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Abstract 

Finite-difference numerical methods are developed for the solution of some systems 
in the biomedical sciences; namely, a predator-prey model and the SEIR (Suscepti- 

ble/Exposed/ Infectious/Recovered) measles model. First-order methods are devel- 

oped to solve the predator-prey model and one second-order method is developed to 

solve the SEIR measles model. 

The predator-prey model is extended to one-space dimension to incorporate dif- 

fusion. The SEIR measles model is extended to one-space dimension to incorporate 

(i) diffusion, (ii) convection and (iii) diffusion-convection. The SEIR measles model is 

extended further to model diffusion in two-space dimensions. 

The reaction terms in these systems of partial differntial equations contain non- 

linear expressions. Nevetheless, it is seen that the numerical solutions are obtained 

by solving a linear algebraic system at each time step, as opposed to solving a non- 

linear algebraic systems, which is often required when integrating non-linear partial 

differential equations. The development of each numerical method is made in the light 

of experience gained in solving the system of ordinary differential equations for each 

system. 

The numerical methods proposed for the solution of the initial-value problem for 

the predator-prey and measles models are characterized to be implicit. However., in 

each case it is seen that the numerical solutions are obtained explicitly. In a series of 

numerical experiments, in which the ordinary differential equations are solved first of 

all, it is seen that the proposed methods have superior stability properties to those of 

the well-known, first-order, Euler method to which they are compared. Incorporating 

the proposed methods into the numerical solution of partial differential equations is 

seen to lead to economical and reliable methods for solving the systems. 
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Chapter 1 

Preliminaries 

1.1 Introduction 

Chaos can be observed in many areas of the chemical, physical and biological sciences 

and in many areas of engineering. Some examples can be found in such areas as cataly- 

sis, turbulent fluid flows, predator-prey interactions, epidemiology, flame propagation, 

electronic circuits, meteorology, neurophysiological reactions, and ship dynamics. A 

profusion of examples of chaos are given in the popular book by Gleick[19], which gives 

those interested a worthy introduction to the phenomenon. 

The examples given above are of dynamic behaviour. In recent times, the phenom- 

enon of chaos has brought about useful collaboration between biologists and math- 

ematicians. Such collaboration has usually resulted in the mathematical modelling 

of a biological system by a non-linear, time-dependent differential equation, ordinary 

or partial, or by a system of such equations. Often, the aim of such a model is to 

successfully reproduce laboratory findings before using the model to make predictions. 

Careful analysis must, however, be carried out to ensure that the mathematical 

model does not predict chaos in the system under investigation, when chaos is not a 

feature of that system. Further care must be taken to ensure that a numerical method 

1 
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chosen to solve the model equations does not predict chaos. Such chaos, when it is 

a feature of neither the system nor the theoretical solution of the associated model 

equations, was described as contrived chaos in the article by Twizell et al. [69]. 

It is the purpose of the present thesis to develop simple and inexpensive computa- 
tional techniques that may be employed to produce numerical results of mathematical 

models in the biomedical sciences in which chaotic behaviour is not inherent. The 

model equations that will feature in the illustrations will be a system of ordinary differ- 

ential equations, herein denoted as ODEs, and systems of partial differential equations 
(hereafter abbreviated PDEs). 

In the case of the system of ODEs, the Euler forward-difference method, arguably 

the best-known and most widely used, low-order, explicit, numerical method, which is 

also inexpensive to implement, can induce chaos whenever parameter(s) exceed crit- 

ical value(s). Explicit methods are also well known to be inexpensive to implement 

when used to compute the solutions of non-linear ODEs. However, for the ODEs and 

PDEs, explicit methods have poor numerical-stability properties (see, for instance, 

Lambert[31] and Twizell et al. [69]) and the user may be forced to use an implicit 

numerical method. 

Implicit methods are more expensive to implement and are usually used as the 

corrector formula in a predictor-corrector combination, which employs a low-order ex- 

plicit formula as predictor. Such combinations have enjoyed considerable success with 

systems of ODEs, for which they were originally intended, but they have also been 

used to great effect in solving non-linear PDEs. 

The restricted stability intervals of predictor-corrector combinations in PECE mode 

(see Lambert [31, p. 117]) often lead the user to employ implicit methods directly, so 

that their good stability properties may be exploited fully. Solving systems of non- 

linear ODEs or PDEs requires the solution of a non-linear algebraic system using, for 
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example, the well known Newton-Raphson method for a system. 

In order to obviate the need to use a relatively expensive, non-linear algebraic solver 

such as the Newton-Raphson method for a system, while continuing to benefit from the 

superior stability properties of implicit methods, Twizell et al. [69] proposed numerical 

methods for the solution of differential equations of the forms 

x= dx/dt =f (x) ( 1.1.1 ) 

aua22 
at 0X+0 

(u); (1.1.2) 

in (1.1.1) x= x(t) and in (1.1.2) u= u(x, t) are real-valued functions, xE 11? is a space 

variable and tE IR+ represents time. In their paper Twizell et al. [69] approximated 

the non-linear functions f (x) and O(u) by splitting them and evaluating terms in the 

splittings at different time levels. This idea will be employed in subsequent chapters of 

this thesis in ways which permit the solutions of ODEs to be determined explicitly from 

what appear to be implicit numerical methods and the solutions of non-linear PDEs 

to be obtained by solving a linear algebraic system at each time step. 

The subsequent sections of Chapter 1 outline the various preliminary definitions 

and theorems needed in the development and analyses of the numerical methods in 

later chapters. 

In Chapter 2, three numerical methods are proposed for the solution of the system 

of partial differential equations of reaction-diffusion type, which model the behaviour 

of a continuous predator-prey system on a spatial gradient that affects the intrinsic 

growth rate of the prey. The numerical methods which are first-order accurate in time 

and second-order accurate in space, are seen to require the solution of only a linear 

algebraic system at each time step, even though the PDEs in the model are non-linear. 

This analogue is modelled mathematically by a system of two non-linear ODEs, which 

are solved by the Euler forward-difference method, and by two alternative methods 

of the same order. The system of ODEs is solved in Section 2.4, while the system of 
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PDEs is solved in Section 2.5. 

4 

The SEIR (Susceptibles/Exposed/Infectious/Recovered) measles model will be dis- 

cussed in Chapter 3 where the stationary (equilibrium) points are found and analysed. 
Two numerical methods are developed, analysed and tested to solve the SEIR measles 

model. The first method is the well-known first-order explicit Euler method and the 

other is a second-order method. Numerical results will be given and compared for the 

two methods using two experiments. 

In Chapter 4, the SEIR measles model is extended to one-space dimension. The 

reaction-diffusion SEIR measles model is analysed and solved numerically for different 

values of the time step, . £. 

Two-space dimensions of the SEIR measles model is analysed and solved numer- 

ically in Chapter 5. Different numerical results are found for different values of the 

diffusion rates. 

In Chapter 6, a one-dimensional measles model of convection type is analysed and 

solved. The maximum principle analysis is used to examine convergence for the devel- 

oped method and numerical results are given for susceptibles, exposed and infectives. 

A mixed initial/boundary-value problem for measles dynamics of diffusion-convection 

type is given in Chapter 7. As in Chapter 6, the maximum principle analysis is used 

to prove convergence of the developed methods. Four sets of numerical results for 

different values of diffusion and convection rates are obtained and discussed. 
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1.2 Some Definitions and Theorems 

Given an independent variable t and a function f (t, x), a typical (single) first-order 

initial-value problem associated with the biomedical sciences takes the general form 

±(t) =f (t, x) ,t> to ; x(to) =g (1.2.1) 

The following theorem outlined in Lambert[31], with proof contained in Henrici[24], 

states conditions on f (t, x) which guarantee the existence of a unique solution of the 

initial-value problem (1.2.1). 

Theorem 1.2.1 Let f (t, x), where f: Ifs x ff? -+ IR, be defined and continuous for 

all points (t, x) in the region D defined by to <t< ti, -oo <x< oo, to and tl finite, 

and let there exist a constant L such that, for every t, x, x* such that (t, x) and (t, x*) 

are both in D, 

I f(t, x)-f(t, x*)I <L Ix-x*1 ( 1.2.2 ) 

Then, if to is any given number, there exists a unique solution x(t) of the initial-value 

Problem (1.2.1 
, where x(t) is continuous and differentiable for all (t, x) in D. 

The requirement (1.2.2) is known as the Lipschitz condition, and the constant L as 

a Lipschitz constant. This condition may be thought of as being intermediate between 

differentiability and continuity (see Khaliq[27]) in the sense that 

f (t, x) contiuously differentiable with respect to x for all (t, x) in D 

=f (t, x) satisfies a Lipschitz condition with respect to x for all (t, x) in D 

=f (t, x) continuous with respect to x for all (t, x) in D. 

In particular, if f (t, x) possesses a continuous derivative with respect to x for all 
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(t, x) in D, then, by the Mean Value Theorem, 

f (t, x) -f (t, x*) - 
of (t' ±) 

(x - *) 
ax 

6 

where x- is a point in the interior of the interval having endpoints x and x*, and (t, x) 

and (t, x*) are both in D. Clearly, (1.2.2) is then satisfied if L is chosen to be 

L= sup 
of (t' X) 

(t, x)ED 
ax 

( 1.2.3 ) 

The next theorem is of fundamental importance in deriving methods for error es- 

timation. The proof of this theorem may be found in any standard calculus text (see, 

for example, Faires & Faires [17]) 
. 

Theorem 1.2.2 (Mean Value Theorem) If fE C[a, b] and f is differentiable on 

(a, b), then a number c, a<c<b, exists such that 

f(b) - f(a) = f'(c) (b-a). 

The following theorem is a generalization of the Mean Value Theorem, Theorem 

1.2.2, in two variables which will be used frequently in the stability analyses in Chapters 

4-7. This theorem may be found in Lynch et al. [39] or Sandefur[56]). 

Theorem 1.2.3 (Mean Value Theorem in two variables) If f (x, y) is differen- 

tiable, then there exists a point (xo) yo) on the line connecting the points (x1, yi) and 

(x2) y2) such that 

f (x2) y2) -f (xi, yi) = fx(xo) yo) (x2 - xi) + fy(xo, yo) (y2 - yi) . 

One of the most important theorems in numerical analysis is due to Taylor (Brook 

Taylor 1685-1731, English mathematician) which will be stated here and may be found 

in Burden & Faires[9, p. 240]. 
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Theorem 1.2.4 (Taylor, one-dimensional) Suppose fE C" [a, b] and f (1 l) exists 
on [a, b]. Let xo E [a, b]. For every xc [a, b], there exists fi(x) between xo and x with 

f (ý) = Pn(x) + Rn(x) 
,(1.2.4 ) 

where 

Pn(x) =nf 
(k) x 

ý 
OJ (x 

- x0)k, 
k=O 

and 
Re(x) -f 

(n+l)ý ý )) 
(x 

- XO)n+l 
(n+l)i 

"\ 

Here Pn(x) is called the nth Taylor polynomial for f about xo and R, (x) is called the 

remainder term (or truncation error) associated with P, (x). The infinite series obtained 
by taking the limit of P,,, (x) as n -+ oo is called the Taylor series for f about x0. In 

the case xo = 0, the Taylor polynomial is often called a Maclaurin polynomial and the 

Taylor series is called a Maclaurin series. Usually Taylor's formula is used to express a 

function in a power series. 

Theorem 1.2.5 (Taylor, two-dimensional) Suppose f (x, y) and all of its first par- 

tial derivatives of order less than or equal to n+1 are continuous on D= {(x, y) Ia<x<b, 

c<y< d}. Let (x0, yo) E D. For every (x, y) E D, there exist ý between x and x0 and 

,q between y and yo with 

f (x, y) = P, 
ý(x, y) + Rn(x, y) ( 1.2.5 ) 

where 
1 

P. (x, Y) =f (xo, yo) + [(x 
- xo) of (xo, yo) + (y - Yo) of (xo, yo) 

2 (x - xo) (y - yo) a2 ä äy o+ (y - Yo a2fay2, yo 1 
.+.. . +1 (x - x°)2 

82J 
aý2, 

yo + 
LJ 

+1 ýn n( )n-k (y -y )k anf xo, yo 
n! k-o kx- x0 ° axn- ay 

and 

-1 

n+l n+1 (x - x°)n+l-k (y - yo)k 
an+l. f (ý, r%) 

ay 
Rn (x, Y) (n ,+ 1)I k-o k axn+l-k k 
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The function ,,, x, y) is called the nth Taylor polynomial in two variables for the 

function f about (xo, yo) and R, (x, y) is the remainder term associated with P,, (x, y). 

The truncation error generally refers to the error involved in using a truncated or 
finite summation to approximate the sum of an infinite series. 

In connection with Taylor's expansion (1.2.4) it is useful to introduce the rate of 

convergence of a function limit, say lim.,,,, f (x). This is done by comparison with a 

reference function, say g(x), see Wiktor[71], using the classical Landau order symbols 
0 and o: 

Definition 1.2.1 (Rate of convergence) Let f (x) and g(x) be real continuous func- 

tions of xE (0, a]. 

(i) f (x) =0 (g(x)) for x -+ 0 if there exist positive constants k and c such that 

f(x)1 <k Ig(x) 1 for 0<x<c ( 1.2.6 

f (x) 
exists and equals zero. ( 1.2.7 (iiý f (x) =0 (g (x» zf lim 

t 

g(x) 

1 

The idea of finite-difference methods is to replace the differential of a function, say 

f (x), which is defined in terms of a limit 

df 
=1imf(x+h) 

- f(x) 
dx h--+O h 

( 1.2.8 ) 

by a finite-difference approximation. Not taking the limit in (1.2.8) (which a com- 

puter couldn't do anyway) but stopping at a sufficiently small value of h leads to a 

discretization or truncation error. The Taylor series gives 

2hf 
(x + h) =f (x) +h f(x) +I fýý(x) + ... ( 1.2.9 ) 

and 2 

f (x - h) =f (x) -hf, (x) + 
hý 

f// (X) _ ... ( 1.2.10 ) 
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It is easy then, using the "O"-notation defined in (1.2.6) to derive the following 

formulae with which to approximate dý and d22 

First-order backward derivative replacement, fE CZ[x - h, x 

df 
_f 

(x) -f (x - h) 
+ 0(h) as h -+ 0. ( 1.2.11 ) 

dx h 

First-order forward derivative replacement, fE C2[x, x+ h] 

df 
- 

f(x+h)-f(x) 
+O(h) as h 0. (1.2.12 ) 

dx h 

Second-order centred derivative replacement, fE C3[x - h, x+ h] 

df 
_f 

(x+ h) -f (x - h) 
+ 0(h2) as h' 0. ( 1.2.13 ) 

dx 2h 

Second-order centred second derivative replacement, fE C4 [x - h, x+ h] 

d2f 
_f 

(x - h) -2f (x) +f (x - h) 
+ O(h2) as h --ý 0. ( 1.2.14 ) 

dx2 h2 

1.3 General Theory 

In many areas such as chemical kinetics and biology, the dynamic behaviour is mod- 

elled with a system of n simultaneous first-order equations in n dependent variables 

xl, x2, ... , xn. If each of these variables satisfies a given condition at the same value to 

of t, then the initial-value problem for a first-order system may be written as 

1= 
fl(t, X11 x2) ... ' xn) 't> 

tp 
, 

ý2 =f2 
(t) x17 x2, ... 1X n) ,t> 

tp 
, 

xi (to) = 91 

x2(to) = 92 

in = fn(t, x1, x2, ... x), t> tp 
i xn(t0) = 9n 

( 1.3.1 ) 

where each fi: DCIRxli _ +1R"(i=1,2,..., n). 



Al-Showaikh, F. N. M., 1998, Chapter 1 10 

Introducing the vector notations x= (x1) x2, ... , xn)T ,f = (fl, f2, 
... , 

fn)T = 
f (t, x), g= (g1) 92.... , gn) T, where T denotes transpose, the initial-value problem 
(1.3.1) may be written as 

Sc = f(t, x), t> to, x(to) = g. ( 1.3.2 ) 

Equations where time does not appear explicitly on the right-hand side are called au- 

tonomous or time-invariant differential equations, whilst if time does appear explicitly 

they will be called non-autonomous or time-variant. 

Theorem 1.2.1 generalizes immediately to give necessary conditions for the existence 

of a unique solution to (1.3.2); all that is required is that the region D now defined by 

a<t<b, -oc < xi Goo, i=1,2, 
... , n, and (1.2.2) be replaced by the condition 

f(t, x) -f(t, x*) 11 <L lix-x* 11 
, 

( 1.3.3 ) 

where (t, x) and (t, x*) are in D, and 11.11 denotes a vector norm. For the properties of 

vector and matrix norms see, for example, Twizell[66]. In the case when each of the 

f2(xl, x2,. .., xn), i=1,2, ... , n, possesses a continuous derivative with respect to each 

of the xi (i = 1,2, ... , n) then 

L= sup 
of ( 1.3.4 ) 

(t, x)ED ax 

may be chosen analogously to (1.2.3), where äX is the Jacobian of f with respect to x 

and is given by 

aft/ax1 afl/axe afl/aXn 

of af2/ax1 a f2/ax2 aft/aXn ( 1.3.5 ) 
äX :: 

afn/aXl a, fn/19x2 ... 
a fn/aXn 

The first-order initial-value problem (1.3.2) is said to be non-linear if f depends 

non-linearly on x. If f depends linearly on x the system is said to be linear. 
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In many situations the natural rest points of a dynamic system are as much of 
interest as the mechanism of change. These points are called equilibrium points. The 

general definition, applied to both discrete- and continuous-time systems and to non- 
linear as well as linear systems, is given by 

Definition 1.3.1 (Equilibrium point) A vector x is an equlibrium point for a dy- 

namic system if, once the state vector is equal to x, it remaines equal to x for all future 

time. 

In particular, if a system is described by a set of differential equations (continuous- 

time system) as in (1.3.2), an equilibrium point is a state x satisfying 

f (t, x) =0 

for all t. The case for a discrete-time system will be given below when a one-step 
discrete system is discussed. 

In most situations of practical interest the system is time-invariant, in which case the 

equilibrium points x are solutions of an n-dimensional system of algebraic equations. 
Specifically, in a continuous-time system, 

f (x) = 0. 

Stability properties characterize how a system behaves if its state is initiated close 

to, but not precisely at, a given equilibrium point. If a system is initiated with the state 

exactly equal to an equilibrium point, then it will never move. When initiated close 

by, however, the state may remain close by, or it may move away. Roughly speaking, 

an equilibrium point is stable if, whenever the system state is initiated near that point, 

the state remains near it, perhaps even tending toward the equilibrium point as time 

increases. 



F. N. M. Al-Showaikh, 1998, Chapter 1 12 

In the following the notion of (asymptotically) stable and unstable equilibrium 

points of a continuous-time system is introduced (see Luenberger[38]). 

Definition 1.3.2 (Stable point) An equilibrium point x is called (asymptotically) 

stable if there exists a number 6>0 such that Vxo E JRn with 11 x- xo ýý <e 

lim f (X) = 3C . t-ýc 

Definition 1.3.3 (Unstable point) An equilibrium point x is called unstable if it is 

not stable. Equivalently, x is unstable if there exists a number r>0 such that for all 

E>0 with 0< 11 x-xo11 <E 

x-f(x) I >r for some t. 

The following theorem states a necessary and sufficient condition for an equilibrium 

point of system (1.3.2) to be asymptotically stable by assuming that the function f in 

Definitions 1.3.2 and 1.3.3 is sufficiently smooth. 

Theorem 1.3.1 Let J= äX be the Jacobian of f at x as in (1.3.5) with eigenvalues 

,)EC. 
A necessary and sufficient condition for an equilibrium point x of 

the continuous-time system (1.3.2) to be asymptotically stable is that the eigenvalues 

of J all have negative real part (that is, the eigenvalues must lie in the left-half of the 

complex plane. If at least one eigenvalue has positive real part, the equilibrium point 

x is unstable. 

Definition 1.3.4 Suppose f is a function defined from DC 1R into IRS' with f (x) _ 

(fl (x), f2 (X), 
..., 

fn(x))T 
. 

The function f is said to be continuous at xo ED provided 

1imx, x. f (x) exists and 1imx, x. f (x) =f (xo). In addition, f is said to be continuous 

on the set D if f is continuous at each point in D. This concept is expressed by writing 

fEC (D). 
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The following theorem relates the continuity of the function f of n variables at a 

point to the partial derivatives of the function at the given point. 

Theorem 1.3.2 Let f be a function from DC IfRn into Ifs and suppose that xo E D. 

Suppose that 6 and k>0 are constants such that 

Of (x) 
G k, i=1,2,..., n, axe 

wherever x- xo 11 <6 and xED. Then f is continuous at xo. 

Depending on which approximations for the first and second derivatives equations 
(1.2.11-(1.2.14 are chosen, a differential equation can be transformed into an m-step 

discrete dynamical system of the form (Herges[25]) 

Xk+m = F(Xk+m-1)Xk+m-2, 
... ' Xk), k=0,1,2,... 

. 

with F: IRm. n IRS' and initial values xo, x1, ... , Xn, _1 E IRS'. 

When solving numerically an initial-value problem of the form 

x=f(t, x), a<t<b, x(a)=xa, ( 1.3.6 ) 

with x: [a, b] ---4 -RT' and f: [a, b] x Inn _+ IRn, the approximating discrete 

dynamical system is often only a one-step difference equation of the form 

Xk+1 - Xk =hG (t, Xk; h) ( 1.3.7 ) 

with h>0 the steplength of equidistant grid points t, =a+ih (i = 1,2) ... , 
M), M= 

(b - a)/h. The solution x(t) of equation (1.3.6) at ti =a+ih (i = 1,2.... , 
al) is 

approximated by the numerical solution x, E IfRn (i = 1,2, ... , 
M) obtained by iterating 

the difference equation (1.3.7), where G: [a, b] x IRn --_+ En and xo = Xa E IRn is the 

initial value. Scheme (1.3.7) is a special case of the general one-step discrete dynamical 

system. 
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The local truncation error at a specified grid point measures the amount by which 
the exact solution of the differential equation (1.3.6) fails to satisfy the difference 

equation. Hence, the local truncation error , C[x(ts); h] at t., =a+ih, i=1,2,... 
,M 

for scheme (1.3.7) is defined by 

r[x(tz); h] = x(tz) - x(ti-1) -hG (t, x(ti-1); h) ,z=1,2, ... ,M 

and gives the accuracy of the numerical method at grid point ti, i=1,2, 
... ,M as- 

suming the method was exact in the previous step. 

Definition 1.3.5 (Order of a one-step difference method) Let the solution x(t) 

of equation (1.3.6) be (p + 1)-times continuously differentiable, pE IN, then the local 

truncation errors r[x(ti); h], i=1,2, 
... ,M can be expressed in terms of a finite Taylor 

series of the form 

p+1 
k 

dkx(ti-1) 

£[x(t, ); h] => Ckh dtk 
z=1,2,..., M. 

k=O 

The local truncation errors and with them the associated one-step difference method are 

said to be of order p if co = cl == cp =0 and cp+i zh 0. 

Definition 1.3.6 (Consistency of a one-step difference method) A one-step dif- 

ference method with local truncation errors , C[x(ti); h], i=1,2, 
... ,M is said to be 

consistent with the differential equation it approximates if 

lim max h-M 1<2<M 
£[x(ti); h]11 

=o. h 

A one-step difference method is consistent precisely when the function G (t, xk; h) 

in equation (1.3.7) approaches f (t, x), the right-hand side of the differential equation 
(1.3.6), as the step size h goes to zero. Clearly, a one-step difference method is consis- 

tent if it is of order p>1 and dp+1 x/dtp+1 is bounded on [a, b]. 
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Definition 1.3.7 (Convergence of a one-step difference method) A one-step dif- 

ference method is said to be convergent with respect to the differential equation it ap- 
proximates if 

lim max 11xi - x(ti)ll = 0, 
h--+O 1 <i <M 

where x(ti) is the value of the solution of the differential equation at t2 =a+ih and 

x, is the approximation obtained from the difference method at the ith step. 

A one-step method is convergent precisely when the solution to the difference equa- 
tion approaches the solution of the differential equation as the step size goes to zero. 

Another type of error, known as round-off error, is introduced to the solution ob- 

tained when implementing a numerical scheme on a computer; neither the initial con- 
dition nor the arithmetic performed subsequently is represented exactly. Consequently, 

a numerical method must be used that is stable in the sense that small perturbations 

in the initial conditions cause only small perturbations in the subsequent approxima- 

tions; that is, a stable method is one that depends continuously on the initial data. 

The following theorem (see Burden & Faires[9]) connects the notions of consistency, 

convergence and stability of a one-step difference method and states an error bound of 

the numerical solution. 

Theorem 1.3.3 Suppose the initial-value problem (1.3.6 is approximated by the one- 

step difference method (1.3.7). Suppose also there exist numbers c>0 and ho >0 such 

that G (t, x; h) is continuous and satisfies a Lipschitz condition with respect to xE IRS' 

with Lipschitz constant L on the set D= {(t, x, h) Ia<t<b, lIx - xo11 < c, 0<h< ho}. 

Then 

1. the one-step difference method depends continuously on the initial value; 

2. the one-step difference method is convergent if and only if it is consistent; that 
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is, if and only if 

f(t, x), Vt E [a, b]; 

3. if for each i=1,2,... 
,M the local truncation error r[x(ti); h] satisfies 

I , C[x(t, ); h] II < g(h) for 0 <h< ho and g: [0, ho] -+ IR, then 

X(ti) - x_ll < 9(h) 
exp (L (t2 - a)) L 

16 

The notion of stable and unstable fixed points of a one-step discrete dynamical 

system is similar to the continuous systems. Here the definition of a fixed point of 

a discrete dynamical system and the criteria to test that a fixed point of a discrete 

dynamical system is stable or not will be given 

Definition 1.3.8 (Fixed point) Let xk+l =F (Xk), k=0,1,2,..., be a one-step 

discrete dynamical system with F: ff? ' --4 R'. Then RE IRS' is called a fixed point 

of the dynamical system if F (x) = R. 

Theorem 1.3.4 Let x be a fixed point of the one-step dicrete dynamical system xk+l = 

F (xk) 
,k=0,1,2,... ,F: 

Jf? n -+ JRT' continuously differentiable. Let J= äX be the 

Jacobian ofF at x with eigenvalues )/1, ) 2, ... 7 
An E C. The spectral radius p of J is 

defined by p(J) = maxl<i<,,, IA I. Then a necessary and sufficient condition for x to be 

asymptotically stable is that p(J) < 1. If p(J) >1 then x is unstable. 

1.4 Partial Differential Equations 

Consider a partial differential equation (PDE) in which the independent variables are 

denoted by x, y, z.... and the dependent variables by u, v, w, ... . 

u= u(x, y, z), 
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which, in this particular case, designates u as a function of the independent variables 

x, y, and z. Partial derivatives are often denoted as follows 

äu 
_ 

äu ä2u ä2u 
ux _ Dx uy ay uxx _ äX2' uxy _ Dxay' ... 

Employing the above notations, a PDE can be represented in the general form 

ý' (x, y, u, ux, uy, uxx, u ,u,... 
) 

= 01 ( 1.4.1 ) 

where F is a function of the indicated quantities and at least one partial derivative 

exists. 

1.4.1 Second-Order PDE 

Second-order partial differential equations arise in many mathematical models of bio- 

medical systems; for example, in the study of heat flow in the human body, in neuro- 

physiological problems, in genetics, and in drug absorption problems. 

Consider the following second-order PDE written in two independent variables 

a()u.,, +2b(. )u,; 
y+c(. 

)uyy+d(. )u +e(. )uy+ f(-)u+g(') =0(1.4.2 ) 

The linearity of this equation is established by the functionality of the coefficients 

a(. ), b("), """, and g("). In the case of (1.4.2), if the coefficients are constants or functions 

of the independent variables only, the PDE is linear; quasilinear if the coefficients are 

functions of x, y, u, u., and uy; and non-linear otherwise. Typical examples of second- 

order PDEs are the following well-known equations 

uXX + uyy =0 Laplace's equation 

uXX + uy ,=f 
(x, 

y) Poisson's equation 

ux = uy, heat f low or diffusion equation 

ux = uyy +U heat f low or diffusion equation 
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uTX = uyy wave equation. 

There exists an extensive body of knowledge regarding linear PDEs, see, for ex- 

ample, Lapidus & Pinder[32]. This information is generally catalogued according to 

the form of the PDE. Every linear second-order PDE in two independent variables can 
be converted into one of three standard or canonical forms which is identified as hy- 

perbolic, parabolic, or elliptic. In this canonical form at least one of the second-order 
terms in (1.4.2) is not present. 

The classification takes the forms that if 

b2 - ac >0 the PDE is hyperbolic 

b2 - ac =0 the PDE is parabolic 

b2 -ac<0 the PDE is elliptic. 

The analytical solution of a PDE, which may be written 

U= u(x, y), 

denotes a function that, when substituted back into the PDE, generates an identity. Of 

course, when the solution of a PDE is discussed, it is necessary to consider appropriate 

auxiliary initial and boundary conditions. 

The concept of stability is concerned with the boundedness of the solution of the fi- 

nite difference equations that approximate the differential equations. Perhaps the most 

widely used procedure for determining stability (or instability) of a finite difference ap- 

proximation is called the von Neumann stability analysis. In essence, it introduces an 

initial line of errors as represented by a finite Fourier series and considers the growth 

(or decay) of these errors as time increases. The method applies, in a theoretical 

sense, only to pure initial value problems with periodic initial data; as such it neglects 

completely the influence of boundary conditions. Further, it applies only to linear, 
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constant coefficient, finite difference approximations. If the linearization condition is 

not met, some form of local linearization is necessary. Because of the linearity, each 
Fourier component can be treated separately and superposition used to add all other 

component . 
It is of practical interest that the von Neumann approach always yields 

a necessary condition for stability and in many cases this is also a sufficient condition. 

In Chapter 2, some other methods to discuss the stability are introduced along with 

the von Neumann method which is applied to prove stability. 

One of the most useful and best known tools employed in the study of partial 

differential equations is the maximum principle. This principle is a generalization of 

the elementary fact of calculus that any function f (x) which satisfies the inequality 

f" >0 on an interval [a, b] achieves its maximum value at one of the endpoints of 

the interval. The solutions of the inequality f" >0 are said to satisfy a maximum 

principle. More generally, functions which satisfy a differential inequality in a domain 

D and, because of it, achieve their maxima on the boundary of D are said to be possess 

a maximum principle. 

The maximum principle enables information about solutions of differential equa- 

tions to be obtained without any explicit knowledge of the solutions themselves. In 

particular, the maximum principle is a useful tool in the approximation of solutions, a 

subject of great interest to many scientists. 

In the following, convergence of solutions of mixed initial/boundary-value problems 

for a certain class of non-linear parabolic equations will be estimated using a maximum 

principle. Similar estimations will be found in Chapters 4,5 and 7. 

Consider the non-linear parabolic differential equation 

a2u =F 
(x, 

t, u au au 
' u_u(x' 0, (1.4.3) 

aX2 ' ax 'Ö 

in the strip 0<t<T, 0<x<X, with the initial condition 

_ßo(x) u(x, 0) = fo(x) ( 1.1.4 ) 
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and boundary conditions 

al (t) u, (0, t) - ß1(t) u(0, t) _ fi (t), 
( 1.4.5 ) 

a2(t) ux(X, t) 
- ß2(t) u(X, t) 

- 
f2(t), 

assuming that the solution u(x, t) is unique and exists with suitable regularity proper- 
ties in the strip. 

Consider the non-linear parabolic operator 
ä2u 

L[u] _ -F(x, t, u, u., ut). axe 
( 1.4.6 ) 

In (1.4.6), F (x, t, u, u.,, ut) denotes a fixed continuous function of its variables (x, t) 

in a region S2 in the (x, t)-plane and for all u, u, and ut. Assume that the partial 
derivatives F,, Fux and F, 

L exist, are continuous and satisfy 

0<a0<IF,, 
t 

<a1<oo, 

F�.,: (1.4.7 ) 

O<co<IFI<cl<oo, 

where ao, al, b1, co and cl are fixed constants. 

Let 1 [0 <x < X, 0<t< T] be bounded by the coordinate lines x = 0, t =0 

and the lines x =X and t=T; the closure of SZ will be denoted by Q. The set 

composed of the segments aQo(0 <x<X, t= 0), 3Q, (x = 0,0 <t< T) and 

äf12(X = X, 0<t< T) will be denoted by äS2 and called the boundary of Q. 

The boundary operators are A0, Al and A2 and are defined by 

Ao[u] = -ßo(x) u(x, 0) on äS20 

A1[u] = ai(t) u., (0, t) - ßl(t) u(0, t) on a9i (1.4.8) 

A2[u] = a2(t) u, (X, t) - /32(t) u(X, t) on a92- 

Here 00,01 and , 
ß2 are continuous positive functions, and al and a2 are continuous 

non-negative functions on aci0, (9Q and (9 2. Let fo, fl and f2 be fixed functions 

defined on 39o, 091 and äS22, respectively. 



F. N. M. Al-Showaikh, 1998, Chapter 1 21 

A mixed initial/boundary-value problem P may be formulated as follows: for fixed 

T, determine a function u(x, t) defined in S2 with certain regularity properties satisfying 
the equation 

L [u] =0 in S2 

and the initial and boundary conditions 

Ai [u] =fi on OS2i (i = 0,1,2). 

It is assumed that this problem has at most one solution which exists with suitable 

regularity properties under appropriate regularity conditions on the operators L, Ai (i = 
0) 1,2) and on the initial and boundary data; specifically, it is assumed that uxxt, 

utt and lower-order mixed partial derivatives exists and are continuous in Q. 

Next, let 'Ph be the approximate solution of the problem 7' which consists of finding 

a function uti' defined on SZ and satisfying the equation 

Lh lu hl 
=0 in c 

and the initial and boundary conditions 

Ah [u'] 
=fh on öSZti (i = 0,1,2), 

where f i' is a given function on aQi, and Lh and Ai will be defined in (7.4.3)-(7.4.4). 

Rose[53] approximated the differential equation (1.4.6) by a family of implicit- 

difference equations 

0 V2W (x, t) + (1 - 0) V2"Y(x, t- k) =F (x, t, T (x, t), 0V '(x, t) 

+ (1 - ý> ýýW(x, t), V tW (x, t)) ( 1.4.9 ) 

with 0<0<1 and V2, V and Vt as defined in (7.4.4). Rose[53] showed that 

u-TII. =0(h2+f) 
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for any value of the mesh ratio p= £/h2 provided that 

0<2(1-q)p<ao. 
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The following theorem which may be found in Rose[53] and Lees[33] will be used 

frequently in the analysis in Chapters 4,5 and 7. 

Theorem 1.4.1 Let problem P be approximated by Ph in the sense that 

h a* O(h) zf a* 0, 
max max Z i0 

f- fz = 0(h2) if a* = 0. 

Then, if h, f -+ 0 in such a way that 

ao 
p h2 - 20' 

the solution uh of Ph approximates the solution u of problem P uniformly in 0; that 

iss 

-uhll -a*O(h)+O(h2+i)' 
( 1.4.10 ) 

Here a* = maxi maxag, Iai (i = 1,2). 



Chapter 2 

Predator-Prey Model 

2.1 
. 
Introduction 

When species interact the population dynamics of each species is affected. In general 

there is a web of interacting species, called a trophic web (see May[41] and Murray[48]), 

leading to structurally complicated communities. There are three main types of inter- 

action: 

1. If the growth rate of one population is decreased and the other is increased the 

populations are in a predator-prey situation; examples include sharks-food fish, 

foxes-rabbits and ladybird-cottony cushion. 

2. If the growth rate of each population is decreased then it is competition, example 

is paramecium aurelia and paramecium caudatum. 

3. If each population's growth rate is enhanced then it is called mutualism or sym- 

biosis. Plant and seed is an example. 

A system of the first type is discussed and analysed in detail and some numerical 

results are given in this chapter. 

23 
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The classical model for the predator-prey system (see, for instance, Comins & 
Blatt[11]; May[41]; Murray[48]; Sandefur[56]) with continuous growth is that of Lotka[37] 

and Volterra[70] (L-V) 

dP 
_ dt - P(a - aH), ( 2.1.1 ) 

dH 
= H(-M + ßP). ( 2.1.2 ) dt 

Here P= P(t) and H= H(t) are the populations (densities) of prey and predators, 

respectively, at time t. The parameter a relates to the birth rate of the prey, M to 

the death rate of the predator and a, 0 to the interaction between the species: all 

are positive numbers. These equations constitute the simplest representation of the 

essentials of a non-linear predator-prey interaction. 

Some assumptions have been considered for the L-V model, (2.1.1) and (2.1.2). 

These assumptions (see Murray[48]; Sandefur[56]) are: 

" The prey in the absence of any predation grows unboundedly; this is modelled 
by the term aP in (2.1.1). 

" The prey's contribution to the predator's growth rate is ßPH; that is, it is 

proportional to the available prey as well as to the size of the predator population. 

This means that the number of species P that are eaten by species H during time 

period t depends on both P and H. Specifically, since each individual animal of 

species H is hunting for prey, the larger H, the more of species P that are eaten. 

Also, the larger P, the easier it is to find animals of species P, and thus each 

predator will eat more prey. In short, the number of species P that is eaten is 

proportional to both P and H. 

" The effect of the predation is to reduce the prey's per capita growth rate by a 

term proportional to the prey and predator populations so that the prey do not, 
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inhibit their own growth; this is modelled by the term -a PH in (2.1.1). 

" In the absence of any prey for sustenance the predator's death rate results in 

exponential decay: this is modelled by the term -MH in (2.1.2). 

The PH terms can be thought of as representing the conversion of energy from one 

source to another: aPH is taken from the prey and /3 PH accrues to the predators. 

The L-V model exhibits neutrally stable dynamics (Britton[7]; May[42]): predator 

and prey populations oscillate with constant amplitudes that are determined by their 

initial distances from equilibrium. Because of its neutral stability, the L-V model has 

been criticized as a poor description of persisting systems (May[42]). 

Dispersal of predators and prey has also been well studied, both as a potentially 

stabilizing mechanism and as a means to generate or maintain spatial heterogeneity in 

species distributions. Most models of dispersing populations can be divided into two 

classes according to the way that they treat space. Discrete space or patch models 

partition the environment into two or more compartments the dynamics of which are 

coupled by migration (examples are given by Chewing[1O]; Hastings[22]; McMurtie[45]). 

The second class of models treat space as an explicit and continuous variable (Comins 

& Blatt[11]; McLaughlin & Roughgarden[44]; Pascual[52]). 

2.2 A More Realistic Predator-Prey Model 

The Lotka-Volterra (L-V) model, (2.1.1) and (2.1.2), unrealistic though it is, does show 

that simple predator-prey interaction can result in oscillatory behaviour of the densities. 

Reasoning heuristically (Murray[48]) this is not unexpected since, if a prey density 

increases, it encourages growth of its predator. More predators, however, consume 

more prey, the population of which starts to decline. With less food available the 

predator population declines and when it is low enough, this allows the prey population 
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to increase and the whole cycle starts over again. Depending on the detailed system 
such oscillations can grow or decay or go into a limit cycle or even exhibit chaotic 
behaviour. 

One of the unrealistic assumptions in the L-V model (2.1.1) and (2.1.2) is that the 

prey growth is unbounded in the absence of predation. In the form that equations 
(2.1.1) and (2.1.2) have been written, the bracketed terms on the right-hand sides are 
the density dependent per capita growth rates. To be more realistic, Kolmogorov[29] 

(see May[41], p. 86) has written these growth rates as 

dP 
-P F(P, H), (2.2.1) 

dt 
dH 
dt _HG(P, H), (2.2.2) 

where the forms of F and G depend on the interaction, the species and so on, and 

then set out, in general terms, conditions which necessarily lead to the systems having 

either a stable point or a stable limit cycle. 

Theorem 2.2.1 (Kolmogorov) Predator-prey systems of the form (2.2.1) and (2.2.2) 

have either a stable equilibrium point or a stable limit cycle, provided that F and G 

are continuous functions of H and P, with continuous first derivatives, throughout the 

domain H>0, P>0 and that 

(i) aF/ aH <0 
(ii) H (äF/ ÖH) +P (äF/ äP) <0 

(iii) äG/ äH <0 

(iv) H (öG/ ÖH) +P (äG/ äP) >0 

(v) F(0,0) >0 

It is also required that there exist quantities A, B, and C such that 

(vi) F(0, A) = 0, with A>0 

(vii) F(B, 0) = 0, with B>0 
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(viii) G(C, 0) = 0, with C>0 

(ix)B>C. 
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The proof follows straight forwardly from the Poincare-Bendixon theorem, one of the 
key theorems of non-linear stability analysis. The proof of the Kolmogorov theorem 

will not be given here, because the necessary theory is covered well in Minorsky[46]. 

