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Abstract 

The diesel engine currently accounts for 32 per cent of the new passenger car sales in 

Europe. In the US, diesel-power is responsible for 94 per cent of all freight movement. 
Comparing European Stage III standard petrol and diesel passenger car emissions, 
diesel NOx emissions are still considered a concern. 

This thesis investigates the mechanisms by which oxides of nitrogen are formed during 

diesel combustion. It reviews the current methods of controlling NOx emissions, such 

as retarding fuel injection timing, exhaust gas re-circulation (EGR), water injection and 

exhaust after-treatment. Modelling using a phenomenological model, is used to 

demonstrate the extended Zeldovich mechanism and formation trends, the effects of 
EGR and the significance of the Zeldovich mechanism rate constants. Modified 

Zeldovich rate constants are proposed to improve the correlation to measured data. 

Clearly, EGR is currently the most effective method of reducing NOx emissions from 

passenger car diesel engines. The way EGR works in suppressing NOx formation is 

reviewed in detail. 

Experimentation on a 1.8 litre inline 4-cylinder 4-valve per cylinder DI diesel with a 

variable nozzle turbine (VNT) turbocharger was used to demonstrate the concept of 
"additional" EGR on this small automotive engine. "Additional" EGR is the concept 

whereby a proportion of the EGR is added to the total charge, so that the volumetric 

efficiency increases as EGR is introduced. By using "additional" EGR, the benefits of 
lower NOx emissions combined with reduced particulates emissions and improved fuel 

consumption were clearly demonstrated at two test conditions. The reasons for 

achieving lower NOx emissions when using a VNT turbocharger and EGR have been 

explained. 

Finally, several methods of calculating EGR proportion were used and compared 

against true mass flow. The use of a CO2 balance was found to be the most accurate 

method. 
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Chapter 1 

Introduction 

The diesel engine is now a true alternative power unit for European passenger cars, from 

the small fuel-efficient "sub-B cars" such as the VW Lupo with its 1.2 or 1.4 litre 3- 

cylinder diesel, to large luxury cars like the Mercedes Benz E Class with a 184kW, 4 

litre V8 diesel. In the mid-sized family car segment, typified by the Ford Mondeo, the 

diesel share throughout Europe is 41 per cent. The overall market share of diesel 

passenger cars in Europe is 32 per cent; in France it is a staggering 48 per cent (Perez, 

2000). The total share of diesel-powered cars sold by Volkswagen in Europe is 39.6 per 

cent (Anon 2000). During the first half of 2000, BMW stepped up its production of 

diesel engines by an impressive 53.8 per cent (Anon 2000). This increase in diesel 

proportion is due in part to the improvements in power and torque densities over the 

past 8 years, seeing specific power reaching 53kW/litre for modern high speed direct 

injection (DI) diesel engines. In addition, the recent achievements in refinement, with 

new sophisticated fuel injection systems reducing combustion noise, are giving 

gasoline-like in-vehicle noise and vibration levels. This is demonstrated by the 

premium luxury manufacturers, the likes of Audi, BMW and Mercedes Benz offering 

V8 diesel engines for their top of the range models. 

In the US, diesel-powered trucks, trains and boats are at the core of the supply and 

distribution network, moving 94 per cent of all freight in the US. Each day diesel- 

powered equipment moves 18 million tons of freight. The inherent benefits of diesel 

technology - efficiency, durability and safety - have led to diesel's emergence in 

meeting future energy and environmental goals. However, there are challenges for the 

automotive and diesel industries. In December, the US EPA announced future diesel- 

engine emissions regulations for heavy-duty trucks and buses and plans for cleaner 

diesel fuel requirements that are unprecedented. The agency claims that heavy-duty 

vehicles will run more than 90 per cent cleaner than today's vehicles when the new rules 

take effect. The clean diesel engine is clearly a viable technology for the future with the 
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addition of cleaner fuels and exhaust treatment systems (Jost, 2001). 
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Figure 1.1 UK road transport NOx emissions (Dunne and Frost, 2000) 

All internal combustion eng"incs emit pollutants; carbon monoxide (CO). hydrocarbons 

(HC). oxides of nitrogen (NOx) and small particulate matter (Pm) in the exhaust gas. 

Figure 1.1 shows a plot of UK road transport NOx emissions tirom 1970 and projected 

to 2025. The effect of EU regulations is dramatic, but still more is necessary (Dunne 

and Frost, 2000). Compared to gasoline engines with three-way catalysts, diesel engines 

with oxidation catalysts emit less than a third the level of CO and HC, but around three 

times the NOx and ten to twenty times the particulate matter. Figure 1.2 shows a 

comparison of European Stage III standard petrol and diesel car NOx emissions under 

steady driving conditions at speeds between 25 and 120 km/h. Nevertheless, diesel cars 

with particulate filters can match petrol on all emissions except NOx. and are much 

better on CO,. Therefore, NOx emissions from diesel cars are still considered a 

concern. (Dunne and Frost. 2000). 
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Figure 1.2 Petrol versus diesel car NOx emissions (Euro III) 

(Dunne & Frost, 2000) 

The oxides of nitrogen (NOx) comprise several gases including nitric oxide (NO) and 

nitrogen dioxide (NO2). Nitrogen dioxide is produced both directly as a primary and 

indirectly as a secondary pollutant owing to spontaneous conversion of NO to NO2 in 

the presence of ozone or oxygen. In the ambient air, NO2 is probably the most important 

for human health, being an irritant of the airways. Secondly, NOx is involved in the 

formation of photochemical ozone, which results from sunlight-initiated oxidation of 

volatile organic compounds (VOCs) in the presence of NO and NO2. Ozone is a highly 

reactive oxidising agent and is the most irritant of the common air pollutants and 

exposure to concentrations commonly encountered in the UK has been shown to 

produce inflammation of the respiratory tract. Thirdly, oxides of nitrogen and sulphur 

dioxide (SO2) are the main precursors of acid deposition. In the atmosphere, NOx and 

SO2 react with oxidants to form nitric and sulphuric acids during their dispersal from 

sources. These oxidants (OH radical, ozone and hydrogen peroxide) are formed by 

photochemical reactions involving NOx and VOCs (Handbook on Air Pollution and 

Health, 1997, Fourth Report of the Photochemical Oxidants Review Group, 1997, Third 

Report of the United Kingdom Review Group on Acid Rain, 1990). 

The automotive industry is taking the lead in developing technologies to reduce 

atmospheric pollution from internal combustion engines. Continuing concern about 

atmospheric pollution, particularly air quality in urban areas, and the "Greenhouse" 
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effect, is driving more stringent emissions legislation for motor vehicles throughout the 

world. The lead in legislation is being taken by the EC in Europe, by California in the 

USA and by Japan particularly for city areas. However, the underlying priorities appear 

to be slightly different between Europe and the USA, as is the method of introducing 

new technologies. In Europe, while air quality is obviously of prime importance, 

"Greenhouse" gases are considered an important secondary factor and there is strong 

debate about carbon dioxide (C02) control. Moreover, the European Commission 

(CEC) recognises the importance of light-duty diesels for their low fuel consumption 

and CO2 emissions. New technologies enabling future standards to be met are 

encouraged by fiscal incentives in the form of tax concessions for the owner. In the 

USA there appears more emphasis on ozone-forming gases and atmospheric smog 

aspects of air quality. Introduction of lower limits, forcing technology, is legislated by 

phase-in schedules for the manufacturers. The Federal Environmental Protection 

Agency (EPA) and Californian Air Resources Board (CARB) publish future standards 

and phase-in schedules much earlier, than in Europe by the EC. 

To assist the European Commission in finding cost effective solutions to air quality 

issues relating to automotive fuels and vehicles, a tripartite initiative on air quality, 

emissions, fuels and engine technologies was set up. This included an "Auto/Oil" 

research programme known as the European Programme on Emissions, Fuels and 

Engine Technologies (EPEFE), run by the two industry associations ACEA (Association 

des Constructeurs Europeans d'Automobiles) and EUROPIA (European Petroleum 

Industry Association). The EPEFE programme conducted emission tests on 

combinations of advanced engines and fuels, to provide data to see what contributions 

future technology, in both engine and fuel, may bring to any required improvements in 

air quality. 

In total, EPEFE examined 12 test gasoline with 16 gasoline powered vehicles and 11 

diesel fuels in 19 light-duty vehicles and 5 heavy-duty engines. More than 2000 

emission tests were run and over 0.5 million data points were generated. The EPEFE 

element of the European Auto Oil Programme and its preliminary report has been 

completed. The executive summary was issued to Member States during July 1995. 

The Auto Oil study has achieved the following: 
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" Replacement of `Best Available Technology" by the "Cost Effectiveness" concept in 

new European law making. 

" Avoidance of a simultaneous incentivisation of both 1996 and 2000 emission levels. 

" Recognition by legislators that fuel specification is a factor influencing air quality. 

The EPEFE diesel results were unfortunately fairly inconclusive, however, it was 

possible to conclude that a future diesel fuel having lower sulphur, density, T95 and 

poly-aromatics and higher cetane would be generally beneficial to diesel vehicle 

emissions. The programme did however establish a valuable precedent for future co- 

operation between the motor industry and both the oil industry and legislators. 

The current European Union exhaust emission standard, known as Stage III, was 

introduced in January 2000 following analysis of the EPEFE results. It became 

mandatory for all new vehicles on 1` January 2001. The test cycle changed for this 

standard whereby the 40-second idling period before sampling was deleted. The next 

phase of legislation, Stage N is scheduled for 2005. These standards for diesel 

passenger cars are shown in Table 1.1 below, (Fraser 2001). 

Table 1.1 

Tailpipe Emission Standards (g/km) for Diesel Passenger Cars 

Standard Date CO NOx HC+NOx Pm 

Stage II 1996 1.0 - 0.7/0.9 * 0.08/0.1 

Stage III 2000 0.64 0.5 0.56 0.05 

Stage IV 2005 0.5 0.25 0.3 0.025 

* IDI/DI 

From a diesel prospective the Federal Tier II standards due for model year 2004 

represent a severe challenge. Not only does the durability period double from 50,000 to 

100,000 miles, but the current diesel NOx waiver comes to an end and the NOx is 

reduced from 1.0 g/mile (0.62 g/km) to 0.2 g/mile (0.12 g/km), which at present, 

without NOx after-treatment technology, is a formidable task. Additionally, the 

Chapter 15 



particulates standard is also reduced from 0.2 to 0.08 g/mile (0.12 to 0.05 g/km). 

A further series of changes to the European Light Duty Emissions legislation is forecast 

for mandatory application from 2008, which will be more stringent than the Stage N 

standards that will become mandatory in 2005. Particulate standards are anticipated to 

change at 2008, to a level that will effectively mean the fitment of a particulate filter 

Followed by further severe reductions in gaseous emissions at 2010. A further NOx 

reduction for diesels to achieve parity with gasoline post 2010 is anticipated. Forecast 

diesel fuelled vehicle "Stage V' standards are shown in Table 1.2 below, (C Hosier 

2000). 

Table 1.2 

Forecast European Emissions Standards (g/km) for Diesel Fuelled 

Light-Duty Vehicles 

Standard Date CO NOx HC+NOx Pm 

Stage IV 2005 0.5 0.25 0.30 0.025 

Stage V phase 1 2008 0.5 0.25 0.30 0.010 

Stage V phase 2 2010 0.5 0.12 0.15 0.010 

Stage V phase 3 2012 0.5 0.06 0.09 0.010 

The major emphasis for diesel engine emissions reduction therefore remains focused on 

particulates and NOx, but with lower diesel CO standards being proposed, for high 

speed DI engines CO now becomes a task that cannot be ignored. While the diesel 

industry has technology and is actively working on reduction of particulates, by further 

optimisation of the combustion system with even higher pressure fuel injection systems, 

variable geometry turbochargers and multi-valve, centralized injection nozzles, there is 

not the same level of hardware to address NOx emissions from combustion in the 

engine. There is however, a tremendous effort being put on the development of lean 

NOx catalysts by the automotive and catalyst industries. 

Heavy-duty engine manufacturers are now considering exhaust gas re-circulation (EGR) 

as a means to reduce NOx for the next regulated level. Stage 4 in Europe reduces the 
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NOx standard to 3.5 g/kWh at 2005, and for 2008 there is a further reduction to 

2.0g/kWh. In the US a level of 2.0g/hph (2.7g/kWh) will become effective in October 

2002. There has historically been a reluctance to follow light-duty practice in the use of 

EGR because of the adverse effect on long-term durability, but the low level of the new 

standards means that the use of EGR is the only viable option to further reduce NOx 

without further worsening of fuel consumption. 

Nitric oxide (NO) formation is dependant primarily upon local oxygen atom 

concentration and temperature. In a diesel engine NO is formed during the combustion 

process owing to the relatively high oxygen concentration and high temperatures. 

Control of NOx emissions from diesel engines is fundamentally difficult for a number 

of reasons, principally; 

I. The high thermal efficiency of diesel cycle is synonymous with high peak 

temperatures. 

2. The NOx-particulate trade-off; whereby suppression of NO formation has 

the tendency to cause an increase in particulates. 

3. Excess oxygen in exhaust prevents the use of gasoline "stoichiometric three- 

way catalyst" technology for reduction of NOx. 

This thesis focuses on the control of NOx emissions from diesel engines, principally by 

exhaust gas re-circulation (EGR). Brief reviews of in-cylinder NOx formation and ways 

to suppress formation and reduce the engine-out emissions are covered. Exhaust gas 

after-treatment for catalysis of NOx is also summarized in the literature survey. The 

work contained in this thesis demonstrates "additional" EGR and provides an insight 

and explanation of why lower NOx and particulate emissions can be achieved with a 

variable geometry turbine turbocharger. 
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Chapter 2 

Literature Survey 

2.1 NOx Formation 

2.1.1 Introduction 

Nitrogen oxides, nitric oxide (NO) and nitrogen dioxide (NO2), are formed during the 

combustion of oil by two mechanisms; high temperature thermal fixation of molecular 

oxygen and nitrogen present in the combustion air and secondly, reaction of 

atmospheric oxygen with nitrogen containing compounds in the fuel. Both mechanisms 

result primarily in NO because the residence time in an internal combustion engine is 

too short for oxidation of NO to NO2, even though NO2 is thermodynamically favoured 

at lower temperatures. NO does, however, oxidize in the atmosphere to NO2, which is a 

primary participant in photochemical smog, (Pershing and Berkau, 1973). NO and NO2 

are usually grouped together and referred to as NOx emissions. 

It has generally been assumed that the thermal fixation of NO occurred according to the 

mechanism proposed by Zeldovich (1946). 

O+N2 a NO+N 2.1 

N+O2 a NO+O 2.2 

Lavoie et al (1970) added the third reaction to the mechanism, which is often called the 

extended Zeldovich mechanism. 

N+OHaNO+H 2.3 

Analysis of the NO formation rate shows an extremely strong dependence on 

temperature. This strong dependence is due to the high activation energy of the forward 

rate constant for equation 2.1 and to the effect of temperature on the 02 dissociation 

and, hence, 0 atom concentration. The initial NO formation rate is given by Bowman 
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as; 

d[NO] 
_ 

6x10'6 
p 

169,090 1]/ [N2 exp 
e 2.4 

2.1.2 Chemical Reaction Rates 

Chemical processes in engines are often not in equilibrium, such as the flame reaction 

zone and pollutant formation mechanisms. Such non-equilibrium processes are 

controlled by the rates of the chemical reactions that convert reactants to products 

(Heywood, 1988). The rates at which chemical reactions proceed depend on the 

concentration of the reactants, temperature and whether any catalyst is present. This 

field is called chemical kinetics (Glassman, 1977). 

Most of the chemical reactions of interest in combustion are binary reactions, where two 

reactant molecules, Ma and Mb, with capability of reacting together, collide and form 

two product molecules, M. and Md. 

Ma+Mb=Me+Md 2.5 

An example of this binary reaction is the rate-controlling step in the process by which 

the pollutant NO forms, in equation 2.1 above. 

This is a second-order reaction since the stoichiometric coefficients of the reaction va 

and vb are each unity and sum to 2. 

Third-order reactions are important in combustion, for example the recombination 

reactions by which radical species such as H, 0 and OH combine during the final stage 

of the fuel oxidation process. For example, 

H+H+M=H2+M* 2.6 

where M is any molecule (such as N2) which takes part in the collision and carries away 

the excess energy. 
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In chemical reactions such as 2.1 above, the rate at which product species are produced 

and the rate at which reactant species are removed is controlled by concentrations of 

reactant species Ma and Mb. Thus, for reaction 2.1 above, the reaction rate R+ in the 

forward (+) direction, reactions to products, is given by 

R+ = k+[Mal [Mb] 2.7 

If the reaction can also proceed in the (-) direction, then the backward rate R" is given by 

R" = k"[M, ][Md) 2.8 

k+ and k" are the rate constants in the forward and reverse directions for this reaction. 

The rate constants k, usually follow the Arrhenius form; 

k= Aexp-EA 
RT 

2.9 

where A is called the frequency or pre-exponential factor and may be a (moderate) 

function of temperature; EA is the activation energy and R and T are the gas constant 

and thermodynamic temperature, respectively. The Boltzmann factor exp(-EA/RT) 
defines the fraction of all collisions that have an energy greater than EA . That is, 

sufficient energy to make the reaction take place. The functional dependence of k on T 

and the constants in the Arrhenius form, are determined experimentally. 

The chemical reaction mechanisms of importance in combustion are much more 

complex than the above illustrations of rate-controlled processes. Such mechanisms 

usually involve both parallel and sequential interdependent reactions. The methodology 

reviewed above still holds; however, one must sum algebraically the forward and 

reverse rates of all the reactions that produce (or remove) a species of interest. In such 

complex mechanisms it is often useful to assume that (some of) the reactive 

intermediate species or radicals are in steady state, That is, these radicals react so 

quickly once they are formed that their concentrations do not rise but are maintained in 

steady state with the species with which they react. It follows that the net rate at which 
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their concentration changes with time is set equal to zero (Heywood, 1988). 

2.1.3 Formation of NO in Diesel Engines 

Since the overall rate of NO formation by the thermal mechanism generally is slow 

compared to the fuel oxidation reactions, it is often assumed, following the suggestion 

of Zeldovich, that the thermal NO formation reactions can be decoupled from the fuel 

oxidation process, (Miller and Bowman, 1989). The process of NO formation under 

conditions prevailing in internal combustion engines, based on previous studies, will be 

governed primarily by the following reactions (Lavoie, Heywood and Keck, 1970): 

N+NOaN2+O+75.0 k1=2x10-11 2.10 

N+02 aNO+O+31.8 

N+OHaNO+H+39.4 

H+N2OaN2+OH +62.4 

k2=2X 10-11 e-7.1/RT 

k3=7x 10"11 

k4: -- 5x 10"iI e-1o. 8"RT 

0+ N20 C=ý lV2+02 +79.2 k5=6X IO " 
e-24.0/RT 

0+ N20aNO+NO+36.4 k6=8x]O11e24O T 

2.11 

2.12 

2.13 

2.14 

2.15 

where the exothermicities of the reactions (75 in the first reaction, etc) are in kcal, the 

exothermic rate constants k;, are given in cm3 per sec and the activation energies are 

given in kcal. The rate constants are taken from Scofield (1967) for reactions 2.10, 

2.11,2.13,2.14 and 2.15, and from Campbell (1968) for reaction 3. Lavoie et al, did 

not consider the very slow reaction 2NO r* N2 + 02. 

The Zeldovich mechanism for NO formation (Zeldovich and Raizer, 1966), shows that 

the rate of NO formation rises exponentially with temperature: 
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d( 
dt exp( 

%T) E/R = 123,000 deg R 2.16 

where the activation energy, E, is derived from the activation energy of the controlling 

reaction, 0+ N2 -a NO + N, and the 02 dissociation energy. This illustrates that the 

NO formation process is extremely sensitive to the local flame temperature. 

Some researchers have proposed that the formation and destruction of NO in diesel 

engines occurs via the so-called "N20 mechanism" (Maite and Pratt, 1974; Polifke et al, 
1995 and Mellor et al, 1998). This is reviewed in Chapter 4. 

Flame Temperature 

The flame temperature, at the flame front where most of the NO is most likely to be 

formed, can be written [Williams (1965)]: 

Tn- 1--i cL Yöx+To 
P 

where, 
Cp = specific heat (at constant pressure) of the gas 
Q= heat of combustion per unit mass of fuel 
L= latent heat of vaporization of the fuel, 

Y° = ox ambient oxygen mass fraction 

i= stoichiometric oxygen to fuel ratio (by mass) 

To = gas temperature far from a droplet. 

Cp, Yz and To will depend on the proportion of EGR. 

2.17 

The importance of oxygen mass fraction, intake air temperature and specific heat 

capacity, on flame temperature, and hence NO formation, can be seen from the above 

equation. The flame temperature being proportional to oxygen mass fraction and intake 

air temperature; and inversely proportional to specific heat. All of these parameters will 
be influenced by EGR. Addition of EGR will reduce flame temperature and hence NO 
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formation, (see later section on Effect of EGR). 

Sawyer et at (1973) argued that nitrogen oxide is mainly formed in stoichiometric 

regions of mixture in gas turbine type combustors; therefore NOx emissions should 

correlate with stoichiometric adiabatic flame temperature. They plotted In (EINOx) 

versus 1/Tf and obtained an apparent activation energy of 136,000 cal/mole. This value 

is close to that given by the extended Zeldovich mechanism, for the case where the NO 

decomposition reactions are omitted for steady-flow combustors, which yields 134 630 

cal/mole (flee et al 1981). 

Plee et al (1981), experimented with an IDI diesel to examine the effects of flame 

temperature and chemical kinetics, without significantly affecting the air-fuel mixing 

process, by adding various quantities of 02 and N2 to the intake charge. The effect of 

increasing the oxygen concentration in the intake air was to rapidly increase the NOx 

emissions, at the three speeds tested. Various combustion chambers tested also showed 

similar trends. 

Plee et al also argued that the majority of the NO production in diesels is expected to 

occur near the stoichiometric reaction zone, since only in these regions will the 

temperature be sufficiently high. The authors plotted the NOx emission index (EINOx) 

versus the inverse of the stoichiometric flame temperature (1/Tf), at constant fuelling. 

The linear correlation of ln(EINOx) with 1/Tf indicated that the effect of 02 or N2 

addition on NOx is a flame temperature effect, which could be correlated with a simple 

Arrhenius expression, which gave an overall activation energy of -76 858 cal/mole (E/R 

= -38 700). The apparent activation energy obtained by these authors, was considerably 

lower than that derived for steady-flow combustors, but larger than that predicted by 

NO equilibrium. Plee et al, put forward several reasons for the difference in apparent 

activation energy between steady flow combustors and their diesel correlation; 

1. The O-atom is not in equilibrium 

2. The computed flame temperature is not representative of the actual process. 

3. NO decomposition is important. 

Ahmad and Plee (1983) examined the influence of flame temperature on NOx, 

particulate and hydrocarbon emissions from a single cylinder light-duty DI diesel 
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engine. The results indicated that for all loads and speeds tested, oxygen enrichment of 

the intake air increased NOx emissions, while it decreased gas-phase hydrocarbon, 

particulate carbon and volatile emissions and reduced ignition delay. Opposite emission 

trends were observed with addition of N2 and EGR, both of which deplete the intake 

oxygen concentration. The effect of intake air composition on emissions was correlated 

with diffusion flame temperature. The authors selected the stoichiometric adiabatic 

flame temperature evaluated at TDC conditions to represent this characteristic 

temperature for the IDI, whilst for the DI the temperature at TDC conditions and at peak 

cylinder pressure were evaluated. The results agree with the expectation that an 

increase in diffusion flame temperature will increase the rate of NOx formation, as well 

as the rates of particulate and hydrocarbon oxidation, giving the characteristic 
NOx/particulates trade-off, whereby NOx increases and particulates and HC decrease 

with Tf. 

Pundir et al (1985) attempted to relate NO emissions with a charge description that 

could probably exist in the combustion chamber of a liquid-fuelled SI engine. They 

make the point that during combustion of a homogeneous charge, elements burning 

early in the cycle attain the highest temperature and also have the largest residence time. 

Consequently, those burning first contribute most to NO emissions. In the case of a 

non-homogeneous charge, however, if the elements burning first are fuel rich, although 

these will attain relatively high temperature after combustion owing to a lack of oxygen, 

their contribution to NO emissions may not be very high. On the other hand, if 

elements burning first are slightly leaner than stoichiometric, their temperatures after 
burning will be relatively low, but due to availability of oxygen, their contribution to 

NO emissions could be large. The elements contributing most to NO emissions will 

depend on the mixture strength distribution in the combustion chamber and the instant 

at which these burn in the cycle. Also, an element that burns at a given instant in 

successive cycles, would make a varying contribution to NO emission in different 

cycles as its mixture strength will be different from one cycle to another. The authors 

studied these two effects of non-homogeneity of the charge on NO emissions by means 

of a combustion model and kinetic calculations of NO formation. 

Oxygen concentration 

The Zeldovich reaction mechanism postulates that NO formation only starts if atomic 

Chapter 2 14 



oxygen is available. Only the oxygen atom is able to split up the strongly bound N2 

molecule at temperatures below 3000K. The thermal decomposition of N2 to N begins 

at temperatures considerably above 3000K. The source of 0 is a two-step thermal 

dissociation. The dissociation of CO2 to 02 and CO and of H2O to 02 and H2 in the first 

step is called primary dissociation. The dissociation of 02 to 0 is the second step. The 

dissociation equilibrium moves to higher 0 concentrations at higher temperatures 

leading to more NO formation. An increase in the combustion products CO2 and H2O 

leads to an increase in dissociation products and therefore to higher NO formation, 

(Ropke et al 1995). 

Ropke et al (1995) studied the effect of oxygen concentration on NOx emissions from a 

1.9 litre DI diesel engine. The 02 concentration was changed from 21 to 12 per cent by 

adding up to 9 per cent N2. The side effects of the additional N2 were considered 

negligible. The NOx concentration was found to decrease exponentially as the 02 level 

was reduced from 21 to 12 per cent. 

Iida and Sato (1988) found that nitrogen oxides increased exponentially with increasing 

oxygen concentration when they experimented with a single cylinder high-speed direct 

injection diesel engine with variations in the intake oxygen concentration, ranging from 

21 to 25 per cent (by volume). Stoichiometric flame temperature was calculated 

utilizing the computer program developed by Olikara and Borman (1975) with initial 

conditions evaluated at top dead centre. Calculated stoichiometric adiabatic flame 

temperature estimated at top dead centre increases with oxygen concentration. lida and 

Sato claimed that the linear correlation of the NOx emission index (EINOx ), ln(EINOx) 

with the inverse of the stoichiometric flame temperature indicates that the effect of 

oxygen addition on NOx is a flame temperature effect, rather than a result of changes in 

oxygen concentration, although why this should be so is not self evident. This 

argument emphasises the thermal rather than chemical effect and hence the importance 

of local temperature on NOx formation. The correlation with stoichiometric flame 

temperature yielded an overall activation energy of -143,000 cal/mole for the processes. 

A number of experimenters (Sawyer et al 1973, Plee et al 1981, Ahmad and Plee 1983, 

Iida and Sato 1988) correlated the NOx emissions index with the inverse of 

stoichiometric flame temperature using an equation of the Arrhenius form, similar to the 
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following expression; 

where 

EI = 
Cmix = 

E_ 

R= 

Tf = 

EI C�,;, exp (E/RTf ) 

emission index (g pollutants/kg fuel) 

factor which depends on flow characteristics 

overall activation energy (cal/mole) 

universal gas constant (cal/mole-K) 

stoichiometric adiabatic flame temperature (K) 

2.18 

By plotting ln(EINOx) versus 1/Tf ,a linear characteristic can be demonstrated, giving a 

slope of E/R, from which the overall activation energy can be determined. Table 2.1 

lists the data from these references. 

See also Section 2.3 NOx Reduction by EGR, for further information on effect of 

oxygen concentration on the formation of NO. 

Table 2.1 

Overall activation energy derived from flame temperature correlation 

Reference Engine Type Overall Activation Energy 

(note 1) cal/mole (note 2) 

Sawyer et al, 1973 steady-flow combustor -136 000 

Plee et al, 1981 IDI -152 486 

Ahmad et al, 1982 0.52 L single cylinder IDI -144 606 

Ahmad et al, 1982 0.72 L single cylinder IDI -144 606 

Ahmad and Plee, 1983 0.52 L single cylinder DI -139 090 (note 3) 

lida and Sato, 1988 1.11 L single cylinder DI -143 000 

Note 1: E in equation 1.18 

Note 2: 1 cal/mole = 4.187 J/mole 

Note 3: based on temperature at peak cylinder pressure 
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Engine design and operating parameters 

Wilson, Muir and Pellicciotti took exhaust measurements of NO, soot and HC from a 
2340 cc single cylinder diesel engine. Direct injection and pre-chamber configurations 

were assessed, as well as changes to compression ratio, swirl, thermodynamic state of 

the intake charge and fuel injection parameters. The main trends were: 

" the pre-chamber gave lower NOx with higher fuel consumption 

9 increased volume ratio with pre-chamber engine gave increased 

NOx but reduced soot (note that volume ratios used here were 15 

to 35 %, whereas modern light-duty automotive diesels with Ricardo 

type swirl chambers are typically 50%) 

" as compression ratio was increased, NOx increased. 

On the effect of load, they found that NOx peaked at an equivalence ratio of 0.3 for both 

DI and IDI. The characteristic reduction in NOx by injection retard for DI was evident, 

for example, 10 degrees giving approximately 50 per cent reduction in NOx, this was 

most pronounced at high loads. With the IDI a minimum NOx emission occurred at 4 

deg BTDC, this was reviewed with other data and found to be peculiar to their test 

engine. The effect of engine speed for the DI engine was to reduce NOx with 
increasing speed. The pre-chamber NOx emissions behaved in the opposite way, 
increasing with engine speed. 

Plee et al (1981), found that for the IDI engine they tested, any modification to the 

mixing process that lowered NOx also increased CO, and the addition of 02 or N2 

shifted the trade-off, as it did for the NOx - particulate trade-off. 

Ahmad and Plee (1983) found that for NOx emissions, the flame temperature 

dependence was not affected by engine type since NOx formation always occurs in the 

flame zone and any effects of mixing are secondary. The authors concluded that the 

overall activation energy for NOx from the DI engine was nearly the same as for the IDI 

engines, indicating that the NOx kinetics are insensitive to the combustion chamber 

geometry. 

Duggal, Priede and Khan (1978) used a fast acting water-cooled gas-sampling valve 

located in the swirl chamber of a single cylinder indirect injection diesel engine. The 
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sampling valve could transverse horizontally across the chamber on the centre line, 

moving from the outer wall, downstream of the injector, to the centre. Fuel was injected 

through a single hole nozzle. The NO concentration profiles showed two peaks 

separated by a period of swirl revolution. The first peak rose rapidly following ignition, 

to reach a peak in 3 milliseconds and then fell gradually. The second peak was found to 

be considerably higher than the first. This, the authors attributed to increased air 

entrainment within the reaction zone, which increased the NO formed. 

Aoyagi et al (1980) conducted in-cylinder gas sampling in a DI engine with 

measurements of local equivalence ratio and flame temperature. NO formed in the early 

and middle combustion periods where flame temperature and pressure were high. 

Temporal and spacial distributions of NO concentration became maximum when the 

local equivalence ratio decreased to 1.0 after which the concentration decayed over the 

next 30 to 50 degrees crank angle to the "frozen" exhaust level of between 1/3 to 2/3 the 

peak level. 

2.1.4 Extended Zeldovitch Mechanism Rate Constants 

Heywood (1988) explained in detail the solution of the extended Zeldovich mechanism 
(equations 2.1 to 2.3, Section 2.1.1). Knowledge of the rate constants is necessary for 

the estimation of the production rate of NO through this mechanism. Table 2.2 lists the 

data required for the calculation of the rate constants for the forward reactions, while 
Table 2.3 gives the corresponding data for the reverse reactions in the mechanism. 

Each rate constant can be calculated from the following equation: 

k= ATaexp(-E/RT) 2.19 

where the value of A, ß and E/R are given in the Tables and T is in Kelvin. 

Baulch, Drysdale and Horne, of the Department for Physical Chemistry, University of 

Leeds, published "Evaluated Kinetic Data for High Temperature Reactions" in 1973. 

The UK Government Department of Education and Science supported this work. This 

work provides a comprehensive tabulation of reaction rate data, which is critically 

analysed and recommends reliable values for the rate parameters. Volume 2 covers 
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homogeneous gas phase reactions of the H2-N2-02 system. Hanson and Salimian's 

Survey of Rate Constants in the N/H/O System, in Combustion Chemistry, edited by 

Gardiner (1984) is another, more recent, widely used reference in this field. 

Rate constants for the extended Zeldovich mechanism have been determined 

experimentally, or calculated by a number of researchers. These are listed in Table 2.2 

for the forward reactions and in Table 2.3 for the reverse reactions. So far as the author 
is aware, a comprehensive list of the rate constants, with more recent references, has not 

appeared in the open literature previously. Graphs of these rate constants are plotted in 

Figures 2.1 to 2.6 in the form log k versus 104 T1 
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Table 2.2 

Extended Zeldovich mechanism rate constants 

Reference Reaction A E/R Temperature 
Range 

Baulch et al, 1969 O+ N2 -aN+NO 1.36 x 10 0 38 000 
Baulch et al, 1973 O+ N2 -->N+N0 7.59 x 1013 0 38 000 2000 - 4000 
Harris et al, 1976 O+ N2 -aN+NO 1.82 x 10 0 38 000 2120 - 2480 
Blauwens et al, 1977 O+ N2 -+N+NO 6.03 x 10 0 38 000 1880 - 2350 
Monat et at, 1979 O+ N2 -4N+NO 1.82 x 10 0 38 370 2380 - 3850 
Seery & Zabielski, 1980 0+ N2 -+N+NO 1.78 x IOrr- 0 38 370 2120 - 2230 
Hanson & Salimian, 1984 O+ N2 --+N+NO 1.82 x 10 0 38 370 2000 - 4000 
Bittker & Scullin, 1984 O+ N2 -*N+NO 1.8 x 1014 0 38 433 Not stated 
Heywood, 1988 O+ N, -+N+NO 7.6 x 1011- 0 38 000 2000 - 5000 
Mellor et al, 1998 O+ N2 --ýN+NO 1.58 x 1014 0 38031 1200 - 2000 
Mellor et al, 1998 O+ N2 -4N+NO 1.63 x l0 0 38095 2000 - 2800 

Kistiakowsky & Volpi, 1957 N+02-+NO+O 1.99 x 10 0 3122 400 - 520 
Kaufman & Decker, 1959 N+02-+NO+O 1.81 x-107- 10 0 3912 1500 - 1700 
Clyne & Thrush, 1961 N+02-4NO+O 8.43 x1Q 0 3575 412 - 755 
Mavroyannis & Winkler, 1961 N+O2-4NO+O 2.29 x 10 0 2971 420 - 620 
Wray & Teare, 1962 N+O -. *NO+O 3.34 x 1013 0 0 5000 
Kretschmer & Peterson, 1963 N+02-->NO+O 5.0 x 10 0 0 350 
Schofield, 1967 (note 1) N+O, -+NO+O 1.52 x 1013 0 3924 400 - 1700 
Schofield, 1967 (note 2) N+02-*NO+O 1.48 x 10 1.5 2862 400 - 5000 
Baulch et al, 1969 N+O, -aNO+O 6.43 x 10 1 3147 Not stated 
Baulch et al, 1973 N+02-->NO+O 6.4 x 10 1 3150 300 - 3000 
Bittker & Scullin, 1984 N+02-4NO+O 6.4 7-1 -0 1 3150 Not stated 
Hanson & Salimian, 1984 N+02--*N0+O 1.6 x 10 1 4470 Not stated 
Heywood, 1988 N+O2-4NO+O 6.4 x 10 1 3150 300 - 3000 
Miller & Bowman, 1989 N+02-ENO+O 6.4 x 10 1 3162 Not stated 
Garo et al, 1992 N+02-+NO+O 6.4 x 10 1 3130 Not stated 
Glarborg et al, 1992 N+O2-*NO+O 6.46 x 10 1 3160 Not stated 
Mellor et al, 1998 N+02- *NO+O 2.56 x 10 0 3226 2200 - 2900 

Campbell & Thrush, 1968 N+OH-->NO+H 4.1 x 10 0 0 320 
Baulch et al, 1973 N+OH-*NO+H 4.1 x 10 0 0 Not stated 
Bowman, 1975 N+OH-*NO+H 1.0 x 10 0 0 300 - 2500 
Bittker & Scullin, 1984 N+OH- *NO+H 4. O x 10 0 0 Not stated 
Hanson & Salimian, 1984 N+OH->NO+H 2.6 x 10 0 0 Not stated 
Heywood, 1988 N+OH--NO+H 4.1 x 10 0 0 300 - 2500 
Miller & Bowman, 1989 N+OH-ENO+H 3.8 x 10 0 0 Not stated 
Glarborg et al, 1992 N+OH-NO+H 3.8 x 10 0 0 Not stated 
Mellor et al, 1998 N+OH-*NO+H 7.3 x 10 0 564 2200 - 2900 

Units: cm3, mole, s, K 

Note 1: Composite of data from Kaufman & Decker, Mavroyannis & Winkler, Clyne & Thrush and 
Kistiakowsky & Volpi. 

Note 2: Best fit data from Kaufman & Decker, Mavroyannis & Winkler, Clyne & Thrush Kistiakowsky 
& Volpi and Wray & Teare. 
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Table 2.3 

Extended Zeldovich mechanism reverse reaction rate constants 

Reference Reaction A E/R Temperature 
Range 

Heron, 1961 N+NO -ý O+ N2 13 1.02 x 10 0 0 300 
Clyne & Thrush, 1961 N+NO -ý 0+ N2 3.01 x 10 13 0 100.7 476 - 755 
Phillips & Schiff, 1962 N+NO -+ O+ N, 1.33 x 10 0 0 298 

Lavoie et at, 1970 (note a) N+NO -4 0+ N2 1.20 x 1013 0 0 300 
Hanson & Salimian, 1984 N+NO -* 0+ N, 2.63 x 1014 0 0 Not stated 
Heywood, 1988 N+NO --ý 0+ N, 1.60 x0 0 0 300 - 5000 
Miller & Bowman, 1989 N+NO --ý 0+ N, 3.27 x 10 Tr- - 0.3 0 Not stated 
Garo et at, 1992 N+NO -+ O+ N, 1.60 x 10 0 0 Not stated 
Glarborg et al, 1992 N+NO -a O+ N, 3.31 x 10 0.3 0 Not stated 
Mellor et at, 1998 N+NO -4 0+ N, 3.50 x 10 0 166 2200 - 2900 

Kaufman & Decker, 1959 (note b) NO+ 0 -* N+02 3.63 x 10 0 19900 1575 - 1665 
Wray & Teare, 1962 (note b) NO+ 0 -* N+O2 3.13 x 10 0 5000 
Schofield, 1967 (note c) NO+ 0 -a N+O, 3.19 x 10 1 19688 400 - 5000 
Clark et at, 1969 (note b) NO+ 0 -ý N+O, 8.91 x 10 0 3000 
Bauich et at, 1973 (note d) NO+ 0- N+O, 1.5 x 10 1 19500 1000 - 3000 
Hanson et al, 1974 (note b) NO+ 0 -4 N+02 2.34 x 10 1 19450 2500 - 4100 
McCullough et al, 1977 (note b) NO+ O -4 N+O2 1.74 x 10 1 19450 1750 - 2100 
Hanson & Salimian, 1984 NO+ 0 --> N+O, 3.81 x F07- 1 20820 1500 - 5000 
Heywood, 1988 NO+ 0 -ý N+O, 1.50 x 10 1 19500 1000 -3000 
Mellor et al, 1998 NO+ O -4 N+O, 5.6 x 10 0 19317 1200 - 2000 
Mellor et al, 1998 NO+ O -4 N+O2 5.6 x 10 0 19430 2000 - 2800 

Bradley & Craggs, 1975 (note b) NO+H-ý N+OH 3.47 x 1014 0 23940 2530 - 3020 
Duxbury & Pratt, 1975 (note b) NO+H-a N+OH 2.57 x 1014 0 24560 2200 - 3250 
Ando & Asaba, 1976 (note b) NO+H-4 N+OH 5.01 x 10 0 24510 2400 - 3500 
Floweret al, 1977 (note b) NO+H-a N+OH 2.24 x 1()14 0 25410 2400 - 4200 
McCullough et al, 1977 (note b) NO+H-* N+OH 1.74 x 1014 0 24760 1750 - 2040 
Hanson & Salimian, 1984 (note e) NO+H-4 N+OH 1.7 x 1014 0 24560 1750 - 4200 
Heywood, 1988 NO+H-ý N+OH 2.0 x 1014 0 23650 2200 - 4500 
Miller & Bowman, 1989 (note f) NO+H-4 N+OH 3.8 x 1013 0 0 Not stated 
Glarborg et at, 1992 NO+H-4 N+OH 3.8 x 10 0 0 Not stated 
Mellor eta], 1998 NO+H--* N+OH 2.02 x 1014 0 19317 1200 - 2000 
Mellor et al, 1998 NO+H-ý N+OH 1.82 x 1514 1 0 19430 2000 -2 800 

Units: cm3, mole, s, K 
Note a: Taken from Schofield (1967) 
Note b: Taken from Hanson and Salimian, 1984 
Note c: Taken from Schofield, best fit to Kistiakowsky & Volpi (1957), Kaufman & Decker (1959), 

Wray & Teare (1962), Mavroyannis & Winkler (1961) and Clyne & Thrush (1961). 
Note d: Evaluation was based on reverse rate. 
Note e: Obtained by a least-squares analysis of expressions from Duxbury & Pratt, Flower et al and 

McCullough et al 
Note f: Is given for the forward reaction. 
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2.1.5 Prompt or Rapid NO Formation 

Nitric oxide formation rates in combustion of hydrocarbon fuels can exceed those 

attributable to direct oxidation of molecular nitrogen by the extended Zeldovich or 

`thermal' mechanism, especially for rich conditions. This rapidly formed NO was 

termed `prompt NO' by Fenimore (1971) since the rapid NO formation was confined to 

regions near the flame zone. Typical levels of prompt NO range from a few parts per 

million by volume to more than 100 ppmv, (Miller and Bowman 1989). 

Fenimore (1971) conducted experimental studies of NO formation in atmospheric flat 

flames and noted a substantial amount of NO was formed very rapidly in the flame front 

of methane-air and ethylene-air flames, but not in CO-air or H2-air flames. Plotting NO 

concentration against time for ethylene-air flames indicated a flame zone or "prompt 

NO" formation. In contrast, thermal NO, as predicted by the Zeldovich mechanism, is 

rate controlled and requires a relatively long time scale for its formation. Fenimore 

postulated that reactions such as; 

CH+N2 = HCN+N 2.20 

may be responsible for breaking the N-N bond. Subsequent reactions of HCN and other 

molecules containing a single nitrogen atom could easily lead to NO. 

A number of other studies have shown that prompt NO in hydrocarbon flames is formed 

primarily by a reaction sequence that is initiated by the rapid reaction of hydrocarbon 

radicals with molecular nitrogen, leading to the formation of amines or cyano 

compounds that subsequently react to form NO (Miller and Bowman, 1989). 

