 54.04 78.97 YesB 

C3.8 0.666 20.92 78.87 Yes C 

Mean 0.833 30.950 61.287   

SD 0.285 18.925 23.693   
A – CollaMend tore where sutured to the static end. 
B – Only a few muscles fibres were attached to the sutures holding the CollaMend. 
C – Although the implant failed, tearing in the centre, it was held only by the sutures 

to the surrounding tissue. 

 

 

5.4.7.2 Histopathology 

 

The semi-quantitative histometric grading system used was as described in Section 

5.1.6.  

 

Hydrated, non-implanted CollaMend was fixed and processed for histological analysis 

as control. Figure 5.132 shows the structure of CollaMend, which is acellular and, 

under polarised light, collagen shows its natural birefringence a characteristic of non-

denatured collagen. CollaMend structure is similar to normal porcine dermal collagen 

structure, although CollaMend fibres look less compact and dense than porcine 

dermal collagen fibres, this may be explained by the manufacturers process. Space 

seen between fibres is probably a result of the decellularisation step.  
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Figure 5.132 – CollaMend stained with picro sirius red, in the bottom image the 

section was visualised under polarised light (100X). 

 

 

Group C-1 – 1 month 

 

The implant retrieved from the animal sacrificed 19 days post implantation showed 

evidence of a marginal acute inflammatory response most probably due to the 



                                                                                                                     CHAPTER 5 

 -316- 

exposure of the implant (Figure 5.133). It could be seen macroscopically that 

CollaMend implant was not integrated with the adjacent host tissue and histology 

showed a sub-clinical seroma separating implant from host tissues. 

 

 
Figure 5.133 – Marginal acute inflammation 19 days post implantation (H&E, 40X). 

 

Cellular density was minimal but that was not an impediment for cellular penetration, 

which was 100%. Neo-vascularisation was not present.  

The animal sacrificed 27 days post implantation showed minimal acute and chronic 

inflammatory responses probably as a consequence of the open wound; macrophages, 

neutrophils and giant cells were present (Figure 5.134). Again, there was no 

integration between the implant and the surrounding tissue. Cellular density was 

marginal and some parts of the implant were completely cell free, cellular penetration 

varied from 0 to 100% (Figure 5.135). At this time point blood vessels and vessel 

sprouts were visible especially at the edges of the implant. 

 

 

Host tissue 
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Figure 5.134 – Giant cells (arrows) and macrophages in a CollaMend implant after 27 

days implantation (H&E, 400X). 

 

 
Figure 5.135 – Complete cellular penetration in a CollaMend implant 27 days post 

implantation (H&E, 100X). 

 

 

CollaMend 
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After 1 month of surgery CollaMend was discernible subcutaneously and felt hard to 

the touch in all animals. Apart from the presence of macrophages, at low numbers, no 

inflammatory response was observed in any of the 7 animals (Figure 5.136). 

 

 
Figure 5.136 – CollaMend implant 1 month post implantation (H&E, 20X). 

 

Integration with surrounding tissue was generally very low or absent; although, at one 

aspect, the beginning of micro-interdigitations between the edge of the implant and 

the immediately adjacent tissue was observed. Cellular density was marginal and in a 

few aspects of the implants cells were observed covering the surface without 

infiltrating the matrix (Figure 5.137). 
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Figure 5.137 – Cells at the edge of a CollaMend implant, 1 month post implantation 

(H&E, 400X). 

 

Although some areas of the implants were cell free, the remaining areas were 

populated even if at a low density (Figure 5.138). Cells were mostly observed in the 

spaces between fibres and not within the collagen. 

 

 

 

CollaMend 
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Figure 5.138 – Marginal cellular density in a CollaMend implant, 1 month post 

implantation (H&E, 100X). 

 

Independent of cellular density, cellular penetration reached 100%. Residues were 

observed at the edges of one implant; those particles appeared to be degraded material 

but also seem to form a border between the implant and the surrounding tissue (Figure 

5.139). 

 

CollaMend 
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Figure 5.139 – Residues at one aspect of a CollaMend implant after 1 month 

implantation (H&E, 400X). 

 

Control tissue (from the defect without mesh implantation) showed no tissue 

reactivity, which attests that the tissue reactivity observed in the implanted samples is 

not related to the surgical procedure and is implant specific. 

 

Capillaries were observed in 2 implants; in one within the natural pores of the 

collagen matrix and in the other at one aspect of the implant particularly more 

populated (Figure 5.140). In the latter, a cell free hair follicle is present and, although 

usually these structures are cell populated and vascularised, in this case cells preferred 

to surround the natural pore and capillaries are present to support cells. 
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Figure 5.140 – Small capillaries (arrows) at one aspect of a CollaMend implant, 

macrophages are also present (M), 1 month post implantation (H&E, 100X). 

 

A fibrous capsule was observed surrounding all implants, probably as an integration 

process rather than encapsulation (Figure 5.141). 

 

 
Figure 5.141 – Fibrin (bracket) surrounding a CollaMend implant (H&E, 200X). 
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An unexpected feature was the round-shape of cells, particularly when present in the 

centre of the implant, (Figure 5.142). Morphologically these cells did not looked like 

leukocytes, showing features of fibroblast-like cells, although the observed round-

shape is in contrast to the usual needle-shape. Round-shape fibroblasts are usually 

observed when cells cannot adhere easily to a substrate. 

 

 
Figure 5.142 – Round-shape cells in the centre of an implant (H&E, 400X). 

 

Under polarised light all implants showed natural birefringence and good quality 

collagen (Figure 5.143). 

 

CollaMend 
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Figure 5.143 – Good quality, non-denatured collagen in a CollaMend implant, 1 

month post implantation (picro sirius red, 100X). 

 

 

Figure 5.144 shows results for CollaMend implant one month post implantation. 

Mean and standard deviations were calculated per each parameter analysed. 
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Figure 5.144 – Histometric score for CollaMend implant in animals sacrificed one 

month post implantation, according to the scoring system described in Table 5.2. 
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Group C-2 – 3 months 

 

Although this group had originally 9 animals only 4 reached the protocol 

experimental end-time point; 1 animal died post-operatively and 4 animals were 

sacrificed earlier due to implant related complications. After 16 days of implantation 

one animal was sacrificed because of implant extrusion; the open wound probably 

contributed to the pus observed during the necropsy and to the moderate suppurative 

inflammatory response (purulent inflammation) present in this implant (Figure 5.145). 

The inflammatory exudate was particularly rich in neutrophils and was indicative of 

wound infection. 

 

 
Figure 5.145 – Moderate acute inflammation 16 days post implantation (H&E, 40X). 

 

It was easy to see macroscopically that the CollaMend implant was not integrated 

with the adjacent host tissue. Cellular density and cellular penetration were poor; 

neutrophils were mainly observed at the edges of the implant moving through the 

natural pores of CollaMend (Figure 5.146). Neo-vascularisation was not present.  
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Figure 5.146 – Inflammatory cells (arrows) on the surface of the implant and 

penetrating through the natural pores of the collagen (H&E, 100X). 

 

Bacteria were visible in some aspects of the implant; since this occurred on the 

surface facing the skin it was probably a consequence of the open wound. 

Interestingly, when bacteria are present CollaMend’s configuration is different 

(Figure 5.147). The layer between the bacteria and the surface of the implant, i.e., the 

area bacteria penetrated, looks remodelled and compact compared to the rest of the 

implant. 

 



                                                                                                                     CHAPTER 5 

 -327- 

 

 
Figure 5.147– Bacteria (arrows) present in a CollaMend implant. Neutrophils present 

on the surface (H&E, 200X). 

 

  

Between the skin and the implant an enlarged active lymph node was visible (Figure 

5.148), this occurrence suggests an immune response and may be a consequence of 

the bacterial infection or the presence of the CollaMend xenogeny. 
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Figure 5.148 – Enlarged active lymph node (LN) between skin and a CollaMend 

implant (H&E, 20X).  

 

In the control tissue of this animal no tissue reactivity was observed. 

 

Three animals from this group developed seroma; after approximately 3 weeks the 

seroma was hard to touch and as a consequence open wounds occurred leading to the 

earlier termination of these animals.  

As a consequence of the open wounds, samples from those animals showed moderate 

suppurative inflammation with high amounts of neutrophils in the exudate 

surrounding the implant and bacteria (Figure 5.149).  

 

LN 
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Figure 5.149 – Inflammatory cells and bacteria (arrow) present at the edges of the 

implant (H&E, 100X). 

 

In the animal sacrificed 35 days post implantation a purulent inflammation was 

present between the implant and skin, and the implant and peritoneal wall. The only 

cells present in the implant were inflammatory cells and there was no integration with 

the surrounding tissue. 

 

The animal sacrificed at day 49 presented an exteriorised implant; consequently the 

exposed area of the implant was dry, hard, had a yellow colour and was firmly 

attached to the surrounding superficial layers of the skin rather than being integrated 

with the deeper dermal tissue (Figure 5.150). After removing the implant together 

with surrounding tissue, pus was found between the implant and the peritoneal wall 

confirming the presence of infection. Histological analysis showed seroma remains 

and a moderate acute and chronic inflammatory response between the implant and the 

peritoneal wall. The presence of pus prevented the implant from integrating with the 

surrounding tissue. 

 

CollaMend 
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Figure 5.150 – CollaMend implant partially exposed (H&E, 20X). 

 

 

The areas of the CollaMend implant that were not exposed were moist and with a 

white colour. These parts were well populated by cells that penetrated 100% of the 

implant and vessels were visible to support the high cellular density (Figure 5.151). 
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Figure 5.151 – Moderate cellular density and complete cellular penetration in a 

CollaMend implant 49 days post implantation. Vessel sprouts are identified by arrows 

(H&E, 100X). 

 

 

Macrophages and giant cells were present, especially at the edges of the implant and 

were indicative of the moderate inflammatory response (Figure 5.152). 
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,  

Figure 5.152 – Giant cells present at the edges of a CollaMend implant (H&E, 200X). 

 

 

The implant from the animal sacrificed 64 days post surgery showed moderate 

integration with the surrounding tissue at the smaller surfaces (corner of implant) but 

no integration in the long surfaces (implant length and width) (Figure 5.153). In the 

areas where integration was minimal, cells penetrated the implant reaching 15% in 

depth. This implant showed evidence of a marginal chronic inflammatory response, 

with macrophages present in several aspects of the implant. 
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Figure 5.153 – No integration with surrounding tissue in the long surfaces (H&E, 

20X). 

 

 

The 4 implants recovered at 3 months post implantation showed no evidence of an 

inflammatory response and integration with the adjacent tissue was minimal, which 

was significantly different from 1 month post implantation (Figure 5.154). Cellular 

density was minimal and cells were observed fully penetrating the implant, mainly 

through natural fissures (Figure 5.155). Contrary to what was observed after 1 month 

implantation these cells had a needle-shape form and were elongated, this suggests 

that over time cells overcome the factor causing detrimental conditions for their 

maintenance and growth. 
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Figure 5.154 – CollaMend implant 3 months post implantation; minimal integration 

with surrounding tissue (H&E, 20X).  

 

 
Figure 5.155 – Good cellular penetration with vessels to support the cellular activity, 

CollaMend implant 3 months post implantation (H&E, 100X).  
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Macrophages and giant cells were present in the edges of the implants, which is 

consistent with a foreign body reaction. Vessel sprouts and mature vessels were 

observed in the edges and centre of the implant, although at low levels (Figure 5.156). 

 

 
Figure 5.156 – Vessel sprouts and mature vessel in the centre of a CollaMend implant 

(H&E, 200X). 

 

 

At 3 months post implantation CollaMend implant showed good quality collagen in 

all samples tested; no degradation was observed (Figure 5.157). 

 

CollaMend 
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Figure 5.157 – Good quality collagen (picro sirius red, 100X). 

 

Tissue controls taken from group C-2 did not show any tissue reactivity. 

 

Figure 5.158 shows results for group C-2, means and standard deviations were 

calculated per each parameter analysed. 
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Figure 5.158 – Results for group C-2. Histometric analysis made according to the 

scoring system described in Table 5.2. 
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Group C-3 – 6 months 

 

One animal from this group died post operatively and was not replaced. Another 

animal was sacrificed at day 40 due to exposure of the implant resulting from 

development of a seroma. 

 

The animal terminated at day 40 had the implant surrounded by pus, the inflammatory 

reaction was severe and the implant was folded. Histology results showed the implant 

detached from the surrounding tissue (integration was absent), and two enlarged 

lymph nodes were in the proximity of the implant. A moderate suppurative 

inflammation was present with high amounts of leukocyte exudates (Figure 5.159). 

 

 

 
Figure 5.159 – Suppurative inflammation in a CollaMend implant (H&E, 400X). 

  

 

Probably as a consequence of the open wound, bacteria were present in the implant 

and surrounding tissue. Except for the inflammatory cells present the implant was cell 

free. Macrophages and giant cells were present in one corner of the implant. Despite 

the bacteria and leukocytes collagen was not degraded or remodelled. 
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At 6 months post implantation 7 animals were sacrificed and implants 

macroscopically identified for tissue harvesting. Under polarised light implants 

showed good quality collagen, degradation was not observed and collagen was 

naturally birefringent (Figure 5.160). 

 

 
Figure 5.160 – CollaMend 6 months post implantation (picro sirius red, 40X).  

 

Two animals showed a small lump externally, which autopsy proved to be CollaMend 

folded in one extremity, in the first animal (Figure 5.161). At 6 months post 

implantation the absorbable sutures used had been absorbed; at this time the implant 

was expected to be integrated with surrounding tissue. The folded extremity in this 

implant suggests that integration was low and since no sutures were present the 

implant folded having remained stiff for the duration of the study. A marginal 

inflammatory response was present where the implant was folded. 
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Figure 5.161 – Folded CollaMend 6 months post implantation (H&E, 20X).  

 

In the second animal, after internal examination, a fibrotic mass was visible between 

the implant and the peritoneal wall demonstrating a marked tissue response to the 

implant (Figure 5.162). 

 

 
Figure 5.162 – Evidence of a seroma and fibrosis in a CollaMend implant after 6 

months implantation (H&E, 20X). 
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In the same implant among the fibrotic tissue new collagen was forming and the 

initial stage of calcification was observed (Figure 5.163). Calcification was confirmed 

with von Kossa’s staining. 