The theorem also usually holds when certain of the above conditions are equalities 

rather than inequalities. 

In more biological terms, Kolmogorov's conditions are that (i) for any given popu- 
lation size (as measured by numbers, etc. ), the per capita rate of increase of the prey 

species is a decreasing function of the number of predators. For any given ratio between 

the two species, (ii), the rate of increase of the prey is a decreasing function of popu- 
lation size. Condition (iii) states that the the rate of increase of predators decreases 

with their population size. For any given ratio between the two species, (iv), the rate 

of increase of the predators is an increasing function. It also requires, (v), that when 

both populations are small the prey have a positive rate of increase, and that (vi) there 

can be a predator population size sufficiently large to stop further prey increase, even 

when the prey are rare. Condition (vii) requires a critical prey population size B, be- 

yond which they cannot increase even in the absence of predators (a resource or other 

self limitation), and (viii) requires a critical prey size C that stops further increase in 

predators, even if they are rare; unless (ix) B>C, the system will collapse. 

As a reasonable step (see Murray[48]; p. 71), the prey might be expected to satisfy 

a logistic growth rate, say, in the absence of any predators. So, for example, a more 

realistic prey population equation might take the form 

dP 
=P F(P, H), F(P, H) =r (1 - 

P) 
-H E(P), (2.2-3) 

dt K 

where K is the constant carrying capacity for the prey when H=0 and E(P) is one 
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of the predation terms, which are the functional responses of the predator to change 
in the prey density. Some examples are (May[41], Ch. 4; Murray[48], Ch. 3): 

E(P) =A 
ci 

C2+P, (2.2.4 ) 

E(P)-cAP (2.2.5) 
2 +P2 

E(P) =A 
[1 -P e-aP] (2.2.6 ) 

in which A, Ci and C2 are positive constants. 

The predator population equation, (2.1.2), could also be made more realistic by 

taking, for example, 
eH (2.2.7) 

G(P, H)=-f+gE(P), (2.2.8) 

in which d, e, f and g are positive constants and E(P) has one of the forms given in 

(2.2.4)-(2.2.6). 

Many models of prey-predator interactions have been suggested; some with very 

complicated terms depending, for example, on resource limitations and random fluc- 

tuations in time (see May[41]). In most of these the spatial environments have been 

completely homogeneous, with populations assumed uniform in space, although the 

case of migration between a number of these spatially nonvarying environments has 

also been considered (Levins[35]; Maynard Smith[43]). 

Some models which exhibit chaotic dynamics because of non-linearities in popula- 

tion growth and interspecific interaction are being reported in the literature, see, for 

example, Hastings & Powell[23]. The models have, for the most part, ignored space. 

Explicit consideration of space, however, can alter the dynamics of non-linear interac- 

tions fundamentally (Levin & Segel[34]; Segel & Jackson[60]). 
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The effect of environmental heterogeneity on models of prey-predator systems was 
investigated by Comins & Blatt[11], McLaughlin & Roughgarden[44] and Pascual[52]. 
It was found by Comins & Blatt[11] that environmental heterogeneity can have im- 

portant effects on prey-predator population dynamics. It is not necessary to have 

inaccessible regions or discontinuities in the environment in order to observe refuge 
features. In addition, Comins & Blatt[11] found that the heterogeneity has an impor- 

tant stabilizing effect, not produced by simple diffusion. In contrast, Pascual[52] found 

that local oscillations gave rise to complex temporal dynamics. This was because of 
the scaled diffusion coefficient. Chaos and quasiperiodicity occurred for the diffusion 

coefficient in the order of 10-4 to 10-3. 

The few existing ecological studies of chaos in spatial systems consider models in 

discrete time and space (Hassell et al. [21]; Sole & Valls[61]) or in discrete time and 

continuous space (Kot[30]). In all these models, the diffusive dispersal of organisms 

drives a predator-prey or a host-parasitoid system into chaotic dynamics. 

The results of discrete models cannot be applied to non-linear interactions and 

dispersal in continuous time and space. It is well known that discrete models exhibit 

chaos more readily than their continuous counterparts. For instance, chaotic dynamics 

is possible for discrete time models of even a single species, but requires at least three 

variables in continuous time. 
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2.3 The Model 
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The mathematical model, in its simplest form, which will be studied in the following 

sections is the predator-prey model which was given by Pascual[52] in which a single 

spatial dimension is considered along which both species diffuse at the same rate D. At 

any point X and time T, the dynamics of the prey (P(X, T)) and predator (H(X, T)) 

populations are given by a reaction-diffusion model with logistic growth of the prey, as 
described by Pascual[52], and a "type II functional response" of the predator: 

P, 
=RP(1- 

P)- AC1PH+Dö2P 
(2.3.1 ) 

äZ KC2 ax2 

OH 
- 

C1 P 
H- M H+ D 

aa H 
(2.3.2) 

OT C2 +P aX 
The parameters R, K, M and 1/A denote the intrinsic growth rate and carrying 

capacity of the prey, the death rate of the predator, and the yield coefficient of prey to 

predator, respectively. The constants Ci and C2 parametrize the saturating functional 

response. All parameters and constants are positive. 

To describe an environment surrounded by dispersal barriers, Pascual[52] assumed 

zero flux at the boundaries. Hence, at the boundaries X=0 and X=L, for all T, 

aP aH 

ax-ax-0' 
( 2.3.3 ) 

A simple form of environmental heterogeneity can be introduced by allowing the 

parameters in (2.3.1) and (2.3.2) to vary with X. Thus, the case where the prey rate 

of increase R is a linear function of X is considered. 

In order to decrease the number of parameters, the model described by (2.3.1) 

and (2.3.2) can be simplified by introducing the dimensionless variables p=K and 

h=K Space is scaled by the total length of the gradient L, and time is scaled by 

a characteristic value of the prey growth rate R. Thus, x=L and t=RT where 

R= R(Xo) for some Xo in (0, L). System (2.3.1) and (2.3.2) thus becomes 
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ap 
-rp(1-p)- 

ap h+da2ý, (2.3.4) at l+bp aX 
t= ap h-mh+da22, ( 2.3.5 ) ä 1+bp äx 

in which the new parameters are r=R=e+fx, a=-R, b=, m=R and z d-L2 At the boundaries, given now by x=0 and x=1, and for all t, 

ap ah_ 
ax ax ( 2.3.6 ) 

Following Pascual[52], the set of parameters considered in numerical experiments 

will be 
a=5.0 
b=5.0 

m=0.6 ( 2.3.7 ) 
e=2.0 
f= -1.4 

= 0.85. 

The initial conditions (see May[41], p. 43), 0<x<1, are 

P(x, 0) = 0.5, ( 2.3.8 ) h(x, 0) = 1.0. 

2.4 The Initial-Value Problem 

In the absence of diffusion, the system (2.3.1) and (2.3.2) is a standard predator-prey 

system, which exhibits, using the set of parameters given in (2.3.7), stable equilibria 

or limit cycles (May[41]), see Figure 2.11. Therefore the resulting system is the initial- 

value problem (IVP) 
dp 

= rp(1 -p) -1abh d+p 
( 2.4.1 ) 

'Figure 2.1 was drawn by the software package "mathematica", version 2.2, ©1988-93 by Wolfram 
Research, Inc. The other graphs were drawn using the software package "matlab", version 4.0a, 
@1984-92 The Math Works, Inc. 
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with the intial conditions 

prey 

1 
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0.6 

0, s 
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0.2 

predator U. 2 U. 4 0.6 0.8 1` 

Figure 2.1: Predator-prey dynamics in the absence of diffusion 

2.4.1 Stationary Points 
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( 2.4.2 ) 

( 2.4.3 ) 

The first thing to investigate when analysing a dynamical system is the existence 

of stationary or equilibrium or critical points. For the predator-prey system {(2.4.1), 

(2.4.2)}, the stationary points are determined by equating the right-hand sides of (2.4.1) 

and (2.4.2) to zero. Clearly there are three distinct stationary points, namely, 

s1 = (0,0) (trivial stationary point), 52 = (1,0), and s3 = (ps, h3) 

( 2.1.1 ) 

where ps =amb and hs = 
(a-rn-b ) r. The first two are not of interest since then there 

m 
would not be two species remaining. 

dh ap h dt l+bp -mh 

P(0) = 0.5,0< x<1, 
h(0) = 1.0,0< x< 1. 
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Using the set of parameters in (2.3.7), the stationary point s3 becomes 

s3 = (0.3,0.2835). ( 2.4.5 ) 

The Jacobian of the system is given by 

abhp p (1+6ý - i+bp + (1 - p) r- pr -l+bp 
J(p, h) _ (2.4.6 ) 

abhp 
_a (i+bp 

+ 
1+6p -m + 

1- 

Using the equilibrium points si, s2 and s3 and the set of parameters given in 

(2.3.7), it is easy to show that for si and s2, the Jacobian has one positive eigenvalue 

and one negative eigenvalue showing that these are unstable stationary points (these 

are called saddle points) while for s3, the Jacobian has a pair of complex eigenvalues 

with positive real parts, namely 0.0486 ± 0.3657 z. Thus, 83 is an unstable equilibrium 

point. However, Kolmogorov's theorem shows that for this particular model there is 

either a stable equilibrium point or a stable limit cycle. Thus, the system has a stable 

limit cycle, as shown in Figure 2.1. 

2.4.2 Numerical Methods 

The solution of the predator-prey model given by (2.4.1)-(2.4.3) is sought for t>0 

and to obtain a numerical solution, the time interval t>0 is discretized at the points 

to = nl (n = 0,1,2, ... 
); £ is called the time step. The theoretical solutions of the 

system at the typical point t= to are given, respectively, by p(tn) and h(tn), while 

the corresponding solutions of a numerical method will be denoted by Pte' and H", 

respectively. 

The numerical methods are based on the replacement of dt and dt by the first- 

order approximations 

dp(t) 
= [p(t+ý)-P(t)VR+0(1) , 

(2.4.7 ) 
dt 
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and 
dh(t) 

_[ h(t + f) - h(t) ]/ +O (1) 2.4.8 ) dt 

as £-*0. 

Method 1 (Euler's Method): 

Using (2.4.7) in (2.4.1) and (2.4.8) in (2.4.2) with t= tom, and evaluating p and h on the 

right-hand side of (2.4.1) and (2.4.2) at t= tn, leads to 

ph+I =Pn +LrPn(1-Pt)- 
La Pn Hn 

1+bPn 
n=0,1,2,..., (2.4.9) 

LaPnHn 
Ham. +i = Hn +1+b 

pn -LM HT ;n=0,1,2, .... 
( 2.4.10 ) 

which is the familiar Euler explicit method. 

Method 2: 

Here the linear factor 1-p on the right-hand side of (2.4.1) is evaluated at time t=t, 

while the other factor, p, is evaluated at time t=t,,, +l. Replacing dt in (2.4.1) by 

(2.4.7) and dt in (2.4.2) by (2.4.8) then gives the implicit formulae 

Pn+1=Pn+irPn+1(1-Pn)- 
a1-Pn+1 +'Hn 

n=0,1,2,..., (2.4.11) 
bpn 

Hn+l = Hn +a 
Pn4 HTL 

1+b Pn -tm Ham"+1 ;n=0,1,2,... .(2.4.12 
) 

which, provided that both £ r(1 - Pte') - 
+6Pn 1 and aI -tm1, may be 

rearranged to give the explicit method 

pn+1 -n En ; Ti = 07112, ... ,(2.4.13 
) 

Htm ) Hn+l =1 
__ ime dPn ;n= 01 11 2,... ,(2.4.14 

n (1+bP) E 

where En =1-£r (1 - Pn) ++n 1b Pn 
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Method 3: 

: 3: 5 

Now, replacing the derivatives in (2.4.1) and (2.4.2) once more by (2.4.7) and (2.4.8), 

respectively, evaluating the linear factor 1- p on the right- hand side of (2.4.1) at time 

t=t,,, +l and the linear factor p at time t=t, gives the second pair of implicit formulae 

Pn+l = Pn +£r Pn (1 - pn+l) __a 
P_ Hn 

. I+ bPn 1 

Hn+l =H nj 
a Pn+1 Hn+l 

1+bPn 

n=0,1,2,..., (2.4.15) 

-fmHam'+r; n=0,1,2,... ,(2.4.16 
) 

which, provided that both £r Pn -1 and i 
1n+l -£m1, may be rearranged to 

give the method 

pn+l - 
(1 ý- r- i+ 

Pn) Pn 
n=0,1,2,... 2.4.17 ) 

1+f rP 
£aPT (1+ir- Qaxn ) 

= 0,1,2, .... 
(2.4.18 ) Hn+ý =I1+ ,QM- (1 + bPn) (1 +ir Pn) j'n 

Clearly, this method generates the solution explicitly. 

2.4.3 Local Truncation Errors 

Method 1: 

The local truncation errors (l. t. e. 's) of this method at time t=t, may be determined 

(see, for example, Lambert[31], p. 48) from (2.4.9) and (2.4.10) and are given by 

£ h(t); t+ p(t) -£r p(t) [1 - p(t)] +Qa p(t) h(t) 

ý 
[p(t), ]- P( ý) - P1 + bp(t) 

ýh [p (t), h(t); £] = h(t + £) - h(t) -_a 
p(t) h(t) 

+fm h(t), 
1+ bp(t) 
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from which it follows that, after expanding the functions p(t + 1) and h(t + () using 
Taylor's expansion, 

L, [P(t), h(t); f] =2 f2 p" +0 (p3) 
as £0(2.4.19 ) 

and 

, Ch [p(t), h(t); f] =2 j2 h" +0 (p3) 
as £02.4.20 ) 

at some point t= tn. , verifying that this familiar numerical method is first-order 

accurate. 

Method 2: 

The local truncation errors (l. t. e. 's) of this method at time t=t, are obtained from 

(2.4.11) and (2.4.12) and are given by 

,Ctht; -tt-fr p(t +i1- p(t) ]+ia p(t + f) h(t) 

, Ch fp(t) , h(t); J= h(t + t) - h(t) -fa 
P(t + t) h(t + f) +em h(t + e), 1+ bp(t) 

in which t=t,, which, after simplifying, give 

£p[p(t), h(t); £] =1 p//_rp + rpp + 12+0 (p3) 
21+ bP 

and 

rh[P(t), h(t); £] =1 h" - 
ahp' + ah'p + mh' £2 +0 (13 

2 1+bp 

as £-+0 

( 2.1.21 ) 

as £ -+ 01 

( 2.1.22 ) 

verifying that this method is also first-order accurate. 
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Method 3: 
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The local truncation errors of this method at time t= tn, are obtained from (2.4.15) 

and (2.4.16 and are given by 

£p[p(t), h(t); 1 ]= p(t + f) - p(t) - . fi r p(t) [1 - p(t + f)] + 
i1 P(t) h(t) 

+ bp(t) 

,Ch [p (t), h(t); f]= h(t + f) - h(t) -__ p(t + _) h(t + _) 
-{- em h(t + e), 1+bp(t) 

which, after simplifying, give 

Lp[P(t), h(t); f] = \2 p' + rpp 12 +0 (13) 
as £02.4.23 ) 

and 

£h[p(t), h(t); 1] =2 
(h« 

- 
ah 'p + ahp' + mh' 12 +0 (13ý as .£ ---ý 0 

1+ bp 
( 2.4.24 ) 

at time t=t, revealing that this method is first-order accurate, too. 

2.4.4 Analysis of the Fixed Points of the Methods 

Finding the fixed points of the finite-difference method is equivalent to finding the 

stationary points of the initial-value problem (2.4.1)-(2.4.3). It can be shown that 

the fixed points of each finite-difference method, as n ---3 00 , are the same as the 

stationary points of the system. 

Method 1 (Euler's Method): 

This method is explicit and hence can be written in the form 

pn+l = 91 (PnI Hn) 
,(2.4.25 

Hn+l = 92 (PT', Ham') ;(2.4.26 ) 
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n=0,1,2, .... 
Associate, now, with (2.4.25) and (2.4.26) the functions 

P= 91 (P, H) ( 2.4.27 ) 

and 

H= 92 (P, H) ,(2.4.28 ) 

then from (2.4.9) and (2.4.10) gl and g2 have the forms 

91(P, H)=P+trP(1-P)_iaHP (2.4.29) ) 

£aHP 
92(P, H)=H-. ýmH+1+bP' (2.4.30) 

provided that 1+bP0. 

To examine the stability of the fixed points st (i = 1,2,3) in (2.4.4) of (2.4.9), 

(2.4.10) or (2.4.11), (2.4.12) or (2.4.15) and (2.4.16), the eigenvalues A, EC (i = 1,2) 

of the Jacobian 

a91 Ps, Hs a91 P3, Hs 
aP aH 

J(PS , H8) = 
a92 P3, Hs a92 Ps, Hs 

aP aH 

must be calculated, where 

äP 
-1-Prr 

(1 
- P) -} ý1+bbP)2 

1+bP 
' 

a atP 
8H 1+bP 

ä92 
_ abHt P aH2 

aP _ - 1+bP (1+bP)2 

H 1 m+ 
P + 

a b 

( 2.4.31 ) 

( 2.4.32 ) 

Evaluating the derivatives in (2.4.32) at the fixed points s, (i = 1,2,3) and sub- 

stituting, using the set of parameters in (2.3.7), in the Jacobian matrix (2.4.31) gives 

the following results 



F. N. M. Al-Showaikh, 1998, Chapter 2 

(1+o. 8ie 
0 

0.81 f 
J2 - 

0 

and 

0 
i-o. se 

5 
6 

1+7 
30 

J3 l+o. os7ae -o. se 
-ý. 

0.2268 1 
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For the trivial fixed points, sl and s2, the eigenvalues of Jl and J2 are equal to 

unity at .£=0, while for £>0, the spectral radius is greater than unity. 

Considering the nontrivial point 33, the eigenvalues of the Jacobian are equal to 

unity for £=0. When £>0, the eigenvalues are complex with positive real part; 

the spectral radius is greater than unity. Thus all the fixed points of this method are 

unstable for all £>0. 

Method 2: 

This method can be written explicitly in the form 

Pn+l = 91 (PTh7 Htm) 
, 

Hn+l = 92 (Pm) Hm) ; 

n=0,1,2, .... 
Associate with (2.4.33) and (2.4.34) the functions 

P=gi(P, H) 

and 
H=g2(P, H), 

( 2.4.33 ) 

( 2.4.34 ) 

( 2.4.35 ) 

(2.1.36) 
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then (2.4.11) and (2.4.12) can be written in the forms 

91 (P, H) --E ( 2.4.37 

92 (P, H) =H 1+Lm- eaPD' (2.4.38 ) 
E 

where 
D=1 1+bP 

( 2.4.39 ) 
E= 1-. ßr(1-P)+ +bP. 

Note that, dP = -bD2 äP =£r-£abH D2 and äH =LaD. 

It may be shown that 

891 
_ 

1-t r+Q aHD(1+bDP) 
8P - E2 

ögl 
__£ aDP 

aH - E2 

_£ all[-bD2 EP+DE-, e DPr+t abD3 HP] ( 2.4.40 ) 
öP - (1+1 m- E' )2 Ez 

892 
_ 

(1+t m)E2-t aDPýE+t aDH) 
öH (1+k m- E )2ý E2 

Evaluating the derivatives in (2.4.40) at the fixed points s, (i = 1,2,3) and substi- 

tuting, using the set of parameters in (2.3.7), in the Jacobian matrix given in (2.4.31 

gives the following results: 

For sl, the eigenvalues are all equal to unity at .£=0. The spectral radius is greater 

than unity for 0<Q<2.466, while it is less than unity provided .£>2.466. The trivial 

fixed point sl is unstable for 0<ý<2.466 and stable for .£>2.466. 

Considering the fixed point 82, the spectral radius is greater than unity for all f>0 

and equals unity at £=0. 

For s3, the spectral radius equals unity at £=0. When 0<£<0.287, the 

eigenvalues are complex with positive real part; the spectral radius of the Jacobian, 

p(J), is greater than unity. For 0.287 <£ < 2.895, p(J) <1 and p(J) >1 provided 

1>2.895. 
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Method 3: 

This method can be written in the form 

pn+1 
- 91 (Pn, Hn), 

Hn+l 
- 92 (Pn)H n) 

; 

n=0,1,2, .... 
Associate with (2.4.41 and (2.4.42) the functions 

P=91(P, H) 

and 

H=92(P, H) 

then (2.4.17) and (2.4.18) can be written in the forms 

FP 
9i (P, H) =1+ iPr ' 

H 
92 (P, H) =1+£m 

aDFP ' 
l+e Pr 

where 
D=1 1+bP 

F=1+. lr -.? aDH. 
Note that dD = -bD2 F=Lab D2 H and aF = -. L a D. dP 1 8P aH 

It may be shown that 
ögl F+e abD2 HP 
8P (1+QPr)2 1+tPr 

ögl 2 aDP 
äH - 1+P Pr 

a92 2 aDH[F+t abD2 HP-bDFP- + iF ] 
öP - (1+P m- i+C Pr 

)2 (1+1 Pr) 

_ 
(1+P m)(1+1 Pr)-t aDP(F+P aDH) 

8H - (l+£ M- i+t Pr 
)2 (1+e Pr) 
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( 2.4.41 ) 

( 2.4.42 ) 

( 2.4.43 ) 

( 2.4.44 ) 

( 2.4.45 ) 

( 2.4.46 ) 

( 2.4.47 ) 

( 2.4.48 ) 

Evaluating the derivatives in (2.4.48) at the fixed points si (i = 1,2,3) and substi- 

tuting, using the set of parameters in (2.3.7), in the Jacobian matrix given in (2.4.31), 

the following results are obtained: 
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For all sz (i = 1,2,3), all the eigenvalues are equal to unity at £=0. For sl. the 

spectral radius, p(J), is greater than unity whenever £>0. 

Using s2, p(J) is greater than unity whenever 0<£<8.582, while for f>8.582, 

the spectral radius, p(J), is less than unity. 

Considering 33, the eigenvalues are complex with real part equal to unity for £=0; 

the spectral radius is greater than unity for 0<£<3.173. When 3.173 <£<3.986, 

the spectral radius is less than unity and greater than unity for 
.£>3.986. 

These findings are summarized in Table 2.1. 

Table 2.1: Stability properties of fixed points of Methods 1,2 and 3, where unst. denotes 
unstable. 

fixed Method 1 Method 2 Method 3 
point stable unst. stable unst. stable unst. 

Si - 1>0 1>2.466 0<1<2.466 - 1>0 

S2 - 1>0 - 1>0 1>8.582 0<1<8.582 

83 - £>0 0.287<£<2.985 0<£<0.287 
At > 2.895 

3.173<1< 3.986 0<1<3.173 
At>3.986 

2.4.5 Numerical Results 

Table 2.1 summarizes the stability properties of the fixed points of Methods 1,2 and 

3. All methods have the same fixed points but, whereas for Method 1 these fixed 

points eventually become unstable as the time step £ is increased both Methods 2 and 

3 show the opposite behaviour: as .£ is increased the fixed point, s3, always becomes 

attracting. The results represented here are based on the numerical methods for the set 

of parameters given in (2.3.7), chosen to obtain limit cycles in the absence of diffusion. 

Method 1 (the Euler method) gives limit cycles for small values of the time step P. 
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Using £=0.2, the predator-prey phase-plane for this method is shown in Figure 2.2. 
As .£ is increased (i. e. £>0.29), Method 1 gives negative values of prey population 
(which are not a feature of the theoretical solution) and chaos was observed in the 

numerical solution. 

Numerical solutions computed using Methods 2 and 3 converged to the stationary 

point 33 = (hs, ps) _ (0.2835,0.3) as the time step is increased. That is, the higher the 

value of .£, the quicker the stable stationary point 33 is reached. All these findings are 
depicted in Figures 2.3-2.6 

The profiles in Figure 2.3 illustrate that, in reaching the stationary point, the prey 

attains a lower value for a larger time step (Q = 1.0) than it does for a smaller time 

step (t = 0.05). This suggests that Methods 2 and 3 always converge to the fixed point 

using an arbitrarily large time step, unlike Method 1 which permits the use of only a 

small time step if convergence is to be attained. 
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Figure 2.2: Limit cycles obtained using Method 1 with f=0.2. 
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Figure 2.3: Numerical solution computed using Method 2. 
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Figure 2.5: Stable stationary point is reached using Method 3 with f=0.5 . 
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Figure 2.6: Quicker convergence to the fixed point using Method 3 with £=0.6. 
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2.5 The Reaction-Diffusion Equations 

The predator-prey system to be considered is the system given in (2.3.4) and (2.3.5) 

which involves the reaction-diffusion equations, namely, 

ot 
-rP(1-P)-lab h+da2p; 0 <x<1, t>0 (2.5.1) 

2 

ýh= 
ap h-mh+da 

2; 0<x<1, t>0 (2.5.2) l+bp äx 
in which p= p(x, t) and h= h(x, t) are the densities in dimensionless forms of prey 

and predator, respectively; r, a, b and m are dimensionless parameters and d>0 is 

the diffusion rate. 

The boundary conditions (see Pascual[52]) have the form 

ap(o, t) ap(1, t) 

ax =o; t>0 , ax 
ah(o, t) ah(1, t) 

_ ax =o; t>o, 
ax 

and the initial conditions, 0<x<1, are given by (2.4-3). 

2.5.1 Numerical Methods 

( 2.5.3 ) 

( 2.5.4 ) 

The problem {(2.5.1-(2.5.4 and (2.4.3} is solved by finite-difference methods by 

discretizing the space interval 0< x<1 into N+1 subintervals each of width 6 so 

that (N + 1) b=1, and by discretizing the time interval t>0 into steps each of length 

as in Section 2.4.2. The open region R= [0 <x< 1] x [t > 0] and its boundary 0R 

consisting of the lines x=0, x=1 and t=0 are thus covered by a rectangular mesh., 

the mesh points having coordinates (xk) tom, ) where xk =kS (k = 0,1,2, ... , 
N, 1V + 1) 

and t,, = n. e (n = 0,1,2, ... 
). The notations PP and Hk will be used to distinguish 

the solution of an approximating finite-difference method from the theoretical solutions 
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p(xk) tn, ) and h(xk, tn, ) at the mesh point (xk, t, ) 
, while the values actually obtained, 

which may be subject to round-off errors, for example, will be denoted by Pk and Hk 
. 

Finite-difference methods are developed by approximating the time derivative in 
(2.5.1) by the first-order forward difference replacement 

DP(x, t) 
at 

['(x) t+ ý) - P(x, t)]/ß +0 (f) as Q -ý 0(2.5.5 ) 

and the space derivative by the weighted approximant 
ä2p(x, t) 

äx2 ti s-2 [O {p(x-6, t+ )-2p(x, t+f)+p(x+8, t+e)} 
+ (1 -ý) {P(x-6, t)-2p(x, t)+p(x+6, t)}] ( 2.5.6 ) 

in which x= xk (k = 0,1,2,..., N, N+1), t= tn, (n =0) 1,2,... ) and 0(0 < 
0< 1) is a parameter. Similar replacements are used to approximate the derivatives 
in (2.5.2). 

The terms in (2.5.1 and (2.5.2 may be replaced in the three ways used in Section 
2.4.2, giving 

(a) r Pn (1 - P1) -1 
P-I-b pn 

in (2.5.1) and I +b 
HPn 

-m H'm in (2.5.2) 

( 2.5.7 ) 

or 

aPn+i Htm ap'ý+1 H'l+1 (b) r P"+1 (1-pt')_ 
1+ bp 

in (2.5.1) and 1+ bp -m H"+1 in (2.5. '? ) nn 

( 2.5.8 ) 

or 

(c) rP n(1-Pn+1)_ aPn Hn 
in (2.5.1 and 

aPý"+i Hn+i 
_. H'ý+i in (`x. 5.2) . 1-f-bPn 1+bPn 

( 2.5.9 ) 

These approximations, together with the replacements for the derivatives of p and 

h give rise to three families of numerical methods, to be named A(O), B (0) and 
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C (0) for the numerical solution of {(2.5.1) -(2.5.4) and (2.4.3)}. These methods are 

as follows: 

Method A(q), 0<q <1: 

Pk+l Pk 
=n (1-n ) rPP Pk - 

+ 

which can be rearranged to give 

aPnHn k+d [pn+i 
a- 2P +1 + P+i 

1+b Pk S 

(1-0 ) [Pk 
1-2Pk +PP+1]}, (2.5.10) 

dg0Pk i1 + (1+2dqPk+l-dg0Pk+i dgPk 1 

+ 
[1_2(1_)d+tr(1_)_ 

1+bpkn 
Pk 

+ 

+ (1- O) dq PP+i ,(2.5.11 
) 

where q= £/S2 , and 

k-k Pk n Hn+l Hn aPn Hn d Hk-n+l -2 Hn+1 + Hn+1 
-m Hk n+S1k k+l 

] 

ý 1+bP 
+ (1-ý) {Hk 

1-2Hk+Hk+1]}, 
(2.5.12) 

which can be rearranged to give 

-dgcHk±; + (1+2dq Hk+l - dqýHk+i = (1-ý) dgHk-1 

4f, a Pk 7' 
+ 

[1_2(1_)d_m+l-}bPk Hk 

+ (1- O) dq Hk+1 .(2.5.13 
) 

Method B(O), 0<0<1: 

pn+l Pn kk =rp +1 (1-Pý) - 
a Pn+l Hn 

n+{O[ 
Pk 11 - 2P +1 + Pk+ l 

+bPk S 
( 2.5.14 ) 

1- ýý [ 
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which can be rearranged to give 

ýaHn 
-dg0PPil + 

[1_r(1_P: 
)+ 

I+b Pkn +2dq Pk+1 dg0Pk+l - (1 -ý)dgPk1 

+ [1-2(1-0)dq]PP+(1-q)dgPk+1, (2.5.15) 

and 

Hk +1 - Hk a Pk +1 Hk +1 
n+l 

d 
nl 2Hk - 

n+l +l 

1+bPk - mHk S2 
{O [iii-1 + Hk+1j 

+ (1-0) [H_1-2H+H+1] }, (2.5.16) 

which can be rearranged to give 

. ýaPte'+i 
-dgOHH+1 + 

[1_l+bpfl+m+2d]H1 
-dgH= (1 - dgHi 

+ [1-2(1-0)dq] Hk+(1-0)dgHk+l. (2.5.17) 

Method C(4) ,0<0<1: 

Pk 
- 

Pn \ kk_r Pk (1 
- 

Pk +1 I- 

+ 

which can be rearranged to give 

aPk H'+ d !o [it 
- 2P1 + p1 

1+bPk Sl 
(1-ý) [P1_2P+P+1]}, (2.5.18) 

dg4Pkil + [1+. ýrPk +2dgo] Pk+l -dgoPk+i =(I -O)dgPk 
a Hk 

+ 
[i+_ir 

1 -2(1-f)dq Pk 

+ (1 -O)dgPP+1. 
( 2.5.19 ) 

and 

H"+l +H k- k- kk-m Hk n+i +S k+l 

+bP 
n+ý Hn+l Hn 

-a 
Pn+1 Hn+1 

1 Hk-n+1l 2k 
Q 1, 

(2.: x. 20) + (1-ý) [H_1_2H+H+1]} 
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which can be rearranged to give 

51 

Pa Pte'+i 
-dq Hk+1+1-1+ 

bPk + fm+2dgO Hk+1 - dg0Hk+i = (1 - dqHý-i 

+ [1-2(1-O)dq]Hk+(1-O)dgHk+, 
" (2.5.21) 

In (2.5.10)-(2.5.21), k=0,1,2,... 
, 
N, N+1 and n=0,1,2,... . 

Computationally, methods A(O), B(q) and C(q) are very economical in that they 

allow the solution of the non-linear partial differential equations (2.5.1) and (2.5.2) to 

be obtained by solving a linear algebraic systems at each time step (the solutions are 

obtained explicitly when 0= 0). 

2.5.2 Local Truncation Errors 

Consider the use of (2.5.5) and (2.5.6) in (2.5.1) and analogous replacements for ät and 

ä in in (2.5.2). The local truncation errors (l. t. e. s) associated with (2.5.10), (2.5.14) 

and (2.5.18) are given by 

r [p(x, t), h(x, t), 8, f] 

where 

- rp(x, t+at)[1 -pýX, t1-Nt)J rt 

_ [p(x, t+i) -P(x, t)]RR 

- d06-2 [P(x - 6, t +. e) - 2p(x, t +. e) +p(x + 6, t +i)1 

- d(1 -0)b-2[p(x-8, t)-2p(x, t)+p(x+6, t)] 

.. \r, , /3 O\ 1ia 
p(x, t+a £) h(x, t) 

_ 
ap(X, t) 

_r p(x, t) {1 - P(x, t) 
at 

a p(x, t) h(x, t) 
_ 

a2p(x, t) 

+1+ bp(x, t) 
d aX2 

1+b P(x, t) 

( 2.5.22 ) 

(a) for family A(O), a=0=0, 
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(b) for family B(q ), a=1 and /3 =0, 
(c) for family C(q ), a=0 and ,Q=1. 

52 

The local truncation errors associated with (2.5.12), (2.5.16) and (2.5.20 are given 
by 

rh [p(x, t), h(x, t); 8,1 ] 

where 

_ [h(x, t+i) -h(x, t)]/Q 

- dob-2[h(x-8, t+1)-2h(x, t+i)+h(x+S, t+ý)] 

- d(1 - 0) 6-2 [ h(x - S, t) -2 h(x, t) + h(x + b, t) J 

_ 
aP(x, t+y£)h(x, t+77) 

+mh(x, t+, q i) 1+bp(x, t) 
äh (x, t) a p(x, t) h(x, t) 

ät 1+b p(x, t) 

+m h(x, t) -d 
a2h(x, t) 

( 2.5.23 
(9X2 ') 

(a) for family A(O), y= 17 = 0, 

(b) for families B(q) and C(o ), 'y =q=1. 

It is then easy to verify that all three families are 0 (S2 + 1) accurate as 6,1 -+ 0 

with 
(i) for family A(O): 

423 

£p[P'h; st]=-1 82ap+ 1aP-do aP +... (2.5.24) 
12 aX2 at aX2 at 

42h3 

£h [p, h; 6, Iý =-1 se 
ala2-d a2 h 

-ý ... ý(2.5.25 
) 

12 aX4 2 aXa at 
(ii) for family B(o): 

s2 a4p+ 1 alp dO a2-_ 
r (1- p) 

ap +ah 
Op 

£p [p, h; 6, f] _-1 
3p 

12 aX4 2 ate axe at at I+ bp at 
( '?. 5.26 ) 
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12 04h 1 a2h a3h Lh [p, h; b, ]= -12 6 ax4 +2 ate d axe at 

(iii) for family C(o): 

a(pä- +h OP) 
t at 

1+ bp 

, 53 

ah )t+... 

, 
( 2.5.27 ) 

12 a4p ý a2p a3ý ap ýp [p, h; b, ]= -12 aX4 +2 ate -d aX2 at +rp ät + ... , 
4h2h3 

£h[P, h; 8, 
'e]_-- 

1 
s2a 

4-+ 

1a 

2- 
d(ý 

a2h 

- 

12 aX 2 at 2 

2.5.3 Stability Analysis 

1-h- a 
a (p+h) 

at 
1+ bp 

( 2.5.28 ) 

ah + rn at 
f+--- 

( 2.5.29 ) 

The concept of stability (see Twizell[67], p. 200) is concerned with the boundedness of 

the solution of the finite difference equations and this is examined by finding conditions 

under which Zk = Uk - UU 
, where UU represents Ph or Hk 

, remains bounded as n 

increases, for fixed b and f. A stability analysis considers the growth of perturbations 

in initial data or the growth of errors introduced at mesh points at a given time level. 

It will be convenient to define the vector Un =[ Uo 
, 
Ui 

,, 
UN, UN+1 ]T 

,T 
denoting 

transpose, with similar definitions of Zn and Un . 

There are three common methods of investigating stability: the energy method, 

the matrix method, and the von Neumann or Fourier method. The energy method is 

powerful in dealing with boundary conditions, variable coefficient problems and non- 

linear problems. Its application can, unfortunately, become extremely complicated and 

its successful use will be due in no small part to the ingenuity of the user. Besides 

proving the stability of a finite-difference scheme, the energy method can indicate the 

correct choice of a method. However, the method provides only sufficient conditions for 

stability which may be far removed from what is necessary in certain initial/boundary- 

value problems. 
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The method calculates the sum of the squares of the errors Zk at time level t= of. 
This sum of squared errors is called the energy, from which the method gets its name, 

and the method determines criteria under which this energy remains bounded as the 

computation proceeds. 

The matrix method of analysis is applicable to initial/boundary-value problems and 
is very popular among users. Unfortunately it can give erroneous results. 

The correct stability interval may usually be found using the von Neumann or 

Fourier method developed by J. von Neumann in the early 1940s (see Twizell[67], p. 201). 

A Fourier stability analysis determines the criterion governing the growth of a function 

which reduces to this Fourier series for t=0. 

The von Neumann condition is necessary only for three-level schemes; for two- 

level schemes the condition is sufficient as well as necessary. This also applies to 

problems with more than one space variable. Strictly speaking, the von Neumann 

or Fourier method applies only to pure initial-value problems with periodic initial 

data. In practice, however, it is used to analyse finite-difference schemes applied to 

initial/boundary-value problems also. 

The von Neumann method of analysing stability will be used to give some insight 

into the stability of the families A(O), B(q5) and C(O). This method entails considering 

a small error Zn of the form 

Zn = Pn - Pn = ea nQ ei aks(2.5.30 ) 
p, k Pk n 

and 

Zn Hn _ 
Hn = eµ e eZ vk8 (2.5.31 ) 

h, k _kk 

where a and µ are complex, 0 and v are real and i=+. The errors in (2.5.30) 

and (2.5.31) will not grow if 
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ea 
II 1+Mpt 

, 5; 5 

and leµýl G1+ Mh, f, (2.5.32) 

where Mp and Mh are non-negative constants independent of 6, £. Inequalities (2.5.32) 

are the von Neumann necessary conditions for stability; they make no allowances for 

growing solutions if Mp =0 and Mh =0. 

Method A(O): 

Substituting Zp into (2.5.11) leads to the (local) stability equation 

[1+4dgosin2(2ß6)J 
ýp=1-4(1-0)dgsin2(206)+fr(1-Pk)- 

l£aH L+bk 
( 2.5.33 ) 

in which PP and Hk are treated as (local) constants and ý, = ea". The von Neumann 

necessary condition for stability is I ýp I<1. That is, the stability restrictions are 
n laH 

2+2r (1-Pk )-l+ 
bPk r 02 dq < 

4(1-2(b) 

0_ 1 2aHk 
< 2+tr(1-Pkn)' 

2 1+bPk 

laHn' 
n )-1+j 2+2r (1-Pk 

4(1-20) 2C1, 
dq !k 

0<dq >4 
(ßr (1-Pk )- +1 

b Pk 
) 

k 

Now substituting Zh, into (2.5.13) gives the (local) stability equation 

( 2.5.34 ) 

lP 
kn (2.5.35) {1+4dq 1P 

0sin2( 
1 
2vb)I h=1-4(1-0)dgsin 

2(1 2v8)-fm+ 
.ýa 

in which Pk is treated as a (local) constant and ýh = eµe, with the consequent 
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stability restrictions 

2-Cm+ 
taP 

0< ('I < dry < 1}6 Pk 

Y 4(1-20) 

Ba Pk 
2' 1+bPn 

-> fm-2; 

k 

ta pn 
2-e m+ 1+b 

2<C1, 
dq > 

4(1-2j) 

0< dq >4( 1+b -fm ) 
Method B(O): 

Substituting Zp into (2.5.15) gives the (local) stability equation 

56 

( 2.5.36 ) 

[1+4dqsin2(ßs)_r 
(1-Pk)+1 abPn 

p-1-4(1-0)dgsin2(2ý35), +k 

( 2.5.37 ) 

in which Pk and HH are treated as (local) constants and ýp = eat , with the conse- 

quent stability restrictions 
laHn 

2-er (1-Pk )+ 
+npk 0< Cý <2, dq 

4(1-20) 

ý- 1 edxk > (1-Pte')-2' " 2' 1+bPk - 

2-er (1-Pk )+ +a P nrC 

2<1, 
dq ý 

4(1-2t) 
k 

/n 
0<ý<1, dq >4 (ßr(1-Pk)- +P 

and substituting Zh into (2.5.17) leads to the stability equation 

( 2.5.38 ) 

n-ý1 [1+4dqsin2(v) 
- 

la 1 
+im ýh = 1-4(1-0)dq sin 2(2 vb), ( 2.5.39 ) 

2+ 

in which Pk"' and Pk are treated as (local) constants and 'h = eµe . 
It may be shown 
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that, for stability, 

n+l 

0< <1 d <2+tM`1+- 2 4(1-2(k) 

n}1 £aPk tý 
22 1+& Pk n<G 

+pm ; 

Lapt +1 

I+b 

4(1-20) 

n{1 
0<ý<1, dq >4i bPk 

-Qm 

Method C(O): 

57 

( 2.5.40 ) 

Substituting Zp into (2.5.19) gives the (local) stability equation, in which Pk and Hk 

are treated as (local) constants, 

[1+4dqsin2(ß6)+rp: ] 
1-4(1-)dgsin'(06)+r- 

2 

where ýp 
= co", with the consequent stability restrictions 

2+t r Pk'L a Hn 

1 
ý-er- 

l+bý C 
2' 

dq C 
4(1-20) 

2 1+b Pk -k 

n 
2+erPk +fir- 

+a pn 

2< TC1, 
dq > 

4(1-20) 
k 

0<<1 dq >4 (r_rPm_ +6 Pk 

Now substituting Zh into (2.5.21) gives the (local) stability equation 

£aH, n 
1+bPk 

( 2.5.41 ) 

( 2.5.42 ) 

1+4dgosin2(1vS)- 
£a Pkn-}-1 

+fm h=1-4(1-O)dgsin2(1v6), 2 1+bPkn 2 
( 2.5.43 ) 
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where h= eµt . For stability, it may be shown that the restrictions are given by 
n+1 a<1 2+2 m- 

tl+b 

P, 1 dq q<- 
4(1-20) 

Pap +l 

2 1_b Pk 
< 2+ m; 

(2.5.44 ) 
laPn'+l 

2 +P rn, ----kam 1<<dq 1+6 Pk 
2 4(1-20) 

n+l 

0<q<1, dq>4 
l+bPn - Qm 

k 

Note, Pk +1 is treated as a local constant when analysing H for stability, because 

P has already been analysed for stability. 