Sterling and Wendt (1972) proposed a model for methane combustion, to test the 

Fenimore postulation, which involved the following reactions; 

CH3 + OH = CH2 + H2O 7.71 x 1014 exp (4 180 / RT) 2.21 

CH3 + N2 = HCN + NH2 4.60 x 1015 exp (19 000 / RT) 2.22 

CH2 + N2 = HCN + NH 2.04 x 1015 exp (41 700 / RT) 2.23 

CH2 + 02 = HCO + OH 7.38 x 1014 exp (1700 / RT) 2.24 
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For the test case of isothermal burning of methane at 2100 K and 114.2 per cent 

theoretical air, large quantities of HCN, NH and NH2 were produced, indicating that the 

Fenimore proposal could possibly be significant if the unknown reaction rates were 

high. 

Miller and Bowman, (1989), considered the following reactions: 

CH + N2 a HCN +N (Fenimore's postulation) 2.20 

CH2 + N2 rý HCN + NH (Sterling and Wendt's reaction) 2.23 

CH2 + N2 a H2CN +N 

C+N2aCN+N 

2.25 

2.26 

They confirmed that the original Fenimore postulation reaction 2.20, does lead to 

prompt NO formation. They illustrated the steps in the process with a reaction 

coordinate diagram. The authors summarized that further progress in modelling prompt 

NO in flames requires a direct and unambiguous determination of k2,19 at flame 

temperatures. They concluded from their calculations, that reaction 2.23 would be an 

insignificant contributor to prompt NO. But based on the rate data, the authors believed 

reaction 2.26 is a minor, but non-negligible contributor to prompt NO under most 

conditions. Moreover, because of the large endothermicity of the reaction, its 

importance with respect to reaction 2.20 increases with temperature. Miller and 

Bowman also concluded that prompt-NO formation involves 3 separate kinetic issues. 

1. The CH concentration and how it is established; 

2. The rate of molecular nitrogen fixation; that is, the value of k2.20; 

3, The rates of inter-conversion among fixed nitrogen fragments. 

They finally concluded that additional kinetic information is needed. 

An alternative explanation of prompt NO involves the rapid build up of radical species 

such as H, OH and 0 to high levels, which would cause large amounts of NO to form 

very quickly by the first reaction of the Zeldovich mechanism, 
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O+N2aNO+N 

because of the high oxygen level. 

2.1 

At present there is no absolute consensus regarding the mechanism behind prompt NO, 

the evidence that it occurs continues to increase. Since Fenimore's report it has been 

observed experimentally by many others, (Pershing & Berkau 1973). 

2.1.6 Formation of NO2 in Diesel Engines 

Chemical equilibrium considerations indicate that for burned gases at typical flame 

temperatures, NO2 INO ratios should be negligibly small, (Heywood 1988). The 

termolecular reaction; 

2NO + O2 -4 2NO2 2.27 

is far too slow to produce any measurable NO2 in the exhaust and NO2 loss is in fact 

more likely under conditions where reduction or hydrolysis in the exhaust pipe or 

sample train is possible. Experimental data, however, show that NO2 can be as high as 

30 to 50 per cent of the total exhaust oxides of nitrogen from a DI diesel (Hilliard and 

Wheeler, 1979, Ketcher, 1997). 

NO2 may be produced from NO by reactions proposed by Merryman et al (1975) 

NO +HO2aNO2+OH 2.28 

NO + OH a NO2 +H2.29 

Voiculescu and Borman (1978) used a dumping method to quickly transfer most of the 

cylinder contents of a 1.1 litre per cylinder DI diesel. A diaphragm and cutter system 

was utilized for this sampling. NO and NOx histories were obtained from the dumping 

data. In all cases they found the NO and NOx curves increased rapidly and then 

levelled off and approached the exhaust level, the rate of formation was dependent on 

load. They also found the NOx to NO ratio in the exhaust remained relatively constant, 
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ranging from 1.26 at the lowest load to 1.14 at the highest load. However, the in- 

cylinder ratio was higher in the rapid formation region and then decreased to the exhaust 

gas ratio. If NO may be converted to NO,, by small amounts of HC premixed with air in 

a diffusion flame, as has been suggested, the modelling of the NO2 may be even more 

complex than current assumptions. 
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Figure 2.7 NO2 emissions as a function of load from a6 litre 6 cylinder naturally 

aspirated DI diesel engine (Hilliard and Wheeler, 1979) 

Hilliard and Wheeler (1979) measured NO and NO2, against load and speed, from DI 

and IDI 6 litre 6 cylinder N/A diesel engines. These results are shown in Figures 2.7 

and 2.8 which illustrate that the NO2 component of NO,, can be high, as much as 31.5 

per cent at low load and speed conditions. The heterogeneous diesel combustion is 

favourable to NO2 formation and survival, at light load, because the high levels 

produced in the lean fringes of droplet burning have a high chance of survival by 

diffusing into the surrounding air, which will soon cool rapidly by adiabatic expansion. 

DI engines have inherently higher NO emission levels as well as lower working fluid 

temperatures after expansion. Both these factors would be expected to favour the 
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formation and survival of combustion generated NO2. It is therefore expected that DI 

engines would emit more NO2 than DI engines under comparable conditions. Hilliard 

and Wheeler (1979) also recorded a 20 per cent reduction in NO2 at the exhaust exit, 

which was put down to condensation or to adsorption of NO2 on soot. 
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Figure 2.8 NO emissions as a function of load from a6 litre 6 cylinder naturally 

aspirated DI diesel engine (Hilliard and Wheeler, 1979) 

More recent work at Ford, using a Fourier Transform Infrared (FTIR) analytical bench 

has indicated that NO2 levels from a turbocharged 2.5 litre high speed DI diesel in a 

Transit, may be as high as 50 per cent of the total NOx emissions, under the light load 

conditions during the ECE 15 part of the European emissions drive cycle (Ketcher 

1997). 

Pipho, Kittelson and Zarling (1991) reported measurements of NO and NO2 

concentrations in the combustion chamber and in the exhaust of an Isuzu 2.8L 4 
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cylinder DI diesel. The combustion measurements were made by total cylinder 

sampling, which showed that NOx begins to rise approximately 5 degrees crank angle 

before the start of combustion and rise steadily until about 30 degrees after TDC. An 

interesting result was the low level of NO2 that remained constant after 10 degrees from 

the start of combustion. However, substantial differences were found between the 

blow-down results and exhaust readings. The highest exhaust results for the blow-down 

conditions had a NO21NO ratio of 0.03 while the late blow-downs for the same 

condition had ratios of approximately 0.5. In order to investigate the possibility of the 

sampling process forming NO2 and the formation of NO2 early in the combustion cycle, 

a simple kinetic model for premixed combustion of methane was used. The kinetic 

simulations indicated that the measured NO21NO ratio for the blow-down experiments 

has a strong dependence on the cooling and dilution process, which the sample 

undergoes. The total NOx is essentially conserved during the process but the 

proportions of NO and NO2 in the cylinder cannot be determined, therefore 

interpretation of total cylinder sampling NO2 data is difficult. 

2.1.7 Summary 

" It is generally assumed that the thermal fixation of NO occurs according to the 

extended Zeldovich mechanism; 

0 +N2 NO+N 

N+02 a NO+O 

N+OHc-* NO+H 

" From the Zeldovich mechanism rate constants, it is evident that the rate of NO 

formation rises exponentially with temperature. According to the Zeldovich 

mechanism, NO is formed by atomic oxygen, which is the result of a 2-step 

thermal dissociation of the primary reaction products CO2 and H2O. The 2-step 

thermal dissociation is the reason for the temperature sensitivity of NO 

formation. 

" Extensive evidence in the literature confirms that in real diesel engines, NOx 

formation is indeed very sensitive to the peak flame temperature generated 
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during combustion. Conditions that lead to high in-cylinder temperature favour 

formation of higher levels of NOx, and vice versa. 

" Prompt or rapid NO formation may occur in the flame zone, through the 

formation of hydrocarbon radicals which break down the N2 bond to provide N 

radicals for NO formation. 

" Oxidation of NO to NO2 does occur in diesel engines, NO2 emissions can be as 

high as 30 to 50 per cent of the total nitrogen oxides from a DI diesel at low load 

and speed conditions. DI engines have inherently higher NO levels than IDI 

diesels, as well as lower working fluid temperatures after expansion. Both these 

factors favour the formation and survival of combustion generated NO2. DI 

engines are therefore likely to emit more NO2 than IDI engines under 

comparable conditions. 
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2.2 NOx Formation Models and Combustion Models 

2.2.1 Introduction 

The internal combustion engine represents one of the more challenging fluid mechanics 

problems to model because the flow is compressible, low Mach number in-cylinder, 

turbulent, unsteady, cyclic and non-stationary, both spatially and temporally. The 

combustion characteristics are greatly influenced by the details of the fuel preparation 

process and the distribution of fuel in the engine, which is, in turn, controlled by the in- 

cylinder fluid mechanics. Fuel injection introduces the complexity of describing the 

physics of dense, vaporizing two-phase flows. Pollutant emissions are controlled by the 

details of the turbulent fuel-air mixing and combustion processes and a detailed 

understanding of these processes is required in order to improve performance and 

reduce emissions while not compromising fuel economy (Rutland et al, 1995). 

Many models for engine combustion problems use the first law of thermodynamics as 

applied to either the entire cylinder contents or to sub-systems. Typically the major 

species of the products of combustion may be assumed to follow a shifting equilibrium 

process for thermodynamic purposes. For chemical kinetics calculations, many of the 

major species may also be assumed to be at the equilibrium concentration, (Olikara & 

Borman 1975). However, in practice NO formation and decomposition do not occur 

instantaneously, but require time to reach their equilibrium rates corresponding to the 

given temperature and pressure, but in an internal combustion engine, the equilibrium 

concentration itself changes continuously because the pressure, temperature and 

amounts of various species are continuously varying. The time for the NO formation 

process is usually comparable to or longer than the time for changes in engine 

conditions, so the formation process is kinetically controlled. However, for close to 

stoichiometric conditions at maximum pressures and burned gas temperatures, 

equilibrium NO concentrations may be attained (Heywood, 1988). 

In principle, if the evaporation and chemical reactions are taken into account, the 

coupling of three-dimensional modelling of spray processes with that of fluid dynamics 

for the airflow, will allow the numerical calculation of the diesel combustion process. 
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However most of the simulation codes have not yet been validated in terms of in- 

cylinder spray and air motion through adequate comparison with experimental results, 
hence they lack reliability at present. Additionally, for spray simulation, physical 

processes of break-up and impingement are still unsolved. The existent fluid dynamic 

codes are unable to simulate accurately the turbulent characteristics in the combustion 

chamber, although the predictions of the average flow velocities are in reasonably good 

agreement with experiments. With regards to the combustion process, the formation 

mechanisms of particulates, consisting of soot and adsorbed soluble organic fraction, 

are still unclear. For the formation of NOx a number of equations have been proposed 

mostly expanding on the Zeldovich mechanism, but there is a large variation in the 

assumed rate constants, in the literature. For these reasons it is clearly not possible to 

make accurate predictions of heat release, heat transfer and exhaust emissions by 

describing the thermo-fluid dynamics as well as the chemical reactions in diesel flames 

(Kamimoto and Kobayashi, 1991). 

Two basic types of model have been developed. These can be categorized as 

thermodynamic or fluid dynamic in nature, depending on whether the predominant 

equations are based on energy conservation or on a full analysis of the fluid motion. 

Thermodynamic energy-conservation-based models may be labelled as zero- 

dimensional, quasi-dimensional and phenomenological. Fluid-dynamic-based models 

are often called "multidimensional" models due to their ability to provide detailed 

geometric information on the flow field, based on solution of the governing flow 

equations (Heywood, 1988). 

Several phenomenological models were proposed in the 1970s for simulating heat 

release and NOx formation in the combustion chamber of diesel engines. In the 

eighties, with the progress of multi-dimensional modelling of spray and in-cylinder air 

motion, a new wave of numerical simulation of combustion process started and these 

models have been progressively refined during the 1990s. 
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2.2.2 Phenomenological Models 

Ahmad and Plee (1983) examined the influence of flame temperature on NOx emissions 
from a single cylinder light-duty DI diesel by varying the composition of the intake 

charge by adding either pure 02 or N2, at different speeds and loads. The effect of 

intake air composition on emissions was correlated with the diffusion flame temperature 

using the following expression. 

EI = Cmix exp (E/RTf) 2.18 

where, EI = emission index (g pollutants/kg fuel) 

Cmix = factor which depends upon flow characteristics 

E= overall activation energy (cal/mole) 

R= gas constant (cal/mole-K) 

Tf = stoichiometric adiabatic flame temperature (K) 

The flame temperature correlation (E/R) for EINOx obtained in an earlier study was - 
36,700 for both engine capacities with a divided chamber. This was consistent with the 

phenomenological model of diesel combustion proposed by the authors. The results 

from this study with the DI engines gave a correlation of -34,300 for TDC flame 

temperature and -35,300 with peak cycle temperature. As there was little difference 

between use of the flame temperature at TDC to the peak cycle temperature, (thus 

indicating that the NOx kinetics are insensitive to the combustion chamber geometry), 

the authors chose to use the former to represent this characteristic temperature. 

Kyriakides, Dent and Mehta (1986) extended their earlier phenomenological model to 

include the prediction of soot and nitric oxide emissions. They used the Zeldovich 

mechanism, equations 2.1 and 2.2, for the NO formation. The Lavoie extension was not 

used, so the influence of C and H on the production of NO was omitted. The Zeldovich 

mechanism constants were taken from Danshyear and Watfa (1974). The NO model 

gave reasonable accuracy compared to the experimental data, despite the simplified 

mechanism used. 
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Xiaobin and Wallace (1995) presented a phenomenological model, which they claimed 

strikes a balance between the complexity and computational cost compared to codes 

such as KIVA. In their study, the phenomenological model emphasized soot oxidation. 

The extended Zeldovich mechanism is used for the formation of NO and additional 

reactions involving the formation and destruction of NO2 are adopted from Slack and 

Grillo (1981). The model over predicted NOx emissions. Two possible reasons were 

suggested, use of the quasi-global chemical mechanism over-predicts the concentrations 

of radical species, which, especially in the early stage of combustion, will shift the NOx 

reaction in favour of higher concentrations; secondly, possible inadequate description of 

the mixing process. 

The quasi-dimensional phenomenological model developed by Bazari (1992,1994, 

1994) was used for this study and is covered in Chapters 4 and 5. 

2.2.3 Numerical Simulation Models 

Despite the above comments in the introduction, there have been a number of codes 

written to simulate combustion processes in diesel engines. Hiroyasu and Kadota 

(1976) developed a mathematical model for predicting the concentration of exhaust NO, 

soot and other emissions in a direct injection diesel engine. NO formation was 

predicted via the extended Zeldovich mechanism; the calculated values of exhaust NO 

were higher than measured data. One reason was that the calculated flame temperature 

was higher than expected. 

SCAN code 
Benjamin et al (1980) reported results using the computer code SCAN (Stratified 

Charge Engine Analyzer) which includes models for calculating the movement of the 

flame front as it passes through the mixture and also for the controlling processes of 

chemical kinetics, turbulence, wall friction and heat transfer. Their predictions showed 

reasonable agreement with hot-wire and laser doppler anemometry measurements. 

CONCHAS code 
Diwkar (1982) adopted the Los Alamos CONCHAS code (Butler et al, 1979) and used 

more realistic submodels for wall heat transfer and wall shear stresses to obtain better 

agreement with experimental data for a direct injection stratified charge engine. 
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PICALO code 
The above investigations used 2-dimensional geometry and flow conditions, which is 

unlikely to be true in a real engine. Duggal et al (1984) used the PICALO code to 

compute the in-cylinder flow field including fuel spray, droplet evaporation and 

combustion in a DI diesel engine. For the 3-D, 2-phase reactive flow, for evaporation 

and combustion, a flat bottom piston cavity was considered, which from practical terms 

is unrealistic. The calculated results showed that parameters such as fuel injector, 

computational grid and air swirl have a significant effect on the spread and evaporation 

of the liquid fuel spray. The former and latter are known to have a significant effect on 

diesel combustion from engine development results. The authors presented calculations 

of flame temperature distribution and cylinder pressure history, but the calculated 

temperatures were too high compared to measured data. This probably results from 

their assumption of instantaneous chemical reaction, without proper consideration for 

turbulence and the irregular nature of non-homogeneous combustion. 

KIVA code 
Amsden et al (1985) developed a comprehensive numerical code, named KIVA, that 

represents the spray dynamics, fluid flow, species transport, mixing, chemical reactions 

and accompanying heat release, that occur inside the cylinder of an engine. Since its 

public release in 1985, the KIVA computer program has been used for the time 

dependent analysis of chemically reacting flows with sprays in two and three 

dimensions. The new code, called KIVA-II, developed by the same group, was made 

public in early 1988. KIVA-II improves the earlier version in accuracy and efficiency 

of the physics sub-models, as well as in versatility and ease of use. The KIVA code was 

modified by Takenaka et al to simulate the combustion processes in a DI diesel engine 

with a multi-hole nozzle. The authors compared the predicted results with experimental 

data of time histories of chemical species, equivalence ratio and flame temperatures at 

various locations inside the combustion chamber. Compared to measured values, the 

flame temperature was found to be high, resulting in NO concentrations around 30 times 

measured values; also, other chemical species were seen to have different behaviours, 

all these discrepancies were attributed to poor prediction of the mixing process. 

Ikegami et al (1984) proposed a stochastic model consisting of the spray sub-model and 

the combustion sub-model to describe the combustion processes in direct injection 

diesel engines. In each sub-model, generation of turbulence and turbulent mixing of 
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fuel and air are taken into account and the heterogeneity and its devolution are described 

using Curl's collision-redispersion model. It was shown that the model can reproduce 

the entire course of the rate of heat release and exhaust NO concentration fairly well for 

a wide range of operating conditions. Brown and Heywood (1987) evaluated a 

stochastic mixing model for predicting nitric oxide and soot emissions from direct 

injection diesel engines. The unsteady reactive flow including gas flow, spray 
dynamics, combustion and turbulent mixing was calculated using the KIVA code and 

then the flow data was used to define zones to calculate zone processes and mass flow 

between zones. Each of these zones was modelled next as a stochastic mixing zone 

whose fundamental concept was Curl's coalescence/dispersion micro-mixing. 
Predictions of NO and soot concentrations were compared to experimental results 

obtained under different engine operating conditions. The results showed excellent 

convergence to the measured data, demonstrating that this is an efficient and accurate 

method for calculating slow and complex chemistry in turbulent reactive flows. The 

employment of stochastic mixing concepts demonstrates the importance of 

consideration for turbulent mixing in slow chemistry. 

Pinchon (1989) also modified the KIVA code to be applicable to very complex 

combustion shapes of a prechamber diesel. A k-epsilon turbulence model was used and 

the boundary conditions were described by the appropriate law-of-the-wall. Wall heat 

transfer rates were computed using a model based on a k-epsilon formulation. The 

spontaneous ignition was simulated by a four-step kinetics mechanism and the 

Magnussen eddy break-up combustion model was assumed. The complete model was 

applied to simulate the flow and combustion in a pre-chamber diesel engine. His 

calculation showed that addition of the glow plug in the pre-chamber reduces the swirl 

level to less than half its level without the plug. The computed flame development and 

global heat release are both in qualitative agreement with experiments. 

Ayoub and Reitz (1995) used KIVA-II with improvements in the spray, ignition, 

including Cetane Number modification, combustion and emission models, to simulate 

diesel engine cold starting. Warm-engine computed NOx emissions were in agreement 

with expected trends. Fusco et al (1995) used a modified version of KIVA-3 for a 
divided-chamber diesel, the chamber being representative of the conditions in the piston 
bowl of a naturally aspirated, swirl type, high speed DI diesel. There was optical access 
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to the chamber for flame imaging and temperature measurements. KIVA-3 can handle 

complex geometries using a block-structured mesh with indirect addressing, which 

allows only the activated cells to be taken into account during the calculations. 

Additionally, a new sub model for spray (Allocca 1994) and turbulent mixing-controlled 

model for high temperature combustion (Magnussen, 1976) improved KIVA-3. It was 

concluded that computations of temperature were in qualitative agreement with the 

flame emissivity measurements. Rutland et al (1995) used a modified version of the 

KIVA code for computations of in-cylinder flow, ignition, combustion, and emissions 

of NOx and soot, for a heavy duty truck engine. Improved sub models were used for 

intake flow, combustion, unburned HC, heat transfer, wall impingement, droplet drag, 

droplet break-up and atomisation, crevice flow, ignition, vaporization, soot and 

turbulence. The extended Zeldovich mechanism (Heywood 1976) was implemented for 

NO formation. NOx formation has been found to be very sensitive to small changes in 

the computed in-cylinder gas temperature field and in previous studies (Patterson et al, 

1994 and Kong et al, 1995) when a calibration factor was introduced to match predicted 

NOx with engine data. Rutland et al found the improved KIVA code gave accurate 

NOx predictions with the calibration factor close to unity. It would appear that the more 

accurate NOx prediction is due to the improved Renormalization Group theory (RNG) 

turbulence model that predicted lower peak temperatures. The updated model also 

successfully predicted the soot-NOx trade-off trend as a function of injection timing. 

SPEED code 
Gosman and Marooney (1989) outlined the features of the Imperial College SPEED 

code. A diesel spray version without combustion was in preparation at that time. One 

of the advantages of the SPEED code is the use of an unstructured mesh, which permits 

the easy fitting of complex engine geometries and in addition does not require any 

unused memory when combustion chambers with re-entrant features are present. 

2.2.4 Other Numerical Models 

Ishiguro et al (1988) proposed a 3-dimensional model for simulating the combustion 

process in a direct injection engine. The spray sub model employs a quasi-steady spray 

model to calculate the gas entrainment and jet penetration. The combustion sub model 

assumes the Magnussen's eddy dissipation concept that allows a description of the 
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formation of a combustible mixture due to turbulent mixing. The mixture is assumed to 

undergo an irreversible single-step chemical reaction. Computations show a reasonable 

degree of reproduction of the entire processes of heat release and flame evolution. 

Raine, Stone and Gould (1995) in reporting on the refinement of the ISIS (Integrated 

Spark Ignition Engine Simulation) computer model, review modelling of oxides of 

nitrogen. They assumed the extended Zeldovich mechanism for thermal NO formation 

and the Miller and Bowman `prompt' NO route. Additionally, the authors reviewed the 

rate coefficients for the extended Zeldovich mechanism reported in the literature by 

eight researchers and deduce that in view of the disagreement between rates that is 

apparent from fundamental chemical kinetic measurements, the choice for engine 

modelling work is unclear. In conclusion, NOx predictions resulting from using 

different reaction rates for the extended Zeldovich mechanism were compared, but the 

authors concluded that until comprehensive data are available for in-cylinder conditions 

at the start of compression, it is not possible to say which kinetic data give the best 

agreement. 

2.2.5 Summary 

" Diesel combustion represents one of the more challenging thermo-fluid 

mechanics problems to model because of the complex flows and presence of 

chemical reactions. 

" The combustion process and pollutant formation are greatly influenced by air 

motion and fuel preparation and distribution. 

" Fuel injection introduces the complexity of describing the physics of dense, 

vapourizing two-phase flows. 

" Pollutant emissions are controlled by the details of the turbulent fuel-air mixing 

and combustion processes. 

" The formation of NO is most commonly modelled on the extended Zeldovich 
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mechanism, but there is a large variation in the assumed rate constants, in the 

literature. 

" Because of the strong temperature dependence of the NO formation rate, any 

errors in determining the flame temperature will have a knock-on affect on the 

predicted NO levels. 

" Two basic types of model have been developed: thermodynamic and fluid 

dynamic. Thermodynamic models are zero-dimensional or quasi-dimensional 

and phenomenological. Fluid dynamic or "multidimensional" models can 

provide detailed geometric information on the flow field based on solution of the 

governing flow equations (Heywood). 

" There have been a number of zero-dimensional and multidimensional models 

developed, KIVA being one of the most widely used fluid dynamic model. 

" The majority of the multidimensional numerical models use the extended 

Zeldovich mechanism for the prediction of NO formation and emission. Some 

phenomological models use semi-empirical equations based on exponential 

expressions of a form similar to those describing the rates of chemical reactions. 
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2.3 NOx Reduction by Injection Retard 

It is well known that retarding the injection timing of a diesel engine reduces the 

formation and emissions of NOx. Retarding the injection timing causes the combustion 

event to occur later, after the piston has passed TDC and thus the maximum cylinder 

pressure and peak combustion temperature are reduced. As outlined in section 2.1, the 

formation of NOx is very dependent on temperature and with retarded combustion the 

reduction in peak gas temperature reduces the formation of NOx. The drawbacks to the 

use of injection retard for controlling NOx emissions are the trends to increase smoke 

and unburned HC emissions and worsen engine efficiency, which causes an increase in 

fuel consumption. These disadvantageous effects can be offset by modern fast-fuel-air- 

mixing direct injection combustion systems that enable the engine to operate at retarded 

timing with less detrimental results on soot and HC emissions and fuel consumption. 

Khan and Wang (1971) studied the effects of injection timing and injection rate in 

several DI engines. The experiments showed a significant reduction in NOx with 

injection retard. They found indications that an increase in the rate of fuel-air mixing 

reduced the sensitivity to changes in injection timing and could be used to reduce 

emissions of NO by operating at retarded injection timing without appreciably affecting 

smoke emissions. They postulated that it might be possible to retard injection timing by 

10 degrees (crank) without significant sacrifice in fuel economy. The slope of the NO 

versus injection timing curve varied between engines, but a 10-degree retard reduced 

NO concentration by a factor of 1.5 to 2.5. 

Yu and Shahed (1981) investigated the effects of injection retard on NOx emissions 

from a single cylinder DI engine. They observed the strong dependence of nitric oxide 

emissions on injection timing; increased emissions with advanced, and reduced 

emissions with retarded injection timing. Calculated histories of temperature, species 

concentration and nitric oxide formation illustrated that the decrease in NOx emissions 

at retarded injection timing was mainly due to a decrease in combustion temperature. 

At 8 degrees after SOC, NO formation was calculated as 1.35x10-4 g/deg at advanced 

injection timing and 0.16x 10"4 g/deg at retarded timing. However, the local molecular 

oxygen concentrations were similar for both injection timings. But the local 
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temperatures were 2666 K with advanced injection timing and 2405 K with retarded 

timing. So it was concluded that a temperature increase of 261 K increased the NO 

formation rate by about 8 times. 

Aoyama et al (1990) measured flame temperature by the two-colour method in a swirl 

chamber IDI and in a 2-valve DI with a re-entrant flat-bottomed combustion chamber. 

Combustion flame temperature distributions were examined and related to the NOx 

concentrations. In the IDI chamber at advanced injection timing, generating more NOx, 

the region of flame temperature 1900 to 2000 degrees C occurred at an early stage, and 

the regions above 2000 degrees C occupied a relatively wide area. At retarded timing 

these regions above 2000 degrees C were hardly observed. The DI engine was tested 

with pilot injection. With pilot and retarded main injection, NOx was reduced from 

385ppm to 300ppm. By the application of pilot, the flame regions above 1900 degrees 

C were narrower between 4 and 12 degrees after TDC, but wider at 16 degrees after 

TDC, compared to the standard injection timing. Injection timing retard reduced NOx 

by controlling the spatial development of the localized high-temperature regions. Pilot 

injection delayed the development of high-temperature regions and facilitated injection 

retard while maintaining fuel consumption. NOx was reduced by controlling the 

temporal development of the localized high-temperature regions, in addition to the 

effects of injection retard. 

Arcoumanis et al (1995) experimented with a transparent version of a production VW 

1.9 litre DI diesel engine using the two-colour method to measure in-cylinder flame 

temperature. They used the concept of "area-averaged flame temperature" to obtain 

comparisons between different engine operating conditions. At an engine running 

condition of 2000 rpm and 2 bar BMEP, two start of injection timing settings were 

tested, 2° and 8° BTDC. At the later injection timing of 2° BTDC the flame image at 

10° ATDC exhibited an average flame temperature of just above 2000K along the 

direction of three of the five sprays. At the earlier injection timing of 8° BTDC the 

image at 10° ATDC showed a strong increase in the areas of higher temperatures. Most 

of the flame core was at about 2200K with very high temperatures present at the edges 

of the flames. The authors concluded that advancing the time of fuel injection leads to 

increased overall temperatures and earlier peak temperatures at low loads 

Chapter 2 45 



Mikulic et al (1993) conducted experiments with a single cylinder DI engine based on 

the Mercedes-Benz 600 series. A camshaft actuated electronically controlled unit 
injector was used for this study. Testing was conducted at 2000 rpm and load 

equivalent to 2 bar BMEP without EGR. Using a small pilot and setting the main 
injection timing to give the same fuel consumption as operating without a pilot, NOx 

emissions were reduced from 10.6 g/h to 9.0 g/h. Retarding the main injection lead to 

further reduction of NOx, but accompanied by an increase in fuel consumption. 

2.3.1 Summary 

" Retarding injection timing will reduce NOx formation by lowering peak 

combustion temperatures, or by controlling the spatial development of the 

localized high-temperature regions. But this may also cause an increase in HC 

and smoke emissions, as well as an increase in fuel consumption. 

9 Pilot injection delays the development of high-temperature regions and can 

facilitate injection retard while maintaining fuel consumption. Thus controlling 

the temporal development of the localized high-temperature regions can reduce 

NOx without loss of efficiency. 
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2.4 NOx Reduction by EGR 

2.4.1 Introduction 

Exhaust gas re-circulation is currently the most effective method of reducing NOx 

emissions from light-duty diesel engines, since it is particularly beneficial at part load 

conditions. These conditions characterize the duty cycle of these types of engines and 

form the prevalent part of the emissions test drive cycle. At part load a diesel engine is 

operating at a high air to fuel ratio and therefore a large proportion of the intake air 

charge can be replaced with exhaust gases, up to around 60 per cent by volume for a 

high speed DI. EGR reduces the oxygen concentration and increases the heat absorbing 

capacity of the inlet charge, thus reducing the peak flame temperatures to lower the 

formation and emissions of NOx. EGR involves, in effect, the replacement of a small 

quantity of oxygen and nitrogen in the inlet air to the engine with carbon dioxide and 

water vapour from the exhaust. Since the specific heat capacity of both CO2 and water 

vapour is greater than that for oxygen, the gas temperatures within the engine cylinder 

during combustion are reduced (Ladommatos et al, 1996). Furthermore, by definition, 

EGR reduces the exhaust gas mass flow and so lowers the mass of NOx emitted per unit 

time or distance. 

Direct injection engines will tolerate much higher levels of EGR than IDI diesels. This 

is because all the intake air charge is in the combustion chamber within the cylinder, so 

dilution of the intake air by EGR affects the nominal air/fuel ratio. In the case of the 

IDI, approximately half the air charge is in the swirl or pre-combustion chamber in the 

cylinder head, where all the fuel is injected, forming a much richer mixture at half the 

nominal air/fuel ratio. Hence, for the IDI, dilution of the intake air is by far more 

critical to the already rich mixture in the pre-combustion chamber. In addition there 

will be more residual combustion gases retained in the pre-combustion chamber during 

the induction phase. 

Stawsky et al (1984) reported significant reductions in NOx with the use of EGR, 

ranging from 65 to 70 per cent at 20 per cent EGR. However at full load, this was 

accompanied by dramatic increases in CO, HC and particulates emissions. The authors 
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looked at combined EGR and a particulate filter to control both NOx and particulates. 
They concluded that further work was required owing to the increase in CO emissions. 

2.4.2 Definition of EGR 

The level of EGR is the amount of exhaust gas that is re-circulated into the intake 

charge, to replace fresh air. It is usually expressed as per cent of the normal airflow at 

that engine condition without EGR. This can be specified on a volumetric or mass 
basis. For convenience, EGR is often defined on a simple volumetric basis 

(Ladommatos et el, 1996, Horrocks and Robertson, 1996); 

EGR, %= (Vaf - Vac) 100% / Vaf 2.30 

where, Vaf = free air volume flow rate to the engine at full load without 
EGR, at a given engine speed 

Vac = free air volume flow rate to the engine at part load with EGR, 

at the same speed 

The above definition is convenient to use because only few parameters need to be 

measured during engine tests. However, it relates rather poorly to the definition based 

on mass flow rates: 

EGR,,, %= me 100% / me 2.31 

where, me = EGR mass flow rate to the engine at part load with EGR, at a given 

engine speed 

Mc = total inlet charge mass flow rate to the engine at part load with 

EGR, at the same speed 

Pittermann et al (1999) defined the exhaust re-circulation rate as: 

XEGR= MR/(ML + MR) 2.32 
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Where, mR = mass of recycled exhaust gas 

and, mL = mass air flow 

In practice, the authors used the oxygen concentration before and after the cylinder, 

which is clearly a lot easier to measure: 

XEGR= (O2L 
- 

O2VZ)/l °2L 
- 

°2nZ 
1 2.33 

where, O2L = oxygen concentration of air 
02VZ = oxygen concentration before the cylinder 
02nZ = oxygen concentration after the cylinder 

Since the mass flow rate of EGR is clearly difficult to measure directly, a crude 

calculation of EGRm may be made from measured data: 

EGRm %{ ma - 
(ma)EGR } 100% / ma 2.34 

where, ma = air mass flow rate to the engine at part load without EGR, at a 

given engine speed 

(ma)EGR = air mass flow rate to the engine at part load with EGR, at the 

same engine speed 

EGR may also be defined and measured based on the concentration of CO2, as used by 

Ricardo (Needham et al 1991), Pierpont et at (1995) and more recently by the 

Netherlands' Ministry of the Environment (VROM) and Ricardo (Havernith, et at 1997), 

as shown below: 

EGR = 
C02 (inlet - manifold) - CO2 (ambient) 

2.35 
CO2 (exhaust) 

If CO2 is measured with an analyser in ppm, this will provide EGR levels on a 

volumetric basis. 
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2.4.3 How EGR Works 

EGR will have the following effect on the intake charge of a diesel engine (Wilson et al 
1974). 

1. The new mixture is warmer (less so with EGR cooling) than the air alone (by 

virtue of introduction of heated combustion products). Even with EGR cooling, 

the exhaust gas re-circulated will be hotter than the charge air and will therefore 

increase the bulk intake charge temperature. 

2. The new mixture has a higher mean specific heat (since the combustion products 

H2O and CO2 have more degrees of freedom than air, which is diatomic). 

3. The mixture has reduced oxygen concentration. 

Additionally, 

4. The intake air mass flow is reduced (with conventional "diesel EGR"), and 

hence the exhaust gas mass flow is also reduced which contributes to lower 

vehicle tailpipe emissions in g/km. 

All the above have an effect on the flame structure, temperature and species profiles, 

following ignition. The reductions in nitric oxide emissions with EGR can be explained 

on the basis of predicted decrease in peak flame temperature in a diffusion flame. The 

factor dominating this suppression is the reduced oxygen mass fraction (Wilson, Muir 

and Pellicciotti, 1974). The authors conducted IDI and DI single cylinder engine 

studies to better characterise NO and soot formation in diesel flames, with respect to 

combustion chamber shape and compression ratio, swirl, and thermodynamic state of 

the intake charge and fuel injection parameters. With reference to the Zeldovich 

mechanism, which gives the NOx formation rate rising exponentially with temperature, 

the authors show that the factor dominating NOx suppression by EGR is the reduced 

oxygen mass fraction. 

Ladommatos et al, (1996) split the effects of EGR on diesel combustion and emissions, 

into dilution, chemical and thermal effects. The dilution effect is the reduction in the 

intake charge oxygen level from that of air. The chemical effect is the dissociation at 

high temperatures of carbon monoxide and water vapour in the EGR gases. The 
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thermal effect is the increase in the specific heat capacity of the charge gas with EGR, 

compared to that of air. 

2.4.4 Dilution Effect - Reduction of Charge Oxygen Level 

Dilution is defined as the reduction in oxygen mass fraction in the inlet charge to the 

engine through the addition of inert gases (Ladommatos et al 1996). 

It is important to note that the ambient oxygen mass fraction dominates the flame 

temperature. At 30 per cent EGR, by mass, C, and T. give rise to offsetting 2 per cent 

changes in flame temperature, whereas the oxygen mass fraction causes an 11 per cent 

suppression, (Wilson et a], 1974). 

Plee et al (1982) varied the intake oxygen concentration of two single cylinder, IDI 

engines by adding nitrogen, argon and oxygen, while maintaining a constant start of 

combustion. They concluded that the major influence on NOx emissions was because 

of the change in flame temperature rather than the oxygen availability. 

lida and Sato (1988) reported on oxygen enrichment of the intake charge of a DI diesel 

engine. At fixed injection timing, this resulted in an improvement in fuel consumption, 

a decrease in injection delay, an increase in NOx and a reduction in particulate 

emissions. In a later study, Lida (1993) used the two-colour method with a single action 

rapid compression machine, to reveal that the increase in oxygen concentration in the 

surrounding gas resulted in a shorter ignition delay and an increase in flame 

temperature. 

Mitchell et al of Pennsylvania State University (1993) experimented with an optically 

accessible 2-stroke DI diesel to investigate the effects of EGR. EGR was simulated 

using nitrogen and carbon dioxide as intake air diluents. A compressed air supply was 

used to simulate turbocharging and intake air temperature was maintained at 121 T. 

N2 and CO2 were chosen to isolate the effects of specific heat and 02 concentration of 

the intake gas. Keeping the start of combustion constant, four nitrogen dilution cases 

corresponding to 20.9,19.0,17.0 and 15.0 per cent 02, by volume, were examined and 

three CO2 dilution cases, as it was only possible to achieve consistent timing settings for 
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02 concentrations of 20.9,19.0 and 17.0 per cent with CO2 dilution. Heat release 

curves showed a substantial increase in premixed burn fraction with increasing dilution, 

because the reduced 02 concentration, from 20.9 to 15 per cent caused an increase in 

ignition delay. Pressure-volume diagrams were produced to find the indicated work 

done during the cycle. There was no significant change in work output when using N2 

dilution. However, the work decreased by 21 per cent when the intake 02 concentration 

was diluted from 20.9 to 17 per cent using CO2, owing to the change in specific heat of 

the in-cylinder gas. With N2 dilution there was no significant change in specific heat. 

Both N2 and CO2 were very effective in reducing NOx emissions see Figure 2.9. 
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Figure 2.9 Power specific NOx emissions as a function on intake oxygen 

concentration, 612cc single cylinder 2-stroke DI diesel engine 
(Mitchell et al, 1993) 

The initial NO formation rate given by Bowman (1975)(Equation 2.36) is extremely 

dependent on flame temperature but only half-order dependent on 02 concentration. 

d[NO] 6x 1016 
exp('_69O90 

)[0z] 
Z [NZ] 
ee 

2 2.36 

where the subscript e indicates equilibrium concentration. In a later publication, 

Bowman (1992) makes a small revision to this equation, as shown below in equation 

2.37. 
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d[NO]1,45x1 Q" (-69,460 ' 

dt , exp T 

)102]e 
'[N2], 2.37 

TZ 

The small dependence of NO formation rate on 02 concentration in the equation cannot 

explain the large reduction observed in NOx production with the variation in 02 used in 

the experiment. Thus the authors concluded that the reduction in NOx emissions must 
be due to lower flame temperatures. They plotted EINOx in g/kg fuel against inverse of 

calculated flame temperature shown in Figure 2.10, which yielded an activation energy 

of 73,600 cal/mole for NO formation. All the data using both diluents fell on the same 

line indicating the dominance of flame temperature. 
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Figure 2.10 NOx emissions versus inverse flame temperature, 

612cc single cylinder 2-stroke DI diesel engine 

(Mitchell et al, 1993) 

Ropke et al (1995) of VW studied the effect of oxygen concentration on NOx emissions 

from an optical 1.9 litre DI diesel engine. The 02 concentration was changed from 21 to 

12 per cent by adding up to 9 per cent N2. The side effects of the additional N2 were 

considered negligible. The NOx concentration was found to decrease exponentially as 

the 02 level was reduced from 21 to 12 per cent. Engine operation below 12 per cent 02 

concentration was found to be impractical owing to incomplete combustion leading to 

high HC and particulate emissions. Increasing levels of EGR caused a rapid decrease in 
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NOx levels and correlated well with the results obtained with low 02 concentrations. 

The light intensity of combustion was found to decrease rapidly with increasing EGR, 

as did the flame temperatures, measured by a 5-colour method. Computed NO levels, 

using a 2-zone model including the extended Zeldovich mechanism for the NO 

formation, gave a rapid reduction in NO as the 02 concentration decreased, in 

agreement with the measured data. Both the measurements and computations 

demonstrated that the 02 concentration of the intake charge was the main parameter 
influencing NO formation, through the effect on flame temperature. 
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Figure 2.11 Modelled effect of EGR on the combustion equivalence ratio and on 

the adiabatic flame temperature, for different loads (Lapuerta et al, 1995). 

Lapuerta, Salavert and Domenech (1995) concluded that the reduction of NOx 

emissions with EGR could be mainly explained by the reduction of the adiabatic flame 

temperature, which was a consequence of the lower oxygen concentration in the charge. 

They used a phenomenological combustion model, which had a thermodynamic sub- 

model to distinguish two non-spatially located zones for reactives and products of the 

combustion process. From the equilibrium composition obtained, the method proposed 

by Lavoie (1970) for the resolution of the extended Zeldovich mechanism, provided 

computer results of NOx emissions. The model was also used to calculate the adiabatic 

flame temperature and combustion equivalence ratio. Tests on a single cylinder DI 
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diesel engine, based on re-circulation of different amounts of exhaust gas, compared to 

reference tests without EGR, provided experimental data to validate the model and 

confirm the findings. Figure 2.11 shows the modelled effect of EGR on the combustion 

equivalence ratio and on the adiabatic flame temperature, for 3 different loads. Figure 

2.12 shows experimental results for NOx against increasing levels of EGR for 3 loads 

and Figure 2.13 illustrates the reduction of NOx with EGR versus oxygen 

concentration. 
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Figure 2.12 NOx and smoke (Bosch Units) measurements for different loads and 

EGR from a 572cc single cylinder DI diesel engine (Lapuerta et al, 1995). 
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Figure 2.13 Measured and computed NOx emissions for varying EGR and loads at 
2500 rpm, 572cc single cylinder DI diesel engine (Lapuerta et al, 1995). 

Arcoumanis et al (1995) used the two-colour method to measure in-cylinder flame 

temperature in a transparent version of a VW 1.9 litre DI diesel engine. At a running 

condition of 2000 rpm, 2 bar BMEP and 2° BTDC SOI increasing EGR from zero to 30 

per cent reduced the area of high temperature. Images at 14° and 18° ATDC showed a 

reduced number of areas at around 2200K compared to the zero EGR case. At 50 per 

cent EGR the trends were more pronounced. At 2000 rpm, 10 bar BMEP with 30 per 

cent EGR the flame image showed considerably lower average temperatures (2.4 per 

cent less) than the zero EGR case at 10° ATDC. There were also fewer areas of 2200K. 

At 18° ATDC the core temperature was at 2080K, down from 2240K without EGR. 

Ladommatos et al (1996) conducted a number of carefully controlled engine tests to 

isolate the dilution, thermal and chemical effects. To isolate the dilution effect, both the 

thermal and chemical effects had to be eliminated. This was achieved by replacing 

some 02 by a chemically inert gas, which had the same specific heat capacity as 02. 