 

 
Figure 5.163 – Calcified tissue adjacent to a CollaMend implant after 6 months 

implantation (H&E, 20X). 

 

 

After 6 months implantation histopathology showed CollaMend implants structurally 

similar to day 0; the biomaterial’s collagen was not remodelled by the host cells.  

Integration with the surrounding tissue was mainly low, especially in the side in touch 

with the peritoneal wall, in some localized areas of the implant border facing the skin 

integration reached moderate levels (Figure 5.164 and Figure 5.165). 
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Figure 5.164 – Marginal integration with the surrounding tissue in a CollaMend 

implant, 6 months post implantation (H&E, 200X). 

 

 
Figure 5.165 – Moderate integration with the surrounding tissue in a CollaMend 

implant, 6 months post implantation (H&E, 200X). 
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Cellular density varied from minimal to moderate at 6 months post implantation and 

cellular penetration reached 100% in all implants (Figure 5.166), cells showed an 

elongated-shape and were localized within the natural pores of the matrix. 

Interestingly where integration was higher cellular density was lower and the opposite 

was also observed. 

 

 
Figure 5.166 – Moderate cellular density in a CollaMend implant at 6 months post 

implantation (H&E, 100X).  

 

Vessel sprouts and mature vessels were observed in high numbers both at the edges 

and in the centre of the implants (Figure 5.167).  
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Figure 5.167 – Moderate cellular density with 100% cellular penetration in a 

CollaMend implant. Vessel sprouts and mature vessels (arrows) are present both in 

natural pores as within the matrix to support the cellular density (H&E, 100X). 

 

 

Five implants showed minimal to moderate number of macrophages and giant cells, 

where giant cells were present collagen was degraded (Figure 5.168). This occurred 

more often in the middle of the implant than in the borders. 

 

 
Figure 5.168 – Giant cell in a CollaMend implant. Left: picro sirius red stain; right: 

picro sirius red under polarized light showing collagen degradation (400X). 
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Lymphocytes and plasma cells were also observed suggesting an immune response. 

One implant showed a localized chronic inflammatory response, with high numbers of 

lymphocytes, giant cells and macrophages. In this area cellular density was complete 

and integration with surrounding tissue was absent (Figure 5.169). 

 

 
Figure 5.169 – Chronic inflammatory response in a CollaMend implant, 6 months 

post implantation (H&E, 100X). 

 

Control tissue showed healed hernias in 6 animals; however, the surgical site of one 

animal was not completely healed showing a void between the peritoneal wall and the 

skin, probably from an early seroma, although this animal did not show external sign 

of seroma throughout the study (Figure 5.170). 
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Figure 5.170 – Control tissue not completely healed (H&E, 40X). 

 

Except for the areas where giant cells were present the rest of the collagen in the 

implants was not denatured and showed good quality. 

 

Figure 5.171 shows the results for animals sacrificed at 6 months post implantation. 

Mean and standard deviations were used to represent results graphically. 
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Figure 5.171 – CollaMend results of group C-3. Histometric analysis made according 

to the scoring system described in Table 5.2. 
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Next image shows comparison between the 3 groups for CollaMend implants. 
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Figure 5.172 – CollaMend results of all groups. * P<0.05, *** P<0.01. Histometric 

analysis made according to the scoring system described in Table 5.2. 

 

 

Table 5.20 shows the statistical results for this study. Integration was statistically 

significant for both factors – matrix type and time – and the interaction between 

factors was also significant, i.e., mesh integration to surrounding tissue was different 

over time, depending on mesh type. Since AlloDerm implants had severe 

inflammatory responses at 1 month post implantation, cellular density and cellular 

penetration were not quantified in that group, therefore it was not possible to analyse 

the interaction between time points and mesh type for these 2 factors. 

 

Table 5.20 – Statistical significance for each factor analysed and for the interaction 

between factors.  

 Integration 
Inflammatory 

response 
Macrophages Vessels 

Mesh type P<0.001 NS NS P<0.05 

Time P<0.001 NS NS P<0.001 

Implantation 

site * Time 
P<0.01 NS NS NS 
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Inflammatory response and macrophage presence were not significantly different per 

factor analysed and there was no evidence of an interaction between mesh type and 

time point. 

Neo-vascularisation was significantly different for both meshes and for time-point, 

although there was no significant interaction between mesh type and time course. 

 

 

5.4.8 Discussion 

 

Implantation of a synthetic prosthetic mesh for hernia repair into a contaminated field 

leads to high rates of infection and consequently often hernia recurrence. Biologic 

prostheses are recommended in such cases. Their potential benefits include fewer 

tendencies toward infection, biocompatibility and low host foreign-body responses. 

There are several types of biologic prostheses clinically used for hernia repair and 

these are mainly characterised by their animal source and treatments applied. In 

common they have the fact of being acellular. This study investigated two 

commercially available biologic prostheses recommended by manufacturers as being 

effective in abdominal wall hernia repair; they were AlloDerm a noncross-linked 

human derived mesh and CollaMend a cross-linked porcine derived biological mesh. 

 

Histology of pre-implanted meshes showed acellular matrices for both materials. 

AlloDerm collagen fibres are not structured in a particular orientation and are mostly 

constituted by low thickness fibres. CollaMend showed a highly porous collagen 

matrix with thicker fibres compared to AlloDerm; the percentage of porosity suggests 

that CollaMend is harvested from the most superficial dermis – dermal papilla. 

 

Tensiometry results for AlloDerm showed high maximum load values at 1 month post 

implantation; these decreased with time although there was not a significant 

difference between the time-points tested. The inflammatory response may have 

affected the tensiometry results at 1 month, especially as it was reaching chronic 

levels. The increase in the maximum load value from 3 to 6 months suggests an 

increase in the level of integration, which is corroborated by the histological analysis. 

It is important to note that stretching of AlloDerm was observed in all implants 
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throughout tensiometry analysis; this is probably related to the amount of elastin 

present in human skin. 

The tensiometry results for CollaMend were dubious, since most of the resistance 

observed was conferred by the sutures attaching implants to the host tissue and not by 

the material. Integration with the surrounding tissue was low as macroscopically 

observed whilst performing the tensiometry test; these findings were confirmed later 

by the histopathology analysis. Furthermore, tensiometer mode of failure – tear of 

implant – observed with two implants at 6 months post implantation does not support 

CollaMend as being biomechanically strong as claimed by the manufacturers. 

 

Both the physical and mechanical properties of CollaMend interfered with the study 

model assessed. The folding of the implant caused discomfort to the animals and 

eventually exposure of the implant. 

In the first case reported herein, the animal had to be sacrificed as a result of an open 

wound caused by the friction between the implant and the skin. This caused a 

moderate suppurative inflammation, an acute inflammatory response where the 

exudate was particularly rich in neutrophils. This type of inflammation is most 

commonly seen as a result of infection by bacteria where the mixture of neutrophils, 

necrotic tissue and tissue fluid in the acute inflammatory exudate forms pus. The 

bacteria seemed to have a remodelling effect in the CollaMend, though collagen was 

not degraded. This observation questions the durability of CollaMend, particularly in 

complex environments such as infected wounds. 

Similar results were obtained from animals that were sacrificed earlier as a result of 

seroma development and subsequent open wound. Histology showed moderate 

suppurative inflammation, enlarged active lymph nodes and presence of bacteria. 

These results are probably caused by the exposure of CollaMend and not directly 

related to CollaMend biocompatibility. 

All AlloDerm groups developed seroma and usually it took between 2 and 3 weeks 

for the liquid to be naturally absorbed. Seroma formation did not seem to be related to 

the orientation of the implant, seroma were developed when the dermal side was 

facing both the wound and the skin. Despite seroma formation these animals did not 

experience implant extrusion and folding of the implant was not observed. 
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The marketing literature for both devices claims host acceptance and strong repair of 

soft tissue defects. The host response in the present study showed that there were 

differences in the amount and temporal appearance of inflammatory cells and the 

morphologic structural integrity of the meshes over time. 

AlloDerm presence was associated with moderate to severe suppurative acute and 

chronic inflammatory reactions at 1 month post implantation, consisting of an exudate 

rich in polymorphonucleocytes and lower numbers of mononucleocytes. Fibrotic 

activity was also observed at this time point with high concentration of fibrin 

surrounding the implants. Inflammation diminished over the study time, for the 

AlloDerm groups, associated with which integration with the surrounding tissue 

increased. After 3 months implantation the polymorphonucleocytes infiltration was 

resolved but macrophages and giant cells numbers were maintained, decreasing at 6 

months. These results are in accordance with a study performed by Gaertner and co-

workers where they tested AlloDerm for ventral hernia repair in a rat model and 

reported minimal inflammation at 3 months post implantation (Gaertner et al., 2007). 

Cellular density was lower at 6 months when compared to the 3 months implants, 

suggesting that after the inflammatory response cells decrease in number leaving the 

implant only minimally populated; this is in keeping with normal wound healing. 

Independent of cell density, cells penetrated 100% of the implants, both at 3 and 6 

months.  

Both inflammatory response and lymphocyte activity (observed at low levels at 1 

month but at high levels at 3 months) suggest the occurrence of an immune response, 

which questions the biocompatibility of AlloDerm. Biomaterials should be 

biocompatible and should not induce intense inflammatory reactions, since that may 

impair the function of local host tissue defences by reducing leukocyte ability to 

opsonise and phagocytise bacteria.  

Literature review revealed contradictory outcomes when using AlloDerm for 

abdominal wall reconstruction. While some authors reported no complications others 

reported a wide range of mesh-associated problems. Buinewicz and Rosen used 

AlloDerm to repair ventral hernias in 44 patients (mean follow-up 20 months), 8 of 

whom had previous wound infections and reported no complications or postoperative 

wound infections (Buinewicz and Rosen, 2004). Patton and colleagues performed 

abdominal wall reconstruction with AlloDerm in 67 patients, with an average follow 

up of 10.6 months, and reported 18% recurrent hernias (12 patients), 11 patients had 
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wound infection, 2 patients needed mesh removal, 3 patients developed seroma and 3 

patients developed fistulas (Patton et al., 2007). Similarly, Gupta and colleagues 

reported a clinical study with 33 patients using AlloDerm to repair ventral hernias, 

with a follow up of 18 months; they observed 24% of hernia recurrence, 6% seroma 

development and 45% of diastasis or bulging of muscle (Gupta et al., 2006). 

 

Although there was no inflammatory response 1 month post implantation in the 

CollaMend implants, cellular density was marginal since implants were mostly cell 

free. When cells were present, cellular penetration could reach 100%. The presence of 

round-shaped fibroblasts-like cells suggests that this collagen matrix does not offer 

favourable conditions for the maintenance and growth of these cells in the earlier 

stages of implantation. The shape of fibroblasts determines quality of cell adhesion on 

the substrate. In normal conditions fibroblasts are elongated, a round shape indicates 

unsuccessful adhesion while a flat, non-elongated shape provides evidence of 

inadequate adhesion. However, at 3 and 6 months post implantation cells were needle-

shaped suggesting that with time cells overcome the detrimental factors that impede 

their growth and proliferation in the early stages of implantation; cells may produce 

substances or induce other cells to produce substances that will change the chemistry 

and signalling of CollaMend matrix. Another possible explanation for this time-

related change lays in the interaction between CollaMend and surrounding 

environment; with time CollaMend components may change chemically as a result of 

exposure to interstitial fluid and cell signalling, becoming more biologically friendly 

to the host cells; or the implant’s surroundings adjust and adapt to CollaMend’s 

presence. 

Unfortunately, to the authors’ best knowledge there are no published articles 

concerning the use of CollaMend for hernia repair, therefore, it is not possible to 

compare the results obtained in this study to others author’s work. 

 

Macrophages and multinucleated giant cells were present in higher numbers following 

an inflammatory response in the AlloDerm groups and at lower numbers at 1 and 3 

months in CollaMend matrices; these type of cells are associated with a foreign body 

type reaction. When monocytes differentiate into tissue macrophages, they acquire the 

ability for the regulated production of MMPs as well as the counter-regulatory 

inhibitor TIMP (tissue inhibitor of metalloproteinases) (Senior et al., 1982; Welgus et 
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al., 1990). Macrophages control tissue degradation not only directly, by releasing 

MMPs and TIMP, but also indirectly, by stimulating the MMPs gene expression of 

resident tissue fibroblasts through the release of IL-1 and tumour necrosis factor 

(Dayer et al., 1986; Lacraz et al., 1994). 

CollaMend implants did not show collagen degradation at 1 and 3 months but 

collagen degradation was observed at very low levels at 6 months post implantation 

when a localized chronic inflammatory response was present. This response was 

related to giant cell presence but implants were not remodelled or absorbed. The 

opposite was observed in AlloDerm implants. When inflammatory cells were present, 

AlloDerm was remodelled losing its initial structure and assuming a configuration 

where fibres were spatially orientated. AlloDerm implant presence decreased with 

time; at 1 month and 3 months post implantation all implants were present; however 

there was partial degradation of 2 and 3 implants at 1 and 3 months respectively. At 6 

months post implantation, 2 implants were completely absent and the remaining 

showed highly birefringent collagen. This implies that although the AlloDerm 

collagen is degraded in the earlier stages of implantation, neo-collagenesis occurs and 

new collagen is formed when the implant is maintained. Observation of collagen 

pattern in the 6 months AlloDerm implants showed both mature fibres and new thin 

collagen fibres. Although new collagen is deposited within the AlloDerm matrix, 

implants maintain some of their original composition. 

Such a difference between the morphologic structural integrity of the analysed 

prosthetic materials may derive from the fact that CollaMend is cross-linked which 

should increase its resistance to proteolytic activity. 

 

At 3 and 6 months post implantation the inflammatory response was lower in the 

AlloDerm implants and fibroblastic ingrowth was observed. Cells easily penetrated 

the matrix reaching 100% cellular penetration at these time-points. Although 

extension of cellular penetration increased, cellular density diminished but integration 

with surrounding tissue was enhanced over time. Once more these results provide 

further evidence for the notion that consistent and continuous cellular infiltration and 

proliferation are not essential for tissue/implant integration. In conjunction with 

tissue/implant integration, neo-vascularisation also increased with time. These results 

suggest a relationship between integration and neo-vascularisation, both parameters 

increasing over time independent of cellular density and cellular penetration, although 
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correlation tests did not show a statistical correlation between integration and neo-

vascularisation. 