2.5.4 Implementation 

The derivative boundary conditions in (2.5.3) and (2.5.4), on the boundary x=0, may 

be approximated by the second-order, central-difference replacements 

ap(0I t) 
= [P(x + b, t) - p(x - S, t) I /(2 b) +O (b2) ( 2.5.45 ) 

ax 

and 
ah(0) t) 

h(x + 6, t) - h(x - 6, t) ] /(2 6) +0(62) ( 2.5.46 ) 
ax 

as 6 -+ 0. These replacements reveal that, to second order, 

Pnl = Pl and Hn1= Hi (n = 0,1,2, ... 
) 

.(2.5.47 
) 

Approximating the space derivatives in (2.5.3) and (2.5.4), once again, on the 

boundary x=1, by its second-order, central-difference replacements, gives 

PN+2 =PN and Hj2=HN (n = 0,1,2, ... 
) 

.(2.5.48 
) 

The modifications to the formulae of the three families of numerical methods are 

as follows 
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Method A(O): 

Taking k=0 in (2.5.11) and (2.5.13) and using (2.5.47) and (2.5.48) gives 

(1+2dgo) Pö+l -2dgcp1+1 = 

+ 

and 

39 

[l_2(1_)dq+r(1_pn)_ 

+bPon] 
P° 

2(1-ý)dgPi, (2.5.49) 

(1+2dgo) Hö+l -2dgoH1+1 - 

+ 

[1_2(1-)dq_m+ £aP1 

+ bPn 
H° 

o 
2(1 -0)dgHi. ( 2.5.50 ) 

When Ic = 1,2, 
... , 

N, equations (2.5.11) and (2.5.13) are applied and when le = 
N+1 they become 

-2dgoPý+i + (1 +2dgo) Pý+i = 2(1 - O)dgoPi 

+ 
[1_2(1 

-)dq+fr 
(i_+1) 

-1 
abp+i P%, (2.5.51) 

+ N+1 

and 

-2dqoHN 1+ (1 +2dgo) Hiv+i = 2(1 - O)dgHý 

1) 
+ 1-2(1-O)dq-ým+ a1 1 HH+1" (2.5.52 

+ bP%, 

The solution vectors Pn+1 and Hn+l may be obtained using the following parallel 

algorithm 

Processor 1: Solve El Pn+1 = F1 Pte' for Pn+1 2..: '). 53 ) 

Processor 2: Solve El Hni+l = Gl Hn for Hn+1 , 
(2 

.5 . 
0-4 ) 

where El is a constant, tridiagonal square matrix of order N+2 and is of the form 
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I +2dgq -2dgq 
-dqq 1 +2dgq -dqq 

El= -dqq 1+2dgq -dqo 
. 

(2.5.55) 

-dqq 1 +2dg0 -dq¢ 
-2dqo 1+2dg0 

The square matrices Fl = Fl (Pa, Hn) and Gi = Gi (Pa) are also of order (N + 2) 

and are of the forms 

Ao 2(1 -q)dq 
(1-¢)dq Al (1 -0)dq 

(1 A2 (1 -q)dq F, 1= 
(1 -ý)dq AN (1-f)dq 

2 (1 - 0) dq AN+1 
( 2.5.56 ) 

and 
Bo 2(1 - 0)dq 

(1 - 0)dq B1 (1 - 0)dq 
(1 -0)dq B2 (1 -0)dq G1 = 

(1 -0)dq BN (1-0)dq 
2(1 - 0)dq BN+1 

( 2.5.57 ) 

where Pa H" 
Ak = 1-2(1-0)dq+ir (1-Pý)-1+bP , 

Pa P" 
Bk = 1-2(1-0)dq-im+i+P 

k=0,1,2) ... 7N, 
N+1. 

Method B(4) : 
Taking k=0 in (2.5.15) and (2.5.17) and using (2.5.47) and (2.5.48) gives 

[1_r(1-P)+ 2a Hon 
+2dq Po+l - 2dgOP1+1 = [1 -2(1 -ý)dql Pö 

1+bPo 
+ 2(1 - q)dgPP ,(2.5.58 

) 
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and 

a Pn+l [1+m+2dqý- 
°1+bPon Hö+l - 2dg0Hi+1 = [1 -2(1 -ý)dqJ Ho' 

+ 2(1-0)dgHl. (2.5.59) 

Equations (2.5.15) and (2.5.17) are applied with k=1,2, 
... N, and when k= N+1 

they become 

Hn+ 
-2dgoPN+1 + 1-er ý1-PN+1) +ia+2dq PN++i 1+ bPN+l 

= 2(1 - q)dgPN+ [1 - 2(1 - q)dq] PN+1, ( 2.5.60 ) 

and 

£aPte'+i 
-2dgoHN 1+ 

[I+fm+2dqo- 

1 {-bPN1 
HN+1 =2(1-0)dgHiv 

+ [1-2(1-0)dq]H%j (2.5.61) 

The solution vectors Pn+1 and Hn+1 may be obtained using the following parallel 

algorithm 

Processor 1 Solve E2 Pn+1 = F2 Pl for Pn+1 2.5.62 ) 

Processor 2: Solve J2 H'ý+1 = F2 Hn for Hn+l 2.5.63 ) 

where F2 is a constant, tridiagonal square matrix of the form 

X 2(1 - q)dq 
(1-q)dq x (1-ý)dq 

(1-O)dq X (1-O)dq 
F2 = 

(1 - f)dq X (1 - O)dq 
2(1 -¢)dq x 

( 2.5.64 ) 
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and E2 and J2 are square matrices of order (N + 2) and are of the forms 
Yo -2dgq 

-dqo Yl -dqo 
E2 = -dqq Y2 -dqc 

-dqo YN -dqc 
2(1 - q)dq YN+1 

Zo -2dgq 
-d qo Zl -d qo 

J2 = 
-dqo Z2 -dqo 

-dqo ZN -dqo 
-2 dqo ZN+l 

where E2 = E2 (pn, Ha), J2 = J2 (Pn+l, Pn) and 
X= 1-2(1-0)dq, 
Yk = 1-fir (1-Pk)+2dg0 +b n, 

PaPn+l Zk = 1ý-Qm+2dqo- 
1+bP1 

k=0,1,2,... 
, 
N+1. 

Method C(O): 

62 

( 2.5.65 ) 

( 2.5.66 ) 

Taking k=0 in (2.5.19) and (2.5.21) and using (2.5.47) and (2.5.48) gives 

[1+irPo +2dg0] Po+l -2dgOP1+1 = 
[1+r_2(1_)dq- 

1+ 
abPn P° 

o 
+ 2(1-q)dgPP, (2.5.67) 

and 
n1 [1+m+2dq_+Hm+1 l+ b- 

2dg0Hi+1=[1-2(1-0)dq]Ho 
o 

+ 2(1 -0)dgHl ( 2.5.68 ) 

Equations (2.5.19) and (2.5.21) are applied with k=1,2, ... , 
N, and when k= 

N+1 they become 

-2dgoPN+' + [1+frPN+i+2dgoj PN+1-2(1-0)dgl. 

( 
. 
69 

+ 
[1+r_2(1_)dq- a Hn 

1+bPý, +l 
P-`+i 2.1") 
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and 
+1 

-2dgoHN 1+1 
-Pm+2dg0- 

faPý, 
n1 HN+i=2(1-0)dgHN 

1+bPN+1 

+ [1-2(1-q)dq]HH+1 (2.5.70) 

The solution vectors Pn+l and Ham'+1 may be obtained using the following parallel 

algorithm 

Processor 1: Solve E3 Pn+l = F3 Pn for Pn+1 , 
( 2.5.71 ) 

Processor 2: Solve J3 Hn+1 = L3 Hn for Hn+l , 
( 2.5.72 ) 

where L3 
, 

is a constant, tridiagonal square matrix of order (N + 2) and is of the form 

X 2(1 -q)dq 
O)dq X (1- O)dq 

(1 -q)dq X (1 -q)dq L3 

(1- q)dq X (1-q)dq 
2(1 -q)dq x 

( 2.5.73 ) 

and E3 = E3 (Pn) 
, 

F3 = F3 (Pn, Hn) and J3 = J3 ( Pn+i, P7' ) are square matrices 

of order (N + 2) and are of the forms 

Uo - 2dqo 

-dqq U, - dqo 

E = 
-d q0 Ua -d qo ( 2.5.74 ) 

3 

- dq4 UN -dgq5 
-2dgc UN+l 

Vo 2(1 - O)dq 
(1-c)dq Vi (1- q)dq 

O)dq V2 O)dq 
F3 = 

(1- ý)dq VN O)dq 

2(1 -O)dq VN+l 
( 2.5.75 ) 
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Zo 

-dq o 

J3= 

in which 
X 
Uk 

Vk 
Zk 
k 

-2dgq 
Zi -dqo 

-dq q5 Z2 -dqo 

-dqq ZN -dqc 
-2dqq ZN+j 

= 1-2(1-q)dq; 

= 1+IrPk +2dgc; 

P, = 1+lr-2(1-q)dq- 
+bPk 1 

ap"+I 
=1 +ern+2dgq- 1+b Pk 
= 0,1,2,... 

, 
N+1. 

6-1 

(2.5.76) 

2.5.5 Numerical Results and Discussion 

Numerical results were obtained using Methods A(O), B(q) and C(q) with 0=1, 

d= 10-4 and the set of parameters given in (2.3.7). Methods A(q) and B(q) give 

constant populations for both prey and predators (see Figure 2.7). As .£ is increased 

from zero using Method A(O), the number of prey is decreased whereas that of the 

predator is increased till £=0.22. At this value of .£, the number of prey is more than 

that of the predator. When £>0.22, the prey population is less than the predator 

population. For .£>0.29, overflow occurs. 

For small values of . £, Method B(q) converges to the fixed point (0.3,0.2835) as 

shown in Figure 2.7. When .£>2.5 negative values of prey populations were obtained. 

Method C(q) converges to the fixed point (0.3,0.2835) for £=3.5. For £= 4-51 

the prey appear to exceed their maximum size, at tN 210, see Figure 2.8. This is 

because of the low order of the numerical method; the excess above unity may be 

accounted for by the 0 (p2) local truncation error. For this value of i, i. e. £=4,51 

because predators become extinct at t ý- 340, see Figure 2.8, the prey quickly achieve 

their maximum density of unity. When .£=4.65, the behaviour in Figure 2.9 can 
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be elucidated as follows: the predators ate so many of the prey that, at time t= 45 

(approximately), there were fewer prey than predators. Because they could not get 
food some of the predators died. This gave the prey the chance to recover and at time 

t= 60 (approximately) the number of prey again exceeded the number of predators. 

This continued until tr 240 after which the pattern began to repeat itself. At .£=4.7, 
both prey and predator populations exceed their maximum values, unity, for t> 60 

(approximately) as shown in Figure 2.10. 
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0.3 
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0.1 

00 
100 200 300 400 

time 

0.5 

0.4 

.20.3 
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n 

500 bOO 700 

0 100 200 300 400 5uv ovv 
time 

Figure 2.7: Method B(q) with £=0.7 and x=0.85. 
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Figure 2.8: Method C(O) with £=4.5 and x=0.85. 
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Figure 2.9: Method C(cb) with t? = 4.65 and x=0.85. 
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Figure 2.10: Method C(O) with £=4.7 and x=0.85. 
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2.6 Conclusion 

65 

In the absence of diffusion, the predator-prey model, system (2.4.1)-(2.1.3), becomes 

an initial-value problem which was solved numerically using three methods. The first 

method is the Euler method and the other two methods were constructed by evaluating 
some factors at the time level t= t7. and some at t=t, ti+l. All the three methods 

are first-order accurate. It has been shown that Method 1 (Euler Method) gives limit 

cycles for small values of the time step £ and for larger values of Q. chaos has been 

observed. 

Methods 2 and 3 converged to the stationary point 53 = (0.3,0.2835) as the time 

step £ is increased; that is the higher the value of £, the quicker the stable stationary 

point 53 is reached. 

For the reaction-diffusion predator-prey system which is given in equations (2.5.1)- 

(2.5.4), three numerical methods have been introduced, analysed, implemented and 

used to solve the system. Numerical results showed that, for the first and the second 

methods, Methods A(q) and B(q), a constant populations for both prey and predators 

has been found for small value of the time step £. As £>0.29, overflow occurred for 

Method A(O). 

Method B(q), for small value of £, converged to the fixed point (0.3.0.283: 5) and 

negative values of prey populations were obtained when £>2.5). 

Method C(c) behaved much better than both Methods A(O) and B(c) as it con- 

verged to the fixed point (0.3,0.2835) for £=3.5. 



Chapter 3 

Measles Dynamics 

3.1 Introduction 

Measles, a common, acute, contagious disease, chiefly of children, is characterized by 

fever, sore eyes, catarrh (inflammation and excessive mucus in nose and throat), and 

a spotty rash. Unlike the case in industrialized nations, measles is a common cause 

of death in children in underdeveloped countries, where they are likely to be already 

suffering from malnutrition and poor health. The disease is also highly contagious in 

monkeys, the only other known host in which measles develops spontaneously. 

Measles is a disease of all climates and races, and susceptibility is universal. It must 

have been common in the ancient world, but no accurate account occurs in history 

until the classical description by Rhazes in A. D. 915. Thomas Sydenham, in the 17th 

century, clearly distinguished it from scarlet fever, with which it had been confused. 

P. L. Panum, in 1847, published the results of his brilliant study of a measles epidemic 

in the Faroe Islands, definitely establishing the incubation and infectivity periods of 

measles, see Mathews[40]. 

Measles is caused by an RNA virus of the paramyxovirus group, a group also con- 

taining the human mumps virus, the canine distemper virus, and the cattle rinderpest 
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virus. The measles virus is closely related to the latter two, and, indeed, it is believed 
that the measles virus evolved from the canine distemper virus. 

Measles is one of the most infectious diseases known. It is estimated that 95 percent 
of the world's urbanized population contract measles before the age of 21. The disease 
is transmitted largely by the inhalation of respiratory droplets from the nose, throat, 

and mouth of an infected individual and also by the inhalation of contaminated dust. 

The attack rate is very high: almost all those who are susceptible develop the disease 

when exposed. One attack confers lifelong immunity; second attacks are extremely 

rare. Infants whose mothers had measles will be immune up to the age of four or 

possibly six months because of the presence in their blood of protective antibodies 
derived from their mothers. The seasonal peak incidence of measles is late winter. For 

some obscure reason, in certain cities every second or third winter presents a much 

higher measles peak. Measles is commonly acquired in school, in one of the primary 

classes. 

The incubation period, or the time from exposure to the virus to the onset of symp- 

toms, is eight to 13 days (Anderson & May[2]): usually 10 days. The first symptom 

is fever; about 12 hours later the eyes become sore and bloodshot, and after a further 

12 hours the catarrhal signs develop. Small, scattered, white spots (Koplik's spots) 

appear inside the cheeks approximately two to four days after the first symptoms. One 

or two days after the appearance of the Koplik's spots (three to five days after the first 

symptoms), the rash suddenly appears. It starts behind the ears and on the forehead, 

spreading down the body and limbs. When the rash is at its maximum, two to three 

days after it begins, body temperature may be very high, reaching 40.5°C. The rash 

lasts about four to seven days, disappearing from parts of the body in the order of 

its appearance. It leaves behind a brownish discolouration, which fades in seven to 10 

days. 

Greatest communicability, or likelihood of transmitting the disease, is from 11 to 
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16 days after exposure to the virus: that is, approximately from the onset of fever until 
about the fourth day of the rash. 

The mortality of uncomplicated measles is very low, but the complications are 
frequent and important. In the order of frequency of occurrence they are (Mathews[40]): 

1) middle-ear infection, often with mastoiditis, 

2) bronchopneumonia (inflammation of the lungs), 

3) inflamed lymph nodes in the neck, 

4) laryngitis (inflammation of the larynx), and 

5) encephalitis (inflammation of the brain). 

There is no specific drug directly useful in the treatment of measles. Isolation, bed 

rest, and a fluid diet are necessary. Darkening the room is not necessary. Antibiotics 

are often given to prevent bacterial complications. 

Research to find a measles vaccine began in 1954 when a measles virus, the Ed- 

monston strain, was successfully grown in tissue culture for the first time. From this 

strain the first line-virus vaccine was developed by Dr. John F. Enders (Mathews[40]). 

A field trial in 1961 proved the vaccine to be highly effective. In 1963 the U. S. Public 

Health Service licenced for manufacture two types of measles vaccine: a live, atten- 

uated (weakened), virus vaccine and an inactivated ('killed') virus vaccine. The use 

of the short-term inactivated vaccine is not recommended, and none has been used in 

the United States since 1968. Passive immunization (with gamma globulin antibodies) 

is effective for prevention and attenuation of measles, but the immune serum globulin 

must be infected within five days - preferably as soon as possible - after exposure 

to the virus to prevent the development of the disease. Despite earlier predictions, 

however, that immunization would eliminate the disease, measles is actually increasing 

on a world-wide basis. 
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3.2 Mathematical Epidemiology 

The application of mathematics to the study of infectious diseases appears to have been 
initiated by Daniel Bernoulli in 1760 (Anderson & May[2]). He used a mathematical 

method to evaluate the effectiveness of the techniques of variolation against smallpox, 

with the aim of influencing public health policy. There then followed a long gap until 
the middle of the nineteenth century when, in 1840, William Farr effectively fitted a 

normal curve to smoothed quarterly data on deaths from smallpox in England and 
Wales over the period 1837-1839. This descriptive approach was developed further by 

John Brownlee[8] who published a paper entitled "Statistical studies in immunity; the 

theory of an epidemic" in 1906, in which he fitted a Pearsonian frequency distribution 

curve to a large series of epidemics. The empirical approaches adopted by Farr and 

Brownlee (Anderson & May[2]) were in great contrast to the work of two other scientists 

of the same period, Hamer and Ross. Their contribution was to apply post-germ- 

theory-thinking towards the solution of two specific quantitative problems: the regular 

occurrence of measles epidemics and the relationship between numbers of mosquitoes 

and the incidence of malaria (Hamer[20]; Ross[54]; Moshkovskii[47]). They were the 

first to formulate specific theories about the transmission of infectious diseases in simple 

but precise mathematical statements and to investigate the properties of the resulting 

models. Their work, in conjunction with the studies of Ross & Hudson [55], Soper[62], 

and Kermack & McKendrick[28] began to provide a firm theoretical framework for the 

investigation of observed patterns. 

Hamer[20] postulated that the course of an epidemic depends on the rate of contact 

between susceptible and infectious individuals. This notion has become one of the 

most important concepts in mathematical epidemiology; it is the so-called mass action 

principle in which the net rate of spread of infection is assumed to be proportional to 

the product of the density of susceptible people multiplied by the density of infectious 

individuals. The principle was originally formulated in a discrete-time model, but in 
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1908 Ronald Ross (celebrated as the discoverer of malaria transmission by mosquitoes) 
translated the problem into a continous-time framework in his pioneering work on the 
dynamics of malaria (Anderson & May[2]). 

The ideas of Hamer and Ross were extended and explored in more detail by Soper[62] 

who deduced the underlying mechanisms responsible for the often-observed periodic- 
ity of epidemics, and by Kermack & McKendrick[28] who established the celebrated 

threshold theory. This theory, according to which the introduction of a few infectious 

individuals into a community of susceptibles will not give rise to an epidemic out- 

break unless the density or number of susceptibles is above a certain critical value, 

is, in conjunction with the mass action principle, a cornerstone of modern theoretical 

epidemiology (Anderson & May[2]). 

Since this early beginning, the growth in the literature concerned with mathemat 

ical epidemiology has been very rapid indeed. Recent reviews of the literature have 

been published by Bailey[4], Bolker & Grenfell[6], Dietz[14], Dietz & Schenzle[13], 

Schenzle[57] and Tidd et al. [64]. In particular, models incorporating seasonality (Aron 

& Schwartz[3]; Fine & Clarkson[18]; London & Yorke[36]; Olsen & Schaf er[50]) and 

age structure (Anderson & May[1]; Dietz & Schenzle[12]; Schenzle[57]) generate impor- 

tant predictions both about the likely performance of vaccination strategies and the 

observed dynamics of infection. 

3.3 Compartmental Models 

Measles epidemics may be described using compartmental models (see, for example, 

Anderson & May[2]; " Jansen[26, P"51)" This approach divides the population into certain 

classes: susceptible, exposed, infectious and recovered individuals. In the course of an 

epidemic a person will then "flow" from the susceptible compartment into the exposed, 

the infectious and finally into the recovered compartment, as in the following diagram. 
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Figure 3.1: Schematic representation of the flow of hosts through the compartments. 

Note that hosts both die and reproduce at the per capita rate, µ. It is assumed that 

nobody dies of measles, therefore the infected hosts do not experience a higher mortality 

rate. Recovered individuals do not flow back into the susceptibles compartment, as life- 

long immunity is supposed. 
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3.4 The SEIR Model 

"7 

The SEIR (Susceptible/Exposed/Infectious/Recovered) 
model is expressed mathemat- 

ically, from the compartmental model depicted in Figure 3.1, as a set of three non-linear 
ordinary differential equations given by 

dS(t) 
_ dt ýµN- (µ +ß I(t)) S(t) 

dE(t) 
_ dt I (t) S(t) - (IL + a) E(t) ( 3.4.1 ) 

dI(t) 
dt =a E(t) - (µ + 7) I (t) 

with t>0, subject to the initial conditions 

S(0) = S°, E(O) = E°, 1(0) = I° ( 3.4.2 ) 

in the domain 

D= {(S, E, I) E IRIS+E+I < N}. (3.4.3) 

Here, S= S(t), E= E(t), I=I (t) and R= R(t) represent, respectively, the 

density of susceptible, exposed, infectious and recovered individuals at time t in a 

constant population of size N=S+E+I+R. Thus, R is determined by S, E 

and I and the fourth differential equation derived from the compartmental model and 
describing the rate of change of R does not need to be considered. The terms 

µ, 
ä, -1 

are the average life expectancy, disease incubation and infectious period, respectively; 

ß denotes the infection rate. It is assumed that the incubation period coincides with 

the latent period. All time-related parameters are measured in years. The incubation 

period is the period from the point of infection to the appearance of symptoms of 

disease, whereas the latent period is the period from the point of infection to the 
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beginning of the state of infectiousness, see Anderson & May[2, p. 14]. They estimated, 

for measles, the incubation period to be 8-13 days, the latent period to be 6-9 days and 

6-7 days for the infectious period. Hence, in their view, the incubation time does not 

coincide with the latent period. However, they state that the consideration of latent 

times does not contribute much to the dynamics of the system (Anderson & May[2, 

p. 59]). The infection rate 0 will be varied in the analysis and in essence will serve as 

a bifurcation parameter. 

The SEIR model will be considered for the following set of parameter values 

N= 5x 107, 

µ=0.02 years-1 ,(3.4.4 
) 

CT = 45.6 years-1 

-y = 73.0 years-1 . 

Theses values represent a population size of 50 million, average life expectancy of 50 

years and incubation and infectious periods of roughly eight and five days, respectively, 

as considered by Bolker & Grenfell[6]. 

3.5 Qualitative Analysis 

3.5.1 Stationary Points 

To study the stationary points of the SEIR model, the system (3.4.1) is written as 

du 
_ f(u) 

dt 

where 

u(t) _ (S(t), E(t), I (t))T E R3, 
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f (u) _ (. fl (u)) f2(u), f3(u))T 

_ (µN-(µ+01)S, OIS-(µ+u)E, o-E-(µ+y)I)T (3.5.1 ) 

and T denotes transpose. 

Equating fl, f2 and f3 to zero reveals the existence of two stationary points. The 

first stationary point, which is trivial, is given by 

T 
(N, 0,0)T; (3.5.2) 

the phrase "critical point" may also be used to describe s1. 

This steady-state is trivial in the sense that it corresponds to the case of the exis- 

tence of no exposed or infectious individuals in the population. Hence, all individuals 

are healthy and clearly stay healthy for all time. 

The second, non-trivial, stationary point is 

S2 = 
\S2' 

E2' I2/ 

where 

s2 = 
(µ + 0, )(µ +'r) 

uß 
E2 = 

µN 
- 

µ(µ+'Y) ( 3.5.3 ) 
µ+u a0 

µaN I2 
(µ + a)(µ +'Y) 

It is noted that, due to the magnitude of N, only S2 varies significantly with Q. 

Using the set of parameters in (3.4.4), this stationary point is 

73.052 0.032 0.02 T 

S2 , 21920.21- , 13688.874- ß 
(3.5.4) 
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A graph of stationary points for 
,3E [10-9,10-3] is shown in Figure 3.2 (Jansen[26. 

p. 14]). 

10ý 

los 

a 5 -cl o 
2 

1 C4 

103 

0 0.2 0.4 0.6 0.8 1 
infection rate x 10-3 

Figure 3.2: Non-trivial steady-states for various infection rates on a logarithmic scale; 
susceptible[dots], exposed[dashes], infectious[dash-dot . 

3.5.2 Stability 

The Jacobian of the system (3.4.1) is given by 

-(µ+, ßI) 0 -ßS 

Jf(u) = ßI -(µ+0) /3S ( 3.5.5 ) 

01 ) 0 

Using the parameter set in (3.4.4), the Jacobian at the trivial critical point is given 

by 
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-0.02 

if (sl) =0 

0 

0 -5x107ß 

-45.62 5x 107 9 

45.6 -73.02 

79 

( 3.5.6 ) 

The eigenvaluesl of Jf(si) are all distinct and real for all /3 E [0, oo). For 0 
1.46104 x 10-6 , all are negative, whereas for larger values of 0, one eigenvalue is 

positive and two eigenvalues are negative. 

Therefore, the trivial steady-state is asymptotically stable for 0E [0,1.46104 x 
10-6) and unstable for larger #. The value 

, 
Q1=1.46104x10-6 (3.5.7) 

thus denotes a bifurcation point of the system. 

Considering the non-trivial stationary point s2 leads to 

-13688.874 0 -73.052 

Jf (s2) = 13688.874 ß-0.02 -45.62 73.052 ( 3.5.8 ) 

0 45.60 -73.02 

Here, numerical computation of the eigenvalues revealed them to be distinct and 

real for 0<1.45975 x 10'. In this range, one eigenvalue is positive while two are 

negative. For 1.45975 x 10-6 <0<1.46043 x 10-6, the Jacobian has distinct, 

real and negative eigenvalues, while for larger values of 0, it has a pair of complex 

eigenvalues with negative real part and one real, negative eigenvalue. 

It follows that the non-trivial steady-state is unstable for ßE [0,1.45975 x 10-6) 

and asymptotically stable for 0E [1.45975 x 10-6, oo) . 
'All numerical computations were carried out by the software package "mathematica", version 2.2, 

@1988-93 by Wolfram Research, Inc. 
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The value 

ß2 = 1.45975 x 10-6 ( 3.5.9 ) 

therefore denotes a bifurcation point of the system. 

The bifurcation value concerning the non-trivial steady-state , Q2, however, is likely 

to coincide with , ßl 
. 

The difference appears to be of a computational nature, as 
the matrices involved are very poorly conditioned (the condition number K(J) = 
II J II 

"11J1 
11 » 1) and the calculated values differ by only 1.29 x 10-9 (Jansen [26]) 

. 

As the relevant eigenvalues of the system's Jacobian at the trivial and the non-trivial 

stationary points change from real and negative to real and positive or vice versa, the 

bifurcation point may be determined to be the point at which the determinants of 

Jf (si) and Jf(s2) vanish. 

In this way, it is seen that the stationary points change their stability properties, 

simultaneously, so that 

ß* _ 
(µ + u)(µ +'Y) ( 3.5.10 ) 

ciN 

is the unique bifurcation point of the system. 

Using the parameter set in (3.4.4), the bifurcation point is calculated as 

P* = 1.46104 x 10-6. ( 3.5.11 ) 

For ,Q= 3*, there is, only one steady state since the coordinates of si and s2 coincide. 

This stationary point, s, is non-hyperbolic as the Jacobian at this point has eigenvalues 

{-118.64, -0.02,0}. Therefore, the stability cannot be determined using Theorem 1.3.1. 

It is estimated (Jansen[26]), however, that this steady-state is neutrally stable. The 

stability properties of the model are summarized in Table 3.1. 
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Table 3.1: Stability properties of stationary points. 

81 S2 

ß< ß* asymptotically stable unstable 
ß> ß* unstable asymptotically stable 

3.6 Numerical Methods 

81 

The solution of the SEIR model given by (3.4.1) and (3.4.2) is required for t>0 and 

to obtain a numerical solution, the time interval t>0 is discretized at the points 

to =n£ (n = 0,1,2, ... 
) ; .£ is called the time step. The theoretical solution of the 

system at any typical point t=t, is given by u(t,, ) = (S(t7z), E(tn), I (tom, ) )T 
, while the 

solution of an approximating numerical method will be denoted by u"` = (Sn, E' 
, 
In )T 

at the same point t,. The numerical methods are based on the replacement of the 

derivatives 
dt ýLs , dE and L' in (3.4.1) by the first-order approximations 

dS 
- dt 

[S(t + i) _ s(t)} li+ 0(t) , 
dE 

_ [E(t + t) _ E(t)] li+ 0(t) ,(3.6.1 
) 

dt 
dI 

= [I(t + Q) _ Ißt)) /t + 0ýt) 
dt 

as £ --+ 0. 

3.6.1 Method 1 (Euler Method) 

Using (3.6.1) in (3.4.1) with t=t,,, and evaluating S, E and I on the right-hand side 

of (3.4.1) at t=t,, leads to 
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Sn+1 = Sn +yN-Q (IL +0I n) Sn ; 

En+1 = En + to In Sn -f (µ + o-) En 3.6.2 ) 

In+l = In +faEn-f(µ+7)In; 

n=0,1,2, ..., which is the familiar Euler explicit method. 

The local truncation error (l. t. e. ) of S in (3.6.2) at t=t, is given by 

Ls [S(t), E(t), I (t); £] = S(t + £) - S(t) -£µN+£ (µ +ßI (t)) S(t) .(3.6.3 
) 

Similar expressions for the local truncation errors of E and I are obtained at t=t,. 

Using Taylor's expansion of S(t + £), E(t + . £) and I (t + £) about t, it follows that the 

l. t. e. 's are 

Ls [S(t), E(t), I(t); i] =2 ý2 S(t) + Oy3) as --' 0, 

LE [S(t), E(t), I (t); Q] =2 £2 E(t) + O(Q3) as .£0, ( 3.6.4 ) 

CI [S(t), E(t), I(t); ý] =2 f2 I(t) + O(Q3) as f --4 0, 

at some point t=t,,. This verifies that this familiar numerical method is first-order 

accurate. 

Stability of Fixed Points of Method 1 

Method 1 is explicit and hence the expressions for Sn+1, E"+1 and In+1 in (3.6.2) can 

be written, respectively, in the forms 
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sn+1 = (s", Eh In ) 

En+1 = 92(S'ß EnIn), (3.6.5) 
In+l = 93(S , 

En, In) 
, 

n=0,1,2, .... The fixed points of (3.6.5) are the same as the stationary points of the 

system (3.4.1)-(3.4.2); that is, one is trivial ül = (N, 0,0)T and the other is non-trivial 
U2 = 

(S2, E2,12)T 
, where 

S2 = 
(µ + 0, )(µ +'Y) 

Uß 

E2 _ 
µN (µ+ 

µ+0' 0-0 
12 = 

aµN 
(ii +a)(µ+7) 

Using the set of parameters given in (3.4.4) gives 

üi = (5 x 107,0,0)T 

73.052 
21920.21 - 

0.032 
13688.874 - 

0.02 T 

To analyse the stability of this method, consider the associated functions 

x 

gi(S, E, I) = S+1µN-t(µ+QI)S, 

92(S, E, I) = E+QßIS-t(µ+a)E, 

93(S, E, I) = I+ o E-Q(µ+'Y)I, 

( 3.6.6 ) 

( 3.6.7 ) 

( 3.6.8 ) 

( 3.6.9 ) 
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so that the Jacobian of the Euler method is 

1-«ii+/3Is) 

J(üs) - e, Q IS 

0 

0 
1- «(/i + 0-) 

ý 

-e a ss 
ss 

1- «(i + 'r) 
Evaluating J at ül, using the set of parameters in (3.4.4), gives 

1-0.021 

J(ül) =0 

0 

0 -5x107o. e 

1- 45.62 f5x 10713 e 

45.6. E 1- 73.02. e 

8 

( 3.6.10 ) 

( 3.6.11 ) 

When £=0 and for all 0, all the eigenvalues are equal to unity. When 0=0, all 
the eigenvalues are positive provided 0<£<0.0136949, two are positive and one is 

negative for 0.0136949 <£<0.0219202, while for larger £, one eigenvalue is positive 

and two eigenvalues are negative. For this value of , 
ß, the spectral radius is less than 

unity provided 0<£<0.0273898. When £=0.0273898, one eigenvalue equals -1, 

one eigenvalue is positive and less than unity and the other eigenvalue is negative; the 

spectral radius is unity. The spectral radius is greater than unity for £>0.0273898. If 

is increased further, one eigenvalue vanishes at £= 50 and again equals -1 at £= 100. 

For £> 50, all the eigenvalues are negative and still the spectral radius is greater than 

unity. 

For 0=1x 10-6(< , 
ß*), all the eigenvalues are real, positive and less than unity 

for 0<£<0.00917466; two are positive and one is negative provided 0.00917466 < 

£<0.018349324. One eigenvalue equals -1 and two eigenvalues are positive and less 

than unity for .£=0.018349324. 
The spectral radius is less than unity provided £< 

0.018349324 while it equals 1 for .£=0.018349324. 
For 0.018349324 <£<0.10369, 

the eigenvalues are distinct and real; one is negative and two are positive, while one is 
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positive and two are negative provided 0.10369 <£< 50. One eigenvalue equals zero 

at .£= 50 and equals -1 at .£= 100. For this value of 0, the spectral radius passes 
through unity as £ exceeds 0.018349324. 

For 0=1.46104 x 10-6(= 0*), the eigenvalues are real, positive and distinct with 

one eigenvalue equal to unity and two less than unity provided 0<£<0.00842886. For 

0.00824886 <f<0.016857723, one eigenvalue equals unity, one eigenvalue is positive 

and less than unity and the other eigenvalue is negative. One eigenvalue equals -1, 

one eigenvalue equals unity and the other is positive and less than unity provided 

£=0.016857723. For larger values of . £, two eigenvalues are positive and less than 

unity while the third eigenvalue is negative. For £= 50, one eigenvalue vanishes. The 

spectral radius is greater than unity provided .£>0.016857723. 

For 0=5x 10-4(> 0*), all the eigenvalues are real and positive with one greater 

than unity provided 0<£<0.00088722. For a larger time step, £, one eigenvalue 

is negative and the other eigenvalues are positive. At .£= 50, one eigenvalue equals 

zero, one eigenvalue is negative and the third is positive. For £> 50, one eigenvalue 

is positive and two eigenvalues are negative. For this value of 0, the spectral radius is 

larger than unity for all positive time steps (? > 0). 

Considering the non-trivial fixed point ü2 and the set of parameters given in (3.4.4), 

the Jacobian in (3.6.10) becomes 

I- 13688.874 of 0 -73.0521 

J(112) _ (13688.874 ,9-0.02)1 
1- 45.621 73.0521 ( 3.6.12 ) 

0 45.6 11- 73.02 1 

If f=0, all the eigenvalues are equal to unity. For 0<? < oo and 0<ß< ß', all 

the eigenvalues are real and distinct. When 0<£<0.00842897, the eigenvalues are 

all positive: one is greater than unity while two are less than unity. One eigenvalue is 
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negative and two eigenvalues are positive provided 0.00842897 <Q<2.33306. while two 

eigenvalues are negative and one eigenvalue is positive for 
.£>2.33306. The spectral 

radius is greater than unity for all £>0. 

For 0=1.46104 x 10-6(= ß*), all the eigenvalues are real and distinct provided 

the time step, . 
£, is positive. When 0<£<0.00842887, one eigenvalue equals unity 

and two eigenvalues are positive and less than unity, while one eigenvalue equals unity, 

one eigenvalue is positive and one eigenvalue is negative provided 0.00842887 <Q< 

0.016857723. When £=0.016857723, one eigenvalue equals -1, one eigenvalue equals 

1 and the third eigenvalue is negative. One eigenvalue is negative, one eigenvalue is 

positive and less than unity and the other eigenvalue is positive and greater than unity 

provided 0.016857723 <£< 49.9735. For f> 49.9736, one eigenvalue is positive 

and less than unity and two eigenvalues are negative. The spectral radius, for this 

value of ß, equals unity provided £<0.016857723 while it is greater than unity for 

£>0.016857723. 

For 0=5x 10-4(> ß*), the Jacobian, J(ü2), has a pair of complex conjugate 

eigenvalues with positive real part and one real and positive eigenvalue provided 0< 

Q<0.00831218. When 0.00831218 <Q<0.01662435, two of the eigenvalues are 

complex with positive real part and one is real and negative, while two are complex 

with positive real part and one is real and equal to -1 provided f=0.01662435. When 

0.01662435 <£<0.38617601, the Jacobian has a pair of complex conjugate eigenvalues 

with positive real part and one real and negative eigenvalue. Two of the eigenvalues are 

complex with negative real part and one is real and negative provided £>0.38617601. 

The spectral radius of the Jacobian, P (J(ü2)), passes through unity as the time step. 

. £, becomes larger than, 0.01662435; p (J(ü2)) <1 when t<0.01662435, p (J(ü2)) =1 

when .£=0.01662435 and p (J(ü2)) >Y when £>0.01662435. 

Table 3.2 gives a summary of these observations. 
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Table 3.2: Stability properties of fixed points of Method 1. Entries in different rows of 
the same type of stability correspond to alternative conditions. 

trivial fixed point non-trivial fixed point 
Q=0 & dß £=0 `ß 

neutral 2=0.0273898 & ,ß< 0* 0<Q<0.016857723 & /3 = Q* 
£=0.018349324 &ß< 0- £=0.01662435 &ß> 0* 

0< 2<0.016857723 & ß=0* 
attracting 0<Q<0.0273898 & 

,Q< 0* 0<P<0.01662435 &ß> ß* 
(stable) 0<f<0.018349324 &ß< 0* 

Q>0.0273898 & /3 < ß* Q>0.016857723 &ß= ß* 
repelling £>0.018349324 &ß< ß* £' > 0.01662435 & /9 > 0* 

(unstable) Q>0.016857723 £>0& /3 < Q' 
f>0 & 

, Q>ß* 

2 
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Figure 3.3: Spectral radius of the Jacobian of Method 1 at the trivial fixed point. 
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Figure 3.4: Spectral radius of the Jacobian of Method 1 at the non-trivial fixed point. 
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3.6.2 Method 2 (Second-order Method) 

To achieve second-order accuracy when solving non-linear ODEs in (3.4.1), a linear 

combination of first-order methods is used so that the resulting method will be second- 
order accurate. 