The diluted charge caused the delay period to increase. A cetane improver was added to 

eliminate the effect of the longer ignition delay. The inlet charge dilution resulted in a 
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remarkable decrease in the in-cylinder peak heat flux, and the peak cylinder gas 

temperature and pressure. Both NO and NOx decreased with inlet charge dilution, the 
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Figure 2.14 NOx reductions with EGR versus oxygen concentration in the charge, 

572cc single cylinder DI diesel engine (Lapuerta et ai, 1995). 
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influence of oxygen availability and its consequent effect on flame temperature had the 

dominant effect (Ladommatos et al 1996). 

Ladommatos et al (1996) used, as an example, the case of a 2.5 litre DI TCI engine 

running at 2000 rpm, 5.6 bar BMEP, with EGR at 700°K displacing 25 per cent of the 

volume of the intake air at 300°K. They estimated that this resulted in a charge 

temperature of 360°K. The displacement of 02 by CO2 and H2O resulted in a reduction 

in the oxygen / fuel ratio of around 7 per cent. This reduction in the 02 concentration in 

the flame zone interferes with the fuel oxidation rate and reduces the flame temperature. 

According to Wilson et al (1974) the reduction in flame temperature owing to the lower 

02 availability is the dominant NOx suppressing mechanism. With 30 per cent EGR, 

Wilson et al estimated that the flame temperature would be suppressed by 11 per cent 

owing to the reduction in 02 concentration and 2 per cent because of the increase in 

specific heat capacity of the inlet charge. 

2.4.5 Chemical Effect 

The chemical effect of EGR refers to the dissociation of CO2 and H2O and the 

participation of the products of dissociation in the combustion process (Ladommatos et 

al, 1996). Ropke et al (1995) suggested that the addition of CO2 to the intake charge of 

diesel engines could lead to two-step thermal dissociation. The first step involves the 

dissociation of CO2 to produce 02 while in the second step 02 dissociates to produce 0, 

atomic oxygen. The atomic oxygen is essential for NO formation through the Zeldovich 

mechanisms. However, this source of atomic oxygen was found to be of minor 

importance, when applying EGR, because EGR also causes a decrease in flame 

temperature that lowers the rate of dissociation of CO2. 

On diluting the intake air with CO2 and nitrogen in separate experiments, Mitchell et al 

(1993) found that the addition of CO2 resulted in a substantial decrease in both NOx and 

soot emissions. 

Ladommatos et al (1996) investigated the chemical effect of EGR. They isolated the 

chemical effect by keeping the 02 concentration constant and maintaining the thermal 

capacity equal to air, even with an increased level of COZ, by removing some N2 and 
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adding argon to offset the higher heat capacity of CO2. Thus the chemical effect of 
C02, a principal constituent of EGR, was investigated. Moreover, the authors compared 

the cumulative dilution and chemical effect test, with the dilution effect, to give the 

actual chemical effect of the introduction of EGR. The chemical effect of CO2 was 
found to be responsible for about 10 per cent of the total reduction of NO and NOx 

emissions. They proposed that this could be attributable to the hydrocarbon radical 

reducing NOx, as reported by Miller and Bowman (1989). Additionally, CO emissions 

were doubled, to 2000 ppm with 6 per cent CO2 replacing oxygen in the intake charge. 
The reactive CO gas could have possibly reduced NOx (Ladommatos et al 1996). 

2.4.6 Thermal Effect - Specific Heat Capacity 

The thermal effect is defined as the reduction in NOx owing to the increase in specific 

heat capacity of the intake charge with EGR, or diluent gases, to that of air. Both 

carbon monoxide and water vapour, which are present in exhaust gas, have higher 

specific heat capacities than air. 

Ohigashi and Kuroda et al of Nissan Motor Company (1971) tested the hypothesis that 

NOx formation is primarily affected by heat capacity of the combustion gases and 

recycled exhaust. Tests were conducted in a spark ignition engine. Inert gases, helium, 

argon, nitrogen, carbon dioxide and water vapour were re-circulated, as well as exhaust 

gas, into the intake manifold. The authors plotted the heat capacity of the combustion 

gases per kg of fuel on NO levels, at A/F ratios of 13: 1,15: 1 and 17: 1, with varying 

amounts of admitted inert gases. The trend of the graphs indicated that as the heat 

capacity of the cylinder charge increased, the NO emissions were reduced for a given 

A/F ratio. They also found that increased heat capacity retarded the combustion, 

although they found that EGR is more effective than retarded ignition for controlling 

NOx emissions. 

Durnholz et al (1992) advocated hot EGR for high speed DI diesel engines to reduce 

NOx as well as HC and particulate emissions. They sighted the decisive factor for the 

reduction of the adiabatic combustion temperature as the higher molar heat capacity of 

the re-circulated exhaust gas in comparison with air. They experimented with added 

gases, using nitrogen and carbon dioxide. Carbon dioxide gave a greater reduction of 
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NOx than nitrogen, which they attributed to the 1.6 times higher molar heat capacity 

compared to nitrogen. They concluded that EGR has a specific influence on the local 

conditions that effect the NOx formation: 

"a larger amount of gas that does not participate in combustion but takes 

heat from the process 

" by a reduced probability that fuel and oxygen molecules meet. 
Durnholz et al (1992) favoured hot EGR because of the measured reduction in HC 

emissions, for a neutral effect on NOx, the latter being explained by the lower 

volumetric efficiency with hot EGR. Particulates were found to be relatively insensitive 

to intake temperature, because of the trade-off between soot and adsorbed 
hydrocarbons. 

Ladommatos (1996) split the effects of EGR on diesel combustion and emissions, into 

dilution, chemical and thermal effects. The thermal effect is the increase in the specific 
heat capacity of the charge gas with EGR, compared to that of air. The authors looked 

at the effects of carbon dioxide (CO2), one of the principal constituents of EGR. To 

isolate the thermal effect, the dilution and chemical effects were eliminated, by keeping 

the 02 concentration constant and using helium to replace some N2 , to increase the 

specific heat capacity of the charge. The thermal effect was found to be of minor 
importance in lowering NOx emissions, compared to the dilution and chemical effects. 

2.4.7 Latest Developments in Use of EGR for Reduction of NOx Emissions 

Apart from the wider use of electronic controls and closed loop feed-back on EGR valve 
lift (Ford 2.5 DI TIC in Transit) or on air mass flow, for more accurate operation of the 

EGR systems, in terms of effectiveness, the latest developments centre around the use 

of cooled EGR for HSDI diesels. Since un-cooled exhaust gases are considerably hotter 

than the intake air, replacing some of the intake air with EGR will cause a small 
increase in the overall charge temperature. This will have the tendency to increase NOx 

formation. The full potential of EGR in reducing NOx may be realised by cooling the 

EGR prior to mixing with the intake charge. Thus heating of the intake charge is 

minimised or the total charge may be cooled depending on the relative mass flows and 

temperatures. Cooling the EGR also moderates the decrease in engine volumetric 
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efficiency which allows a greater oxygen to fuel ratio at a given level of EGR. 

2.4.8 Cooled EGR 

The full potential of EGR in reducing NOx will not be realised unless the EGR is 

cooled. This is because the EGR is at high temperature, hotter than the intake air it 

replaces, which results in an increase in the overall intake charge temperature. 

Cooling the EGR prior to mixing with the intake air lowers the combustion 

temperatures and increases oxygen to fuel ratio. The higher flow of CO2 and H2O into 

the engine with cooled EGR increases the heat absorbing capacity of the inlet charge; 

the lower inlet charge temperature generally reduces the combustion temperatures. The 

slight increase in 02 availability may raise the flame temperature, (Wilson et al 1974), 

but is beneficial for soot control. Because the bulk intake charge density is higher with 

cooled EGR, the engine volumetric efficiency is increased compared to the case with 
hot EGR. This reduction in pumping work translates to an improvement in fuel 

consumption. 

Cooling the EGR will also have a number of other complex effects, some of them 

undesirable. For example, it can increase the ignition delay and the amount of premixed 
fuel burned. This would tend to increase NOx production depending on a number of 
factors including injection timing. With cooled EGR, the lower inlet charge and lower 

compressed gas temperature can also reduce the fuel vaporization and mixing rate and 
lead to an increase in exhaust hydrocarbon levels (Ladommatos et al, 1996). However, 

in practice further significant reductions in NOx, particulates and improvements in fuel 

economy may be achieved with cooled EGR, compared to hot EGR. 

Table 2.4 

EC Passenger Car Type Approval Standards - 91/441/EEC 

Diesel Engine Type CO 

g/km 

HC + NOx 

g/km 

Particulates 

g/km 

IDI diesel 2.72 0.97 0.14 

DI diesel derogation (40%) until 1994 3.81 1.36 0.20 
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Ford introduced an EGR cooler for the 85PS turbocharged 2.5 litre DI diesel in Transit 

in 1995. The application of cooled EGR, with some revisions to the calibration, enabled 

this vehicle to meet the EC Stage 1 passenger car emission standards. The EGR cooler 

provided the ability to flow a greater mass of EGR. A diagram of this system is shown 

in Figure 3.10 in Chapter 3. The earlier model introduced in 1993, without EGR 

cooler, met Stage 1 passenger car standards with the 40 per cent DI derogation. Table 

2.4 shows the relevant emissions levels. 
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Figure 2.15 The effect on in-cylinder and exhaust NOx concentration for inter- 

cooling and cooled EGR, Ford 2.5 turbocharged DI diesel engine 

(Ladommatos et al, 1996) 
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The advantages of inter-cooling and EGR cooling on NOx emissions are nicely 
illustrated by the in-cylinder measurements taken at Brunel University by Ladommatos 

et al (1996) on a Ford 2.5 litre turbocharged DI diesel. Figure 2.15 shows in-cylinder 

and exhaust NOx concentrations for EGR levels of zero, 42 and 47 per cent, while 

maintaining an almost constant intake charge temperature of 82°C by inter-cooling and 

EGR cooling. The in-cylinder and tail pipe NOx levels were more than halved by 42 

per cent EGR, at a similar charge temperature. 

Cooled EGR was applied to a prototype 1.8 litre DI turbocharged and inter-cooled 

engine installed in an Escort car. The benefit the EGR cooler had on NOx emissions 

and fuel economy, without any deterioration in particulate emissions is illustrated in 

Figure 2.16 (Hawley et al, 1998). 
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Figure 2.16 Histogram illustrating the benefit of EGR cooling on NOx and Pm 

emissions and fuel economy for a prototype 1.8 litre DI TCI diesel in an Escort car. 

(Hawley et al, 1998) 

Torpey, Whitehead and Wright of Ricardo (1971) compared emissions from a DI and 

IDI Ricardo E16 single cylinder engine. In general the DI emitted twice the NO 

emissions than the IDI at optimum injection timing, although similar amounts of 
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injection retard brought the peak levels much closer to the IDI. Cold EGR was found to 

be more effective than hot EGR in reducing NO levels from the IDI diesel. It is 

interesting to note that while these authors concluded that cold EGR was more effective, 

it was not until 1995 when Ford introduced an EGR cooler for the 2.5 diesel in Transit, 

that this concept was used for a production automotive engine. 

Ladommatos et al (1996) conducted experiments with a 2.5 litre turbocharged DI diesel 

engine which demonstrated that at 2000 rpm, 3 bar BMEP, cooling EGR at a nominal 

volumetric rate of 48 per cent, reduced the charge temperature from 124 to 82 degrees 

C. This also increased the mass flow of EGR. A substantial reduction in in-cylinder 

NOx formation and exhaust level was achieved by keeping the start of combustion 

constant, by advancing the injection timing to compensate for the longer delay period 

with the cooler charge, see Figure 2.17. They compared the un-cooled and cooled EGR 

cases, for 25 per cent EGR by volume, at an engine speed of 2000 rpm and 5.6 bar 

BMEP, for a 2.5 litre T/C DI diesel. Cooling the EGR had the following effects on the 

intake charge: 

" maintained the inlet charge at 49 g/s as opposed to 42 g/s with hot EGR 

9 resulted in 1.2 g/s of CO2 and 0.5 g/s of H2O in the inlet charge to the 

engine compared to 0.52 g/s of C02 and 0.2 g/s of H2O when EGR is 

hot 

" resulted in 10 g/s of 02 in the inlet charge to the engine compared to 

9.13 g/s of 02 when EGR is hot 

" the inlet charge temperature was at 300 K compared to 360 K with hot 

EGR. 
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Figure 2.17 The effect on in-cylinder NOx concentration, of cooling the inlet 

charge with EGR at constant start of combustion, at 2000 rpm, 3 bar BMEP. Ford 

2.5 DI turbocharged diesel engine (Ladommatos et al, 1996) 

Horrocks and Robertson (1996) described the EGR system for a prototype 16-valve 2.5 

litre high speed DI diesel. A schematic diagram of the EGR system is shown in Figure 

2.18. An Electronic Control Unit (ECU), which, together with pump control also 
included the capability of modulated control of EGR valve and EGR throttle, and 

subsequently control of intake port de-activation. The ECU took information from a 

complete spectrum of engine sensors including crankshaft position, coolant temperature, 

air charge temperature and pressure, EGR control positional feedback, together with 
feedback from the pump itself. The EGR hardware consisted of an electronically 

controlled vacuum operated poppet type EGR valve mounted on the exhaust manifold, 
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the EGR gases were then cooled by passing through a Serck gas to water shell-and-tube 

heat exchanger, engine coolant was used for the water side cooling media. To generate 

sufficient pressure drop to flow the desired volume of EGR under some part load 

regions where EGR optimum levels for best emissions were higher than would naturally 

flow through the EGR valve, a throttle valve was incorporated in the induction system. 

This was operated when desired, such that boost pressure and air charge flow was 

restricted to favour the flow of exhaust gases from the EGR cooler. 

Modulated 
EGR Throttle 

Air fr 
Turbo 
ComF 

Intake Manifold 

Exhaust Manifold 

Modulated 
EGR Valve 

Figure 2.18 Schematic diagram of EGR system used on a prototype 16-valve 2.5 

litre DI diesel engine (Horrocks and Robertson, 1996) 

A review of production diesel engine EGR systems is included in Chapter 3. 

2.4.9 Additional EGR 

The conventional method of introducing EGR in diesel engines involves displacing 

some of the intake air with exhaust gas, causing a reduction in the air/fuel ratio, for a 

given engine speed and torque. If EGR could be added to the intake air charge, the 

air/fuel ratio would be maintained. Thus with "additional" EGR, the oxygen to fuel 

ratio would be maintained constant, so as not to increase significantly the soot 

production from the engine. The CO2 and water vapour in the EGR then becomes 
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"additional" to the airflow to the engine, absorbing energy released during combustion, 
lowering the flame temperature and NOx formation. This method can potentially 
deliver large reductions in NOx with significantly less increase in particulate emissions 

than conventional EGR. 

"Additional" EGR is best applied to a turbocharged engine with a variable geometry 

turbocharger and a venturi in the intake system to provide a favourable pressure 
difference to aid the exhaust gas flow into the intake system. Baert et al (1996) 

developed such a system for a 12 litre heavy-duty diesel engine. The authors' objective 

was a 50 per cent reduction in NOx over the ECE R49 cycle, without any increase in 

particulates. Thus EGR was required under full load conditions. To achieve this, the 

authors used a short EGR route, tapping-off exhaust gas before the turbine, cooling the 

gas and mixing it with the intake air by a venturi, after the compressor and intercooler. 

As the variable geometry turbine flow area was reduced, by closing down the vanes, 

pre-turbine pressure increased. When this pressure exceeded that at the venturi throat, 

EGR flowed. The authors were able to flow 15 per cent additional EGR over most of 

the engine operating range. 

Ladommatos et al (1996) conducted some engine tests where an additional I g/s per 

cylinder CO2 was added to the normal air mass flow rate of 10 g/s per cylinder. 

Substantial reductions in NOx emissions were recorded, in excess of 60 per cent, but 

this was accompanied by a 40 per cent increase in HC emissions and a 35 per cent 

increase in particulates. The increase in particulates was found to be entirely due to the 

shorter delay period. Bringing the delay period back to the baseline level with an 

ignition improver returned the particulates back to the baseline level as well. 

2.4.10 Water Injection 

Water injection may be classified into three cases (Odaka 1991): 

a) in-cylinder water injection, where water is injected directly into the combustion 

chamber 
b) injection outside the cylinder, where water is mixed with the inlet air charge in 

the intake system 

c) water-oil-emulsion, where the water is mixed with the fuel to form an emulsion 
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Odaka (1991) selected to use inlet manifold water injection because of the low pressure 

necessary and the fact that there was no requirement to modify the combustion chamber 

or fuel injection system. Water was injected towards the intake port, during the 

induction cycle of each cylinder. Injection quantity was related to engine speed and 

controlled by varying the nozzle opening time. Over 40 per cent reduction in NOx was 

obtained at full load with 30 litre/hour water injection, this was at approximately 0.7 

water to fuel weight ratio (W/F). For a given W/F ratio, the reduction in NOx was 

greater at higher engine loads. Emissions of HC increased at part load with the use of 

water injection. A slight increase in smoke was observed as the absolute humidity of 

the intake charge was increased. With a combination of water injection and EGR, NOx 

reductions of 50 to over 70 per cent were achieved, over the load range at an 
intermediate speed. Optimum NOx reduction was achieved with a combination of EGR 

and modulated water injection, which reduced water consumption to around 30 per cent 

of fuel flow. Corrosion and water consumption were cited as disadvantages to this 

method. 

Torpey, Whitehead and Wright of Ricardo (1971) found water injection, into the inlet 

manifold, to be very effective in reducing NOx emissions levels from an IDI Ricardo 

E16 single cylinder engine, although the authors acknowledged that long-term effects of 

water injection must be investigated before it could be used as a practical method of 

reducing NO emissions. For automotive use there is the additional issue of storing the 

water on the vehicle and introducing it into the engine in a controlled manner. 

Ishida and Chen of Nagasaki University (1994) investigated the effect of added water in 

the intake air and emulsified fuel, on NO formation. Both experimental and theoretical 

analyses were conducted, considering the changes in specific heat and air entrainment 

rate of the burned gas in the combustion chamber. The specific heat was calculated by 

the chemical equilibrium composition analysis considering the absolute humidity of the 

intake air, the amount of water added in the emulsified fuel as well as the residual gas 
fraction. To estimate the NO formation rate, the authors used a two-zone combustion 

model to calculate the burned gas temperature. Experimental engine tests showed that 

0.01 kg/kg increase in absolute humidity of the intake air, corresponding roughly to 1 

per cent increase in specific heat capacity, resulted in approximately 20 per cent 

reduction in NOx emissions. It was also shown that the NOx reduction owing to 20 per 
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cent water emulsified in the fuel was almost equal to that of the I per cent increase in 

specific heat capacity of the intake air. 

Water vapour addition to the intake gas should have a similar effect on the NO 

formation as C02, the increased heat capacity lowering the flame temperature and 
reducing NO formation. Both gases are 3-atomic molecules with high heat capacity and 

can produce 02 by thermal decomposition. The molar heat capacity of H2O is, 

however, less than that of CO2. Both engine measurements and computed results by 

Ropke et al (1995) demonstrated a significant reduction in NOx with the addition of 

water vapour in the intake charge. 

Using water-in-oil emulsions with an ASTM-CFR engine, Cook and Law (1978) found 

that the optimum amount of water addition for minimum emissions was between 10 and 
20 per cent. 

The use of water injection, particularly with EGR, is an effective method of reducing 
NOx emissions from diesel engines. However, for automotive diesel engines water 
injection poses a number of problems that make it virtually impractical for vehicles, 

particularly passenger cars. Firstly, an extra storage tank on the vehicle would be 

required, which would need to be around a quarter the size of the fuel tank; or a similar 
increase in the size of fuel tank would be required in the case of water-in-fuel 

emulsions. Secondly, a means would be required for the controlled introduction of the 

water to the engine, that is, an additional metering system. If the water was combined 

with the fuel before the engine fuel injection pump, which would have to be in the form 

of an emulsion, there is the issue of corrosion of the high-pressure injection pump, pipes 

and injectors. There is also the additional volume of liquid to be injected by the fuel 

injection system. Finally, there will be a greater risk of in-cylinder corrosion. 

2.4.11 Summary 

" Exhaust gas re-circulation is a system whereby a proportion of the exhaust gas is 

diverted back into the intake system. Presently, diesel systems replace air with 
EGR gas, up to 60 per cent by volume. 
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" EGR is currently a very effective way of reducing NOx emissions at part load. 

" EGR reduces NOx formation and emissions by lowering the flame temperature. 

" EGR lowers the flame temperature through two effects; by dilution, reducing the 

oxygen mass fraction, and by a thermal effect, increasing the specific heat 

capacity of the charge. The dilution effect is by far the greater of the two. 

" Cooling EGR prior to mixing with the intake charge provides further reductions 

of NOx emissions and is generally beneficial to particulates. The higher 

volumetric efficiency with cooled EGR leads to an improvement in fuel 

economy. 

" Practical EGR systems consist of an EGR valve and a transfer pipe connected to 

the intake system, and a control system. Additional components such as an air 
flow meter, a throttle valve and cooler may be added to the system for improved 

control and effectiveness. 

9 Additional EGR may provide further reductions in NOx by enabling EGR to be 

used at full load. 

" Water addition, either injected with the intake air charge, or as a water-in-fuel 

emulsion, will reduce NOx emissions and is more effective in combination with 

EGR. However it is impractical for automotive use owing to the relatively large 

amount of water required and problems with corrosion. 
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2.5 Fuel Effects on NOx Emissions 

2.5.1 Introduction 

Diesel fuel will affect the NOx emissions from diesel engines in two fundamental ways, 
by the physical and the chemical properties. It is, however, quite difficult to separate 

the effects of each, because the two sets of properties are to a large extent 
interdependent and it is hard to prepare fuels with different physical properties without 

affecting the chemical properties, and vice versa. Diesel fuel injection pumps 

effectively control the injected fuel quantity on a volumetric basis, thus the physical 

properties of the fuel, such as density and viscosity will affect the mass of fuel injected. 

The viscosity also affects the fuel spray formation and thereby, the air/fuel mixing. The 

viscosity of the fuel will also affect the timing control on mechanical pumps for high- 

speed engines and the sensitivity of injection timing to NOx emissions has been 

documented already. The chemical properties will affect the delay period, ignition 

temperature and consequently the heat release profile. It is obvious that the longer the 
delay period, the greater will be the amount of fuel accumulated in the combustion 

chamber before the start of combustion. This results in higher rates of pressure rise and 

maximum gas pressures and temperatures (Patterson and Henein, 1972). The 

relationship between increased maximum flame temperature and higher rates of NOx 

emissions has been well established in an earlier section. 

The fuel properties reviewed under this section are those that will influence the 
formation of NOx; namely, density, viscosity, cetane number, volatility and the 
hydrocarbon type. Fuel additives for improving cetane number, NOx reduction 

additives and oxygenates, are also reviewed. 

2.5.2 Density 

Because diesel engine fuel injection pumps are in the main controlled on a volumetric 
basis, changes in fuel density will affect the mass of fuel injected. An increase in fuel 

density will therefore increase the mass of fuel injected for a given engine condition and 

ultimately enable the engine to produce a higher BMEP at full load. This will cause an 
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increase in peak pressures and temperatures leading to an increase in NOx formation 

and emission. If the engine has part load timing control and an EGR system which uses 

the fuel injection pump speed control lever as an engine load input signal, then a change 
in fuel density will cause an error in these controls and the level of EGR, compared to 

the original calibration with the reference fuel. For example, an increase in fuel density 

will reduce the fuel pump lever angle at part load for a given BMEP. 

Burley and Rosebrock (1979) conducted engine tests using an Oldsmobile 5.7 litre IDI 

diesel, at 5 speed/load points with 46 experimental fuels. The fuels comprised of fuel 

blends, fuel additives, emulsions and heated fuels. They found that oxides of nitrogen 

did not correlate well with fuel characteristics. A statistical analysis indicated only 

slight correlation, but NOx emissions appeared related to aromatic content, specific 

gravity (density) and 90 per cent boiling point. They found, tentatively, that low values 

of these characteristics were accompanied by low NOx. 

McCarthy et al (1992) demonstrated a good correlation between reducing NOx 

emissions with increasing American Petroleum Institute (API) gravity, that is, with 

lower specific gravity. This would be due to two factors, the lower fuel specific gravity 

would reduce full load power and secondly there was a reduction in aromatic content 

and hence a shorter delay period. The testing was conducted with a 1994 emission level 

Navistar DTA 466 heavy-duty DI diesel following the EPA transient test procedure. 

2.5.3 Viscosity 

Fuel dynamic viscosity will effect the mechanical operation of the fuel injection pump. 

High viscosity will increase the loading on the pump and the injection pressure levels, 

whilst low viscosity will increase leakage past the pumping elements. A change in the 

relationship between the speed control lever and the quantity of fuel delivered by a 

mechanically controlled pump, may affect the quantity of EGR if the control system 

relies on the speed control lever for fuel quantity input. Low viscosity may also result 

in increased wear of the moving components of the pump. 

Miyamoto et a] (1992) found that NOx emissions decreased at 3 injection timings, with 
increasing kinematic viscosity. This was because the higher viscosity lead to decreased 
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premixed combustion in a single cylinder DI naturally aspirated engine. This indicated 

deterioration in mixture formation with higher kinematic viscosity fuels. 

2.5.4 Cetane Number 

For a given number of carbon atoms, the straight-chain alkanes have the highest cetane 

numbers. Within this series; the larger the molecule the higher the cetane number. The 

best fuels for compression-ignition engines are high in alkane content, with average 

molecular weights greater than those of gasolines, typically a molecular weight of 170 

for automotive diesel fuel compared to 110 for gasoline (Heywood 1988). Commercial 

kerosene is an excellent compression-ignition fuel. Isomeric compounds, double 

bonded alkenes and aromatics have molecules that are more resistant to pyrolosis and, 

therefore, have lower cetane numbers. 

One of the properties of fuel that could be expected to influence NOx emissions is 

cetane number, because it will affect ignition delay and hence the amount of fuel mixed 

prior to the start of combustion. It is widely accepted that increasing the cetane number 

represents one option for production of cleaner burning diesel fuels. Numerous studies 
have demonstrated that increasing cetane number of the fuel significantly reduces all the 

regulated emissions, especially particulate matter and nitrogen oxide (Nandi et al, 
1994). Broering and Holtman (1974) found cetane number to be the most significant 
fuel property affecting emissions. They reported between 23 to 25 per cent increase in 

NOx levels when changing from 47 to 33 cetane fuel, also that naturally aspirated 

engines were more sensitive than turbocharged versions. Flanigan et al (1989) 

reported higher NOx levels for fuel blends of pure hydrocarbons owing to longer 

ignition delays. From their regression analysis the production of NOx appeared 
dependent upon the start of combustion, which will dictate peak temperatures. Ullman 

et al (1990) reported NOx reduction by increasing cetane number when testing a 1991 

prototype DDC Series 60 heavy-duty diesel. Their regression model predicted that 

increasing cetane number by 10 would reduce NOx by 3 per cent. McCathy of Amoco 

Oil and Slodowske et al of Navistar (1992) found that raising cetane number reduced all 

regulated emissions when studying the effect of fuel cetane number on emissions from a 
heavy-duty diesel engine which met 1994 emissions standards. They concluded that 

NOx reduction by raising cetane with a cetane improver is about 10 times more cost 
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effective than NOx reduction by reducing aromatic content alone. Heaton et al (1993) 

confirmed the trend of higher cetane numbers resulting in lower NOx levels when 
testing light-duty and heavy-duty diesel engines, with fuels ranging from 47 to 61 

cetane number. Spreen et al (1995) of Southwest Research demonstrated the same 

effect on a prototype Navistar DTA-466 engine when testing fuels with cetane numbers 

ranging from 44 to 59; NOx emissions were reduced by 0.131 to 0.200 g/hp. h for a 

cetane increase of 10, the effect being greater for a more retarded calibration. 

Bartlett et al (1992) found that DI engines showed a trend towards reducing NOx 

emissions with increasing cetane number, with 2 engines showing reasonable 

correlations. Three Ricardo Comet-type IDI engines exhibited the opposite trend. This 

is probably due to the higher cetane number reducing the delay period, as it will do in 

the DI engines, but in the case of the IDI, because of the normally retarded combustion, 

this will result in higher combustion pressures and temperatures leading to an increase 

in NOx emissions. 

Cetane Number reduces NO Emissions 
OM 366 LA, ECE R 49 test 
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Figure 2.19 Non-linear regression model of NOx emissions versus cetane 

number, Mercedes-Benz OM 366LA 6 litre 6 cylinder DI diesel engine 

(Lange et al, 1993) 
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Lange et al (1993) found no significant fuel effects on NOx emissions from a Mercedes- 

Benz 250D equipped with an OM 602 2.5 litre 5 cylinder pre-chamber N/A diesel. 

However, when testing the same 12 fuels with an OM 366LA 6 litre 6 cylinder DI 

turbocharged and inter-cooled diesel, there was a strong non-linear relationship with 

cetane number. Increasing cetane number, particularly from 45 to 55, reduced NOx 

emissions. Above 55 cetane there was less reduction of NOx, see Figure 2.19. 

2.5.5 Cetane Improvers 

Increasing cetane number of diesel fuel can be achieved either by lowering the aromatic 

content of the fuel, or by addition of chemical cetane improvers. It is generally 

recognised that chemical cetane improvement additives represent a low cost alternative 
to obtaining higher natural cetane through aromatic reduction. The use of 2-ethylhexyl 

nitrate as a chemical cetane enhancer is well established commercially. The 

commercial use of "peroxides, " such as di-t-butyl peroxide (DTBP), as a cetane 
improvement additive is relatively new (Nandi et al 1994). It has been demonstrated in 

one engine and using one fuel that di-t-butyl peroxide can provide a small NOx 

reduction advantage compared to 2-ethylhexyl nitrate at equivalent cetane number 
(Liotta F J, 1993). 

The effect of adding an alkyl nitrate cetane improver to increase the fuel cetane number 

and the consequent effect on NOx emissions when fuel nitrogen has been increased is 

an interesting point. Ullman et al (1990) conducted an experiment to determine whether 

or not the increased nitrogen level in the fuel masked the true reduction in NOx 

emissions, owing to the higher cetane number. Two quantities of a fuel were treated 

with alkyl nitrate and with ditertiary butyl peroxide to achieve the same cetane number. 
When both fuels were run, no differences in NOx or other emissions were observed. It 

can be concluded therefore that in this case, the nitrogen from the cetane improver, did 

not contribute to NOx emissions. 

Nandi et al (1994) reported a small reduction in NOx emissions from cetane-improved 
fuels, compared to the base fuels. A direct comparison of heavy-duty diesel emissions 
from a DDC Series 60 engine was carried out with 3 different diesel fuels treated with 
di-t-butyl peroxide and 2-ethyhexyl nitrate to give equal cetane numbers. NOx 
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emissions from a low aromatic fuel containing the additives were not significantly 
different from the base fuel. But both additives produced 3 to 4 per cent reductions in 

NOx emissions in two higher aromatic fuels. The NOx emissions from the peroxide 

treated fuels, although not statistically significant, were lower than those from the 

nitrate treated fuels, in each of the base fuels. The peroxide produced about 0.5 to 1 per 

cent lower NOx, compared to the nitrate additive. 

Andrews and Nurein (1990) evaluated Energy Plus D-2000 additive, which is almost 

entirely hydrocarbon in composition. This was carried out with a Petter AV I 553cc 

single cylinder DI diesel and A-2 diesel fuel, which had a cetane number of 47. Despite 

the fact that ignition delay was reduced for all engine loads, there was no significant 
influence of the additive concentration on the NOx emissions, although a slight 

reduction in NOx at high air/fuel ratios was indicated. 

Ladommatos, Parsi and Knowles (1996) progressively increased the cetane number of a 
base fuel by the addition of an ignition improver based on ethyl hexyl nitrate to increase 

the Getane number from 40.2 to 62. The testing was conducted on a CFR engine. As 

cetane number increased, the NOx level generally decreased and this was the case for 

constant start of combustion and constant injection timing; although with the latter, the 

reduction in NOx levelled off at cetane numbers above 53. The decline in NOx 

concentration with increasing cetane number can be explained by decreasing cylinder 

gas temperature. An increase in cetane number shortens the delay period, which results 
in less fuel being burnt during premixed combustion, this in turn leads to lower peak 

cylinder gas temperatures. The reduced effect of high cetane fuel on NOx emissions 

when using constant start of injection is because the timing of combustion is effectively 

advanced, owing to the shorter delay period. 

2.5.6 Volatility 

Volatility will affect the rate of vaporisation of the fuel spray. The initial boiling point 

will be particularly significant during the delay period, prior to the start of combustion, 

in determining the amount of fuel mixed and the peak flame temperatures from the pre- 

mixed combustion. Broering and Holtman (1974) demonstrated that for the same 

cetane number, a "low volatility fuel, " resulted in lower NOx emissions from a range of 
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engines over the 13-mode cycle. Burley and Rosebrock (1979) tested an Oldsmobile 

5.7 litre V-8 IDI diesel on a 5-point steady-state load speed map with 46 fuels. They 

found that NOx did not correlate well with fuel characteristics, but appeared related to 

aromatic content, specific gravity and 90 per cent boiling point. They concluded that 
low NOx accompanied low values of these characteristics. 

Lange et al (1993) found no significant fuel effects on NOx emissions from a Mercedes- 

Benz 250D equipped with an OM 602 2.5 litre 5 cylinder pre-chamber N/A diesel. 

However, when testing the same 12 fuels with an OM 366LA 6 litre 6 cylinder DI 

turbocharged and inter-cooled diesel, there was a strong non-linear relationship with 

cetane number, but no significant influence from volatility, ie T1OE, T50E, T90E or 
final boiling point. 

2.5.7 Aromatics 

Aromatics are molecules containing one or more benzene rings (C6H6) in their structure. 
They have higher specific gravity and boiling points but lower cetane numbers than 

paraffinic molecules. Burley and Rosebrock (1979) found that NOx emissions 
increased with higher aromatic content in the fuel. They ran 2 series of fuel blend tests 

covering a range of aromatics from 2 to 65 per cent and in each case NOx emissions 

climbed steadily as aromatics increased. Flanigan, Litzinger and Graves (1989) blended 

1-methyl naphthalene, tetralin and decalin, each to a base fuel at several concentrations. 
Higher NOx levels with the 1-methyl naphthalene blends were ascribed to the longer 

ignition delays, as were the effects of the tetralin blends. Addition of decalin to the base 

fuel caused no significant changes in emissions. "Miyamoto et a] (1992) examined 

mixtures of two base fuels with different cetane numbers and aromatic content. The 

high aromatic fuel showed slightly higher NOx emissions, owing to the longer ignition 

delay. The ignition delay and NOx emissions were largely equated by adding a 

peroxide type ignition improver to the high aromatic fuel. Taking a middle aromatic 
fuel and running at 3 injection timings, the authors conclude that NOx emissions are 

almost dominated by the ignition delay and injection timing. The effect of aromatic 

content on NOx emissions appears much smaller than ignition parameters. 

Ullman et a] (1990) when testing a 1991prototype DDC Series 60 heavy-duty diesel 
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found that NOx emissions responded to changes in aromatic content of the fuel. A 10 

per cent lower aromatic content was estimated to reduce NOx emissions by 3 per cent. 
NOx emissions were also reduced by a decrease in aromatics, when McCathy of Amoco 

Oil and Slodowske et al of Navistar (1992) studied fuel effects on emissions from a 
`1994 standard' Navistar DTA 466 heavy-duty diesel engine. The cost to reduce NOx 

by lowering aromatic content alone was estimated to be about 10 times higher than by 

increasing cetane number. Decreasing aromatics by 10 per cent was predicted by 

Spreen et al (1995) to reduce NOx by 0.052 g/hp. h, based on their fuel study with a 

prototype 1994 Navistar DTA-466 engine. 

2.5.8 Oxygenated Additives 

The use of oxygenates to produce cleaner burning diesel fuels was initially considered 

over 50 years ago. Since that time, the addition of numerous oxygenated compounds to 

diesel fuel has been reported. Liotta of ARCO Chemical and Montalvo of Southwest 

Research (1993) reported on the effect of 8 oxygenates on exhaust emissions from a 
DDC Series 60 heavy-duty DI diesel engine measured over the EPA transient test cycle. 
Based on fuel blending properties, the authors chose 3 glycol ethers, an aromatic 

alcohol, an aliphatic alcohol and polyether polyol. Some of the oxygenated additives 

used produced a slight decrease of 1 to 2 in cetane number. This was attributed to the 

chain branching present. Oxygenates that lacked branching, such as diglyme (an ether), 

were either cetane neutral or produced a small increase in cetane number of the base 

fuel. To compensate for the reduction in cetane number, they added small amounts of 
2-ethylhexyl nitrate to treat the oxygenated blends, to minimise the effect of cetane 

number on engine emissions. The addition of the oxygenated additives to the fuel 

produced small increases in NOx emissions. At the lower additive treatment levels, less 

than 5 per cent, the increased NOx emissions from the oxygenated fuels were not 

significant, within the limits of their evaluation. At typical use levels, 2 per cent or 
lower, the use of oxygenated additives would be expected to have little or no effect on 
NOx emissions. The authors also looked at a fuel with both oxygenated and cetane 
improvement additives to produce a fuel that would give lower particulates and NOx 

emissions, compared to the base fuel. A fuel blend was prepared containing 2 per cent 

glycol ether C and sufficient peroxide to raise the cetane number from 43 to 53. 

Particulates were reduced by 8 per cent and NOx by nearly 3 per cent compared to the 
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baseline. 

2.5.9 NOx Reduction Additives 

In 1986, Perry and Siebers (1986) introduced the RAPRENOx exhaust after-treatment 

process for reduction of NOx, using cyanuric acid, (see After-Treatment Section later in 

this chapter). Researchers at Texaco Research Laboratories have proposed a scheme to 

incorporate the isocyanic acid into the fuel. Caton and Siebers (1989,1990) determined 

that the most effective temperatures for the RAPRENOx process were between 1100 

and 1300°K. Since this temperature range will be traversed twice during diesel 

combustion, the Texaco researchers incorporated the isocyanic acid into a thermally 

stable carrier that would allow it to survive until the expansion stroke. Tree of 
Cummins Engine and Bower et al of the University of Wisconsin-Madison (1993) 

investigated the feasibility of this approach with a single cylinder DI diesel engine in 

which standard diesel fuel and fuel in which the cyanuric acid based additive, Texaco 

Diesel Additive (TDA), had been added. A5 per cent by weight, addition of TDA was 

successful in reducing NOx by approximately 40 per cent at two load conditions, 

0.5 and q) = 0.3, at 1500 rpm. The ISFC and HC and CO2 emissions, were unchanged 
by the additive. From their heat release analysis, it appeared that the reduction in NOx 

could not be accounted for by differences in combustion, although the 5 per cent TDA 

case exhibited a slightly larger and slower premixed burn with a smaller and slower 

diffusion burn. However, reproduction of these results was not accomplished. Over 

twenty different additive blends were tested with varying results, ranging from engine 
instability to increased NOx, to varying amounts of reduction. These data indicate that 

variability and stability of the TDA additive is an issue. 

Ethanol has a lower flame temperature than diesel and hence its addition to diesel fuel 

in the form of a blend will reduce the peak combustion temperatures and hence reduce 

NOx emissions. Andrews and Salih (1990) investigated 5 to 20 per cent ethanol in 

diesel blends, the lower concentration could be considered as a fuel additive. With 

every litre of blended fuel 35cc of naptha was added to prevent the two liquids 

separating. Testing was carried out with a Petter AV I 553cc DI diesel engine running 

at 1500 rpm. The NOx emissions were reduced at all equivalence ratio and power 

settings. However, the extent of the reduction was very variable both with equivalence 
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ratio and with proportion of ethanol, at constant load. At low powers there was a 

reasonable correlation between the NOx reduction and the ethanol concentration. At 

full load the reduction in NOx was small at 5 to 10 per cent and was independent of the 

proportion of ethanol. This is because the lower heating value of the ethanol blends 

means that a richer mixture has to be used, for the same power, which generates more 

NOx. Moreover, ethanol lengthens the ignition delay which extends premixed burning 

and increases NOx formation. Where ethanol is available, it would appear to be a 

viable additive for diesel fuel to reduce NOx and other emissions without a significant 
fuel economy penalty (Andrews & Salih, 1990). 

2.5.10 Summary 

" The physical and chemical properties of diesel fuel will affect NOx emissions 

from diesel engines, but it is difficult to separate the effects of each. 

"A density increase will enable an engine to produce higher BMEP at full load, 

causing greater peak pressures and temperatures leading to increased NOx 

formation and emissions. A good correlation exists between lower density and 

reduced NOx emissions for DI engines, but only a slight one in the case of IDI 

diesels. 

" Numerous studies have demonstrated that increasing cetane number of the fuel 

significantly reduces all the regulated emissions, especially particulate matter 

and nitrogen oxide, from DI diesels. Ricardo Comet swirl chamber type IDI 

engines may exhibit the opposite trend, giving an increase in NOx emissions. 

This is due to the shorter delay period leading to higher combustion pressures 

and temperatures, because of the normally retarded combustion. 

" Cetane improvers will generally give the same benefit as a high cetane fuel, 

compared to a low cetane fuel. 

" Fuel volatility does not have a first order influence on NOx emissions from 

diesel engines. Nevertheless, there is some evidence that a "low volatility fuel" 
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will result in lower NOx emissions; this would be a second order effect. 

" High aromatic fuels will typically give higher NOx emissions, compared to low 

aromatic fuels, because of the longer ignition delay. 

" The addition of oxygenated additives to diesel fuel will give a small or no 

increase in NOx emissions, this is because of a slight decrease in cetane number 

with oxygenates. 

" The addition of isocyanic acid in a thermally stable carrier has been successful 

in reducing NOx emissions, but the variability and stability of the additive is an 

issue in reproducing the results. 

" Ethanol, where it is available, would be a viable additive for diesel fuel to reduce 

NOx and other emissions without significant fuel economy penalty. 
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2.6 NOx Reduction by Exhaust After-Treatment 

2.6.1 Introduction 

Diesel exhaust contains between 5% and 15% excess oxygen which makes the removal 

of NO, much more difficult than for gasoline exhaust from a stoichiometric mixture. 
The three-way catalysts that are capable of reducing 90% of the NOx in gasoline exhaust 
do not reduce NO, in diesels. New types of catalyst, called lean NOx catalysts, are 
being developed for diesel applications, one of which promotes the selective reduction 

of NOx under lean conditions by reaction with hydrocarbons, as opposed to the 3-way 

catalyst which promotes the reduction of NOx near stoichiometric conditions only, 

primarily through reactions with H2 and CO. Three strategies have been investigated to 

remove NOx from diesel exhaust (Perry & Siebers 1986, Horrocks 1994): 

a) selective catalytic reduction (SCR), 

b) catalysed thermal decomposition, 

c) selective non-catalytic reduction (SNR), or chemical reduction or "Thermal 

DeNOx. " 

In the SCR technique, NO selectively reacts with reducing species from the gas stream 
in the presence of a catalyst, even under overall oxidizing conditions. The reducing 

species may initially be present in the exhaust stream, such as some HC species, or be 

injected from an on-board source such as ammonia or urea. A number of catalysts have 

been researched: two of the most widely studied include various metal ion exchanged 

zeolites and the use of precious metal as the active sites, and which often incorporate 

some HC storage. Also, vanadium and molybdenum formulations have been evaluated. 

The metal exchange zeolite technology operates at a temperature window of around 
300°C upwards, but currently has very poor high temperature stability, with activity 
falling to zero in a few hours at 700°C. 