 

CollaMend cellular density increased through the study and reached mild levels at 6 

months post implantation. Independent of cell number the extension of cellular 

infiltration reached 100% for all implants; cellular penetration was observed through 

spaces between collagen fibres and not within the collagen. Due to the high porosity 

of CollaMend implants tissue cells moved easily inside the prosthetic material but 

density levels were not high. With the increase of cellular density, neo-vascularisation 

levels were raised and significant differences were observed along the study period. 

While there was no evidence of an inflammatory reaction or immunogenic response in 

the early stages of this study, for CollaMend, a localized chronic inflammatory 

response consisting of high numbers of lymphocytes, giant cells and some plasma 

cells accompanied by fibrosis and calcification were observed in one implant after 6 

months implantation. In this implant integration with surrounding tissue was low and 

that may be explained by the fibrotic mass found between the implant and the 

peritoneal wall, which decreased the contact area between the implant and the 

adjacent tissue.  

It was observed in group C-3 that integration was always greater in the side implanted 

facing the skin, whereas the CollaMend side in touch with peritoneal wall had low 

integration. This result questions the efficiency of CollaMend when used as a hernia 

repair biomaterial, since lack of integration with the muscle will decrease the healing 

rate and will not provide tissue support for hernia healing. 

 

One of the aims of this study was to compare AlloDerm and CollaMend performances 

in ventral hernia repair to Permacol® surgical implant performance (in-house study, 

data not published), in a rat model. When Permacol® was used as a regenerative tissue 

for repair of a ventral hernia it was associated, at 1 month post implantation, with a 

marginal acute and chronic inflammatory response that was resolved after 3 months of 

implantation. Integration with the host tissue was mild in the earlier stages (1 month), 

increasing to moderate to complete levels at 3 months post implantation. Marginal 

calcification was observed in the centre of implants at 6 months post implantation 

and, maybe as a consequence, integration with surrounding tissue decreased to 

minimal levels. When testing mechanical strength through tensiometry, maximum 
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load values increased over time but extension at maximum load and total extension 

decreased after 6 months implantation. Permacol® did not cause development of 

seroma or extrusion of implant and, as observed with CollaMend implants, was not 

degraded or remodelled. Furthermore, by 6 months the matrix showed the same 

configuration and morphologic structure as pre-implanted Permacol®. Hence, cross-

linking is very likely the source of Permacol® and CollaMend permanence in long-

term studies. Permacol® surgical implant has been used in abdominal wall 

reconstruction. Catena and co-workers where faced with complicated incisional 

hernias with contamination, used Permacol® for hernia repair in 7 patients and 

reported no recurrence or wound infection post surgery. The mean follow up was 11 

months (Catena et al., 2007). Shaikh and colleagues used Permacol in 8 patients for 

reconstruction of acute abdominal wall defects and in 12 patients with chronic 

abdominal wall defects. Sixteen percent had an uneventful recovery while 2 patients 

developed seroma, there were 3 hernia recurrences, 2 patients developed wound 

infection, 1 patient had a wound hematoma, 1 patient had a wound dehiscence and 

one patient develop a wound sinus (Shaikh et al., 2007). 

 

During wound healing fibroblasts produce collagen type III which acts as a temporary 

scaffold for fibroblast attachment. Through a complex process of remodelling and 

maturation, collagen type III is replaced by collagen type I, which is related to long-

term strength (Hammond et al., 2008). Both recurrent and incisional hernias can be 

regarded as a consequence of a non healing wound. This implies that the ECM 

collagen ratio is favouring collagen type III resulting in loss of tensile strength and 

predisposing tissue to hernia formation. Therefore, it is sensible to use collagen type I 

based prostheses for hernia repair. Both human skin and porcine skin are constituted 

mainly by collagen type I and collagen type III. The ratio between these two collagen 

types may vary depending of the depth of skin analysed but commonly achieve ratios 

of 6:1 (type I/ type III) (Epstein and Munderloh, 1978). 

 

There was no tissue reactivity observed in the controls and there was no evidence of 

long-lasting damage from the surgical procedure, although one control sample from a 

CollaMend group presented histological evidence of a seroma. 
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When faced with the decision to use a biological prosthetic material for abdominal 

wall repair the surgeon must choose between human, porcine or bovine sources. 

Patients should be informed of the type of prosthetic material they will be implanted 

with, particularly if the surgeons decide on a porcine derived biomaterial, which may 

raise religious concerns. Other important factors that may influence the choice of the 

surgeon are prosthesis availability and price. Availability of cadaveric allograft is 

dependent on organ donation banks; on the other hand, porcine/bovine dermis is much 

more abundant and structurally very similar to human dermis and this increases off-

the-shelf accessibility. The cost of any implant material may be significant; it is 

difficult to compare prosthesis cost since they are provided in different sizes. In 

addition, costs should include theatre time and post-surgical treatments. As an 

example of the prosthesis analysed in this study, a 4cm x 16cm piece of CollaMend 

costs £900, an AlloDerm piece of the same size with 0.79 - 2.03mm thickness costs 

£1523.53 and the closest size available for Permacol® would be a 4cm x 18cm, 1mm 

thickness, costing £525. By comparison, Permacol® surgical implant is the least 

expensive option from these three biomaterials. 

Other important features when choosing a dermal material include size, thickness, 

storage and rehydration (pre-treatment). Permacol® is available in large sizes, up to 

18cm x 28cm, and different thicknesses, from 0.75 to 1.5mm, it is easy to store since 

it does not need to be kept refrigerated and can be used directly out of the package. 

Alloderm, is available in sizes from 3cm x 12cm up to 16cm x 20cm; however, larger 

sizes are available upon request; two thicknesses are available 0.79 - 2.03mm and 

2.06 - 3.3mm. AlloDerm needs to be kept refrigerated and rehydration prior to use is 

necessary, rehydration may take from 10 to 40 minutes depending of size and 

thickness of implant. CollaMend is available in different sizes from 2cm x 4cm up to 

6cm x 12cm in a rectangular shape or from 10.2cm x 15.2cm up to 20.3cm x 25.4cm 

in an elliptical shape. Thickness of all sizes is approximately 1mm. It does not need 

refrigeration but needs to be rehydrated at least for 3 minutes before use. Shelf time is 

approximately the same for these 3 biomaterials. 
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5.4.9 Conclusion 

 

Experimental investigations in biologic prosthetic materials are important as adverse 

effects and unfavourable properties of products have been demonstrated in laboratory 

trials after their introduction to clinics and, occasionally, complications occur 

clinically due to the use of unsuitable materials. 

In the rodent model reported here AlloDerm showed reactivity with the host tissue. 

Inflammatory response was not related to the surgical procedure, since control tissue 

showed no reactivity. Seroma developed in 11 of the 18 animals independently of the 

implant orientation, which suggests that the implant orientation does not affect the 

implant-host interaction. All implants showed moderate to severe inflammatory 

responses in the earlier stages of implantation, which decreased with time. At 3 

months post implantation lymphocyte activity suggests an immune response; although 

AlloDerm is manufactured as an acellular product the presence of hair in one of the 

implants and the immune response suggests that the cell removing process used may 

not be 100% efficient at removing immunologically active DNA.  

AlloDerm implants showed collagen degradation at different levels in the earlier 

stages of implantation, as well as matrix remodelling. After 6 months implants were 

partially remodelled and 2 implants were absent, the implants that were present 

showed new collagen deposition; this suggests that over time AlloDerm may be 

remodelled by neo-collagenesis or may completely disappear before the new collagen 

is formed depending on the rate of matrix degradation which is controlled by the host 

tissue response. In normal tissue collagen is a stable molecule with a long half-life; 

however, half-life is shortened as a result of tissue reactivity to the implant. In the 

clinical setting if a biologic prosthesis is absorbed before adequate collagen deposition 

and maturation, it may result in a weakened wound environment during the repair 

process ultimately compromising wound healing and strength of repair. The data 

presented here may support this theory in the case of AlloDerm. 

 

The physical and mechanical properties of CollaMend caused discomfort in the 

animals and as a result there was formation of additional wounds and exposure of the 

implants. CollaMend seems to be easily populated by cells, although these do not 

remodel the matrix and implants maintain their original structure until 6 months. 
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However, when implants were exposed and a suppurative inflammation occurred 

bacteria remodelled the edges of CollaMend, which questions CollaMend longevity 

particularly in complex environments such as infected wounds. The fibrotic tissue 

observed in one of the implants after 6 months implantation, in conjunction with the 

seroma remains, calcification and the new collagen being formed as a response to the 

original inflammation, suggests that CollaMend causes tissue-specific reactivity.  

The number of giant cells and macrophages present in the implants increased over 

time suggesting a delayed chronic inflammatory response. Although the level of 

collagen degradation observed was low this may increase with time, since this was not 

observed in the earlier stages of the study.  

The CollaMend apparent inability to integrate with the peritoneal wall and therefore 

give tissue support for hernia repair is a problem not only for this type of clinical 

procedures but also in the clinical setting where degradation of a biological implant 

prior to neo-collagenesis may compromise wound healing and strength of repair; in 

addition its stiffness and limited malleability are an obvious difficulty for surgical 

procedures and physical comfort.  

 

In the rat model reported here the results do not support Bard CollaMend Implant as a 

suitable material for hernia repair. The host response to AlloDerm suggest that this 

material causes an immune reaction and the rapid rate of remodelling and degradation 

of AlloDerm matrix may bring further problems in the clinical setting when the 

overall quality and strength of the new formed tissue is insufficient for abdominal 

wall repair. 
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6.0 GENERAL DISCUSSION 

 

 

 

One of the main therapeutic and commercial needs in tissue repair and regeneration 

which is not yet fulfilled is for novel biomaterials designed to optimise cellular 

potential resulting in good quality repair of tissues or organs and, therefore, 

restoration of their function. 

Several natural and synthetic materials have been used to construct extracellular 

matrices to be used as tissue substitutes or to assist in tissue regeneration. Synthetic 

meshes do not present epitopes recognisable by cellular adhesion receptors which 

would induce cell-matrix adhesions; for that reason, natural materials can be 

advantageous since their structural proteins will have surface topography and 

signalling suitable for cell-matrix interaction. 

Collagen is the main structural constituent of connective tissues; hence, it has been 

extensively applied in biomaterials applications such as wound dressings, matrices for 

controlled release of active agents (drugs or growth factors) or as a tissue engineered 

scaffold (Duan and Sheardown, 2005). The design, development and application of 

collagen-based biomaterials in human clinical procedures continues to increase. 

Collagen-based biomaterials present numerous advantages such as biocompatibility, 

low toxicity, low antigenicity and well-documented physical, structural, chemical and 

immunological properties. Moreover, it is easily isolated and purified in large 

quantities and can be processed into several forms.  

Collagen type I is the most abundant protein in the body, constituting approximately 

95% of total collagen in bone, cornea, teeth and tendons, and more than 85% in 

dermis, gingiva and heart valves (Kafienah et al., 1998). As a result, type I collagen-

based biomaterials are often used for tissue regeneration, repair or replacement. 

In order to ensure in situ biocompatibility, collagen-based biomaterials are subjected 

to cellular removal and are sterilized. Depending on the intended clinical application 

further treatments can be applied including removal of non-collagenous tissue, cross-

linking, increase of porosity and addition of cells, to name just a few. 

Natural collagen can have a high enzymatic turnover rate in vivo which makes 

stabilization of collagen-based biomaterials advantageous, particularly when a 
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collagen-based biomaterial has been pre-treated by removal of the cellular 

components. In addition, collagen bioprosthetic devices often contain non-

collagenous proteins which some studies have shown to be the main immunogenic 

components of collagen-based biomaterials (Lynn et al., 2004). The formation of 

covalent intermolecular cross-links between collagen molecules is an effective 

method to improve mechanical integrity, stability and to mask reactive epitopes, 

therefore, diminishing antigenicity. 

Before commercialisation is permitted all biomaterials must be proven to be 

functional and suitable for clinical use, which demands compliance with the 

requirements established by FDA or CEN. However, even when a biomaterial fulfils 

all requirements and it is certified to be used in the clinical field the complexity of 

host responses can always originate an unexpected result. Continuous experimental 

analyses on biomaterials are of extreme importance as adverse effects of currently 

available products have been demonstrated in laboratory trials (Petter-Puchner et al., 

2008; Poulose et al., 2005) 

 

In the research described in this thesis an acellular cross-linked collagen-based 

biomaterial (Permacol surgical implant) was studied and compared to acellular 

noncross-linked and cellular naturally cross-linked equivalents. Several studies were 

designed to evaluate and compare these dermal collagen porcine derived matrices. 

Permacol surgical implant is claimed to be a non-resorbable, acellular, non-

cytotoxic, substantially non-antigenic collagenous fibrous tissue which retains the 

natural structure and original architecture of dermal collagen and is suitable for soft 

tissue repair as a permanent biomaterial. Studies comprised: analysis of structure, 

composition and mechanical properties; cross-linking quantification; assessment of 

resistance to proteolytic enzymes; in vitro models to observe fibroblast interaction 

with the dermal matrices and analysis of Permacol performance when in presence of 

putative pathogens; and in vivo studies designed to assess Permacol biocompatibility 

and effectiveness as a repair material and as bulking tissue. Permacol was compared 

to acellular noncross-linked collagen and to two other commercially available dermal 

collagen biomaterials – AlloDerm and CollaMend. 
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6.1 ANALYSIS OF METHODOLOGY 

 

 

The work presented in this thesis does not follow a chronological order of completion; 

the several studies were grouped into chapters according to topic and objectives. The 

chapters therefore have been structured to best present each aspect of the overall 

project. 

 

 

6.1.1 Methodology for Biophysical and Biochemical Characterisation  

 

Several factors such as the type and the concentration of collagen used, treatment with 

cross-linking agents and preparation methods can affect the structural integrity of 

collagen-based biomaterials. Biomaterials must withstand physiological loads in both 

short and long term applications. The mechanical strength of a biomaterial decreases 

with time in vivo; therefore, when designing a biomaterial it is essential to consider if 

such a material will be used in non-load-bearing applications or in constant stress/load 

applications. Equally important is biomaterial’s performance when sutured under 

tension; therefore, tensile strength tests were performed to characterise the mechanical 

strength of the biomaterials studied. 