Second-order Method for Sn+i 

Using the finite-difference approximation for dt from (3.6.1) in (3.4.1) and approxi- 
mating as follows 

5n+1 
- 

S- iµN+i(µ+0In). 
7n+1 =0; n=0,1,2,..., ( 3.6.13 ) 

gives the explicit formulation 

_ 
Sm +fN Sn+ý 

1+ «ýµ + ,ßI)'n= 
01 17 2,... 

. 
( 3.6.14 ) 

The local truncation error, LS = . 
Cs [S(t), E(t), I (t); . 2], associated with (3.6.14) is 

obtained from (3.6.13) and is given by 

4= S(t + Q) - S(t) -£µN+£ (i +0 I(t)) S(t + Q) 
_ 

(2I S+ + oi)S ) £2+o(t3) ( 3.6.15 ) 

as -+ 0, at some point t=t,. 

Now, using the difference approximation for dt from (3.6.1) in (3.4.1) again. S may 

be approximated alternatively as 
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Sn+l 
-,. 7n -£F, lN+£(µ+ßIn+1) Sn = 0; 

n=0,1,2, ..., which, also, can be solved explicitly for S'+' to get 

Ste'+1 = 
[1-. £(µ+0In+i)] S'+£µN; n=0,1,2,.,,, 

90 

( 3.6.16 ) 

( 3.6.17 ) 

The local truncation error, fs = . 
CS [S(t), E(t), I(t); U], associated with (3.6.16) is 

given, at some point t=t, l, 
by 

, CS = S(t + I) - s(t) - . eµ N+ «(µ +a I(t + 1)) s(t) 
= 

(+ßis) Q2+Oy3) ( 3.6.18 ) 

as £ -+ 0. Differentiating the first equation in (3.4.1) with respect to time, t, gives 

S+(µ+ßI)S+QIS=O. ( 3.6.19 ) 

By defining the quantity GS =L [S(t), E(t), I (t); J] by 

, Cs = rs + Gs 
,i3.6.20 

) 

it is easy to see that 

Ic e= (S+(y+#0+0s) 12+O(&3) (3.6.21 ) 

as .£ -- + 0, so that, using (3.6.19), 

, CS=O(. e3) as £-f0. (3.6.22) 
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The construction of the associated second-order method follows from (3.6.20). Thus, 

adding (3.6.13) and (3.6.16, the numerical method associated with (3.6.15) and (3.6.18) 

which are used in (3.6.20), gives 

In)] Sn+l -2. ßµN+«(IL +0In+l)Sn =2S" 

which can be written as 

[1+ Iß(µ+ßln)] 
5n+1-fµN+2t(µ+/3In+1)Sn =Sn 

Second-order Method for En+l 

( 3.6.23 ) 

( 3.6.24 ) 

Now using the difference approximation for dE from (3.6.1) in (3.4.1) and approximat- 

ing as follows 

Ems, +l - Eh -Qß In S"+. 1 +t (p +a) En+l =0; (3.6.25 ) 

n=0,1,2, ..., gives the explicit expression 

n+l 
-En+tQ 

In S'n4-1 
Iý n=0,1,2,... 3.6.26 

for En+l 
. 

The local truncation error, 4= SCE [5(t), E(t), I (t); f], at some point t= tn. 

associated with (3.6.25) is given by 

LE = E(t + Q) - E(t) - £, Q I(t) S(t +0+£ (µ + cr) E(t + £) 

(E_ßI++E)2+Ot3 ) (3.6.21 ) 
= 2 
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as f --+ 0. A second approximation to the differential equation involving dE gives the 
following 

n+l - En -£0I n+l Sn +£ (/. G + a) En =0; (3-6.28) 

n= 07 11 2, ..., which may be solved explicitly for En+l 

The local truncation error, CE = GE [S(t), E(t), I (t); Q], at some point t= tn, 

associated with (3.6.28) is given by 

, cE = E(t + e) - E(t) -eß S(t) I (t + t) + «(µ + a) E(t) 
_ 

(E_ßsi)2+o&3), ( 3.6.29 ) 

as .£ -k 0. Differentiating the second equation in (3.4.1) with respect to time, t, gives 

E-ßIS-QIS. +(µ+cr)E = 0. ( 3.6.30 ) 

The expressions in (3.6.27) and (3.46.29) verify that both equations (3.6.26) and 

(3.6.28) are first-order approximations to E. However, it is easy to show that the 

quantity LE - CE [S(t), E(t), I(t); t] defined by 

CE =CES , 
CE = O(t3) as ý --3 ý ( 3.6.31 ) 

so that the numerical, method associated with (3.6.31), which may be constructed 

simply by adding (3.6.25) and (3.6.28) to give 

ý2+£( +or)J E1 
-£ß 

InSn+1 -£ßIn+1 
Can+£(M+Q)En =2E n, ( 3.6.32 ) 
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is second-order accurate; equation (3.6.32) can be written in the form 
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f1+I£( 
+ý)l En+i-1Qß Iný7n+1-1 £NIý'+1S +1£(l-L+a)E'ý=E'ý. (3.6.33) LJ2 22 

Second-order Method for In+l 

One suitable approximation to the differential equation in (3.4.1) involving dt is given 
by 

In+1 - In -£a En+1 + «(µ + 7) In+1 = 0; n=0,1,2, ... ,(3.6.34 
) 

which may be solved explicitly for In+l to give 

In+i = 
In +_ _ En+1 

. n=0,1,2,... .(3.6.35 
) 

1+«+ 'Y ) 

The local truncation error, . 
CI = L', [S(t), E(t), I (t); . £], associated with (3.6.34) is 

given, at some point t=t,,,, by 

, cI = I(t + £) -1(t) -£o E(t + e) +£ (µ + -r) I (t + £) 
-1 i-0, E+(µ+'Y)I ý2+o(j3) 

as £ ---ý 0. A second approximation to this differential equation is given by 

In+1 
-1n-eUL'n-rL(IL+ y) 

In =0; n=0,1,2,... 1 

( 3.6.36 ) 

( 3.6.37 ) 

which may also be written explicitly for I'+'. 
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Th2 2 local truncation error, L, =£j [S(t), E(t), I (t); U], at some point t= tn, asso- 

ciated with (3.6.37) is given by 

cI - I(t + e) -1(t) -ea E(t) +«+7)I(t) 
= 

27.22+O(f3) 
( 3.6.38 ) 

as £ -f 0. Differentiating the third equation in (3.4.1) with respect to time, t, gives 

I -QE+(µ+7)I = 0. ( 3.6.39 ) 

The expressions in (3.6.36) and (3.6.38) verify that both (3.6.35) and (3.6.37) are 

first-order approximations to I. However, it is easy to show that the quantity L= 

Lee [S(t), E(t), I (t); . e] defined by 

SCI= 
CI+L, -O(Q3) as QUO, ( 3.6.40 ) 

so that the numerical method associated with (3.6.40), which may be constructed 

simply by adding (3.6.34) and (3.6.37 to give 

C2+«(µ+'Y)] IT, +1 _. 2aEn+1 - faE' +«(µ+-y)I" =2P, 

is second-order accurate; equation (3.6.41) can be written in the form 

fl+ l£(µ+'Y)l I'ý+1- 
l. 

£aEms'+1-2. £aEh+2Q(µ +7)Iý'=In 
L22 

( 3.6.41 ) 

( 3.6.42 ) 

To solve the linear algebraic system (3.6.23), (3.6.32) and (3.6.41) for S"+1 En+l 

and In+l, the system may be written for simplicity in the form 

aSn+l yN +£l. GSn+£0In+1Sn =2Sni ( 3.6.13 ) 
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where 

b E''+1 _jo In Can+l -£ßI n+1 Sn +f (p + a) En _ 2E' , ( 3.6.44 ) 

C In+l _ia En+l -fa En + «(µ + Y) In =2 In , ( 3.6.45 ) 

a= 2+«(µ+ßIn), 

b= 2+Q(µ+ý), ( 3.6.46 ) 

Solving2 the equations (3.6.43)-(3.6.46), gives 

Sn+1 - 
[(2-£µ)Sn +2£µN] [bc-£200Sn]-4 £20oSnEn -fob [2-Q(µ+'Y)] I'Sn 

A' 
( 3.6.47 ) 

Ems'+1 = 

and 

c. ß3 [(2-tµ)Sn+2. ßµN] In+[ac(2-f(µ+a))+Q2, ßý(2+Qµ)Sn] En 
A 

+t, 
ß(2+£1i) [2-£(µ+'Y)] InSn 

( 3.6.48 ) 
0 

I, n+1 __ 
F2ß0, [(2-ýµ)Sn+21µN] In+4a o, E' +ab [2-e(i+7)] P 

A(3.6.49 
) 

where a, b and c are as in (3.6.46) and 

0=abc-j2#or(2+- tl)S'n" ( 3.6.50 ) 

2Solving the equations were carried out by the software package "mathematica", version 2.2, 

©1988-93 by Walfram Research, Inc. 
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Stability of Fixed Points of Method 2 
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The expressions for S"+1, En+i and Jn+1 in (3.6.47)-(3.6.49) may be written in the 
forms 

Sn+l 
_ gl(s nnn 

En+l = g(Sfl, 2En ) In) 
, (3-6-51) 

In+l 
= 93(Sn, En, In) ; 

n=0,1,2,..., respectively. The fixed points of (3.6.51) are given by solving the 
following equations 

S=gi(S, E, I), 

E=g2(S, E, I), 

I =93(S, E, I). 

( 3.6.52 ) 

Computations3, using the set of parameters in (3.4.4), revealed that the fixed points 

of this method, Method 2, are the same as the stationary points of the system (3.4.1)- 

(3.4.2); that is the fixed points are 

ül = (N, 0,0) 

and 
73.052 

21920.21 - 
0.032 

13688.874 - 
0.02 

112 

( 3.6.53 ) 

( 3.6.54 ) 

To examine the stability of this method, consider the associated functions in (3.6.51), 

so that the Jacobian of this method at some fixed point, %, is 

3The computations were carried out by the software package "mathematica", version 2.2, @1988-93 
by Wolfram Research, Inc. 
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2g L i a\ 
as aE al 

J(lls) = as2 

[ 

a92 892 (3 6 55 ) as aE . . a1 
a93 a93 

as aE ai 

where 

agl [(2-iii) S+21µN] (_& ßQ)+(2-ýµ)(bc-ý2ßors)-4e2ßaE 
as A 

- 
£ßb [2-«(µ+7)] I [(2-iµ)S+2iMN] (bc-t2ßaS)(-Q2ßu)(2+Qµ) 

A A2 

4ý4ß20-2(2+eµ)SE+j3ß2or b(2+1µ) [2-Q(µ+-Y)] SI 
_ A2 1 

agl 4ý2, ßaS 

(9E --A 
äg1 4f3ß2obcSE-f/3bc [(2-fµ)S+2.2µN] (bc-ý2ßaS) 

az A2 
£2 #2 b2 c [2 -£ (µ + 'Y)] SI-£ß. b [2 -£ (µ + 'Y)] S 

4992 

L1` LX 

tflc(2-tµ)I +t2#o, (2+tµ)E+f#(2+Qy) [2-i(ft+7)] I 

as -o 
+ {. ßßc [(2-fµ)S+2. pN] I+ [ac(2_t(+))+2ßa(2+ii)S] E 

2, ßoµ) 
+ tß(2+tµ) [2-f(p+7)] SI} x£ 

(2 +Q 
A2 

a92 
, ac [2-ý(µ+a)]+12ßa(2+1µ)S 

aE -o' 
a92 £ßc[(2-ýµ)S+2ljN] +¬ßc [2-. (µ+a)] E+1ß(2+fµ) [2 -[(µ+-)')] 5 

o a7= 
- {ißc [(2-iµ)S+2iMN] I+ [ac(2_t(+))+t2ß(2+[I1)S] E 
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+ (2ffý) [2-ý(µ+7)] SI} x 
QObc 

Q2 

a93 

as 
£2/0(2-fy)I 

A +{j2ßa [(2-. ßµ)S+2 yN] I+4a1aE 

-ý ab [2-« + )] I} x 
£2ßa2+fµ), 

A 

0993 
aE 

393 

a1 

4afo 
0' 

Q20or [(2-fµ)S+2 liN]+4f2E+b [2-f(µ+7)] (a+fß 
0 

[(2-ýµ)S+2fµ NJ I+4a o, E+ab [2-. Q(p +7)]} 
bcfß {x 

02 

98 

( 3.6.56 ) 

Considering the trivial fixed point, ül, in (3.6.53), the Jacobian in (3.6.55) becomes 

2-Pµ -4P2 ßo N -VQbN 
2 -P (2+1 A) X (2+e µ) X 

J(ul) =Q c(2-e(µ+v))+22OaN 4tßN 
XX 

O 4Pa P2ßvN+b(2-e(µ+o-)) 
_ 

Ppb2c(2-e(µ+7)) 
XX (2+Q µ) X 

( 3.6.57 ) 

where 

X =bc-ý20aN. 

The eigenvalues of the Jacobian, (3.6.57), using the set of parameters in (3.4.4), are 

all real for all t, /3 E [0,1]. When £=0, all the eigenvalues are equal to unity for all 

ßc [0,1] \ 

For ,Q=1x 10-6(< ß*), all the eigenvalues are real, positive, distinct and less 

than unity provided 0<£<0.018349323, while, for 0.018349323 <£<0.20737959, 

one eigenvalue is negative and two eigenvalues are positive and less than unity. When 
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0.20737959 <£< 100, one eigenvalue is positive and less than unity and two are 
negative. All the eigenvalues are negative provided £> 100. For this value of 3, the 

spectral radius of the Jacobian, p(J(ül)), is less than unity for all positive time steps, 

For ß=1.5 x 10-6(ý ß*), all the eigenvalues are equal to unity provided (=0. 

When 0<£<6.71 x 10-6, two eigenvalues are equal to unity and one eigenvalue 

is less than unity. One eigenvalue is greater than unity, one eigenvalue equals unity 

and one eigenvalue is less than unity provided 6.71 x 10-6 <I<2.5 x 10-5. When 

2.5 x 10-5 <I<0.01675657, two eigenvalues are less than unity and one eigenvalue is 

greater than unity. One eigenvalue is negative and less than unity in magnitude and two 

eigenvalues are positive; one is greater than unity and the other one is less than unity 

provided 0.016752657 <1<2.688. For 2.688 <1< 100, one eigenvalue is positive and 

less than unity. and two eigenvalues are negative; one is less than unity in magnitude 

and the other one is greater than unity in magnitude. All the eigenvalues are negative; 

one is less than unity in magnitude, one equals unity and the third is greater than 

unity in magnitude, provided 100 <1<2x 106. When f>2x 106, all the eigenvalues 

are negative; two are equal to unity in magnitude and the third is less than unity in 

magnitude. For this value of ß, the spectral radius equals unity for 0<1<6.71 x 10-6 

and £>2x 106 and is greater than unity provided 6.71 x 10-6 <£<2x 106. 

Using ß=5x 10-4(> ß*), one eigenvalue is positive and greater than unity and two 

eigenvalues are positive and less than unity for 0<£<0.0017745. For 0.0017745 < 

£<0.019832, one eigenvalue is positive and less than unity, one eigenvalue is negative 

and less than unity in magnitude and one eigenvalue is positive and greater than unity. 

Two eigenvalues are negative; one is greater than unity in magnitude and the other 

is less than unity in magnitude, and one eigenvalue is positive and less than unity 

provided 0.0019832 <£< 100. At £= 100, one eigenvalue vanishes and equals -1 for 

> 794. For £> 100, all the eigenvalues are negative with one greater than unity in 
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magnitude. For this value of 0, the spectral radius is greater than unity for 0<Q< 794 
and equal to unity whenever £> 794. 

Rho 
-6 10 

2 

1_ 

-6 

o. 1u 

Figure 3.5: Spectral radius of the Jacobian of Method 2 at the trivial fixed point. 

Now, evaluating the derivatives in (3.6.56 at the non-trivial fixed point, ü2, and 

substituting, using the set of parameters in (3.4.4), in the Jacobian (3.6.55) gives the 

following results: 

The spectral radius of the Jacobian equals unity at .£=0 and for all 3E [0,1]. 

For 0=1x 10-6(< 0*), some of the eigenvalues are real and the others are 

complex. When 0<Q<0.000012, one eigenvalue equals unity and two eigenvalues are 

less than unity. One eigenvalue is greater than unity and two eigenvalues are less than 

unity provided 0.000012 <£<0.01685794. When 0.01685794 <Q<4.6 730198, one 

eigenvalue is negative and less than unity in magnitude and two eigenvalues are positive; 

one is less than unity and one is greater than unity, while, for 4.6730198 <C<4.830043, 

two eigenvalues are negative and one eigenvalue is positive and greater than unity. 
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For 4.830043 <Q<4.83345903, one eigenvalue is negative and two eigenvalues are 
positive and greater than unity. For 4.83345903 <£<4.8334823494, the Jacobian has 

two complex eigenvalues with positive real part and one real and positive eigenvalue: 
it has two complex eigenvalues with negative real part and one real and negative 

eigenvalue provided 4.8334823494 <£<4.83350769. All the eigenvalues are negative 
for 

.£>4.83350769 and one eigenvalue equals -1 for f>2x 107. The spectral radius, 
for this value of 0, is greater than unity for 1.2 x 10-5 <£<2x 107 and is equal to 

unity for0<f<1.2x10-5 andf>2x107. 

For ß=1.5 x 10-6(- ý , 
ß*), all the eigenvalues are real and positive: each equals unity 

provided £=0. Two eigenvalues are equal to unity and one eigenvalue is less than 

unity when 0<£<1x 10-11. When 1x 10-11 <f<2.5 x 10-6, all the eigenvalues are 

positive; one eigenvalue is less than unity, one equals unity and the other is greater than 

unity. All the eigenvalues are greater than unity provided 2.5 x 10-6 <f<7. When 

7<£< 17, two eigenvalues are complex with positive real part and one eigenvalue 

is real and negative. The Jacobian has a pair of complex-conjugate eigenvalues with 

negative real part and one real and negative eigenvalue provided .£> 17. The spectral 

radius, for this value of ß, equals unity provided 0<<1x 10-11 and is greater than 

unity for £>1x 10-11, as shown in Table 3.3 and Figure 3.6. 

For ß=5x 10-4(> 0*), the eigenvalues are a pair of complex conjugates and one 

real. When 0<£<0.0166244, two eigenvalues are complex with positive real part 

and there is one real and positive eigenvalue, while, for 0.0166244 <£<0.145925, one 

eigenvalue is negative and two eigenvalues are complex with positive real part. The 

Jacobian has a pair of complex eigenvalues with negative real part and one real and 

negative eigenvalue. For this value of 0, the spectral radius is less than unity for all 

positive time steps, £. 

Overall, the previous discussions can be summarized as in Table 3.3. 
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Table 3.3: Stability properties of fixed points of Method 2. Entries in different rows of 
the same type of stability correspond to alternative conditions. 

trivial fixed point non-trivial fixed point 
£=0&bß Q=0&b'O 

neutral 0<£<6.71x10-6&0=0* 0<Q<1x10-11&0=0* 

£>794&ß>ß* 0<Q<1.2x10-5&ß<0* 

£>2x106&ß=#* P>2x107 ß<ß* 

attracting £> 0&0 < 0* Q> 0&0 > 0* 

(stable) 

repelling 6.71 x 10-6 <Q<2x 106 &0= Q* l' >1x 10-11 &0 = 0* 

(unstable) 0<f< 794&0 > 0* 1.2 x 10-5 <P<2x 107 &ß< ß* 

2ýR17000 
i ooool 

-6 10 
-6 10 

b 

Figure 3.6: Spectral radius of Method 2 at the non-trivial fixed point. 
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Figure 3.7: Spectral radius of Method 2 at the non-trivial fixed point. 
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3.7 Numerical Results 

104 

The numerical methods are tested, using the set of parameters in (3.4.4), to solve the 
SEIR model. The infection rate, /3, was chosen to be 0=1x 10-6 first and then 
0=5x 10-4, hence testing values of ,ß smaller and larger than the bifurcation value 
/3* in (3.5.11). 

Experiments are carried out with two sets of initial data. These initial data are 
given by 

" Experiment A 

S° = 1.25 x 107 = 0.25 N 
E° = 5x 104 = 0.001 N 
1° = 3x 104 = 0.0006 N 

" Experiment B 

S° = 1.25 x 107 
E° =0 
1° =0 

Experiment A corresponds to a mid-epidemic situation, while experiment B refers 

to the case where measles is not present at all. 

Method 1 

In experiment A, this method converges to the trivial fixed point for 0< 0* and to 

the non-trivial fixed point for 0> 0* 

Taking ß=1x 10-6 results in correct convergence for £<0.019. For FE 

[0.017,0.018], convergence takes place, but intermediate negative values are observed. 

For £E [0.019,0.027], the method does not converge; it exhibits oscillations. It is sc cii 
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in Figure 3.10 that up to time t -ý 250, the method seems to converge correctly. Note 
that, in Figure 3.11, the method settles down much more quickly than with e=0.019 

and the oscillations first have significantly larger amplitudes; the infectives range up 
to 5x 107. The method produces overflow at £=0.028. These findings are illustrated 
in Figures 3.8-3.11. 

Now, with ß=5x 10-4, the method converges to the non-trivial fixed point provided 
< 0.0015 although intermediate oscillations are observed for susceptibles and exposed 

individuals when .£=0.0014 as shown in Figure 3.13. Overflow occurs for susceptibles, 

exposed and infectives when £>0.0015. 

107 

U) 1.4 

v 1.2- 
U) 

U) 
1 

0 0.05 0.1 0.15 0.2 
Time 

x 104 
6 

a)4 
U) 0 ý2 

w 

0 

0.25 0.3 0.35 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 
Time 

X 104 
6 

0)4- 

, 22- 

o 

0.4 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 
Time 

Figure 3.8: Method 1, experiment A, ,Q=1x 10-6, f=0.01. Correct convergence to 

the trivial fixed point. 
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Figure 3.9: Method 1, experiment A, 
,Q= 

1x 10- 6, 
.£=0.018. 

Oscillatory convergence. 
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Figure 3.10: Method 1, experiment A, ýQ =1x 10-', f = 0.019. The method swings 
into ocsillations. 



F. N. M. Al-Showaikh, 1998, Chapter 3 

x 10 

N 

1 
Q) 
N 

1 

107 

vL3456 
Time 

x 107 
2- 

73 

o 

1_-4AAAA_____________________ 

-1 

7 

0123456 
Time 

x 108 
1 

O 

_1 

7 

O123456 
Time 

Figure 3.11: Method 1, experiment A, Q=1x 10-6, f=0.027. 
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Figure 3.12: Method 1, experiment A, 0= 5x 10-4, e=0.0001. 
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Figure 3.13: Method 1, experiment A, /3 =5x 10-4, f=0.0014. Intermediate oscilla- 
tions are observed for susceptibles and exposed. 
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In experiment B, the method approaches the trivial fixed point for both values of 

ýß. In fact, in this case, monotonic convergence takes place whenever f< 50. For 
50 <Q< 100, convergence to the correct point takes place, but is oscillatory with 
susceptibles temporarily exceeding the size of the model, see Figures 3.14-3.16. When 
£= 100, the method does not converge but oscillates around the fixed point, thereby 

producing numbers of susceptibles exceeding the population size, as shown in Figure 

3.17. Larger steplengths result in oscillations with increasing amplitude and eventually 

produce overflow, see Figure 3.18. They are connected to the fact that one eigenvalue 

of the Jacobian at the trivial fixed point is positive with magnitude smaller than unity 
for 0<Q< 50, vanishes at .£= 50, and equals -1 at £= 100, being of magnitude greater 
than unity for larger steplengths. Although the other two eigenvalues are of magnitude 

greater than unity, it is this eigenvalue that is responsible for the convergence to the 

fixed point. While the eigenvalue is positive, the method converges monotonically, 

then switches to oscillatory behaviour when the eigenvalue turns negative and finally 

diverges when the magnitude of the eigenvalue exceeds unity. 
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Figure 3.14: Method 1, experiment B, /3 =1x 10-6 or #=5x 10-4, f= 30. 
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Figure 3.15: Method 1, experiment B, 0 =1x 10-6 or /3 =5x 10-4, f= 70. 

x 10 
91 

8 

7 

6 
U) a) 

5 cl) C) 
C, ) 

4 

3 

2 

1L 
0 

110 

Time x 10- 
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Figure 3.17: Method 1, experiment B, 0=1x 10-6 or o=5x 10-4, f= 100. Note that 

the method oscillates between exactly two points. The higher value exceeds the correct 

number by 3.75 x 107 while the lower value underestimates it by the same amount. 
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Figure 3.18: Method 1, experiment B, /3 =1x 10-6 or ß=5x 10-4.1 Q= 101. The 

method clearly diverges. 
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Method 2 

113 

This method is seen to be very restrictive on stepsize, as for experiment A with Q= 

5x 10-4 it produces overflow when £>0.01. For smaller stepsizes, however, correct 
convergence to (0,0,0) occurs, as shown in Figures 3.19-3.23. 

When Q=1x 10-6, this method converges to the trivial fixed point for £<0.04. 

When .£>0.04, some negative values for exposed and infectives are observed. When 

f>3, this method converges to the trivial fixed point, although oscillations occur for 

exposed and infectives, see Figures 3.24-3.27. 
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Figure 3.19: Method 2, experiment A, ß=5x 10-4, f=0.0001. 
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Figure 3.20: Method 2, experiment A, /3 = 5x 10-4, 0.0005. 
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Figure 3.21: Method 2, experiment A, Q= 5x 10-4, f=0.005. 
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Figure 3.22: Method 2, experiment A, f3 =5x 10-4, .e=5. Clearly this method diverges 
as the exposed and infectives diverge. 
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Figure 3.23: Method 2, experiment A, ß=5X 10-4, If = 795. 
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Figure 3.24: Method 2, experiment A, ß=1x 10-6. Q=0.0001. 
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Figure 3.25: Method 2, experiment A, Q=1x 10-6,1 = 0.005. 
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Figure 3.26: Method 2, experiment A, Q =1x 10- 6, f= 10. 
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Figure 3.27: Method 2, experiment A, ß =1x 10 -6,2 = 50. 

117 



F. N. M. Al-Showaikh, 1998, Chapter 3 118 

In experiment B, the behaviour of this method is the same for both values of /3. The 

method converges to the correct fixed point for £<1x 106 with monotonic convergence 

provided £< 100. For 
.£= 100, the method converges much faster to the trivial fixed 

point. For 100 <£<1x 106, convergence is oscillatory, thereby producing number 

of susceptibles exceeding the population size. When £>1x 106, convergence does 

not take place; instead, this method produces periodic cycles around the fixed point. 

These findings are shown in Figures 3.28-3.34. 

It is seen from the above results and discussions that the second method behaves 

much better than that of the well known Euler method, as the Euler method is first- 

order accurate, whereas the second method is second-order accurate. The maximum 

time step permitted with Method 2, especially in experiment B, is larger than that of 

the Euler method. Moreover, method 2 does not produce overflow, in experiment B, 

even with a very large steplength (see, again, Table 3.3). 
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Figure 3.28: Method 2, experiment B, ß=1x 10-6 or #=5x 10-4, f = 10. 



F. N. M. Al-Showaikh, 1998, Chapter 3 

x10 
6r- 

5 

4 

"- 
U 
N 

2 

1 

oý C 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 
Time 

Figure 3.29: Method 2, experiment B, 0 =1x 10-6 or # =5x 10-', e = 100. 
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Figure 3.30: Method 2, experiment B, 0-1 x 10-6 or P= 5X 10-4, (' = 200. 
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Figure 3.31: Method 2, experiment B, /3 =1x 10-6 or 3=5x 10-4, e= 470. 
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Figure 3.32: Method 2, experiment B, 0=1x 10-6 or #=5x 10-4, f= 700. 
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Figure 3.33: Method 2, experiment B, 3=1x 10-6 or O=5x 10-4, e= 794. 
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3.8 Conclusion 

1.2"? 

Two finite-difference methods have been considered for computing the solutions of 
the SEIR measles model which is given by a non-linear system of equations (3.4.1). 
Bifurcation analysis showed that there are two stationary points; one is trivial and the 

other is non-trivial. It has been shown that the trivial steady-state is asymptotically 

stable for 0E [0,1.46104 x 10-6) and unstable for 0>1.46104 x 10-6 and the non- 
trivial steady-state is unstable for E [0,1.45975 x 10-6) and asymptotically stable 
for 0E [1.45975 x 10-6, oo), where ß is the infection rate. 

Two initial conditions (experiments) have been used to test the methods; the first 

corresponds to a mid-epidemic situation and the second refers to the case where measles 
is not present at all. 

Using a sufficiently small value of the time step £, in the first experiment, with the 

first method (the familiar explicit Euler method), the solutions obtained converged to 

the trivial fixed point for 0<1.46104 x 10-6 and to the non-trivial fixed point for 

0>1.46104 x 10-6. While, in the second experiment, the method converged to the 

trivial fixed point for both values /3 =1x 10-6 and 0=5x 10-4. 

As with most problems solved using it, the first-order explicit method requires a 

severe restriction on the time stepsize. 

An alternative second-order method has been used to solve the SEIR measles model. 

It has been seen that this method is very restrictive on stepsize, for the first experiment, 

with 0=5x 10-4 > 1.46104 x 10-6 and converged to the trivial fixed point for 

0=1x 10-6 < 1.46104 x 10-6 and large values of stepsize. In the second experiment. 

convergence to the correct fixed point has been seen for large values of the time step. 

Finally, it has been seen that the second method behaves much better than that 

of the well-known Euler method, as the Euler method is first-order accurate. whereas 
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the second method is second-order accurate. The maximum time step permitted with 

method 2, especially in experiment B, is larger than that of the Euler method. More- 

over, method 2 dose not produce overflow, in experiment B, as in the Euler method. 

with a very large time step. 

/ 



Chapter 4 

One-Dimensional Measles 
Dynamics 

4.1 Introduction 

In the previous chapter the SEIR model which consists of three non-linear ordinary dif- 

ferential equations (ODEs) was considered. In this chapter and the next two chapters 

some realistic phenomena (complexities), such as one- and two-space dimension distri- 

butions, will be considered. In this chapter a spatially-structured (reaction-diffusion) 

measles model will be studied. A two-dimensional measles model will be considered 

in the following chapter and a one-dimensional-structure measles model of hyperbolic 

type will be given in Chapter 6. 

Recent extensions of the SEIR model have included heterogeneities in terms of 

age (Anderson & May[1]; Dietz & Schenzle[13]; Schenzle[57]; Tudor[65]), seasonality 

(Aron & Schwartz[3]; Schenzle[57]; Schwartz & Smith [59]; Schwartz[58]), and spatial 

structure (Bartlett[5]; Murray & Clifi[4.9]; Schwartz[58]). 
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4.2 The Reaction-Diffusion System 

The partial differential equation (PDE) model which encompasses a variety of the 

models in the literature and gives a formal structure for the reaction-diffusion system 

is given below. It captures the basic feature of measles epidemiology discussed in 

the previous chapter and allows for differences in transmission according to space and 

time. In order to proceed, the epidemic is assumed to diffuse through space. Also, it is 

assumed that all births are into the susceptible class, and that births exactly balance 

deaths so that the total population size, N, is constant. 

The reaction-diffusion equations are given by 

as 
= µN_(µ+0I)s+a 

2 

at ax 
2 aE 

_ (BIS-(µ+o-)E+aa 
E (4.2.1 ) 

at aX2 
al a2J 
at 

in which S= S(x, t), E= E(x, t) and I=I (x, t) are the number of susceptibles, 

exposed and infectious individuals, respectively, at time t and distance x from the 

origin; a>0 is the diffusion rate. The parameters y, 0, a and 7 are as in the previous 

chapter. 

The initial conditions are of the form 

S', ° 10; -L <x<L(4.2.2 ) 

and the boundary conditions are 

aS(+L, t) 
_ 

aE(±L, t) 
_ 

aI (±L, t) 
=0t>0. 

(4 '3) 
ax - ax - ax - 
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On differentiating with respect to t, the equations in (4.2.1) give' 

Stt-aSSst+(µ+ßl)Sc+ßItS 
= 0, 

Ett-aE.,., t+(jL+a)Et-#ISt-0ItS = 0, (4.2.4) 

Itt-aI. xt+(µ+'Y)It -aEt = 0, 

It will be assumed that the PDEs in (4.2.1) are defined for -L <x<L, t>0 

and so, for these ranges, the initial/boundary-value problem (IBVP) { (4.2.1)-(4.2.3)} 

is symmetric about the line x=0. This may be exploited in deriving a numerical 

method by taking 

(0, t) = Ex(0, t) = I., (0, t) = 0; t>0, 

( 4.2.5 ) 

Er(L, t) = II(L, t) =0; t>01 

as the boundary conditions and equations (4.2.2) as the initial conditions for 0<x 

and solving the PDEs in (4.2.1) for 0<x<L, t>0 subject to (4.2.2) and (4.2.5). 

4.3 Discretization and Notations 

The interval 0 <-A, <L is divided into M+1 subintervals each of width h so that 

(M + 1) h=L and the time interval t>0 is discretized in steps of length . £. The 

open region SZ = [0 <x< L] x [t > 0] and its boundary aQ consisting of the lines 

x=0, x=L and t=0 have thus been covered by a rectangular mesh having 

coordinates of the form (Xm, t,, ) where x, n, =mh (m = 0,1,2, ... , 
M, M+ 1) and 

). tom, =nt (n=0,1,2.... 

'Note that from now on the notations St and S.. will be used to represent at and 
ei 

, respectively. 
Similarly for other functions. 
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The solutions of (4.2.1), (4.2.2) and (4.2.5) at the typical mesh point (xm. tom) are, 

of course, S(xm,, tm, ), E(xm, tn, ) and I (xm, tn, ): these may be denoted by and 
Im, respectively. The theoretical solutions of numerical approximations to (4.2.1) at 
the same mesh point will be denoted by A 

M, 
BM and Cam, respectively, while the values 

actually obtained, which may be subject, for example, to round-off errors. will be 

denoted by Am, BM and Cm, respectively. 

4.4 Numerical Methods 

4.4.1 Numerical Method for S 

Finite-difference methods are developed by approximating the time derivative in the 

first equation in (4.2.1) by the first-order forward-difFerence replacement 

St(x) t) ^[ S(x, t+ f) - S(x, t) ]/f ( 4.11 ) 

and the space derivative by the weighted approximant 

Sýx - h-2 [o {S(x - h, t+ f) -2 S(x, t+ f) + S(x + h, t+ f)} 

{S(x - h, t) -2 S(x, t) + S(x + h, t)} ], (1.1.2 ) 

in which x=xn(m=0,1,2,..., M, M+1), t=t,,, (n =0,1,2,... ) and 0(0 <0<1) 

is a parameter. When 0=0, (4.4.2) is O(h2) ash ---* 0 and O(h2 + f) as h. £ --+ 0 

when 0<0<1. 

Equations (3.6.13) and (3.6.16) will be used to obtain approximations to (zm, to+i) 

for use in the first equation in (4.2.1) 
. 

Now, using equations (3.6.13) 
. 

(4.4.1) and (i 
. -2) 

in the first equation in (4.2.1 gives 
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Am. _An mm+ (µ+ßCm)A 
m 

ý-h2 [0{A, +i-2Anm1+A +11} 

+ (l-0) ýAm-1-2AT+Am+1}1 
-µ1ýr=0, (i. 4.: 3 ) 

while using equations (3.6.16), (4.4.1) and (4.4.2) gives 

A, +1 - An 
Mm+ +ýCm1) Am-ha ý0{Ami-2 Am'+A+1r} 

+ (1-0) {Am 
-1-2Am+A , +1}] -µN=O. (4.4.4 ) 

In order to obtain a second-order approximation to S(xm) to+l), equations (4.4.3) 

and (4.4.4) should be added, as in Section 3.6.2. Averaging equations (4.4.3) and 

(4.4.4) gives 

n+l n Am -Am +1 (lt+ßC )Am1+1(µ+ßcm1)Am- 
h20 

{Am i-2Anm1+A +l1ý 
ý22 

-a (1-0) {An 
,-2An +An+1}-µN=0, (4. L5 ) 

which, after rearranging, becomes 

-aOpAm-i + 1+2aOp+ 
2(µ+0C,., 

)] Am 1 
-aopA 

+i 

_ (1-O)apA1 
[1_2(1_)a_ (+ßC 1)] A; 

- 2n 

+ (1-O)apAm+1+fft N, ( 1.1.6 ) 

where p= f1h2 

The local truncation error Ls = Ls [S(x, t), E(x, t), I(x. t); h, (] associated with 

(4.4.6) at the point (x, t) = (x,, t, ) may be written down from (1.4.5): it is 
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, cs - 
S(x, t+ ý) - S(x, t) 

+1 (IL +I (X, t) ) S(x, t+ Q) 2 

+2 (/I +0I(x, t+f)) S(x, t)-ao {s(x-h, t+e)-2s(x, t+f +sx+h t+ 
2 

{S(x - h, t) -2 S(x, t) + S(x + h, t)} -µN 

-{ St(x, t) + (µ +0I (x, t)) S(x, t) -a Sýx(x, t) -µN}. 4.4.7 ) 

Expanding S(x, t+ Q), S(x + h, t+ £), S(x + h, t) and I (x, t+ £) in (4.4.7) about 
(x, t) leads to 

11I 
ýs =[2 Stc 2 (Y Q 1) St 

12 
ý3 S It -aS,, t --a h2 Sxxrx 

12 
1111 

+ 
[6 

Sttc+, (µ +ßI)St+4ßSItt- 
20 aSxxttl £a 

1 
+... ( 4.4.8 ) 

Clearly, £S = O(h2 + . £) as h, £ -+ 0 except when 0=2 for then the term in 

vanishes in (4.4.8), see the first equation in (4.2.4, leaving 

_1111 , Cs 
12 a h2 Sxxxx +6 Sttt +4 (µ +ß I) Stt +4QS Itc -4a Sxxtt, £2 + ... 

( 4.4.9 ) 

which is O(h2 + £2) as h, f -* 0. It may be concluded that the unique O(h2 + £2) 

method, as h, .£ -+ 0, contained in the family (4.4.6) arises when =2 and is given 
by 

-lapAn+l + l+ap+1f(µ+pcm) Aml_1aPA +i+1f#Cm+l Am 
22 

= apAm-1 + 1_ap_ tµ 
J 

Am+2apAm 
2 +l L 

+ ßµN. ( 4.4.10 ) 

The finite-difference method (4.4.10) may be applied for m=1,2, ... 
M and n= 

0,1,2, 
.... 

In the case m=0 it requires some modification and may be simplified a 
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little when m=M+I. Applying (4.4.10) with m=0 introduces the terms An 11 and 
An 1. Now, the points (x_1, to+1) and (x_1, tn) are outside the grid superimposed on 
QU oft However, the boundary conditions (4.2.5) give, to second order. An 1= An 

and Ani 1= Ai +1 so that, for m=0, equation (4.4.10) may be modified to give 

1n- 

n+l n ýl+ap + 2ý(µ ý-ßco)}An0+l apAn1+l 
1 

+2ýQco Ao 
1= [1_ap_] 

Aö+apAn+QpN. (4.4.11 ) 

1 Now with m=M+1, it follows from (4.2.5) that AM+2 =AM and Ani+2 =AM 

and so (4.4.10) may be written as 

-a p AM 1+ [i+ap+ (+ 
,Q 

C+1) 
J 

=ap AA, 11- a p- 
2 

. ßµJ AM+1 +QµN. (4.4.12 ) 

4.4.2 Numerical Method for E 

The time derivative in the second equation in (4.2.1) is approximated by the first-order 

forward-difference replacement 

Et ,: [E(x, t+t) -E(x, t)I/t 

and the space derivative by the weighted approximant 

Eýý ti h-2 [ {E(x-h, t+1)-2E(x, t+t)+E(X+h, t+0)} 

( 4.4.13 ) 

+ (1 - ý) { E(x - h, t) -2 E(x, t) + E(x + h, t) }], (4.4.11 ) 
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in which x=xn(m=0,1,2,..., M, M+1), t=t.,, (n=0, L2,... ) and 0(0<Q<1) 
is a parameter. When 0=0, (4.4.14) is O(h2) as h ---+ 0 and is O(h2 + ý) as h, ( -a 0 

when 0<0<1. 

Using equations (3.6.25), (4.4.13) and (4.4.14) in the second equation in (1.2.1) 

gives 

Bn+l 
_ 

Bn 
mm_N arm An +l + (µ ý) B1- 

02 
ýOýB n+ l-2 Bn+l + Bn +1 I 

l/ 
M-1 mM +l 

) 
\1 - 

ýl { 
Br. 