The precious metal catalysts currently achieve NOx conversions over a very narrow 
temperature window, typically from 180°C to 250°C, with a peak conversion of 

approximately 50% at around 210°C. The theoretical conversion over the European test 
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cycle, given an ideal strategy and fuel delivery system, would be 30 to 35% 

Catalysed thermal decomposition of NO into N2 and 02 is a catalytic decomposition 

reaction without the need for any other chemical species to be present. This method has 

advantages of simplicity and innocuous reaction products. At present, results suggest 

that pure thermal decomposition of NO with copper-ZSM-5 zeolite catalysts is 

impractical for automotive exhaust treatment since conversion efficiencies are 

extremely low at space velocities (see below) utilized during vehicle operation. 
Moreover, the conversion rate reduces with the presence of water vapour. 

Cyanuric acid has been proposed by a number of researchers, as an alternative chemical 

process for NOx reduction, though there are drawbacks that include low space velocity 

requirements (see below) and toxicity issues. 

In addition to NO,, control, diesel catalysts must also reduce HC, CO and particulate 

matter (PM). HC control is particularly important because European standards have 

separate NO, and HC+NOX standards. If HC emissions are too high or have high 

deterioration, then NO,, emissions must be correspondingly lowered. 

As a measure of the exhaust gas residence time in the catalytic converter and a means of 
determining the required size of a catalyst, the industry uses a term called "space 

velocity. " This is defined as the exhaust gas volumetric flow in m3/h, divided by the 

catalyst volume in m3, giving a space velocity unit of h-t. Therefore, space velocity is 

the number of times per hour that the gas contained in the catalyst is renewed. 
Generally catalyst performance, in terms of conversion efficiency and light-off 

temperature, improves with lower space velocities, in other words with bigger catalysts 

and therefore greater residence time. But this has to be weighed against the size and 

cost of the catalyst for a commercial application. Packaging of catalysts in modern 

passenger cars is not an easy task, with the pressure for reduced vehicle weight and 

maximising space for the occupants. For diesel oxidation catalysts, the space velocity 

will typically be in the range of 40,000 to 60,000 W, as an average, over the current 
European drive cycle (ECE-15 plus EUDC). 

The light-off temperature is defined as the exhaust gas temperature at which 50 per cent 
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conversion is attained (Held et al, 1990). At present this creates a problem for lean NOx 

catalysts since most of them do not achieve 50 per cent conversion. 

2.6.2 Selective Catalytic Reduction 

Burgler, Herzog and Zelenka of AVL reported some early non-selective NOx catalyst 

results in 1992. A 20 per cent reduction at an exhaust temperature of 260 °C dropped to 

5 per cent at 180 °C. They concluded that the catalysts have to be developed further for 

improved conversion rates at low exhaust gas temperatures and improved conversion 

rates in the presence of low CO and HC emissions. The authors postulated that Non- 

selective Catalytic Reduction (NCR) would be more cost effective for light-duty 

vehicles, since there would not be the requirement for the onboard dosing system. 
However, the conversion efficiencies are not high enough to make these catalysts 

viable, so development is focused on selective catalytic reduction. 

Selective catalytic reduction (SCR) is recognized as the most effective commercial 

technology to control NOx emissions from chemical plants and stationary power 

sources (Heck 1994). 

The selective catalytic reduction (SCR) method normally involves the injection of a 

reducing species that then selectively reacts with NO, even in the presence of excess 

oxygen. The reducing species may initially be present in the exhaust stream or might be 

injected from an on-board source. Thus there are two types of lean NOX catalyst 

system, passive and active systems. The passive system stores and then uses engine-out 
HC to reduce the NOR, and the active system uses diesel fuel injected in front of the 

catalyst, or an alternative media such as ammonia or urea, injected from an on-board 

source. 

The hydrocarbon to NOx ratio (C1 /NOx) must be approximately 0.5 in order to meet 

the stoichiometric requirements for the NO reduction reaction shown as the equation 
below. 

(-CH2-) + 2N0 + 1/202 
--4 CO2 + H2O + N2 2.38 
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Diesel exhaust has typically lower C1 /NOx ratios than the stoichiometric, thus it is 

expected that hydrocarbons will have to be added to the exhaust, probably in the form of 

diesel fuel. Unfortunately the Cu/ZSM-5 and Pt catalysts are so poorly selective in their 

use of the added hydrocarbon that about 90 per cent of the hydrocarbon is oxidized to 

CO2 and H2O, which is a waste of hydrocarbon, and translates into an unacceptable fuel 

economy penalty. Furthermore, the exothermic reaction leads to high bed temperatures 

with resultant conversion of sulphur containing fuel compounds to sulphates, which 

contribute to particulate emissions, (Deeba et at, 1995). 

Deeba et al, of Engelhard summarized the status of lean NOx catalysts very well in their 

1995 SAE paper. Two materials that have attracted great attention, as lean NOx 

catalysts are Cu/ZSM-5 and Pt based. Cu containing ZSM-5 is active for lean NOx 

reduction at temperatures above 350 °C, provided sufficient hydrocarbons are present as 

reductants. Deeba et al (1995) also point out some serious limitations of Cu/ZSM-5 

based catalysts, which are likely to prevent their use in mobile applications; namely, 

poor hydrothermal stability, owing to the presence of water vapour, low hydrocarbon 

selectivity, and sensitivity to sulphur poisoning. The Pt based catalysts are active in a 

narrow temperature range of 200 - 300 °C, which is considerably narrower than the 

target range of 150 - 350 °C for light-duty diesel engines. 

Copper ion-exchanged ZSM-5 Zeolite Catalysts 

Held et al (1990) and Konno et al (1992) have independently reported that copper ion- 

exchanged ZSM-5 zeolite is able to reduce NOx in the presence of oxygen with 

hydrocarbons as the reducing agent. However, Held et al, reported only a 15 per cent 
NOx conversion from diesel exhayst, at a low space velocity of 15,000 h"1, even when 

adding 4,700 ppm ethylene, with a copper exchanged ZSM-5 catalyst. Much higher 

conversions were achieved using urea as the reduction agent. Work at Ford has shown 

that this type of catalyst can give an initial NO conversion of 45 per cent, but that 

deactivation is likely to occur owing to water vapour and SO2 in the exhaust gases, and 

ageing (Montreuil and Gandhi, 1992). M Konno et al of Hokkaido University tested a 

copper ion-exchanged ZSM-5 zeolite catalyst on a diesel engine and reported a NOx 

reduction efficiency of about 25 per cent at the maximum activation temperature of 400 

°C, moreover, this improved to nearly 80 per cent by increasing the hydrocarbon 

concentration with the addition of light oil to the `dry' exhaust. However, like other 
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researchers, the existence of water vapour in the exhaust was found to decrease catalyst 

activity. The adverse effect of water vapour is a major issue for the practical application 

of Cu-ZSM-5 zeolite catalysts for diesel engine exhaust after-treatment. 

Copper Catalysts 

NOx reduction evaluation by hydrocarbons such as cyclopropane [C3H6], normal- 

heptane [C7H16), normal-cetane (C16H34) and diesel fuel when used in conjunction with 

copper deposited on a base of ralumina catalysts was carried out by Muramatsu et al 

(1993) at Riken Corporation. Diesel engine tests showed on average a 10 to 15 per cent 

reduction in NOx over a temperature range of 350 to 550 °C, using a supplemental spray 

system for C16H34 and diesel fuel at a HC/NO mass ratio of 4 (compared to 0.32 for 

equation 2.38). Clearly, this level of NOx conversion would not be viable for a 

commercial system and no mention was made of other pollutant reduction performance. 

Moreover, at a diesel fuel/NOx mass ratio of 4, the fuel economy penalty would be 

higher than desirable. 

Platinum Catalysts 

Deeba et al (1995) reported on a catalyst of Pt supported on y-alumina (1A1203) at a 

precious metal loading of 70 g/ft3 as a reference and two proprietary HTC-1 Engelhard 

catalysts, made of the same components but with some variation in composition. The 

temperature range of NOx reduction for the new catalyst was shown to be between 180 

and 350 °C and comprised of two regions. The first region had a maximum NOx 

conversion of about 45 per cent at 200 °C and the other region with maximum NOx 

reduction of about 55 per cent at 300 °C, clearly a broader range than the Pt/yAl2O3 

reference catalyst. An interesting feature of the HTC-1 material is its ability to store HC 

species that can be used as a highly selective reductant for the NOx around 200 °C, 

which is the mechanism responsible for the first low temperature NOx reduction peak. 

Coupling this unique lean-NOx formulation with a diesel oxidation catalyst resulted in 

4-way capability for simultaneous removal of NOx, CO, HC and the SOF portion of 

particulates from diesel exhaust. 

Leyrer, Lox and Strehlau of Degussa (1995) reported on a novel high temperature NOx 

formulation devoid of copper, with a platinum loading. As a reference, a first 

generation Pt-zeolite type sample was used. One interesting feature they found was 
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improved effectiveness by increasing the catalyst diameter, for a constant precious 

metal loading of 2.47 g/I (70 g/ ft). Conversion levels of 93 per cent for CO, 52 per 

cent for HC, 35 per cent for NO and 35 per cent for particulates were achieved over the 

US FTP-75 cycle with a 1.9 litre IDI T/C diesel passenger car. The amount of 

secondary fuel corresponded to a2 per cent increase of fuel consumption. Catalyst 

loading of 2.47 g/l (70 g/ ft) was recommended to prevent hydrocarbon slip, even 

though 1.76 g/l (50 g/ ft) gave relatively high CO and NOx conversions. Thirty hour 

diesel engine bench ageing demonstrated almost no deterioration. 

Ammonia and Urea Reductants 

Selective catalytic reduction of NOx with ammonia was first discovered and patented by 

Dr Gunther Cohn at Engelhard (Cohn et at, 1961). 

Ammonia is widely used as the reduction agent for catalytic reduction of NOx at 

stationary power plants and such systems can achieve very high efficiencies (Lueders et 

al, 1995). Catalytic reduction of NOx by means of injecting urea or ammonia has been 

applied to line-haul locomotives and ferries, respectively. 

Temperature is the single most important variable in NOx SCR. Three general classes 

of catalysts have evolved into commercial use: precious metals for operation at 

temperatures between 175 and 290°C, base metals for operation at temperatures 

between 260 and 450°C and zeolites for operation at high temperatures. The balance 

between the SCR and ammonia oxidation reactions determines the operating 

temperature range for low temperature SCR catalysts. At low temperatures the SCR 

reaction dominates, but as temperature increases, NOx conversion increases with 
increasing temperature. Eventually as temperature increases further, the destruction of 

ammonia and generation of NOx via the oxidation reactions causes overall NOx 

conversion to reach a plateau and finally decreases with increasing temperature. Most 

commercial SCR catalyst formulations are those comprising of V205 supported on Ti02 

(V/Ti) operating in the medium temperature range. Ingredients such as tungsten and 

molybdenum may be added to diminish SO2 oxidation activity and improve operation 

above 425°C but the basic formulation remains generally the same. These catalysts 

operate best in the 260 to 450°C temperature range. High temperature zeolite catalysts 

for SCR above 450°C were first used in the 1970s (Pence and Thomas 1980). 
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Ford, with FEV, demonstrated this technology applied to a diesel Transit vehicle 
(Lueders et al, 1995). A eutectic aqueous solution of urea was chosen for this exercise 
because it can achieve similar performance to ammonia and as such is non poisonous 

and does not present a fire hazard. The catalyst consisted of a vanadium-titanium 

substrate with a cell density of 200 cells per square inch (CPI) and the catalyst volume 

was optimised at 7.4 litres. Injection of the urea solution into the exhaust was 

controlled by a microprocessor. NOx conversion efficiencies of 65 and 83 per cent 

were achieved on the European and FTP-75 cycles, respectively. A reductant tank 

capacity of 40 litres would be required for the 2.5 litre diesel Transit to operate between 

the 15,000 km service interval. This tank would therefore need replenishing at each 

service. Issues with this system concern operation at low ambient temperatures, the size 

of catalyst and the practicability of an emission related reductant carried additionally on 
board the vehicle (Lueders et al, 1995). 

Havenith of the Netherlands Ministry of Environment and Verbeek et al of TNO 

reported on the development of a urea deNOx catalyst concept for heavy-duty diesel 

engines in November 1995 (Havernith et al 1995). Three SCR catalysts and one 

oxidation catalyst were used with a total volume of 70 litres for a 12 litre TCI engine. 
An aqueous urea solution (40 per cent urea by mass) was injected with an air blast 

nozzle about 1 meter upstream of the catalysts. Urea injection was controlled by 

microprocessor. The maximum space velocity in the SCR catalysts was 28,000 h"1. 

The system gave a 71 per cent reduction in NOx over the ECE 13-mode emissions 

cycle. One observation from this work was that the SCR system produced relatively 
high N20 emissions, about 10 times higher than normally expected. Ammonia 

emissions were below 11 mg/kWh. 

2.6.3 Catalysed Thermal Decomposition 

Although the most promising system is selective catalytic reduction (SCR), it is possible 

to remove NO under lean operating conditions by catalysed thermal decomposition of 
NO into N2 and 02. M Iwamoto et al at the Myazaki University, Japan, has been active 
in the area of NO decomposition, focusing on zeolites that have been ion-exchanged 

with various metal cations. Their investigation of a variety of zeolites has resulted in 
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the discovery that certain zeolites, particularly those which have been exchanged with 

Cu(II), exhibit NO decomposition activities which remain stable over protracted periods 

of time (Iwamoto et al, 1986). The catalyst yielding the most promise consists of a type 

ZSM-5 zeolite, ion exchanged with Cu(II). Maximum NO conversion efficiencies of 70 

to 90 per cent have been reported for steady-state reactors (Montreuil, 1992, Iwamoto et 

al, 1986). However, Montreuil at Ford, has demonstrated that at high space velocities, 

typical of automotive catalysts, the thermal decomposition is extremely small and that 

reaction rates were drastically reduced with the introduction of water vapour which 

would be present in diesel exhaust. The work at Ford concluded that unless the rate of 

conversion kinetics could be increased by an order of magnitude or more, this approach 

to NO removal from vehicle exhaust will be impractical (Montreuil, 1992, Montreuil 

and Gandhi, 1992). 

Yoshikawa H et al (1994) used a surface treated carbon fibre felt for adsorption and 

reaction of NO, one sample was treated with hydrogen nitrate, which was shown to 

enhance the NO reduction process. The principal concept of NO reduction with the use 

of the carbon fibre felt is that C atoms on the surface adsorb 0 atoms of NO and then 

react in the high temperature to form CO2 or CO. The remaining dissociated nitrogen 

atoms are converted into N2. On a test rig using pure NO gas, no N20 was detected by 

gas chromatography. Testing on a small single cylinder diesel engine the authors report 

NO reductions of up to around 80 per cent with 300g of the treated carbon fibre felt. A 

chemical analysis of the carbon fibre felt did show a reduction in carbon and an increase 

in nitrogen and oxygen, together with a reduction in weight over a period of time. The 

authors did not attempt to identify a size or mass of felt required for a practical 

application, or any service replenishment requirements. 

2.6.4 Chemical Reduction or "Thermal De-NOx" 

Perry and Siebers (1986) proposed a new chemical process capable of completely 

removing NOx from the products of combustion. They demonstrated the method by 

eliminating NOx from a portion of the exhaust from a single cylinder diesel engine. The 

proposed scheme was based on addition of isocyanic acid (HNCO) to the exhaust 

stream. Isocyanic acid is formed from the decomposition of cyanuric acid (HOCN) 

when cyanuric acid is heated above approximately 330 °C. 
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(HOCN)3 - 3HNCO 2.39 

When HNCO is mixed with an exhaust gas stream at temperatures = 400 °C, a series of 

reactions occur that result in the loss of HNCO and NO. This is because the NCO 

radicals formed from the photolysis of isocyanic acid (HNCO) react very rapidly with 

nitric oxide (Perry 1985). A continuous sample of exhaust gas from a small single 

cylinder diesel engine was drawn at a rate of I 1/min over a 256 cc cyanuric acid bed 

followed by a 31 cc packed bed with a surface area of 1,630 cm2. For cyanuric acid bed 

temperatures above 360 °C the NOx was essentially eliminated (Perry & Seibers, 1986). 

For a practical application to a light-duty diesel vehicle there are immediately a number 

of issues. Scaling up the cyanuric acid bed volume for a typical diesel passenger car 

engine size of 1.8 to 2.0 litres would give an impractically large size. Secondly, for 

efficient conversion, the bed temperature would have to be maintained at 360 °C, which 

would mean heating it for an extended period of time, when the engine is operating at 

part load. Thirdly, there is also the problem of useage of cyanuric acid, storage, and top 

up over the life of the vehicle. 

2.6.5 Summary 

" Three-way "stoichiometric" gasoline catalysts will not reduce NOx in "lean" 

diesel exhaust. Lean NOx catalysts are being developed for diesel application. 
Three strategies have been investigated: 

a) selective catalytic reduction (SCR), 

b) catalysed thermal decomposition, 

c) selective non-catalytic reduction (SNR), or chemical reduction or "Thermal 

De-NOx. " 

" The most promising type is SCR using a Pt based catalyst on an alumina 

washcoat. Conversion efficiencies of up to slightly over 50 per cent have been 

achieved at between 200 and 300 °C, depending on the formulation. However, 

this only translates into 30 to 35 per cent reduction over the European drive 

cycle. 
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With all the zeolite and precious metal alumina SCR systems, an improvement 

in NO conversion efficiency of around 3 times, was achieved by the addition of 
further hydrocarbons. This means that injection of diesel fuel into the exhaust 

upstream of the catalyst will be necessary to achieve the best efficiency for a 

practical automotive system. But this results in a fuel economy penalty in the 

order of 2 per cent. 

9 The highest conversion efficiencies have been demonstrated with urea injection 

and a vanadium-titanium catalyst, 65 and 83 per cent were achieved on the 

European and FTP-75 cycles, respectively. However, this system requires an 

additional storage tank for the reactant, which would need replenishing over the 

life of the vehicle. 

9 Catalysed thermal decomposition and chemical reduction do not appear to be 

viable for automotive use. 
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2.7 Conclusions 

" There is wide consensus that the Zeldovitch mechanism can be used to predict NO 

from Diesel engines and other combustion systems; the values of the activation 

energy used by various workers for the calculation of the rate constants are generally 

in good agreement. 

" The rate of NO formation rises exponentially with temperature, this has been 

demonstrated experimentally and is confirmed by the Zeldovitch rate equations. 
Prompt or rapid NO formation may occur in the flame zone. 

" Oxidation of NO to NO2 does occur in diesel engines; NO2 emissions can be as high 

as 30 to 50 per cent of the total NOx emitted from DI diesels. 

" Retarding injection timing will reduce NOx formation by lowering combustion 

temperatures; this may also cause an increase in HC and smoke emissions, as well as 

an increase in fuel consumption. 

" Pilot injection delays the development of high-temperature regions and can facilitate 

injection retard while maintaining fuel consumption. 

" EGR remains the most effective way of controlling NO formation along with more 

traditional techniques such as retarded injection timing. 

" EGR reduces NOx formation and emissions by lowering the flame temperature 

through two effects; by dilution, reducing the oxygen mass fraction, and by a thermal 

effect, increasing the specific heat capacity of the charge. The dilution effect is by 

far the greater of the two. 

" Cooling EGR prior to mixing with the intake charge provides further reductions of 

NOx emissions and is generally beneficial for particulates. The higher volumetric 

efficiency with cooled EGR leads to an improvement in fuel economy. 
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" Water addition, either injected with the intake air charge, or as a water-in-fuel 

emulsion, will reduce NOx emissions and is more effective in combination with 
EGR. However it is impractical for automotive use. 

0 The physical and chemical properties of fuel affect NOx emissions from diesel 

engines, but it is difficult to separate the effects of each. An increase in fuel density 

will enable an engine to produce higher BMEP at full load, causing greater peak 

pressures and temperatures leading to increased NOx formation and emissions. A 

good correlation exists between lower density and reduced NOx emissions for DI 

engines, but only a slight one in the case of IDI diesels. 

" Numerous studies have demonstrated that increasing fuel cetane number significantly 

reduces all the regulated emissions, especially particulate matter and nitrogen oxide, 
from DI diesels. Ricardo Comet swirl chamber type IDI engines may exhibit the 

opposite trend, giving an increase in NOx emissions. This is due to the shorter delay 

period leading to higher combustion pressures and temperatures, because of the 

normally retarded combustion. Cetane improvers will generally give the same 
benefit as a high cetane fuel, compared to a low cetane fuel. 

9 New exhaust after-treatment technologies such as SCR NOx catalyst systems offer 
important additional scope that will help engine manufacturers meet emission 
legislation during the next five to ten years and bring the diesel NOx emissions 

closer to those of gasoline engines fitted with 3-way catalysts. 

Chapter 2 93 



Chapter 3 

Diesel Engine EGR Systems 

3.1 EGR System Description 

Diesel engine EGR systems comprise of a number ofdifferent components, each with a 

different t'unction, which connect the exhaust to the intake system. "These may include; 

  EGR valve 

  Throttlc valve 

" Venturi 

  EGR cooler 

  EGR tube 

The primary role of the EGR valve is to regulate the IlOw of re-circulated exhaust gets. 

The vast majority of valves in production today have an inward opening hoIPI)ct valve 

operated by ýi vacuum actuator, like the valve shown in Figure 3.1. 

Figure 3.1 A pneumatic FGR valve (Courtesy of SALEM SA) 

Electric actuators are he, -, inning to conk on to the market. These may have inward or 

outward opening poppet valves depending on the type of actuator. Linear solenoids. 

stepper motors Or torque motor's are types of electric actuators heing developed by 
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various component suppliers. These otter the advantagc of fester and more precise 

operation compared to a conventional vacuum motor system. Figure 3.2 shows a direct 

drive DC torque motor actuated EGR valve. 

Figure 3.2 An EGR valve actuated by a direct drive 1)C torque motor (('Ourtcw 

of'SA(; EM SA). 

Throttle valves arc used in the intake system. upstleaini of the EGR entry point. lo 

provide a greater pressure difference between the exhaust and intake manifold. to 

increase the flow of EGR when the EGR valve is already fully open. These valves arc 

traditional "hutterfly" valves. similar to petrol engine throttles. 

A venturi is sometimes used lo provide a higher pressure dilierential hetween exhaust 

and intake manifolds, to assist the flow of EGR into the air charge. A venturi is 

n0rni, ºIly used instead 0I ýº thrOttlc valVc, in order to get hotter pressure recove y. 

The EGR cooler cook the exhaust *as before it is introduced into the all. charge stream. 

The m aºjority are of lohe and plate construction in stainless steel, generally' vacua im 
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brazed together. Engine coolant is passed through the EGR cooler to provide the 

Cooling mediu111. 

EGR tube is a thin wall stainless steel tube that is used to connect the various system 

components together. to allow flow from the exhaust to intake manifolds. Connections 

are usually by two-bolt flanges or V-band clamps. 

Figure 3.3 A selection of E(; coolers (Courtesy of Seeck Heat Transfer Ltd). 
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3.2 Production EGR Systems 

Automotive diesel engine EGR systems were introduced from the mid to late-1980s in 

order to meet stricter NOx emissions regulations, such as the 1987 US Federal 

emissions standard introduced by some non-EC countries in January 1986, and the EC 

"5`h Amendment" which came into force for passenger cars over 2.0 litres capacity in 

October 1989. Up until that time, either there were no emissions standards for diesel 

vehicles, or the severity was such that they could be met without recourse to EGR. The 

early systems applied to IDI engines were simple on-off EGR valves, controlled by the 

fuel injection pump speed control lever position. Thus providing a small amount of 
EGR over the low speed, low load part of the engine-operating map. Today for high 

speed DI engines the systems have become far more complicated, including mass air 
flow sensors, intake throttle valves, EGR coolers and electronic control to fully 

modulate EGR flow and provide up to 50 to 60 per cent EGR by volume, at low speed 

light load operation. To improve response times, electric operation of the EGR valve 

and throttle is currently being introduced to replace the traditional vacuum system. 

3.2.1 Ford EGR systems 

The first introduction of an EGR system on a diesel engine at Ford was in 1986 for the 

1.6 litre IDI diesel in the Escort car, specifically for the Swiss market, in order to meet 

the 1987 US Federal emissions standard specified by the Swiss Government. This was 

a simple mechanical/pneumatic on-off EGR system operating at low load, low engine 

speed, to bring the NOx emissions below the 87 US standard. For the later 1.8 litre 

engine introduced in 1989, the simple on-off mechanical/ pneumatic EGR system was 

retained for the naturally aspirated version, in order to meet the EC "5`h Amendment" 

(88/76/EEC) and 1987 US Federal emissions standards. The EGR valve was mounted 

on the exhaust manifold and operated by a vacuum source that was controlled by a 

switch mounted on the fuel injection pump. A cam attached to the pump speed control 
lever spindle activated this switch. EGR coverage thus depended on the setting point 
for the switch and the shape of the governor curves. This EGR system is shown in 

Figure 3.4 and the EGR coverage is shown in Figure 3.5. 
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Figure 3.4 Schematic diagram of simple on/off EGR system for the Ford 1.8 

litre naturally aspirated IDI diesel engine (Lawrence et al, 1989) 

om 

700 

600 

5w 

400 

300 

100 

Et 1E SPEED tom) 

Figure 3.5 EGR coverage related to BMEP and speed for the Ford 1.8 litre 

naturally aspirated IDI diesel engine (Lawrence et al, 1989) 

An open loop electronically controlled EGR system was specified for the 1.8 litre 
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turbocharged diesel engine fitted in the Sierra car, which was introduced for the 1989 

model year. The electronic control unit (ECU) received signals from the alternator, for 

engine speed, and from a potentiometer on the fuel injection pump speed lever, for 

engine load. The ECU processed these signals and modulated the EGR level via a 

current to vacuum transducer (CVT) that altered the vacuum signal received by the EGR 

valve. The EGR valve lift and the engine exhaust and intake manifold pressures, 

determined the level of EGR. A schematic diagram of this electronically controlled 
EGR system is shown in Figure 3.6. The EGR coverage for this engine as installed in 

the Sirerra car to meet the EC "5`h Amendment" and 1987 US Federal emission 

standards is shown in Figure 3.7 (Lawrence et al, 1989, Lawrence and Evans 1990). 

ELECTRONIC EMISSIONS CONTROL SYSTEM 

n 
a_. J 
EGR VALVE I 

A 

JI 
VACUUM PUMP II 

FLOW CONTROLLER {CVi) 

WATER TEMP SENSOR 

Figure 3.6 
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Schematic diagram of electronically controlled EGR system for Ford 

1.8 litre turbocharged IDI diesel engine (Lawrence et al, 1989) 
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Figure 3.7 EGR coverage related to BMEP and engine speed for Ford 1.8 litre 

turbocharged IDI diesel engine (Lawrence et al, 1989) 

At the same time, the truck engine team developed a mechanically modulating EGR 

system for the 2.5 litre direct injection diesel engine used in the Transit commercial 

vehicle. This was required to control NOx emissions in order to meet US Federal 

emissions standards required by some non-EC countries, and the forthcoming EC '5`h 

Amendment' emissions legislation. Although the direct injection (DI) diesel engine was 
inherently more fuel efficient, it also emitted higher NOx levels than its IDI counterpart. 
The saving grace for this engine was the fact that at part load the average air to fuel ratio 
in the combustion chamber was far leaner than in the pre-chamber of the IDI engine. It 

was thus feasible to use far higher levels of EGR to reduce NOx emissions, than in the 

IDI engine. However, this meant that a fully modulating EGR system was required. In 

order to keep the additional cost to a minimum a simple, yet ingenious mechanically 

controlled EGR system was devised and developed for this engine. This utilised the 

Bosch VE mechanical fuel injection pump speed lever position for engine speed and 
load information, which was mechanically translated via a cam to a butterfly valve in 

the intake system, upstream of the EGR tube from the EGR valve. Restriction of the 

intake charge by the butterfly valve caused an increased depression in the intake 
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manifold. A connection from the higher depression side of the butterfly valve to the 

upper side of a diaphragm-operated EGR valve, caused the EGR valve to open. Thus 

exhaust gas flowed from the exhaust manifold to the intake manifold. The amount of 
EGR was controlled by the cam, from the movement of the pump speed lever, thus 

setting the butterfly valve position to give the depression in the intake manifold to lift 

the EGR valve and draw in exhaust gas from the exhaust manifold. This system was 

found to be very effective in modulating EGR to control NOx emissions and is covered 
by a Ford patent, following the invention by Messrs CP Davies and K Ewen. Test 

results, without and with EGR using this system are shown in Table 3.1 below. Note 

that the NOx emissions were more than halved, and also because of the reduced exhaust 

gas flow, reductions of the other gaseous and particulate emissions were achieved with 

EGR (Horrocks, 1992). 

Table 3.1 

1989 Model Year 2.5 DI Transit Federal Emissions results 

2040 kg inertia, 5.14: 1 rear axle ratio (Horrocks 1992) 

Test Condition US Federal Emissions - g/km 

CO HC NOx Pm 

Without EGR 0.94 0.28 2.78 0.22 

With EGR 0.83 0.19 1.22 0.17 

Reduction with EGR 12% 32% 56% 23% 

The first fully electronic diesel engine management system ("drive-by-wire") used by 

Ford was developed for the 2.5DI turbocharged diesel that was launched in 1992, for the 

Transit vehicle. This took the Lucas EPIC system that had full electronic control of the 

fuel and EGR systems. The EGR system consisted of an EGR valve mounted on the 

exhaust manifold that was connected directly to a throttle body housing, downstream of 

the throttle. This throttle valve downstream of the compressor outlet was found to be 

necessary to impart a sufficient pressure drop between exhaust manifold and intake 

system in order to flow high levels of EGR at low loads. The throttle body was bolted 

to a `cross-over' tube that transported the exhaust gas over the top of the engine to the 

intake manifold. This engine has a cross-flow arrangement, with intake and exhaust 
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manifolds on opposite sides of the cylinder head. The EGR valve and throttle received 

the same vacuum signal, via a current to vacuum (CVT) transducer. Both valves, 

therefore moved in unison, the EGR valve to open exhaust gas flow before it entered the 

turbine, thus also reducing boost pressure, and the throttle valve to further reduce boost, 

and therefore promoted exhaust gas re-circulation. The EGR valve lift position was 

measured with a potentiometer and the signal used for feedback to the Lucas EPIC 

controller, where the valve lift was mapped against speed and load. 

PDS - Pedal Demand Sensor 
MAP - Manifold Absolute Pressure 
CVT -- Current to Vacuum Transducer 

Figure 3.8 Schematic diagram of the Lucas EPIC engine control system 

(Bostock and Cooper, 1992) 

It was found that the EGR valve position correlated closely with EGR quantity and with 

the resulting NOx level, even with some variation in intake restriction from a partially 

blocked air cleaner. A schematic diagram of the Lucas EPIC engine control system is 

shown in Figure 3.8 and Figure 3.9 shows the induction and EGR system for the 1992 
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model year 2.5 litre engine. Figure 3.10 shows the EGR rate map for this engine 

(Bostock and Cooper, 1992). 

Air 
Pressurised 

Intake Manifold 
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ý -V MGR 

Valve 
Throttle 
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Intake Air 

Turbocharger 

Figure 3.9 Induction, exhaust and EGR system for the Ford 2.5 litre 

turbocharged DI diesel engine (Bostock and Cooper, 1992). 
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Figure 3.10 EGR map for the Ford 2.5 litre turbocharged DI diesel engine, 

(Bostock and Cooper, 1992). 

In 1993, the 1.8 litre IDI turbocharged engine was inter-cooled to give a power of 65kW 

for the Mondeo car. The EGR system was improved by incorporating a mass airflow 

sensor, which was used as a feedback for electronic closed loop EGR control. Air mass 
flow, measured by a mass airflow (MAF) sensor was used as feedback for EGR control. 
The fuel injection pump remained the Lucas mechanical DPC, so engine load 

information was taken from the pump lever position and engine speed was measured 
from the flywheel by a crankshaft speed sensor. This information was processed by the 
ECU to set the EGR level to a mapped value by opening the EGR valve until the correct 

air mass flow was achieved for that particular engine speed and load. A schematic 
diagram of this control system is shown in Figure 3.11 (Carnochan and Horrocks, 

1993). 
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1. Electronic diesel control 
module 
2. Crenkshatt speed sensor 
3. Fuel lever position sensor 
4. Coolant temperature sensor 
6. Mass airflow sensor 
6. Exhaust gas recirculation 
valve 
7. Current to vacuum 
tranadueer 
& light load advance solenoid 
9. Cold advance solenoid 
10. Catalyst 
11. Turbocharger 
12. Air cleaner 
13, Vacuum pump 
14. Injection pump 
15. Injector 
16. Intercooler 

Figure 3.11 Schematic diagram of electronic control system for Ford 1.8 litre 

turbocharged IDI diesel engine in Mondeo car (Carnochan & Horrocks, 1993). 

For the 1997 model year, the EGR valve was integrated with the intake manifold, to 

reduce the system complexity, weight and cost to give a high value modular component. 

This part is shown in Figure 3.12. 
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Figure 3.12 Ford 1.8 litre 11)1 diesel intake manifold and integrated E(; K valve. 

The different philosophies of EGR sy.; tenl design and Control strategy, between the IN 

a rid DI groups at Ford, can he explained in part by the inherent control aspects of each 

system. Mass airflow feedback control. while heims .º more expensive system , ensures 

the correct stir-fuel ratio for in-cylinder Combustion without excessive smoke levels, 

which had been a concern with the IDI enuine. Thus any alterations in intake or exhaust 

system pressures, owing to a dirty air filter Or a soot loaded silencer. diiLl not iniluence 

the air-fuel ratio of' the cylinder change, because the EGR level was controlled on intake 

charge air flow Heiss. For the DI engine, being more tolerant to FGR level, precise air- 

fuel ratio control was not such a strong priority, and the lower cost I: GR valve litt 

feedback system was the hest value solution. In summary, while both I. GR systems are 

aimed ilt controlling NOx emissions, the MAF system also inherently CnsurC5 smoke 

level control. The EGR valve feed-back system. On the other hand, ensures NOx control 

under all conditions, since the EGR valve will always open the correct , neunt, tor a 

given engine condition. 
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Ford introduced the concept of cooled EGR for the 1993 model year 85PS 2.5 litre DI 

turbocharged engine for the Transit to meet the EC "passenger car" emission standards. 
The use of cooled EGR enabled further reductions in NOx and particulates compared to 

the previous hot EGR system. 

Figure 3.13 1993 model year 85PS 2.5 litre DI turbocharged engine for the Transit 

Figure 3.13 shows a diagram of the 1993 model year 85PS 2.5 litre DI turbocharged 

engine for the Transit. The EGR cooler was installed above the engine parallel to the 
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crankshaft axis, adjacent to the intake manifold plenum. EGR was taken from the 

exhaust manifold by a pipe up to the EGR valve that was attached to the end of the 

cooler. The gases were therefore cooled before mixing with the charge air at the outlet 

of the cooler and flowing to the plenum of the intake manifold, as can be seen in Figure 

3.13. 

Ford's new 1.8 litre Endura DI diesel engine for the Focus, a further development of the 

Dagenham 1.8 litre diesel, has a modern EGR system incorporating the latest technical 

features. The system is shown in Figure 3.14. Exhaust gas is re-circulated from the 

exhaust manifold, before entry to the turbocharger turbine, via a cooler and EGR valve 

to the intake manifold. This engine has a "U" flow arrangement, thus the exhaust and 

intake manifolds are on the same side of the cylinder head. The EGR flow rate is 

controlled by the vacuum actuated valve that is directly integrated into the intake 

manifold for reduced component complexity, cost and improved package efficiency, this 

module is shown in Figure 3.15. A stainless steel shell and tube EGR cooler is 

packaged at the exhaust manifold to cool the exhaust gas before it is re-circulated via 

the valve into the intake manifold. Using coolant from the engine, exhaust gas 

temperature is reduced by up to 200 degrees C. The reduction in EGR gas temperature 

and consequent increase in density both reduces inlet charge temperature and allows 

higher levels of EGR to be used therefore giving greater NOx emissions reductions. 

The combination of higher EGR and density air not only helps lower NOx, but also 

ameliorates the increase in smoke emissions that usually accompany increased EGR 

levels. The cooler has the additional benefit of improving cabin heater performance as 

additional heat energy is added to the engine coolant system during cold start and warm 

up, (Lawrence 1998). 

The EGR valve seat incorporates a "conical" profiled seat for improved flow control at 

low valve lift. In addition to the main valve diaphragm, a secondary rolling stem seal is 

present to prevent oil in exhaust and vent gases migrating past the valve and bush 

arrangement, improving long term reliability. 
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Figure 3.14 Schematic of EGR system for Ford 1.8 litre Endura DI diesel engine 

for the Focus car (Lawrence 1998). 
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The intake manifold has a central entry, where the charge air and EGR are introduced, 

this feature gives good EGR distribution between the cylinders, an essential feature to 

maximise the use of EGR to high levels. EGR valve position and hence flow, is 

controlled by the engine management system, the Ford EEC V module, with closed loop 

feed-back of valve position by a potentiometer fitted on the EGR valve. The vacuum 

level to open the EGR valve is set by the ECU using an EVR current to vacuum 

regulator. It is interesting to note that mass airflow (MAF) control of EGR, used on the 

earlier IDI engines in Mondeo, has been dropped in favour of' EGR valve feedback. 

This will he discussed in more detail under EGR Control (Lawrence, 1998). 

Figure 3.15 Ford F. ndura I)1 diesel intake manifold and integrated E(; R valve 
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The new Duratorq 16-valve 2.4 litre DI diesel, for the new Transit, has a typical modern 
EGR system. A vacuum-actuated valve that incorporates a pintle design to improve 

controllability at low valve lifts, regulates the rate of EGR. Control of this valve is by 

the engine management system, via an electro-vacuum regulator. Closed-loop feedback 

of valve position is achieved using a valve lift potentiometer. An EGR cooler is used 
for the 66kW and 88kW variants. This increases the effectiveness by reducing the EGR 

temperature by up to 200°C. Thus reducing intake charge temperature, for a constant 
EGR mass, and allowing higher EGR rates to achieve substantial NO,, reductions. The 

EGR map for this engine is shown in Figure 3.16, Figures 3.17 and 3.18 show the 

Duratorq EGR system layout and components (Lawrence et al, 2000). 
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Figure 3.16 EGR map for Ford Duratorq 2.4 litre DI diesel 
(Lawrence et al, 1999) 
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3.2.2 BMW EGR Systems 

The BMW 2.0 litre 1-4 DI diesel has an innovative design of induction module that 

integrates a number of functions and contains the air filter and silencer, air mass flow 

sensor, induction system and EGR valve and forms the cylinder head cover (Anisits, et 

al, 1998). The EGR system is based on a control loop that uses the intake air mass as 

the reference variable. Careful design of the EGR valve and of the intake plenum has 

ensured extremely uniform distribution of re-circulated exhaust gas between the intake 

ports. A thermostatically controlled heat exchanger in the EGR line is used to cool the 

exhaust gas, in order to reduce exhaust gas pollutants still further. The reduction of 

approximately 15 per cent in NO,, can be attributed on the one hand to a lower process 

temperature and, on the other, to an increased EGR rate (Berger, Eichlseder and 

Steinmayr, 1998). 

The most recently released BMW diesel, the 3.9 litre V8 has an interesting and complex 

EGR layout. The system for each bank is completely separate, in other words there are 

two systems, one for each bank of cylinders. The intake and exhaust systems are also 

separate for the two banks. This is reported by Ansits et al (1999) to give very precise 

control of the variable geometry turbocharger vanes and exhaust gas recirculation. A 

duct cast at the rear of the cylinder heads takes the exhaust gas from the outside to inside 

the 'V' where the gas goes through an EGR cooler, cooled by the engine coolant, to the 

EGR valve, where the exhaust gas is mixed with the charge air. Interestingly, the 

exhaust gas from one bank is fed back into the other. In a presentation at RWTH 

Aachen, Dr Borgmann explained that this layout was simply expedient plumbing. The 

intake manifold is divided horizontally into two levels. In the upper level, the 

compressed air is mixed with the re-circulated exhaust gas; in the lower level, the 

mixture is distributed to the individual cylinders. This design is reported to ensure 

uniform EGR distribution and good EGR compatibility (Ansits et al, 1999 and 

Nefischer et al, 1999). A diagram of the air and exhaust flow systems for this engine, 

taken from Anisits et al (1999) is shown in Figure 3.19. 

Chapter 3 113 



1,, igure 3.19 BMW V8 air intake and exhaust gas flow system (Anisits et at, 1999) 

3.2.3 Mercedes-Benz EGR systems 

The Mercedes A class has two variants of a 1.7 litre 4-valve [DI diesel with Busch 

Common rail (OM668). EGR gas is takelt from the ýýhh0Site end Of the exhaust 

manifi>lcl frone the turbocharger. in a stainless steel pipe, to an aluminium pipe, which 

also acts as a support bracket I 'or the intake module, to the EGR valve. alter which the 

exhaust gas is introduced and mixed with the intake air charge. I. tpstream of the EGR 

mixing point is a throttle valve that is used to increase the pressure gradient between the 

Or charge and exhaust. Thus EGR and intake charge throttle valves control the flow of 

EGR, both units are vacuum operated and controlled by the ECK A hot We air nuns 

flow meter is integrated into the intake pipe to measure the intake mass airflow 

(Brueggeman and Wanner, 1997). 
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The C220 turbo-diesel, introduced in 1997 with a new 2.2 litre engine (OM611), 

featuring 4-valves per cylinder and common rail fuel injection equipment, had a 

pneumatically operated EGR valve and throttle valve to regulate the flow of re- 

circulated exhaust gas, which was controlled by the ECU using a hot-wire mass air flow 

meter for closed-loop control. This engine was revised with the introduction of 5 and 6 

cylinder versions in 1999, all featuring common rail fuel injection and variable nozzle 

turbochargers, (Peters and Puetz, 1997). 

Mahle Filter-systeme GmbH supplies a complete intake module for the new 4 cylinder 

(OM611) and 5 cylinder (OM612) engines. The integrated EGR system was developed 

as a set of identical parts for both the 4 and 5 cylinder modules. The re-circulated 

exhaust gas is fed from the exhaust manifold through a passage in the cylinder head, 

where a certain amount of cooling takes place, to an aluminium duct which is cooled by 

the engine coolant, reducing the gas temperature by up to 100K. After cooling the 

exhaust gas flows through a pipe to the Pierburg pneumatic EGR valve, after which the 

gases are mixed with the intake air. EGR flow is controlled by the Bosch CR 1.0 

control unit using feed-back on air mass flow, a mass air flow sensor being mounted in 

the clean air pipe before the turbocharger, Elsaesser A, Braun and Jensen (2000), 

Klingmann Flick and Brueggemann (1999). The 6-cylinder engine (OM613) has a 

separate stainless steel EGR cooler, rather than the water-cooled aluminium duct used 

on the 4 and 5 cylinder engines. Also, the larger manifold of the 6-cylinder engine is 

made of aluminium, (Klingmann et al, 1999). 

The latest diesel engine in the Mercedes-Benz stable is the 4.0 litre V-8 that was 

released in 2000. This has the same major dimensions as the 4,5 and 6 cylinder engines 

and shares many of the technical features. The two VNT turbochargers have electric 

actuators and the intake air filtering system has two hot-film mass airflow meters, in 

order to equalise the air mass flow to each bank of cylinders. Two EGR valves are 

combined in one casting with two separate electrical actuators, these are located in the 

"V" of the banks, upstream of the single EGR cooler. The exhaust gas is introduced to 

the intake charge at a throttle located after the air/water intercooler. The throttle is also 

electrically actuated. Electric actuation was chosen because of the speed of response 

and the in-built position feedback. Moreover, electric actuation of the turbine vanes 
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provides the option of open-loop control of the turbochargers in the EGR zone. In this 

way it is possible to reduce pumping work and to decouple boost pressure control from 

air mass flow control, Brueggemann et al (2000). 