The standard method for measuring the tensile strength of a material is by applying 

an axial force and measuring the corresponding extension (Barber et al., 2006; 

Derwin et al., 2006; Figallo et al., 2007; Liang et al., 2004). Tensile strength was 

measured and recorded by tensiometry and maximum load, extension at maximum 

load and total extension. Values for load were plotted against extension and a stress 

graph obtained where the elastic limit of each matrix indicates the transition from 

linear behaviour to nonlinear behaviour, which leads to a peak representing the 

maximum load. Complete failure is further denoted by total extension.  

 

Water uptake analysis is a common technique used to characterise physical and 

mechanical properties of materials (Wang and Hon, 2003). Through this technique the 

material behaviour in an aqueous environment can be predicted and, by measuring the 

absorption capacity of material fluid dynamics, exudate absorption and drug release 
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can be estimated. Fluid and exudate absorption capacities will directly influence 

nutrient supply, waste removal and proteolytic activity within a biomaterial, 

subsequentely affecting the viability of an implant. A high absorbance capacity is 

desired, for example, when an implant is used as a bridge or replacement of a tissue 

defect; in such a case, it is necessary to supply the implant and the resulting cellular 

response with good fluid flow. Conversely, occasionally a biomaterial may be 

designed to act as a barrier/membrane, as when implanted in regular contact with 

specific fluids (e.g. bowel, bladder). In such a case, it is expected that such a 

biomaterial will have low fluid absorbance capacity and/or have specific permeability. 

Since water uptake will vary depending on material composition and structure, it is 

possible to compare different materials by analysis of their degree of swelling. 

 

Cross-linking quantification was performed using two colorimetric methods: TNBS 

and ninhydrin assays.  

The TNBS assay is an indirect method to quantify level of cross-linking (Azarmi et 

al., 2006). The primary amines of the proteins present in the sample react with TNBS 

originating a trinitrophenyl (TNP) derivative (Bullock et al., 1997; Sarti et al., 1995). 

The free terminal amino groups (-NH2) of the peptide chains are considered to be the 

groups which will react with TNBS (Weber et al., 2000). The extent of this reaction is 

determined spectrophotometrically. Some authors choose to read the absorbance of 

the un-reacted against a control which will indirectly give the value of TNP-derivative 

formed (Weber et al., 2000), while others prefer to read the formation of the TNP-

derivative directly (Sarti et al., 1995). 

Regardless of the high reproducibility of the TNBS method, discrepancies were found 

between published procedures. The differences found were related to incubation time 

(5 minutes to 2 hours) (Fields, 1971; Morçöl et al., 1997), buffers (borate, sodium 

hydrogen carbonate) (Azarmi et al., 2006; Cayot and Tainturier, 1997), incubation 

temperature (room temperature to 40oC) (Morçöl et al., 1997; Satake et al., 1960), 

neutralisation of reaction before measuring the absorbance and the wavelength of the 

monochromatic light for the absorbance measurements. The latter includes ultra violet 

light (wavelength of 340 to 367nm) (Azarmi et al., 2006; Bullock et al., 1997; Satake 

et al., 1960) and visible light (wavelength of 410 to 420nm) (Fager et al., 1977; 

Morçöl et al., 1997). 
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After careful analysis of published protocols, conditions suitable for quantification of 

free amino groups in insoluble collagen matrices were chosen. To ensure that all free 

amino acids had been trinitrophenylated the TNBS was allowed to react with the 

protein at 40oC for 2 hours at a pH of 8.5. A side reaction leads to the formation of 

TNP-sulphonic acid which will react with hydroxyl ions increasing the blank 

extinction (Fields, 1971). To stop the side reaction from interfering with the results, 

the pH of the solution was decreased (by incubation with 6N HCl) after the amino 

groups have been trinitrophenylated. By this process only the non-sulfited form is 

present in solution therefore the absorbance measured is related to the TNP-protein 

derivatives. Several published studies described 420nm as the wavelength showing 

the highest sensitivity for TNP-protein derivatives (Cayot and Tainturier, 1997; 

Fields, 1971; Morçöl et al., 1997; Sarti et al., 1995); as a result, this was the 

wavelength chosen for the protocol used. 

 

A ninhydrin method was introduced for quantitative determination of amino acids in 

the 1950s (Moore and Stein, 1954). This method has since been widely used to 

characterize amino acids and proteins (Fountoulakis and Lahm, 1998; Sun et al., 

2006). This reaction is unique among chromogenic reactions as ninhydrin hydrates 

with amino groups at pH 5.5 resulting in the formation of the same soluble 

chromophore, denominated Ruhemann’s purple, by all primary amines (Friedman, 

2004). Although this technique is extensively used, several features associated with it 

are inconsistent. Variations present in the ninhydrin protocols included buffers used 

(phosphate, sodium acetate, potassium acetate, lithium acetate), heating temperatures 

(from 85oC to 100oC), incubation time (from 5 to 45 minutes), pH values (from 5 to 8) 

and solvents (water, absolute alcohol, DMSO, ethylene glycol) (Friedman, 2004; 

Gaitonde, 1967; Moore and Stein, 1954; Starcher, 2001; Sun et al., 2006). Sun and 

colleagues performed a study evaluating several experimental conditions and reported 

on the best and more convenient experimental conditions for the use of the ninhydrin 

method (Sun et al., 2006), so their suggestions were followed in the current studies. 

 

Literature review revealed considerable variations in experimental conditions of both 

methods used for cross-linking quantification. The presence of hydroxy ions may 

compromise the results from the TNBS assay by decreasing selectivity for primary 

amino groups (Adler-Nissen, 1979; Panasiuk et al., 1998). Although this step was 
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avoided by decreasing the pH and therefore obtaining only the non-sulfited form of 

TNP in solution, some authors do not agree that decreasing the pH is enough to 

increase TNBS specificity (Cayot and Tainturier, 1997). Ninhydrin is considered to be 

more selective for alfa amino groups and derivatives but the amount of colour 

produced will vary with the product to be examined and is not always stoichiometric 

(Friedman, 2004). When Panasiuk and co-workers compared TNBS versus ninhydrin 

assay, they reported that the results from these methods were not correlated and they 

considered TNBS method more accurate than ninhydrin (Panasiuk et al., 1998). 

In general, both methods have advantages as the protocols are simple, convenient, 

reproducible and can be used routinely in a large number of samples. The major 

disadvantage seems to be specificity problems and lack of sensitivity for the TNBS 

and ninhydrin assays, respectively.  

Other techniques that can be used to calculate the degree of cross-linking include high 

performance liquid chromatography (HPLC) (Kaga et al., 2003), electrophoresis 

(Everaerts et al., 2007), Raman spectroscopy (Gosselin et al., 2007), mass 

spectrophotometry (Tang et al., 2005), size-exclusion chromatography (Hartley et al., 

1993) and nuclear magnetic resonance (Banci et al., 1990). Although these are more 

modern techniques for determining compounds containing amino groups, TNBS and 

ninhydrin assays are safe and there is no need for expensive equipment. In addition, 

numerous papers report the use of these methods to determine the level of cross-

linking of proteins with satisfactory results. 

 

Cellular composition of the collagen matrices was analysed by routine H&E staining. 

Haematoxylin stains basophilic structures such as nucleic acid which allows 

visualisation of cell nucleus or nucleic remnants. In addition, this stain allows 

visualisation of the basic structure of materials including fibre direction, thickness 

and morphology. SEM was used to further evaluate matrix structures and identify 

matrix components. DNA extraction and quantification can be used for analysis of 

cellular composition of materials, but since the materials analysed in this thesis were 

composed of non soluble collagen, collagenase would have to be used to disrupt the 

molecules and increase collagen solubility for total DNA extraction. Collagenase has 

been implicated in increased DNA synthesis (Liu et al., 1994); therefore its use could 

affect the cellular fractions.  
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Tissue Science Laboratories describe Permacol surgical implant as a biomaterial 

mainly constituted by collagen (approximately 97% collagen type I and 3% collagen 

type III) and comprising 1 to 5% elastin (US Patent no. 5,397,353). Therefore, a picro 

sirius red stain was combined with Miller elastin stain to identify collagen and elastin 

simultaneously. 

Other methods used to characterize the structure, chemistry and composition of a 

biomaterial include mass spectrophotometry (Sosnik et al., 2006), atomic force 

microscopy (Choudhary et al., 2006), transmission electron microscopy (Zhao and 

Frost, 2008), energy dispersive X-ray (Verné et al., 2008) and electron spectroscopy 

for chemical analysis (Choudhary et al., 2006), to name just a few; such equipment 

was not available. 

 

Studies have demonstrated that a high degree of porosity increases the surface area 

available for cell attachment and provides enough space for cell migration (Figallo et 

al., 2007). Pore size is therefore an important feature of a biomaterial which will not 

only influence cell behaviour but also mediate the diffusion of nutrients and waste 

products and, in general, implant permeability. For example, the porosity of a 

biomaterial is of extreme importance when implanting cartilage or bone substitutes, 

since good fluid mechanics and joint lubrification are essential and can be enhanced 

by appropriate material porosity. Pore size was measured by software analysis 

(DPController software); H&E sections were used at an objective magnification of 

forty times and at least 10 fields of view were screened for pore size measurement. 

The range, mean and standard deviations were calculated per type of matrix. The use 

of a software analysis system is a common technique for pore measurement which can 

be applied to images obtained by light microscopy or SEM (Yang, 2008). Other 

methods for pore size measurement involve the use of digitized images where a linear 

interception program is used to provide a mean pore size (O'Brien et al., 2005) or 

confocal reflection microscopy can be applied to acquire 3-D microstructural 

information and average pore size (O'Brien et al., 2007). 

 

Collagen-based biomaterials are degraded in vivo and the rate of such degradation will 

depend on the host response to the implanted material. Therefore, for long term 

retention the collagen structure must be reinforced so that the biomaterial will persist 
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in the body for the required period; this is usually achieved by cross-linking the 

proteins constituting the biomaterial. The efficiency of cross-linking and the level of 

resistance to proteolytic enzymes, of different dermal porcine collagen matrices, 

were assessed by collagenase and elastase assays to assess collagen and elastin 

stability respectively (Rault et al., 1996; Trengove et al., 1999).  

To further analyse the collagen-based matrices resistance to specific enzymes 

produced during wound healing and particularly when in presence of inflammation, 

matrices were digested with human neutrophil elastase (HNE) and human neutrophil 

collagenase (MMP-8). In the clinical setting, the wound exudate can be collected and 

tested with anti-human Enzyme-Linked ImmunoSorbent Assay (ELISA) kits which 

can be used to perform specific or non-specific protease activity assays. In the studies 

reported here, enzyme concentrations reported to be found in chronic wound fluids 

were used for MMP-8 and HNE (Aiba-Kojima et al., 2007; Trengove et al., 1999). 

Enzymes were tested individually for optimization of the reaction conditions. 

However, in vivo a wound is exposed to a cocktail of enzymes which are synthesized 

as part of a healing cascade but many will overlap and the mechanisms regulating 

their degradative action are complex and not yet fully understood (Thomas et al., 

1999; von Lampe et al., 2000). Therefore, these experiments can give the researcher 

an idea of how a particular material will behave when in presence of each of these 

enzymes, but the conditions tested do not represent an in vivo situation hence in such 

a case the results may be different. 

 

To assess fluid flow dynamics through cross-linked and noncross-linked collagen 

matrices a modified Ussing chamber assay was designed and a further in vivo 

experiment was performed. The modified Ussing chamber allowed the studying of 

matrix resistance to fluid and the analysis of Permacol permeability characteristics. 

Mineral deposition was not observed but since this was a short term study it is 

possible that to achieve saturation point the experiment would have to be performed 

for longer periods or the buffer solution should have a higher molarity.  

To assess interstitial fluid flow dynamics in situ, in cross-linked and noncross-linked 

collagen matrices, a rat model was used. Evans blue dye was injected intradermally 

and interstitial fluid movements observed for a period of 3 days. 
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6.1.2 Cell Culture Methodology 

 

Primary cultures of porcine fibroblasts were developed because cells were needed in 

early passages to avoid phenotypic changes and guarantee high cellular proliferation. 

Pigs were chosen as the cell source since Permacol surgical implant is porcine 

derived and it was thought that porcine fibroblasts would interact naturally with a 

porcine matrix. Moreover, by using porcine cells cross-species related problems were 

avoided, including for example matrix surface signals recognition difficulties which 

would result in decreased cellular adherence.  

 

The analysis of cell viability is frequently a controversial subject particularly when 

using merely one of the many methods available. Often what is measured is a factor 

which infers the overall health of the cells rather than a definitive measurement of 

viability. The MTT assay was chosen to analyse cell viability, a method which 

measures the activity of dehydrogenases in reducing MTT to formazan (Wang et al., 

2006). The reaction occurs mostly in the mitochondria and as such can be considered 

a measure of mitochondrial activity and by association of cell viability. However, 

many conditions can affect the metabolic activity which may increase or decrease the 

MTT reduction while the number of viable cells is constant. The assay, however, is 

quick, simple and inexpensive. The other indicator of cell health used was the Trypan 

blue exclusion assay. Cells that have had their cell membrane damaged allow the 

uptake of the Trypan blue dye, while intact cells do not. Hence, stained cells are 

considered non-viable cells, while a breached cell membrane indicates loss of 

viability this does not exclude apoptotic cell death. The assay is inexpensive, simple 

but time consuming and not wholly consistent. Each assay, therefore, has limitations 

in directly determining cell viability but their combination helps to determine the 

overall cell viability.  

 

 

6.1.3 Surgical Procedures 

 

The rat was chosen as the experimental species for all in vivo studies because of 

published and in-house knowledge of pathogeneses in this species. Furthermore, the 
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rat is the lowest evolutionary animal in which this work could reasonably be carried 

out.  

Subcutaneous implantation was chosen in two studies (Chapters 5.1 and 5.2) since 

this location is easy to access in the rats, the surgical procedure is very simple, poses 

no clinical difficulties and, at this surgical location, implants are in full contact with 

host cells and tissues making it a good implantation site for biocompatibility tests. 

Hypotheses related to cellular penetration in Permacol surgical implant were tested 

and compared by analysis of Permacol vascularisation and cellular ingrowth in 

different implantation sites. The primary objective of the study was to analyse if the 

level of neo-vascularisation and cellular density observed in Permacol were 

influenced by the level of vascularisation of the immediately surrounding host tissue. 