-1 -2 Brnn + Bm+l }]_0 (4.4.1.7) 

while using (3.6.28), (4.4.13) and (4.4.14) in the second equation in (1.2.1) gives 
Bn+l 

- 
Bn a mmß 

lam n+ n' Am + ýý(G + Q/ Bm 
h2 

Brr± 
1-2 

Bm+l + Bm+, 
l 

+ (1-0) 1Bm, 
-1-2Bm+BM+1}, =0. ( 1.1.16 ) 

Following Section 4.4.1, to obtain a second-order approximation to E(xm, to+l ), 

equations (4.4.15) and (4.4.16) should be added. Averaging equations (4.4.15) and 
(4.4.16) gives 

n+l n Bm 
- 

Bm 

_10 
Lynn t rc 1_N 

cm 
1 

`4m 2+ 
ul Bm 1+2 

\µ 
+ Bm 

2 lý 11 JJ2 

-a 
n+1 n+l n+l l Bn 2 Bn 

h2 

[oýBm-1 
-2 

Bm +B 
rn, +l 

}+( 
\1 - 

ýl 
m-1 m 

Bm+l}] = 0, (4.4.17) 

which, after rearranging, becomes 

-aopBn 
i+ [1+2 

aop+Iý(µ+or)l B 1-aOpB +i-2fßCmAm+i 
21 

- 
2fßCm 1An =(1-O)apBm-1 +[1-2(l-O)ap 

-2 (µ+a)] Bm+(1-0)apBm+l7 (1.1.1 ) 

where p= f1 h2 
. 
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The local truncation error LE _ , 
CE[S(X, t), E(x, t), I(x, t); h, f] associated with 

(4.4.18) at the point (x, t) = (xm, t, ) may be written down from (4.4.17): it is 

£E = 
E(x, t+ t) - E(x, t) 

- 
10 I(x, t) S(x, t+ i) 12 

- 2ßI(x, t+Q)S(x, t)+ 2 (µ+u)E(x, t+i)+ 
1 

(µ+a)E(x, t) 2 

- 
h2 [0{E(x-h, t+i)-2E(x, t+i)+E(x+h, t+Q)} 

+ (1- q) { E(x - h, t) - 2E(x, t) + E(x + h, t) }] 

-{ Et(x, t) -0I (x, t) S(x, t) + (µ + a) E(x, t) -a Exx }. (4.4.19 ) 

Expanding E(x, t+ . £), E(x + h, t+ £), E(x f h, t), I (x, t+ Q) and S(x, t+ Q) in 

(4.4.19), using Taylor's expansion, about the point (x, t) leads to 

LE =1 Ett -f- 
1 

(µ + Et -1QS It - ,ß 
Sc I-a Eýxt 

2222 

-1a h2E.., + Ettt+(µ+a)Ett-4, QIStt 
12 64 
114.4.20 

-4S Itt -2 Exxtt 1 f2 + ... -ý) 

The second equation in (4.2.4) reveals that the coefficient of £ in (4.4.20) vanishes 

provided 0=2, leaving 

_1211 a) ýE 
12 ah Eýýxý +ý6 Ettt +4 (µ +) 

, 
QISttSItt-4aExxtt]£2+... (4.4.21) 

4 4. 

which is O(h2 + £2) as h, £ -ý 0. It may be concluded that the unique O(h2 + £2) 

method, as h 
It -+ 0, contained in the family (4.4.18) arises when 0=2 and is given 

by 
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2apB + 1+ n+l 
Bm1-1apBým iCmnA 2+ n+l 2 2 

- -ýýC, lA 1 
apBn2 2 ý. -j -ý 

[1-aý, 
- 

1 
2Q(µ+ý) BM 

1 
+ 2apB, +11 (4.4.22) 

with m=1,2,..., M and n= 

As in the case of S, equation (4.4.22) may be modified for use with m=0 and 
m=M+1 using equations in (4.2.5) to obtain, respectively, 

Ll+ap+2 (µ + ý) Bö +l -a p Bi+l -l. o C' Aa+i _1Qo Cö +l Aö 
22 

_ 2l Bö+ozpBi, (4.4.23) 
J 

and 

-a p BM 1+ [i+ap+ 
2f 

(IL + a) BM+l -2 C, 7f+l AM+j -2Qß CM+j Am +, 

= apBivl+ 
1I-ap- 

2f(ft+o, )1 BNr+ý. (4.4.24 ) 

4.4.3 Numerical Method for I 

The time deivative in the third equation in (4.2.1) is approximated by the first-order 

forward-difference replacement 

It -ý [I(x, t+Q) - I(x, t)]/f 

and the-space derivative by the weighted approximant 

Imo, r, -i h-2 [ {I(x-h, t+Q)-2I(x, t+2)+I(x+h, t+i)} 

+ (1 -ý) {I(x-h, t)-2I(x, t)+I(x+h, t)}] , 

( 4.4.25 ) 

( i. 4.2( ) 
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in which x=xm(m=0,1,2,..., M, M+1), t=t,,, (n=0,1.2.... )andO(0<ö<1) 

is a parameter. As before, when 0=0, (4.4.26) is 0(h2) as h ---+ 0 and O(h2 + () as 
h, f -+ 0 when 0<0<1. Now equations (3.6.34) and (3.6.3 7) will be used to obtain 

an approximation to I(xm,, t7z+i) for use in the third equation in (4.2.1). To reach this 

approximation, equations (3.6.34), (4.4.25) and (4.4.26) are used in the third equation 

in (4.2.1) to give 

Cn+1 - Cn CY r(l mm-Q Bn+1 +(+)C'- h2 L( C"+' -2 Cm 1+ Cý+1 
J ml 

\1 -ýl 
{Cm-1 

-2c +CM+1}] =0, 
( 1.1.2I ) 

and equations (3.6.37), (4.4.25) and (4.4.26) are used in the third equation in (1.2.1) 

to give 

Cn+1 - Cn e' 
0ý ýr /ýr mm_O. Bn ++ Cn f 

lJ 
n+l 2 li 

n+l +C11 
m 

ý) Cm n 
L m-1 m m+l f 

+ (1-ý) {C-1-2Cm+ Cm+1}1 =0. (4.4. `8) 

In order to obtain a second-order approximation to I (xm, to+l ), equations (4.4.27) 

and (4.4.28) are averaged to obtain 

Cn+l - Cn 1 
mm-m1 

1QB 
m+( lµ7)C"' 2\/t +1)cýn 1+2 + QB Q22 

OZ 
Lln --ff Cam. +1 -2 Cn+l + Cn+l + l(l -c h2 m-1 m mß-1 

) 
m-1 

- 
2Cm+cm+1}] =01 

ý 4.4.29 

which, after rearranging, becomes 

ao Pcm i+ fI 
+2aOp+ 2ý(µ+'Y)] 

ýý 
m+l - 

L 

_ (1_ )apcm-1 + 1-2(1-ý)a1ý-1ý(µ+T)] ('i 
L 

+ (1 - O) ap cm+l +u Bn 
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where p= f/ h2 
. 
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The local truncation error LI = , CI[S(x, t), E(x, t), I(x, t); h, Q] associated with 
(4.4.30) at the point (x, t) = (X,,,, t,,, ) may be written down from (4.4.29): it is 

Cr =Q-2o, E(x, t+ ý) - o, E(x, t) 

+2 (µ + 'Y) I (x, t+ ') +1 (µ + 'Y) I (x, t) -a[O{I (x - h, t+ Q) -2I (x, t+ Q) 
2h 

+ I(x+h, t+. Q)}+(1-0) {I(x-h, t)-2I(x, t)+I(x+h, t)}) 

- {It(x, t) -a E(x, t) + (µ+ry)I(x, t) - aIý,., 1. ( 4.4.31 ) 

Expanding I(x, t+ . £), I(x ± h, t+ £), I(x f h, t) and E(x, t+ Q) in (4.4.31), using 
Taylor's expansion, about the point (x, t), gives 

Li =2 Itc +2 (µ + It -2o, Et - Ixxtt 

ttt + 
4+ 

Itt -4o, Ett I -2a h2 IIxxr + 
[-6 

114.4.32 

The third equation in (4.2.4) reveals that the coefficient of Q in (4.4.32) vanishes 

provided q=2, leaving 

. Cr =-1a h2 Ixrxx + 
j1 Ittt + (µ + 7) Itt -4u Ect -4a Ixxtt ] 12 + ... '(4.4.33 

) 
12 L6 4 

which is O(h2 + £2) as h, £ --4 0. The unique O(h2 + £2) method in (4.4.30), when 

0=2, is thus given by 

1aPc 
+12lýBm 

i 
-1apCm 

i+ 11 
ý-app-1f+ 7)l c 

71 J2 2 

=1 apc-i+ 
[I-cep- 

2 
ý(µ+7)l Cn-ý2aPcm+1 

2 

+ 
2QarBm, 
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with m=1,2,..., M and n=0,1,2,.... 
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Equation (4.4.34) may be modified, as in the case of S and E. for use with ni =0 
and m=M+1 using the boundary conditions in (4.2.5), respectively. to obtain 

� 
ýl+cep+2+7ýl 

Cö+l - apCi+i_ 
IfaBo+i= [1__(t+)J 

Jo 

+a pCo +Z is Bo 

and 

( -l. 1.3:; 

-apCM1 + [1+ap+2f(µ+Y)l c''f or BM+i=ap( 
1 J12 

+ 
[1-ap-ý(µ+Y)l 

C1+1ýýB. 
1 1 (4.4.362) 

2 

4.5 Implementation 

Let An+l = 
f AO An+l 
L1 

n+l 1T Bn+l 
M+1 J = 

[Bn+1 Bn-ý1 8n+1 1T 
and C1 = 0'1'' M+1 

IC0 +1, C1 +1, 
"",, CM+1, T, 

where T denotes 
J 

transpose. Then the price to be paid in 

using (4.4.10) -(4.4.12), (4. 4.22)-(4.4.24), (4.4.34), (4.4.35) and (4.4.36) to obtain O(h2+ 

£2) solutions to (4.2.1) as h, 
.e -+ 0 is that An+l, Bam, +1 and Cn+l cannot be obtained 

by solving three linear algebraic systems of order (M + 2) at each time step. either 

in sequence or in parallel (see, analogously, Twizell et al. [69]) 
. 

Instead, because of 

the appearance of the elements of Cn+1 in (4.4.10)-(4.4.12), the elements of An+1 and 

Cam'+1 in (4.4.22)-(4.4.24) and the elements of Bn+1 in (4.4.34)-(4.4.36). the vectors 

An+1, Bn+1 and Cn+1 must be obtained simultaneously by solving a linear algebraic 

system of order (3 M+ 6) at each time step. 

and U 
[(An)T. (Bn)T, C)T]T, Let Un+l = 

[(An+1)T, (Bm+1)T, (Cm+1)T]T n_ 

where T denotes transpose. Then it may be seen that (4.4.1O)-(4.1.12'). (-1.1.22)- 

(4.4.24), (4.4.34), (4.4.35) and (4.4.36) may be written in matrix-vector form as 
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w'nUn+1 
= MnUn+b ( 4.5.1 ) 

in which 

Xn 0 Hl 

Wem' = Fn Yn Fn 12 (4.5.2) 

0 H2 Zn 

PTh O0 

Mn =0 Qn 0 (4.5-3) 

0 H3 RTh 

where 0 is the zero matrix of order (M + 2) and the vector b is a column-vector of 

order (3 M+ 6) and is given by 

T 

b= QuN,... jt N, O,..., 0 ( 4.5.4 ) 
(M+2) times 

The matrices Wn and Mn are both of order (3 M+ 6) and their submatrices are of 

orders (M + 2) and are given by 

VO -a p 

-tap Vi -tap 

-Zap V2 -2ap 
Xn = 

1 
-tap vM -2 ap 

-a p VM+l 

( 4.5.5 ) 
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Yn = 

vy -ap 
i _Zap vy _2ap 

_Iap vy -2ap 

-tap vy -2ap 

-ap vY 

I 

vz _ap 

_1 ap vZ _1 ap 22 

_2ap vz _2ap 
Zn = 

Pn = 

nn = 

/ 

-tap vZ -2ap 

-a p vZ 

VP ap 
2 ap vP 2 ap 

2 ap vP 2 ap 

Zap vP 2ap 

ap VP 

vQ ap 

2 cap vQ 2 ap 

lap vQ 2 ap 

2 ap vQ Zap 

ap VQ 

138 

( 4.5.6 ) 

( 4.5.7 ) 

( 4.5.8 ) 

( 4.5.9 ) 
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Rn = 

vR ap 

Zap vx 2c p 

Zap V1 R Zap 

Zap 
vR 2cap 

ap VR 

H1 = diag {2Qß 
Am, 

I H2 = diag {-2 
07 I(M+2) 

Fi= diag {-1ßCm and F2 = diag {-2# Am }, 
l} 

where 

vi =1 +ap+ 
2 

(f, +ßC ); 

VY =1 -f- cep + + 

vz = 1+ap+ 
2 

+ 

VP = 1-ap- 2 ý t, 

vQ = 1-ap- 2 «p +0-), 

vR = 1 -ap- 2 i(µ+7), 

139 

( 4.5.10 ) 

H3 = diag {2Qu 
I(M+2) 

i= 0,1,2,..., M, M+1, 

I(M+2) is the identity matrix of order (M + 2) and p= . 2/h2. 

( 4.5.11 ) 

( 4.5.12 ) 

Further research reveals that it is not necessary to compute A"+1, B"+1 and Cn+l 

simultaneously by solving the linear algebraic system (4.5.1), which is of order (3 N+6), 

on a single processor. It is possible after all to compute A'+1, Bn+l and Cn+1 in parallel 

on an architecture with three processors; this is made possible because Fl, X" Y'. F2, 

Z", Xn Zn Fi 
, 

F2 and Y" commute with X n, H2 
, 

Zn, Hi 
, 

Fi Zn X', H1 and H2 
, 

respectively. 
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Equation (4.5.1) may be split to give the following equations 

Xn Ani-' +Hl Cn+l = Pn An +b l 
F1 An+1 +yn Bn+l +F, 2 Cn+l = Qn Bn, ( 4.5.13 ) 

H2 Bn+l +Ztn Cn+1 = H3 Bn + Rn C tm 
, 

which may be solved for An+l, Bn+' and Ch+1. These vectors may then be obtained 

using an architecture with three processors on which to implement the following algo- 

rithm. 

Algorithm : 

Processor 1: Solve 

[ Yn Zn Xn - H2 (F2 X Th - Hi Fi )] An+l Yn Zn _ H2 F2 ] Pn An 

+ [Yn Zn -H2 F2 ] b+[H2 Hi Q" - Yn Hi H3 ] Bn -YnH1 R'ýC'ý 

for An"+1 

Processor 2: Solve 

[Xh(ZnYh-F2H2) + FiHiH2]gý, +l Xý. ( ZnQn _ F2H3 )+FiHlH3]gn 

+ [F1 Hl -XnF2 ]RnCn -Fl Z'ý pn n _Fi Z"b 

for Bn+1 

Processor 3: Solve 

[H2 (XnF2-F1nHi) 

/ 

for Cn+} 

- X72 Y' Zn]Cn+1 = [H X Qn-AnY"H ]W 

- H2 F1 Pn An -Xn Yn R" C" - H2 Fl b 

\ 

All the three processors solve a linear algebraic system of order (M + 2) at each 

time step. 
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4.6 Stability Analysis 
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The von Neumann and matrix stability analysis methods both failed to give a criterion 
for the stability of the methods involved in this chapter as shown below. 

To discuss the von Neumann method of analysing stability, consider a small error 
Z of the form 

Zs, 
m - 

Am - An = e«, nPe: v, mh 
i 

nnn ZE 
m =B m-'m 

Zn ý-v nn 
Im= lý m- 

Cm 

= e02 
7Li 

ei 
v2m%L 

= ea3 ne euI3m, 
h 

where ai are complex and vi (i = 1,2,3) are real and i=+. 

Substituting ZS 
m and ZI 

m 
into (4.4.10) gives 

_ ape al (n+l)2 
eivl 

(m-1)h + 
rl 

+ap+If 
(/,, 

+ß ea3 nt iv3 mhl ea' 
(n+1)e 

eivl mh 
IL J 

_ -ape 
at (n+1)e 

eivl 
(m+1)h +Qß ea3 

(n+l)Q iv3 mh eal of eivl mh 
22 

_2ap eal ne eý,. ' (m-1)h + 
(1 

-ap-2Q µJ ecr' ne eivl mh 

+1 ape al ni eivl 
(m+1)h 

+CN. 

2 

As the underlined term cannot be uncoupled, an explicit expression for ýS = ea' e 

cannot be found; likewise, it is not possibe to find ýE = eat' and ýI = e°`3 e explicitly. 

Hence the von Neumann method is not appropriate for the stability analysis. 

When the matrix stability analysis is applied to equation (4.5.1), the quantity 

(Wn)-1 Mnll <1 

is required in some norm. That is, stability of the finite-difference approximation is 

ensured if all the eigenvalues of (W'i)-1 Mn are, in absolute value, less than or equal 
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to 1. But Wh and Mn are both block matrices and it is very difficult to find the 

eigenvalues of (Wn)-1 Mn. So the matrix stability analysis is not practical either. 

Therefore, the maximum principle analysis will be used to discuss the stability of the 
finite-difference approximations (4.4.10)-(4.4.12), (4.4.22)-(4.4.24), (4.4.34), (4.4.35) 

and (4.4.36). 

Assume that a solution of (4.2.1), (4.2.2) and (4.2.5) exists in the closed region 

[ CR :0<x<L, 0<t<T] such that a4S/ax4, a4E/ax4, a4I/aX4, a2S/axe, 
ä2E/öx2 and ä2I/äx2 exist and are bounded in CR. 

In order to use the maximum principle analysis to examine convergence and stabil- 

ity, the first equation in (4.2.1) may be written as 

1a 
(S.,., +Sý,., ) = St-µN+ 

1 
(µ+ßI) S+ 

1 
(µ+ßI) S 

2 

= St-µN+G1+G2, ( 4.6.1 ) 

with initial and boundary conditions are as in (4.2.2) and (4.2.5) and where G1 and 

G2 are assumed to be boundedly-differentiable with respect to S and I. 

The difference equation to be studied to approximate (4.6.1) is (0 = 1/2) 

1 

aV2 
(A 

,n 
1+Am) 

_ VtAn 
- µN+ 

2 
(µ+ßcm) Am 1 

+2 (µ+ßn+1 ) Am, n> 0, ( 4.6.2 ) 

where Am is an approximation to Ste,, at the point (x, t) =: (x,,,, tn) defined on CR and 

agrees with S(x, t) on the boundaries and V2 and Vt are defined by 

V2 Am =1 Ate, 
-1 -2 Am + Am+i) /h2 

, 

. ptAm - 
(Am 1- Am) It 

( 4.6.3 ) 

It is known that 
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_ 1= 
C'1 Xm, to+l 

, 
Sn-ý1 

, 
In 

m-) 
(71 (Xm, to+l 

, 
Smý Im) +(n1- snm) aC1 

71 as 

Gl_ ) as 
2 

(M+NIm) Smn +(Sm 1 
-'Snm as 

G2 
= G2 (Xm,, to+ll Sinn, Im+1) 

= G2 (Xm to+1 Sn� Imn )+ (Imn+1 
- 

In ) 
-a-GU m ar 

2 
+ßIn) 

. 
Smn +(Im 1- In ) as 

ar 
asn+' sn+' s; 1 a2 sn+' m-m 

at -em+2 ace 
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2 
V2 (ý7 1+ß.. 

7m) =1 
82S 1+1 a2S 

+1 h2 a4sn+1 a: sn 
l 

2 8x 2 8x 24 

( 

8x4 
+ 

ax4 JI 
( 4.6.4 ) 

where the barred derivatives are evaluated at intermediate argument values as called 
for by the Mean Value Theorem. 

Substituting (4.6.4) into (4.6.1) gives 

2aý2 Sn 1+Sý, ý 
_ ýtý7m-fGN + Im) Sm 1+1 (µ+NIr-+1) sm- 

22 

a4Sri+l 
+1h2m 24 aX4 

T4 -Sm 1Q a2ý}1 

aX4 2 at2 

In+l 
_ 

In 
5G2 

al 
( 4.6.5 ) 

The assumption on S above requires the boundedness of all the derivatives ap- 

pearing inside the bracket along with S? ) and (I�±1 - Imo) in the region 

0<x<L, 0<t<T. Hence, in this region, 

aV2 
(Sn 1 +S,, ý 

_ VtSn,,, -µN+ 
2 

+0Imo) sn 1 
2 

mm 9m 

with 

9' =O(h2+f)" 

_ 
(Smn+1 

_ 
sn 1 

DGl 

mJ air 

( 4.6.6 ) 

( 4.6. E ) 
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Now, let 
zn = Sm _ An 

m 
z 

2, 
F'm 

- Bin, ( 4.6.8 
Zn 

-In- Cn 
3m 7n, m 

Then, if (4.6.2) is subtracted from (4.6.6), 

2 aV2 (zr+1 + Zimý _ VZ im + +ßIn) S, ý 1-1 (µ+ßC"n) A n+i 22m 

+2+I 1) S, n 7r, 
n 

2 +QC,, +l Am+gß, 469 

with Z' and Zim 1 vanishing on the boundary. As 

+l In n+l n) + 
aG, 

ý+11 5ý+'-Am G, (m, to+iSm Iý J= Gi ýý, to+ý Aý cm l as ml 

aGi + (I - Ct 
091 ,) 

and 

( 4.6.10 ) 

s \sm- 
Am, ) C2 (Xmitn+l)S,, 1,,, +l 

- 
G2 (Xm, 

tn+l, Am)cm 1) + 
aas 

+ 
aG2 

(Im+l 
-c 

n+l ), 
(4.6.11 ) 

al 
it follows that equation (4.6.9) may be written as 

121 1äG1 1 äG1 1 aG2 
C(Z1 lm 

+ Zlm 

J= 
ýtZl, 

n 
+2Ö, 

S 
Zim +2 

al 
Z3m +2 

ÖS 
Zl'n 

1 aG2 
`1+ 

9m +2 
al 

Z3"n ( 4.6.12 ) 

Assume that Z3m and Z3 +1 are bounded. Then equation (4.6.12) may be written 

in the form 

V2 (Zlmi 
+ Zlm\ 

_ 
VtZn +2 MS (Zimt 

+ Zn 
lml 

2 1\ /f J 

+ 
2Mr (Z3±1+Z3m)+9m (4.6.13 ) 
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where Ms = max 
{ 

as , as 
} 

and MI = max ai ' ai 

It is known that gm is bounded and Z1. and Zim 1 vanish on the boundary. Hence, 

by Theorem 1.4.1, An and A, + 1 converge uniformly to Sm and Sim 1 

Now, the second equation in (4.2.1) may be written as 

2 (Exý+Eýý) = Et- 
I 

#IS- #IS+ (µ+ý)E+ +a)E 222 

= Et-G3-G4+G5+2(µ+o, )E, (4.6.14) 

with initial and boundary conditions as given in (4.2.2) and (4.2.5) and where G3, G4 

and G5 are assumed to be boundedly-differentiable with respect to S, E and I. The 

difference equation to approximate (4.6.14) is (0 = 1/2) 

+I 1 2äV2 (B1 +B. ) 
_V Bm-2, QC 

, 
Am 

2ß3c+'AM+2(y+o, 
)Bm i 

1 
-f- 

I 
(µ+a)ß, n>0, ( 4.6.15 ) 

where V2 and V are defined in (4.6.3). 

It is easy to see that 

G3 = G3 ( Xm, tn-ý1, 
"gym 

1, In 
- 

G3 ( xm, to+l, 
'Smý 

Im) + 
(Sm 

1- 
`7m) as 

1ß In Sn + (s'n+l 
_ 

s'n 1 aGa 

mm`mm1 as , 

n n+1 G4 = G4 (Xýn) to+l, im 
i 

Im, 

E n+l = 

aEn, l 
at 

mm 2V2 
(En+1+E 

Sn n( n+l 
_n 

aG4 G4(Xm. itn+1, miIm)+lm 
Im) 

8I 

1I Sn+(I, +1-In)ate 

n nß-1 n G5(Xm, tn+l, Em) +(Em -Em) öE 
i9G 1+En+(En+l-En) mmm 8E 1 

E"+1-E" 1 02E' 
'n 

1 
'n +2 

8t2 1 

1 a2E�±1 1 a2Em 1 ha a4Em + 
a4Eý 

2 axe 
+2 

axe 
+ 

24 

( 

ax+ at 

( 4.6.16 ) 

where the barred derivatives are evaluated at intermediate argument values as called 

for by the Mean Value Theorem. 
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Substituting (4.6.16) into equation (4.6.14 gives 

2av2(Em1+E ý= VEm-1ßl, nS 1-1ßIn+1,5'm+1(µ+a) En+l 222 

11 a4En+l a4ý'ii n1 a2En+l 

+2 (/1 + o) Eý + 24 h2 aX4 + aX4 +2e ate 
+ 

(S+1 
- 

S,,,, ) 
aG3 

+ 
(Im 1- Inf 

aG4 

as / al 
- 

(E+1_E) 
5C5 

M ( 4.6.17 ) 

The assumption on E requires the boundedness of all the derivatives appearing 

inside the bracket along with (Sn,,, +1 
- 5n,,, ), (E nm+1 

-En ms) and (In�, +1 
- Inm) in the region 

0<x<L, 0<t<T. Hence, in this region, 

lave ýEi 1+Em) =V Em-28ImS' - 28E, ß'Sý+2(µ+o)E, ý l 
2 

+2 (/ +u)E 
. 
+9 

.3(4.6.18 
) 

with 

gn=O(h2+£). (4.6.19) 

If equation (4.6.15) is subtracted from equation (4.6.18) and using the definitions 

in (4.6.8) for the truncation errors, 

2m _ VtZm -1 Im Sý i 4- 
10 

cm Aß±1 1a 
V2 (z1 + Zn 

22 

- 
1I 1Sn 

2 
C' 'Am+2+a)Z2±ý 

2 

1 
+ Z2m+9mß ( 4.6.20 ) 

with Z2 and Z2m' vanishing on the boundary. As G3 and G4 can be written as in the 

form of (4.6.10) and (4.6.11), if follows that equation (4.6.20) becomes 

l aG3 n+l 
1 öG3 

Zn aG4 Zn im a O2 
(zr' 

u2m _ 
ýt Zn 

-2 as 

ýim 

2 öI 3m 2 öS 
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Z ÖG4 
Z3 +1 + (U + 0, ) Znm l+1 

`µ + or) Z 
2 01 2\ 2m 

+g 

147 

( 4.6.21 ) 

Let Ms = max { 
as 7 

äs } 
and MI = max f 

ai al ,q}. Then equation (4.6.21) may 
be written in the form 

2aV2 (Zm 1+ Z2 
�i) 

- VtZ2m 
-1 

MS (Zin+l 

m+ 
Zlm I-1 MI (Z+1+Z) 'r 'r 

22 

+ 2(µ+'7)Z2±1+2(µ+ý)Z2m+9 (4.6.22) 

Assume that Zim, Zim 1, Zn and Z3 {"1 are bounded. Since Z2m and Z2 
±1 vanish 

on the boundary, it follows, by Theorem 1.4.1, that BM and Bm 1 converge to En and 
Em 1 uniformly. 

The third equation in (4.2.1) can be written in the form 

1 
(1,, +I., ) = It- 

I 
E- 

I 
uE+ 

I 
(µ+7)I+2(µ+'Y)I 

2222 

= It-G6--oE+G7+2(µ+'Y)I, (4.6.23) 

with initial and boundary conditions as given in (4.2.2) and (4.2.5) and where, as 

before, G6 and G7 are assumed to be boundedly-differentiable with respect to E and 

I, respectively. The difference equation to approximate (4.6.23) is (0 = 1/2) 

a V2 (C 1+C) _ vtCm- 
1QBm2QBm 1+2f 
2 

Cm+ 
2 

I () + 2(µ+y)c,,,,, n>0,4.6.24 

where V2 and Vt are as in (4.6.3). 
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It is easy to show that 

nß-1) 6= 
G6 (Xm, tn+l, ý'm 

J 

n G7 = G7 ( Xm, tn+1) Im 11 

azm 
at 

Em) + (Em 1- En ) 1-15 G6 ým tý+l 
m aE 

21 or Em+(E+1-En) aG6 
m 8E 

_Imn acs G7 (xm ý tn+l, Iýn n)+(Im Im n öI 

2(µ+7)II+(I +1_In aG7 

Im l JrL 1 02x�+1 +2 
ate 
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2 V2 (Im 1+I)=1 82I 
2 

1+ 1 a2 I2 
+1 h2 

(84I+1 

J 
8x4 

+ 
ax4 i 

( 4.6.25 ) 

where the barred derivatives are evaluated at intermediate argument values as called 
for by the Mean Value Theorem. 

Substituting (4.6.25) into equation (4.6.23) gives 

a v2 (In+1+In) 
m=2222 

1 ö4In+1 
h2 m 

124 äx4 

a4ln 
+1Q 

a2In+1 

ax4 2 8t2 

- 
(I+1_I) naI ( 4.6.26 ) 

The assumption on I requires the boundedness of all the derivatives appearing inside 

the bracket along with (E,, +1- E) and (Em 1- I) in the region 0<x<L, 0<t<T. 

Hence, in this region, 

1aV2 (jn+1+I, ý\ _ Vtl, n-2QE -2o- E; 1 
2(µ+'Y)I 2 

1 ý_ +2 (µ+'Y)I +9 
,(4.6.2 

with, again, 

9n =O(h2+f)" ( 4.6.28 ) 

(En n+1 
_ 

En 
Öc6 

- m) aE 
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If equation (4.6.24) is subtracted from equation (4.6.27) and using the definitions 
in (4.6.8) for the truncaion errors, 

1 a V2 (7/3 +1 + Z3�ß) _ VtZ3m -1a Z2,,, -1Z2 22 

+2 Gµ+'Y)Z3±1 +1 (µ+ry)Z3m +9n ( 4.6.29 ) 
2 

with Z3,, and Z3 ±1 vanishing on the boundary. 

Assume that Z2m and Z2m 1 are bounded. Moreover, Z3,,, and Z3 ±1 vanish on the 
boundary. Therefore, by Theorem 1.4.1, Cm and C1 converge uniformly to In and 
I+ 

4.7 Numerical Results and Discussions 

To test the second-order methods (4.4.10)-(4.4.12), (4.4.22)- (4.4.24) and (4.4.34)- 

(4.4.36) for susceptibles, exposed and infectives, respectively, the initial/boundary- 

value problem 

St = µN-(µ+ßI)S+aS,., 

Et = ßIS-(µ+a)E+aE.,., ( 4.7.1 ) 

It = uE-(µ+-y)E+cil 

with the initial conditions 

S(x, 0) = S°(x), E(x, 0) = E°(x), I (x, 0) = I°(x) ;0<x<1(4.7.2 ) 

and the boundary conditions 

Sß(0, t) = Eß(0,1) = Ix(0, t) = 0; t>0, 
( 4.7.3 ) 

SS(l, t) = EE(l, t) = Ix(l, t) = 0; t>0, 

was solved using the set of parameters given in (3.4.4) for N, µ, c and 'y with the 

infection rate, ß, chosen to be 0=5x 10-4 and the diffusion rate, cr, to be a=0.01 . 



F. N. M. Al-Showaikh, 1998, Chapter 4 150 

In the following numerical experiments the total numbers of susceptibles, exposed 
and infected individuals are taken to be 1.25 x 107,5 x 104 and 3x 104, respectively. 
The ways in which each is distributed over the interval 0<x<1 give the functions 
S°(x), E°(x) and I°(x) in (4.7.2). 

" Experiment A 

In this experiment, hat-shaped initial distributions are used for S, E and I. Taking 
h=0.025 so that M= 39, giving the discretization x, (i = 0,1, 

..., 40) of the interval 
0<x<1, the initial conditions in (4.7.2) are distributed as follows (see Figures 4.1 
and 4.2) 

s(x , 0) = 
31250 i 0<Z< m+I 

31250(M+1-i) M21 < <M+1, 

E(xi, o) - 

I (xi, o) - 

125i 0<i<M± 2 

125(M+1-i) 
, 

M21 <i<M+l, 

75 i 0<Z<M21 

75(M+1-i) 
, 

M21 <i<M+l. 

Initially, the maximum value of each class of individuals is concentrated at the 

middle of the interval (0 <x< 1) and the numbers decrease linearly to zero at the 

boundaries x=0 and x=1. 

As time is increased, the number of susceptibles is decreased whereas the numbers 

of both exposed and infectious individuals are increased until the time t=0.09 after 

which the number of susceptibles becomes less than the number of exposed individuals, 

near the middle of the interval, see Figure 4.3. This reveals the dynamic behaviour of 

measles and is as would be expected. 

Figure 4.3 shows the distribution of susceptibles, exposed and infectious individuals 

at time t=0.1. Figures 4.4-4.7, respectively, give three-dimensional plots of suscep- 

tible, exposed, infectious and recovered individuals for 0<x<1 and 0<t<0.1. 
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The profiles in Figure 4.3 can be seen clearly in Figures 4.4-4.6 by locating the plane 
t=0.1 in each figure. 

As the diffusion rate, a, increases, the dynamic behaviour of measles changes as 

shown in Figures 4.8-4.13; as the diffusion rate, a, increases, the number of susceptibles 
becomes larger than both the numbers of exposed and infected individuals and both 

the exposed and infected individuals spread on the x-axis. 
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Figure 4.1: Experiment A, initial distributions of susceptibles, exposed and infectives. 
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Figure 4.2: Experiment A, initial distributions of suseeptibles(-); exposed(--) and 
infectives(-J. 
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Figure 4.3: Experiment A, dynamics of measles at time t=0.1, a=0.01, e=0.001 

and h=0.025; susceptibles (-), exposed (--) and infectives (-. ). 
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Figure 4.4: Experiment A, three-dimensional distribution of susceptibles; £=0.001 and 
h=0.025. 

x 10 

2 

1.5 

an ö 
cx 

w 

0.5 

O 
1 

0.1 

Figure 4.5: Experiment A, three-dimensional distribution of exposed individuals: Q= 

0.001 and h=0.025. 
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Figure 4.6: Experiment A, three-dimensional distribution of infectives; Q=0.001 and 
h=0.025. 
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Figure 4.7: Experiment A, three-dimensional distribution of recovered individuals: Q= 

0.001 and h=0.025. 
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Figure 4.8: Experiment A, dynamics of measles at time t=0.1, a=0.0001, f=0.001 

and la = 0.025; susceptibles(-), exposed(--) and infectives(-. ). 
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Figure 4.9: Experiment A, dynamics of measles at time t=0.1, a=0.001, £=0.001 

and h=0.025; susceptibles(-), exposed(--) and infectives(-. ). 
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Figure 4.10: Experiment A, dynamics of measles at time t=0.1, a=0.03, Q=0.001 
and h=0.025; susceptibles(-), exposed(--) and infectives(-. ). 
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Figure 4.11: Experiment A, dynamics of measles at time t=0.1, a=0.04, £=0.001 

and h=0.025; susceptibles(-), exposed(--) and infectives(-. ). 
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Figure 4.12: Experiment A, dynamics of measles at time t=0.1, a=0.05, f=0.001 

and h=0.025; susceptibles(-), exposed(--) and infectives(-. ). 
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Figure 4.13: Experiment A, dynamics of measles at time t=0.1, a=0.09, f=0.001 

and h=0.025; susceptibles(-), exposed(--) and infectives(-. ). 
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" Experiment B 

In this experiment, h is chosen to be 0.05 so that M= 19 and the initial conditions 
are distributed as in Figures 4.14 and 4.15; they are of the form 

569048 M2+1 

,J 
(xi, 0) = 589048 M-3 M-1 M+3 M+5 

2' 2' 212 

599048 , 0Gi<M M-5 & M2'Gi<M+1 

104 M-3 <i< M{-5 

E(x 
, 

O) =12--2 
01 0<i< M3& M25 

<2<M+1 

2x104 M21 

I (x2,0) = 0.5 X 104 1i=M 
1' M+3 

22 

0,0<<2 1 
OL 

M23 <i M+1 

where the exposed and infectious individuals are concentrated in the middle of the 

interval (0 <x< 1) and the susceptibles are distributed along the whole interval such 

that the number of susceptible individuals in the middle of the interval is less than the 

other parts of the interval. 

As in experiment A, the number of susceptibles is seen to decrease and those of 

exposed and infectious individuals are increased as time is increased. This behaviour 

continues till the time t=0.06 after which the numbers of exposed and infectious 

individuals become greater than that of susceptibles, as may be expected from the 

dynamics of the disease. The profiles of the three classes of individual, as predicted 

by the model, at time t=0.1 are shown in Figure 4.16. Three-dimensional plots of 

susceptible, exposed, infectious and recovered individuals are shown, respectively, in 

Figures 4.17-4.20. 

As the diffusion rate, a, increases, the number of susceptibles decreases and the 
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numbers of exposed and infected individuals increase and take a larger area on the 

x-axis, see Figures 4.21-4.24. 

From these experiments, it is seen that the dynamic behaviour of measles depends 

on the initial distributions and the diffusion rate. 
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Figure 4.14: Experiment B, initial disributions of susceptibles, exposed and infectives. 
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Figure 4.15: Experiment B, initial distributions of susceptibles (-), exposed (--) and 
infectious (-. ) individuals. 
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Figure 4.16: Experiment B, distribution of susceptibles (-), exposed (--) and infec- 

tives (-. ) after 100 iterations (t = 0.1); £=0.001 and h=0.05. 
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Figure 4.17: Experiment B, three-dimensional distribution of susceptibles; P=0.001 

and Ia = 0.05. 
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Figure 4.19: Experiment B, three-dimensional distribution of infectives; £=0.001 and 
li = 0.05. 
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Figure 4.20: Experiment B, three-dimensional distribution of recovered: P=0.001 and 
li = 0.05. 
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Figure 4.21: Experiment B, dynamics of measles at time t=0.1, a=0.03, E=0.001 

and h=0.05; susceptibles (-), exposed (--) and infectives (-. ). 
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Figure 4.22: Experiment B, dynamics of measles at time t=0.1, a=0.04, £=0.001 

and li = 0.05; susceptibles (-), exposed (--) and infectives (-. ). 
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Figure 4.23: Experiment B, dynamics of measles at time t=0.1, Oz = 0.05, f=0.001 

and h=0.05; susceptibles (-), exposed (--) and infectives (-. ). 
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Figure 4.24: Experiment B, dynamics of measles at time t=0.1, a=0.09, f=0.001 

and h=0.05; susceptibles (-), exposed (--) and infectives (-. ). 
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4.8 Conclusion 

165 

A second-order finite-difference method has been developed and implemented in this 

chapter for computing the solutions of the SEIR measles model in one dimension (4.2.1). 

A stability analysis revealed that both the von Neumann and matrix stability methods 
failed to give a criterion for the stability of the method so the maximum principle 

analysis was used to show that the method is stable and consistent and thus convergent. 
Two numerical experiments were chosen to investigate the dynamic behaviour of the 

model for different steplengths and diffusion rates. It was seen that the dynamic 

behaviour of measles depends on the initial distributions and the diffusion rate. 

/ 



Chapter 5 

Two-Dimensional Measles 
Dynamics 

5.1 Introduction 

In this chapter the SEIR model of measles dynamics will be extended to consider the 

spread of the disease in two space dimensions. Till the work on this thesis the literature 

has contained no references to this aspect of the disease. 

The partial differential equation (PDE) model in two dimensions retains the features 

of measles epidemiology discussed in Chapters 3 and 4. Of course, like Chapter 4, in 

order to proceed, the epidemic is assumed to diffuse through space in two dimensions. 

Also it is assumed that all births are into the susceptible class, and that births exactly 

balance deaths so that the total population size, N, is constant. 

The reaction-diffusion equations are given by 
/ 

St = µN - (µ\+QI)S+aSxx+^Syy 

Et = QSI -(µ+o, )E+aE, ýx+AE'yy 
( 5.1.1 ) 

It = aE-(µ+7)I +alxx+AIyy 

166 
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in which S= S(x, y, t), E= E(x, y, t) and I=I (x, y, t) are the number of susceptibles, 
exposed and infectious individuals, respectively, at time t and distances x and y from 
the origin; a>0 and A>0 are the diffusion rates. The parameters y, a, -y and ß are 
as defined previously. 

The initial conditions are of the forms 

S(x, y, 0) = 80, E(x, y, 0) = E°, I (x, y, 0) = I°; 0<x, y<L(5.1.2 ) 

and the boundary conditions are 

ux(0, y, t) = ux(L, y, t) =0; t>0(5.1.3 ) 

uy(x, 0, t) = uy(x, L, t) = 0; t>0(5.1.4 ) 

where u(x, y, t) represents S(x, y, t), E(x, y, t) or I (x., y, t) . 