3.2.4 Volkswagen Audi (VAG) EGR systems 

VAG introduced its 1.9 litre TDI engine for the 1992 model year in the Audi 80 car. 

This engine was equipped with an EGR system controlled by the Bosch MSA6 

electronic diesel engine management system, which controlled the Bosch VP34 fuel 

injection pump and EGR systems. To achieve high EGR flows at low loads, exhaust 

gas was taken from the exhaust manifold upstream of the turbocharger and returned to 

the intake downstream of the charge-air cooler. This control system used an air mass 
flow meter to modulate the EGR valve lift and hence flow rate, to achieve a nominal 

mapped value for air mass flow versus engine speed and fuel flow, Rhode et al (1991). 

Later developments of this system were to incorporate the EGR valve into the 

aluminium intake manifold, creating a modular unit. 

The Audi 2.5 litre V6 diesel engine is equipped with a single VNT turbocharger located 

at the rear of the 'V. ' This sits on a cast iron manifold, located at the rear of the engine 

in the middle of the 'V' that joins the two exhaust pipes from the manifolds on each 
bank. It is from this central manifold that the EGR is taken upstream of the 

turbocharger. A vacuum motor controls the VNT turbocharger turbine vanes. An EGR 

pipe takes the gas to a pneumatic EGR valve, which is connected via another EGR pipe 

to an aluminium charge-air pipe that connects to the two intake manifolds, one for each 
bank. 

The new Audi 3.3 litre V8 is equipped with two VNT turbochargers located on the 

exhaust manifold of each bank. EGR is taken from each manifold via thin walled 

stainless steel tubes to EGR valves, both of which are located on the intake manifold 

module positioned in the middle of the bank. This module contains the air to water 

intercooler and the EGR cooler which is also water-cooled. Both charge air and EGR 

are water cooled in this unit. The EGR is then introduced to the charge air in the 

plenum of the intake manifold on top of the cooler, within this unit. The two EGR 

valves are pneumatically operated, (Bach et al, 1999). 
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Table 3.2 Automotive DI Diesel Engine EGR Systems Summary 

Engine Air Air EGR valve location EGR EGR EGR thru' Turbo 
flow intake valve cooler cylinder type 

meter throttle actation head 
Audi 2.5 V-6 Yes No One - "hot" side Vacuum No No VNT 

Audi 3.3 V-8 Yes - Yes { Two - "hot" side Vacuum Yes t No VNT -2 
2 

BMW 2,01-4 Yes No "Cold" side attached Vacuum Yes No VNT 
to intake manifold 

BMW 2.91-6 Yes No "Cold" side attached Vacuum Yes No VNT 

to intake manifold 
BMW 3.9 V-8 Yes - No Two "cold" side Vacuum Yes -2 Yes VNT -2 

2 attached to intake 

manifold 
Fiat 1.9 1-4 JDT Yes No "Hot" - located on Vacuum No No W/G 

exhaust manifold 
Fiat 2.4 1-5 JDT Yes No "Hot" - located on Vacuum No No VNT 

exhaust manifold 
GM 2.0I-4 Yes No Incorporated in intake vacuum No Yes W/G TC 
Ecotec manifold 
Mazda 2.0 1-4 Yes No Mounted on intake Vacuum No No VNT 

manifold 
Mercedes No Mounted on intake Electric No No W/G TC 
SMART CDI manifold 
Mercedes 1.7 I- Yes Yes Mounted on intake Vacuum No No W/G TC 
4, OM668 manifold 
Mercedes 2.2 I- Yes No "Cold" side mounted Vacuum Yes( Yes VNT 
4, OM611 on intake manifold 
Mercedes 2.7 I- Yes No "Cold" side mounted Vacuum Yes Yes VNT 
5, OM612 on intake manifold 
Mercedes 3.2 1- Yes No "Cold" side mounted Vacuum Yes Yes VNT 
6, OM613 on intake manifold 
Mercedes 4.0 Yes - Yes- Two, "hot" side Electric Yes- I No VNT -2t 
V-8, )M628 2 1(3) 
Nissan 2.01-4 Yes No Mounted on intake Electric No No VNT 

manifold stepper 
motor 

PSA 2.0 1-4 Yes No "Hot" - located on Vacuum No No W/G TC 

exhaust manifold 
Renault 1.9 1-4 Yes No On intake manifold Vacuum No No W/G TC 
Rover Storm 2.5 Yes "Hot" mounted on Vacuum W/G TC 
litre 1-5 exhaust manifold 
Toyota 2.0 1-4 No Yes "Cold" side mounted Vacuum Yes No WIG TC 

on intake manifold 
VW 1.41-3 Yes Yes Vacuum No No W/G TC 
VW 1.9 I-4 Yes No Mounted on intake Vacuum No No WIG TC 

manifold 

Note (1) Used for engine shut-off. 
Note (2) Part of the air to water intercooler module located in the "V" of the engine. 
Note (3) Electric actuators 
Note (4) EGR controlled by EGR valve lift feed-back. 
Note (5) Cooling occurs through the cylinder head and further cooling occurs in a water-cooled 

aluminium combination manifold. 
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Table 3.3 Automotive DI Diesel Engine EGR Systems References 

Engine Reference 
Audi 2.5 V-6 Bauder et al (1999) 
Audi 3.3 V-8 Schiller and Ruegheimer (1999), Bach et al (1999) 
BMW 2.01-4 Anisits et al (1998), Berger et al (1998), Ford Competitive 

Analysis (1999) 
BMW 2.91-6 Anisits et al (1998), Anisits et al (1999) 
BMW 3.9 V-8 Anisits et al (1999) 
Fiat 1.9 1-4 JDT Piccone and Rinolfi (1997) 
Fiat 2.4 1-5 JDT Piccone and Rinolfi (1997) 
GM 2.0 1-4 Ecotec 
Mazda 2.0 1-4 Ford internal data 
Mercedes SMART 
CDI 

Thiemann et al (1999), Dietz (1999) 

Mercedes 1.7 1-4, 
OM668 

Brueggemann (1997), Ford Competitive Analysis (1999) 

Mercedes 2.2 1-4, 
OM611 

Klingmann, et al (1999) 

Mercedes 2.7 1-5, 
OM612 

Klingmann, et al (1999) 

Mercedes 3.2I-6, 
OM613 

Klingmann, et al (1999) 

Mercedes 4,0 V-8, 
OM628 

Brueggemann et al (1999), Brueggemann et al (2000), 
Jost (2001) 

Nissan Mase et al (1998) 
PSA 2.0 1-4 
Renault 1.9I-4 
Rover Storm 2.5 1-5 Rover Press Information 
To ota 2.0 1-4 Toyota Press Information (1997) 
VW 1.4 1-3 Neumann et al (1998) 
VW 1.9 1-4 Rhode et al (1991) 

Table 3.2 shows a summary of automotive DI diesel EGR systems and Table 3.3 

provides the references. The range of EGR components fitted to these engines can be 

reviewed. Clearly the majority of engines use airflow meters, while only a small 

number use air throttles. The valve location is of interest, ranging from the "hot" side 

mounted on the exhaust manifold, to the "cold" side after the cooler. Approximately 

half the engines use EGR coolers and a small number route the EGR through the 

cylinder head. Just over half the engines use VNT turbochargers. A brief history of 
VNT turbochargers is given in Appendix 4 on page 270. 
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3.2.5 EGR Valve Position, "Hot" versus "Cold" Side 

The review of current production automotive diesel engine EGR systems shown in 

Table 3.2, demonstrates a range of EGR valve positions; varying from a "hot" position 

on or near the exhaust manifold, to a "cooler" position on the intake manifold, or a 
"cold" location at the cold side of the EGR cooler. Apart from packaging constraints, 
the position of the EGR valve is determined by the peak temperatures it will withstand, 
and the effect on its operation. Table 3.4 below summarises the advantages and 
disadvantages of the alternative positions. 

Table 3.4 EGR Valve Position, "Hot" versus "Cold" Side 

Valve Position Advantages Disadvantages 

Hot-side   Minimizes carbon and   Larger valve diameter 

lacquer build-up, and   Requires isolation or water 

formation of sulphuric acid cooling for electric actuator 

  Special materials 

  Higher cost valve 

Cold-side   Smaller valve   Increased susceptibility to 

  Lower cost materials fouling and condensate 

  Lower cost valve assembly formation 

  Reduced EGR gas volume 

to intake system 

With the trend towards electric actuation of EGR valves, there will also be a move 

towards "cold" side valves owing to the temperature limitations of the electric 

components. The potential danger of a cold side valve is a build-up of lacquer on the 

valve stem, which can cause the valve to stick. There may also be a greater build-up of 

soot and heavy-hydrocarbon deposits on the valve, as well as a higher possibility of 

condensate formation, which may well be acidic. 
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3.2.6 Heavy-Truck EGR systems 

Heavy-duty engine manufacturers are now considering EGR as a means to reduce NOx 

for the next regulated level. Stage 4 in Europe reduces the NOx standard to 3.5 g/kWh 

at 2005, and for 2008 there is a further reduction to 2.0g/kWh. In the US a level of 

2.0g/hp hour will become effective in October 2002. There has historically been a 

reluctance to follow light-duty practice in the use of EGR because of the adverse effect 

on long-term durability, but the low level of the new standards means that the use of 

EGR is the only viable option to further reduce NOx without further worsening of fuel 

consumption. 

Until now, NOx reductions have been achieved by retarding injection timing. However, 

engine design experts at all of the engine manufacturers say the 2002 limit is beyond the 

point where further retardation would suffice. EGR is the technology that will have to 

be used. The good news is that EGR is so efficient in controlling NOx, when it is 

cooled before its return to the engine, that engine designers expect to be able to advance 

injection timing which will both reduce soot and improve fuel economy (Fetterman and 

Shank, 2000). 

One of the major concerns about using EGR with high-output diesel engines stems from 

this need to cool the exhaust gases. Typically, US diesel fuel contains some 300-400 

ppm sulphur, which, on combustion, can form SOX. Other combustion products include 

NO,, and predominantly, water. If the exhaust gases are hot, all of these components 

remain gaseous. However, when the EGR stream is cooled before it is returned to the 

engine, the mixture drops below its dew point. Water condenses out, reacts with the 

NO,, and SO,, and forms a mist of nitric and sulphuric acids in the EGR stream. This is 

then fed back into the engine where it can cause catastrophic increases in piston and ring 

wear (Fetterman and Shank, 2000). Experience on European light-duty engines has not 

shown this to be an issue; generally the EGR gases are not cooled below the dew point 

under normal engine operation. 

MAN, the German truck and engine manufacturer has become the first to go for EGR to 

reduce NOx emissions. All the company's Euro 3 engines have some sort of EGR. Dr 
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Klaus Schubert, MAN Chairman and former technical director concedes that there is a 

crucial trade-off between NOx, particulates and fuel consumption. Using EGR to cut 
NOx allows injection timing to be advanced which brings down particulates and helps 

fuel economy. To incorporate EGR across the entire engine range MAN has come up 

with a low-cost version for the smaller units, using a modest 4 to 5 per cent by closing 

the exhaust valve 25 degrees early, to increase the residual fraction and provide 

"internal" EGR. The bigger engines adopt a more typical system, bleeding 10 to 12 per 

cent from the exhaust manifold back via an EGR cooler to the intake. There is no 

electronic control, but a butterfly valve built into the cooler is used to cut out EGR for 

starting and at high loads. Electronic controls will come in the third quarter of 2001 

with second generation Bosch common rail fuel injection equipment (Anon, 1999). 

In the United States, Cummins Engine Company, Inc. produces a version of its 5.9 litre 

B-series DI diesel engine with non-cooled EGR. The engine was developed to meet the 

stringent Californian Transitional Low Emissions Vehicle (TLEV) standards for heavy- 

duty engines. EGR is controlled electronically in response to throttle demand and 

ambient conditions. The EGR system is subject to on-board diagnostic requirements for 

emission controls. The Cummins TLEV automotive engine uses a form of open-loop 

control of EGR. EGR is drawn from the exhaust manifold upstream of the turbocharger 

turbine and transferred to the intake manifold via a flow control orifice and a vacuum 

actuated EGR valve. The EGR valve is used to close the EGR path during start-up and 

during periods when the engine coolant is below a prescribed value. The venturi is used 

to increase the available pressure differential between the exhaust and intake manifolds, 

which can be limited on efficiently turbocharged engines. A schematic diagram of this 

system is shown in Figure 3.20. The EGR rate schedule with engine speed and load is 

determined by the natural characteristics of the EGR and air-handling systems 

(Charlton, 1998). 
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Turbine 

Figure 3.20 Schematic diagram of Cummins TLEV diesel engine EGR system 

(Charlton, 1998). 

3.3 Experimental EGR Systems 

In the late 1970s Ford management was concerned about the impact of potential 

forthcoming legislation to limit NOx emissions; there was a fear that it might limit the 

sales of light-duty diesel vehicles. Accordingly, a joint project was set up with Robert 

Bosch GmbH to establish what magnitude of reduction might be possible if a 

sophisticated EGR system was to be applied to the 2.36 litre IDI diesel engine then in 

production. The proposed system made use of the Bosch "Jetronic" petrol injection 

hardware to create an air/fuel ratio based method of control. Unfortunately the secrecy 

surrounding the exercise severely limited the distribution of the data generated. (Bosch 

insisted that any vehicle tests should not be conducted on Ford property and that at no 

time would the engine or vehicle be left in Ford hands without Bosch personnel being 

present). In the event the results were such as to convince the Ford management that it 

was commercially possible to cope with the worst levels of future NOx legislation that 
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could be foreseen at that time. Subsequently, and many years later when Ford did have 

a need to introduce a fully modulated EGR system, a much simpler and cheaper system 

was adopted for the 2.5 litre DI diesel. As far as is known, Bosch never did make use of 

the Jetronic hardware in a commercial diesel EGR application (Davies, 2001). 

An EGR system for a Ford prototype 16-valve 2.5 litre engine was reported by Horrocks 

and Robertson (1996) and Horrocks (1997). This consisted of an electronically 

controlled vacuum operated poppet type EGR valve mounted on the exhaust manifold. 

A Serck gas to water heat exchanger cooled the EGR gases; engine coolant was used for 

the waterside cooling media. To generate sufficient pressure drop to flow the desired 

volume of EGR under some part load regions where EGR optimum levels for best 

emissions were higher than would naturally flow through the EGR valve, a throttle 

valve was incorporated in the induction system. This was operated when desired such 

that boost pressure and air charge flow were restricted to favour the flow of exhaust 

gases from the EGR cooler. A schematic diagram of the EGR system is shown in 

Figure 3.21. EGR loops, demonstrating the high tolerance to EGR, in terms of low 

smoke and significant reduction in NOx emissions for the 16-valve 2.5 litre engine are 

shown in references Menne et al (1994) and Horrocks et al (1995). 

Intake Manifold 

Modulated 
EGR Throttle 

Air fr 
Turbo 
Comr 

Exhaust Manifold 

Modulated 
EGR Valve 

Figure 3.21 Schematic diagram of EGR system used on a prototype 16-valve 2.5 

litre DI diesel engine (Horrocks, 1997) 
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Figure 3.22 EGR map for prototype 16-valve 2.5 litre DI diesel engine 

(Horrocks, 1997) 

The final EGR map is shown in Figure 3.22. As can be seen in Figure 3.22, EGR 

levels of up to 60 per cent were achievable at low load and small amounts of EGR could 
be introduced up to 9 bar BMEP, above speeds of 1700 rpm. Thus EGR could be used 

over a significant area of the engine operating range, providing substantial reductions in 

NOx emissions. Electronic control of fuel injection and EGR provided accurate 

calibration throughout the engine operating range. This particular engine never went 
into production, but it was the fore runner of a family of modern 4-valve per cylinder 
high speed DI diesel engines deigned and developed at Ford. 

Honeywell Turbocharging Systems have proposed two methods for introducing EGR for 

highly turbocharged heavy-duty truck engines, where the intake manifold pressure 

usually exceeds that of the exhaust manifold. The first system uses a VNT turbocharger 

to increase the exhaust manifold pressure, above that of the intake charge. This is the 

same system that has been used experimentally for the work reported in this thesis, on a 
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light-duty automotive engine, and similar to that proposed by TNO (Baert et al, 1996), 

reported earlier in section 2.3.10. The second system also uses a VNT turbocharger, but 

this has a double-sided compressor wheel which acts as an integral EGR pump. Thus 

one side of the compressor boosts the charge air, while the other side further compresses 
the EGR gas. The proposed system takes the EGR gas through a cooler before it enters 

the compressor. An EGR valve located on the turbine housing regulates the level of 
EGR (Shahed and Waszkiewicz, 2000). 

3.4 EGR Control Systems 

The majority of EGR systems in production currently use intake air mass flow as the 

reference variable, for the electronic control system. For a given engine speed and fuel 

demand under hot operating conditions, the EGR valve lift is adjusted to achieve a pre- 

mapped value of air mass flow. Under cold operating conditions it is normal to reduce 

the level of EGR because of white and blue smoke concerns before the combustion 

chamber has warmed. This is done by a temperature off-set map, which reduces the 
level of EGR while the coolant temperature is below a pre-determined level. 

A small number of manufacturers, notably Ford, Mercedes and Toyota, use closed-loop 
feedback on the EGR valve lift, which is pre-mapped in the engine control unit. This 

requires a linear movement sensor to be an integral part of the EGR valve, in order to 

sense and feedback the valve lift 

With the use of variable nozzle turbochargers (VNT) it is necessary to use an air mass 
flow meter. This is owing to the fact that air flow is affected by not only the level of 
EGR but also by the turbocharger vane position, which in turn effects the level of EGR 

because of the influence on pressure drop across the engine. 

The quantity of exhaust gas returned must be precisely metered for emissions reasons 

and to prevent response faults and visible soot. Control must be fast and must be highly 

accurate and constant over long periods. This is achieved with a regulated EGR system, 

shown in Figure 3.23 below. The data are stored in performance maps in the engine 

control unit (ECU). The EGR valve is actuated via an electro-pneumatic transducer, 

Chapter 3 125 



which is supplied with pulses by the ECU. Re-circulation rates are at most circa 50 per 

cent (Bauder at al, 1997). 
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Figure 3.23 Diagram of Audi 2.5 litre V-6 EGR control circuit 

(Bauder et al , 1997) 
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EGR holds further potential for stricter emission levels of the future thanks to improved 

dynamic response and more precise proportioning, which can both be achieved with the 
help of electronically operated EGR valves. The electronic EGR valve is incorporated 

into the engine management system and is operated directly by the ECU. In comparison 

to conventional pneumatic EGR systems, electric EGR systems display a number of 

advantages, such as greater accuracy owing to more precise proportioning as well as 

much better dynamics, and thus enable greater potential for NOx reduction (Anon 

1998). 
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3.5 Future EGR Systems 

Future EGR systems will incorporate all the features covered in the previous sections, 

including a mass air flow sensor, intake throttle valve, EGR cooler, EGR valve and 

electronic control to accurately fully modulate EGR flow. For quick response times, the 

EGR valve and throttle will be electrically operated. The component suppliers are 

developing three types of electric actuators; proportional solenoid valves, DC stepper 

motors and 4-pole rotary actuators or torque motors. The solenoid and torque motor 

actuators bring the response time down to within 50 to 100ms, compared to typically 

200 to 300ms for a vacuum system. The whole system will most likely be integrated 

into a module with the intake system to improve the installation on the engine, the 

assembly at the build plant and reduce the overall piece cost. 

3.6 Conclusions 

  EGR has been used on production automotive diesel engines since the mid- to 

late-1980s for reducing NOx emissions. 

  EGR is currently used on all high-speed automotive DI diesel engines for 

reduction of NOx emissions in order to meet European Stage 2, Stage 3 and 

Stage 4 standards. 

IN EGR will continue to be the major engine feature to control NOx emissions. 

a The use of an EGR cooler is becoming more widespread, in order to meet the 

stricter Stage 3 and Stage 4 emissions standards. 

  Some engines use an intake throttle to generate the necessary pressure drop to 

meet the required EGR flow, under all engine operating conditions. 

  Vacuum operation of the EGR valve and throttle, where fitted, is the most 

widespread actuation method at present. 
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  Electric operation of the EGR valve is being introduced, to improve the response 

time. 

  The use of EGR for reduction of NOx emissions is being introduced on heavy- 

truck engines. 
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Chapter 4 

NOx Modelling 

4.1 NOx Formation Model 

4.1.1 Merlin Combustion-Emissions Model (Lloyd's Register DEEPC) 

This is a quasi-dimensional phenomenological model and is based on a multi-zone 

combustion modelling concept. It takes into consideration, on a zonal basis, details of 

fuel spray formation, droplet evaporation, air-fuel mixing, spray wall interaction, swirl, 

heat transfer, auto-ignition and rate of reaction. The emissions model uses the chemical 

equilibrium, as well as the kinetics of fuel, NO, CO and soot reactions in order to 

calculate the pollutant concentrations within each zone and the whole of the cylinder. 

The thermal NO formation, NO formed due to the atmospheric nitrogen in the high 

temperature combustion gases, is modelled based on the extended Zeldovich mechanism 

taking into account the kinetics of NO formation. The fuel-bound nitrogen is assumed 

to be converted to NO directly during the course of combustion development. The 

prompt NO mechanism is not taken into account. 

The extended Zeldovich mechanism uses the following reactions as documented in 

Chapter 2. 

O+N2HNO+N k,, k-, 2.1 

N+O2HNO+O k2, k-2 2.2 

N+OHHNO+H k3, k-3 2.3 

Chapter 4 129 



By assuming that NO formation is not directly coupled to combustion and by 

approximating the concentrations of 0,02 , OH, H and N2 by their equilibrium values, 
it can be shown (Heywood, 1988) that: 

d[NO]/dt = 2R1(1- ß2)/(1+ ßR1/(R2 + R3)) 

where: 

P= [NO]/[NO], 

R1 = kl [Ole[N2]e =k _1 
[NOIe[N]e 

R2 = k2[N]e[02le =k _2[NOle[OIe 
R3 = k3[Nle[OH]e =k _3[ND1e[H]e 
k1 = forward rate constant for equation I 

4.1 

17.6 x 1013 exp (-38000/T)} 

cm3 mo1"1 s'1 
k 

.i= reverse rate constant for equation I{1.6 x 1013} 

cm3 mo]'l s"t 

k2 = forward rate constant for equation 2{6.4 x 109 T exp (-3150/T) ) 

cm3 mot'' s"1 

k_2 = reverse rate constant for equation 2{1.5 x 109 T exp (-19,500/T)I 

cm3 mol'' s't 
k3 = forward rate constant for equation 3 (4.1 x 1013 ) 

cm3 mol"' s"1 

k 
.3= reverse rate constant for equation 3 {2.0 x 1014 T exp (-23,650/T)) 

cm3 mol'1 s"' 

and [] denotes the species concentrations and [ ]e denotes the equilibrium 

concentration, in moles/cm3. The rate constants shown above are taken from 

Heywood, who in turn took them from Bowman (1975), originally published by 

Baulch et al (1973). 

In Chapter 2 the extended Zeldovich mechanism and the reported rate constants were 

reviewed. It is clear from the literature that the reactions are reversible with forward 

rate and reverse rate constants. In-cylinder NOx measurements from a firing 2.5 litre DI 

diesel engine carried out at Brunel University (Balian, 1992,1995) show that the 

Chapter 4 130 



concentration of NO rises very rapidly following the start of combustion and reaches a 

peak at around 2.5 to 3.5 ms after the start of combustion. The concentration then falls 

off as the temperature drops, until it "freezes" towards the end of the combustion period, 

which establishes the exhaust level. The reduction in NO concentration during the 

diffusion phase of combustion indicates that the reverse reactions are taking place at a 

greater rate than the forward reactions. Thus the forward and reverse reactions are both 

important in predicting the final levels at exhaust valve opening, and subsequently in the 

bulk exhaust. 

For the NO sub-routine, the Merlin DEEPC emissions model assumes the following 

reaction rate equations, with reference to equation 4. I. 

R1 =k _1 
[NO]e[Nle 4.2 

R2 = k2[N]e[02]e 4.3 

R3 = k3[Nle[OH]e 4.4 

Hence the code uses the reaction rate constants k-1, k2 and k3, that is, the first reverse 

reaction and the second and third forward reaction rate constants. It is assumed this was 
done to minimise the number of calculations for species equilibrium concentrations. 

The values of the rate constants used in the code are taken from Heywood (1988), 

which were originally published by Baulch, et al (1973) and are listed in Table 4.1. 

Table 4.1 

Extended Zeldovich Rate Constants used in Merlin-DEEPC code 

Rate Constant Value 

cm3/mole. s (K) 

k-1 1.6 x 1013 

k2 6.4 x 10 T exp[-3150/T] 
k3 4.1 x 1013 
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The rate of formation of NO is then given by: 

d[NO]/dt = 2R1(1- ß2)/(1+ 3Rl/(R2 + R3)) 4.5 

where: 

ß= [NO]/[NO]e 

Rt = 1.6 x 1013[NO]z[N]e 

R2 = 6.4 x 109 T exp{-3150/T}[N]e[02]e 

R3 = 4.1 x 1013[N]e[OH]e 

From the above, it will be noted that it is only R2 in the above equation that is dependent 

on temperature, that is the formation of NO, owing to the temperature dependence of k2. 

The reverse reaction k-I is not temperature dependent and so will occur throughout the 

cycle, as will the forward reaction k3, depending, of course on the species equilibrium 

concentrations. 

Although researchers have had some success in using only the thermal-equilibrium-O 
(Zeldovich) mechanism to predict NO emissions in the past and in many cases the one 

step mechanism is sufficient to estimate NOx emissions, our current understanding of 
NO production shows that the situation is indeed more complex (Turns 1996). The 

basic premise behind the use of the Zeldovich is that the NOx chemistry is much slower 
than the combustion chemistry; thus the 0- and OH- atom concentrations have time to 

reach equilibrium. This assumption of uncoupled combustion and NOx formation 

chemistry breaks down, however, when 0- and OH- atoms are formed via the Zeldovich 

reactions much more rapidly than if 0 atoms were in equilibrium. 

4.1.2 Potential Improvements in the NOx Prediction Model 

Super-extended Zeldovich mechanism 
Miller et al (1998) have proposed a "super-extended" Zeldovich mechanism (SEZM) 

that predicts NOx formation levels to a greater accuracy than the established "extended 

Zeldovich" mechanism, when compared to gasoline test data. The reactive chemistry 
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mechanism includes 67 reactions and 13 chemical species. The SEZM incorporates 0, 

O29 OH, H, N2, NH, N2O, NO2 and NO. The 67 reactions, which were found to 
dominate thermal NOx formation for dilute (fuel-lean and EGR operation) and fuel-rich 

operation in internal combustion engines, are listed in SAE paper 980781. 

The SEZM kinetics were solved in a similar manner to the Zeldovich mechanism. 
Formation and destruction time scales for N, NH, NH2, NH3, HNO, N20 and NO2 are 

shorter than that of NO but longer than those of the 02, N2,0, and OH radicals. 
Therefore, N, NH, NH2, NH3, HNO, N20 and NO2 concentrations were obtained by 

assuming partial equilibrium (Miller 1997, Lavoie 1973). Consequently, NO was 
determined by solving one non-linear differential equation (non-linear kinetic equation) 
for NO, while solving 7 algebraic equations (partial equilibrium) for N, NH, NH2, NH3, 

HNO, N20 and NOZ while assuming the radicals were in equilibrium, Miller et al 

(1998). 

Because the predicted NOx levels were still in excess of the experimental data by more 

than 20 per cent, Miller et al, incorporated an empirical parametric variation of equation 
4.1, by modifying the rate constant with a pressure coefficient: 

O+N2HNO+N 2.1 

kIM= Cp 1.8x 10' 4exp(-3 8370/T) 

where Cp has the value shown in the Table 4.2 below and P is the instantaneous 

in-cylinder pressure in atmospheres. 
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Table 4.2 

Empirical parametric factor for modifying kj for pressure variation 
(Miller et al, 1998) 

CP P 

1.00 <15 

0.7 15-20 

0.48 20-25 

0.31 25-30 

0.25 30-35 

0.20 >35 

Miller et al found that this modification of kt with pressure, giving a factor of 5 decrease 

in the reaction rate, produced accurate NOx predictions as a function of load. 

N20 pathway to NO formation 
Mellor et al (1998) looked at a skeletal mechanism to model NO formation in diesel 

engines. This entailed considering all the pathways of NO formation and 
decomposition. The significant pathways were determined through kinetic analysis. At 

high pressures, formation of N20 can occur, some of which is converted to NO through 
further reactions with free radicals, such as 0 and H atoms (Malte and Pratt, 1974, 

Polifke et al, 1995). 

Matte and Pratt developed the original N20 mechanism based on work at low pressures 
(0.5 to 1.0 atm). 

NZO +0 2NO 4.6 

O+N2+MaN2O+M 4.7 

N2O+HaN2+OH 4.8 

N2O+Oý(-* N2+O2 4.9 
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At higher pressures, which are of interest for diesel combustion, Polifke et al (1995) 

observed that NO formation through the N20 mechanism is simplified. 

N2O+H4* NO+NH.... =: > 2NO 4.10 

Mellor and co-workers believe that NO formation through the N20 mechanism becomes 

increasingly significant since the forward rate of the three-body reaction (equation 4.8) 

is pressure sensitive. At pressures in the order of 60 atm and above, the N20 

mechanism makes an important contribution to the NO formation process at all 

stoichiometric temperatures of interest. In addition, at typical diesel operating 

conditions, NO decomposition in the zone of burnt gases surrounding the burning zone, 
is dominated by the reverse N20 mechanism (Mellor, 1998). 

Modelling of NO2 formation 

A potential area for improvement to the prediction of total NOx, relates to the formation 

of NO2 
. In Chapter 2 it was reported that DI diesel engines emit NO2 levels that can be 

as high as 50 per cent of the total NOx, during part load operation. Since NO2 is formed 

from NO, the modelling of its formation would not add to the accuracy of the total NOx 

model. However, a model for the formation of NO2 would provide the split between 

NO and NO2, which would be of use for the application of diesel NOx and particulate 

after-treatment. 

Hilliard and Wheeler (1979) and Lenner et al (1982) have reported considerable 

proportions of NO2 in the NOx emissions from diesel engines at moderate loads. 

Lenner (1986) reported on NO2 emissions from an IDI turbo diesel powered car, with 
EGR, and without EGR, but with a particulate trap. He also took measurements from a 
9.6 litre truck engine. The passenger car with EGR yielded NO2 fractions in the range 
15 to 35 per cent, peaking at 0.75kW (1 hp) load. The NO2 fractions from the car when 

the particulate trap was fitted were very much lower, less than 3 per cent except at 
idling. This may well be because the NO2 was converted to NO as part of the 

particulate oxidation process. Cooper and Thoss (1989) found that NO2 concentrations 
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between 200 to 800 ppm, promoted the oxidation of diesel particulates at 300°C. The 

truck engine emitted up to 25 per cent of the NOx as NO2 at mid-speed. 

Possible reactions for the formation of NO2 are as follows: 

2 NO + 02 -* NO2 + NO2 (formation) 4.11 

Merryman et al (1975) proposed the following 2 reactions. Hori et a] (1992) conducted 

chemical kinetic reactions, where it was found that the NOx is conserved during the 

reaction, and that the dominant reaction of the conversion of NO to NO2 is the "HO2 

mechanism" (the conversion of NO to NO2 by the HO2 radical) shown in reaction 7 

below. 

NO + HO2 -> NO2 + OH (formation) 4.12 

NO2 +H -a NO + OH (destruction) 4.14 

Additionally (Turns, 1996), 

N02+0 -+ NO + 02 (destruction) 4.14 

where the HO2 radical is formed by the three-body reaction (Turns, 1996) 

H+02 aHO2+M 4.15 

NO +O+M -* NO2 +M (formation) 4.16 

Pipho et a] (1991) of the University of Minnesota, investigated NO2/NO ratios during 

total cylinder sampling from an operating diesel engine and compared measured values 

with those from a simple kinetic model. They proposed that the reactions responsible 

for most of the NO2 formation following the dilution processes were: 
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NO + HO2 c=> NO2 + OH (formation) 4.17 

NO+O+Mr*NO2+M (formation) 4.18 

with the reverse of reaction 7 and the reactions 

NO2 +0 NO + 02 (destruction) 4.19 

NO2 +H -4 NO + OH (destruction) 4.20 

responsible for removal of NO2. Dilution similar to their simulated process does occur 
during the diesel combustion process. 

2 NO + O. ) -* NO2 + NO2 
Heywood (1988) states that this reaction is too slow to produce any measurable NO2 in 

the exhaust. 
Baulch et al (1973) recommended the following rate constant: 

k6 = 1.2 x 109 exp{530/TI cm6 mol'2 s"1 

within the temperature range 273 - 660 K. The authors make the point that if the 

mechanism is complex, in particular if more than one mechanism is operative in the 

conversion of NO to NO2 - it would be unreasonable to expect the rate constant to obey 

a simple Arrhenius expression over a wide range of temperatures. The available data 

suggest a curved Arrhenius plot over the temperature range 140 - 800 K. However, if 

the data below 273 K are ignored, then the above expression describes the most reliable 
data in the temperature range 273 - 660 K to within 50 per cent. 

NO + HO2-4 NOz + OH 
Bowman (1992) refers to this as the principal NO2 formation reaction. 
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Baulch et al (1973) make no recommendation for the rate constant for this reaction. The 

only experimental determination of k appears to be from unpublished work by Zafonte, 

which is referred to by Johnston (1970/1). Heywood refers to it as a plausible 

mechanism for the persistence of NO2, NO formed in the flame zone can be rapidly 

converted to NO2 via this reaction, but subsequent conversion back to NO occurs via 

NO2 +O--ENO+O2 4.21 

unless the NO2 formed in the flame is quenched. 

Glassman (1996) refers to this reaction as the significant step, in the formation of NO2 , 
pointing out that there can be appreciable amounts of HO2 in the early parts of a flame. 

In low temperature regions of flames, HO2 is relatively stable and it can react with NO 

formed in low temperature regions (Bowman 1992). The appearance of NO2 is 

supported by the fact that this reaction (3.7) is two orders of magnitude faster than 

reaction (3.9). 

A later section will cover the role of fuel on the conversion of NO to NO2. 

N02 +H -> NO + OH 
Bowman (1992) refers to this as the principal NO2 removal step. Turns (1996) also sites 

this as a reaction responsible for the destruction of NO2. Baulch et al (1973) make the 

following recommendation for the rate constant for this reaction. 

k8 = 3.5 x 1014 exp (-740/T) cm3 mol'' s"1 

in the temperature range 298 - 630 K 

Baulch et al (1973) state that the reverse reaction, between nitric oxide and OH to give 

NO2 
, (NO + OH -- NO2 +H) has never been studied directly. The rate constant could 

be calculated from the recommended expression for k, but it could not be recommended 

for use above 630 K. 

Chapter 4 138 



NO2 +0 -E-NO + O2 
The reaction of NO2 with oxygen is extremely fast (Baulch et al, 1973). Baulch et a] 

recommend the following rate constant. 

k9 = 1.0 x 1013 exp { -300/T } cm3 mol" 1 s1 

within the temperature range of 300 to 550 K. These authors report that there is no 

experimental data for the reverse reaction. Using calculations for the reverse reaction 

and thermodynamic data, they recommend a rate constant of. 

k_9 = 1.7 x 1012 exp{-23400/T} cm3 mol-' s"' 

for use in the temperature range 300-550 K. The authors state that this reaction is 

insignificant relative to other reactions oxidizing NO at nitric oxide concentrations 

above 10-77 mol cm-3 and temperatures below 1000 K. 

NO+O+M-4NO +M 
Baulch, et al (1973) recommend the following rate constants for this reaction: 

k1 i=1.1 x 1015 exp{940/T} cm6 moJ 2 s"' (M = 02, Ar) 

(200-500 K) 

k-11 = 1.1 x 1016 exp{-33000/T} cm3 mol-1 s" (M = Ar) 

(1400-2400 K, M= Ar) 

The reverse reaction rate constant is so small, in comparison to the other reactions, that 

this can be ignored. 

The role of fuel on the conversion of NO to NO2 

From various studies, (Bromly et al, 1988 and 1992, Hori et at, 1992 and Taylor et at, 

1998) it appears that the effect of fuel on the conversion of NO to NO2 is an important 

factor controlling NO2 exhaust emissions. 
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Ratios of NO2/NO far in excess of the appropriate equilibrium values were found to be 

due to the presence of oxidation intermediates of hydrocarbons, assumed to be 

hydroperoxyl radicals and other peroxides, in relatively high concentrations during tests 

conducted with flow-through reactors (Bromly et al, 1988). 

Hod et al (1992) conducted experimental and fundamental chemical kinetic calculations 

for NO2 formation. The fundamental chemical mechanism of NO2 formation is called 

the "HO2 mechanism" (the conversion of NO to NO2 by the HO2 radical). Recent data 

suggest that the conversion of NO to NO2 is affected by the presence of fuels. Hence 

the concentration and species of hydrocarbons in exhaust gas may be an important factor 

controlling NO2 exhaust emissions. 

From calculations it was found that the total NOx level was conserved during the 

reaction and that the dominant reaction for the conversion of NO to NO2 was NO + HO2 

= NO2 + OH even in the presence of fuel. The fuels that easily decomposed to produce 

active species and consequently produced high H02 concentrations achieved a higher 

conversion of NO to NO2. The effectiveness of promotion strongly depends on the type 

of fuel. The experiments showed a trend where the effectiveness increased as H2 < CH4 

< C2H6 < CZH4 < C3H8 < i-C4Hj0 < n-C4H10. The kinetic calculations confirmed these 

trends, and a lower conversion was predicted for C3H6. 
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Table 4.3 

Summary of NO2 formation and destruction reactions, and rate constants: 

k= ATA exp(-EIRT) 

Equ. Reaction A ß E/R Temperature Reference 

No Range 

4.6 2 NO + 02 -ý NO2 + NO2 1.2 x 10 0 -530 273 - 660 Baulch et al, 

1973 (Note a) 
4.7 NO + H02 -ý NO2 + OH 2.1 x 10' 0 -240 1000-2000 Hanson & 

Salimian, 1984 

4.8 NO2 +H NO + OH 3.5 x 10' 0 740 298-630 Baulch et a1, 

1973 (Note (3) 

4.9 N02+0 -- NO + O2 1.0 x 10' 0 300 300-550 Bauich et al, 

1973 (Note y) 
4.11 NO +O+M -a NO2 +M 1.0 x 10' 0 -940 200-500 Baulch et al, 

1973 (Note A) 

Units: moles, cm', s, K 

Note a: k is defined by '/2d[NO]/dt = -d[O2]/dt = k[NO]2[02]. Baulch et al suggest an error limit of +/- 

50% in the temperature range quoted, no high temperature data available. Units cm6 mol-2 s''. 

Note . Baulch et at suggest an error limit of +/- 50% at 298 K increasing to a factor of 2 at 633 K, no 

high temperature data available. 
Note v: Bauich et at suggest an error limit of +/- 25% in the temperature range quoted, limited high 

temperature data available. 
Note e: Baulch et al suggest an error limit of +/- 20% in the temperature range quoted, no high 

temperature data available. Units cm6 mol-2 s"'. 

The rate of formation of NO2 is given by: 

d[N02]/dt = k6[2NO][02] + k7[NO][HO2] - k8[NO][OH] - k9[NO][02] 

+ kl l [NO] [ O] [M] 4.22 

Where [] denotes the species concentrations in moles/ cm3. 
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However, all the rate data have been obtained at relatively low temperatures, as shown 
in Table 4.3. Chemical equilibrium considerations indicate that for typical flame 

temperatures (T>1500K), (NOZ)/(NO) ratios are negligible. Nevertheless, significant 
NO2 concentrations have been measured in gas turbine exhausts (Johnson and Smith 

1978), in turbulent diffusion flames (Schefer and Sawyer 1977, and Cernansky and 
Sawyer, 1975) and more recently in a small high speed DI diesel engine (Ketcher, 

1997). 

Modelling prompt NO formation 

Prompt NO chemistry is thought to dominate over thermal NO production for fuel rich 

conditions, as well as for ultra lean conditions, where the combustion temperatures are 

extremely low, resulting in a minimal contribution from the thermal mechanism (Miller 

and Bowman, 1989). 

Miller et al (1997) found that prompt NO contributed less than 1 per cent to the total NO 

production, for normal engine conditions, with the bulk of the NO production being 

attributed to thermal NO which is produced in the adiabatic region behind the flame 

front. However, HCN production might still occur in this rich combustion and if it does 

it is likely that the fixed nitrogen would be released as NO at the diffusion flame, 

(Miller and Kee 1986, Miller and Bowman 1989). 

Miller and Bowman (1989) considered the following reactions. 

CH+N2aHCN+N 2.20 
(Fenimore's postulation, equation 2.20 in Chapter 2) 

CH2 + N2 <* HCN + NH 2.23 

(Sterling and Wendt's reaction, equation 2.23 in Chapter 2) 

CH2 + N2 <* H2CN +N2.25 
(Equation 2.25 in Chapter 2) 

C+N2aCN+N 2.26 
(Equation 2.26 in Chapter 2) 
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Their calculations showed that equations 2.23 and 2.25 (Chapter 2) were insignificant 

contributors to prompt NO. Reaction 2.26 was considered to be a minor, but non- 

negligible, contributor to prompt NO under most conditions. Because of the large 

endothermicity of the reaction C+ N2 -* CN + N, its importance with respect to reaction 
2.20 (Chapter 2) increases with increasing temperature. Miller and Bowman confirmed 
Fenimore's postulation that reaction 2.20 does lead to prompt NO. Table 4.4 lists a 

range of rate coefficients proposed for reaction C+ N2 -ý CN + N. 

Table 4.4 

Rate coefficient expression for the reaction C+ N2 -4 CN + N) 

Rate coefficient 

(cm3/mol-sec) 

k (T) 

k (2000K) Reference 

1.44 x 1010 * 1.44 x 1010 Morley (1976) 

8.0 x 10 exp(-11000/RT) 5.0 x 1010 Blauwens et al (1977) 

4.0 x 10 exp(-13600/RT) 1.3 x 1010 Matsui and Nomaguchi 

(1978) 

1.0 x 10'2exp(-19200/RT) 8.0 x 10 Roth and Ibreighith (1984) 

1.2 x 10 exp(-13600/RT) 3.9 x 1010 Matsui and Yuuki (1985) 

4.2 x 10 exp(-20400/RT) 2.5 x 1010 Dean et al (1988) 

3.0 x 10 exp(-13600/RT) 9.8 x 1010 Miller and Bowman (1989) 

* Temperature range 2000 K<T> 2560 K 

From the table above, taken from Miller and Bowman (1989), it is clear that further 

progress in modelling prompt NO in flames requires a direct and unambiguous 

determination of the rate coefficient at flame temperatures, for the Fenimore reaction, 

C+N2-RCN+N. 2.26 
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Miller and Bowman also concluded that prompt-NO formation involves 3 separate 

kinetic issues: 

1. the CH concentration and how it is established; 

2. the rate of molecular nitrogen fixation; that is, the value of k2.20; the reaction 

rate coefficient for equation 2.20; 

3. the rates of interconversion among fixed nitrogen fragments. 