Muscle and liver are highly vascularised tissues and therefore were chosen as 

implantation sites in Chapter 5.3. 

Permacol surgical implant is recommended for soft tissue repair and therefore has 

been clinically used for hernia repair due to its versatility and malleability. It is 

manufactured in several sizes, can be easily trimmed to the desired shape and it is 

easy to suture. Permacol has been used in the repair of different types of hernia 

including abdominal (Liyanage et al., 2006; Parker et al., 2006; Saettele et al., 2007), 

perineal (Abhinav et al., 2008; Skipworth et al., 2007), Littre’s (Smart et al., 2007) 

and parastomal (Inan et al., 2007). The hernia repair model used in Chapter 5.4 was 

chosen to evaluate the biomaterial’s biocompatibility and the healing rate of an 

abdominal wall defect by itself or in conjugation with the biomaterial. A model where 

the peritoneum was left intact was chosen since at the moment adhesion formation 

was not of interest. Additionally, this model was previously used in-house to test 

other commercially available biological prostheses recommended for hernia repair 

(data not published), including Permacol. 
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6.2 THESIS DISCUSSION 

 

 

The structure, composition and surface of a biomaterial must be suitably characterized 

to provide baseline information upon which the performance of an implant material 

can be related. Initial tests are used to define the general properties of a potential 

biomaterial and include determination of chemical composition, basic mechanical 

properties, such as tensile strength, level of porosity, structure and surface properties. 

The results from this initial characterization should be known and used in the 

preliminary selection of any biomaterial. A second level of characterization defines 

the features more closely related to the potential applications of the biomaterial which 

include cytotoxicity tests, cell-cell and cell-matrix interactions, function-related 

analysis and biocompatibility tests. 

In the research reported in this thesis, several dermal collagen matrices were analysed 

and compared to each other. These matrices were characterized related to their 

physical and biochemical features. Tests used to define their properties included: 

evaluation through mechanical load by the means of a tensiometer; analysis of level of 

cross-linking by swelling ratios and spectrophotometric methods; microscopical 

analysis of structure, composition and porosity; and resistance to proteolytic activity. 

In addition, biological characterisation was performed through several studies 

designed to evaluate and compare biological responses and in situ biocompatibility. 

 

Permacol surgical implant manufacture is characterised by two main processes: 

cellular extraction by trypsinization and cross-linking with HMDI. Permacol 

physical and biochemical characteristics were compared to those of the original 

(source) tissue, dermal porcine collagen, and to a process intermediate – acellular but 

not cross-linked porcine dermal collagen. 

Surface and structural analysis of the collagen-based matrices showed distinctive 

features for each matrix. Porcine dermal collagen originally is composed of compact 

bundles of collagen fibres in a random orientation, forming an entangled structure. 

After decellularization the collagen fibres are more distinct following removal of 

interstitial tissues, therefore it was possible to visualize a well organized collagenous 

tissue composed of thick fibres. The cross-linked acellular matrix exhibited fibres in a 
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regular interweaving pattern with fibres showing higher resolution and organization 

than the noncross-linked acellular matrix. These results correlate with the analysis of 

pore size, where Permacol showed the lowest pore size which can be explained by 

the increase in intra- and intermolecular bonds between the collagen molecules which 

decreases the size of the natural septae between collagen fibres and consequently 

decreases pore size. 

 

Stabilization of collagen-based biomaterials either by physical or chemical methods is 

necessary in order to decrease the susceptibility to enzymatic degradation. Physical 

cross-linking, although circumventing the introduction of potentially cytotoxic 

chemical residues, generally does not result in a suitable high degree of cross-linking 

for tissue-engineering applications (Duan and Sheardown, 2005). Chemical cross-

linking is an alternative procedure which is believed to result in a higher cross-linking 

density. Chemical cross-linking reagents include glutaraldehyde, diisocyanates such 

as HMDI, acyl azide and EDC. The first three cross-linkers are “bridge-forming”, 

which means that the collagen molecules are linked by an intermediate molecule, 

while EDC forms “zero-length” bonds, i.e., the collagen molecules are directly 

connected to one another since no additional chemical entities are introduced between 

the conjugating molecules (Duan and Sheardown, 2005; Everaerts et al., 2007).  

Permacol surgical implant is cross-linked through a patented process using HMDI as 

the cross-linking reagent. Treatment of collagen-based biomaterials with HMDI 

mainly involves the formation of new bonds containing stable urea groups resulting 

from the reaction of isocyanate groups with amine groups (Olde Damink et al., 1995). 

In this thesis, the level of cross-linking of collagen-based matrices was analysed by 

water absorption properties and by quantifying the free-amino groups present within a 

collagen matrix, which relates to the number of molecules that are not chemically 

bound. The amount of free amino groups gives a quantitative analysis of level of 

cross-linking; on the other hand, by comparing the swelling ratios of cross-linked and 

noncross-linked materials a qualitative analysis of cross-linking level is obtained. 

Water uptake properties are important since these are related to exudate absorption; 

when a biomaterial is implanted in an infected site or/and when a severe inflammatory 

response is present, the exudate surrounding the implant will be rich in proteolytic 
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enzymes which may surround and infiltrate the matrix increasing substrate availability 

for enzyme digestion. 

The evaluation of the cross-linking level by both the TNBS and ninhydrin assays, in 

conjugation with the results obtained from the water uptake analysis suggest that 

Permacol surgical implant level of cross-linking is not much higher than that of 

normal porcine dermal collagen. Therefore, it is hypothesised that the main 

differences between Permacol and porcine dermal collagen are a result of the 

decellularisation process and the amount of intra- and intermolecular bonds 

established by cross-linking is only slightly greater than the number of bonds existing 

in normal porcine dermal collagen.  

The mechanical test performed corroborated these results. The three types of matrix 

showed some variation in tensile strength but differences were not significant. Dermal 

porcine collagen proved to be a resistant matrix and matrices did not fail under the 

force applied. 

Since, to this point, the main differences observed between the collagen matrices 

tested were structure and collagen fibres orientation, further tests were designed to 

predict their performance when in vivo and to compare biological responses. 

 

Enzymatic stability of the collagen matrices was tested in vitro. The efficiency of 

cross-linking was evaluated by collagenase and elastase digestions (Rault et al., 

1996). Furthermore, another cross-linker was used and compared to the reagent used 

to cross-link Permacol. Once again Permacol and dermal porcine collagen showed 

similar results for collagenase digestion. However, Permacol was more resistant to 

pancreatic elastase, showing significantly less tissue digestion at all time points; this 

can perhaps be explained by the decreased amount of elastin in this type of matrix 

when compared to normal dermal porcine collagen (significant amounts of elastin 

were not observed histologicaly in Permacol, outside of perivascular tissue). EDC-

treated dermal collagen showed evidence of increased resistance to both enzymes, a 

result in accordance with other studies where collagen scaffolds cross-linked with 

EDC have been shown to exhibit decreased degradation rates (Olde Damink et al., 

1996; Zeeman et al., 1999). Contrarily, noncross-linked collagen matrices were the 

most vulnerable to enzymatic digestion, a result which was expected since the 
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decellularization process cleaves natural cross-links and leaves collagen fibres more 

susceptible to proteolytic degradation. 

It is important to understand and predict the behaviour of collagen-based biomaterials 

when in the presence of specific enzymes, not only because post implantation these 

materials can be infiltrated by inflammatory cells and therefore, be exposed to their 

enzymes, but also because collagen plays an important role in neo-vascularisation. As 

one of the ECM components, collagen supports blood vessels, not merely by acting as 

a scaffold but also by supplying biochemical signals for cell migration (Carmeliet, 

2004). During neo-vascularisation extracellular proteinases break down collagen and 

other ECM components (Bhushan et al., 2002) to allow access to migrating 

endothelial cells. While some degree of collagen degradation is necessary for neo-

vascularisation to occur, uncontrolled ECM degradation can impede cell migration 

since cells require substrate with which to interact for migration and proliferation. 

Remodelling and restructuring of ECM is also necessary for cell adherence and 

deposition of basement membrane, which is important for tissue vascularisation (Han 

et al., 2001). 

Permacol, acellular noncross-linked collagen and dermal porcine collagen were 

tested for resistance to human neutrophil elastase and MMP-8. Both enzymes are 

commonly found during an acute inflammatory reaction and in chronic wound 

exudate (Aiba-Kojima et al., 2007; Edwards et al., 2005; Hasty et al., 1987; Mallya et 

al., 1990b; Netzel-Arnett et al., 1991; Nwomeh et al., 1999; Zhu et al., 2001). Only 

the noncross-linked matrix was digested by human neutrophil elastase, both 

Permacol and dermal porcine collagen were unaffected by this enzyme and, although 

MMP-8 (human neutrophil collagenase) has been reported to cleave collagen type I 

(Aiba-Kojima et al., 2007; Mallya et al., 1990b; Netzel-Arnett et al., 1991; Nwomeh 

et al., 1999), the collagen matrices were not digested by this enzyme under the 

conditions tested. During an inflammatory response and in a chronic wound a wide 

range of cells are present producing enzymes and other proteins which may induce or 

inhibit further production of proteolytic enzymes. Therefore, it is possible that the 

enzymes tested can not easily digest dermal collagen individually but will do so when 

conjugated with other enzymes, as increased concentrations may be necessary for 

tissue digestion. 
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When testing for resistance to proteolytic enzymes, control samples (matrices 

incubated in buffer only) showed an increase in weight which diminished with longer 

incubation periods. The salts from the reaction buffer were probably incorporated into 

the collagen matrices and since these were immediately lyophilised after digestion, 

salts were not solubilised into an aqueous solution before weight measurements. Since 

the weight gain was more prominent in the Permacol samples, the results suggested 

that Permacol structure was more likely to retain substances in solution.  

The permeability of biomaterials has great influence in their in situ performance 

related to nutrient transport and waste removal within the structure. Permeability of a 

material is dependent on its porosity: pore size, orientation, distribution and 

interconnectivity (Aiba-Kojima et al., 2007; O'Brien et al., 2007). These parameters 

will define how a fluid moves through the biomaterial. Scaffold permeability has also 

been shown to affect scaffold biodegradation rate (Agrawal et al., 2000) and some 

authors believe that flow may have an important role in determining whether 

neovessels regress or persist (Carmeliet, 2003). Therefore, the fluid dynamics of a 

biomaterial will also affect the in vivo performance. 

Permacol and noncross-linked dermal collagen were tested for resistance to flow in a 

modified Ussing chamber. A calcium solution was used at 37oC and the flow was kept 

constant for periods of 3 and 6 hours. There were no differences between matrices, 

suggesting that the cross-linking process does not promote resistance to fluid flow. 

Additionally, over the duration of these studies, samples did not show any evidence of 

calcium deposits within the collagen fibres. To further compare these two matrices, 

related to interstitial fluid flow patterns, a rodent model was designed where each 

matrix was subcutaneously implanted and an Evans blue dye solution injected 

intradermaly. This dye binds strongly with albumin and, as a result, the interstitial 

fluid can be macroscopically observed. Once again there was no difference between 

the collagenous matrices; both matrices were infiltrated by interstitial fluid and 

subsequent quantification of the Evans blue-albumin complex (EBA) within implants 

showed no significant difference between the amounts of EBA absorbed. 

Although these experiments were short-term, results gave no evidence of differences 

between the permeability of the cross-linked and noncross-linked matrices tested. 
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The biophysical and mechanical properties of scaffolds influence the interactions 

between cells and the surrounding ECM and therefore those properties will influence 

and regulate cell migration. Furthermore, cell migration is also known to be mediated 

by biochemical stimuli and cellular interactions (Harley et al., 2008) and these will be 

influenced by matrix surface signals and surface contact guidance.  

The biological features of collagen-derived biomaterials were analysed by in vitro 

tests where cell-matrix interactions are evaluated. In vitro techniques involve 

compromises and deviations from in vivo conditions; for example the absence of a 

diffusion system affects metabolic rates in vitro, which are lower than observed in 

vivo. As discussed previously, the topography and nature of a substrate will influence 

the morphology and function of cells, lack of these environment factors may cause 

inactivation or dedifferentiation of cells. A further pertinent factor is the presence of 

other cell types in vivo; this interaction between cells may affect cell shape and 

function. 

Despite the limitations of in vitro models, these also offer several advantages. From a 

practical, cost-effective and ethical point of view, in vitro models decrease the need 

for in vivo studies. The latter not only may arouse ethical concerns but also need 

specific facilities and working conditions with specialised staff and equipment. All 

these increase the cost of these analyses and can be time consuming. An appropriate 

and well-planned in vitro study can provide useful data regarding the material to be 

tested and predict in situ behaviour. 

 

In these studies, primary cultures of porcine dermal fibroblasts were prepared and 

cultured in the presence of different porcine dermal collagen matrices in the form of 

sheets. This experiment was designed to provide data on cell-matrix interactions, 

including cell adhesion, proliferation and infiltration and, to compare the biological 

features of the different types of collagen matrices. Permacol surgical implant, 

acellular noncross-linked collagen and porcine dermal collagen were incubated with 

porcine fibroblasts and with skin explants. 

Porcine fibroblasts and porcine skin (explant) were chosen since the collagen tested 

also had a porcine origin. Furthermore, there are reports giving evidence of lack of 

cellular penetration into Permacol in vivo both in rats (Boon et al., 1995; Zheng et 
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al., 2004) and humans (Hammond et al., 2008) and it was thought that this feature 

could be species-specific, consequently allogeneic cells were used. 

Cell migration and proliferation have a critical role in several physiological and 

pathological processes as well as in the successful performance of scaffold-based 

tissue engineered biomaterials. If a biomaterial does not provide recognisable surface 

signals, cells will not adhere to the matrix which may impair further integration with 

the host tissue. Active cell motility is essential in physiological tissue development 

and homeostasis, being indispensable for appropriate wound healing. Fibroblast 

adherence, proliferation and migration were evaluated when using different collagen-

derived matrices under 3 regimes: out of the package matrix (non-soaked), matrix 

soaked overnight in PBS and matrix soaked overnight in fibroblast medium.  

