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The pooling problem, which is fundamental to the petroleum industry, describes a situation in which products
possessing different attribute qualities are mixed in a series of pools in such a way that the attribute qualities

of the blended products of the end pools must satisfy given requirements. It is well known that the pooling
problem can be modeled through bilinear and nonconvex quadratic programming. In this paper, we investigate
how best to apply a new branch-and-cut quadratic programming algorithm to solve the pooling problem. To
this effect, we consider two standard models: One is based primarily on flow variables, and the other relies
on the proportion of flows entering pools. A hybrid of these two models is proposed for general pooling
problems. Comparison of the computational properties of flow and proportion models is made on several prob-
lem instances taken from the literature. Moreover, a simple alternating procedure and a variable neighborhood
search heuristic are developed to solve large instances and compared with the well-known method of succes-
sive linear programming. Solution of difficult test problems from the literature is substantially accelerated, and
larger ones are solved exactly or approximately.
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1. Introduction
The classical blending problem arises in refinery
processes when feeds possessing different attribute
qualities, such as sulfur composition, density, or
octane number, are mixed directly together into final
products. A generalization known as the pooling
problem is used to model many actual systems that
have intermediate mixing (or pooling) tanks in the
blending process. The latter problem may be stated in
a general way as follows: Given the availabilities of
a number of feeds, what quantities should be mixed
in intermediate pools to meet the demands of vari-
ous final blends whose attribute qualities must meet
known requirements? There are usually several ways
of satisfying the requirements, each way having its
cost. The question to be answered consists of identi-
fying the one that maximizes the difference between
the revenue generated by selling the final blends and
the cost of purchasing the feeds. The need for blend-
ing occurs, for example, when there are fewer pooling
tanks available than feeds or final products, or simply
when the requirements of a demand product are not

met by any single feed. The classical blending prob-
lem may be formulated as a linear program, whereas
the pooling problem has nonlinear terms and may
be formulated as a bilinear program (BLP), which is
a particular case of a nonconvex quadratic program
with nonconvex constraints (QP).
In this paper, we investigate how best to solve

the pooling problem with a recent algorithm for QP
(Audet et al. 2000). The results clearly show that the
type of model formulation chosen and initial heuristic
used may significantly affect the performance of the
exact method.
The general BLP problem is usually formulated by

dividing a set of variables into two subsets: linear
and nonlinear variables (see, e.g., Baker and Lasdon
1985). The nonlinear variables may be further divided
into two disjoint subsets, called noncomplicating and
complicating, respectively. This partition is based on
the fact that it is always possible to get a linear pro-
gram when the variables from either subset are fixed.
It may be found by solving the minimal transversal of
the corresponding (unweighted) co-occurrence graph
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(Hansen and Jaumard 1992), where vertices represent
variables and edges represent bilinear terms either in
the objective function or in the constraint set. Refor-
mulation is a powerful tool of mathematical program-
ming. In Audet et al. (1997) it was used to study
relationships between structured global optimization
problems and algorithms, revealing embeddings of
algorithms one into the other and unifying them.
To formulate the BLP problem, which will be

referred to in later sections, we introduce the follow-
ing notation.

n: number of variables
m: number of constraints
n1: number of linear variables
n2: number of nonlinear noncomplicating

variables
n3: number of nonlinear complicating variables

�n= n1+n2+n3�
m1: number of linear constraints
m2: number of nonlinear constraints �m=m1+m2�
x= �x1� � � � � xn1�

T : linear variables
y = �y1� � � � � yn2�

T : nonlinear noncomplicating
variables

z= �z1� � � � � zn3�
T : nonlinear complicating

variables
cx� cy� cz: constant vectors from Rn1 , Rn2 , and Rn3 ,

respectively
C: n2×n3 matrix (if cij �= 0, then bilinear term yizj

exists in the objective function)
b= �b1� � � � � bm�

T : constants on the right-hand side
of constraints

gi�x� gi�y� gi�z: constant vectors from Rn1 , Rn2 , and
Rn3 , respectively, i= 1� � � � �m

Gi: n2×n3 matrix, �i=m1+ 1� � � � �m�
The general BLP problem may then be represented as

max f �x�y�z�= cTx x+ cTy y+ cTz z+ yT Cz

s.t.