Up to an equivalence ratio of approximately ý=1.2 the HCN and N produced by 

reaction 2.20 are converted rapidly to NO principally by the mechanism discussed by 

Miller et al (1984). 

HCN+OHNCO+H 4.23 

HCN+OHNH+CO 4.24 

NCO+HHNH+CO 4.25 

NH+HHN+H2 4.26 

N+OHHNO+H 4.27 

N+O2HNO+O 4.28 

Beyond "=1.2, several factors combine to cause the NO concentration to decrease 

relative to HCN: 

(a) the conversion of HCN by the above mechanism is no longer rapid; 

(b) the recycle of NO to HCN begins to inhibit NO production; 

(c) the reaction N+ NO H N2 + 0, shifts directions from reverse to forward. 

At ý=1.4 the peaks in the CN and total fixed nitrogen concentrations occur 

simultaneously. Beyond 0=1.4 the fixed nitrogen concentration is limited by the 
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availability of the chain carriers, H and OH, required for producing CH from methane. 
Also, reaction 

CH3+N=H2CN+H 4.29 

appears as a competitor for nitrogen atoms, competing favourably with reaction. 
N+OHHNO+H. 4.30 

Calculations and experiments show little prompt NO produced at equivalence ratios 

above 1.8, (Glarborg et at 1986, Miller and Bowman 1989). 

Miller et al (1998) modelled prompt NO production in their SEZM mechanism, using 

the empirical correlation as suggested by Lavoie and Blumberg (1973), 

[NO]flamefront = f(4)P1/2 [NO]Equilibrium 4.31 

which accounts for equivalence ratio and pressure dependencies on flame front NO. 

Prompt NO chemistry is typically restricted to regions near the flame front where HCN 

and hydrocarbon fuel concentrations are sufficiently large to be considered important in 

the total NO production. 

4.2 Summary and Conclusions 

The extended Zeldovich mechanism for thermal NO formation is the mechanism 

responsible for the vast majority of NO formed in premixed and diffusion combustion of 
hydrocarbon fuels at elevated pressures and temperatures. It is the basis for all 

modelling of NOx formation in combustion where elevated temperatures are 

experienced. Additionally, there are a number of other reactions responsible for the 

formation of NO during diesel combustion. These are, `prompt NO' formation, 

conversion of N20 to NO, and NO formed from fuel bound nitrogen, but these only 

contribute a small proportion of the total NOx formation. 
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A large number of reaction rate constants have been proposed by a number of 

researchers, for the Zeldovich mechanism. A selection of these has been assessed and 

will be reviewed in the next chapter 

A number of refinements to the Zeldovich mechanism have also been proposed. In a 

super-extended Zeldovich mechanism, reported by Miller et al (1998), NO was 
determined by solving one non-linear differential equation (non-linear kinetic equation) 
for NO, while solving 7 algebraic equations (partial equilibrium) for N, NH, NH2, NH3, 

HNO, N20 and NO2 while assuming the radicals were in equilibrium. Additionally by 

modifying the rate limiting reaction, 0+ N2 " NO + N, with an empirical coefficient to 
incorporate the influence of pressure, the accuracy of the model was improved for a 

gasoline engine. 

At high pressures, formation of N20 can occur, some of which is converted to NO 

through further reactions with free radicals, such as 0 and H, (Malte and Pratt, 1974, 

Polifke et al, 1995) 

Another refinement for the prediction of total NOx is modelling of prompt NO 

formation. Prompt NO formation contributes to total NO levels under rich conditions, 

as well as ultra lean air/fuel ratios. Fenimore's postulation that CH + N2 a HCN +N 
leads to prompt NO has been confirmed by other researchers, Miller and Bowman 

(1989). However, there is a wide range of rate coefficients proposed for the Fenimore 

reaction. 

Lavoie and Blumberg suggested an empirical correlation: 

[NO]fiamefront = f(O)P]/2 [NO]Equilibrium 4.32 

which accounts for equivalence ratio and pressure dependencies on flame front NO. 

However, there is debate about how much NO formation is attributable to the prompt 

reaction. 
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A further refinement for the prediction of NOx is establishing the proportion of NO2, or 

the ratio NO/ NO2. There are a number of possible reactions leading to the formation of 
NO2, but the most important are: 

NO+HO2 ---> NO2+OH 4.18 

NO+O+M-->NO2+M 4.19 

While the following two reactions are responsible for the removal of NO2, converting it 

back to NO. 

N02+O --ENO+O2 4.20 

NO2+H --* NO+OH 4.21 

As can be seen from the above reactions, NO2 is formed from NO, so the modelling of 
its formation would not add to the accuracy of the total NOx model. However, a model 

for the formation of NO2 from the above reactions would provide information on the 

split between NO and NO2, which would be of use for the application of diesel NOx and 

particulate exhaust after-treatment, where the level of NO2 is important for the 

respective reactions. 
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Chapter 5 

Engine Simulation with EGR 

5.1 Emissions modelling using the MERLIN-DEEPC code 

The Merlin-DEEPC code was developed by the Performance Technology Department at 
Lloyd's Register, under funding from the UK Government Department of Transport and 
the Diesel Engineering Department of Ford Motor Company Ltd. 

The phenomenological combustion and exhaust emissions model is a multi-zone quasi- 
dimensional, diesel engine exhaust emissions predictive capability code, with the 

acronym, DEEPC. It takes into consideration, on a zonal basis, details of fuel spray 
formation, droplet evaporation, air-fuel mixing, spray wall interaction, swirl, heat 

transfer, self-ignition and rate of reaction. The emissions model uses chemical 

equilibrium, as well as the kinetics of fuel, NO, CO and soot reactions, in order to 

calculate the pollutant concentrations within each zone and the whole of the cylinder. 

The combustion process in a DI diesel engine is modelled as a complex sequence of 

overlapping and interacting events, which are completed in a short period of time. 
Injected fuel is assumed to be characterised in the form of intermittent pockets of fuel 
being emitted from the nozzle hole during each calculation time step, thereby making 

segments of fuel as injection proceeds. All the droplets in a spray segment are assumed 
to have the same Sauter mean diameter. Allowance is made for droplet size variation 
from one segment to the next. At the start of atomisation, each spray segment is divided 

into a definite number of combustion zones. Air entrainment rate depends on the 

physical position of each zone, with centreline zones receiving least and edge zones 

receiving the most air. Swirl affects the shape of the spray and the rate of entrainment 

and is accounted for by modifying spray angle and penetration. Spray-wall 
impingement is assumed to take place when the moving zone reaches the nearest wall. 
Ignition is assumed to start at the vapour phase in each zone. The ignition delay is 
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measured from the point of atomisation and is related to zone temperature and air-fuel 

ratio through known correlations. Heat transfer is modelled on a zonal basis and both 

convective and radiation heat transfers are modelled. Zone temperature, volume and 

mass for a fixed cylinder pressure are calculated from the energy equation in 

conjunction with mass conservation and an equation of state is solved iteratively for 

each zone, (Bazari 1992). 

Thermal NO formation is based on the Zeldovich mechanism taking into account the 

kinetics of NO formation (reviewed in Chapter 2). 

O+N2 a NO+N 2.1 

N+O2 NO+O 2.2 

N+OHaNO+H 2.3 

By assuming that NO formation is not directly coupled to combustion and by 

approximating the concentrations of 0,02, OH, H and N2 by their equilibrium values, 

Heywood (1988) showed that: 

d[NOJ/dt = 2R1(1-(32)/(1+ß. R, /(R2+R3)) 5.1 

where 

ß= [NOJ/[NOJc 

Rt = k1 [Ole[N2]e 

R2 = k2+ [Nle[O2]e 

R3 = k3+ [NJz[OH] 

kl+ = 7.6 x 1013 exp(-38000/T) 

kj = 6.4 x 109 T exp(-3150/T) 

k3+=4.1 x 1013 
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Chemical equilibrium within each zone is calculated by the method outlined by Olikara 

and Borman (1975). 

The fuel-bound nitrogen is assumed to totally convert to NO directly during the course 

of combustion. 

The EGR process is modelled by considering the mass percentage EGR and the degree 

of cooling on the re-circulated gas. The inlet manifold temperature and composition are 

calculated from the exhaust gas temperature and composition by assuming perfect 

mixing of the EGR and intake air. The inlet manifold temperature and composition, and 

the degree of scavenging, will determine the trapped gas temperature and composition, 
(Bazari 1992). 

The input required to run the program is: 

" Measured fuel delivery 

" Measured fuel line pressure, as a function of crank angle 

" Measured dynamic start of injection 

" Injector nozzle opening pressure 

" Injector nozzle geometry, hole diameter and length, and number of holes 

" Swirl ratio, a fixed value of swirl is assumed. 

5.1.1 Calibration of the MERLIN-DEEPC model 

The following correlations were used in the DEEPC code for the modelling of the Lynx 

Upgrade engine. 

1. Spray penetration correlation, Dent (1971) 

Spray penetration, S=3.07(iPnoz/pg) 0.25 1 dn0 
. t}°5. (294/Tg)0.25 

Where, iPn0 - pressure drop across nozzle, N/m2 

pg - air density in cylinder, kg/m3 

d,, 0Z - nozzle hole diameter, m 
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t-- time, s 

Tg - gas temperature, K 

2. Spray angle correlation, Abramowich (1963) 

tan (0/2) = 0.13 (1+ pg/pf) where, pg -- air density in cylinder, kg/m3 

pf - fuel density, kg/m3 

3. Fuel droplet Sauter mean diameter correlation, Elkotb (1982) 

Sauter mean diameter, SMD = 308500. pf 0.385 
, Vf0.737 St0.737 P9 

0.06 
. 

pPnoz- 

0.54 

Where, pf- fuel density, kg/m3 

of - fuel kinematic viscosity, m/s 

stf -- fuel surface tension, N/m 

pg -- air density in cylinder, kg/m3 

OPnoZ - pressure drop across nozzle, N/m2 

4. Ignition delay correlation, Wolfer (1938) 

Ignition delay, Tp = 0.44 P"''19 exp(4650/T) 
'Lp -- ms 

P- atmospheres absolute 

T-K 

The correlations described above were chosen, based on previous experience in DI 

diesel engine modelling at Ford, because they aligned predicted results more closely to 

experimental data than other alternative published correlations that were available. 
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For the initial calibration of the model to the experimental data, a priority order of 

certain basic parameters was scheduled, these were: 
1) fuel mass flow 

2) air mass flow 

3) BMEP 

4) boost temperature 

5) peak cylinder pressure 

To achieve a close correlation with the experimental data a number of coefficients and 

constants were adjusted in the code. Predicted fuel mass flow was correlated with the 

experimental measurement by adjustment of the injector nozzle discharge coefficient, 
the final value used was 0.732. The simulated air mass flow was calibrated to the 

experimental result by adjusting a number of parameters in the program; such as heat 

transfer coefficients for the exhaust plenum and turbine volute, and the simulated blow- 

by. 

Once the fuel and air mass flows correlated to the experimental data, the predicted 
BMEP was finally tuned by adjustment of the simulated injection timing. The 

experimental reading was taken at 10 per cent needle lift, whereas the model simulates 
injection timing when the line pressure equates to the injector opening pressure. The 

line pressure data therefore had to be adjusted from a timing point of view, relative to 

crank angle, to give the correct injection timing to fine-tune the BMEP. 

5.1.2 Engine operating condition 

One engine operating condition was selected for the modelling exercise to examine the 

accuracy of the Zeldovich mechanism in predicting exhaust NOx concentrations. In 

order to investigate the effect on the predicted mode result, and the relative accuracy of 

the rate constants, a selected number of published rate constants were used for the 

simulation. Also, the sensitivity of the Zeldovich rate constants was assessed. 

The European standard for measuring exhaust emissions from light-duty vehicles is a 

vehicle drive cycle that consists of two parts. Part One, the urban ECE-15 cycle is made 
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up of four elementary urban cycles. Each elementary urban cycle comprises fifteen 

phases, idling, acceleration, steady speed, deceleration and idling again, repeated three 

times. The average speed for this part is 19 km/h, the effective running time is 13 

minutes and the distance covered over the 4 cycles is 4.05 km. Part Two, the extra 

urban drive cycle (EUDC) comprises 13 phases of idling, acceleration, steady speed and 

deceleration. This is a faster drive cycle with an average speed of 62.6 km/h with a 

maximum speed of 120 km/h. It lasts 6 minutes and 40 seconds and covers a theoretical 

distance of 6.955 km. This drive cycle is shown in Figure 5.1. During the test the 

exhaust gases are diluted and a proportional sample collected in one or more bags. The 

exhaust gases are sampled and analysed, and the total volume of the diluted exhaust is 

measured. Carbon monoxide, hydrocarbons, oxides of nitrogen and particulate 

emissions are analysed for diesel engines, with the corrected measurements expressed as 

g/km. 

A block diagram of the Merlin model of the Lynx Upgrade engine is shown in 

Appendix 1 on page 265. 
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Steady speed 29.3% 

1000 1200 

Figure 5.1 European emissions vehicle drive cycle. 

In order to develop diesel engine combustion and fuel injection systems it is normal 

practice within the automotive industry to develop steady-state mini-mapping points to 

represent the vehicle drive cycle. These are used for initial fuel injection system and 

combustion optimisation, and calibration on a steady-state dynamometer test bed prior 
to testing on a transient dynamometer or in a vehicle on a chassis rolls. These mini- 
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mapping points can be obtained by computer prediction methods, such as the Ford 

Corporate Vehicle Simulation Program (CVSP). This program simulates the legislative 

drive cycle for a particular engine-transmission-vehicle combination. It takes into 

account the transmission ratios, tyre rolling radii, vehicle rolling resistance and 

aerodynamic drag. By using a high number of discreet load speed points from the 

engine-operating map for brake specific fuel consumption (BSFC), the program predicts 

the total cycle fuel consumption. It is also possible to reduce the number of engine 

speed / load points to a relatively small number, and to weight their importance by 

assessing the time spent at, or near, that particular operating mode, for steady-state 

dynamometer testing. A 14-mode steady-state engine speed / load mini-mapping cycle 
has been used for the 1.8 litre diesel in the Escort car for a number of years; this is 

shown in Table 5.1. More recently this has been modified for the 1.8 litre Endura DI 

diesel in the new Ford Focus. 
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Table 5.1 

14 Mode Steady-State Simulation of European Drive Cycle 

For 1.8 Diesel in Escort Car 

Mode No 
Engine Speed 

rpm 

BMEP 

bar 

Torque 

Nm 
Weighting 

1 800 0 0 27.7 

2 1000 1.0 14 4.0 

3 1150 4.4 61.4 2.7 

4 1500 4.0 55.8 2.4 

5 1800 0.8 11.2 8.9 

6 1800 2.0 27.9 6.0 

7 1800 3.0 41.9 8.9 

8 1900 5.8 81.0 4.2 

9 2150 4.1 56.6 2.6 

10 2300 6.0 83.7 3.3 

11 2400 0.9 12.6 12.9 

12 2600 3.9 54.4 3.4 

13 2700 8.0 111.7 2.0 

14 3200 5.0 69.8 0.9 

One of these modes, mode 13, which is 2700 rpm and 8 bar BMEP, was chosen for this 

exercise. 

5.1.3 Comparison between experimental results and MERLIN-DEEPC predicted 

NOx emissions for a Lynx Upgrade engine operated at 2700rpm, 8 bar 

lMEP. 

Figures 5.2 to 5.9 show comparisons of the predicted engine performance parameters of 

air mass flow, fuel mass flow, BMEP, boost temperature and pressure, peak cylinder 

pressure and exhaust temperature, plotted against the experimental data taken from the 

engine with increasing levels of EGR. These figures clearly illustrate close correlation 
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for, air mass flow, fuel mass flow and BMEP. At low levels of EGR, boost temperature 

was modelled accurately, but as the EGR level increased above 20 per cent, the 

modelled temperature did not follow the experimental rise in boost temperature, leading 

to an error of 48 K at 40 per cent EGR. Boost pressure and therefore peak cylinder 

pressures were less accurately modelled, although the trend was correctly represented. 

The modelled value was lower by 0.18 bar with no EGR, and got progressively lower 

with increasing EGR. A similar situation occurred with peak cylinder pressure, 

although the relative accuracy was better, with a4 per cent error at zero EGR which 

doubled to an 8 per cent error at 40 per cent EGR. 

The emissions predictions are shown in Figures 5.10 to 5.15. Figure 5.10 shows CO 

emissions plotted in g/kgf�et and here the correlation to the experimental data was not 

good, the modelled results were about a third of the experimental value. Carbon dioxide 

emissions are plotted in Figure 5.11 and here, the predicted values were higher than the 

experimental results, an error of 10 per cent occurred at zero EGR, but this increased to 

42 per cent at 40 per cent EGR. Clearly the DEEPC code was not modelling CO2 

correctly at high EGR levels. Unburned hydrocarbon levels from a diesel engine are 

very low, less than 2 g/kgfuet and the model had difficulty in predicting accurate values, 

as can be seen from Figure 5.12. Prediction of smoke emissions was good up to an 

EGR level of 20 per cent, but the model did not predict the upturn in smoke at higher 

levels of EGR, as seen in Figure 5.13. The prediction of particulates is relatively good 

and accurately determined the trend over the range of EGR levels, although the 

accuracy falls off at high EGR levels. 

The NOx results are plotted in Figure 5.15; as expected there was almost a linear fall in 

the experimental measurements of NOx emissions with increasing levels of EGR. The 

predicted NOx levels follow a similar trend, although they were initially higher at zero 

and 10 per cent EGR, but converged with the experimental results at 20 per cent EGR, 

and then crossed-over to give lower values at 30 and 40 per cent EGR. The over- 

prediction at zero EGR represented an error of 17 per cent compared to the experimental 

measurement, a 25 per cent error at 10 per cent EGR, converged to within 3 per cent at 

20 per cent EGR. The modelled result diverged at 30 per cent EGR giving an under- 

predicted error of 52 per cent at 30 per cent and 66 per cent at 40 per cent EGR. 
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The accuracy of the predicted NOx results relies on a number of assumptions. Firstly, it 

is assumed that the Zeldovich mechanism is the predominant method for the formation 

of NOx. Moreover, the Zeldovich mechanism relies on the prediction of concentrations 

of NO, N, 02 and OH as well as the local temperature. It is not known how accurate 

these constituents were modelled, as they were not been measured. It may therefore be 

that these quantities were less accurately modelled during engine operation at high 

levels of EGR. It has already been illustrated in Figure 5.10 that the prediction of CO, 

for example, was not particularly accurate. There is also the fundamental assumption 

that the levels of NO, N, 02 and OH have achieved equilibrium values. With regards to 

in-cylinder temperature prediction, boost temperature was modelled fairly accurately up 

to 20 per cent EGR, the predicted values then diverged from the experimental as EGR 

was increased, Figure 5.5. Boost pressure, Figure 5.6, on the other hand was under- 

predicted throughout the EGR loop, by 10 to 13 per cent up to 20 per cent EGR, 

diverging to a 22 per cent error at 45 per cent EGR. Peak cylinder pressure was under- 

predicted throughout the EGR loop by 4 to 8 per cent, except at 45 per cent EGR where 

the error was 14 per cent, as shown in Figure 5.8. Exhaust temperature, however, was 

slightly over-predicted by around 7 per cent throughout the loop, so it is very difficult to 

assess whether in-cylinder zonal temperatures were accurately predicted for the 

Zeldovich mechanism. 

Despite the prediction errors, the model does demonstrate the correct trends, and the 

level of accuracy at the low EGR rates is not untypical of combustion models at the 

present time. For routine simulation exercises and for extensive parametric studies of 

engine performance and emissions, the phenomenological models are generally 
favoured (Wahab 1998). This is mainly because of the ease of modelling; the lesser 

computer facilities required, and the shorter turn around time compared to three- 

dimensional CFD modelling. 
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5.1.4 Comparison between experimental results and MERLIN-DEEPC predicted 

NOx emissions using different chemical kinetic rates for Lynx Upgrade 

engine operated at 2700rpm, 8 bar bmep. 

In the standard version of DEEPC the rate constants were taken from Heywood (1988), 

who referenced Bowman (1975). Bowman took the rate data from Baulch et al (1973) 

who conducted a critical review of published data and recommended rate constant 

expressions for these reactions. The results previously discussed from this prediction 

with the standard version were then compared with alternative rate constants for k 
. 1, k2 

and k3, taken from the literature survey. Schofield (1967) recommended a k+2 

expression that includes a 1.5 ̀ ß' term, this was used with the standard rate values for k 

.1 and k3. Hanson and Salimian (1984) proposed rate constants which were one to two 

orders of magnitude different to those of Baulch et al, and rate constants from Glarborg 

et al (1992) which are similar to those of Baulch et al, with the exception that k 
.1 

has a 
0.3 `ß' term. Table 5.2 summarizes the rate constants used for the prediction work. 
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Table 5.2 

Extended Zeldovitch mechanism rate constants used in MERLIN-DEEPC 

predictions 

k= ATS exp(-E/RT) 

Reference Reaction Const A E/R Temperature 

Range 

Hanson & 

Salimian, 1984 

N+NO -ý 0+ N2 k. 1 2.63 x 10 0 0 

Heywood, 1988 N+NO -ý O+ N2 k 
-I 

1.60 x 1013 0 0 

Glarborg et al, 
1992 

N+NO -ý 0+ N2 k. 1 3.31 x 1012 0.3 0 

Schofield, 1967 

(note 2) 

N+02--ENO+O k2 1.48 x 10 1.5 2862 400-5000 

Baulch et a], 1973 N+02-, NO+O k2 6.4 x 10 1 3150 300 - 3000 

Hanson & 

Salimian, 1984 

N+O2-ENO+O k2 1.6 x 10 1 4470 

Heywood, 1988 N+02-+NO+O k2 6.4 x 10 1 3150 300 - 3000 

Glarborg et a], 
1992 

N+02- NO+O k2 6.46 x l0 1 3160 

Bauich et al, 1973 N+OH->NO+H k3 4.1 X 1013 0 0 

Hanson & 

Salimian, 1984 

N+OH-3NO+H k3 2.6 x 10 0 0 

Heywood, 1988 N+OH-ENO+H k3 4. lx 10 13 0 0 

Glarborg et al, 
1992 

N+OH-ENO+H k3 3.8 x 1013 0 

1 

0 

-1 
Units: A- cm3/mole. s when (i = 0; T- temperature in Kelvin 

Note 2: Best fit data from Kaufman & Decker, Mavroyannis & Winkler, Clyne & Thrush, Kistiakowsky 

& Volpi and Wray & Teare. 

These comparisons are shown in Figure 5.16. Here experimental and predicted NOx 

emissions in g/kg fuel were plotted against the level of EGR. This plot clearly 

demonstrates that the Heywood/Baulch rate constants were the best. However, the 
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Glarborg rate constants, although grossly over-predicting at the zero and low EGR 

levels, did converge with the experimental measurements at the high EGR levels. The 

`Schofield' result was almost identical to the HeywoodBaulch result which indicated 

that the final NOx concentration prediction was insensitive to the 1.5 `ß' term for k+2 
. 

A sensitivity study was therefore conducted, whereby the rate constants were factored 

by a range of constants to establish the effect on the final calculation of the NOx 

concentration. 

Figure 5.17 shows the results of the initial sensitivity study on the rate constants, where 

the standard HeywoodBaulch constants were each in turn multiplied by a factor of 2.0. 

It can be seen from Figure 5.17 that the doubling of k. 1 had the most effect, particularly 

when there was no EGR, so the highest in-cylinder temperatures would occur with high 

levels of excess oxygen; here, the predicted value increased from 49 to 81 g/kg of fuel. 

As the amount of EGR was increased, the modelled result with double kI converged 

towards the standard result, but was closer to the experimental values at 30 and 40 per 

cent EGR. Doubling k2 and k3 had virtually no effect on the predicted result, as shown 
by the plotted results in the figure, these results were virtually on top of the standard 

values. It is interesting to note that all the predictions during the EGR loop, over- 

predicted NOx levels at zero and low levels of EGR and under-predicted at high levels 

of EGR. 

Using the information from the sensitivity study, the standard Heywood/Baulch rate 

constants were modified in order to obtain a better fit to the experimental results. 
Figure 5.18 shows the measured data and standard MERLIN-DEEPC predictions as in 

previous figures, with the predictions using the modified rate constants that gave an 
improved correlation to the experimental results from the EGR loop. However, there 

remained a degree of under-prediction at the high EGR rates. The rate constants used 
for these calculations are shown in Table 5.3 below. 
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Table 5.3 

Modified Rate Constants for Extended Zeldovich Mechanism in Merlin-DEEPC 

code 

Rate Constant Value cm /mole. s 

k-1 3.2 x 1013 

k2 5.12 x 10 T exp[-3150/T] 
k3 3.28 x 1012 

The Merlin-DEEPC code with the standard and modified rate constants for the 
Zeldovich mechanism were next used to model NOx emissions for an injection timing 
swing at the same engine condition of 2700 rpm and 8 bar BMEP, with 30 per cent 
EGR. These results again in the form of g/kg fuel burned, were plotted against injection 

timing in degrees crank angle BTDC and can be seen in Figure 5.19. The predictions 

show the correct characteristic, but the model, with both sets of rate constants under- 

predicts compared to the experimental data across the range of the injection timing 

swing. It is also somewhat unfortunate that the measured NOx emissions from the 

timing swing, which was a different test to the EGR loop, were higher, as shown on 
Figure 5.19 for the 5°BTDC timing point, which was the injection timing used during 

the EGR loop. 

5.2 Summary and Conclusions 

" All the thermal NOx simulations using the Zeldovich mechanism in the 

Merlin/DEEPC code during the EGR loop, over-predicted NOx levels at zero 

and low levels of EGR and under-predicted at high levels of EGR. The reason 
for these inaccuracies and the trend with varying levels of EGR is not clear. 

Inaccuracies may arise for the following reasons. 

I. It was assumed that the Zeldovich mechanism was the predominant 

method for the formation of NOx, for example modelling of prompt NO 
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was not included. 

2. The Zeldovich mechanism relies on the prediction of concentrations of 
NO, N, 02 and OH. 

3. The Zeldovich mechanism relies on the prediction of local temperature. 
4. The modelling is based on the fundamental assumption that the 

concentration levels of NO, N, 02 and OH have achieved equilibrium 

values. 

" Comparing the predicted NOx results using Schofield's rate constant with a 1.5 

`ß' term for k+2 demonstrated that the final NOx prediction was insensitive to the 
1.5 `ß' term for k+2 , since the result was almost identical to the Heywood/Baulch 

result which did not have a `ß' term. 

9 The sensitivity study conducted by individually doubling the Zeldovich rate 

constants demonstrated that the first equation, 0+ N2 H NO + N, is by far the 

most important for the formation of NO. The final NO level predicted by the 
Zeldovich mechanism was sensitive to the value of the first reaction rate 

constant. 

" The modified rate constants gave a small improvement in the accuracy of 

modelling NO, compared to the standard rate constants for different EGR levels 

and injection timings. 

+ Despite the prediction errors, the model does demonstrate the correct trends, and 
the level of accuracy at the low EGR rates is not untypical of combustion models 

at the present time. For routine simulation exercises and for extensive 

parametric studies of engine performance and emissions, the phenomenological 

models are generally favoured (Wahab 1998). This is mainly because of the 

ease of modelling, the lesser computer facilities required, and the shorter turn 

around time compared to three-dimensional CFD modelling. 
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Chapter 6 

Experimental Systems and Procedures 

6.1 Description of Engine 

The engine used for the experimentation was a Ford "Lynx Upgrade" advanced 

prototype 16-valve inline 1.8 litre 4 cylinder turbo-charged high speed DI diesel. The 

aluminium cylinder head featured 4-valves per cylinder, 2 intake and 2 exhaust and a 

central vertical Bosch 17 mm diameter 2-spring injector. Separate intake ports, one 

helical and one directed were cast in the head to provide the in-cylinder swirl to support 

air-fuel mixing and combustion. The re-entrant combustion bowl was centrally located 

in the piston crown. Fuel was injected through 6 hole nozzles by a Bosch electronically 

controlled high-pressure rotary VP30 fuel injection pump. Exhaust gas flowed through 

the 2 valves to a Siamese exhaust port. A Garrett GTI5 turbocharger was attached to a 

compact exhaust manifold for the standard configuration. For the "additional" EGR 

experimentation a Garrett GT17V variable nozzle turbine turbocharger was used. A 

single overhead camshaft, driven by a timing belt from the crankshaft, operated pairs of 

intake and exhaust valves via master and slave rockers; each rocker contacted its valve 

with a hydraulic tappet. The master rocker had a roller to follow the cam lobe to 

minimise friction. 

The grey iron cylinder block was from the production 1.8 litre 4 cylinder diesel used in 

the Fiesta, Escort and Mondeo cars, having the same cylinder bore diameter of 82.5 

mm, and cylinder bore and head bolt spacing, as the current production 1.8. The 

crankshaft was forged steel with a carry-over throw of 41 mm and had the same bearing 

journal diameters as the current 1.8 litre diesel. Mahle pistons were used with modified 

"wedged" small end, current production con-rods. 

The general dimensions and specification for this engine are shown in Table 6.1 and a 

power curve is shown in Figure 6.1. 
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Table 6.1 Lynx Upgrade General Dimensions and Specification 

Configuration / no. of cylinders Inline 4 

Bore - mm 82.5 

Stroke - mm 82.0 

Cubic capacity - cc 1753 

Con-rod length - mm 130.0 

UR ratio 3.17 

Rated Power - kW 74 

Rated speed - rpm 4500 

Mean piston speed at max power - m/s 12.3 

Max torque - Nm 225 

Max torque speed 2000 

Firing order 1,3,4,2 

Compression ratio 19: 1 

Peak cylinder pressure - bar 135 

Valve-train SOHC & rockers, 4-valves/cyl 

Intake valve diameter - mm 27.7 (2) 

Exhaust valve diameter- mm 25.0 (2) 

Intake valve opens - deg BTDC 9 

Intake valve closes - deg ABDC 37 

Exhaust valve opens - deg BBDC 49 

Exhaust valve closes - deg ATDC 9 
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-91 Lynx Upgrade 1.8L DI TCI 16 Valve 
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Figure 6.1 Power curve for "Lynx Upgrade" advanced prototype 16-valve 

inline 1.8 litre 4 cylinder turbo-charged inter-cooled high speed DI diesel 

Chapter 6 184 



6.2 Description of Engine Intake, Exhaust and EGR Systems 

Air was draw through the rotary airflow meter and then through a filter before entering 

the turbocharger compressor. The outlet of the compressor was connected to a Bowman 

water to air heat exchanger for inter-cooling. The charge air then entered the engine 

throttle body and passed into the plenum of the intake manifold. 

The exhaust gas from the cylinder head ports entered a compact cast iron manifold and 
flowed into the turbocharger turbine. The turbine housing and manifold were integrated 

in one casting. The standard Lynx Upgrade engine had a fixed geometry Garrett GT15 

turbocharger. 

The standard EGR system comprised of a vacuum operated EGR valve that was 

attached to the rear end of the exhaust manifold. The outlet side of the valve was bolted 

directly to the cooler, which took the gas across the back of the engine to the intake 

side. From the outlet of the cooler, a thin walled stainless steel EGR pipe connected the 

re-circulated exhaust gas to the throttle body, where it mixed with the charge air from 

the inter-cooler. The throttle, upstream of the EGR entry, was also vacuum operated 

and restricted the charge airflow when necessary to assist EGR flow into the intake 

manifold plenum. Table 6.2 gives the supplier and description of the EGR system 

components. 

Table 6.2 EGR System Components 

Component Supplier Description 

EGR Valve Pierburg Vacuum operated poppet valve, 24 mm 

diameter, cast iron body 

Cooler Serck Stainless steel tube and plate cooler, 37 

tubes 6.35 diameter by 156 mm long. 

Throttle Valve Pierburg "Butterfly" type swivelling throttle valve, 

52mm diameter, aluminium body 
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For the "additional" EGR experiments a Garrett GT17V variable nozzle turbine (VNT) 

turbocharger was fitted to the engine. This was accomplished by sawing off the turbine 
housing from a spare manifold, and attaching a flange suitable for the VNT unit. 
Compressed air was used to operate the pneumatic motor to move the turbine vanes. A 

diagram of a variable nozzle turbine turbocharger is shown in Figure 6.4. This shows 

the operation and movement of the vanes, and illustrates how the nozzle area is changed 
from the open to closed positions. During the early "additional" EGR testing, two sizes 

of venturi were used in place of the throttle body for the introduction of EGR into the 

charge air stream; these are shown in Figures 6.2 and 6.3. Figure 6.5 shows 

photographs of a venturi and the EGR connection pipe. 

12° 052 
LL 

U4 
Figure 6.2 Diagram of venturi 1 with throat diameter of 22.5 mm 

r 
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Figure 6.3 Diagram of venturi 2 with throat diameter of 37.5 mm 
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,* fw 00 
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6.3 Instrumentation 

Dynamometer Heenan and Froude eddy current dynamometer type Mkl 

Fuel flow Pipette and stop watch 
Air flow Romet Rotary Meter model no. 11000,550-11000 CFM, serial no. 

873487 

Crankshaft angle Mini shaft encoder type GEL 244 pick-up head and 360-tooth 

wheel 
Injector needle lift Special instrumented Bosch injector with inductive needle lift 

transducer, Lucas FM amplifier, oscillator box and oscilloscope 
CO2 gas Richard Oliver K 650 non-dispersive infrared analyser 
Exhaust smoke AVL type 415 variable sampling volume smoke meter 
Exhaust NOx Chemiluminescent analyser, AAL model 443 

Table 6.3 Temperature and Pressure instrumentation 

Location 

No. 

Location Temperature Pressure 

I Air filter inlet � � 

2 Air filter outlet � � 

3 Air compressor outlet � � 

4 Air intercooler outlet � � 

5 EGR cooler outlet � � 

6 Intake charge after mixing (air + EGR) � � 

7 Exhaust manifold (pre-turbine) � � 

8 EGR before cooler � 
_ 

9 Exhaust post-turbine � � 

10 Airflow meter outlet � � 

11 Intake manifold � � 

12 Cooling water outlet � 
_ 

13 Fuel at measuring pipette � 
_ 

14 In-cylinder (pressure) at glow plug 
_ 

� 
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Temperature and pressure measurements around the engine are listed in Table 6.3 and 

the locations are shown in Figure 6.7. 

The thermocouples used were ol'the "K" type. Cylinder pressure was nicasuI'Cd with a 

Kistler type 6055B80 minature piezoelectric transducer. which was installed in a special 

glow plug adaptor. 

Figure 6.6 Photograph of the engine installation in the tcst cell. 

6.4 Experimental Procedure 

Figure 6.6 is a Photograph of the engine set-up in the dynanx, ntctcr Ic"t cell I()F the 

expcrintcntatifn. This shows the intake side o1 the engine. The charge air pipe from the 

Bowman heat exchanger can he clearly seen connected to the standard throttle hod 

The EGR tube from the EGR cooler can he seen connecting, to the underside of the 
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throttle body. The intake manifold with the instrumentation tappings sticking up from 

the plenum is also clearly visible. 

For the experimental phase of the work two modes were chosen from the 14-mode 

steady-state emissions mapping points used at Ford to simulate the European driving 

cycle for the 1.8 litre 'Lynx' DI diesel Focus. The engine conditions chosen are shown 

in Table 6.4, and these were 2700 rpm speed and 111.7 Nm torque, and 1900 rpm speed 

and 80 Nm torque. These test points were selected to represent relatively high speed 

and high load and a mid-speed and high load, during the emissions drive cycle. It 

should be noted that the speeds and loads experienced during the vehicle drive cycle are 

relatively low compared to the rated speed and peak torque of the engine. 

Intercooler 

EGR Cooler 

EGR Valve LII 
Air 

3 

Turbocharger 

9 

Exhaust 

111151 F4 
Intake Throttle 

EGR Entry I 

-- 161 
0 

Intake Manifold 

O 11 

14 

Exhaust Manifold JI ii 

Figure 6.7 Schematic diagram of engine, showing instrumentation locations. 
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Table 6.4 Engine Test Conditions 

Test Speed Torque BMEP Injection 

Condition rpm Nm bar Timing 

No. 

1 2700 111.7 8.0 5deg BTDC 

2 1900 81 5.8 4deg ATDC 

The experiments were started at the 2700 rpm speed and 111.7 Nm torque, 8 bar BMEP; 

engine test condition 1. Testing was concluded in five stages. 

1. A variable geometry turbocharger was installed on the engine to replace the 

original fixed geometry unit. EGR was introduced at the standard throttle body, 

as the original engine set-up. 
2. A venturi (1) with a throat diameter of 22.5 mm was installed in place of the 

original throttle body unit, to introduce EGR to the charge air stream. 

3. An alternative second venturi (2) of throat diameter 37.5 mm was tested. 

4. The original throttle body was refitted to introduce EGR, without use of the 

throttle. This was a repeat of the first test above. 
5. A number of tests were carried with the same engine build, at the test condition 

2 (1900 rpm, 81 Nm). 

At each of the test conditions, for each engine build configuration described above, 

EGR loops were run, by progressively opening the EGR valve from closed to fully 

open, each loop was run with the VNT turbine vanes in the fully open, mid-position and 

fully closed. 

As discussed in more detail in chapter 7, following all the tests at the first test condition, 

it was concluded from the results that venturi I and 2 did not offer any advantage over 

the simple EGR entry point from the original engine configuration, although the throttle 

was not required. For this reason the second mode was tested with the throttle body 

installed and neither venturi was used for the experiments at the slower speed. 

An analysis of the diesel test fuel is shown in Appendix 2 on page 266. 
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6.5 Emissions Calculations - NOx and Soot 

During the experimentation, readings of NOx and smoke emissions were recorded. This 

section shows the post processing calculations to convert NOx from ppm to g/h, and 
Bosch smoke units to soot emissions in g/h. The equations used in this section come 

from the standard post processing used in the Engine Laboratory at the Ford Dunton 

Engineering Centre. 

The calculated NOx and soot results were normalised according to the procedure given 
in Appendix 3 on page 268. 

6.5.1 NOx emissions mass flow (g/h): 

46x 10-3 (1 + AFRX Fuel X NOx) 
Mass, NOx = EMW () 6.1 

Where: 

Mass NOx (g/h) 

AFR (Ratio) 

Fuel (kg/h) 

NOx (ppm) 

EMW = Exhaust Gas Molecular Weight 

EMW =34.67- 
83.33 
AFR 6.2 

(Note: If AFR > 14.7 then EMW = 29.0) 

6.5.2 Soot emissions (g/h) from Bosch smoke measurements: 

Soot = 982(SmokeXl0(0.1272(Smoke)-1.66)) (gm3) 6.3 
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Soot = 
GAH x Soot 

1204.2 «') 6.4 

Where: 

Soot = Soot emissions (g/h) 

Smoke = Measured Smoke (Bosch) 

GAH = Total Mass Flow (Air + Fuel) (kg/h) 

6.6 EGR Flow Calculations 

6.6.1 Mass flow rate of EGR 
Treating the intake charge and EGR gases as perfect gases, the characteristic equation 

of state may be used, whereby; 

pV = mRT 

and PV= 
m R0T 

M, 1 

where Ra is the Universal Gas Constant, 8.3144 kJ/kmol K and Mw, is the molar 

mass. 

V RO T 

"ý M. P 

Intake Charge Stream 

Sp volume of 02 in intake charge = [Ro/Mw, o2]. [T;, /P;, ] (m3/kg) 

Sp volume of N2 in intake charge = [Ro/MwtN2] " [Tic/Pic] (m3/kg) 

Sp volume of CO2 in intake charge = [R. /Mw, co, ] . [T; c/P; j (m3/kg) 

Sp mass of 02 in intake charge = [Int charge 02 Vol frac]/[R. /Mwt021[TiC/Pic) (kg/m3) 

Sp mass of N2 in intake charge = [Int charge N2 vol frac]/[RoIMWIN2][T; cfP; c] (kg/m3) 

Sp mass of CO2 in intake charge = [Int charge CO2 vol frac]/[Ro/MwIco2][Tj, /PjoJ(kg/m3) 
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Where subscript "ic" refers to "intake charge" 

Total specific mass of intake charge 

= Specific mass of 02, N2, CO2 in intake charge} 

Mass fraction of 02 in intake charge 

= Specific mass of 02 in intake charge / Total specific mass of intake charge 

Mass fraction of N2 in intake charge 

= Specific mass of N2 in intake charge / Total specific mass of intake charge 

Mass fraction of CO2 in intake charge 

= Specific mass of CO2 in intake charge / Total spec mass of intake charge 

EGR Stream 

Sp volume of 02 in EGR stream 
Sp volume of N2 in EGR stream 

_ [Vmwco2] . (TEGR/PEGRI (m3/kg) 

[RoMw[N2] 
" 

[TEGR/PEGR] (m3/kg) 

Sp volume of CO2 in EGR stream = [Ro/MwtC02] . [TEGR/PEGR] (m3/kg) 

Sp mass of 02 in EGR stream = [Int charge 02 vol fract]/[R, /MW, o21[TEGR/PEGRI 

(kg/m3) 

Sp mass of N2 in EGR stream = [Int charge N2 vol fract]/[R VMWINZ][TEGR/PEGRI 

(kg/m3) 

Sp mass of CO2 in EGR stream = [Int charge CO2 vol fractj/[RNw(C02][TEGR/PEGR] 

(kg/m; ) 

Total specific mass of EGR stream= Y, {Specific mass of 02, N2, CO2 in EGR stream} 

Mass fraction of 02 in EGR stream 

= Specific mass of 02 in EGR stream / Total specific mass of EGR stream 

Mass fraction of N2 in EGR stream 

= Specific mass of N2 in EGR stream / Total specific mass of EGR stream 
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Mass fraction of CO2 in EGR stream 

= Specific mass of CO2 in EGR stream / Total spec mass of EGR stream 

Taking a CO2 Mass Balance 

(Mair flow + MEGR) (CO2 mass fraction ;,, t eng) _ (MEGR)(C02 mass fraction EAR) 

MEGR = Mair flow 
/{ [(CO2 mass fraC EGR )'( CO2 mass fraC jnt chg)]/[C02 mass frac int chg] 

} 

6.6.2 EGR mass now based on mass balance of C02: 

MEGR = {hair 
flow (CO2mass frac10t chg)}/{(CO2mass 

fracEGR)-(CO2mass frac; t cbg)} 

6.6.3 EGR proportion based on volumetric fraction of CO2 in intake manifold and 

exhaust: 

EGR(%) = 
CO2 (inlet - manifold) - CQ2 (ambient) 

x100 C02 (exhaust) 

6.6.4 EGR proportion based on reduction in air flow: 

EGR(%) =Mw! tkoulEGR -M 
withEGR A00 

M wrthourEGR 

From the experimental readings, EGR per cent was calculated using the above three 

methods for a range of test conditions. Comparisons of the three calculation methods 

are shown in Figures 7.30 to 7.35 and a discussion of the results is made in Section 7.3, 

in Chapter 7. 
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Chapter 7 

Experiments with "Additional" EGR 

7.1 "Additional" EGR Systems 

The conventional EGR systems that are in wide use today on automotive diesel engines, 

re-circulate exhaust gases into the intake charge in place of fresh air. The intake airflow 

thus reduces as the level of EGR increases. This is known as "substitutional" or 

"replacement" EGR and results in dilution of oxygen from the intake charge. The 

air/fuel ratio thus reduces, for the same engine speed and load, as the level of EGR is 

increased. These give rise to the classic NOx/particulates trade-off, over an EGR loop, 

where EGR is increased at constant engine speed and load conditions. The particulate 

characteristic response is for a gradual increase as the air/fuel ratio reduces until around 

20: 1, where there is a sudden dramatic increase in particulate emissions, owing to the 

lack of oxygen. The actual air-fuel ratio where this rapid increase in particulate 

emissions occurs, as the EGR is increased, will depend on the combustion and fuel 

injection systems. Modern 4-valve central vertical injector designs with high pressure 

injection systems will burn cleanly down to lower air-fuel ratios than older 2-valve 

designs with angled injectors, because of better fuel distribution around the combustion 

chamber and therefore better air-fuel mixing. 