 

When non-soaked matrices were incubated with fibroblasts, cells showed no 

preference for a particular type of matrix; all matrices performed similarly allowing 

cellular adherence and proliferation but cellular penetration was only observed focally 

into Permacol and dermal porcine collagen. This was an interesting result, since the 

analysis of structure and measurement of pore size characterized acellular noncross-

linked matrices as having the wider pores and the lack of interstitial tissues between 

collagen fibres suggested that this matrix would promote cell migration. Since this 

was not observed, it is likely that the cell extraction process changes the 3-D structure 

of the collagen matrix, affecting cell-matrix interactions. Cell adhesion and cell 

infiltration into matrices do not only depend on receptor-mediated biochemical 

signalling, the 3-D structure of the biomaterial is of major importance in cell function. 

Many authors defend the concept that cell-matrix interaction can control cellular 

phenotype, cell growth and behaviour (Friedl and Bröcker, 2004). The 

decellularization process does not seem to affect surface biochemical signalling, since 

NonXL matrices supported cell adherence, but the enzymatic process changes the 

matrix architecture which may result in a structure that alters cell movement. 

When matrices were pre-treated with fibroblast medium, prior to fibroblast 

incubation, cells were observed forming a monolayer at the surface of the matrices. In 

this experiment cellular migration was observed only in the dermal porcine collagen 

matrix (Raw). For cells to migrate through a 3-D structure they have to overcome 

biophysical matrix resistance. Cells may overcome biophysical resistance through 
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shape change, contact-dependent matrix remodelling and cell-independent proteolysis 

by secreted proteases. During migration cells adapt morphologically to the ECM 

environment, finding and using the least resistant pathway most suitable for 

migration. That can be accomplished by proteolysis of ECM components by serine 

proteases, such as elastase, and MMPs, after which, through adhesion and de-

adhesion occurrences, cells move within matrices.  

In the in vitro tests, cell infiltration and migration were only observed in the cross-

linked matrices (Permacol and Raw collagen). This suggests that although the 

decellularization process changes the 3-D structure of the material, by cross-linking it 

with HMDI the collagen returns to the original structure or to a similar configuration.  

The fact that fibroblasts did not easily migrate into the collagen matrices implies that 

the cells could not overcome the biophysical resistance. It is important to keep in 

mind that in vitro conditions are constant and controlled, while in an in vivo situation 

there are many factors influencing one outcome. Under the conditions tested 

fibroblasts may not produce the enzymes necessary or in enough concentrations to 

easily infiltrate the matrices. It is possible that for cell penetration to occur fibroblasts 

would have to be induced to synthesise the required enzymes. 

Alternatively, cells can migrate through a biomaterial without structural matrix 

remodelling by overcoming the biophysical resistance through morphological 

adaptation. When pores and fissures within a matrix are wide enough, or if the 

substrate is flexible (elastic) enough, in relation to the size of a given cell body, cell-

shape change may be adequate to overcome matrix physical barriers and allow 

migration (Friedl and Bröcker, 2004). Although Permacol pore size was not 

significantly different from the original porcine dermal collagen, pores within these 

matrices may not be wide enough to allow cell migration without ECM enzymatic 

remodelling. 

These results are in accordance to other studies reported, where Permacol surgical 

implant was cultured with human fibroblasts (Jarman-Smith et al., 2004), smooth 

muscle cells (Kimuli et al., 2004), normal human urothelial cells (Kimuli et al., 2004) 

and human peritoneal mesothelial cells (Wilshaw et al., 2008). All those studies 

reported that Permacol supports cell attachment and proliferation but cellular 

penetration was not easily observed.  
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It is still unclear what happen to the cells when matrices were pre-soaked in PBS. 

Cells were not attached to the matrices surface or to the plastic surface of the well 

plate; in addition, cells were not found, in significant quantities, in suspension 

throughout the experiment. The experiment was repeated 3 times; therefore, technical 

error has been eliminated as the cause of such an intriguing result. 

 

When testing matrices for skin explant outgrowth, non-soaked matrices showed low 

efficiency and Permacol was the only material that supported cell outgrowth under 

those conditions. However, when matrices were pre-treated with fibroblast medium 

fibroblasts were visible forming a monolayer at the surface of all matrix types tested, 

although cellular penetration was not observed. 

 

Overall, the results obtained from culturing porcine fibroblasts with Permacol, 

NonXL and Raw collagen give further evidence that the chemical treatments 

performed during the manufacture of Permacol surgical implant do not impair or 

decrease cell attachment and proliferation since results were similar for all matrices 

tested. Nevertheless, fibroblasts did not easily penetrate the collagen-based 

biomaterial disproving the hypothesis stated earlier where it was suggested that the 

lack of cellular penetration was caused by species-specific factors. However, in vitro 

tests are limited and it was necessary to further evaluate cell-matrix interactions in an 

in vivo setting. 

 

All implanted biomaterials are treated by the host tissues and cells as foreign bodies, 

independent of the biomaterial type of matrix and treatments performed. However, the 

severity of the reaction varies with the biocompatibility of the material; this may 

result in a marginal acute inflammatory reaction in the early stages of implantation, 

which may subsequently subside, or in severe acute and chronic inflammatory 

responses leading to rejection of the implanted material. 

The use of porcine derived biomaterials, rather than bovine or human, avoids 

concerns regarding excessive immunoreactivity or prion transmission. Porcine dermal 

collagen shares approximately 97% similarity with human tissue (Skipworth et al., 

2007). Nevertheless, some reactivity is to be expected and the host reaction may 
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increase or decrease depending on the treatments used during the manufacturer of the 

biomaterial. 

 

Permacol surgical implant is commercialized for soft tissue repair, it has not only 

been used as repair tissue (Abhinav et al., 2008; Catena et al., 2007; Gaertner et al., 

2007; Inan et al., 2007; Liyanage et al., 2006; Parker et al., 2006; Pentlow et al., 

2008; Richards et al., 2005; Saettele et al., 2007; Sarmah and Holl-Allen, 1984; 

Shabbir et al., 2005) but also as bulking material (Saray, 2003) and for soft tissue 

augmentation (Benito-Ruiz et al., 2006). Although there are many published papers 

reporting the use of Permacol in the clinical field, the number of research papers 

characterizing and evaluating Permacol performance is much lower. 

As a biomaterial Permacol needs to be efficient and functional. To successfully 

achieve such aims Permacol requires certain characteristics commonly considered to 

be essential features of an ideal biomaterial. These characteristics include non-

toxicity, biocompatibility, adequate defect correction, constant volume until host 

tissue regeneration, decreased scarring and good aesthetic results. 

A study was designed where Permacol biocompatibility, migration, remodelling and 

volume were evaluated, at short-, mid- and long-term, and compared to acellular 

noncross-linked porcine dermal collagen (NonXL). Permacol and NonXL collagen 

were implanted subcutaneously into abdominal pockets in rats and, as each animal 

received both implants results were paired and directly comparable.  

Throughout the study NonXL implants showed higher mean values of cellular 

penetration than Permacol. This difference was statistically significant at 3 and 6 

months but at 12 months post implantation there was no difference between the mean 

groups of both matrices. These results give further evidence of the limits of in vitro 

tests since, when cultured with fibroblasts, Permacol showed focal cellular 

penetration but the same was not observed in the NonXL samples. In vivo, despite the 

low number of cells present within the matrix, cellular penetration increased over time 

in the Permacol implants including when cellular density decreased from 3 to 6 

months in this matrix. 

Similarly to what was observed with cellular penetration, cellular density was also 

higher in the NonXL implants until 6 months post implantation. NonXL implants 

showed higher numbers of cells in the central portions of the matrix, within the 
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natural clefts between the denser collagen fibres and, as observed with Permacol, 

this parameter decreased from 3 months to 6 months. At long-term, these two 

matrices performed differently, as cellular density increased significantly at 12 

months for Permacol whilst the NonXL implants showed a lower value for cellular 

density at this time point. 

There are several factors that may cause or influence decreased cellular density: i) 

cross-linking of the matrix proteins, which may elicit a physical barrier by 

diminishing pore size so that cells are incapable of travelling freely though the matrix; 

ii) degradation of matrix over time and subsequent release of cross-linking sub-

products, which may have toxic properties; iii) the cross-linking method may leave 

cell-detrimental residues within the matrix; iv) after cross-linking, matrices become 

more resistant to enzymatic digestion and some protein digestion may be necessary 

for cellular penetration to occur naturally; v) cells do not recognize the collagen-based 

biomaterials as ECM. Some authors have suggested that HMDI-treated porcine 

dermis did not allow tissue ingrowth (Gandhi et al., 2005). This study suggests that 

tissue ingrowth into Permacol is possible but limited, especially at the early stages. 

With time cellular density increased to minimal levels and cellular penetration was 

over 75%. At all time points, degradation of collagen was not observed; hence, it is 

improbable that detrimental products are formed due to matrix degradation. 

Furthermore, when fibroblasts were cultured for 28 days in the presence of 

Permacol, if toxic residues from the cross-linking process had been present within 

the matrix these would have been solubilised into the medium causing cell toxicity, 

which would have been recorded during the performance of viability tests. Lastly, if 

cellular migration was impaired by the HMDI-treatment, high levels of cellular 

density and cellular penetration in the NonXL implants would be expected and this 

was not observed. The cellular response observed in this study suggests that the cross-

linking process is not the cause for low cell ingrowth into Permacol. However, both 

matrices tested underwent the same enzymatic decellularisation process. Trypsin has 

been characterized as a serine protease that predominantly cleaves peptide chains at 

the carboxyl side of the amino acids lysine and arginine, except when either is 

followed by proline. Consequently, this enzyme is known for not being able to digest 

collagen (Olsen et al., 2004). However, more recent studies using mass spectroscopy 

have reported trypsin cleavage before proline; although not being a favoured pathway 
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it still happens (Rodriguez et al., 2008). Canavan and co-workers reported that 

trypsinisation of cells is concurrent with damage to the extracellular matrix underlying 

the cells (Canavan et al., 2005). Since the ECM is known to be vital to the adhesion, 

proliferation and differentiation of cells (Gospodarowicz et al., 1978), this has 

important implications for the in vivo performance of biomaterials treated with 

trypsin. If the decellularisation process is changing the collagen structure and 

signalling, the surfaces of the matrices may change not only structurally but also 

chemically. The acellular collagen matrices may not then provide suitable signals for 

cell migration, which can affect the in vivo performance of a biomaterial by reducing 

the initial level of cellular density and consequentely affecting integration with the 

surrounding tissue and vascularisation of the implant. 

 

A further explanation for the lack of cellular density in the implants may be that, after 

wound healing, fibroblasts are eliminated by apoptosis, resulting in a decrease in 

tissue cellularity (Kuhn and McDonald, 1991; Kuhn et al., 1989; Nho et al., 2006). If 

the presence of the implants and the surgery performed caused tissue injury a wound 

healing process may have been induced and, therefore, the earlier proliferative phase 

subsides with time and cell presence decreases. 

 

When analysing all parameters measured it was observed that cellular density and 

neo-vascularisation followed the same trends over time. Vessels were observed in the 

central portions of the matrices, within the natural clefts between the denser collagen 

fibres, at mid- and long-term. 

Although vessel presence increased in the Permacol implants, it decreased over time 

in the NonXL implants. Vessel regression and devascularisation are processes which 

are still not completely understood, some studies have reported that vascular 

regression is a regulated process with endothelial cells undergoing apoptosis 

(Desmouliere et al., 1995; Greenhalgh, 1998). Others were unable to show the 

presence of apoptotic endothelial cells during the devascularisation phase in bovine 

ovaries (Augustin et al., 1995). These results are consistent with the results reported 

herein where apoptotic cells were not observed at the time points analysed. Thus there 

appears to be conflicting evidence regarding the mechanisms of vascular remodelling 

and so far it is not known if this mechanism is species-specific. 
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Some authors support the notion that breakdown products resulting from ECM 

degradation can act as angiogenic factors (Arnold and West, 1991). In this case, cross-

linked matrices with increased resistance to proteolytic digestion would be less 

vascularised, which was not observed. 

 

Integration with the surrounding tissue was higher at all time points in the Permacol 

implants and increased over time. Similarly, the implant-host tissue interface showed 

increased tensile strength over time for the cross-linked implants. NonXL samples 

showed lower deposition of collagen in the implant-host tissue interface and therefore, 

integration was lower.  

  

At 3 months post implantation there was no evidence of acute inflammation, but 

macrophages were present in both matrix types which may be related to a late chronic 

inflammatory response. By 6 months this subsided although giant cells were observed 

at low numbers in the Permacol implants only. Cellular extraction removes 

immunogenic proteins but may also expose ECM proteins that were previously 

masked; therefore, higher levels of immune response were expected in NonXL 

samples. Additionally, during the in vitro experiments, NonXL collagen showed less 

resistance to enzymatic digestion which makes it more susceptible to enzymatic 

remodelling. Although inflammatory cells were present in low numbers in the NonXL 

implants, collagen remodelling was not observed; in addition, fibroblast ingrowth was 

observed throughout the study at minimal levels of density and these cells produce 

MMP-1 (fibroblast collagenase) which mediates ECM degradation and remodelling 

during wound healing (Abraham et al., 2007). Both matrices tested seemed resistant 

to in vivo remodelling during a 12 month period. 

Although collagen remodelling was not observed, one NonXL implant showed some 

level of degradation and the decrease in implant thickness at 12 months, in 

conjunction with the changes observed in the shape of the implant borders, suggest 

that the NonXL implants are being slowly absorbed. 

 

Focal points of mineralisation were present in 4 of 6 Permacol implants and in 1 of 5 

Permacol implants at 6 and 12 months post implantation, respectively. The minerals 

were identified as being hydroxyapatite by histological techniques and SEM analysis. 
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Hydroxyapatite crystals, which contain calcium and inorganic phosphate ions, are 

deposited both within and between collagen fibrils in bone (Murshed et al., 2005). 

Extracellular mineralisation occurs naturally and exclusively in bone, teeth and in 

growth plate cartilage (Murshed et al., 2005); if present in other body sites it is 

considered ectopic (i.e., a pathological process). Permacol calcification has been 

reported before by Kelley and colleagues during a 12 months study in mice (Kelley et 

al., 2005) and was also previously observed in other in-house studies (data not 

published). The results reported from those studies are in agreement with the results 

obtained in this thesis; there was no evidence of a cellular host response directed 

towards the mineralised tissue. While such calcification is not toxic to the animal, if 

there is associated loss of flexibility in the implant this would be a disadvantage and 

would reduce its value as a replacement or repair tissue implant. 