It will be assumed that the PDEs in (5.1.1 are defined for 0<x, y<L, t>0 and 

the initial/boundary-value problem (5.1.1)-(5.1.4) will be solved in these ranges. 

Following Twizell[66], both intervals 0<x<L and 0<y<L are divided into 

M+1 subintervals each of width h, so that (M + 1)h =L and the time variable t is 

incremented in steps of length £. At each level t=t, = n. e (n = 0,1,2,... ) the square SZ, 

defined by the lines x=0, y=0, x=L, y=L, together with its boundary 312, have 

thus been superimposed by a square of M2 points within SZ and M+2 equally-spaced 

points along each side of äS1. 

The solutions S(x, y, t), E(x, y, t) and I(x, y, t) of (5.1.1)-(5.1.4) are sought at each 

point (kh, mh, nt) in SZ U DSZ fort >0 where k, m=0,1,2, ... , 
M, M+1 and n= 

1,2, 
.... 

As in the one-dimensional case, the solutions S(x, y, t), E(x, y, t) and I (x, y, t) 

of (5.1.1) at the mesh point (kh, mh, nf) will be denoted by Snm, Ek, 
m and In 

respectively, while the theoretical solutions of an approximating scheme will be denoted 

by Ak 
m, 

Bý 
m and Cn respectively. The values actually obtained, which may be 
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subject, for example, to round-off errors, will be denoted by k Bk 
�ý and ('k 

,m 
respectively. 

Introduce, now, three vectors A'z, B7z and Cn the elements of which will be ordered 
in rows parallel to the x-axis. The vector Atm which is of order (ill +2)2 thus takes the 
form 

An = 
[A0, AA1,0> > M, O, M+1,0; 0,1,1,1, M, 1., ` JI+1,1; 

T A0 
M+1' 

A1, 
M+l' ... ' 

AM 
M+1' 

AM+1 
M+1] 

with equivalent definitions for Bn and Cn. It will be convenient to use the vector U' 

of order 3(M + 2) 2 given by 

Un = 
((An)T, (Bm)T, (Cn)T)T 

where T denotes transpose. 

On differentiating with respect to t, the equations in (5.1.1) give 

S'tt -a Sxxt -A 
Syyt + (µ +0 1) 

ß.. 7t +0 It =O, 

Ett-aExxt-AEyyt+(it+Q)Et-ßSIt-ßStI = 0, 

Itt-aJ�t-AIyyt+(µ+'Y)It-uEt = 0. 

5.2 Numerical Methods 

5.2.1 Numerical Method for S 

( 5.1.. 5 ) 

Finite-difference methods are developed by approximating the time derivative in thc, 

first equation in (5.1.1) by the first-order forward-difference replacement 

st(x, y, 0 [S(x, Y, t+ f) - S(x, y t)]/[ (t. ) . _1.1 
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and the space derivatives by the weighted approximants 

Sxx r, h-2 [O {S(x - h, y, t+ ý) -2 S(x, y, t+ f) + S(x + h, y. t+ e)} 

and 

+ (1 - 0) {S(x - h, y, t) -2 S(x, y, t) + S(x + h, ýJ, t)} ]. 

syy h-2 [O {s(x, y-h, t+ . e) -2 s(x, y, t+ f) + s(x, y+h, t+ e)} 
} (1 - 0) {S(x, y-h, t) -2 S(x, y, t) + S(x, y+h, t)} ], (5.2.3 ) 

in which x= xk, y= ym(k, m = 0,1,2,..., M)M+ 1), t=t,,, (n = 0,1,2,... ) and 
0 (0 <0< 1) is a parameter. When 0=0, (5.2.2) and (5.2.3) are O(h2) approximants 

as h --+ 0 and are 0 (h2 + £) approximants as h, f -+ 0 when 0<0<I. 

As in Section 4.4.1, equations (3.6.13) and (3.6.16) are used to obtain approxima- 

tions to S(xk, Ym, to+i) for use in the first equation in (5.1.1). Using equations (3.6.13) 

and (5.2.1) in the first equation in (5.1.1) gives 

An+l - Ate, k, m k, m 

f 
+'-aS� -ASyy-l. GN=O, 

(p+0ck, 

m) An k, m 

while using equations (3.6.16) and (5.2.1) gives 

An+l 
- 

An 
k, m k, m 

NCk+m, 
1) Akm 

- CYSxx -A 
Syy 

- µN = 0. 

( 5.2.4 ) 

( 5.2.5 ) 

In order to obtain a second-order approximation to S(xk, ym, tn+l), equations (5.2. -1) 

and (5.2.5) should be added. Averaging the equations and substituting for S.,, and Syy 

from (5.2.2) and (5.2.3), respectively, gives 

An+1 _An k, m k, m 
I 

+ (ýlG +0 Ck 
m) 

Ak, 
ml 

+ 
(il 

+0 ck, 
ml) 

Ak, 
m , 2 \ 2 

- h2 
{A, 

m - 
2 Akl m} + Ak+i 

n 
-hQ2 

(l 
- 

0) {; 

-1, m 
) 

k'm 
l+l'm 

A 
n+l {A1 n+l 2A n+l + 

A {�m-1 
;1m 

lk. 
m+l 

} 

- µN =0 
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which, after rearranging, becomes 

-A0pAk l-1 

170 

aopAkt?, ý,,, + 
[1+2£(µ-ýßck, )+20(ap+A l Ak 1 

J 
aP Ak+l, 

m -Ap Ak, 
, 
l+1 = (1 - q) AP Ak, 

-i 
+ (1 - 0) aPA -i, m [1 

-2ý (µ +ß ck 
, +, 

') -2(1 - 0)(aP + Ap)l An 
,m J 

(1 - 0) aP Ak+i, 
m + (1 - q) Ap Ak, 

m+i +N, (5.2.7 ) 

+ 

+ 

where p= f1h2. 

The local truncation error Ls = Ls [S(x, y, t), E(x, y, t), I(x, y, t); h, . e] associated 

with (5.2.7) at the point (x, y, t) _ (Xk, yam, ) 
tn) may be written down from (5.2.6): it is 

, 
CS = 

S(x, y, t+ f) - S(x, y, t) +1 (µ +0I (X, y, t)) S(X, y, t+ Q) 
2 

+1 (µ +0I (x, y, t+ t)) S(x, Y, t) - 
h0 {S(x - h, y, t+ i) -2 S(x, y, t+ i) 

2 

+ S(x+h, y, t+£)}- 
(1-ý)a 

{S(x-h, y, t)-2S(x, y, t)+S(x+h, y, t)} h 

-A {S'(x, y-h, t+ ý) -2 S(x, y, t+ 1) + S(x, y+h, t+ ý)} 
h 

_ 
(1 - 0) \ 

{S(x, y-h, t) -2 S(x, y, t) + S(x, y+h, t)} -µN h2 

- {St(x, y, t) + (µ +ß I(x, y, t)) S(x, y, t) -a Sxx(x, y, t) 

- 
i1 Syy(x, y, t) -µ 

N} ( 5.2.8 ) 

Expanding S(x, y, t+t), S(x±h, y, t+f), S(X±h, y, t), S(x, y±h, t+Q), S(X, yf h, t) 

and I (x, y, t+ Q) about (x, y, t) leads to 

Ls = 
f1 Stt+ 

1 
(µ+01)St+ 

1 
ßSIt-aSxxt-0ASyyt] £ 

L2 22 
h2 111 

- (aS,,,, +ASyyyy)+[6'Sttt+4(µ+01)Stt+4SItt 
12 

-10a Sxxtt -20A 
Syytt] 12 + .... 

( 5.2.9 ) 
2 

Clearly, Ls = O(h2 + £) as h, £ -* 0 except when 0= 1/2 for then the term in e 
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in (5.2.9) vanishes (see the first equation in (5.1.5)) leaving 

_211 Ls 
hh 

12 
(aSxxxx+ASYYYY)+ C6'Sttt+4 

(ý+/ýI)stt+ 
4 

ßsItt 

-4a Sxxtt -41A S'yytt] £2 + ... 5.2.10 () 

which is O(h2 + £2) as h, £ --4 0. It may be concluded that the unique O(h2 + £2) 
method, as h, £ --+ 0, contained in the family (5.2.7) arises when = 1/2 and is given 
by 

-I An+l _1a Ate, +1 1 
2pk, m-1 2kl, m + 

[1 
+2 (ýc + ck, 

m) +ap+A pi Ak t 
J 

-2aP Ak+l -2Ap Ak m1+1 =- 2Ap 
Ak, 

m-1 +12ap Ak-l, 
m 

Qß ck ý, 1 Ak, 
m + 1- 

1a 
p- 2 µ- - ý) k, m +2ap Ak 2 +i, m 

1 
2P 

Ak, 
m+l +µ 1V 

"(5.2.11 ) 

The finite-difference method (5.2.11 may be applied for k, m=1,2, ... ,M and 
n= 011)2 

....; 
for k or m=0 and for k or m=M+1 it requires some modification. 

Applying (5.2.11) with k =0 and m= 0 introduces the terms A'+' 
, 

A' 1,01 Aö, + i 

and Ao 
-i. 

Now the points (x-i, yo, t,, +i), . 
(x-1, yo, tn), (xo, y-i, to+i) and (xo, y-i, tn) 

are outside the grid superimposed on SZ U Ö11. However, the boundary conditions in 

(5.1.3) and (5.1.4) give, to second order, A'1,0 - A' 1 , 0' A'L iö= Ai öi' Aö, 
-1 = Aö, l and 

A0, i= Ao i 
1. Thus, for k=0 and in = 0, equation (5.2.11) may be modified to give 

[1 
+2£ (p +ß CÖ, o»+ aP+A P] Aö öl -ap, 41 öl - .1p Aöi1 +21ßC O'-, 

+' Aö, o 

= 
[1_ I. 

ßµ-ap-. gypl Ao, o+apAl, o+ApAo, 1+. ýpN. ( 5.2.12 ) 
J 

For m=0 and k= 1,2, 
... , 

M, equation (5.2.11 gives 

-1 ap Ak±i 
,o+ 

f1+ 1 
(µ + ck0) +a P+ A PA k-2aP Ak+i, 0 -Ap Ak i1 

221 L 

+1Q, Q Ck, ö 1 A%, 0 =2aP Aý-i, o + 
[1 

-2Qµ-ap-A P] A 
2 k, o 

1nný.?. l3 
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When m=0, k=M+1, it follows from (5.1.3) and (5.1.4) that : --1 II= In+l 
,o and 

AM, 0 = AM+2 0 and so equation (5.2.11) may be written as 

-a p AM o+ L1 +2f (µ + ,ý 
C'[+', o) +a p+ A pl AM+i, 

o -Ap1 
1+l, 

i J 
1' 

p- a p- Apl A21 1+1, o +2fß CM+1,0 AM+i, 
o =ap AM o+ 1-2 

J 

+Ap Aývr+, i+ fpN. (. x. 2.14 ) 

For k=0 and m=1,2, ... , 
M, equation (5.2.11) can be written as 

-ApAö, 
1-1 + 

[1+2ý(µ+ßcö, 
ý,, 

)+ap+Ap] Aönl-2ApAöl+i 

-ap Ai mý +2 CO, rn A0, 
ß,,, =2 ý` p Aö, 

m-1 
+ 

+2 ApAom+1 +apAým+ý pN. (>. 2.15 ) 

For k=0 and m=M+1, equation (5.2.11) gives 

[1 
+2£ (/ý +ß cöM+l) +ap+A P] Aö M+i -AP Aö M-ap Ai M+i 

+ß cö M+i Aö M+1 - 
[1 

-2£µ-ap-A pi Aö, M+i +Ap Ao, M 
2 

+ap Ai, M+l +fpN. (5.2.16 ) 

When m=M+1 and k=1,2, 
... , 

M, equation (5.2.11 becomes 

11 
-2ap 

Ak±i, 
M+i + 

f1 +2£ (lt+ ß Ck, 
M+i) +ap+ p] Ak M+i 2a 7ý Ak+i,: ý1+1 

2L2 
n 

- 
iý p Ak M+ 12 ß ý! 

k, M+i `4k, M+i =2aP Ak-i, 
M+i 

11 
+ 1- 2Q-a p- p] Ak, M+i +2ap Ak+i,. Yl+i 

+ ApAkM+iµN. 

For k=M+1 and m=1,2, ... , 
M, equation (5.2.11 gives 

2 
i, m+l 

-1 An+l +1+1 (µ +ß cM+l, 
m) +ap+A pl 1 +i,,,, -1Apli+ p Mý l, m-1 2 
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- CI p An +l n+2 
,eß li ji, 

m 
AM+l, 

m =A 
2p lr+l, m-1 

f111 
+ L1 - 2eµ - ýx p- iý pJ AVl+l, 

rn 
+2 'ý P '`til+l, m+l 

+ap AM, 
m 

+f/, 

and, when k=M+1 and m=M+1, it gives 

-ý p AM+1, M + 
[1 

+2£ (y+ß Ci f+1, M+i) +aµ+Ap , 4,, +, op J 
+1 n-+2 cM+r, 

M+l `4M+i, M+1 -P 
AM+1, 

M 

r1 
+I 1- 2 µ- ap-A p] ANr+,, M+l +oµ AN4, M+l +µX .(5.2.19 

) 

5.2.2 Numerical Method for E 

Now the time derivative in the second equation in (5.1.1) is approximated by the first- 

order forward-difference replacement 

Et(x, y, t) ý- [E(x, y, t+ f) - E(x, y, t)]/Q (5.2.20 ) 

The x-derivative is approximated by the weighted approximant 

Exx ý- h-2 [O{E(x-h, y, t+f)-2E(x, y, t+f)+E(x+h, y, t+f)} 

+ (1 - 0) {E(x - h, y, t) -2 E(x, y, t) + E(x + h, y. t)} ]. (5.2.21 ) 

and the y-derivative is approximated by the weighted approximant 

Eyy h-2 {O{E(x, y-h, t+1)-2E(x, y, t+£)+E(x, y+h. t+f)} 

+ (1 - 0) {E(x, y-h, t) -2 E(x. y., t) + E(x, y+h. t)} ], (). 2.22 ) 

in which x= xk, y=y,,,,, (k, m=0,1,2, ... , 
J) 

_lI + 1), t=t, (n = 0.1.2.... ) and 

(0 <0< 1) is a parameter. Both equations (5.2.21) and (5.2.22) are O(h2) as h-0 

when 0-0 and areO(h2+f) as h, f---}0when0<ä<1. 
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Using equations (3.6.25) and (5.2.20) in the second equation in (5.1.1) gives 

Bn+l - Bn k, 7,, k, 7,, 
-Q 

Ck, 
m 

Ak, +ml + (µ + a) Bk 
ml - ce ETX 

-A 
Eyy =0. ( 52.23 ) 

£N 

while using equations (3.6.28) and (5.2.20) in the second equation in (5.1.1) gives 

Bn+1 - Bn km 

f 

k, m 
- 

ck+nlAkm+(µ+a) Bkm-CYE,., 
-A 

F. 
yy=0. , ). 

2.21 

In order to obtain a second-order approximation to E(Xk, ym, in+l ), as in Section 

5.2.1, equations (5.2.23) and (5.2.24) should be added. Averaging equations (5.2.23) 

and (5.2.24) and substituting for E,, and Eyy from (5.2.21) and (; 5.2.22), respectively. 

gives 

n+1 n Bk 
m- 

Bk, 
m -1ß ck, 

m 
Ak, 

nl 2N ck, 
ml 

Ak, 
m +2+ (7) Bml 

2 
1 

\µ 
+ or) Bk, 

m - h2 

{Bk±i 

,m-2 
Bý 

m1 
+ Bk+i, 

ml 2 

- (1 - 0) P 
{B_i, 

m -2 Bi 
m+ 

Bk+i,, 
n} -h 

{Bk, m1 
1-2 Bk m+ IjA. 

m+1 
I 

lAnnn 1- ý/ 
h2 

{B, 

m_i -2 Bk m+ 
Bk 

m+l 

}_0 

which, after rearranging, becomes 

-A op Bn+l 1-aop Bk+1, 
m + 

f1 
+1ý (µ + (7) +20 (a p+ AP)] Bk, 

ml L 

( 5.2.2. ) ) 

n+1 n+1 - cn An+l -aop 
Bk+l 

m -A 
op Bk 

m+1 2 k, m k, m 

-2ýßCm' 
Ak 

mAp 
Bk, 

m-1 
+ (1 

- 
ý) ap Bk-l, 

m 

+ 
f1 

- 2f(µ+a)-2(1 -0)(ap+'ýp)] Bk, 
m+(1-ý)apBk+l, m L2 

+ (1 
- 

0) Ap Bk 
m+l 

( 
"7 

6) 

where p= f1 h2. 

The local truncation error LE _ £E [S(x. y, t), E(x, y, t), I (x, y, /); h. 1] aa"O('iated 

with (5.2.26) at the point (x) y, t) _ (xk, ym, tn) may be written down from (. -). 2.25): it 



F. N. M. Al-Showaikh, 1998, Chapter 5 

1S 

175 

£E _ 
E(x, y, t+ ý) - E(x, y, t) 

-10 (x, y, t) S(x, y, t+e ) 12 

- 20 (x, y, t+£)S(x, y, t)+ 
1 

(µ+a)E(x, y, t+£)+ 
1 

µ+uE xt 22() (ýyý ) 
a 

- h2 
{E(x - h, y, t+ ý) -2 E(x, y, t+ Q) + E(x + h, y, t+ 1)} 

h2 {E(x - h, y) t) -2 E(x, y, t) + E(x + h, y, t)} 

- {E(x, y- h, t+f) -2E(x, y, t+t)+E(x, y+h) t+Q)} 

- (1 - ý) {E(x, y-h, t) -2 E(x, y, t) + E(x, y+h, t)} 

- {Et (x, y, t) -aI (x, y, t) S(x, y, t) + (µ + u) E(x, y, t) 
- aE.,,, (x, y, t) - 

AEyy(x, 
y, t)} "(5.2.27 ) 

Expanding E(x, y, t+f), E(xfh, y, t+ f), E(x+h, y, t), E(x, y+h, t+Q), E(x, yfh, t), 
S(x, y, t+ f) and I (x, y, t --- f) about (x, y, t) leads to 

LE _ 
1Ett+ (µ+u)Et- 0StI- 

I 
pSIt-OaExxt-OAEyyt f 

[2 
22] 

- 12 (a Exxxx +A Eyyyy) +1 
[Ettt+(+a)Ett_ 

4 /. 3 S Itt 

-40 Stt I-2a0 Exxtt -2A Eyyttl 12 + .... ( 5.2.28 ) 
J 

The second equation in (5.1.5) reveals that the coefficient of .£ in (5.2.28) vanishes 

provided 0= 1/2, leaving 

2 h 
(a +A E',, yy) +1 Etct +1 (µ + a) Ett -1 ,ßS Itt 12 l6 44 

-40 S'tt I-IaE.,, tt -IA Eyytt] 12 + ... ( 5.2.29 ) 
4 

'4 

which is O(h2 + £2) as h, £ -+ 0. It may be concluded that the unique O(h2 + £2) 

method, as h, .£ -+ 0, contained in the family (5.2.26) arises when 0= 1/2 and is 

given by 



F. N. M. Al-Showaikh, 1998, Chapter 5 176 

1 
_ ,m+ 

[1 
+ 21(µ + Q) + cep +A pl B1 Ap Bk, ml 

1-2ap Bk-ýi 2J 

-2 aPB'ý+1 -1 Bn+1 -1 Cn An+l k+1, m 2 k, m+1 2 k, m k, m 

2 
Ck, 

m1 
Ak, 

m -21Ap 
Bk, 

m-1 
+21ap Bk-l, 

m 

+ L1- 2 (µ+a)-cep- Al Bk, 
m+ 2 aý'Bk+1, m J 

+2 ý' Bk, m+l 7(5.2.30 ) 

with k, m= 1,2,... 
,M and n=0,1,2 , ... . 

As in the case of S, Section 5.2.1, equation (5.2.30) must be modified for use with 

k or m=0 and k or m=M+1. Applying (5.2.30) with k, m=0 introduces the 

terms B'l, o, Bnl, ö, Bö, 
-1 and Bo, +i. Now, as noted earlier, 

(x-1, yo, try+l), (xo, y-1, tn) and (xo, y_1, to+i) are outside the 

SZ U Ö1. Nevertheless, the boundary conditions in (5.1.3) and 

order, Bn - Bn Bam'+1 - Bam'+1 Bn = Bn and Bn+1 - 
-1,0 1,07 -1,0 1,0 1 o, -i o, i o, -i - 

equation (5.2.30) with k, in =0 gives 

the points (x_,, yo, t, ), 

grid superimposed on 

(5.1.4) give, to second 

Bö, i 1. Thus applying 

1+2 «IL + o, ) +ap+ Ap] Bo, öl -a pBl of - ApBöil -2 Qß C0 Aö,, o1 L 

-1 
Cn+l An _ 1- 

1 
1(, +Q ap A1B 

2Qo, o 0,0 -[2 
(µ )-- 7ý 0,01 

+ apBio+ApBö1. ( 5.2.31 ) 

Applying equation (5.2.30) with m=0 and k=1,2,... 1M gives 

-1 apBk+i0 + 1+1£(µ+a)+ap+APl BkO'- 
2 apBk+l0-ApBki1 

J 2 

12 

-1fP 
Ck, 

0 
A1 

1ß 
ý'k, 

01 
Ak, 

O 2aP Bk-1,0 
22 

+ 
f1- 1f(µ 

+Q) - ap - Apl Bko+2apBk+1,0 
J L2 

+ ýýBn (5.2.32) 
k, 1 
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For rn =0 and k=M+1, equation (5.2.30) gives 

n+l 
r1- 

-cr P BM, o + 11 +2 (µ + a) +ap+A P] BM+10 - B1f+l, i 0C'f ,n n+i 2 M+1, o M+l, o 

r1 CM+l, 
o AM+l, 

o =ap BM 
,o+ 

11- 2Q (µ + a) - cep -A p] BM 2 
+,, o L 

+ ApBM+1,1 
' ( 5.2.33 ) 

When k=0 and m=1,2, ... , M, equation (5.2.30) gives 

-2 pBö, ,ii+ 
[1+(+u)+ap+p]Bn+1_1ApBn+1 

,-ap 

Bl 
ml -2C), m 

An +l 
- 

1Qß 
0 An 

2 0. m 0, m 
1 

- 2APBö, -1+[1-2i(P +a) - ap -Al Bös, 
J 

1 
+ 2'XPBö, m+i + apBi, m "(5.2.34 ) 

Equation (5.2.30) gives, for k=0 and m=M+1, 

1 
-A p B° 

,M+ 
[1 

+ 2-f (µ + a) +a p+ A p] Bö, M+i -ap Bi, M+I -1QOc An +l 
J2ö, M+i 

- Cö, M+i Ao, M+I =AP Bo 
,M+1 

[1 
-2£ (Fý + a) -cep- A 2 PI Bö M+i 

+aP Bi, M+i " (5.2.35) 

For m=M+1 and k=1,2, 
... , 

M, equation (5.2.30) gives 

-2a ý' Bk 1, M+l +1+1 (/L+ ý) +P+p Bk, M+I 1a 
7ý Bk+i, M+l L2J2 

n+l 
-Ap 

Bk, 
M 2 

ck, 
M+1 `ýk M+1 -2ß 

ck, 
M+1 

An 
k, M+l 

2apBk 1, M+1+ 
11- 

2. i(µ+Q)-cxp-Apl BkM+1 
J 

+1 apBk+l M+1 +ApBkM 
"(5.2.36 

) 
2 

When k=M+1 and m=1,2, ... 7 
M, equation (5.2.30) gives 
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-2p BM+1, 
m-1 + 

[I+lf(li+o, 
)+cep+A 2J BM+1 

m-21P BM+l, 
m+l 

pB1c An+1 1+1 
n M2ý ,ý +l, m M+l, m -2f0 Cýºr+1, 

m `4M+l, m 

ApBIºýr+1, 
m-1 + 

[1 
-12Q (µ + a) -ap-A pJ BM 2 +1, m 

1 
+2AP BM+l, 

m+l 
+ap BM, 

m ,(5.2.37 ) 

and finally, when k=M+1 and m=M+1, equation (5.2.30) gives 

-A p BM+1, M -ap BM, M+1 + 
[I+ 

2Q (ft +a)+ ap+A pl BM+l, M+l J 

2 
ý'M+1, 

M+1 
AM+1, 

M+1 - 

12 
0 ý'M+1, 

M+1 `4M+1, M+1 =Ap BM+1, 
M 

r1 
+ap BM, M+1 -f- I1-2 ýJ BNt+l M+i .(5.2.38 

) 

5.2.3 Numerical Method for I 

The time derivative in the third equation in (5.1.1) is approximated by the first-order 

forward-difference replacement 

It(X, y', t) ý- [I(x, y, t+£) -I(x, Y, t))/t. ( 5.2.39 ) 

The x-derivative is approximated by the weighted approximant 

I ti h-2 [q{I(x-h, y, t+Q)-2I(x, y, t+e)+I(x+h, y, t+Q)} 

+ (1 - 0) {I (x - hi y, t) -2 I(x, y, t) +I (x + h, y, t)} ], (5.2.40 ) 

and the y-derivative is approximated by the weighted approximant 

Iyy ti h-2 [Of I(x, y - h, t+ f) - 21(x, y, t+ t) +I (x, y+h, t+ e)} 

+ (1-ý){I(x, y-h, t)-2I(x, y, t)+I(X, y+h, t)}1 , 
(5.2.11 ) 
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in which x= xk, y=y, (k, m=0,1,2,..., M, M+1), t=t, (n = 0,1,2,... ) and 
0 (0 <0< 1) is a parameter. Both equations (5.2.40) and (5.2.41) are O(h2) as h -+ 0 

when 0=0 and are O (h2 + t) as hj-+ 0 when O< 0< 1. 

Now equations (3.6.34) and (3.6.37) will be used to obtain an approximation to 

I(xk) y.,,,,, to+1) for use in the third equation in (5.1.1). To reach this approximation, 

equations (3.6.34) and (5.2.39) are used in the third equation in (5.1.1) to give 
clk, 

m - 
ck, 

m n+1 n+1 
-` o, Bk, 

r, + (lý + 1) C'k, 
rn aý IIx -^ 

Iyy =0(5.2.42 ) 

while using equations (3.6.37) and (5.2.39) gives 

Cn+1 _ Cn k'm k, m Bk, 
m 

+ (lu + %) Ck 
m-aI,,, -A Iyy = 0. ( 5.2.43 ) 

In order to obtain a second-order approximation to I (xk) yam,, t, +1), equations (5.2.42) 

and (5.2.43) must be added. Averaging equations (5.2.42) and (5.2.43) and substituting 

for I,,, and Iyy from (5.2.40) and (5.2.41), respectively, gives 

Cn+l _ Cn k, m k, m 

f 
- Q Bk 

ml m+2 
Gt + 'Y) Ck ml U Bk 

2 , , 2 , 

1 
ýµ nm- +2 7) Ck, 

h2 
Ck-n1l n 

mý1 
+ Cnk+lý1, 

m 
{, 

m-2 
Ck} 

' { 

- 2 
I Cn+1 

k m- -2 
Ci+1 

1 k, m 
+ Cn ý 

k, m+l 
} 

h , 

- 
ý1 

- 
ý) 

A 
n {ck, 

m-1 
n 2 Ckn 

,, n 
+ Ck, 

m+1 

which, after rearranging, becomes 

In 
-ý ýp Ckm1 1-a 

Op Ck+, 
ni 

+ 
[1 

+2i (µ ++2 (Q p+A 7ý) Ck, i 

( 5.2.44 ) 

r' nl 
-a 

OP ck+l 
m-AOP 

ck, 
m+l -2Q 

Bk, 
ml 

%1 ckm-1 

+2(1-0)(aP+AA] Ck, 
'm + (1-ý)aPCk 1, m-ß 2 

[ 

1 5.2.45 (1 
- 

0) aP Ck+1, 
m 

+ (1 
- 

0) AP Ckm+l +21u Bk, 
m ,) 
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where p= ý/ä2. 
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The local truncation error , 
CI = , CI(S(x, y, t), E(x, y, t), I (x, y, t); h, £] associated 

with (5.2.45) at the point (x, y) t) = (Xk) ym, tn) may be written down from (5.2.44): it 
is 

I(x, y, t+i) - I(x, y, t) 111 £r =- 2QE(x, y, t+Q) - 2aE(x, y, t)+ (µ+7)I(x, y, t+Q) 

+2 (P+y)(x, Y, t) - 
2-0 {I(x-h, y, t+i) -2I(x, y, t+ý)+I(x+h, y, t+Q)} h 

- (1 - ý) 
2 

{I(x - h, y, t) -2 I(x, y, t) + I(x + h, y, t)} 

-0 {I (x, y-h, t+ i) -2I (x, y, t+ Q) +I (x, y+h, t+ Q) } 

-' (1-0) 
2 

{I(x, y-h, t)-2I(x, y, t)+I(x, y+h, t)} 

- {It(x, y, t) -Q E(x, y, t) + (µ + 'Y) I (x, y, t) 

- cr�, (x, y, t) - ^Iyy(x, y, t)} "(5.2.46 ) 

Expanding I (x, y, t+ 2), I (x ± h, y, t+ 1), I (x + h, y, t), I (x, y±h, t -i- e), I (x, yfh, t) 

and E(x, y, t+ £) about (x, y, t) leads to 

'Cr = 
f2 Itt -2o, Et +2 (lý + 7) It -0a Ixtet -0A 

Iyyt] £ 
L 
h2 11 

- 12 (a IXXXX + Iyyyy) 
-F 

C1I Ittt -4 Ett +4+ 'Y) Itt 

-20a Ixxtt 2A 
IyyttJ £2 + ... ( 5.2.47 ) 

The third equation in (5.1.5) shows that, for 0= 1/2, the coefficient of £ in (5.2.47) 

vanishes leaving 

h2 11 CI Ittt - 4o, Etc +4 (µ + 7) Itt 
12 

(a Ixxxx +A Iyyyy) +1 

(" ) 
-4a Ixxtt -4A Iyytt] t2 + .. x. 2.48 

which is O(h2 + Q2) as h, .£ -* 0. It may be concluded that the unique O(h2 + f2) 

method, as h, £ ---3 0, contained in the family (5.2.45) arises when 0= 1/2 and is 
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given by 
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-2 Apck, ýi-2 apck±i, m + 
f1 

+1 ý(µ +7) + ap + Apl C`k '-1 apCk+i m 2 12 
I 

n, 
2 

i1 p Ck, 
m+1 2Q 

Bý ml 
=21p Ck, 

m-1 
+2ap Ck 

l, m 

+ 
ýl- 

2 (µ + 7) -a p- A pl Ckm +1ap rk+l, 
m J2 

+2 ApC'km+l +2o, Bkm. ( 5.2.49 ) 

The finite-difference method (5.2.49) may be applied for k, m=1,2, ... ,M and 

n=0,1,27- .. 
For k or m=0 and k or m=M+1 it requires some modification. 

Applying (5.2.49) with k and m=0 introduces the terms C`l, o, Cni ö, Con-1 and Co, ±i. 

Now, as before, the points (x_1, yo, tn), (x_1, yo, to+1), (xo, y_1, tn) and (xo, y-1, to+1) 

are outside the grid superimposed on lU äl2. However, the boundary conditions in 

(5.1.3) and (5.1.4) give, to second order, Cnl, 
o = Ci, 

o' 
Cni ö= Ci, 01 0,, 

-1 = Co,, and 

Co n, + = Con, 1. Thus applying equation (5.2.49) with k, m=0 gives 

Ia 
Coo -a C'ý+1 _ .ýp Cý'+i -I QQ B"+1 [1 

+2ýt+ 7) +p+ ApI 1,0 ol 2 0,0 

[1 
- 2J(µ+'y)-ap-AP] Cö, o+apCi, o+A PCo" 

+2 taB0', 0(5.2.50 
) 

2 

Applying equation (5.2.49) with m=0 and k=1,2, 
... ,M gives 

J 
Ck, öi-2apCk+i, 

o-ApCn k, l 
l 

-2 aPCý±io + 
L1+ 2 

1f(µ+'Y)+ap+ý`P 

1n 

- tQBýö1 
2apCk 

l, o-f-[1-2f(µ+7)-ap-AP 
Cko 

2 

+ 
1apC 

1,0+ApCk +2tQ Býo. (5.2.51 ) 
2 

For m=0 and k=M+1, equation (5.2.49) gives 

I1 n-ý1 
+ -t) +ap+A pl C M+1, 

o - 
CM+1,1 -2Q BM+1, o -apq, 

+" +1+2J 
[ 
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r2 
= apCM, o+ I1 -1 . i(µ+7) -ap - Ap] CM+1, o+ApC: ý1+i, ý L 

1 
+2a BM+I, o "(5.2.52 ) 

When k=0 and m=1,2,... , 
M, equation (5.2.49) gives 

2Ap Cö, 
ml 1+ 

[1+(+)+ap+p] 

- QQBö, +., 1=2 PCö, m-1+[1-2ý(µ+-ap-Apl 
Co 

1 

+ 2APC, m+i+apC, m+2QUBom. 
(5.2.53) 

Equation (5.2.49), for k -= 0 and m=M+1, gives 

-Ap CC, M +1+11 (it + 7ý +aP+A PCö, M+i -ap Ci, M+i -2fo, Bö M+i 12J 

_ ApCCM+ 
(1-2£(µ+'Y)-ap-Ap] 

Co, 
M+i +apci, M+i 

L 

-ý- 
1a 

B'ý ( 5.2.54 ) 
2 o, M+1 

When m=M+1 and k=1,2, 
... , 

M, equation (5.2.49) gives 

n+l 
-aC_+ 

f1 
+ -f (µ + 'Y) + cep +A Ck, 

M+1 2aP Ck+1, M+l 
Ap ck, 

M Pk 
+1, 

M+1 2 2l 

k, M+l -1£o, Bk, M+1 =aP Ck 1, M+1 + 
[1 

-2i (y +ap-AP Cn 
22 
11l 

+2ap Ck+1, M+1 +Ap Ck M+ 2£ Q Bk 
M+1 '(5.2.55 J 

For k=M+1 and in = 1,2, ... , 
M, equation (5.2.49) gives 

11a Cn+l -1Ap cn+l -ap cn 
m +A p] M+ý, m 2 M+l, m+l -- ýro C1l+l, 

m-1 
+1+-£ (fl + 'Y) +p 

2 
11 ýr n 

-1 ,e O' Bn+li' 
n= -ý1 pC +l, m-1 

+ 
11 

-2£ (µ + 7) -aP-ApC +l, m 
22 
1nnn(5.2. -736 +-Ap CM+l, 

m+i 
+ "y p CM, 

m 
+2iQ BM+l, 

m ,l 
2 
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and finally, when k and m=M+1, equation (5.2.49) gives 

-p C1; I+1, 
M -ap CM, M+1 + 

[1 
+2Q (ft + '! ) +ap+Ap C"+1 1fo, 

J Bn +1 
M+1, M+1 -2 Rf+1, Af+1 

=Ap CM+1, 
M +ap CM, 

M+1 + 
[1 

-2 (µ +ap-Ap CM+1, 
M+1 

+Ifo, BM+1, 
M+1 2(5.2.57 ) 

5.3 Implementation 

Let Un'+1 = 
(and 

Un = [(An)T, (Bn)T, (cn)T]T, 
where 

An, Bn, Cn, An+l, Bn+l and Cn+l are as defined in Section 5.1 and T denotes trans- 

pose. Then equations (5.2.11)-(5.2.19), (5.2.30)- (5.2.38) and (5.2.49)-(5.2.57) may 
be written in matrix-vector form as 

Wem. UT. +l = MThUn+b ( 5.3.1 ) 

in which 
Xn 

Wn = F- 

0 

Pn 

Mn =0 
0 

where 0 is the zero matrix of order (M + 

Hn 

Gn ( 5.3.2 ) 

Zn 

0 

0(5.3.3 ) 

Rn 

and the vector b is a column-vector of 

0 
Y'i 

Jm 1 

0 
Qn 

Tn 
el 2 

2)2 

order 3(M + 2)2 and is given by 

T 

b= £iN,..., jLN, O,..., 0 ( 5.3.4 ) 
(M+2)2 times 

The matrices Wn and Mn are both of order 3(M + 2)2 and their submatrices are 

as given below. The submatrices Xn, Yn, Zn, P", Q" and Rn are block tridiagonal 
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of order (M + 2)2 with tridiagonal blocks on the diagonal and block diagonal off the 
diagonal and are given by 

Xn = 

where 

XDo X1 

X2 XDl X2 

X2 XD2 X2 

X2 XDM X2 

X1 XD,, r+l 

vo, i -a p 

-21 v1, -t1ap 

-tap v2, -2ap 
XDi= 

-2 ap vMi -2 aP 

-ap vM+l, i (M+2)x(M+2) 

in which 

vý, i =1+2 (µ +ßc; i) +ap+ Ap (z, I, = O, 1,2,..., M, M + 1), 

X1 =- 
(M+2)7 

( 5.3.5 ) 

( 5.3.6 ) 

( 5.3.7 ) 

AP I(M+2), X2 =-2AP I(M+2) and I(M+2) is the identity matrix of order 

Yý 

YD Y1 

Y2 YD Y2 

Y2 YD Y2 

Y2 YD Y2 

Y1 YD 

( 5.3.8 ) 



F. N. M. Al-Showaikh, 1998, Chapter 5 

where 

YD=I 

in which 

vY -ap 

-tap v, -tap 

_1ap vy 2ap 

-2apv,, 

-ap 

v,, =1+1 Q(u +a)+ap+Ap, 

Y1 = -a p I(Nr+2), Y2 =- 2' p I(M+2), 

ZD Z1 

Z2 ZD Z2 

Z2 ZD Z2 
Zn _ 

Z2 ZD Z2 

Z1 ZD 

where 

ZD=I 

in which 

vz -a p, 

-tap vZ -2ap 

_2ap vz -2ap 

-tap vZ 

-ap 

p a 
vY (M+2) X (M+2) 

_l ap 2 

vz (M+2)x(M+2) 

VZ =1+2-f-ap+Ap, 

185 

( 5.3.9 ) 

( 5.3.10 ) 

( 5.3.11 ) 

( 5.3.12 ) 

( 5.3.13 ) 
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Z1 p l(l,, r+2)) Z2 = -21 AP I(M+a) 
) 

PD P1 

P2 PD P2 

P2 PD P2 
pn 

P2 PD P2 

P1 PD 

where 

PD= 

VP ap 
Zap vP Zap 

2 cep vp 2 ap 

2ap vp 

ap 

in which 

lap 
2 

VP (M+2)X(M+2) 

=1- f-cip-Ap, vP 
I 

PI = AJ I(M+2), P2 =2\ I(M+2), 

QD Q1 

Q2 QD Q2 

Q2 QD Q2 
Ql_ 

Q2 QD Q2 

Q1 QD 

186 

( 5.3.14 ) 

( 5.3.15 ) 

( 5.3.16 ) 

( 5.3.17 ) 

\ 
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where 

QD= I 

in which 

vQ ap 
Zap vQ 2ap 

Zap vQ 2ap 

Zap vQ 2cap 

ap vQ (M+2) x (M+2) 

VQ = 1- 
2f 

(y +o, ) -a p- A p, 

Q1 ='\ pI(M+2), Q2 =1 API(M+2)7 

RD R1 

R2 RD R2 

R2 RD R2 
Rn = 

where 

RD=I 

R2 RD R2 

Rl RD 

vR ap 
Zap vR lap 

Zap VR Zap 

Zap 
lap VR 2 

ap VR (M+2)x(M+2) 

in which 

vR=1- 2I 
J(/. t +, y) -a p- Ap, 

R1 =AP I(M+2) and R2 = 2) p I(M+a) 

187 

( 5.3.18 ) 

( 5.3.19 ) 

( 5.3.20 ) 

( 5.3.21 ) 

( 5.3.22 ) 
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The matrices Fn, Gn, Hn, J1 and J2 are block-diagonal of order (_1f + 2)2 and are 
of the form 

F' = drag {-2£ß 
Cý,,,,, 

, 
G' = diag ý-2 £ß 

, 
An 

ml 

Ji= diag {- 
2fß 

I(M+2)1 and J2= diag {2a I(M+2)} 
, J 

( 5.3.23 ) 

where Ak 
m and Ck, 

m are diagonal matrices of orders (M + 2) and are given by 

ilk m= 
diag {Am} 

and Clc 

m= 
diag 

{C, 

m}. 
5.: 3.1 

5.4 Stability Analysis 

As in the previous chapter, the maximum principle analysis will be used to discuss the 

stability of the finite-difference approximation as both the von Neumann and matrix 

stability methods are not practical. 