"Additional" EGR is a concept, as the name implies, where EGR is added to the intake 

charge on top of the normal airflow. Thus the total flow into the engine is increased 

with the re-circulated exhaust gas. This can only be achieved by the use of a variable 

geometry turbocharger, so that boost pressure and pre-turbine exhaust pressure, in other 

words the pressure drop across the engine, can be modulated by the turbine vane 

position. 

The work carried out at the TNO Road-Vehicles Research Institute, reported by Baert et 

al (1996,1999), was focused on reducing heavy-duty diesel NOx emissions. Since 

heavy-duty engines operate predominantly at full load or near full load, and the ECE 
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R49 13-mode emissions cycle is dominated by peak torque and maximum power 

conditions, the engineers at TNO studied the potential of EGR to reduce NOx formation 

at full load. They came to the position that to reduce NOx by EGR at high load 

conditions, with a low air/fuel ratio, the EGR system had to enable "additional" rather 

than "replacement" EGR to be used, to avoid an increase in particulate emissions. 
When applying "additional" EGR at full load, the original air mass flow through the 

engine has to be maintained at its baseline level, in order to maintain the same air-fuel 

ratio and hence particulates level. This can pose a problem under full load conditions, 

since the mean exhaust manifold pressure can be lower than the intake manifold 

pressure. This was overcome by the use of a venturi to locally reduce the intake system 

pressure at the EGR entry point. In order to flow the added mass of the original air mass 
flow and "additional" EGR into the engine charge, the turbine flow area has to be 

reduced to increase the boost pressure, which has the effect of increasing re-turbine 

pressure, but at a faster rate. As soon as the pre-turbine pressure exceeds the pressure at 

the venturi throat, EGR flows into the intake system. The downside to this is that as the 

turbine flow area is reduced, the turbine efficiency drops off. 

The TNO researchers found that, not surprisingly, the simplest system of a VGT 

turbocharger only, without a venturi or backpressure valve, offered the least resistance 

to flows, provided the highest airflow and lowest BSFC and particulates for a given 
NOx emission. However, this simple system could not achieve the highest EGR level at 

maximum power conditions, where a venturi enabled 15 per cent EGR and the best 

trade-off between NOx and BSFC. 

As far as the author is aware, there is no published work on the application of 
"additional" EGR to a small high-speed automotive diesel engine. 

7.2 "Additional" EGR System Layout 

As already stated, a variable geometry turbocharger is necessary for this EGR system, in 

order that boost and pre-turbine pressures can be varied at any given engine condition. 
The Garrett GT15 fixed geometry turbocharger was therefore replaced with a GT17V 

swivelling turbine nozzle guide vane type, variable geometry turbocharger. The vane 
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angle was adjusted by modulating external air pressure, acting on a linear diaphragm 

type motor. 

Following the work at TNO on a heavy-duty diesel engine, it was anticipated that a 

venturi would be required to assist in the "additional" flow of EGR in order to minimise 

the increase in pre-turbine pressure and to provide the best boost pressure recovery after 

mixing. Two venturis were designed, one with a throat diameter of 22.5 mm and one 

with a larger throat diameter of 37.5 mm. These were designed to be the same length as 

the standard throttle body unit used for the Lynx Upgrade engine, such that they could 

be inter-changed without significant modification of the total intake system. A diagram 

of the system is shown below in Figure 7.1. 

I EGR Cooler I 

EGR Valve 
IIü 

Intercooler 

Intake Throttle I 

I EGR Entrv 

O 
Intake Manifold 

Turbocharger 

Exhaust Manifold 

Figure 7.1 Schematic diagram of engine intake, exhaust and EGR systems. 

7.3 Experimental Results 

The Lynx Upgrade 1.8 litre 16-valve DI diesel engine was operated at two test 

conditions, at a speed of 2700rpm at 8. Obar BMEP a torque of 11 1.7Nm and 1900rpm at 

5.8bar BMEP a torque of 81Nm. A number of EGR loops were run, each at a fixed 

turbine vane position, ranging from fully open to fully closed. Applying air pressure to 

the linear actuator operated the turbine vanes. A pressure of 30,35 and 40 psi, acting on 

the linear motor, corresponded to the vanes being fully open, at mid-position and fully 
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closed. EGR flow was increased by progressively opening the EGR valve from shut to 
fully open. 

EGR loops are shown in Figures 7.2,7.3 and 7.4, for the 2700rpm at 8.0 bar BMEP 

(111.7Nm torque) operating condition, with the variable nozzle turbine vanes in the 

fully open, mid-position and fully closed positions, respectively. The data plotted 

covers the two sizes of venturi, the EGR tube connected to the standard throttle body, 

which forms a "T" joint with the charge air duct (but without use of the throttle) and the 

results with the original system using a fixed geometry turbocharger and EGR throttle as 

the engine was supplied from Ford. 

With the turbine vanes fully open, as can be seen from Figure 7.2, all the modified 

systems gave a better NOx/particulates trade-off, getting nearer to the origin, compared 

to the standard arrangement. The use of a venturi was shown not to be necessary at this 

engine condition, and in fact, did not provide the best NOx/particulates, or the lowest 

BSFC. This was achieved without the use of a venturi, simply by fitting the existing 
EGR tube to the original throttle body. This system provided significant benefits of 
lower NOx and particulates as well as improved BSFC. The optimum calibration would 
be without a venturi, with an airflow of 39 g/s, with the EGR valve almost fully open to 

give an EGR flow of 11 g/s. At this condition the engine emitted 53.5 g/h NOx and 3.8 

g/h particulates and gave a specific fuel consumption of 219 g/kWh. 

At the mid-vane position, shown in Figure 7.3, an improved NOx/particulates trade-off 

was achieved at lower emissions values, but at this vane setting, the BSFC was worse at 

the lower NOx values. This indicates that there were higher pumping losses to achieve 

the desired flow of air and EGR into the engine. At this vane position, the optimum 

calibration would be with the smaller venturi number 1, an air flow of 44 g/s, with the 

EGR valve almost fully open, at an EGR flow of 11 g/s, giving 88 g/h NOx, 4.1 g/h 

particulates at a BSFC of 226 g/kWh. 

It is of interest to compare these last two results. At this engine condition of 2700 rpm 
8.0 bar BMEP, in moving the turbine vanes from fully open to the mid-position, the 

airflow increased by 13 per cent, the EGR flow remained the same at 11 g/s, which 
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meant in percentage terms it fell a small amount from 28 to 25 per cent of the airflow, 
but the NOx emissions increased by a substantial 65 per cent. Even though the airflow 
increased, giving a higher air/fuel ratio, particulates increased 8 per cent. The cost of 
higher turbocharger work was a3 per cent increased in fuel consumption. Clearly the 
higher airflow was not required. 

At the fully closed vane position, shown in Figure 7.4, the turbocharger was creating 
the highest boost pressure with the highest pre-turbine pressure, in other words it was 

working hard, which was reflected in the higher BSFC figures compared to the standard 
fixed geometry set-up. With the vanes fully closed, the turbine efficiency would have 

been lower than on a standard fixed geometry unit. Under these conditions the venturis 
did not offer any advantages, except at very high EGR levels. Using the standard EGR 

connection did offer a superior NOx/particulates trade-off at high EGR levels, but 

because of the high pumping work, the BSFC was significantly worse. 

Overall, the best condition to run the engine at 2700 rpm and 8.0 bar BMEP (111.7 

Nm), for the lowest emissions of NOx and particulates 'and with lowest fuel 

consumption for this level of NOx, was with the turbine vanes fully open as shown in 

Figure 7.2, without a venturi. The calibration would be as listed above, ie airflow of 39 

g/s, with the EGR valve almost fully open, at an EGR flow of 11 g/s, giving 53.5 g/h 
NOx, 3.8 g/h particulates at a BSFC of 219 g/kWh. 

Since there is not a requirement to operate a light-duty automotive engine with EGR 

under full load conditions to meet the emissions standards, the use of a venturi was not 

pursued any further in this work. The EGR tube was connected to the standard throttle 
body, where the exhaust gas was introduced and mixed with the charge air. The throttle 

was not used with the variable geometry turbocharger. 

The Lynx Upgrade engine was operated at an alternative test condition of 1900rpm and 
5.8 bar BMEP (81Nm torque). Following the results from the earlier test at 2700rpm 

and 8bar BMEP, the EGR was connected to the intake system without a venturi. Like 

the earlier tests, a number of EGR loops were run, each at a fixed turbine vane position, 

ranging from fully open to fully closed. EGR flow was increased by progressively 
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opening the EGR valve from shut to fully open. 

Figure 7.5 shows the NOx versus particulates and BSFC characteristics during the EGR 

loops for the turbocharger turbine vane positions of fully open, mid-position and fully 

closed, at the 1900 rpm/5.8 bar BMEP (81Nm) operating condition. It is immediately 

apparent from this plot that the use of the VGT turbocharger gave a large benefit for the 

NOx versus particulates trade-off, as well as superior engine efficiency demonstrated by 

the lower BSFC, compared to the standard set-up of the fixed geometry turbocharger 

and conventional EGR system. The fully open to mid-position of the turbine vanes gave 
the best NOx/particulates trade-off and best efficiency at this engine operating 

condition. 

Figures 7.6 and 7.7 show air/fuel ratio (AFR) and soot versus NOx emissions for the 

two test conditions. In these figures the characteristic relationship of increasing soot 

and reducing NOx emissions as air/fuel ratio reduces can be clearly observed. 
Increasing EGR flow reduced the air fuel ratio in these tests. At the 2700 rpm 8.0 bar 

BMEP test condition shown in Figure 7.6, the reduction in NOx emissions is almost 
linear with the fall in air/fuel ratio, and the increase in soot emissions becomes very 

steep with an air/fuel ratio much below 30: 1, but with the sensitivity becoming greater 

as the turbine vanes were closed down. At this operating condition it is clear that the 
best NOx/soot trade-off was achieved with the turbine vanes in the fully open position. 
The 1900 rpm 5.6 bar BMEP operating point is shown in Figure 7.7, here a similar 

picture is presented; a very steep reduction in NOx emissions and a dramatic increase in 

soot as the air/fuel ratio was reduced. Similarly, at this test condition the sensitivity to 

air/fuel ratio becomes greater as the turbine vanes were closed; an AFR of 25: 1 giving a 

soot level of less than 2 g/h with the vanes fully open, but an AFR of 30: 1 being 

required with the vanes fully closed to achieve the soot level of 2 g/h. This will be due 

to the increased pumping work required with the vanes fully closed. At this operating 

condition there was less difference between the vane settings in terms of the best 

NOx/soot trade-off. It was achieved with the turbine vanes in the fully open position, 
but there was not a big difference between fully open and the mid-position. 

Figures 7.8 and 7.9 show intake charge oxygen volume fraction and soot emissions 
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versus NOx emissions for the two engine test conditions. The strong relationship 
between reducing intake charge oxygen volume fraction and reducing NOx emissions is 

clear to see in both figures. As is the characteristic increase in soot emissions as the 

oxygen content falls. However, it is interesting to compare the two test conditions. At 

2700 rpm the load was greater at 8.0 bar BMEP and so both NOx and particulate 

emissions were higher. Particulate emissions started to rise significantly when the 

oxygen content fell to around 18 per cent. Generally, the scatter of results was greater at 

this engine test condition. At the lower speed of 1900 rpm and light load of 5.6 bar 

BMEP, there was a close non-linear correlation between intake charge oxygen 

proportion and NOx emissions, with a nice tight grouping of results at the three vane 

positions. The particulate turn-up occurred at a lower oxygen content, around 17 per 

cent, again with a tighter grouping of the results. 

The term "additional EGR" is used loosely to infer that EGR flow is in addition to the 

normal intake charge airflow, as has been discussed earlier. Thus an analysis of the 

flow into the engine should show that the total charge flow into the cylinders, under 

conditions where EGR is flowing, is greater than without EGR. Figures 7.10 to 7.12 

illustrate the split of mass flow into the cylinders of the 1.8 litre 16-valve DI diesel, 

showing air mass flow, EGR mass flow and total mass flow into the cylinders plotted 

against NOx emissions, for the engine condition of 2700rpm 112Nm with the turbine 

vanes in the fully open, mid position and fully closed, respectively. Similar plots for the 

1900rpm 81Nm engine operating condition are shown in Figures 7.13 to 7.15. The 

flow characteristics shown in these graphs demonstrate similar trends, for each engine 

operating condition and for each of the turbine settings, of air mass flow reducing as the 

EGR mass flow increases, giving the characteristic reduction in NOx emissions. 
Although the total mass flow remained fairly constant until the highest EGR flow levels, 

it was initially thought that "additional EGR" had not been achieved, since the total 

mass flow did not increase with the flow of EGR. However, there were two other 

considerations that needed to be taken into account: firstly, an engine is a "volumetric" 

machine, in other words it displaces half its cubic capacity per revolution (for a 4-stroke 

engine), and secondly the introduction of EGR increased the charge temperature, thus 

reducing its density. To increase the mass flow into the engine the intake charge density 

would need to be increased, but in practice, as the amount of relatively hot EGR 

Chapter 7 202 



increases, the total charge temperature increases thus reducing the total charge density. 

Charge density for the EGR loops at the three vanes settings is plotted in Figure 7.16 

for the 2700rpm 112Nm engine condition and in Figure 7.17 for 1900rpm 8ONm 

operating point. These graphs clearly illustrate the reduction in charge density as the 

NOx emissions are reduced by the introduction of EGR. The plots also effectively 

demonstrate how the charge density increased as the turbine vanes are closed. 

The analysis of the flow into the cylinders was then calculated on a volumetric basis, 

assuming the specific gas constant for EGR was the same as that for air. Figures 7.18 

to 7.20 illustrate volumetric efficiency based on airflow and airflow plus EGR flow for 

2700rpm 112Nm. Similar plots for the 1900rpm 80Nm engine operating condition are 

shown in Figures 7.21 to 7.23. These plots show an exciting characteristic; the total 

volumetric flow into the engine did increase as EGR was introduced. The peak 

volumetric efficiency occurred at the lowest NOx emission level, that is, with the 

maximum flow of EGR. The level of volumetric efficiency depended on the turbine 

vane setting, the highest level being achieved with the vanes fully closed. Thus the 

"additional" EGR concept has been realised on a volumetric flow basis. However, this 

could not be reflected as increased total mass flow rate into the engine because of the 

reduction in inlet charge density caused by the EGR heating the intake charge. 

Graphs of EGR mass flow versus NOx emissions are shown in Figure 7.24 for 2700rpm 

112Nm and in Figure 7.25 for 1900rpm 81Nm. This is plotted as per cent of air mass 

flow in Figures 7.26 and 7.27 for the two engine conditions. These show the level of 
EGR flow for each of the turbine vane positions. As the earlier graphs have shown, the 

highest EGR flow was achieved with the vanes fully closed, this of course gave the 

highest pre-turbine pressure. However, the highest level of EGR did not produce the 

lowest NOx emissions. The most efficient use of EGR, in other words the lowest level 

of EGR for a given NOx level, was achieved with the vanes in the fully open position. 

Hawley et al (1997,1999) conducted similar comparisons between fixed and variable 

nozzle turbochargers on a 1.8 litre 8-valve DI TCI diesel engine, sponsored by Ford 

Motor Company. They came to the same conclusion that variable geometry 

turbochargers (VGT) have the potential to enhance EGR flow rates over what can be 
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achieved with fixed geometry turbochargers (FGT) and then current EGR schedules. 
But the concept of "additional" EGR was not considered. EGR mass and volumetric 
flow rates were not reported. Their results confirmed that it was possible to greatly 
enhance EGR flow rates at light load, which had a high tolerance to nominal air/fuel 

ratio without compromising the baseline BSFC and smoke. 
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Figure 7.28 Specific NOx versus VGT vane position at 60 per cent rated speed 

and 56 per cent peak torque (Hawley et al, 1999) 

Hawley et al considered 2 operating modes, their Mode 10, which was 60 per cent rated 
speed and 56 per cent peak torque corresponds very closely with the 2700 rpm 112Nm 

test point used in this exercise. Figure 7.28 shows a plot of specific NOx versus VGT 

vane position for this operating point. Clearly this result is similar to that found in this 

work, showing at this condition a vane setting nearly fully open with a fully open EGR 

valve provides a lower NOx emission level. Figure 7.29 shows an optimisation plot for 

BSFC and specific NOx, illustrating the best operating quadrant. 
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Figure 7.29 Optimisation plot for BSFC and specific NOx at 60 per cent rated 

speed and 56 per cent peak torque (Hawley et al, 1999) 

7.3 Methods of calculating EGR flow 

The substance of this chapter, that is the effect of additional EGR on emissions and 

BSFC, has been dealt within section 7.2 above. Before ending this chapter it would be 

useful to consider briefly a technical issue of some practical importance. This concerns 

the different ways in which researchers define and estimate the amount of EGR flow 

into an engine, both in absolute terms and as per cent of intake charge. 

As discussed in the literature survey in Chapter 2, there are a number of ways of 

calculating EGR flow, even though it is usually expressed as per cent. A common 

practice, owing to its simplicity, is to base it on the reduction in airflow, referenced 

against the airflow for the same engine condition without EGR. This gives a true 

measurement on a volumetric basis, at the airflow meter conditions, for naturally 

aspirated engines. It is not correct for turbocharged engines owing to the reduction in 

charge airflow as EGR is introduced because of the lower exhaust energy transfer to the 

turbine. Another common method is based on the ratio of C02 measurements taken as 

ppm, between the intake manifold (allowing for the very low ambient level) and 
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exhaust. It is not usual to calculate EGR on a mass flow basis because of the additional 

number of measurements and more complex calculations required, although this is not a 

major task with modern instrumentation and computers for post-processing. 

During this exercise, EGR flow was calculated by the three methods described above, 

using the equations detailed in Chapter 6. The results are plotted in Figures 7.30 to 

7.32 for the engine condition of 2700rpm/8.0bar BMEP (112Nm) at the three turbine 

vane settings, respectively. Similar plots for 1900rpm/5.8bar BMEP (8lNm) are shown 
in Figures 7.33 to 7.35. In all cases it can be seen that the calculation using CO2 ppm 

readings gave a very close correlation to the true mass calculation. The accuracy of the 

method using reduction in airflow varied depending on the engine operating condition 

and the VNT turbine vane setting. This is because, as stated above, the change in 

airflow will also be affected by the reduction in exhaust flow to the turbine. In addition 

there is the difference in temperature between the charge air and EGR gas. These 

factors are illustrated when comparing the results at 2700rpm/8. Obar BMEP in Figures 

7.30 to 7.32, to those at 1900rpm/5.8bar BMEP in Figures 7.33 to 7.35. At the higher 

speed and load, the difference between the reduction in airflow and EGR mass 

calculations was large, and got larger as the turbine vane setting was closed. This is 

because the reduction in airflow was considerably higher, owing to the lower efficiency 

of the turbocharger as the vanes were closed, than the increase in EGR mass flow, since 

the exhaust gas got considerably hotter as the vanes were closed. These effects were 
less at the lower speed and lighter load condition. 
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7.4 Conclusions 

" At the two part-load engine conditions tested, 1900rpnV5.8bar BMEP and 
2700rpm/8.0bar BMEP, the use of a variable geometry turbocharger and a 

modern EGR system with an EGR cooler, gave lower NOx and particulate 

emissions at an improved level of fuel consumption, compared to a traditional 

fixed geometry turbocharger and similar EGR system with an intake throttle. 

" The use of a venturi to assist the flow of EGR into the charge air was found to be 

less efficient than a simple EGR entry, for these part load engine-operating 

conditions. 

" "Additional" EGR did occur, in that the total volumetric flow into the engine did 

increase with the flow of EGR. 

9 The highest EGR mass flow, achieved by closing the turbine vanes, was not the 

most efficient method of reducing NOx emissions, since additional pumping 

work was required, which increased the in-cylinder NOx formation. 

" Potentially, further improvements in emissions and fuel consumption could be 

achieved with a reduction in the flow losses of the EGR system. 

" Calculation of EGR flow from exhaust and manifold CO2 readings gives a close 

correlation to true EGR mass flow calculations. Use of reduction in airflow is 

not an accurate method for calculating EGR mass flow for turbocharged engines. 
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Chapter 8 

Conclusions 

This study has been undertaken to investigate the mechanisms by which oxides of 

nitrogen are formed during diesel combustion and to review the current methods of 

controlling their emissions, such as fuel injection timing retard, EGR and exhaust after- 
treatment. Experimentation on a 1.8 litre inline 4-cylinder 4-valve/cylinder DI diesel 

with a variable nozzle turbine (VNT) turbocharger, has demonstrated the concept of 
"additional" EGR on this small automotive engine. The reasons for achieving lower 

NOx emissions when using a VNT turbocharger and EGR have been explained. 

There is wide consensus that the extended Zeldovich mechanism for thermal NO 

formation is the mechanism responsible for the vast majority of NO formed in premixed 

and diffusion combustion of hydrocarbon fuels at elevated pressures and temperatures. 

O+N2 <* NO+N 

N+02 r* NO+O 

N+OHe=>NO+H 

From the Zeldovich mechanism rate constants, it is evident that the rate of NO 

formation rises exponentially with temperature. According to the Zeldovich 

mechanism, NO is formed by atomic oxygen, which is the result of a 2-step thermal 
dissociation of the primary reaction products CO2 and H2O. The 2-step thermal 
dissociation is the reason for the temperature sensitivity of NO formation. 

Additionally, there are a number of other reactions responsible for the formation of NO 

during diesel combustion. These are, `prompt NO' formation, conversion of N20 to 
NO, and NO formed from fuel bound nitrogen. These reactions, however, only 

contribute a small proportion of the total NOx formation. 

Oxidation of NO to NO2 does occur in diesel engines, NO2 emissions can be as high as 
30 to 50 per cent of the total nitrogen oxides from a DI diesel at low load and speed 
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conditions. 

Retarding fuel injection timing will reduce NOx formation by lowering combustion 

temperatures; this may also cause an increase in HC and smoke emissions, as well as an 
increase in fuel consumption. Pilot injection delays the development of high- 

temperature regions and can facilitate injection retard while maintaining fuel 

consumption, to provide beneficial reductions in NOx emissions. 

EGR has been used on production automotive diesel engines since the mid- to late- 

1980s and remains the most effective way of controlling NO formation. EGR is 

currently used on all automotive high-speed DI diesel engines for reduction of NOx 

emissions in order to meet European Stage 2, Stage 3 and Stage 4 standards. A review 

of the key features of most production EGR systems is included in Chapter 3. EGR 

reduces NOx formation and emissions by lowering the flame temperature through two 

effects; by dilution, reducing the oxygen mass fraction, and by a thermal effect, 
increasing the specific heat capacity of the charge. The dilution effect is by far the 

greater of the two. Cooling EGR prior to mixing with the intake charge provides further 

reductions of NOx emissions and is generally beneficial for particulates. The higher 

volumetric efficiency with cooled EGR leads to an improvement in fuel economy. The 

use of an EGR cooler is becoming more widespread, in order to meet the stricter 

emissions standards. 

Vacuum operation of the EGR valve and throttle, where fitted, is the most widespread 

actuation method at present, but electric operation is being introduced to improve the 

response time. 

Early EGR control was by simple on-off schedules. Today on automotive high speed 
DI diesels, EGR control is electronic, with pre-set maps contained in the ECU. EGR 

level is set either by feedback from an air mass flow sensor, or from an EGR valve lift 

transducer. 

Water addition, either injected with the intake air charge, or as a water-in-fuel emulsion, 

will reduce NOx emissions and is more effective in combination with EGR. However it 
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is impractical for automotive use owing to the relatively large amount of water required 

and problems with internal corrosion of engine components. 

NOx simulations, using the extended Zeldovich mechanism in the Merlin-DEEPC code 

for an EGR loop, over-predicted NOx emissions at zero and low levels of EGR and 

under-predicted at high EGR rates. Modified rate constants gave a small improvement 

in accuracy. Despite these inaccuracies in the absolute levels, the correct trends were 

predicted for increasing EGR and for changes in injection timing. 

For the experimental work, two part load engine conditions were tested, 1900rpm/5.8bar 

BMEP and 2700rpm/8.0bar BMEP. Using a variable nozzle turbine turbocharger and a 

modern EGR system with a cooler, lower NOx and particulate emissions at an improved 

level of fuel consumption were demonstrated, compared to a traditional fixed geometry 

turbocharger and similar EGR system with an intake throttle. This was achieved by 

"additional" EGR, whereby the flow of EGR was greater than with the traditional set- 

up, causing the total volumetric flow into the engine to increase. However, the highest 

EGR mass flow, achieved by closing the turbine vanes, was not the most efficient 

method of reducing NOx emissions, since additional pumping work was required, 

which increased the in-cylinder NOx formation. 

The use of a venturi to assist the flow of EGR into the charge air was found to be less 

efficient than a simple EGR entry, for these part load engine-operating conditions. But 

further improvements in emissions and fuel consumption could potentially be achieved 

with a reduction in the flow losses of the EGR system. 

Calculation of EGR flow from exhaust and manifold CO2 readings gives a close 

correlation to true EGR mass flow calculations. Use of reduction in airflow is not an 

accurate method for calculating EGR mass flow for turbocharged engines. 

New exhaust after-treatment technologies such as selective catalytic reduction (SCR) 

NOx catalyst systems offer important additional scope that will help engine 

manufacturers meet emission legislation during the next five to ten years and bring the 

diesel NOx emissions closer to those of gasoline engines fitted with 3-way catalysts. 
The highest conversion efficiencies have been demonstrated with urea injection and a 

Chapter 8 242 



vanadium-titanium catalyst, 65 and 83 per cent have been achieved on the European and 
FIT-75 cycles, respectively. However, this system requires an additional storage tank 

for the reactant, which would need replenishing over the life of the vehicle. 

Chapter 8 243 



References 

Abramovich G N, The Theory of Turbulent Jets, MIT Press, 1963,269. 

Ahmad T and Plee S L, Application of Flame Temperature Correlations to Emissions 

from a Direct-Injection Diesel Engine, SAE paper 831734, October 1983. 

Ahmad T and Plee SL, Application of Flame Temperature Correlations to Emissions 

from a Direct-Injection Diesel Engine, SAE paper 831734, November 1983. 

Ambs JL and McClure BT, The Influence of Oxidation Catalysts on N02 in Diesel 

Exhaust, SAE paper 932494,1993. 

Amsden A A, Butler TD and O'Rourke P J, The KIVA-II computer program for 

transient multidimensional chemically reactive flows with sprays, SAE paper 872072, 

1987. 

Amsden A A, Butler T D, O'Rourke PJ and Ramshaw J D, KIVA -A 
comprehensive model for 2-D and 3-D engine simulations, SAE paper 850554,1985. 

Ando H and Asaba T, Int J Chem Kinet, 8,259-275,1976. 

Andrews GE and Nurein A M, A non-metallic diesel fuel additive for the reduction of 

particulate emissions, I Mech E Seminar on Fuels for Automotive and Industrial Diesel 

Engines, MEP, November 1990. 

Andrews GE and Salih F M, Ethanol/diesel mixtures for reduced NOx and particulate 

emissions, I Mech E Seminar on Fuels for Automotive and Industrial Diesel Engines, 

MEP, November 1990. 

Anisits F and Kratochwill H, The new BMW 6 Cylinder Diesel Engine, 7. Aachener 

Kolloquium Fahrzeug- und Motorentechnik 1998. 

Anisits F, Borgmann K, Kratochwill H and Steinparzer F, Der erste Achtzylinder- 

Dieselmotor mit Direktinspritzung von BMW (The First Direct-Injection Eight-Cylinder 

Diesel Engine from BMW), MTZ Motortechnische Zeitschrift 60 (1999) 6. 

Anisits F, Borgmann K, Kratochwill H and Steinparzer F, Der neue BMW 

Vierzylinder-Dieselmotor (The New BMW Four-Cylinder Diesel Engine, ATZIMTZ- 

Sonderausgabe, 1998. 

Anisits F, Borgmann K, Kratochwill H and Steinparzer F, Der neue BMW 

Sechszylinder-Dieselmotor (BMW's New Six-Cylinder Diesel, MTZ Motortechnische 

References 244 



Zeitschrift 59 (1998) 11. 

Anon, MAN trucks first to opt for EGR, Auto Industry, p 6, December 1999. 

Anon, No end to the diesel boom, Automobile International Management, 4/2000, pp 
34-35, December 2000. 

Anon, Stricter than Californians, Automobile International Management, pp 20-22, 

January 1998. 

Arcoumanis C, Bae C, Nagwaney A and Whitelaw J H, Effect of EGR on 
Combustion Development in a 1.9 L DI Diesel Optical Engine, SAE paper 950850, 

1995. 

Arcoumanis C, Nagwaney A, Hentschel W and Ropke S, Effect of EGR on Spray 

Development, Combustion and Emissions in a 1.9 L Direct-Injection Diesel Engine, 

SAE paper 952356, October 1995. 

Aoyagi Y, Kamimoto T, Matsui Y and Matsuoka S, A Gas Sampling Study on the 

Formation Processes of Soot and NO in a DI Diesel Engine, SAE paper 800254, SAE 

Trans vol 89,1980. 

Aoyama T, Mizuta J and Oshima Y, NOx Reduction by Injection Control, SAE paper 
900637,1990. 

Ayoub NS and Reitz R D, Multidimensional modelling of fuel composition Effects on 

combustion and cold starting in diesel engines, SAE paper 952425 (SP-1123), 1995. 

Bach M, Jablonski J, Bauder R, Hoffmann H, Endres H and Poelzl, H-W, Der neue 
V8-TDI-Motor von Audi, Teil 2: Konstruktion und Mechanik, 10 Jahre TDI-Motor von 
Audi, ATZ/MTZ-Sonderausgabe, 10 Jahre TDI-Motor von Audi, September 1999. 

Baert RSG, Beckman DE and Veen AWMJ, Efficient EGR Technology for 

Future HD Diesel Engine Emissions TargetsSAE Paper 1999-01-0837, March, 1999. 

Baert R, Beckman DE and Veen AWMJ, EGR technology for lowest emissions, 

paper C517/034/96, I Mech E International Seminar on Application of Powertrain and 
Fuel Technologies to Meet Emissions Standards, 24-26 June 1996. 

Balian R A, In-Cylinder and Exhaust Emissions Analysis with EGR, Project Report for 

Ford Motor Company, Brunel University, December 1995. 

Balian R A, In-Cylinder NOx Sampling of a 2.5 litre DI/TC Ford diesel engine, End of 
Year Report, Project Report for Ford Motor Company, Brunel University, June 1992. 

Bartlett et at, Diesel fuel aromatic content and its relationship with emissions from 

References 245 



diesel engines, COCAWE report no. 92/54, June 1992. 

Bartok W and Sarofim A F, Fossil Fuel Combustion, A Source Book, John Wiley and 

Sons Inc, 1991. 

Bauder R, Dorsch W, Endres H, Franke G, Jablonski J, Reuss T und Staehle H, Der 

Audi V6-TDI-Motor schadstoffarm und leistungsgesteigert, ATZIMTZ-Sonderausgabe, 10 

Jahre TDI-Motor von Audi, September 1999. 

Bauder R, Dorsch W, Poelzl H-W and Mikulic L, The New Audi V6 Turbo-Diesel 

Engine with Direct Injection and Four Valves per Cylinder, Partl: General concept and 

thermodynamics, 18th International Vienna Engine Symposium 1997, Vol 1, pp48-69. 
Baulch D L, Drysdale DD and Horne D G, Evaluated Kinetic Data for High 

Temperature Reactions, Vol 2, Butterworths, London, 1973. 

Baulch D L, Drysdale DD and Horne D G, Report No 5, Dept of Physical Chemistry, 

The University of Leeds, 1969. 

Bazari Z and French BA, Performance and Emissions Trade-Offs for a HSDI Diesel 

Engine - An Optimization Study, SAE paper 930592,1993. 

Bazari Z, A DI Diesel Combustion and Emission Predictive Capability for use in Cycle 

Simulation, SAE Paper 920462, February 1992. 

Bazari Z, Diesel Exhaust Emissions Prediction Under Transient Operating Conditions, 

SAE paper 940666, February 1994. 

Benjamin S F, Weaving J H, Glynn D R, Markatos NC and Spalding D B, 

Development of a mathematical model of flow, heat transfer and combustion in a 

stratified charge engine, I Mech E Stratified Charge Automotive Engine Conference, 

C403/80, p91,1980. 
Berger H, Eichlseder H and Steinmayr T, Das EU-3 Abgaskonzept fur den neuen 
Vierzylinder-Dieselmotor von BMW (The EU-3 Exhaust Concept for the New Four- 

Cylinder Diesel Engine), MTZ Motortechnische Zeitschrift 59 (1998) 5. 

Bird GL, Duffy KA and Tolan LE, Development and application of the Stanadyne 

new slim tip pencil injector. I Mech E Seminar on Diesel fuel systems, 10-11 October 

1989, p 133 (Mechanical Engineering Publications, London). 

Bittker DA and Scullin V J, GCKP84-General Chemical Kinetics Code for Gas Phase 

Flow and Bench Processes Including Heat Transfer Effects, NASA Technical Paper 

2320,1984. 

References 24 6 



Blauwens J, Smets B and Peeters J, 16th Int Symp Combust, Combustion Institute, 

Pittsburgh, 1055-1064,1977. 

Bostock PG and Cooper L, Turbocharging the Ford 2.5 HSDI diesel engine. I Mech E 

Seminar on Diesel fuel injection systems, 14-15 April 1992 (Mechanical Engineering 

Publications, London). 

Bower GR and Foster DE, The Effect of Split Injection on Soot and NOx Production in 

an Engine-Fed Combustion Chamber, SAE paper 932655,1993. 

Bowman C T, Control of combustion-generated nitrogen oxide emissions: technology 
driven by regulation, Twenty-Fourth Symposium (International) on Combustion, The 

Combustion Institute, pp 859-878,1992. 

Bowman C T, Kinetics of Pollutant Formation and Destruction in Combustion, Prog 

Energy Combust Sci, vol 1, pp 33-45,1975. 

Bradley JN and Craggs X, 15th Int Symp Combust, Combustion Institute, Pittsburgh, 

833-842,1975. 

Broering LC and Holtman L W, Effect of Diesel Fuel Properties on Emissions and 
Performance, SAE paper 740692, September, 1974. 

Broering LC and Wulfhurst DE, Design Factors That Affect Diesel Emissions, 

Bascom RC, SAE paper 710484,1971. 

Bromly J H, Barnes FJ and Little L H, The effect of low levels of CO, H2 and 
hydrocarbons on N02/NO ratios in heated gases, Journal of the Institute of Energy (89) 

1988. 

Bromly J H, et at, An experimental investigation of the mutually sensitised oxidation 

of nitric oxide and n-butane, Twenty-fourth Symposium (Int) on Combustion, The 

Combustion Institute, 1992, pp 899-907. 

Brown AJ and Heywood J B, A fundamentally-based stochastic mixing model 

method for predicting NO and soot emissions from direct-injection diesel engines, 
Calculations of Turbulent Reactive Flows-AMD- Vol 81 (Book Number H00350) The 

ASME pp 293-312,1987. 

Brueggemann H, Arbeiter E and Reifenrath, The New V8 CDI, Lightweight Design 

by DaimlerChrysler: Diesel Engines with Common Rail Injection - State of the 
Development and Forecast, 8. Aachener Kolloquium Fahrzeug- und Motorentechnik 

1999. 

References 247 



Brueggemann H, Arbeiter E, Fausten H, Reifenrath H P, Roth H and Weisbarth, 

M, Der neue V8-Pkw-Dieselmotor von Mercedes-Benz (The New Mercedes-Benz V-8 

Passenger Car Diesel Engine), MTZ Motortechnische Zeitschrift 61 (2000) 6. 

Brueggemann VH and Wamser M, Die neuen Dieselmotoren OM 668 mit Common- 

Rail-Direkteinspritzung fur die Mercedes-Benz-A-Klasse, Teil 1: Motorkonstruktion 

und mechanischer Aufbau, Sonderausgabe ATZ und MTZ, 1997. 

Burgler L, Herzog PL and Zelenka P, Strategies to meet US 1994/5 diesel engine 
Federal emission legislation for HSDI diesel engine powered vehicles, Proc Instn Mech 

Engrs Vol 206,1992. 

Burley HA and Rosebrock T L, Automotive Diesel Engines - Fuel Composition vs 
Particulates, SAE paper 790923, October 1979. 

Campbell IM and Thrush B A, Reactivity of Hydrogen to Atomic Nitrogen and Atomic 

Oxygen, Trans Faraday Soc, 1968, Vol 64, Part 5 pp 1265-1274. 

Carnochan WA and Horrocks RW, The Ford 1.8 IDI TCI Diesel in Mondeo and 
future developments, Aachen Colloquium, 1993. 

Caton JA and Siebers D L, Combustion & Flame 79: 31-46,1990 
Caton JA and Siebers D L, Comparison of Nitric Oxide Removal by Cyanuric Acid 

and by Ammonia, Combust Sci and Tech, 1989 Vol 65, pp 277-293. 

Charlton S J, Control Technologies for Compression-Ignition Engines, Handbook of 

Air Pollution from Internal Combustion Engines, Ed E Sher, Academic Press, 1998. 

Chigier N, Energy, Combustion and Environment, McGraw-Hill Book Company, 1981. 

Chikahisa T, Konno M and Murayama T, Analysis of NO Formation Characteristics 

and Control Concepts in Diesel Engines from NO Reaction-Kinetic Considerations, SAE 

paper 950215,1995. 

Chikahisa T, Konno M, Murayama T and Kumagai T, Analysis of NO formation 

characteristics and its control concepts in diesel engines from NO reaction kinetics, 

948047, Proceedings 941, JSAE Technical Paper No 9432985 (JSAE). 

Chmela F G, Werlberger P and Cartellieri W P, Parameters Affecting In-Cylinder Soot 

and NOx Formation in a Direct Injection Diesel Engine, FISITA-Congress; 7-11 June 

1992, London England. 

Clark T C, Garnett SH and Kistiakowsky G B, J Chem Phys 51,2885-91,1969. 

Clyne MAA and Thrush B A, Proc Royal Society, London, A261,259,1961. 

References 248 



Cook DH and Law CK, A Preliminary Study on the Utilization of Water-in-Oil 

Emulsions in Diesel Engines, Combustion Science and Technology 1978, Vol 18 

pp217-221. 

Cooper BJ and Thoss J E, Role of NO in Diesel Particulate Emission Control, SAE 

paper 890404,1989. 

Corcione F E, Fusco A, Valentino G and Papetti F, Numerical and Experimental 

Analysis of Diesel Air Fuel Mixing, SAE paper 931948,1993. 

Curtis E W, Uludogan A and Reitz R D, A new high pressure droplet vapourization 

model for diesel engine modelling, SAE paper 952431 (SP-1 123), 1995. 

Davies CP, personal communication, March 2001. 

Dec J E, A Conceptual Model of DI Diesel Combustion Based on Laser-Sheet Imaging, 

SAE paper 970873, February 1997. 

Deeba M et al, Catalytic Abatement of Nox from Diesel Engines: Development of Four 

Way Catalyst, SAE paper 952491, October, 1995. 

Dent JC and Metha P S, Phenomenological Combustion Model for a Quiescent 

Chamber Engine, SAE paper 811235,1981. 

Dent J C, Metha PS and Swan J, A Predictive Model for Automotive DI Diesel 

Engine Performance and Smoke Emission, I Mech E paper C 126/82,1982. 

Desai R R, Gaynor E, Watson HC and Rigby G R, Giving Standard Diesel Fuels 

Premium Performance Using Oxygen-Enriched Air in Diesel Engines, SAE paper 
932806,1993. 

Dietz M, Lambert L Nester U and Brueggemann H, The New Common-Rail Direct- 

Injection Diesel Engine for the Smart, Part 2: Combustion and Engine Management, 

MTZ Motortechnische Zeitschrift 60 (1999) 12. 

Duernholz M, Eifler G and Endres H, Exhaust-gas recirculation -a measure to reduce 

exhaust emissions of a DI diesel engine, SAE paper 920725,1992. 

Duernholz M, Eitler G and Endres H, Reducing Emissions of DI Diesel Engines by 

Exhaust Gas Recirculation, 3rd Aachen Seminar "Vehicle and Engine Technology, " 

Aachen, 1991. 

Duggal V K, Kuo T W, Mukerjee T, Przekwas AJ and Singhai A K, Three- 

dimensional modelling of in-cylinder processes in DI diesel engines, SAE paper 
840227,1984. 

References 249 



Duggal V K, Priede T and Khan I M, A Study of Pollutant Formation within the 

Combustion Space of a Diesel Engine, SAE paper 780227, SAE Trans vol 87,1978. 

Dunne M and Frost B, Vehicle Emission Standards Past, Present and Future, 2151 century 

emissions technology conference, I Mech E, London, 4-5`h December, 2000. 

Duxbury J and Pratt N H, 15th Int Symp Combust, Combustion Institute, Pittsburgh, 

843-855,1975. 

Elsaesser A, Braun R and Jensen H, Air Supply Modules for DaimlerChtysler's New 

Common Rail Diesel Engines OM611 and OM612, MTZ Worldwide, MTZ 

Motortechnische Zeitschrift 61 (2000) 3. 

Engler B H, Leyrer J, Lox ES and Ostgathe K, Catalytic Reduction of NOx with 
Hydrocarbons under Lean Diesel Exhaust Gas Conditions, SAE paper 930735,1993. 

Fetterman P and Shank G, Cool running for clean diesels, Infineum Insight, Issue 

number 5, March 2000. 

Flanigan C, Litzinger TA and Graves R L, The Effect of Aromatics and 
Cycloparaffins on DI Diesel Emissions, SAE paper 892130,1989. 

Flower W L, Hanson RK and Kruger C H, Combust Sci Technol, 15,115-128, 

1977. 

Ford Motor Company, Competitive Analysis and Teardown, BMW 320 2. OL TD 

Diesel Board Pictures, Dunton, England, May 1999. 

Ford Motor Company, Competitive Analysis and Teardown, Mercedes-Benz 1.7 CDI 

Diesel Board Pictures, Dunton, England, March 1999. 

Fourth Report of the Photochemical Oxidants Review Group, 1997, Ozone in the 

United Kingdom, published 1997, ISBN: 1-870 303-30-9. 

Fraser B, Regulation Review, European Union, 98/69/EC, 1999/102/EC and 2001/1/EC 

St III, updated 22 February 2001, Ford Motor Company internal report. 
Fusco A, et al , An experimental and numerical study of air-fuel mixing and 

combustion of a divided-chamber diesel engine system, SAE paper 952427,1995. 

Gardiner W C, Combustion Chemistry, Springer-Verlag New York Inc, 1984 

Garo A, Hilaire C and Puechberty D, Combust Sci Technol, 86: 87-103,1992. 