It is not clear why calcification occurred only in the cross-linked implants, the fact 

that the NonXL matrices were mineral-free suggests that mineral deposition is related 

to cross-linking. Murshed and colleagues showed that removal of pyrophosphate (an 

inhibitor of inorganic phosphate) and the presence of fibrillar collagen-rich scaffold 

were necessary and sufficient conditions to induce ectopic ECM mineralisation 

(Murshed et al., 2005). Furthermore, collagen has been implicated as a nucleator of 

apatite in vascular prostheses (Kim et al., 1999). Two different collagen-based 

scaffolds were tested in this study but for a depletion of pyrophosphate to occur the 

implantation would have to induce cellular responses. 

Calcification may be associated with several conditions: 1) HMDI-treatment; 2) 

organic matrix composition; 3) mechanical stress and 4) cell injury. Condition number 

1 includes direct and indirect effects; the first refers to toxicity products resulting from 

the bifunctional reagent, while the latter is associated with the structural changes 

resulting from cross-linking the collagen matrix. HMDI has been studied extensively 

as a cross-linking reagent and the literature defends HMDI as not promoting 

calcification (Vasudev et al., 2000). The structural changes may influence mineral 

deposition since, as has previously been shown, the collagen matrices show a 

tendency to retain salts from the surrounding medium. Conditions numbers 2 and 3 

are both related to implantation site; depending on the surrounding tissue, different 

proteins may be deposited within the biomaterial and the implantation site also affects 

the mechanical load upon the implant. The fourth condition considers cell injury as a 
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probable cause of implant calcification. Cell injury results in an influx of Ca2+ into the 

cell and in an increase of cytosolic phosphate (Pi) (Kim et al., 1999); concomittant 

increases in intracellular Ca2+ and Pi have been associated with calcification. 

 

Given that the lack of cell migration into Permacol implants does not seem caused 

by the cross-linking process, a second in vivo study was designed to evaluate the 

influence of implantation site in cellular response and in matrix calcification. In the 

model Permacol implants were implanted either intramuscularly or into pockets 

made in the liver. In both sites implants were readily exposed to the immune system 

because of the highly vascularised nature of the muscle and liver tissues. 

Host reactions following implantation of biomaterials can include tissue injury, 

blood–material interactions, provisional matrix formation, acute inflammation, 

chronic inflammation, granulation tissue development and foreign body reaction 

(Anderson, 2001). The first termination point of this study was 3 months post 

implantation, at this time there was no evidence of an inflammatory response, a few 

macrophages and Kupffer cells were present at the edges of the implants in the muscle 

and liver, respectively, but at low numbers. The number of macrophages in the 

intramuscular implants diminished with time, Kupffer cell numbers increased at 6 

months in the liver implants but by 12 months there was no evidence of inflammatory 

cells in the implants.  

As observed previously, when Permacol was implanted subcutaneously, integration 

with the host surrounding tissue reached minimal to moderate levels both in the liver 

and muscle and integration increased with time. However, even though host tissue 

accepted and integrated with the implants, these were not remodelled and maintained 

the same structure and appearance throughout the study. In addition, collagen was not 

degraded and highly birefringent fibres were observed at all time points.  

Again, Permacol was infiltrated by higher numbers of cells at 3 months post 

implantation after which cellular density decreased at 6 months but increased once 

more at 12 months post implantation. Therefore, independent of the implantation site, 

cells seem to have a temporal behaviour pattern, in the earlier stages of implantation 

Permacol implants are infiltrated by cells which disappear at mid-term, but cell 

numbers increase again long-term. The high density of cells earlier on is followed by 
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a period of cell absence and this is in keeping with a natural wound healing process 

(Braddock et al., 1999; Broughton et al., 2006; Laurens et al., 2006). 

Cellular density and cellular penetration were always at low levels in the implants 

placed inside the liver; as a result matrix neo-vascularisation was only observed after 

6 months implantation and was limited to the edges. These results are not surprising 

since liver is a highly specialized tissue with a low percentage of collagen that is 

mostly restricted to the portal tracts and Glisson’s capsule (Chapman and Eagles, 

2007). Therefore the specialized cells present within the liver probably do not 

recognize collagen as a suitable extracellular matrix. 

Neo-vascularisation was observed at all time points in the intramuscular implants. 

Initially vessels were observed mainly at the edges but at 6 months post implantation 

the vessel numbers increased and vessels were observed both at the edges and centre. 

Contrary to what was observed subcutaneously, herein there was a decrease in neo-

vascularisation at long-term. It is not know if this factor is related to the amount of 

mineralisation observed in the intramuscular implants at 12 months post implantation. 

Permacol calcification was again observed but this time it started as early as 3 

months post implantation. Two out of 6 implants showed focal points of 

mineralisation after 3 months (average area mineralised = 35%/implant), 4 of 6 

implants were calcified at 6 months (average area mineralised = 25%/implant) and all 

4 implants recovered at 12 months were mineralised (average area mineralised = 

54%/implant). Mineralisation was not observed in the implants placed in the liver; 

moreover, the temporal difference (first occurrence of mineral deposition) observed 

between the Permacol implanted subcutaneously and intramuscularly suggests that 

the location of the implant influences the implant performance. The site of 

implantation has been previously reported to influence the implant-host interactions 

and implant outcome (Wlodarski et al., 1973). These results give further evidence that 

the implantation site influences implant-host interactions in particular deposition of 

minerals within the implant matrix.  

 

Permacol was found at the surface of the liver lobe where it had been inserted. 

Mammals retain a constant liver-body volume ratio and when injury occurs the liver 

is capable of generating a proliferative response which will heal the tissue by mitosis 

and DNA synthesis (Khan and Mudan, 2007). The migration of the implants towards 
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the surface of the lobe may be explained by cell proliferation, in which the tissue 

regeneration may have pushed the implant through the pocket towards the surface. 

Implants were still partially inserted in the hepatic tissue and were surrounded by 

Glisson’s capsule material.  

During implantation of a biomaterial, disruption of the normal vascular supply to 

surrounding tissues occurs. This results in reduction in the supply of oxygen and 

nutrients to post-surgical sites as well as accumulation of metabolic products 

(Diamond et al., 2005). Ultimately adhesions develop post-surgery, therefore it is 

crucial to use a biomaterial that will not induce adhesions and if possible will decrease 

the rate of adhesion formation. Omental adhesions were observed in the Glisson’s 

capsule material covering the implants but, since the adhesions were not directly in 

contact with the implant, it is probable that they are a result of the surgical procedure 

and not of the biomaterial itself. 

Implants were not degraded, broken down or remodelled when implanted either 

intramuscularly or in the liver, suggesting that the implant was accepted as benign 

material and did not promote an inflammatory response or rejection; additionally, 

encapsulation of the implants was not observed.  

 

Overall, the implantation site does seem to influence the level and temporal 

occurrence of mineral deposition into Permacol surgical implants. Cellular response 

was different depending on the implantation site: when implanted subcutaneously and 

intramuscularly Permacol cellular density was significantly higher than when 

implanted into the liver; the levels of cellular penetration were higher subcutaneously, 

followed by the intramuscular implants and the liver promoted the lowest percentage 

of cellular infiltration. Neo-vascularisation varied in the 3 implantation sites and 

intramuscular implantation provided the highest numbers of new vessels, while 

implantation into liver yielded low levels of neo-vascularisation. In common, the 

implantation sites showed the same levels and pattern of integration with the 

surrounding tissue, implant integration increased over time varying from minimal to 

moderate levels independent of the implantation position. 
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Subsequent to studying Permacol surgical implant biocompatibility and performance 

in situ, further in vitro and in vivo tests were designed to test for function efficiency 

and possible clinical applications. 

 

Over time an increasing number of microorganisms, many of which are putative 

human pathogens, have been reported to produce enzymes that can degrade collagen 

and therefore extracellular matrix (Bergin and Wraight, 2007; Brook and Frazier, 

1998; Daeschlein et al., 2007; Davies et al., 2007; Edwards and Harding, 2004; Hill et 

al., 2003; Kingsley, 2003; Sapico et al., 1980; Valencia et al., 2004). The precise 

contribution of bacterial proteases to the damage of tissue in non-healing wounds is 

not known. Inflammatory cells present at the wound, which are elicited as an immune 

response to the bacterial infection or to the tissue damage, can also produce 

collagenases capable of degrading the ECM (Edwards et al., 2005; Hasty et al., 1987; 

Nwomeh et al., 1999; Sun et al., 2000). Consequently, it is the conjunction of these 

two factors (bacteria and leukocytes) that most likely contributes to impaired healing. 

If a biomaterial, clinically used in a contaminated field, offers no resistance to 

bacterial degradation and, in addition, acts as a substrate for bacterial proliferation, the 

increased production of digestive enzymes may result in further necrosis of host tissue 

allowing the bacteria to gain access to deeper tissues thus deteriorating the healing 

rate. The ability of Permacol surgical implant to resist or tolerate infection was 

assessed in vitro by culturing it with pathogens commonly found in chronic wounds 

(Staph. aureus, E. coli, Pseudomonas aeruginosa and Candida albicans), individually 

and in a poly-microbial culture. 

Under the conditions tested, Permacol surgical implant did not show evidence of a 

bactericidal or bacteriostatic effect. In addition, the bacteria and yeast tested were not 

able to easily infiltrate the matrix independent of bacterial load and the collagenous 

matrix was not degraded or remodelled by the microorganisms. It is probable that 

when cultured in vitro the microorganisms tested do not produce the required 

enzymes to degrade Permacol, or the required enzymes are produced but not in 

enough quantity to effect matrix degradation; another explanation is that the particular 

strains tested may not produce collagenolytic enzymes or simply, Permacol is 

resistant to degradation by these microorganisms under the conditions tested. 
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The fact that Permacol offered some resistance to bacterial infiltration, allowing the 

test microorganisms to proliferate only on the surface, suggests that dermal porcine 

collagen-based biomaterials may be a good option as a soft tissue repair material in 

contaminated fields. Additionally, since bacteria do not easily infiltrate Permacol the 

latter can be used as a protective barrier between the wound bed and external 

contaminants. 

 

The use of a wound dressing that does not promote bacterial proliferation is not 

sufficient in all cases. Antimicrobial agents are also needed and dressings that will 

restore infection to acceptable levels are required. Silver-coated materials are 

commonly used dressings (in for example burns) and these are available in a variety 

of forms and have different delivery systems (Klasen, 2000a). In the 1960s Moyer 

introduced the use of 0.5% silver nitrate for the treatment of burns (Moyer et al., 

1965). He reported that such solution does not interfere with epidermal proliferation 

and has an antibacterial effect against Staph. aureus, Pseudomonas aeruginosa and E. 

coli (Bellinger and Conway, 1970; Moyer et al., 1965). His discovery directed further 

research and silver combined with other substances originated many compounds used 

as anti-microbials (Rai et al., 2008). Because of the growing microbial resistance 

against metal ions and antibiotics and the development of resistant strains, silver 

dressings are of current interest (Gong et al., 2007). Silver ions have been delivered 

through many forms; currently, nanocrystalline silver particles are most promising 

since nanoparticles show good antibacterial properties due to their large surface area 

to volume ratio (Durán et al., 2007).  

Permacol apparent resistance to pathogen degradation was promising, showing 

Permacol as a prospective biomaterial to be used in contaminated clinical fields. 

Therefore, nanocrystalline silver-coated Permacol biocompatibility was tested in a 

rat model to assess in vivo characteristics and performance of silver-coated 

Permacol.  

Although a coating of silver particles was observed histologically covering the surface 

of the Permacol prior to implantation, after 2 weeks the silver particles were mostly 

absent and those remaining were being ingested by macrophages suggesting that the 

nanocrystalline silver particles induced a cellular response. Although silver 

nanoparticles in most reported studies are suggested to be non-toxic, Hussain and 



                                                                                                                  DISCUSSION 

 -386- 

colleagues studied the toxicity of different sizes of silver nanoparticles on a rat liver 

cell line and found that, after being exposed for 24 hours, mitochondrial cells 

displayed abnormal size, cellular shrinkage and irregular shape (Hussain et al., 2005). 

When Burd and co-workers tested five commercially available silver-dressings for 

cytotoxicity effects in keratinocytes and fibroblast cultures, they found that three of 

the silver dressings showed cytotoxicity. Furthermore, when they tested the same 

dressings in a full-thickness excision skin murine model the dressings were associated 

with delayed reepithelialisation (Burd et al., 2007). 

Despite the initial cellular reaction, the inflammatory response subsided and at 4 

weeks post implantation the silver particles present at the edges of the implants, 

although in low number, were not being phagocytised. Furthermore, integration with 

the surrounding tissue increased with time and the in vivo performance of Permacol 

did not seem to be affected when coated with nanocrystalline silver, independent of 

the concentration used. The above results suggest that silver particles show some 

cytotoxicity initially and as a consequence were mostly removed by the host cells; 

however, with time the toxicity levels decrease or cells and tissue adjust to the 

presence of silver. In the presence of an infection it is not clear if the inflammatory 

cells will target the silver particles or the pathogens. If silver is removed before 

exerting its anti-microbial effect such a dressing would be ineffective in that particular 

situation but if the host cellular response focuses on the microorganisms, the 

nanoparticles will attach to the pathogen cell membrane attacking the respiratory 

chain and cell division processes leading to cell death (Feng et al., 2000) and assisting 

wound healing by decreasing the bacterial load. 

Nanoparticles of silver are currently of interest as they have defined chemical, optical 

and mechanical properties (Rai et al., 2008) and show good antibacterial properties. 

Regardless of their advantageous properties, the delivery system used is of extreme 

importance. Silver has to be delivered efficiently which includes appropriate 

concentration and treatment length. In the study reported here within 2 weeks post 

implantation the nanoparticles were reduced to a tenth of the original concentration. 

Clearly, if silver coating is to be maintained for prolonged periods of time the coating 

process must be revised. 

The use of silver-coated Permacol in biomedical and therapeutic applications may be 

a suitable choice to assist healing in complicated wounds particularly if the tissues are 
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infected. However, further detailed studies need to be carried out – it would be 

especially useful to assess silver-coated Permacol performance in an in vivo model 

of a chronic wound or in an infected area. 