In order to use the maximum principle analysis to examine convergence and stabil- 

ity, assume that a solution of the initial/boundary-value problem (5.1.1)-(5.1.4) exists 

in the closed region [CR :0<x<1,0 <y<1,0 <t< T] and that the solution is six 

times continuously differentiable in the closed region. 

Let the first equation in (5.1.1) be written in the form 

11 
aS,, +ASyy = St-µN+ 2 (µ+01)S+ 2 (µ+01)S 

= St-µN+G, +G2 

with initial and boundary conditions given in (5.1.2)-(5.1.4). The terms Cil and G2 

are assumed to be boundedly-differentiable with respect to S and I. 

Hn =diag{ý(, 3 m} 

Consider, as a direct extension of the procedure given in (1.6.2). the difference 



F. N. M. Al-Showaikh, 1998, Chapter 5 

equations 

I S9 

Ak 
,, n = , 

5'o 

a2 n+l \ n+1 n k, rn k, 
_m 2 

vX Ak, 
m 

+ Ak 
m) 

+2 ýy (Ak, 

m+ 
l Ak 

mI=_ 

I +2 (/i +0Ck, 
m)Ak, ml+ 

( 
2lµ+0C 

+m, 1)Akm" 
n>0, 

( .. x. =4.2 ) 
where Ak 

m 
is an approximation to S(x, y, t) at the typical point (loh, mh, nf) which 

agrees with S on the boundaries. The operators V2 and V2 are defined as follows 

VxAk, 
m - (Ak-l, 

m -2 Ak 
m+ Ak+l, 

m) 
1 h2 

VyAk, 
m - (Ak, 

m-1 -2 Ak 
m+ 

Ak, 
m+1) 

1 h2 ( -x. 4.; 3 ) 

Following Section 4.6 of Chapter 4, it is easy to see that 
a1A Sn+l 

- 
Sn 

-2 
nß-1 n_2 n+l n_k, m k, m 

2 
vx 

'Sk, m 
+ Sk, 

m) 
+2Vy ('ýk, 

m 
+ ýk, 

m) µN 

+2 (µ +0 Ik, 
m) 

Sk, ml +2 (µ +ß Iý, 
m') 

sk, 
m + 9k, ß 

( 5.4.4 ) 

with 

9k, m=O(h2+£). 
(, ). 4.5) 

Let 
7in- Sn 

- 
An 

lkk, m k, m 
ZZk 

rn. - 
Ek 

m- 
Bk, 

m 1(5.4.6 
) 

Zn - In 
- 

Cn 
3k 

,mk, m k, m 

then the basic truncation error equation is obtained, by subtracting equation (5.4.2) 

from (5.4.4), as follows 

Z°km = 0, 
Zl+l -Zl 

2 
V2 2 (Zlk 

m+ 

Zlk 

m) 

+2V2 
(Zlk, 

m 

+ Zlk, 

m) 
_kmpkm 

+2 (/-ý+oIk, 
m)'Sk, m1 2 (Iý+ßCk, m)Akml 

1+N /ý n+1) ('n 
_1 `( 

+l l In + 9n 
2 

ýIý Ik, 
m Jk, m 2µ+ 

ý'kTt, 
m J-k, m k, m 

Zr =0 (on boundary). 

(. ). 1.7 ) 
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As the underlined terms can be written in the form of equations (1.0'. 10) and 
(4.6.11), respectively, it follows that equation (5.4.7) can be written as 

Q2 (Zn 

l+ 
Zn + V2 (zJn+l 

n1_ 
Zn+l 

Ik, m 
- 

Z1k 
mI 

COCil 
2 lkm lkm) 2Yl lkm + Zlk 

m) 
+2 

OS 
Zlk n+l 

m t 

1 OGl 
n1 

3G2 
n132 Zn +l n +2 äI 

Z3km+2 
3 

Zlkm+2 
01 

Z3km+gkm. (; ). 1. S) 

Assume that Zak and Zak ý are bounded, then the above equation may be written 
as 

Q V2 
(zn+l 

+z1+A V2 
(L/m+1 

+ Zr 2 

Zlk, 

m 
- 

Zlk, 

m 
k, m 

lk 
mJ y 'k, 

m k m/I 

2 

where 

+ 
aG1 ZI+ aG2 Z+ M1 +2 gý, m (5.4M ) as as 
aG1 

n 
aG3 

n +1 MI = max aI 
Z3k 

m al 
Zak 

m 

The following lemma and theorem which may be found in Douglas[15] will be used 

in relating the magnitude of Z1k ý to that of ZTh 
k, m 

Lemma 5.4.1 If V Zk, m + V2Zk, m - p(x, y) Zk, m = gk, m; 0<x, y<1, p>0, and 

Z=0 on the boundary, then 

x, 
max I Z(x, y) I< max 

9( 

Theorem 5.4.1 (Douglas) If there exists a solution u of (5.4.1) such that 11 i., ; r. r 

times continuously differentiable in the region 0<x. 
,y 

< 1,0 < t< 7', thin th ( 

solution of (5.4.2) converges uniformly to u in the region with the truncation r rror 

being not worse than O(i). 
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Douglas[15] has expressed Zik = Z, ý as a sum of functions satisfying homogeneous 

equations of the form 
n-1 

Zn = 1: Z(i) 
i-o 

where 

( 5.4.10 ) 

zW =0 (m < i) 

a Vx 
%i +AVY, +1 - 1e Z(+i =2 9i + MI (m =i -ý- 1) 

aV2Z(Z)+AV2Z(z)+aV2ZW 1+ 
AV2Z(z)1 2Zm 

Q(m)1 

+ aGi Z' + 
aG2 Zýtý (m >i 2) as m as m-1 

ZW =0 (on boundary) 
. ( 5.4.11 ) 

To show that Z,,, as defined by (5.4.10) satisfies the difference equation (5.4.9), 

substituting directly yields 

cx 172Z, ß+1 +AV2 Zn+1 +aV2 Zn +AV2 Zn -2 
Zn+l£ Zn 

- 
aG1 

Zn+1 -a 
52 

Zn 
as a 

_ 
ýQ 17X +% vy) 

nr 
7i (+1 

n-1 
+ Zn(") 

i=0 i=1 

-2n 

n-1 n-1 
Z(+1 

- 
Z(i) 

- 

aGl 
Z(+1 

äG2 
Z(t) 

i_1 i-o i=o as as 

=a Vxzj +1 +A may'. +1 
-2Z(n) i 

n-1 Z Z(t) 

aý+ may) (Zn+)+ Z(, » 
_2 n+1 

i=O 

- 
act 

Z(i) 
3G2 

Z(t) = 29n + M1, ( 5.4.12 ) 
as n+1 as n 

by (5.4.11). Thus, (5.4.9) is satisfied. Next, a bound for Z(+1 will be obtained using 

Lemma 5.4.1. 
I(ý 

max 
I Z(+1 1<f. max I g,,, +2I. max I MI ( 5.4.13 
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Since each term on the right-hand side of (5.4.13) is bounded, maxi I Z() l is 
bounded, too. 

Applying Theorem 5.4.1, it follows that the solution of (5.4.2) converges uniformly 
to S in the region. 

The second equation in (5.1.1) may be written in the form 

cxE,, -I-A Eyy = Et-2PSI- IOSI-ý l (li+u)E+ 1 (µ+u)E 
222 

= Et-G3-G4 +2(µ+U)E+G5 (5.4.14) 

with initial and boundary conditions given in (5.1.2)-(5.1.4). The terms G3 and G4 

are assumed to be boundedly-differentiable with respect to S and I and G5 is assumed 

to be boundedly-differentiable with respect to E. 

Consider the difference equations 

Bk, 
m = E' 

2 v2 (Bn'+1 Bn' )+a V2 (Bn+1 
+ Bn i= Bkml-Bk 

m_1 /ý Cn An-ý1 
km+k ml 2yk, m k, mJ 12rk, m k, m 

1 n+l An + n+l n 
2ß 

ck, 
m 

Ak, 
m 

+2 (µ + ý) Bk, 
m 

+2+ ý) Bk, nýOý 

( 5.4.15 ) 

where Bk 
m 

is an approximation to E(x, y, t) at the typical point (kh, mh, ni) which 

agrees with E on the boundaries. The operators V and ýy are defined as in (5.4.3). 

It is easy to see that 

En+l - Eh 1 
Vx (E' 

k, 
+itl + E' 

k, ýn) 
+A Vy(Ek, 

nl 
+ Ek, 

m, 
) 

-_ 
k, m 

Q 

k'n' 
-2 

Ik, 
m "Sk ml 

22 

with 

1I 
,m+1 

(µ + a) Ek, +ri, ' + (µ + a) Ek, 
m + 9k, m 

( 5.4.16 ) 
2'ý k, 22 

9k, ß = O(h2 + j) 
"(5.4.17 

) 

Subtracting equation (5.4.15) from equation (5.4.16 and using the definitions for 
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the truncation errors in (5.4.6) gives 

Zokm =0 

a v2 ýZn+l 
+ Gn )+A 

V2 (Zn+1 
+ Zn 1_ Z2k 

m-Z2k, m In Sn+l 2X 2k, m 2k mf2Yl 2km 2k m) £2k, m k, m 
in n+l 

_1 
n+l sn 1, n+l n 2 

Ck,,.,, 
`4k, ýn 2 

Ik, 
m k, m 

+2 Ck, 
m 

Ak, 
m 

2 
72kn+l +2 +ý1 Z2km +9k, 

Tn 

Zn 
m=0 

(on boundary). 

( 5.4.18 ) 

As the underlined terms can be written in the form of equations (4.6.10) and 
(4.6.11), respectively, it follows that equation (5.4.18) may be written as 

zik, 

m 
- `'2k 

m1 

öU3 

7L+1 
2 

vý 
(z2k, 

m 

+ Z2k, 

m" 

+2v 

`z2k, m 

+ Z2k 

m) C2a 

Zlk, 

m 

1 ÖG3 
n1 (9G4 1 ÖCi4 

+1 
1 

n+l 

2W 
Z3k, 

m 2 5S 
Zn +2 äI 

Z3k, 
m 

+2 (µ + ý) Z2k, 
m 

1 
2 

(It + a) Zzkm + 9k, 
m ( 5.4.19 ) 

Assume that ZikZlk 
m, 

Zak 
m and Zak m are bounded. Then equation (5.4.19) 

may be written in the form 

Zn+1 
_ 

Zn 

Q Vx 
(z+ 

m+ 

Z2k'm) + /ý 
vy 2 

(Z2k 1+ Z2k'm) 
=2 

Zk 
m 

2k 
m+ Ms + Mr 

km+29k, ß, 7 
( 5.4.20 ) + (µ+ý)Z2km+(µ+a)Z2' 

aGj Z'ý aGj. Z'ý+1 } and MI = max 
{j Zn a 

Zn+l 
} 

where Ms - max 
{ 

i, 
m 

ö7 3k, 
mi 

öl 3k, 
m ÖS lk, 

m' 
ÖS k 

Following Douglas[15], Z2k 
m=Z, 

may be written in the form of (5.4.10)-(5.4.12) 

and applying Lemma '5.4.1 and Theorem 5.4.1 shows that the solution of (5.4.15) 

converges uniformly to E in the region. ` 

Similar analysis may be applied to the third equation in (5.1.1) to conclude that 

the approximate solution, Ck, 
m, converges uniformly to I. 
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5.5 Numerical Results 

194 

The second-order methods (5.2.11)-(5.2.19), (5.2.30)-(5.2.38) and (5.2.49)-(5.2.7) 

were tested on the initial/boundary-value problem 

St 

Et 

It 

with the initial conditions 

S(x, y, 0) = s, (x, y), 

= , uN-(Ii+OI)S+aSxx+^Syy 

= OIS-(p+o, )E+aEx,, +AE'yy 

= oE-(IL+7)I+al.,., +alyy 

( 5.5.1 ) 

E(x, y, 0) = E°(x, y), I(x, y, 0) = I°(x, y) ;0<x, y<1 
( 5.5.2 ) 

and the boundary conditions 

u'(O, y, t) = t>0 
( 5.5.3 ) 

uy(x, O, t) = uy(x, 1, t) =0; t>0, 

where u(x, y, t) represents S(x, y, t), E(x, y, t) or I (x, y, t). The set of parameters 

given in (3.4.4) for N, µ, a and -y was used. The infection rate, , Q, was chosen to 

be 3=5x 10-4; the diffusion rates were a=0.01 and A=0.01. 

In the following numerical experiment the total numbers of susceptibles, exposed 

and infected individuals are taken to be 1.25 x 107,5 x 104 and 3x 104, respectively, 

The way in which each is distributed over the square 0<x, y<1 gives the functions 

S°(x, y), E°(x, y) and I°(x, y) in (5.5.2). 

Taking h=0.1 so that M=9, giving the discretizations x and y, (i = 0,1.2, .... 
10) 

of the square 0<x, y<1. The initial conditions are distributed as in Figures 5.1-5.3, 

where the numbers of exposed and infected individuals are concentrated in the centre 

of the square 0<x, y<1 and the number of susceptibles is distributed over the whole 

square such that the number of susceptible individuals in the centre of the square is 
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less than the other parts of the square; they are distributed as follows 

S(xz, Y310) - 

103967 , 0<i<M-j-1 & 0<j<M 5" 
0< <M5& M-3 <j< M+5 

2 
M+7<2<M+1 

2 
& M 3< j <M+5 

21 

0<i<M+1 &M 7<j<M+1 
2 

101967 M1<< M+3 &j 
= 

M-3 M+5 
, 2'2' 

_ 
M-3 Mß-5 & M-3 M+5 

3< 22 2 2 - 

100717 ,M1 
<i <M 3 &j 

= 
M-1 M 3; 

2 2' 2 

Z= M-1 M+1 
2 2 

i= M+3 
- 

M+1 
2 2 

81967 i=M 1& j= M21 
2 , 

E(x 
, y3,0) = 2000 

, 
M-3 < Z' j< M2 5' 

1250 

I (xi, yj, 0) = 

20000 

M-1 <. < M+3 M-1 
. 2--22 

M1<. < MZ 3 M2 3. 

Z= 
M-1 & M+1 

. 22 
M+3 & M+1 

22 

M+1 
1 ZI. % -2" 
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Figure 5.4 shows the distribution of susceptibles, exposed and infected individuals in 

one dimension at t=0.1. Figures 5.5-5.7 give three-dimensional plots of susceptibles, 

exposed and infected individuals, respectively, for 0<x, y<1 and t=0.3. Comparing 

Figure 5.4, which was compiled using the one-dimension model of Chapter 4, and 

Figures 5.5-5.7 in two dimensions, it is seen that the profiles in Figures 5.5-5.7 are 

similar to those in Figure 5.4. The time taken to compile Figures 5.5-5.7 is larger 

than that taken for Figure 5.4; this is expected because in two dimensions, the time 

taken for the disease to spread out is larger than that in one dimension. The profiles in 

Figure 5.4 can be seen clearly in Figures 5.5-5.7 by taking the cross-sections x=0.5 

or y=0.5. 



F. N. M. Al-Showaikh, 1998, Chapter 5 196 

Figures 5.8-5.10 show the dynamic behaviour of measles in two dimensions at time 

t=0.4. 

Although M was chosen small, M=9, the computer required extensive time to 

compute the results. For M>9, the computer used was unable to compute the results 

since the matrices involved are block matrices and very large so the factorization of 

these block-matrices into lower- and upper- (LU) matrices and finding the inverses of 

L and U at every time step need more advanced architecture. 

10.5 

10 

N 

A) 9.5 
ß Q 
u> 
N9 
3 

8.5 

8 
1 

Figure 5.1: Initial distribution of susceptibles. 

1 

/ 

Y axis 
00X 

axis 
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1 

Figure 5.2: Initial distribution of exposed individuals. 
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Figure 5.3: Initial distribution of infectives. 
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Figure 5.4: Dynamical behaviour of measles in one dimension at t=0.1 using h=0.1; 

susceptibles(--), exposed(--) and infectives(-. ). 
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Figure 5.5: Distribution of susceptibles after 300 time steps (t = 0.3); f=0.001 and 
h=0.1. 

X 104 

6 

5 

4 

a> 83 

W 
2 

1 

0 
1 

1 

Figure 5.6: Distribution of exposed individuals after 300 time steps (t = 0.3); Q=0.001 

and h=0.1. 
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1 

Figure 5.7: Distribution of infectives after 300 time steps (t = 0.3); Q=0.001 and 
h=0.1. 

5 

4 

N 
11) 3 

.Q 
a> v2 

Cl) 

1 

0 
1 

1 

Figure 5.8: Distribution of susceptibles after 400 time steps (t = 0.4): Q=0.001 and 
h=0.1. 
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Figure 5.9: Distribution of exposed individuals after 400 time steps (t = 0.4); P=0.001 
and h=0.1. 
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Figure 5.10: Distribution of infectives after 400 time steps (t = 0.4); 1=0.001 and 
h=0.1. 
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5.6 Conclusion 

202 

The SEIR measles model of Chapter 3 has been extended to two dimensions and the 

same parameter values have been used in numerical experiments. The model equations 
have not been seen in the literature and are a mathematical extension to the SEIR 

measles model. Block-tridiagonal matrices were obtained after implementing a second- 

order finite-difference method and the maximum principle analysis was used to reveal 

that the developed numerical method is convergent. Numerical results have shown that 

the dynamic behaviour of measles in two dimensions is similar to that in one dimension 

but takes more time to spread. 



Chapter 6 

One-Dimensional Measles 
Dynamics of Convection Type 

I 

6.1 Introduction 

In this chapter, a one-dimensional model of measles of hyperbolic type will be discussed, 

which assumes that the measles might be spread in a wave form. 

The system to be considered is 

St+PSx = µN-(µ+ßl)S 

Et+pEE = QIS-(µ+a)E ( 6.1.1 ) 

It+plx = o- L-(w+7)I 

in which S= S(x, t), E= E(x, t) and I=I (x, t) are the numbers of susceptibles, 

exposed and infectious individuals, respectively, at time t and distance x from the 

origin; p>0 is the convection rate. The other parameters are as before. 

The initial conditions are of the form 

S(x, 0) = S°(x), E(x, 0) = E°(x), I (x, 0) = I°(x); 0: 5x< L(6.1.2 ) 

203 
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and the boundary conditions are 

S(0, t) = S(t), E(0) t) = E(t), 1 (0, t) =I (t); t>0(6.1.3 ) 

Suppose that the solutions S(x, t), E(x, t) and I(x, t) of (6.1.1)-(6.1.3) are sought 
in some region 1= [0 <x<L, t> 0] of the first quadrant. The interval 0<x<L is 

divided into M subintervals each of width h so that Mh =L and the time variable t is 

discretized in steps of length £ such that tn, = n«(n = 0,1,2, 
... 

). The x-coordinates 

of the M points of this discretization are xk =kh (k = 0,1,2, ... , M); clearly, x=0 
is the x-coordinate of every point on the t-axis. 

The solutions of (6.1.1), (6.1.2) and (6.1.3) at the typical point (xk, tn) are S(xk, tom, ), 

E(xk, t, v) and I (xk, tn): these will be denoted by Sk 
, 

Ek and Ik 
, respectively. The 

theoretical solutions of numerical approximations to (6.1.1 at the same mesh point 

will be denoted by Ak, Bk and Ck, respectively, while the values actually obtained, 

which may be subject, for example, to round-off errors, will be denoted by Ak, Bk and 

On 
, respectively. These were the notations used in Chapter 4. 

6.2 Numerical Methods 

6.2.1 Numerical Method for S 

Finite-difference methods are developed by approximating the time derivative in the 

first equation in (6.1.1) by the first-order forward-difference replacement 

St N [S(x, t+ e) - S(x, t)]/t 
/ 

and the space derivative by the approximant 

1 
5 ý- ýý2 

S(x, t) - six - h, t) + 
S(x t+ tý S(x h' t+ 

h 

( 6.2.1 ) 

( 6.2.2 ) 
h 

in which x_ xk (k =1,2, ... , 
M) and t= tn, (n = 01 1) 2, ... 

). 
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By substituting equations (6.2.1) and (6.2.2) in the first equation in (6.1.1) and 
approximating as follows 

Ak+1 - Ak 
+p ýAk 

- Ak-i + An+i _ Ak+i + (µ +, Q Ck)(Ak+1 + Ak 
2h 2) 

-µN=0 (6.2-3) 

gives 

-2 pr Ak-1 + 1+ (l + C) +1 pr 
l Aý+i =1pr An 

222 

+ 
[i_ (+ßC)-2prJ Ak+QiN, (6.2.4) 

where r= £/h, which is a four-point, two-time level, implicit, finite-difference method. 
Note that, although the method in (6.2.4) is implicit it may be implemented explicitly. 

The local truncation error ACS = rs[S(x, t), E(x, t), I(x, t); h, . £] associated with 

(6.2.4) at the point (x, t) = (xk, tn) may be written down from (6.2.3): it is 

, cs S(x, t+ £) - S(x, t) +h {S(x, t) - S(x - h, t) + S(x, t+ £) - S(x - h, t+ e)} 2 

+1 (µ +ßI (x, t)) S(x, t+ t) +2 (µ +ßI (x, t)) S(x, t) -µN 2 

- {St(x, t) +P SS(x, t) + (µ +ßI (x, t)) S(x, t) -µ N} .(6.2.5 
) 

Expanding S(x - h, t), S(x, t+ . £) and S(x - h, t+ 1) as Taylor series about (x, t) 

results in 

QCs = 
f1 Stc+ 

1 
Oµ+0I)St+ 

1 
pSxtl 

4 
phis., xt 22 L2 

- 
1pzhSxx++(+#I)+£2+. (6.2.6) {st 

644 

Equation (6.2.6) reveals that the implicit method in (6.2.4) is first order because 

0. 
. CS=O(h+2)ash, f-* 
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6.2.2 Numerical Method for E 
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The time derivative in the second equation in (6.1.1) is approximated by the first-order 

forward- difference replacement 

Et - [E(x, t+ i) - E(x, t)]/. ( 6.2.7 ) 

and the space derivative by the approximant 

Eý, ý1 
E(x, t) - E(x - h, t) 

+ 
E(x, t+ Q) - E(x - h, t +f) ( 6.2.8 ) 2hh 

in which x= xk (k = 1,2, 
... ) 

M) and t=t,,, (n = 0,1,2, 
... 

). 

By substituting equations (6.2.7) and (6.2.8) in the second equation in (6.1.1) and 

approximating as follows 

Bn ý1 
_ 

Bn 
k+2 

%t 
ýBk 

- 
B' 

1+ 
Bk+l 

- 
Bk+i }- Ak Ck 

+ (µ + or) (k )=o (6.2.9 ) B +1 + Bk 
2 

gives 

prBk+i + 
[1+t(+)+Pr] BlprB-1 

2 

+ 
f1 

`- 2f ('L + v) -2p rJ Bk + Ak ý'k 
,(6.2.10 

) 
L 

where r= £/h, which is a four-point, two-time level, implicit, finite-difference method. 

As before, this method, although implicit, may be implemented explicitly. 

The local truncation error SCE = CE[5(X, t), E(x, t), I (x, t); h, e] associated with 

(6.2.10) at the point (x, t) I- (xk, tn) may be written down from (6.2.9): it is 

E 
E(x, t+ £) - E(x, t) +2h {E(x, t) - E(x - h) t) + E(x, t+ e) - E(x - h, t+ £) } 

-ß S(x, t) I (x, t) +1 (µ + a) E(x, t+ i) +2 (µ + a) E(x, t) 
2 

- {Et(x, t) +pE. � 
(x, t) -ß S(x, t) I (x, t) + (µ -f- a) E(x, t)} .(6.2.11 

) 
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Expanding E(x - h, t), E(x, t+ . £) and E(x - h, t+ £) as Taylor series about (x, t) 
leads to 

fl Ett+ 
l 

+Q) Et+ 
I 

E., tl i- 
1htE1 

l2 22PP ýýt -phE.,., J42 

+[I Etct+ 
1 
4+a)Ett+4pEttl Q2+... (6.2.12) 

J 

which is O(h + £) as h, f -* 0. This reveals that the implicit method (6.2.10) is 

first-order accurate in time as well as in space. 

6.2.3 Numerical Method for I 

Now, the time derivative in the third equation in (6.1.1) is approximated by the first- 

order forward-difference replacement 

It ý- [I(x, t+ f) - I(x, t)]/? ( 6.2.13 ) 

and the space derivative by the approximant 

Iý N1 
I(x, t) - I(x - h, t) 

+ 
I(x, t+ f) - I(x - h, t +. ý) ( 6.2.14 ) ý2 hh 

in which x=xk(k=1,2,..., M)andt=t,, (n=0,1,2,... ). 

Using the above finite-difference approximations for It and I,, in the third equation 

in (6.1.1) and approximating as follows 

c, +1 -Cn kQkp+ 
2h 

{Ck 
-Ck 1+C+1C+i}QBk 

r' r' 

+ (µ +'Y)(Ck+l 
+ Ck) ( 6.2.15 ) 

2 

gives 

1 
-- rCn±l + Ck+1 pr Ci 

P 
[1+(+)+Pr] 

11r C"+f B", (6.2.16) 
+ 1-2 +2P 1kk [2 
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where r= Q/h, which is a four-point, two-time level, implicit, finite-difference method. 
This method may also be implemented explicitly, although it is, by nature, implicit. 

The local truncation error LI - LI[S(x, t), E(x, t), I (x, t); h, Q] associated with 
(6.2.16) at the point (x, t) _ (xk) tn) may be written down from (6.2.15): it is 

Li = 
I(x't+f)-I(x't)+ PIxt 

-I x-h t +I x, t+ Q- Ix -h t+ f)j 

-o E(x, t) + (µ + 'Y) I(x, t+ f) +1 (µ + 7) I (x, t) 2 

- {It(x, t) +p II(x, t) -a E(x, t) + (µ + ry) I (x, t)} .(6.2.17 ) 

Expanding I (x - h, t), I (x, t+ Q) and I (x - h, t+ £) as Taylor series about (x, t) 

results in 

I1111 
Lr = 

[2Itt+ 
2 

(p+7)Ic+ 2 pI. c] Q- 4 phfIx., t-2 phIx., 

+ 
[6 Ittt +14 (µ + 'Y) Itt +14p Ixta] Q2 + ... ( 6.2.18 ) 

which reveals that the implicit method in (6.2.16) is first-order accurate in time and 

space since Cj= O(h + 1) as h, £ -+ 0. 

6.3 Stability Analysis 

As in Section 4.6 of Chapter 4, because the term IS in the first and second equations in 

(6.1.1) cannot be uncoupled, it follows that the von Neumann and the matrix methods 

are not appropriate for the stability analysis. Therefore, the maximum principle analy- 

sis will be used to discuss the stability of the finite-difference approximations (6.2.4), 

(6.2.10) and (6.2.16). 

To use the maximum principle analysis to examine convergence, assume that a 

solution of (6.1.1)-(6.1.3) exists in the closed region [CR: 0<x<L, 0<t< T) such 

that 82 
7 

92 and äý2 exist and are bounded in CR. 
aX2 
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Let the first equation in (6.1.1)-(6.1.3) be written as 

St+ 2P(S,, +S, ) = N- 
1Cµ+ßl)S- 

+ýI) 22 

= µN-Gi-G2 (6.3.1 ) 

with 

S(ý, 0) = S°(X), S(0, t) = S(t) 
, 

(6.3. '? ) 

where G1 and G2 are assumed to be boundedly-differentiable with respect to S and I. 

Consider the following difference equations to approximate equations (6.3.1) and 
(6.3.2) 

Vt Ak +1pV (Ak+l + Ak) =yN-2 (µ +ß Ck) A' 

+1; n>0 (6.3.3) - 2(µ+ßCk)AT k 

with 
Ak = S°(x), Ao = S(t) ( 6.3.4 ) 

where Vt and V are, respectively, the forward- and backward- difference operators with 

Vt A' _ 
(A+1 

-An /ý ) 

(6.3.. ) 

V Ak _ 
(A_A1)/h. 

It is known that 

Snß-1 n G2 = G2(xk, tn+l, k, 
In) ) 

askn+l 
at 

2 
(Sk +1 + sk ) 

nn_ G2 (X k) t+l) s) I) + 
(Sn+1 

k 
Sk 

as 

2+ 
0Ik) sk + 

(Sk+1 Sk) 
as 

Sn+l_SkT nL1n a2sk+1 
k2 

at2 l 

1 asn+l 1 ö5k 
-1 

a25k+1 )2 S1 

2 ax 
+2 

ax 4h axe 
+ 

ý)1-z 

( (L3. (ß 
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where the barred derivatives are evaluated at intermediate argument values as called 
for by the Mean Value Theorem. 

Substituting (6.3.6) into (6.3.1) gives 

Vt Skr' +2P 
(Skn+l 

+ 
'Sk) = /. G N- (P +0 Ik) Sk -1 (µ +Q jk) Sk+l 

22 

+_1h a2sk+1 + a2sk 
_le 

a2s+1 
14 aX2 ax2 2 at2 

+ (S+1_S) äG2 
.( as 

6.3.7 ) 

The assumption on S above requires the boundedness of all derivatives appearing 

inside the bracket along with Sk+l - Sk in the region 0 <x< L, 0<t<T. Hence, 

in this region, 

Vtsk+2pß 
(Skn+l+Skn) 

µ = N2(µ +ßlk)'Sk 

1 
-2 (t, +#Ik)sk+l +9k ( 6.3.8 ) 

with 

9k =O(h+ý). 

Now let 
Zm = 5n-An 1k kk 

Z2k = Ek - Bk 
Zak = Ik 

- 
(ik 

Then, if (6.3.3) is subtracted from (6.3.8), 

( 6.3.9 ) 

( 6.3.10 ) 

_I_ Vt Z1k +1pV (Zik 
1+ 

Zi) -2 
Ikr' Ti ) `sk +12 (µ +Q Ck) Ak 2 (µ +Q Ik) Sk+1 

2 
) ( 

. 11 +12 (/L+PCk)Ak +9k 6.3 +l 

with 
Zok=p, Zn 

a=O 
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As 

Gj( ýkýtn+ýýSn j)_ G1(xk)tn+l, Ak, cý)+CýCil ýý 11 
_ ýký 

as 
+ 

aG 

al 
i(In_Ck) (6.3.12) 

and 

n+1 n_ n+l n) 
aG2 

( n-ß-1 
_) 

G2(xk)tn+ll Sk 
IIk) - 

G2(xk, tn+1 Ak 
, 

ý%k + Sk ýk+1 

+a 
aI2(Ik-Ck), (6.3.13) 

it follows that equation (6.3.11) may be written as 

Vt Zlk +1pV (Zn 1+ Zn lk)--2 
3G1 

Zn -1 
(9G, Zak 

aS 2 aI 

- 2DG2Zn 
1-2OG2Zn +g%. (6.3.14) Ik 3k a aI 

Rewriting equation (6.3.14) yields 

VtZl 
k 

+PVZak+M1Zak -- - _) 
Tn 1 G1+ 

Zak+9k (6.3.1. ) 
2 äI 3I öI 

where 
(Zn+l 

Z1k -1 k 
/ilk) 

( 6.3.16 ) 

aG1 3G2 M1 = max as 1 as 

The following lemma, the proof of which may be found in Thomee[63], will be used 

to find a bound for equation (6.3.15). 

Lemma 6.3.1 (Thomee) Assume that Zk satisfies 

VtZk -DV Zk +GnZn =Fk 

Zk = f'k 

n Zn 

=+ Zn = f- ,Lf 
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where D can be written as 

212 

D= D- 0 
0 D+ 

and for some K° > 0, -K°I- < D- < -I lI-, Kj-1I+ < D+ < -Ii°I+, I GI < K°i 
Dn - Dk+i I+f Dn - Dk+r I< K° h. Then there are constants K and S independent of 

h, . I, Z, F, f °, f- and f+ such that for h<b 

IIZkII.. <K{IIf°II+Ilf II+IIf+II+IIFII} 
.(6.3.18 ) 

Now, assume that Zak is bounded and applying Lemma 6.3.1 to equation (6.3.15), 

with Z°k =0 and Zlo = Zn = 0, gives 

Zn 
lk 

11 
=mkxlZikl<Kl, (6.3.19) 

00 

where Kl >0 depends on the bounds of äj, aG2 and gk . 
Therefore the theoretical 

solution Ak of the approximating method (6.3.3) converges to the solution Sk of the 

equation (6.3.1) as h -+ 0. 

Now, the second equation in (6.1.1)-(6.1.3) may be written as 

Et+ 
1 

P(E., +Eý) = PIS- 
2 

(µ+a)E- 
2 

(µ+o, )E 
2 

= G3-2(µ+a)E-G4 (6.3.20) 

with 

E(x, 0) = E°(x), E(0, t) = E(t), ( 6.3.21 ) 

where G3 is assumed to be boundedly-differentiable with respect to S and I and G4 is 

assumed to be boundedly-differentiable with respect to E only. 

Consider the following difference equations 

1 
V Bý+pVBk - , ýCkAk-2(µ+ýýBk 

1 

-2 (µ+cT)B n+l 
;n>0, ( 6.: 3.22 ) 
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Bk = E°(x), Bö = E(t) ( 6.3.23 ) 

where Vt Bk and Bk are as in (6.3.5) and (6.3.16), respectively. 

It is easy to see that 

n+l 
k) 

(Em+1 
k) 

4- 
C4 Xkltn+1, E) 

- 
G4(Xklt+1, E+ 

-Ek n 
aE 

-2 (µ+a)En + (En+r 
_Ek) E 

8E n+' ö2 ( 6.3.24 ) 
_n1 

En+i 

at - 17t En +2 ate 1 
17 En 

=1 
aEk+l 1 8Ek 82Ek+1 a2Ek 

k2 8x 
+2 

äx 4h( 8x2 
+ 

8x2 i 

where the barred derivatives are evaluated at intermediate argument values as called 
for by the Mean Value Theorem. 

Substituting (6.3.24) into (6.3.20) yields 

Vt Ek -ý pV Ek = Ik Sk 
2Cµ 

+ o, ) Ek 2+o, ) Ek+ý 

1 aaEk+i 

4 aX2 
(E+1_E) 4 

aE 

a2Ei'k 1Q a2Ek+1 

axe 2 ate 

( 6.3.25 ) 

As before, Ek is defined in (6.3.16. The assumption on E above requires the 

boundedness of all the derivatives appearing inside the bracket along with Ek+l - Ek 

in the region CR. Hence, in this region, 

Vt Ek +OV Ek = 

with 

QIk sk -12 (µ+ý)Ek 

2 
(µ+a)Ek+l +9k 

, 
( 6.3.26 ) 

9k=O(h+Q)" (6.3.27) 
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If equation (6.3.22) is subtracted from equation (6.3.26) and using the definitions 
in (6.3.10) for the truncation errors, then 

Vt Z2 +P Z2k = ,Q Ik Sk ýk Ak 1 
kk 2 +ý)Z2 

1 
2 

Oµ+a)Z2k 1+9k 
( 6.3.28 ) 

As the term ß Ik Sk can be written down in the form of equation (6.3.12), it follows 
that equation (6.3.28) becomes 

Vt Zn n +PvZ2k 

where 2 is defined as in (6.3.16). 

OG3 aG3 n as Zn + aI Z3k 
ýµ + ý) Z2k + 9k ( 6.3.29 ) 

Assume that Zik and Zak are bounded. Moreover, Z2k =0 and Z2o = Zn = 0. 

Then, by Lemma 6.3.1, 
Zn 11 = max I ZZk I< K2 ( 6.3.30 ) 2k 

00 k- 

for some K2 >0 which depends on the bounds of as 7 fand gk . 

Therefore the theoretical solution Bn of the approximating method (6.3.22) con- 

verges to the solution E' of the equation (6.3.2) as h -+ 0. 

The third equation in (6.1.1)-(6.1.3) may be written in the form 

It+ p(I., +Iý, ) = o, E- 
2 

+'Y)I -2 (µ+'Y)I 
2 

= uE- 
1 

+I-G5 (6.3.31 ) 
2 

with 

I(x, 0) = I°(x) , I(0, t) = I(t) ,(6.3.32 
) 

where, as before, G5 is assumed to be boundedly-differentiable with respect to I. 
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Consider the following difference approximations to equations (6.3.31)-(6.3.32) 

vtck Ckr' 
=Q Bn 

1 

k 2ýFý+7)ck 
1n. 
2(µ+7)Ck+l ; n>0, (6.3.33) 

with 

Ck = I°(x), Cö = I(t) ( 6.3.34 ) 

where Vt Ck and Ck are as in (6.3.5) and (6.3.16), respectively. 

Writing It, I., and G5 at the point (kh, (n + 1)Q) as in (6.3.24) and substituting into 
(6.3.3 1) gives 

vt Ik +pV ik = or Ek -2 (µ + 7) Ik -2 (µ + y) Ik +I 

+h 
a2Ik+1 

4 axe 

+ (jn+1 
_ Ik) 

3G5 

aI 

a2Iý 

-1f 

a2Ik +1 

axe 2 at, 

( 6.3.35 ) 

The assumption on I above requires the boundedness of all the derivatives appearing 
inside the bracket along with Ik "1 

- I, ' in the region CR. Hence, in this region, 

Vtlk+PVIk=0Ek-2(µ+Y)Ik-2ýý+Y)Iý+1+9k 6.3.36) 

with, again, 

9k =O(h+1). ( 6.3.37 ) 

If equation (6.3.33) is subtracted from equation (6.3.36) and using the definitions 

in (6.3.10) for the truncation errors, then ', 

Vt Zak 

-}- pV Zak = or Z2k 2+ Zak 

1 
- 2(Fý+Y)Z3k1+9k 

(6.3.3S) 
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This equation may be rearranged to obtain 

Vt Z3k +P Zk 
=Q Z2k + (µ + Z3k + 

. 
9k ( 6.3.: 

Since Zak =0 and Z3, = Z3L = 0, it follows that, by applying Lemma 6.3.1 to equal Mil 
(6.3.39), assuming Z2k is bounded, 

00 
Zak I=k max Zak < Ii3 (6.3.10 ) 

for some K3 >0 which depends on gk only. 

Therefore the theoretical solution Ck of the difference method (6.3.33) converges 
to the solution Ik of the equation (6.3.31 as h -+ 0. 

6.4 Numerical Results 

In this section, the initial/boundary-value problem (6.1.1)-(6.1.3) was solved using t11c 

set of parameters given in (3.4.4) for N, u, a and ry with the infection rate, 0, chosen 1o 

be ß=5x 10-4 and the convection rate p=0.01. Taking h=0.025 so that a1 = 40, 

giving the discretization xi (i = 0,1,2,... 
, 
40) of the interval 0<x<1,1 he initial 

conditions in (6.1.2) were distributed as follows (see Figure 6.4) 

S(xi, 0) = 625000(1.0 - xi) , 

E(xZ, 0) = 2500(1.0 - xi) ,(6.4.1 
) 

I(xi, 0) = 1500(1.0 - xi) ; 

i=0,1 
, 
2, ... , 40, and the boundary conditions are given by 

S(0, t) = 624984.53 - 307593.99 t- 19050772.40 t2 + 1166543986.11 t3 

-36484106091.98 t4 + 2216512490 15.76 t5 , 

E(0, t) = 1492.96 + 650903.17 t- 19644625.80 t2 + 388.565240.19 t3 

+8182794371.50 t4 - 88931566812.11 tj 

1(0, t) = 1703.66 - 107358.36 t+ 19484101.83 t2 - 67,5809151)-8-1 t3 

+13016185133.41 t4 - 70376307841.96 t5 . ( ct. 1.2 ) 
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The boundary conditions given in (6.4.2 were obtained from experiment A in Chap- 

ter 4 by taking the numbers of susceptibles, exposed and infectives at x=0.5 and 
0<t<0.1 from Figures 4.4,4.5 and 4.6, respectively, and fitting' them as in Figures 

6.1-6.3. 

As time increases, the number of susceptibles decreases whereas the numbers of 

exposed individuals and infectives increase near x=0, where, initially, the number of 

each individual is large. Although some negative values for susceptibles were seen (see 

Figure 6.5) for small number of iterations (t N 0.005), the method works satisfactorily, 

as shown in Figures 6.5-6.7. 

x 

'Fitting the curves were done by the software package "Cricket Graph", version 3.1, ©Microsoft 

Corporation. 



F. N. M. Al-Showaikh, 1998, Chapter 6 

700000 

600000 

500000 

400000 

300000 

200000 

100000 
0E4.01&2 2E-2 3E-2 4E-2 5E-2 6E-2 7E-2 8E-2 9E-2 1E-1 

218 

Figure 6.1: Fifth-degree polynomial fitting of susceptibles; the regression coefficient is 
1.0. Q data points; - polynomial fitting. 
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Figure 6.2: Fifth-degree polynomial fitting of exposed; the regression coefficient is 1.0. 