Glarborg P, Lilleheie N I, Byggstoyl S, Magnussen B F, Kilpinen P and Hupa M, 

24th Symp (Int) on Combustion, Sydney, 889,1992. 

Glarborg P, Miller JA and Kee R J, Kinetic Modeling and Sensitivity Analysis of 

References 250 



Nitrogen Oxide Formation in Well-Stirred Reactors, Combustion and Flame 65: 177- 

202,1986. 

Glassman I, Combustion, Third Edition, Academic Press, 1996. 

Gosman AD and Marooney C J, Development and Validation of Computer Models of 

In-Cylinder Flow and Combustion in Diesel and Spark Ignition Engines, I Mech E, 

Auto Tech 89 C399/19, November, 1989. 

Gosman A D, Krali C, Marooney C and Theodossopoulos P, The development of the 

SPEED code for Diesel combustion simulation, Proc 3rd Int Conf Innovation and 
Reliability in Automotive Design and Testing, ATA and DMTI (1992) 653-662. 

Gosman A D, Krali C, Marooney CJ and Theodopossopoulos P, Development 

strategies for diesel combustion simulation using the SPEED code, I Mech E, C448/035 

(1992) 21-27. 

Hammerle RH et at, Emissions from Diesel Vehicles with and without Lean Nox and 

Oxidation Catalysts and Particulate Traps, SAE paper 952391, October 1995. 

Handbook on Air Pollution and Health, The Stationery Office, published 1997, 

ISBN: 011 322096 0. 

Hansen R K, Flower WL and Kruger C H, Combust Sci Technol, 9,79-86,1974. 

Hanson RK and Salimian S, Survey of Rate Constants in the N/H/O System, 

Combustion Chemistry (W C Gardiner, Jr, ed), pp361-421, Springer-Verlag, New York, 

1984. 

Harrington JA and Shishu R C, A Single-Cylinder Engine Study of the Effects of 
Fuel Type, Fuel Stoichiometry and Hydrogen-to-Carbon Ratio and CO, NO and HC 

Exhaust Emissions, SAE paper 730476,1973. 

Harris R J, Nasralla M and Williams A, Combust Sci Technol 14,85-94,1976. 

Havenith C, Needham J R, Nicol AJ and Such C H, Low Emission Heavy Duty 

Diesel Engine for Europe, SAE paper 932959,1993. 

Havenith C, Verbeek R P, Heaton DM and van Sloten P, Development of a Urea 

DeNOx Catalyst Concept for European Ultra-Low Emission Heavy-Duty Diesel 

Engines, SAE paper 952652, November 1995. 

Haverinth C, Such CH, Porter BC and Nicol AJ, Demonstration of a Euro 3 Heavy- 

Duty Diesel Engine using Exhaust Gas Recirculation, 18th International Vienna Motor 

Symposium, 24-25 April 1997. 

References 2 51 



Hawley J G, Wallace F J, Pease A C, Cox A, Horrocks RW and Bird G L, 

Comparison of variable geometry turbocharging (VGT) over conventional wastegated 

machines to achieve lower emissionsl Mech E Autotech Conference, Paper No. 

C524/070/97, Birmingham, 1997. 

Hawley J G, Wallace F J, Pease A C, Cox A, Horrocks RW and Bird G L, 

Reduction of Steady State NOx Levels from an Automotive Diesel Engine Using 

Optimised VGT/EGR Schedules, SAE paper 1999-01-0835, March 1999. 

Hawley JG, Brace CJ, Wallace FJ and Horrocks RW, Combustion-Related 

Emissions in CI Engines, Handbook of Air Pollution from Internal Combustion 

Engines, edited E Sher, Academic Press 1998, ISBN: 0-12-639855-0 

Heap M P, Chen S L, Kramlich J C, McCarthy JM and Pershing D W, An 

advanced selective reduction process for NOx control, Nature Vol 335 13 October 1988 

pp 620-622. 

Heaton D M, Martin B, Bertoli C and Giavazzi F, Fuel Composition Efects on Diesel 

Engine Emissions -a Joint European Study, Inst Mech Engrs, April 1993. 

Heck R M, Chen JM and Speronello B K, Operating Characteristics and Commercial 

Operating Experience with High Temperature SCR NOx Catalyst, Environmental 

Progress (Vol 13 No 4), November 1994. 

Heimrich MJ and Deviney M L, Lean NOx Catalyst Evaluation and Characterization, 

SAE paper 930736,1993. 

Heisler H, Advanced Engine Technology, pub Arnold, 1997, ISBN 0 340 56822 4. 

Held W, Konig A, Richter T and Puppe L, Catalytic NOX Reduction in Net 

Oxidizing Gas, SAE paper 900496, Febrary 1990. 

Hentschel W, Schindler K-P and Haahtela 0, European Diesel Research IDEA- 

Experimental Results from DI Diesel Engine Investigations, SAE paper 941954,1994. 

Herron J T, J Chem Phys, 35,1138,1961 

Herron J T, J Res Nat Bur Stand, 65A, 411,1961. 

Hewson JC and Bollig M, Reduced Mechanisms for NOx Emissions from hydrocarbon 

diffusion flames, 26th Symposium (Int) on Combustion, The Combustion Inst, Pittsburg, 

1996. 

Heywood J B, Internal Combustion Engine Fundamentals, McGraw-Hill Book Company, 

McGraw-Hill Book Company 1988, ISBN: 0-07-100499-8. 

References 252 



Hilliard JC and Wheeler R W, Nitrogen Dioxide in Engine Exhaust, SAE paper 
790691, June 1979. 

Hiroyasu H and Kadota T, Models for Combustion and Formation of Nitric Oxide and 
Soot in Direct Injection Diesel Engines, SAE paper 760129,1976. 

Hiroyasu H, Diesel Engine Combustion and Its Modeling, in Proceedings on 
International Symposium on Diagnostics and Modeling of Combustion in Reciprocating 

Engines, COMODIA 85, pp 53-75, Tokyo, September 4-6,1985. 

Hori 1\i et al, The effect of low-concentration fuels on the conversion of nitric oxide to 

nitrogen dioxide, Twenty-Fourth Symposium (Int) on Combustion, The Combustion 

Institute, 1992, pp 909-916 

Horrocks RW and Robertson P, Light-duty diesel developments for low emissions 

and low fuel consumption, 4th International Conference and Exhibition, Brussels, 

Belgium, September, 1996. 

Horrocks R W, Developments in high speed direct injection Diesel engines, 6. 

Aachener Kolloquium, Aachen, 20-22 October, 1997. 

Horrocks R W, Light-duty diesels - an update on the emissions challenge, Proc Instn 

Mech Engrs, Part D, 208,289 - 298,1994. 

Horrocks R W, Light-duty diesels - the emissions challenge, Proc Instn Mech Engrs, 

Part D, 206,249 - 255,1992. 

Horrocks R W, Robertson P S, Brohmer AM and Heuser G, Entwicklung 

schnellaufender 4-Ventil-Direkteinspritz-Dieselmotoren, Pkw-Dieselmotoren Haus der 

Technik, Essen, Germany, June 1995. 

Hosier C, European Emissions Stage V Forecast, VRD EU/M/216, issued 12 July 2000, 

Ford Motor Company Ltd internal report. 
lida N and Watanabe J, Surrounding Gas Condition Effects on NOx and Particulate, 

COMODIA 90, Proc Int Sym Diagnostics and Modeling of Combustion in Internal 

Combustion Engines, Sept 1990. 

lida N, and Sato G T, Temperature and Mixing Effects on NOx and Particulate, SAE 

paper 880424,1988. 

Ikegami M, Shioji M and Koike M, A stochastic approach to model the combustion 

process in direct-injection diesel engines, 20th Symp (Int) Combust pp 217-224, The 

Combustion Institute, 1984. 

References 2 53 



Ishida M and Chen Z L, An Analysis of the Added Water Effect on NO Formation in 

DI Diesel Engines, SAE paper 941691,1994. 

Ishida M and Chen Z-L, An analysis of the added water effect on NO formation in DI 

diesel engines SAE paper 941691, SP-1050,1994. 

Ishida M and Chen Z-L, An Analysis of the Added Water Effect on NO Formation in 

DI Diesel Engines, SAE paper 941691, September 1994. 

Ishida M, Chen Z L, Veki H and Sakguchi D, Combustion analysis by Two-Zone 

Model in a DI Diesel Engine, Proc of Int Symposium COMODIA 94 (1994) 

Ishiguro J, Kidoguchi Y and Ikegami M, Three-dimensional simulation of the diesel 

combustion process, JSME Int J, Series II, 31 (1), 158-165,1988. 

Johnson GM and Smith M Y, Emissions of Nitrogen Dioxide from a Large Gas Turbine 

Power Station, Combust Sci Technol. 19,67 1978. 

Jost K, A diesel in your future? Editorial, Automotive Engineering International, January 

2001, Volume 109, No 1, pp 6. 

Jost K, New Diesel V8 for S-Class, Automotive Engineering International, January 2001, 

Volume 109, No 1, pp 78-80. 

Kamimoto T and Kobayashi H, Combustion Processes in Diesel Engines, Prog Energy 

Combust Sci 1991 Vol 17 pp 163-189,1991. 

Kamimoto T, Aoyagi Y, Matsui Y and Matsuoka S, The Effect of some Engine 

Variables on Measured Rates of Air Entrainment and Heat Release in a DI Diesel Engine, 

SAE paper 800253,1980. 

Kaneko Y, Kobayashi H and Komagome R, The Effects of Exhaust Gas Recirculation 

and Residual Gas on Engine Emissions and Fuel Economy, SAE paper 750414,1975. 

Kato S, Onishi S, Tanabe H and Sato G T, Development of Low Emission Diesel 

Engine by Impingement of Fuel Jet, SAE paper 921645,1992. 

Kato S, Onishi S, Tanabe H and Sato G T, Development of OSKA-DH Diesel Engine 

Using Fuel Jet Impingement and Diffusion Investigation of Mixture Formation and 

Combustion, SAE paper 940667,1994. 

Kaufman F and Decker L J, 7th Int Symp Combust, Butterworths, London, 57-60, 

1959. 

Ketcher D, Status of passive diesel lean NOx catalyst tests, internal Ford report, 
February 1997. 

References 254 



Khan IM and Wang CHT, Factors affecting emissions of smoke and gaseous 

pollutants from direct injection diesel engines, I Mech E, C151/71,1971. 

Khan I M, Greeves G and Probert D M, Prediction of soot and nitric oxide 

concentrations in diesel engine exhaust, Instn Mech Engrs, C142/71,1971. 

Kistiakowsky GB and Volpi G G, J Chem Phys, 27,1141,1957. 

Klingmann R, Fick W and Brueggemann H, The New Common Rail Direct Injection 

Diesel Engines for the Updated E-Class, Part 1: Engine Design and Mechanical Layout, 

MTZ World wide, MTZ Motortechnische Zeitschrift 60 (1999) 7/8. 

Kong SC and Reitz R D, Multidimensional Modeling of Diesel Ignition and 
Combustion Using a Multistep Kinetics Model, paper 93-ICE-22 ASME Transactions, 

Journal of Engineering for Gas Turbines and Power, Vol 115 No 4 pp 781-789,1993. 

Kong S-C, Han Z and Reitz R D, The Development and Application of a Diesel 

Ignition and Combustion Model for Multidimensional Engine Simulation, SAE paper 
950278 (SP-1101), 1995. 

Kong S-C, Ricart LM and Reitz R D, In-Cylinder Diesel Flame Imaging Compared 

with Numerical Computations, SAE paper 950455 (SP-1090), 1995. 

Konno M, Chikahisa T and Murayama T, An Investigation on the Simultaneous 

Reduction of Particulate and NOx by Controlling Both the Turbulence and the Mixture 

Formation in DI Diesel Engines, SAE paper 932797,1993. 

Konno M, Chikahisa T, Murayama T and Iwamoto M, Catalytic Reduction of NOx 

in Actual Diesel Engine Exhaust, SAE paper 920091,1992. 

Kretschmer CB and Peterson H L, J Chem Phys, 39,1772,1963. 

Kyriakides S C, Dent JC and Mehta P S, Phenomenological Diesel Combustion 

Model Including Smoke and NO Emissions, SAE paper 860330, February 1986. 

Ladommatos N, Abdelhalim S M, Zhao H and Hu Z, The Dilution, Chemical and 
Thermal Effects of Exhaust Gas Recirculation on Diesel Engine Emissions - Part 1: 

Effect of Reducing Inlet Charge Oxygen, SAE paper 961165, May 1996. 

Ladommatos N, Abdelhalim S M, Zhao H and Hu Z, The Dilution, Chemical and 
Thermal Effects of Exhaust Gas Recirculation on Diesel Engine Emissions - Part 2: 

Effect of Carbon Dioxide, SAE paper 961167 May 1996. 

Ladommatos N, Abdelhalim S M, Zhao H and Hu Z, The Effects of Carbon Dioxide 
in EGR on Diesel Engine Emissions, Proceedings of International Seminar on 

References 255 



Application of Powertrain and Fuel Technologies to Meet Emissions Standards, pp. 157- 

174, Institution of Mechanical Engineers, 1996. 

Ladommatos N, Balian R, Horrocks R and Cooper L, The Effect of Exhaust Gas 

Recirculation on Combustion and Nox Emissions in a High-Speed Direct-Injection 

Diesel Engine, SAE paper 960840, February 1996. 

Ladommatos N, Parsi M and Knowles A, The effect of fuel cetane improver on diesel 

pollutant emissions, Fuel 1996 Vol 75 No 1. 

Ladommatos N, Rubenstein P and Bennett P, Some effects of molecular structure of 

single hydrocarbons on sooting tendency, Fuel 1996 Vol 75 No 2. 

Lange WW et al, The Influence of Fuel Properties on Exhaust Emissions from 

Advanced Mercedes Benz Diesel Engines, SAE paper 932685, October 1993. 

Lapuerta M, Salavert JM and Domenech C, Modelling and Experimental Study 

about the Effect of Exhaust Gas Recirculation on Diesel Engine Combustion and 

Emissions, SAE paper 950216, February 1995. 

Lavoie G A, Heywood JB and Keck J C, Experimental and Theoretical Study of Nitric 

Oxide Formation in Internal Combustion Engines, , Combustion Science and Technology, 

1970, Vol 1 pp 313-326. 

Lawrence PJ and Evans R W, The Ford 1.8L Four Cylinder Turbocharged Diesel 

Engine for Passenger Car Applicationn, SAE paper 901716, September 1990. 

Lawrence PJ, Knight D and Carnochan WA, The development of a 1.8 L diesel 

engine for passenger car application, I Mech E paper C382/070,1989. 

Lawrence PJ, Lake P, Turtle D, Taylor T, Carnochan W, Finch J, Gellett T and 
Woelfle M, The All New Duratorq Direct Injection Diesel Engines in the Ford Transit, 

MTZ Motortechnische Zeitschrift 61 (2000) 1. 

Lawrence PJ, The New 1.8L Endura - DI Diesel Engine for the Ford Focus, 7 

Aachener Kolloquium, Aachen 5-7 October, 1998. 

Lenner M, Linqvist 0, Ljungstrom, Lundgren I and Rosen A, Catalysis of the Low 

Temperature Oxidation of Nitric Oxide by Diesel Particulates, SAE paper 821037, 

1982. 

Lenner, M, Nitrogen dioxide in exhaust emissions from motor vehicles, Atmospheric 

Environment Vol 21 No 1, pp 37-43,1987. 

Leyrer J, Lox ES and Strehlau W, Design Aspects of Lean Nox Catalysts for 

References 256 



Gasoline and Diesel Engine Applications, SAE paper 952495, October 1995. 

Liotta FJ and Montalvo D M, The Effect of Oxygenated Fuels on Emissions from a 
Modem Heavy-Duty Diesel Engine, SAE paper 932734, (SP-994), 1993 

Lipkea WH and DeJoode A D, A model of a direct injection diesel combustion 

system for use in cycle simulation and optimization studies, SAE paper 870573,1987. 

Lueders H et al, An Urea Lean NOx Catalyst System for Light Duty Diesel Vehicles, 

SAE paper 952493, October 1995. 

Lyon R K, Thermal DeNOx, Controlling nitrogen oxides emissions by a noncatalytic 

process, Environ Sci Technol Vol 21 No 3 1987 pp231-235,1987. 
Magnussen BF and Hjertager B H, On mathematical modelling of turbulent 

combustion with special emphasis on soot formation and combustion, 16th Symp (Int) 

Combust pp 719-729, The Combustion Institute, 1976. 

Malte PC and Pratt D T, The role of energy-releasing kinetics in NOx formation: fuel 

lean, jet-stirred CO-air combustion, Combust Sci Tech 9,221-231,1974. 

Mansouri S H, Heywood JB and Radhakrishnan K, Divided-Chamber Diesel 

Engine, Part I: Cycle-Simulation Which Predicts Performance and Emissions, SAE 

paper 820273, SAE Trans vol 91,1982. 

Marshall WF and Hurn RW, Modifying Diesel Engine Operating Parameters to 

Reduce Emissions, Bu Mines RI 7579,1971. 

Martin B and Bigeard P H, Hydrotreatment of Diesel Fuels - Its Impact on Light-Duty 

Diesel Engine Pollutants, SAE paper 922268, October 1992. 

Mase Y, Kawashima J and Sato T, and Eguchi M, Nissan's New Multivalve DI 

Diesel Engine Series, SAE paper 981039, February 1998. 

Mavroyannis C and Winkler C A, Chemical Reactions in the Lower and Upper 

Atmosphere, Proc Int Symo, Stanford, 1961,287, Interscience, New York, 1961. 

McCarthy et al, Diesel Fuel Property Effects on Exhaust Emissions from a Heavy Duty 

Diesel Engine that Meets 1994 Emissions Requirements, SAE paper 922267, October 

1992. 

McConnell G, Oxides of Nitrogen in Diesel Engine Exhaust Gas: Their Formation and 

Control, Proc Inst Mech Engrs 178,1963. 

McCullough R W, Kruger CH and Hansen R K, Combust Sci Technol, 15,213-223, 

1977. 

References 257 



Mellor AM et al, Skeletal Mechanism for NOx Chemistry in Diesel Engines, SAE 

paper 981450,1998. 

Menne R J, Lawrence P J, Horrocks RW and Robertson P S, Ford 4-Valve Light- 

Duty DI Diesel Developments, SAE paper 941926, October 1994. 

Mikulic L, Kuhn M, Schommers J and Willig E, Exhaust Emision Optimization of DI 

Diesel Passenger Car Engine with High Pressure Fuel Injection and EGR, SAE paper 
931035,1993. 

Miller J A, Branch MC and Lee R J, A Chemical Kinetic Model for the Selective 

Reduction of Nitric Oxide by Ammonia, Combustion and Flame 43: 81-98,1981. 

Miller JA and Bowman C T, Mechanism and modelling of nitrogen chemistry in 

combustion, Proc Energy Combust Sci Vol 15, pp 287-338,1989. 

Miller J A, Branch M C, McLean W J, Chandler D W, Smooke MD and Lee R J, 

The Conversion of HCN and N2 in H2-02-HCN-Ar Flames at Low Pressure, Twentieth 

Symposium (Int) on Combustion, The Combustion Institute, 1984, pp 673-684. 

Miller R, Davis G, Lavoie G, Newman C and Gardner T, A Super-Extended 

Zel'dovich Mechanism for NOx Modeling and Engine Calibration, SAE paper 980781, 

February 1998. 

Mitchell D L, Pinson JA and Litzinger T A, The Effects of Simulated EGR via Intake 

Air Dilution on Combustion in an Optically Accessible DI Diesel Engine, SAE paper 

932798,1993. 

Miyamoto N et al, Description of Diesel Emissions by Individual Fuel Properties, SAE 

paper 922221, October 1992. 

Monat J P, Hanson RK and Kruger C H, 17th Int Symp Combust, Combustion 

Institute, Pittsburgh, 543-552,1979. 

Monroe D R, Dimaggio C L, Beck DD and Matekunas FA, Evaluation of a 
Cu/Zeolite Catalyst to Remove NOx from Lean Exhaust, SAE paper 930737,1993. 

Montreuil CN and Gandhi H S, Selective catalytic reduction of NO in a lean 

environment by copper exchanged type ZSM5 zeolites, Ford Technical Report no. SR- 

92-35, March, 1992. 

Montreuil C N, An investigation into the NO decomposition characteristics of copper 

exchanged type ZSM5 zeolite, Ford Technical Report no. SR-92-07, January, 1992. 

Muramatsu G, Abe A, Furuyama M and Yoshida K, Catalytic Reduction of NOx in 

References 258 



Diesel Exhaust, SAE paper 930135, (SP-943), 1993. 

Nagase K and Funatsu K, A Study of NOx Generation Mechanism in Diesel Exhaust 

Gas, SAE paper 901615, Sept 1990 

Nandi M, Jacobs DC Liotta FJ Jr and Kesling HS Jr, The Performance of a 

Peroxide-Based Cetane Improvement Additive in Different Diesel Fuels, SAE paper 

942019,1994. 

Nefischer P, Steinparzer F and Stuetz W, Der Ladungswechsel des neuen BMW V8 

Dieselmotors (Gas Exchange System of the New BMW V8 Diesel Engine), 8. Aachener 

Kolloquium Fahrzeug- und Motorentechnik 1999. 

Neumann K-H, Neyer D and Steht H, The new 3-cylinder diesel engine with high 

pressure injection from Volkswagen, 

Newhall HK and Shahed S M, Kinetics of Nitric Oxide Formation in High-Pressure 

Flames, Proceedings of Thirteenth International Symposium on Combustion, pp 381-390, 

The Combustion Institute, 1971. 

Odaka M, Koike N, Tsukamoto Y and Narusawa K, Optimizing Control of Nox and 

Smoke Emissions from DI Engine with EGR and Methanol Fumigation, SAE paper 

920468,1992. 

Odaka M, Koike N, Tsukamoto Y, Narusawa K and Yoshida K, Effects of EGR 

with a Supplemental Manifold Water Injection to Control Exhaust Emissions from 

Heavy-Duty Diesel Powered Vehicles SAE paper 910739,1991. 

Ohigashi S et al, Heat Capacity Changes Predict Nitrogen Oxides Reduction by Exhaust 

Gas Recirculation, SAE paper 710010,1971. 

Olikara C and Borman GL, A Computer Program for Calculating Properties of 

Equilibrium Combustion Products with some Applications to I. C. Engines, SAE paper 

750468, February 1975. 

Parker RF and Walker JW, Exhaust Emission Control in Medium Swirl Rate Direct 

Injection Diesel Engines, SAE paper 720755,1972. 

Paterson M A, Kong S C, Hampson GJ and Reitz R. D, Modeling the Effects of Fuel 

Injection Characteristics on Diesel Engine Soot and NOx Emissions, SAE paper 

940523,1994. 

Patterson DJ and Henein N A, Emissions from Combustion Engines and Their Control, 

Ann Arbor Science Publishers Inc, 1972. 

References 259 



Perez J, Current status and development prospects for passenger-car diesel engines in 

Europe, Global Powertrain Congress 2000, Detroit, USA, June 6,2000. 

Perry RA and Siebers D L, Rapid reduction of nitrogen oxides in exhaust gas streams, 

Nature Vol 324 18/25 December 1986. 

Perry R A, Kinetics of the reactions of NCO radicals with H2 and NO using laser 

photolysis-laser induced fluorescence, J Chem Phys 82 (12), 15 June 1985. 

Pershing DW and Berkau E E, The Chemistry of Nitrogen Oxides and Control 

through Combustion Modifications, Advan Chem Ser 1973,127. 

Peters A and Puetz W, The New Four Cylinder Diesel Engine OM611 with Common 

Rail Injection, Part 2: Combustion and Engine Management, MTZ Worldwide, MTZ 

Motortechnische Zeitschrift 58 (1997) 12 

Phillips LF and Schiff H I, J Chem. Phys., 36,1509,1962. 

Piccone A and Rinolfi R, Fiat Third Generation DI Diesel Engines, I Mech E Seminar, 

Euro IV Challenge, Future Technologies and Systems, London, December 1997. 

Pierpont D A, Montgomery DT and Reitz R D, Reducing Particulate and NOx Using 

Multiple Injections and EGR in a DI Diesel, SAE paper 950217,1995. 

Pinchon P, Three dimensional modelling of combustion in a prechamber diesel engine, 

SAE paper 890666,1989. 

Pipho M J, Kittelson DB and Zarling D D, NO2 Formation in a Diesel Engine, SAE 

paper 910231,1991. 

Pischinger R and Cartellieri W, Combustion System Parameters and Their Effect 

Upon Diesel Engine Exhaust Emissions, SAE paper 720756,1972. 

Pittermann, R, Hinz M and Kauert L, Einfluss von Abgas rueckfuehrung und 

Kraftstoff-Wasser-Emulsion auf Verbrennungsablauf und Schadstoffbildung im 

Dieselmotor, (Effect of Exhaust Gas Recirculation and Fuel-Water Emulsion on 

Combustion and Pollutant in a Diesel Engine), MTZ Motortechnishe Zeitschroft 60 

(1999) 12, translation in MTZ worldwide. 

Plee S L, Ahmad T and Myers J P, Diesel NOx Emissions -A Simple Correlation 

Technique for Intake Air Effects, Proceedings of Nineteenth International Symposium on 

Combustion, pp 1495-1502, The Combustion Institute, Pittsburgh, 1982. 

Plee S L, Ahmad T, Myers JP and Siegla D C, Effects of Flame Temperature and Air- 

Fuel Mixing on Emission of Particulate Carbon from a Divided-Chamber Diesel Engine, 

References 260 



Particulate Carbon - Formation During Combustion, ed Siegla DC and Smith G W, 

Plenum Press, New York, pp 423-487,1981. 

Plee S L, Ahmad T, Myers J P, Faeth GM and Faeth G M, Diesel NOx emissions -a 

simple correlation technique for intake air effects, Nineteenth Symposium (International) 

on Combustion, The Combustion Institute, pp 1495 - 1502,1982. 

Plee SL, Myers JP and Ahmed T, Flame Temperature Correlation for the Effects of 

Exhaust Gas Recirculation on Diesel Particulate and NOx Emissions, SAE paper 

811195, SAE Trans vol 90,1981. 

Polifke et al, A NOx prediction scheme for lean-premixed gas turbine combustion 

based on detailed chemical kinetics, ASME paper 95-GT-108,1995. 

Pundir B P, Zvonow VA and Gupta C P, Nitric oxide formation in spark-ignition 

engines with in-cylinder charge non-homogenity of a random nature, Proc Inst Mech 

Engrs Vol 199 No D3,1985. 

Raine R R, Stone CR and Gould J, Modelling of nitric oxide formation in spark 

ignition engines with a multizone burned gas, Combustion and Flame 102: 241-255, 

1995. 

Reitz RD and Rutland C J, 3-D Modeling of Diesel Engine Intake Flow Combustion 

and Emissions, SAE paper 911789,1991. 

Reitz RD et al, Improvements in 3-D Modeling of Diesel Engine Intake Flow and 

Combustion, SAE paper 920463,1992. 

Reitz RD et al, Progress in Diesel Engine Intake Flow and Combustion Modeling, SAE 

paper 932458,1993. 

Rhode W and Weib M, A direct injection turbodiesel engine, Automotive Design 

Engineering, 1993. 

Rhode W, Goekesme S, Liang JR and Schmitt J L, Der nue directinspritzende 1,9 1 

Dieselmotor von Volkswagen, Volkswagen's new 1.9 DI Diesel engine, 3. Aachener 

Kolloquium Fahrzeug- und Motorentechnik 1991. 

Ropke S, Schweimer GW and Strauss T S, NOx Formation in Diesel Engines for 

Various Fuels and Intake Gases, SAE paper 950213, February 1995 

Rutland CJ et al, Progress towards diesel combustion modelling, SAE paper 952429 

(SP-1123), 1995. 

Rutland CJ et a1, Toward Predictive Modeling of Diesel Engine Intake Flow, 

References 2 61 



Combustion and Emissions, SAE paper 941897,1994. 

Sawter RF et al, Factors of Controlling Polutant Emissions from Gas Turbine Engines, 

Atmospheric Pollution by Aircraft Engines, AGARD CP-125, Paper No 22,1973. 

Schiller R and Ruegheimer U, The new Audi V8 TDI, Audi AG Product and 
Technology Communication, Ingolstadt, May 1999. 

Schofield K, Evaluation of Kinetic Rate Data for Reactions of neutrals of Atmospheric 

Interest, Planet Space Sci, 1967, Vol 15, pp 643-670. 

Seery DJ and Zablielski M F, Laser Probes for Combustion Chemistry, American Chem 

Society, Washington DC, 375-380,1980. 

Seko T et al, Performance of Lean Nox Catalyst Applied to a Heavy- Duty Methanol 

Engine Exhaust, SAE paper 952494, October 1995. 

Shahed S M, Chiu WS and Yumlu V S, A Preliminary Model for the Formation of 

Nitric Oxide in Direct Injection Diesel Engines and its Application in Parametric 

Studies, SAE paper 730083,1973. 

Shahed SM and Waszkiewicz W, Diesel Cleans Up, Engine Technology International 

issue 1/100, March 2000. 

Shiozaki T, Nakajima H, Kudo Y, Miyashita A and Aoyagi Y, The Analysis of 
Combustion Flame Under EGR Conditions in a DI Diesel Engine, SAE 960323, 

February 1996. 

Shundoh S, Komori M, Tsujimura K and Kobayashi S, NOx Reduction from Diesel 

Combustion Using Pilot Injection with High Pessure Fuel Injection, SAE paper 920461, 

1992. 

Sienicki E J, et al, Diesel Fuel Aromatic and Cetane Number Effects on Combustion 

and Emissions from a Prototype 1991 Diesel Engine, SAE paper 902172,1990. 

Slone RJ and May D F, Early Engine Emission Reduction Test Results with 
RAPRENOX, Proceedings of the Automotive Technology Development Contractors' 

Coordination Meeting, Dearborn, Michigan, USA, October 22-25,1990, Report No. 

SAE-P-243. 

Spreen K B, Ullman TL and Mason R L, Effects of Cetane Number, Aromatics, and 
Oxygenates on Emissions from a 1994 Heavy-Duty Diesel Engine with Exhaust 

Catalyst, SAE paper 950250,1995. 

Stawsky A, Lawson A, Vergeer HC and Sharp F A, Diesel exhaust emissions 

References 2 62 



control using EGR and particulate filters, Presented at the 86th Annual General Meeting 

of CIM, Ottawa, April 1984, Heavy Duty Diesel Emission Control: A Review of 

Technology pp 261-290. 

Stephenson PW and Rutland C J, Modelling the effects of valve lift profile on intake 

flow and emissions behaviour in a DI diesel engine, SAE paper 952430 (SP-1 123), 

1995. 

Studzinski WM et al, A Computational and Experimental Study of Combustion 

Chamber Deposit Effects on NOx Emissions, SAE paper 938215,1993. 

Takenaka Y, Aoyagi Y, Tsuji Y and Joko I, 3D numrical simulation of fuel injection 

and combustion phenomena in DI diesel engines, SAE paper 890668,1989. 

Tamanouchi M and Akasaka Y, Effect of Fuel Composition on Exhaust Gas 

Emissions from DI and DI Impingement Diffusion Combustion Diesel Engines, SAE 

paper 941016,1994. 

Taylor P H, Cheng L and Dellinger B, The Influence of Nitric Oxide on the Oxidation 

of Methanol and Ethanol, Combustion and Flame, 115: 561-567 (1998). 

Thiemann W, Brueggemann H, Wawra H and Bakaj L, The New Diesel Engine for 

the Smart, 8. Aachener Kolloquium Fahrzeug- und Motorentechnik 1999. 

Third Report of The United Kingdom Review Group on Acid Rain, Acid 

Deposition in the United Kingdom 1986-1988, Warren Spring Laboratory, published 

1990, ISBN: 0 85624 6506. 

Timoney DJ and Smith W J, Correlation of Injection Rate Shapes with DI Diesel 

Exhaust Emissions, SAE paper 950214,1995. 

Torpey P M, Whitehead MJ and Wright M, Experiments in the control of diesel 

emissions, I Mech E, C124/71,1971. 

Tosaka S, Fujiwara Y and Murayama T, The Effect of Fuel Properties on Diesel 

Engine Exhaust Particulate Formation, SAE paper 890421,1989. 

Tree D, Bower G, Donahue R, Shamis D and Foster D, Emission Tests of Diesel 

Fuel with NOx Reduction Additives, SAE paper 932736 (SP-994), 1993. 

Tsuchi H, Hamada H et al, Catalytic Performance of Alumina for NOx Control in 

Diesel Exhaust, SAE paper 940242,1994. 

Turns S R, An Introduction to Combustion: Concepts and Applications, McGraw-Hill 

Inc, 1996. 

References 2 63 



Uchida N, Daisho Y, Saito T and Sugano H, Combined Effects of EGR and 
Supercharging on Diesel, SAE paper 930601,1993. 

Ullman TL et al, Effects of Fuel Aromatics, Cetane Number, and Cetane Improver on 

Emissions from a 1991 Prototype Heavy-Duty Diesel Engine, SAE paper 902171,1990. 

Uyehara 0, A Method to Estimate H2 in Engine Exhaust and Factors that Affect Nox and 

Particulate in diesel Engine Exhaust, SAE paper 910732,1991. 

Uyehara 0, Factors that Affect Nox and Particulates in Diesel Engine Exhaust - Part 

II, SAE paper 920695,1992. 

Uyehara OA, Reducing NOx in ICE, SAE paper 940896,1994. 

Vioculescu IA and Borman G L, An Experimental Study of Diesel Engine Cylinder- 

Averaged NOx Histories, SAE paper 780228, SAE Trans vol 87,1978. 

Wade W R, Hunter C E, Trinker FH and Cikanek H A, Reduction of NOx and 

particulate emissions in the combustion process, Trans ASME J Engng for Gas Turbines 

and Pwr 109,426-434,1987. 

Wahab E, Description of the DEEPC Multizone Combustion-Emissions model 

capabilities and limitations, Ford Motor Company internal report, February 1998. 

Walder C J, Reduction of Emissions from Diesel Engines, SAE paper 730214,1973. 

Williams A, Combustion of Liquid Fuel Sprays, Butterworths, 1990. 

Wilson R P, Muir EB and Pellicciotti F A, Emissions Study of a Single-Cylinder Diesel 

Engine, SAE paper 740123,1974. 

Wolfer H H, Der Zuenderzug im Dieselmotor, CDI-Forschungsheft 392,15-24,1938. 

Wray KL and Teare J D, J Chem Phys, 36,2582,1962. 

Xiaobin Li and Wallace J S, A phenomenological model for soot formation and 

oxidation in direct-injection diesel engines, SAE paper 952428 (SP-1 123), 1995. 

Yoshikawa H, Ikeda T, Haraguchi K, Kawamura T, Tanaka M and Yamaguchi T, 

Simultaneous Reduction of Nox and Soot Exhausted from Diesel Engine, SAE 940457, 

(SP-1020), 1994. 

Yu RC and Shahed S M, Effects of Injection Timing and Exhaust Gas Recirculation 

on Emissions from DI Diesel Engine, SAE paper 811234, SAE Trans vol 90,1981. 

Zeldovich Y B, The Oxidation of Nitrogen in Combustion Explosions, Acta 

Physicochimica USSR, 21,577-628,1946. 

References 264 



Appendix 1 

Merlin Model Block Diagram 
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Appendix 2 

Diesel Fuel Analysis 
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V 

Quality Assurance Services SAYBOLT 
cWalal Sabvaawr " 
Hst o1opp/C*1i ra81an Iylaaarl b CMM w 
Mwbsr. Caff"m 

CSRTIFICATS OF QUALITY 
C wt : Ford Motor Company Limited, 
Central Accounts Payable, 
Room 40/327 Trafford House, 

8 

Station Way, NAMAS 
Basildon, Essex. S316,5XX TESTING 

No. 123 

Date 3 April 30.1998 

Sample submitted as : Diesel $t% IP4... l 
Received : 17.4.98 

1Marked : Sample as supplied by Ford Motor, 
Tracking No. SA 1157 

Place/Date Sampling : As supplied 
Analysis Completed s 5.5.98 
Page Number :1 of 3 

Dunton 

Test Units Method Result 

Appearance SIMM 89/3 C&B 
Ash $ Wt IF 4 LT 0.001 
Accelerated Stability mg/l00ml IP 388 0.7 
Colour Visual Red 
Colour-ASTM ASTM D1500 LT 4.5 
Cloud Point oC IF 219 MINUS 14 6ý F 
Cold Filter Plugging Point oC IF 309 MINUS 20 
Copper Corrosion (3 hrs @ 100oC) IF 154 IA 
Conradson on 101 Bottoms % Wt IP 13 0.08 
Cetans Index ASTM D976 52.8 
Catane Number ASTM D613 51.5 

I Density at 15 oC g/ml IF 160 0.8365 
Flash Point-P M(Closed) oC IP 34 67 
Neut No-Total Acid mgKOH/Q IF 139 0.007 
Odour SIHM 89/2 Marketable 
Pour Point oC IP 15 BELOW MINUS 30 
Sulphur Content 3 Wt IP 336 0.03 
Viscosity at 40 oC (10 4+'F) cst IF 71 2.574 
Water Content mg/kg ASTM D1744 0.007 
Particulate Contamination mg/kg DIN 51 419 5 
Calorific Value-Gross M3/kg IF 12 45.67 

-Nett MJ/kg IP 12 (calc) 42.83 
Silicon Content ppm IF 377 LT 1 
Carbon/Hydrogen Ratio 1.87 

Carbon 86.14 
Hydrogen 13.40 
Carbon Weight Fraction 0.861 

" Carried out by an outside contractor (not NMUS accredited) 

...... ............. 
AUNwris. d fi9utortss - 8.. 1. sullivan, T. Richar4saim 

Pe. e. sd9r &s : Oliver elsss. Riverside laut., West Thurr6ck, Or61's. Isux 3@120 319 
T61 1 01706 662611 Tslsa 1 6966076 rem 1 01706-067401 
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& IIr o! Salbo4t-Was sign w 
[uaxn meaterhaft Grow 
Independent in. p. cton 
pw11q Lour c. I. rei6 
&Ableg1 Loborstsrtus 
INcrolow/hltbrotioa in913w. rn 
m"OrI YTM/fP 

CERTIFICATE OF QUALITY 
Mlent ; Ford Motor Company Limited, i 
Central Accounts Payable, *4 
Room 40/327 Trafford House, 
Station Way, NA(" 
Basildon, Essex. SS16,5U " TESTING 

No. 123 

W sS 
SAYBOU 

Sample submitted as : Diesel 
Received : 17.4.98 
Marked : Sample ex. Ford Motor, Dutton 

Tracking No. S1ý 1157 
Place/Date Sampling : As supplied 
Analysis Completed : 5.5.98 
Page Number : 2 of 3 

Test Units Method Result 

Viscosity 9 Zero "C 3z- cat IP 71 7.060 
(Minus " 8.343 
(Minus 100C) 

14 
10.05 

(Minus 156C) 5 12.65 
(Minus 206C) -q- 

17.68 
(Minus 25"C) 24.61 
(Minus 304C) 

ýLt 
35.86 

(Minus 35'C) ! Solid 
Distillation " 3I I IP 123 
Initial Boiling Point eC ¬ 170 

S %" OC i 194 
10 % °C 206 
20 "A 'C 229 
30 4 °C 248 
40 % °C 262 
50 $ °C 272 
60 % "C 280 
70 4 'C 290 
80% °C 3 02 
90 4 OC 318 
95 $ OC 327 

Final Boiling Point °C 341 
Recovered 1 99 
Residua 4 1 
toss Nil 

1+thoripd air-tusiu " 1. = 4. falll+ae. T. atehardaen 
batal ad4reas I Oliver Close, Riverside wate. waa Thus M00322 

f. \ ,A 116A AA2411 H1-e "096071 Pi 1 
yL7a{0a 

1 
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Appendix 3 

Normalisation Process 

During engine testing it is normal to find that there are invariably differences in results 
from day to day for the same engine due to variations in ambient conditions and test 

equipment resolution. There are standards for correcting power, torque and smoke 

emissions to standard atmospheric testing conditions, however not all standards correct 

turbocharged engines. There may also be variations in results between engine to engine 

and test facility to test facility. This may be due to a whole range of reasons ranging 
from tolerances of engine build, to different measuring systems. This is particularly 

true for exhaust emissions readings. In order to minimise this effect, a normalisation 

process was used for smoke and NOx emissions, to enable a meaningful comparison of 

results taken at Brunel with the original Ford results obtained at the Dunton Engineering 

Centre. 

In order to offset the day-to-day variations in test conditions, at the start of testing with 

the VNT turbocharger a number of tests were conducted to establish an average baseline 

at Brunel. Because the engine had been equipped with the VNT turbocharger, the 

baseline testing was conducted at the two test conditions, by adjusting the vane 

positions until the air mass flow equated to the respective Dunton measurement of 

airflow. The average NOx and smoke measurement during this exercise became the 

Reference Baseline. 

At the start of each day's testing, a baseline test was repeated, and the normalised result 

was calculated as follows. 

Normalised Daily Result = [Reference Baseline / Day's baseline] x [test result] 
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This normalised day-to-day variations. This result was then normalised a second time 

for the facility-to-facility variations in order to make a comparison with the original 
Ford result as follows. 

Normalised Ford Result = [Ford Result / Reference Baseline] x [Normalised Daily 

Result] 
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Appendix 4 

A Brief History of Variable Nozzle Turbochargers 

Variable geometry (VGT) or variable nozzle turbochargers (VNT) first went into 

production at Garret Turbochargers in 1989 for a commercial vehicle application. 

The first passenger car application was at Fiat for the 1.9 litre DI diesel for the Croma 

car in 1991. The Garrett VNT 25 variable nozzle turbocharger was used to increase 

torque from 190 Nm at 2500 rpm to 200 Nm at the lower speed of 2000 rpm, and power 

was raised from 68 to 69 kW, compared to the earlier engine with a fixed geometry 

turbocharger. 

The next passenger car application came in 1995 when VW applied the newly 
developed scaled down VNT15 machine from Garrett, to the 1.9 litre DI diesel engine. 

This development of the 1.9 engine increased torque from 182 Nm at 2300 rpm, to 235 

Nm at the lower speed of 1900 rpm and maximum power was increased from 66 kW at 

4000 rpm to 81 kW at the slightly higher speed of 4150 rpm. This development was 

really the starting point for high power diesel engines, giving comparable performance 

to gasoline engines. It also marked the start of the dramatic increase in diesel engine 

power that has been seen over the next 5 years, which has largely been due to VNT 

turbochargers and higher-pressure fuel injection systems. The ubiquitous Audi/VW 1.9 

diesel now produces up to 110 kW and 320 Nm with electronic unit injectors and the 

VNT turbocharger. 

Most manufacturers of diesel passenger cars now offer high power output engines using 
VNT turbochargers. The most notable are the new premium V8 engines from Audi, 

BMW and Mercedes, which produce power in the range of 165-175 kW. These engines 

are fitted with twin VNT Garrett turbochargers that have electric actuators to enable the 

electronic engine management system to control the turbine vane position. 
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The demand for VNT turbochargers has risen dramatically over the last 5 to 6 years. 
Garrett produced over 1.8 million VNT turbochargers in the year 2000. Other 

manufacturers like 3K Warner Turbosystems, Mitsubishi and IHI are all developing 

similar VNT units. 
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