 

One clinical setting many times associated with infection is abdominal wall defects, 

particularly hernias. Abdominal wall hernias are a common condition treated by 

surgeons but recurrences and complications remain a difficult problem (Burger et al., 

2004; Matthews et al., 2003; Vrijland et al., 2002). Abdominal wall defects and 

hernias can be repaired by primary closure, though when the defect is large, as with 

pre-existing loss of abdominal wall layers or in paediatric patients, adequate tissue for 

direct closure is often not available (Chang et al., 2007; Hirsch, 2004; Kolker et al., 

2005). In these situations, primary closure generally leads to excessive tension at the 

suture site resulting in hernia recurrence (Saettele et al., 2007). Closure procedures for 

large defects include the use of implantable biomaterials such as collagen-based 

materials, the use of such materials aims to reduce tension and therefore recurrence. In 

addition, biological materials reduce the occurrence of postsurgical intra-abdominal 

adhesions which are a major complication associated with abdominal surgery and can 

be aggravated if synthetic prostheses are used (Wilshaw et al., 2008). 

The efficiency and performance of Permacol surgical implant as repair tissue was 

compared to two commercially available biomaterials, in a rodent model of abdominal 

wall hernia repair. The chosen biomaterials were CollaMend and AlloDerm, the first 

is a porcine-derived collagen based cross-linked biomaterial and the latter a noncross-

linked human-derived dermal collagen. Both materials are commercialised as 

acellular and recommended for abdominal hernia repair by the manufacturers. 

The severe acute and chronic inflammatory reactions and immune response observed 

with AlloDerm, and the presence of hair in one of the implants, suggest that the 

decellularisation process is not completely effective. Although the analysis of pre-

implanted AlloDerm showed no evidence of cells in this study, Wilshaw and 

colleagues tested mesothelial cell adhesion, in vitro, to AlloDerm and reported 

evidence of cellular remnants on the surface of the material (Wilshaw et al., 2008). 

The occasional presence of cellular residues within AlloDerm matrix may be a batch 

problem, maybe the cell extraction process is not completely efficient or it may not be 

always reproducible. Either way, this results in a reduction of the biocompatibility of 
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the biomaterial which may explain partially the contradictory data published related to 

AlloDerm. While some authors have reported the use of AlloDerm for hernia repair as 

successful (Buinewicz and Rosen, 2004) others encountered a range of mesh-related 

complications including recurrence of hernias (Alaedeen et al., 2007; Espinosa-de-

los-Monteros et al., 2007; Gupta et al., 2006; Patton et al., 2007; Schuster et al., 

2006), wound infection (Bellows et al., 2007; Espinosa-de-los-Monteros et al., 2007; 

Patton et al., 2007), biomaterial removal (Patton et al., 2007), seroma (Butler et al., 

2005; Gupta et al., 2006; Patton et al., 2007), fistulas (Butler et al., 2005; Patton et 

al., 2007), wound dehiscence (Bellows et al., 2007; Butler et al., 2005) and diastasis 

or bulging of muscle (Gupta et al., 2006). 

During tensile strength assessment of the AlloDerm-host complex AlloDerm stretched 

at all times which may be explained by the levels of elastin in human skin. This 

feature is of importance and surgeons should be aware of such a phenomenon when 

choosing the most suitable biomaterial for hernia repair. In a clinical setting where 

high tension is expected AlloDerm may not be the ideal biomaterial since it will easily 

stretch influencing the healing rate and may lead to hernia recurrence. This 

characteristic of the AlloDerm in situ has been reported by others (Gaertner et al., 

2007; Gupta et al., 2006).  

As observed in the Permacol implants, cellular density also decreased at 6 months 

post implantation suggesting that the decrease of cell numbers from 3 to 6 months is 

not caused by the type of matrix but it may be part of implant integration and wound 

healing processes.  

AlloDerm was remodelled by inflammatory cells present during the inflammatory 

response and besides losing the original structure, the volume of AlloDerm present 

decreased with time. Degradation of collagen was observed in all implants at 1 month 

post implantation; this was likely due to the proteolytic activity of enzymes 

synthesized by inflammatory cells since degradation was higher when a severe 

inflammation was observed. The levels of inflammation decreased at 3 months post 

implantation related to which collagen degradation also decreased; nevertheless the 

volume of implant present was lower which is probably a consequence of the earlier 

higher levels of inflammation. At 6 months post implantation 2 of the 6 implants were 

completely absent and new thin collagen fibres were visible in the implantation site. 

By picro-sirius red staining and polarised light optics, newly deposited collagen 
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matrix was evident. The birefringent pattern was green, which is usually indicative of 

fine, immature, minimally organised collagen fibres (Cuttle et al., 2005; Junqueira et 

al., 1982; Junqueira et al., 1979).  

These results suggest that AlloDerm can be degraded by the host cells as early as 1 

month post implantation and with time the matrix is completely replaced by 

neocollagen. The rate of collagen turnover will depend on the rate of healing which is 

directly associated with the host response towards the implant. Such features will 

influence greatly the success of the hernia repair since, if the deposition of new 

collagen and maturation of fibres does not occur concurrently to matrix degradation, 

the new tissue may be too weak and liable to hernia recurrence. 

The use of CollaMend for hernia repair in the model study herein gave unsatisfactory 

results. CollaMend’s stiffness caused great problems throughout the study resulting in 

the early sacrifice of several animals due to extrusion of the implants. Furthermore, 

during surgery CollaMend was difficult to handle. Although CollaMend and 

Permacol are derived from porcine dermal collagen, CollaMend’s structure suggests 

that the collagen is harvested from the dermal papilla, while Permacol originates 

from the reticular dermis. In addition, Permacol is cross-linked by HMDI-treatment 

and CollaMend by EDC-treatment. Even though both biomaterials share the same 

tissue source there are important differences in the manufacturers process which 

results in different characteristics and different in vivo performances. The rigidity 

observed in CollaMend may result from the manufacturers’ processes or from the 

original tissue itself. Papillary dermis is intradigitated with thin elastic fibres whereas 

reticular dermis has thick elastic fibres; as a result the deeper layer of dermis 

(reticular) is more elastic and less rigid than the dermis papilla (Montagna and 

Parakka, 1974). 

 
While AlloDerm and Permacol integration with the surrounding tissue increased 

with time, CollaMend did not easily integrate with host tissues, particularly the 

implant side facing the abdominal defect. This result questions CollaMend’s 

efficiency in such a clinical setting since integration is essential for tissue regeneration 

and repair of the hernia. Additional to the lack of integration, round-shaped fibroblast-

like cells were present at 1 month post implantation which suggests that CollaMend’s 

surface may not provide adequate signalling for cell-matrix interactions. Cells were 

not present at high densities but even when at low density they easily infiltrated the 
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matrix, it is possible that the high levels of cellular penetration are a result of the high 

level of matrix porosity. This may explain the difference between the levels of cellular 

density and cellular penetration between this matrix and Permacol. It might be useful 

to increase Permacol’s percentage of porosity or pore size and assess cellular 

ingrowth and vascularisation. MacLeod and colleagues used CO2 laser to increase 

Permacol porosity and reported that more cells were observed through the new pores 

but the residual areas remained relatively cell free (MacLeod et al., 2004c).  

 
The inflammatory responses observed were different for the 3 biomaterials analysed. 

While AlloDerm induced severe inflammatory reactions which subsided with time, 

Permacol was associated with a marginal acute and chronic inflammatory response 

at 1 month post implantation that was resolved at 3 months and CollaMend did not 

show evidence of inflammatory reactions except when animals had open wounds. In 

such cases, severe suppurative acute inflammation was observed and bacteria were 

present, in this situation the superficial layers of CollaMend in contact with bacteria 

were remodelled and this questions its durability when used in a contaminated field. 

The host response to an implant depends on the biocompatibility of the implant, 

which will depend on the structure, composition, signals and immunogenicity of the 

matrix. In the hernia repair model studied in this thesis the cross-linked materials 

induced lower inflammatory responses than the noncross-linked matrix, the cross-

linking may have reduced the antigenicity of the biomaterials. Protein cross-linking 

has been reported by many as an efficient way of reducing the amount of protein 

epitopes which can be recognised by the host antibodies inducing an immune 

response (Schmidt and Baier, 2000; Yu et al., 2008). In this case the matrix cross-

linking can not be reported as the only or main factor responsible for lower 

inflammatory reactions. Several other factors may have influenced the in vivo 

performance including tissue source, decellularisation process, sterilization methods 

and matrix properties. Both cross-linked matrices tested are porcine derived while 

AlloDerm originates from human dermis, the latter may react more easily or at higher 

levels with rat tissue.  

 
All in vivo studies assessed for this thesis showed a common result, a conclusion that 

the level of implant-host tissue integration was independent of the level of cellular 

density observed within the implants. CollaMend’s performance gives further 
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evidence that high cellular density and vascularisation of an implant is not necessary 

for good integration to occur. In this case, CollaMend was readily infiltrated by host 

cells and the number of new vessels present within the implant increased with time 

but the implant was not integrated with the immediately adjacent tissue. 

Although macro- and microscopically CollaMend seemed intact, in which histology 

analysis did not show remodelling of the matrix and collagen was not degraded, two 

implants failed by tearing during the tensile strength test 6 months post implantation. 

Therefore, CollaMend implants are not mechanically strong and are not elastic. 

According to the results described above, CollaMend does not seem suitable for 

abdominal hernia repair. 

 
AlloDerm and CollaMend manufacturers claim that these biomaterials are 

biocompatible and provide strong repair of soft tissue defects, but the results reported 

in this thesis do not confirm such recomendations. Since a rodent model was used it is 

not possible to state that AlloDerm and CollaMend are not biocompatible and that 

these biomaterials are inappropriate for human abdominal hernia repair. Nevertheless, 

the results suggest caution when using either material in such a clinical setting. 

Animal models do not ideally mimic the human situation and there is a social effort to 

find alternatives to animal models in research. Regardless of the ethical concerns that 

animal models may invoke, currently there are no other methods considered to be 

appropriate and sufficient to guarantee the safety and functionality of a biomaterial 

before clinical use. It is the conjugation of various tests that allow meticulous 

characterization of a biomaterial and provide information to predict its performance in 

vivo, although in situ responses will always depend on the patient and, therefore, 

unexpected results may occur.  

 
 

 

6.3 CONSIDERATIONS 

 

 

When a biomaterial is used to replace or repair damaged tissue or organs, the patient 

is benefitting from over 50 years of research. Although the results of implantation of 
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foreign tissue, organs and prosthetic materials have improved markedly in the last 

years, immunosuppressant drugs are still widely used and many times their use is 

indispensable. A clinical setting where successful implantation was independent of 

the use of long-term immunosuppressant drugs would be the ultimate aim of 

researchers. 

New approaches such as the use of biocompatible materials (with or without cells) 

and stem cell technology are currently the main focus of researchers working in tissue 

engineering. While autologous cells have many potential advantages, availability is 

constrained; increasing patient morbidity and the required culturing time necessarily 

increases procedure duration. In addition autologous cells cannot be used easily in 

large scale treatments. Sources of autologous cells are limited and can be further 

reduced depending on the type of cell; furthermore, cells require a harvesting 

operation with enrichment and control of phenotype. In contrast, xenogenic cells are 

easily available but the use of xenogenic or allogenic cells requires selective 

elimination of the immunological barrier in transplantation. Even when implantation 

is successful and the tissue/material is not rejected by the host, transplanted cells, 

tissues and materials need to stay viable which implies nourishment through the host 

vasculature. If neo-vascularisation does not happen quickly the transplanted cells will 

die. Additionally waste removal is equally important, otherwise, high level of toxins 

will cause cell death. Therefore, there remains great interest and potential for 

developing and using acellular biomaterials.  

Because of its many favourable characteristics, collagen has been used as the base 

protein for the extracellular matrix of many materials, collagen is useful alone or in 

combination with other components, it can also be easily modified for promoting 

organ and tissue regeneration. Acellular collagen-based biomaterials can be prepared 

in several forms: solid, gel, foams or paste and therefore, can be used in a wide range 

of treatments. 

This thesis mainly reports on Permacol surgical implant characteristics and in vivo 

performance in different settings. Although the results provided a great deal of new 

information related to this biomaterial, many new questions have been raised that will 

need an answer. This includes how calcification of the matrix occurs and how it 

affects Permacol performance in vivo and if calcification is species-specific and 

whether the lack of collagen remodelling and replacement affects permanent healing, 
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cell-matrix interaction and Permacol performance in contaminated fields. To 

understand mineral deposition with time, several studies would have to be designed. 

Initially, Permacol structure would have to be thoroughly analysed and, for a better 

understanding of the cross-linking effect, Permacol structure should be compared to 

normal porcine collagen and to Permacol with lower and higher levels of cross-

linking. Following this, in vitro tests where several solutions with different 

concentrations of calcium and inorganic phosphate could be used static or with 

movement to assess salt deposition. Similarly, the culture of fibroblasts in the 

presence of Permacol could be manipulated by increasing the external concentrations 

of calcium and inorganic phosphate; if calcification was observed it could be useful to 

impregnate Permacol with pyrophosphate (inhibitor of mineral nucleation) and see if 

calcification still occurs. Finally, in vivo models would have to be used for long term 

studies, in species rather than rat and results compared to confirm if calcification is 

species-dependent. 

To study collagen remodelling of Permacol, the collagen from the biomaterial would 

have to be labelled before implantation and the fluorescence or radioactivity measured 

before and after implantation. This technique could also be useful when enzymatic 

degradation tests are performed. 

Permacol surface signalling should be studied in detail to understand cell-matrix 

interactions and cell-cell interactions. Normal porcine collagen should be used as 

control and differences explored. 

Lastly, it would be useful to study Permacol performance in an in vivo model of 

chronic wound both in the presence and absence of infection. Such a study would 

provide useful information for both scientists and clinicians. Additionally, the same 

model could be used to assess the performance of other commercially available 

biomaterials that are recommended for repair of wounds in complicated settings. 

Permacol surgical implant gave evidence of being an efficient and appropriate 

biomaterial when used as bulking tissue and for soft tissue repair, additionally its 

tolerance to enzymatic digestion suggests it could be used in infected areas. Overall it 

is concluded that Permacol surgical implant is a versatile biomaterial which can be 

used in a range of settings. 
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