Q data points; - polynomial fitting. 
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Figure 6.3: Fifth-degree polynomial fitting of infectives; the regression coefficient is 1.0. 

0 data points; - polynomial fitting. 
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Figure 6.4: Initial 'distributions for susceptibles, exposed and infectives. 
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Figure 6.5: Three-dimensional distribution of susceptibles; £=0.001 and h=0.025. 
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Figure 6.6: Three-dimensional distribution of exposed; £=0.001 and h=0.025. 
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Figure 6.7: Three-dimensional distribution of infectives; Q=0.001 and h=0.025. 
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Chapter 7 

Diffusion-Convection Measles 
Model 

7.1 Introduction 

The object of this chapter is to study the solutions of mixed initial/boundary-value 

problems for measles dynamics of diffusion-convection type, which is a composite of 
Chapters 4 and 6. The system is the class of non-linear parabolic equations given by 

aS3 = St+pSý-µN+(µ+ßI)S 

aE,,., = Et+pEx-ßIS+(µ+o)E ( 7.1-1) 

al.,, = It+pII-uE+(µ+'Y)I 

in which S= S(x, t), E= E(x, t) and I=I (x, t) are the number of susceptibles, 

exposed and infectious individuals, respectively, at time t and distance x from the 

origin; a>0 and p>0 are, respectively, the diffusion and convection rates. The 

parameters µ, , Q, a and y are as before. 

The initial conditions are of the form 

S(x, 0) = S°(x), E(x, 0) = E°(x), I (x, 0) = I' (X); 0<x<L (7.1.2 ) 

225 
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and the boundary conditions are 

SS(0, t) =& (0, t) = II(0, t) 

S., (L, t) = E., (L, t) = II(L, t) 

=0; t>o, 

=0; t>0. 

Differentiating the three equations in (7.1.1) with respect to t gives 

aS.. t-S'tt-ps. t-(I-I+OI)St-#Its =0 

aE.,., t-Ect-pE, t+, 3ISt+ßItS-(µ+u)Et =0 

aIýýt-Itt-PI., c+o, Et-ýµ+7)It = 0. 

226 

( 7.1.3 ) 

( 7.1.4 ) 

Let the open region SZ = [0 <x<L, t> 0] be bounded by the lines x=0, 
t=0 and x=L; the closure of Q will be denoted by n. The set composed of the 

segments äQ0(0 <x< L7 t= 0), aQ, (x = O, t> 0) and 392(x = L, t> 0) will be 

denoted by äS1 and called the boundary of Q. The interval 0<x<L is divided 

into M+1 subintervals each of width h so that (M + 1) h=L and the time interval 

t>0 is discretized in steps of length . £. The open region SZ and its boundary have 

thus been covered by a rectangular mesh having coordinates of the form (Xm, t, ) where 

xm=mh(m=0,1,2,..., M, M'+1) andtn=n? (n=0,1,2,... ). 

The solutions of (7.1.1)-(7.1.3 at the typical point (im, t,,, ) are, of course, S(im, t,, ), 

E(xm, tn) and I (xm, tn): these may be denoted by Sm, E and Im, respectively. The 

theoretical solutions of numerical approximations to (7.1.1) at the same mesh point 

will be denoted, respectively, by A', Bm and Cm, while the values actually obtained, 

which may be subject, for example, to round-off errors, will be denoted by Am, Bm 

and C, 
, respectively. 
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7.2 Numerical Methods 

7.2.1 Numerical Method for S 

The time derivative in the first equation in (7.1.1) is approximated by the first-order 

forward-difference replacement in (4.4.1), S,:, by the weighted approximant as given in 

(4.4.2) with 0=2 and S., by the central-difference approximant 

S, 
1 S(x+h, t+. £)-S(x-h, t+ý) 

+S(x+h, 
t)-S(x-h, t) 

( 7.2.1 ) 2 2h 2h 

in which x_x,,,, (m=0,1,2,..., M, M+1) and t=tn, (n=0,1,2,... ). 

Equations (4.4.1), (4.4.2) (0 = 2) and (7.2.1 are used in the first equation in (7.1.1 

and approximating that equation as follows 

An+l n 

m- 
Am 

+1PA 
+1 - Am 1+A m+l -Am 1+1+o cn)An±1 

2 2h 2h 2m 
1+2 

([L+/cm l )Am - 2h2 
ý`4n-i 

-2A n+ 1 +A +l 

n"7.2.2 + Am-, -2 Am + Am+i -µN=0) 

gives, after rearranging, 

- Pr+lapl A+ 
[i+(+ßc)+a] 

l 
±i Al+ 

\Pr 7ý) A1 C1 
+ ßC+1Aý= Pr+2apl Am-i+[1-2 µ-apJ n 

2 C4 l 

+ 4pr+2aPl Am+i+fpN, (7.2.: 3; 
J 

where r= £/h and p= 1/h2 

The local truncation error Ls = £s[S(x, t), E(x, t), I(x, t); h, . e] associated with 

(7.2.3) at the point (x, t) _ (Xm, tn) may be written down from (7.2.2): it is 

s(x, t+1) - S(x, t) + 4h {s(x + h, t+£) - S(x - h, t +£) cs -Q 
+ S(x + h, t) - S(x - h, t)} +2 (µ +0I (x1 t)) S(X, t+ t) 
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+2 (µ+ßI(x, t+i))S(x, t)- a2 {S(x-h, t+. e) -2S(x, t+e) 2h 
+ S(x+h, t-}-. Q)+S(x-h, t)-2S(x, t)+S(x+h, t)}-MN 

- {St(x, t) +p SS(x, t) + (µ +ß I(x, t)) S(x, t) 

- aS. �x(x, t) - pN} .(7.2.4 ) 

Expanding S(x, t+ . £), S(x ± h, t+ £), S(x ± h, t) and I (x, t+ £) as Taylor series 

about (x, t) leads to 

Ls =111 
10 1 [2Stt+2pSt-ý 

2(µ+0I)St+ ItS-2aS,, 
xtl £+1 

Iph2Q 
Sxxxc 

J 12 
112111 (6p SSxx - 12 a 5xxxx) h+ [1 Sttt +4p Sett +4 (l-L +Q I) Stt 

1 
+1ß Itt s-4a Sxxtt] Q2 + .... ( 7.2.5 ) 

The first quation in (7.1.4) reveals that the term in £ in the equation (7.2.5) vanishes. 

Thus 12s = O(h2 + £2) as h, f -k 0, leaving 

I21 
Sxxx 

1a 
Sxxxx h2 +[ 

1 
Stct +1p Sxtt Ls = 12 p hi Sxx, t + 

(6 
P 12 64 

11 
+ 4(ý+#I)Stt+ 

I 
Pitt S-4aSxxtt]12+.... (7.2.6) 

The finite-difference method (7.2.3) may be applied for m=1,2, ... ,M and n= 

01112, 
.... 

When m=0 it requires some modification and may be simplified a little 

when m=M+1. Applying (7.2.3) with m=0 introduces the terms Ai 1 and An 1 

but the points (x_1, to+l) and (x_1, tn) are outside the grid superimposed on 1U au. 

However, applying the central-difference approximant 

r _. 
S(x + h, t) - S(x - h, t) 

Jx %z 
2h 

to the boundary conditions (7.1.3) give, to second order, A' 1= An and Ani 1= Ai+1 

so that equation (7.2.3) yields 

[1 + 
11(µ 

+ ßCö)+ap]Aö+l_apAl+' +2 tß Co+1 An 0 
2 

) 1_I fy -apl An +apAi +iyN. (7.2.7 [J 
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With m =M+1, the terms AyI'2 and AM+2 are obtained which may be replaced 
by, using similar discussion as above, AM 1 and AM and so equation (7.2.3) gives, for 

m=M+l, 

-a p AM1 + 1-ý 2t(µ+, Cyr+')+ap] AM+ý+2Q cM+lA11+1 [1 
rI 

=ap AM +1 2fµ -a P1 I AM+, +f it N. (7.2-8) 

7.2.2 Numerical Method for E 

In this section the time derivative in the second equation in (7.1.1) is approximated 

using (4.4.13), E,,, is approximated as in (4.4.14) (4 = 2) and Ex is approximated by 

ESN 
1 E(x+h, t+. £)-E(x-h, t+£)+E(x+h, t)-E(x-h, t) 
22h2h 

(7.2.9) 

in which x=xm(m=0,1,2,..., M, M+1) andt=tn, (n=0,1)2,... ). 

Using equations (4.4.13), (4.4.14) (0 = 2) and (7.2.9) in the second equation in 

(7.1.1) and approximating as follows 

Bn+l 
- 

Bn 1 Bn+l 
- 

Bn+l Bn 
- 

Bn 1 
mm lý m+l m-1 + m+l m-1 

-_ß 
rrnmAm An+l 

Q+2P 2h 2h 2 

- 
10Cn+1 

An + (µ+u)B 1+ 1 
(/i+a)B -a 

{Bm i 
222 2h 2 

- 2Bm 1+B +i+Bm, 
-1-2Bm±Bm+1}=0, 

( 7.2.10 ) 

gives, after rearranging, 

[1+(+)+aP] 

C Bl+\pr-P) Bi 
- pr+1aPl B; ±i + 

-j /3G'',; A,, 12c� 1A', =(4 Pr+20P Bm-1 
2 

1 
+ 

[i_(i+cr)-aP]Bm 

+ (-_pr+cxP) 
42 

Bm+i 1(1.2.11 
) 
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where r= £/h and p= Q1 h2. 
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The local truncation error LE - , 
CE[S(x, t), E(X, t), I (x, t); h, e] associated with 

(7.2.11) at the point (x, t) - (x,,,,, tn, ) may be written down from (7.2.10): it is 

LE = 
E(x, t+ f) - E(x, t) 

.£ 
+4h {E(x+h, t+ý)-E(x-h, t+f)+E(x+h, t) 

- E(x - h, t)} -20 I(x, t) S(x, t+ e) _1ß I(x, t+ . e) S(x, t) 2 

+ 2(µ+a)E(x, t+£)+1(µ+a)E(x, t)- a {E(x-h, t+Q)-2E(x, t+£) 2 2h2 
+ E(x + h, t+ . £) + E(x - h, t) -2 E(x, t) + E(x + h, t)} - {Et(x, t) +pE,, (x, t) 

-0I (x, t) S(x, t) + (µ + or) E(x, t) -a Exx(x, t)} . 
( 7.2.12 ) 

After expanding E(x, t+ . £), E(x ± h, t+ t), E(x ± h, t), S(x, t+ £) and I (x, t+ . £), 

using Taylor's expansion, about the point (x, t), equation (7.2.12) becomes 

LE - 
[2 Ecc+2pE., c- 

10ItS- l#ISt+2(µ+o, )Et- 1aE,, 
t] Q112r11-1222 

+ 
12 ph Exxxt +(6pE., 7xx - 12 a Eý, 7xx h+6 E+ ttt +4p Extt 

4I 
s'cc 

- 
4ßlttS+4(µ+o, )Et- 

IaExtt] 
Q2+.... ( 7.2.13 ) 

The second equation in (7.1.4) reveals that the coefficient of e in (7.2.13) vanishes, 

leaving 

GE =1p h2 Exxxt +(p Exxx 
12 a Ex, 7xx 

h2 + 
[6 Ettt +4p Exit 

12 6 

... . 14 
- ßlstt- ltts+4(µ+ý)Ett- 

1 
4aExxtc] j2+ i. 2 ý) 

44 

which is O(h2 + t2) as h, f --- 0. 

The finite-difference method (7.2.11) may be applied for m=1,2, ... ,M and n= 

0,1,2,.... When m=0 it requires some modification and may be simplified a little 

when m= M+1. As in the case of S, with m=0, equation (7.2.11) produces the terms 
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B-11 and Bn1 which may be replaced to second order by Bi +1 and Bi 
, respectively, 

so that 

_n 
n+l 

11 
n +l 

_ 
n+l 

_ 
n+l n 2ýßCoAo + 

[1+2+a)+ap 
Bo apB, f 0Co Ao 

J2 

- 
[1-2 

(µ+a)-ap Bö+apBi (7.2.15) 

and with m=M+1 equation (7.2.11) becomes 

-2 f# cM+i AM+1 -ap Bn+ 1+ f1 
+1f (µ + a) +a pl Bim+I- 

1ýQ 
cis+, Ani+ý L2J2 

r11 
= apBM+ 

[i 
- 2Q(µ+a)-ap] BM+1. ( 7.2.16 ) 

7.2.3 Numerical Method for I 

The time derivative in the third equation in (7.1.1) is approximated by (4.4.25), Ix, 

is approximated by (4.4.26) (0 =2 ) and I., is approximated by the central-difference 

replacement 

I1 N1 
I(x+h, t+£)-I(x-h) t+£) 

+ 
I(x + h, t) - I(x - h, t) ( 7.2.17 ) 

2 2h 2h 

inwhich x=x, (m=0,1,2,... 
)M, 

M+1) andt=tn, (n=0,1,2,... ). 

Using equations (4.4.25), (4.4.26) (ý = 2) and (7.2.17) in the third equation in 

(7.1.1) and approximating as follows 

n+l ýrn 1 n+1 nl nn C-C+P Cm 
f1- 

ýrn-1 
+C m+1 - 

ým-1 

a Bn+1 
-1U 

Bn 

Q2 2h 2h 22 

01 
+1 (µ + 7) cß�±1 +2 (fß + 7) Cn, -2 h2 

ýCn, i-2 Cm l+c +i 
2 

+ Cmn-1-2Cm, +Cam, +1}=0, 
(7.2.18) 

yields, after rearrangin, g, 

Gpr+ 
a PC�±1 + ++7)+aP C1+ (prcýpCm+i 

2 J2J \4 

- fan+1 
,= 

(pr 
+aP) C-1+[1-(l+)-«P] Bný 

+4pr+2aP Cm+1+2ioBm7 (r. '. 19 C 
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where r= f1 h and p= . Q1 h2 
. 
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The local truncation error , CI -C j[S(x, t), E(x, t), I (x, t); h, Q] associated with 
(7.2.19) at the point (x, t) = (x,,,, t,,, ) may be written down from (7.2.18): it is 

ýr = 
I(x, t+ý)-I(x, t)+ {I(x+h, t+. £)-I(x-h, t+Q)+I(x+h, t) 4h 

- I(x - h, t)} -2 aE(x, t+£) -1a E(x, t) +1 (µ +7)I(x, t+£) 22 

+2 (µ + 'Y) I (x, t) -2 h2 
{I (x - h, t+ Q) -2I (x, t+ f) +I (x + h, t+ ý) 

+ I(x - h, t) -2 I(x, t) + I(x + h, t)} - {It(x, t) +p II(x, t) 

Q E(x, t) + (µ + 7) I(x, t) -a IIx(x, t)} . ( 7.2.20 ) 

Expanding I (x, t+ e), I (x ± h, t+ f), I (x + h, t) and E(x, t+ Q), using Taylor's 

expansion, about the point (x, t) gives 

'Cr = 
f2 Itt +2p Ißt -2a Et +2 (µ + 'Y) It -2aI. xt f+ 

12 p h2 f Ixxxt 
L 

1211 
Ixtt -1a Ett + 

(PIxxx-Ixxxx) 
6 h+ 

6 
Ittt +4p4 

117.2.21 

This reveals that LI = O(h2 + £2) as h, .£ --3 0 because the term in £ vanishes (see 

the third equation in (7.1.4)). 

The finite-difference method (7.2.19) may be applied for m=1,2, ... ,M and n= 

0,1,2, .... 
When m=0 it needs some modification and may be simplified a little when 

m=M+1. As in Subsections 7.2.1 and 7.2.2, with m=0, equation (7.2.19) becomes 

-1. ýaBo+i + 
[1+(+)+ap1c1_apcr+1=aB1 

aJ Cn+a C" (7.2.22) + 
[1 

- 

while for in =M+1 it gives 

-1fQBM+1 - apCMi+ 
[1-f 1 

2e(µ+-Y) +ap CM+1=aPc» 
2 
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+ 
[1 

2Q (µ + i) -a 
lCM+1 

+ 
2 

BM+1 
J 

7.3 Implementation 

233 

( 7.2.2: 3 ) 

Adapting the notations of Section 4.5 it is easy to implement equations (7.2.3), (7.2.11) 

and (7.2.19) which may be written in matrix-vector form as 

Wn Ute'+1 = Mn Un +b(7.3.1 ) 

in which WT' and Mn are both of order 3 (M + 2) and are of the forms 

Xn 0 Hi 

Wn = F1 Yn F2 ( 7.3.2 ) 

O H2 Zn 

Pn O0 
Mn =0Qn07.3.3 

) 

O H3 RTh 

where 0 is the zero matrix of order (M + 2) and the vector b is a column-vector of 

order 3 (M + 2) given by 
T 

7.3.4 ) 

(M+2) times 

T denoting transpose. 

The sub-matrices of Wn and Mn are each of order (M + 2) and are given by 

Xn = 

V0 -ap 

_4 pr -2ap vl 
4 pr -2 ap 

_4 pr _2 cep v2 4 pr -2 ap 

4 
pr -2 cep VM 

4 
pr -2 ap 

-a p Um +i 
( 7.3.5 ) 
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Yn = 

Z'ý = 

P'l =I 

vy 

_4pr_ lap 

vz 
1pr 

-lap 

-ap 

vY 

_4 pr_ 2ap 

-ap 

vz 

_4pr-lap 

4 
pr -2 cxp 

vY 

_4 pr -2 ap 

1pr-tap 

vz 

_4 pr _2cp 

VP ap 
1pr+2ap V -4Pr+1ap 

1 pr +2ap vP 

4pr+2ap 

/ 
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4pr-lap 

vy 

-ap 

1 pr -lap 

vz 

-ap 

4pr-tap 

vY 
( 7.3.6 ) 

4pr-tap 

vz 
( 7.3.7 ) 

-4 pr +2 aP 

vp -4 pr +2 ap 

ap VP 
( 7.3.8 ) 
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vQ 

4pr+lap 

/fin= 

ap 

vQ 
4Pr+2OP 

_4pr+2p 

vQ 

4pr+2oz p 

23 

4 Pr+2aP 

vQ 4 pr ý-2p 

ap vQ 
( 7.3.9 ) 

VR op 

4Pr+2ap VR 4 Pr'+2aP 

Rn =4 

Pr +2 ap vR 
4 Pr +2 ap 

4 
Pr +2 ap VR 

4 
pr +2 ý''p 

ap VR 

( 7.3.10 ) 

Hl, H2, H3, F1 and F2 are given in (4.5.11) and vi (i = 0,1,2,..., M, M+1), vY; vZ, 

VP, VQ and vR are as in (4.5.12). 

7.4 Stability Analysis 

As in Sections 4.6,5.4 and 6.3, the maximum principle analysis will be used in t his 

section to prove convergence of the numerical method developed in this chapter. The 

theorem which will be used as a tool to prove convergence is due to Rose[53]. Theorem 

1.4.1. 

Now, by comparing system (7.1.1)-(7.1.3) with equations ( 1.4.6) and ( 1.4. E ). 

it is easily seen that u=S, E or I, ßo = -1, ai = a2 =1 and d, _ ý2 = lJ. Also 

conditions (1.4.7) are satisfied for all functions S, E and I. 
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The first equation in (7.1.1 is written in the form 

2 (Sýý+Sxý) = St+2 (S,, +S, )-N+2+01)S+2+01)S 

= St+2 (S., +S', )-µN+G1+G2 (7.4.1 ) 

with initial and boundary conditions 

S(x, 0) = S°(x) ;05x: 5 L 

( 7.4.2 ) 

Sý(0, t)=S, (L, t)=0; t>0 

where Gi and G2 are assumed to be boundedly-differentiable with respect to S and I. 

The solution S(x, t) is approximated by An defined on 52 which agrees with S(x, l) 

on ?S (i = 0,1,2) and satisfies the difference equation 

aD2ýAn,,? 1+Aý, ý 
_ VtAý, +2VxýA'� 1+A. )-µN+2(µ+#c. A 1 

2 

+2 (µ+0Cm 1)An n>0, ( 7.4.3 ) 

where 

V2Am - 
(Am-, 

-2 Am + Am+1) /h2 , 
pSAr - 

(Am+l 
- Ate, 

-ýý 
/2 h, (7.4.4 ) 

ptAm - 
(Am 1- An /Q . 

\ 
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It is known that 

Gl = Gl(Xmi to+l, 
"gym )M= 

Gl\xml to+1, Smn Im, + 
\. 

m1- 
'Sml 

'Gi 

as s 

2 
(µ +0 Irn) Smn + (Sm l- 

'Sm) 
1 

as 
n n+l ( Sn n( n+1 n G2 = G2 gym) to+l) Sm) Im )= G2\Xm1 to+1) 

m, 
Imi + Im 

- 
Imi 

aaG2 l 

=2 (µ+ßInm )Sý + (I 
. 
+1 _ In) aG2 

m ar 
1 V2 (smn+l + Ste) _1 

a2sn 1+1 a25r., + h2 I a4Sm 1+ 29 
22 axe 2 aX2 24 ax4 ax4 

1V (Sn+1 + Ste) =1 asm 1+1 ash + h2 (a3s, ý 1+ a3sm 1 
2mm2 ax 2 ax 12 ax3 ax3 

n- asn+1 j a2Sn+1 
tiJm at 2 ate 

( 7.4.5 ) 

where the barred derivatives are evaluated at intermediate argument values as called 

for by the Mean Value Theorem. 

Substituting (7.4.5) into (7.4.1) yields 
a2 (m+1 

+ s) = vt sm+2V (sm 
1+ sm) 

- /, G N -}- 22 
(f Gß Im) 'S'm 

1 

+1 (µ +ßI +1) sm +1 h2 
a4sm 1+ a4sm 

+1 
a2sm 1 

2 24 aX4 aX4 2 ate 

_1 h2 a3sm 1+ a3sm 
_ (s ±l _s ,ý 

8G1 
12 aX3 ax3 as 

m Im n) - 
(Im+1 

_ In) 
aG2 ( 7.4.6 ) 

The assumption on S above requires the boundedness of all the derivatives appear- 

ing inside the bracket along with S�±1 - S; and I+' -I in the region n. Hence, in 

this region, 

aV2 (S+1 +sm) _ Vtý7n+PVx(Sm 1+Sm) 
-µN+2+P Im) `Sm 

1 

22 
1 

+2 ýµý ßI Sm+9m 

with 
g =O(h2+t)" 

( 7.4.7 ) 

( 7.4.8 ) 
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Now, if (7.4.3) is subtracted from (7.4.7) and using the definitions of the truncation 

errors in (4.6.8), 

V2 (Z1 + Zn i imý +2 (µ +0 Imo, ) Sz imý _V Z1m +2 vx ýZim 1+ Zn 

2 (fy+ßC`)Am 1+ +Qlm 1)sm 
2 

1 
2(µ+ßc 1)Am+9m (7.4.9) 

with Z' and Zl ±1 vanishing on s9 R (i = 0,1,2). As 

n+l Tnl _ ni-1 nl 
aG, 

n+l n+1 Glýýý tn+ ým 
lm/ - 

ýl 
l 
(ý'mý t,, 

+,, 
ým ýmI + 

as 
ým 

-Ate' J 

aG + al, 
(Im - C�z) 

and 

G2 n nß-1 _ /ýr n n+l + ýým 
ý 

to+1, Sn Ian 
- lT2\(ýýý to+1 Am. 

ý 
can, I 

+ aG2 (I +1- cm 1) al 
it follows that equation (7.4.9) may be written as 

( 7.4.10 ) 

as 
(Sm - Am ) 

as 
( 7.4.11 ) 

Cx 
V72 (zr' 

+ Zlm\ = VtZlm +P Vx (zr1 
+ Zni\ +1 

aG, 
Zn 

l 
+1 +1 

aGi 
Z3 

22 m/I 2 19S 2Wm 
1 aG2 

Zn 
1 8G2 

, ý+1 ( 7.4.12 ) +2 as im +2W Z3m + 9m 

Rewriting equation (7.4.12) gives 

V2(Zi±l +Zimý _ VtZm+ 0x (ZlnZl + Zln - 
22 n) 

+MSZin 

) + MrZ3n +gm ( 7.4.13 

where MS = max 
{ 

as ' as 
}, MI = max 

{ s, } 
and Zlm and Z3m are as in (6.3.16). 

i, and Assume that Z3m is bounded. It is known that gm is bounded. Moreover, Zn 

Z1 vanish on ä1l. Hence, by Theoreml. 4.1, Am and Am 1 converge to Sm and Sm 1 

uniformly. 
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The second equation in (7.1.1) may be written in the form 

(Exx+Ex, ) = Et+ 
2 

(E, +E, )- 
2OIS- IOIS+ 1 

(µ+(7)E+ (ýc+17)F 
2 

= Et-{-2 (E, +E., )-Gs-G4+G5+2(µ+o, )E ( 7.1.1.1 ) 

with initial and boundary conditions 

E(x, 0)=E°(x); 0<x<L 

E, (L, t)=0; t>0 

( 7.4.15 ) 

where G3 and G4 are assumed to have bounded derivatives with respect to S and I 

and G5 is assumed to be boundedly-differentiable with respect to E only. 

The solution E(x, t) is approximated by BM defined on S2, agrees with E(x, t) on 

3 (i = 0,1,2) and satisfies the difference equation 

'Am av2 (Bmn+ 1+Bm) VtBm+2V (B+1 +B m) - 20C, mAm 
1_ 

2ßC, mn+ 
n 

2_J 
+ (µ+a)B; 

L, n>0, ( 7.4.16 ) 

where V2, V, and \t are defined in (7.4.4) and Bm is defined as in (6.3.16). 

It is easy to see that 

1 
1 v2 (En+l + Enl _ \mmI 

I a2E;, 1 

2 öx2 
+i a2E,,,, +1 h2 2 0x2 24 

(a4E"', 1+ a4E ý 
8x4 0x4 Ji 

1 
2 

Vx n-}-1 nl ( 
lErn 

+ Eml 0E; ±1 

2 ax 
1 äE, n 1 h2 ( 

+2 
äx 

+ 
12 

) 83Em '+ a3Em 1(7.4.17 
6x3 6x3 

En = tm 
aE"+1 

at 
e 82Q+1 

2 6t2 I 

where the barred derivatives are evaluated at intermediate argument values as called 

for by the Mean Value Theorem. Moreover, G3, G4 and G5 may be written in the forth 

of (4.6.1 6). 
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Substituting the expressions for G3, G4, Gs from (4.6.16) and the expressions in 
(7.4.17) into (7.4.14) gives 

2 
V2 

(E1+E, 
" J-V E' nn + ýx (Em 1 + Em) 

2 

- 

Im ýýn 1-ý Jz 
'gym 

1 Ö4En+l Yn1 
C)2En+1 

+ (µ + a) Em + 
24 

h2 
j)X4 

ý-- aX4 +ýQ2 
at 

3 n+l 3n 
h2 

Em 
+ 

Em 
+ 

(Sn+l 
- 

C'n 
DC3 

12 Öx3 CýX3 m ý7m) as 

Im+l 
- 

Imf 
0G4 

- 
(Em 1-ý, '' ml 

aG5 
( 7.1.18 ) 

al J aE 

The assumption on E above requires the boundedness of all the derivatives appear- 
' ing inside the bracket along with Snm+1 - Sn 

m, 
E nmß-1 

-Enm and Inm+l - In 
m in the region 

Q. Hence, in this region, 

n aV2(E''m1+ 
Ern) =V tE m+ PV 

(ETn, 1+ E' nm2N Im S110 Im+, Sin 

2 
+ (µ+, )En +gm, ( 7.4.19 ) 

with 
9m = O(h2 + f) ( 7.4.20 ) 

Now, if (7.4.16) is subtracted from (7.4.19) and using the definitions of the trunca- 

tion errors in (4.6.8), 

a 
V2 (Z2 ±1 Zn= ýtZ2ý 

p 
V, Z2 +1 + Z2 J_ßI 

nr, S�±1 +ß cm n In+l 

2\2 ,n ,n22 / 

- 
1ßlm l Sm+2ßß'm'Am+(µ+a)Z2�z+9; ý 

x. 1.21 ) 
2 

As 

Sn+l n /ý n+l n 
3G3 

ýýr+l -ý 
n+ll 

C3 = 
C3(Xm, tn, +1) 

Sm 
) 

Irrt) - 1ý3(xmi to+l7 dim 
ý 

Cm) 
a(' In / 

, 
(9G3 (Im Cn1 

aI 
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and 

nnnnJ 1 G4 
= G4(Xm, tn+1, I= +1 

mý m 
G4(Xm, to+l, Amý''m + 

aG4 
(In+1 

_ 
Cn+l) 

al m, ýn J 

it follows that equation (7.4.21 may be written as 

( 7.4.23 ) 

2 
V2 r/2 +1 + Z2n,,, 

) 
'r 

I-VtZm+P 
vx 

(z 1+ 
LJ2m) 

2 

aG3 
Zl 1-1 

öG3 
Zn 

\LJ / as 2 ar 
_I 

aG4 nI aG4 n 1 2m + 9ý ( 7.4.24 2 as 
Zi"ý 

2 al 
Z3± + (µ + ,) 2n 

with Z2m and Z2m 1 vanishing on äS2,. 

Let MS = max {-2-Gý, 
s as 

} 
and MI = max { äI 

, 
äi }. Then equation (7.4.24) may 

be written in the form 

2 

v2 
(/J2m 1+ ZZm 

+V tZ 
+2v. 

(Z1 
+Z 

m) 
- 

MS 2 

- MI 23m + (µ + a) Z7m + 9ý "(7.4.25 
) 

Assume that Zim, Zim 1 Z3 and Z3±1 are bounded. Since Z2m, Z2m 1 vanish on 

D1 
Z, it follows that, by Theoreml. 4.1, Bm and Bm1 converge uniformly to Em and 

En+l 
m 

Let the third equation in (7.1.1) be written in the form 

a (Iýý+Iýý) = it +P (Iý+2E2E+2(µ+7)+2(L+-Y) 
2 

= It+p (I., +I., G+2(µ+7)I+G7 (7.4.26) 
2 

with initial and boundary conditions 

I(x, 0) = 1°(x); 0<x<L 

241 

aG ( 
as \` ,, - 

Am 

( 7. -1.2 ) 

I., (O, t) t>0 
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where, as before, G6 and G7 are assumed to be boundedly-differentiable with respect 
to E and I, respectively. 

Consider the difference equation which approximates equation (7.4.26) 

2 
V2 (Cn+l 

+ cm) 
- 

VtCm +PV., 
(Cn+l 

+ Cmn 

+ (µ+y)C 
,, n>0, 

where V2) V and Vt are defined in (7.4.4) and Cm is as 
is an approximate solution for I at the point (x, t) in SZ 

-I Bam' -1o B'ý+l 
2M2 7z 

( 7.4.28 ) 

in (6.3.16). The term Cam, 

vhich agrees with I on the 

boundaries. The terms G6 and G7 may be written as in (4.6.25). 

It is easy to show that 

1 Q2 (In }1+ In _ mm1 
1 a2Iý, 1 

a e 
+1 a21+ h2 

e 

ýa4zý, '+ a4zn 1 
4 4 2 2 x 2 ax 24 8x ax J 

n+1 n Vx (I )- +I az, ý 1 azn, 12 + 
a 

+ h 83 a3rm 1 zm 
3+ 8 3 

(7.4.29 
2 m m 2 ax 2 x 12 x ax 

n 
tJ 

i92 Im 

,, at 2 ate 

where the barred derivatives are evaluated at intermediate argument values as called 

for by the Mean Value Theorem. 

Substituting the expressions for G6 and G7 from (4.6.25) and the expressions in 

(7.4.29) into (7.4.26) yields 

11 2.2( j+1+ I)-V tlm+2Vý(Imlý-Im)2ýE 2o, Em1+M 
n 71 

1 h2 
a4I +1 

+ 
a4jm 

-1 h2 
a3I +1 

+ 
-2-3-j-ýý) 

+ 24 äX4 äX4 12 äX3 äX3 
1 a2In+1 i9Gs 

n+1 n) 

2 ate 
(Em" 

aE 

ai7.4.30 - 
(I +1 - Im) 

5G' () 

The assumption on I above requires the boundedness of all the derivatives appearing 

inside the bracket along with E, m 1-E and In 
,, 
+' - Im in the region N. Hence, in this 
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region, 

2p2(i1 + i) =VI +2p, (I1 + i) -E-1 Em 
_2 (fý+7)Im+gm, ( 7.4.31 ) 

with 

9n = O(h2 + ý) . ( 7.4.32 ) 

If equation (7.4.28) is subtracted from (7.4.31) and using the definitions of the 
truncation errors in (4.6.8), 

O2 (Zn+1 
+ Z3m) _ VtZ3m +p '71 ( Z3m 1+Z)-Q Z2 

-Q 
Z2 +22 

++)2+g (P m(7.4.33 ) 

which may be rearranged to yield 

2 p2 (Z3 :1+ Z3m) = ptZ3m + px (Z3+1 + Z3 
m) -af 

+ (/'+'Y)2 +9m (7.4.34) 

where Z2m and Z3m are defined as in (6.3.16). 

Assume Z2m and Z2m 1 in equation (7.4.34) are bounded. Moreover, Z3m and Z3m 1 

vanish on ö1,. Therefore, by Theorem 1.4.1, Cm and C,,, +' converge to Im and Im+l 

uniformly. 

7.5 Numerical Results 

Following Chapter 4, experiment A was carried out to solve the initial/boundary- 

value problem (7.1.1)-(7.1.3) using the second-order methods (7.2.3), (7.2.11) and 

(7.2.19) for susceptibles, exposed and infectives, respectively, with the same set of 

parameters given in (3.4.4) for N, p, o and y and with the infection rate, Q, chosen to 

be 0=5x 10-4. Four sets of results were obtained for different values of a and p. 
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In the first set with a=p=0.01, the methods were seen to give reasonable results 
when £<0.04 and negative values otherwise. When £=0.001, similar results to those 
found in Chapter 4 were obtained (see Figures 4.4-4.7). When f was increased, the 

number of iterations was kept as before (100 iterations), the dynamics of the model 
became clearer; as the number of exposed and infectives was increased the number of 
susceptibles was decreased. These findings are shown in Figures 7.1,7.3, and 7.5 while 
Figures 7.2,7.4 and 7.6 are different angle views of susceptibles, exposed and infectives, 

respectively. 

In the second set of results with a=p=2.0 and £=0.01 the profiles are as shown 
in Figures 7.7-7.11. In this case, it is seen from profiles 7.7,7.8 and 7.10 that as 
the numbers of exposed and infectious individuals increase the number of susceptible 
individuals decreases. This is seen clearly at t-ý 0.2 (approximately) after which the 

number of susceptible individuals increases because of birth and the numbers of exposed 

and infectious individuals decrease because of death. This behaviour continues until 

the dynamics of the model reach a steady state as t gets large. 

When the convection rate was increased to p=2.0 and the diffusion rate kept at 

oz = 0.01, the behaviour of the measles dynamics changed as may be seen in Figures 

7.12-7.17. In this case the symmetry about the line x=0.5 was completely changed 

as t increased. 

In the fourth set with a=2.0 and p=0.01, the methods were seen to give 

negative results when £>0.05. With .£=0.04 it is seen from Figures 7.18-7.23 that 

all susceptible, exposed and infectious individuals converge in a damped oscillatory 

manner to the steady state. 
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Figure 7.1: Three-dimensional profile of susceptibles; a=p=0.01, f=0.01 and 
h=0.025. 
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Figure 7.3: Three-dimensional profile of exposed; a=p=0.01, £=0.01 and h=0.025. 

x1 O5 

2.5- 

2- 

D 1.5 
ao Co 0 

w1 

0.5 

O 
O 

1 

Time 

Figure 7.4: Different angle view of Figure 7.3; view([05,00]). 

10 Space 



F. N. M. Al-Showaikh, 1998, Chapter 7 

x 104 

12 

10 

8 
N 
4) 
>6 

Ü 

4) 

4 

2 

O 
1 

247 

1 

Figure 7.5: Three-dimensional profile of infectives; a=p=0.01, .£=0.01 and h= 
0.025. 
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Figure 7.7: Three-dimensional profile of susceptibles; a=p=2.0, f=0.01 and 
h=0.025. 
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Figure 7.8: Three-dimensional profile of exposed; a=p=2.0, £=0.01 and h=0.025. 

10 

8 

-a 6 
U) U) 0 c 2- x 4 

2 

0 
0 

Time 

Figure 7.9: Different angle view of Figure 7.8; view([85,80]). 

1 

10 Space 



F. N. M. Al-Showaikh, 1998, Chapter 7 250 

X1 04 

6 

5 

4 

a> 
3 Ü 

U) 
C 

.2 

0 

1 

Figure 7.10: Three-dimensional profile of infectives; a=p=2.0, £=0.01 and h= 
0.025. 
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Figure 7.12: Three-dimensional profile of susceptibles; a=0.01, p=2.0, £=0.002 
and h=0.025. 
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Figure 7.14: Three-dimensional profile of exposed; a=0.01, p=2.0, f=0.002 and 
h=0.025. 
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Figure 7.16: Three-dimensional profile of infectives; a=0.01, p=2.0, e=0.002 and 
h=0.025. 
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Figure 7.18: Three-dimensional profile of susceptibles; a=2.0, p=0.01, e=0.04 and 
la = 0.025. 
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Figure 7.20: Three-dimensional profile of exposed; a=2.0, p=0.01. L=0.04 and 
h=0.025. 
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Figure 7.22: Three-dimensional profile of infectives; cx = 2.0, p=0.01,2 = 0.04 and 
h=0.025. 
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7.6 Conclusion 
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Second-order methods have been developed for the numerical solution of the initial/boundary- 

value problem (7.1.1)-(7.1.3) and the maximum principle analysis was used to prove 

that the methods developed are convergent. 

The approach adapted was used to solve the non-linear partial differential system 
(7.1.1)-(7.1.3) with appropriate initial and boundary conditions specified. Numerical 

results were obtained for the adapted SEIR model for different values of the convection 

and diffusion rates. It was seen from the results obtained that when the convection 

and diffusion rates p and a are equal the model behaved as expected and when p is 

larger than a the dynamics of the model change unexpectedly. 

/ 



Chapter 8 

Conclusion 

Finite-difference numerical methods have been developed for the solution of some sys- 
tems in the biomedical sciences; namely, a predator-prey model and the SEIR (Sus- 

ceptibles/ Exposed Infectious/ Recovered) measles model. 

The familiar Euler forward-difference method is well known to induce chaos in 

the solution of certain initial-value problems whenever the parameter of the time- 

discretization exceeds a certain value. To avoid this, while retaining the use of i 
large time-step, two alternative explicit finite-difference methods were proposed each 

of which gave convergence to the non-trivial stationary point for a range of values of 

the parameters in the differential equations of the predator-prey model. The findings 

relating to all three numerical methods were seen to carry over to a study of the 

behaviour of the numerical solution of the of the reaction-diffusion equations of the 

predator-prey model. 

A second-order explicit finite-difference method was proposed and compared to the 

familiar Euler method for the solution of the SEIR measles model using two numerical 

experiments. It has been seen that this method is very restrictive on stepýize for the 

first of two experiments and converged to the trivial stationary point for large values 

of the stepsize and with the infection rate 0= 10-6. Convergence to the correct 

258 



F. N. M. Al-Showaikh, 1998, Chapter 8> ;ý 

stationary point has been seen, in the second experiment, for large values of the time 

step and for any value of the infection rate. 

The SEIR measles model has been extended to a one- and two-space dimension dif- 

fusion model, a one dimensional convection type and a one-space dimension diffusion- 

convection type. For the reaction-diffusion problems, Chapters 4,5 and T, a second- 

order method, based on the proposed numerical method to solve the ordinary differen- 

tial equations of the SEIR model, has been developed, analysed and implemented. A 

first-order method has been developed for the numerical solution of the SEIR measles 

model of convection type. In all the numerical methods developed to solve the partial 

differential equations of the SEIR measles model, the maximum principle analysis has 

been used to to prove convergence and stability. 

It has been seen, from the numerical results, that all the numerical methods de- 

veloped to solve the partial differential equations for the models depend on the initial 

conditions and the set of parameters. The major benefit of the numerical methods 

developed for solving the non-linear partial differential equations was the need to solve 

only a linear algebraic system at each time step in order to obtain the solution rather 

than a non-linear algebraic system as often happens. 

Overall, these results illustrate the general point that introducing extra biologi- 

cal complexity into the biomedical systems can simplify rather than complicate t heir 

behaviour. 

The proposed SEIR measles model can be refined further in a number of wag's. 

namely, by adding realistic age structure, maternal antibodies, natural mortality and 

non-constant population size. 
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