gi�x�y� z�= gT
i�xx+ gT

i�yy+ gT
i�zz≤ bi� i= 1� � � � �m1

gi�x�y� z�= gT
i�xx+ gT

i�yy+ gT
i�zz+ yTGiz≤ bi�

i=m1+ 1� � � � �m�

BLP is a strongly NP-hard problem since it sub-
sumes the strongly NP-hard linear maxmin problem
(Hansen et al. 1992). Moreover, simply finding a fea-
sible solution is NP-hard as the constraint set gen-
eralizes the NP-hard linear complementarity problem
(Chung 1989). The objective function is neither con-
vex nor concave, and the feasible region is not convex
and may even be disconnected.
The nonlinear structure of the pooling problem

was first pointed out in the famous example by
Haverly (1978). To illustrate the potential difficulty
of the problem, a two-step iterative algorithm was

presented. It consists of estimating and fixing the
attribute qualities of the intermediate pools, then
solving the resulting linear program. If the resulting
qualities coincide with the estimated ones, stop; oth-
erwise update the values and reiterate the steps. It is
shown by Haverly (1978) that this process may not
lead to a global optimum.
Refinery modeling produces large, sparse linear

programs containing small bilinear subproblems. Suc-
cessive linear programming (SLP) algorithms were
designed for this type of problem. Such algorithms
solve nonlinear optimization problems through a
sequence of linear programs. The idea of the method
consists of replacing bilinear terms by first-order
Taylor expansions to obtain a direction in which to
move. A step (of bounded length for convergence
reasons) is taken in that direction, and the process
is reiterated. The first paper on SLP was that of
Griffith and Stewart (1961) of Shell Oil, who referred
to the method as mathematical approximation pro-
gramming (later usage replaced that name with SLP).
Other SLP algorithms are detailed in Palacios-Gomez
et al. (1982) and Zhang et al. (1985), and applica-
tions at Exxon are discussed in Baker and Lasdon
(1985). Lasdon and Joffe (1990) show that the method
implemented in commercial packages called distribu-
tive recursion is equivalent to SLP through a change
of variables. A method using Benders’ decomposition
is detailed in Floudas and Aggarwal (1990). As in
the previous methods, this procedure does not guar-
antee identification of the global optimum. Floudas
and Visweswaran (1993a) propose a decomposition-
based global optimization algorithm (GOP), improved
in Floudas and Visweswaran (1993b, 1996) and
proven to achieve a global �-optimum. Androulakis
et al. (1996) discuss a distributed implementation of
the algorithm and present computational results for
randomly generated pooling problems with up to
5 pools, 4 blends, 12 feeds, and 30 attributes. Ana-
lyzing continuous branch-and-bound algorithms, Dür
and Horst (1997) show that the duality gap goes to
zero for some general nonconvex optimization prob-
lems that include the pooling problem.
Lodwick (1992) discusses preoptimization and

postoptimization analyses of the BLP model. This
work allows identification of some constraints that
will be tight and others that will be redundant at
optimality. Foulds et al. (1992) apply Al-Khayyal and
Falk’s (1983) branch-and-bound algorithm for BLP to
the pooling problem. This method finds in finite time
a solution as close as desired to a globally optimal
one. The general idea consists of replacing each bilin-
ear term with a linear variable and adding linear con-
straints to force the linear variable to be equal to the
bilinear term. This is done by taking the convex and
concave envelopes of the bilinear function g � �2 →�,
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Management Science 50(6), pp. 761–776, © 2004 INFORMS 763

g�x�y� �→ xy over a hyper-rectangle. The branching
rule of the algorithm then splits the hyper-rectangle in
its middle and recursively explores the two parts. The
method is extremely sensitive to the bounds on the
variables. Computational time increases rapidly with
the number of variables that are not at one of their
bounds at optimality. Audet et al. (2000) strengthen
several aspects of Al-Khayyal and Falk’s (1983) algo-
rithm (the improvements will be discussed later,
when computational results are presented). This algo-
rithm is also based on the reformulation-linearization
techniques of Sherali and Tuncbilek (1992; 1997a, b).
Ben-Tal et al. (1994) use the proportion model

(detailed in §2.2 below) to solve the pooling problem.
The variables are partitioned into two groups: q and
�x�y�. The bilinear program can then be written

max
q∈Q

max
�x�y�∈P�q�

f �q� x�y��

where Q is a simplex, P�q� is a set that depends on
q, and f is a bilinear function. By taking the dual of
the second parameterized program, the bilinear prob-
lem can be rewritten into an equivalent semi-infinite
linear program, in which the constraints must be sat-
isfied for all the proportion vectors q of the simplex Q.
This problem is relaxed by taking only the constraints
corresponding to the vertices of Q. These steps are
integrated into a branch-and-bound algorithm that
partitions Q into smaller sets until the duality gap is
null.
Grossmann and Quesada (1995) study a more

sophisticated modelization for general process net-
works (such as splitters, mixers, and linear process
units that involve multicomponent streams), with two
different formulations based on components’ com-
positions and total flows. They use a reformulation-
linearization technique (Alameddine and Sherali
1992) to obtain a valid lower bound given by an
LP-relaxation. This reformulation is then used within
a spatial branch-and-bound algorithm.
Amos et al. (1997) use cumulative functions describ-

ing the distillation yield to model the pooling problem
through a nonlinear constrained least-square problem.
Promising results are shown in examples from the
New Zealand Refining Company.
Adhya et al. (1999), after an exhaustive literature

review, obtain tighter lower bounds with their
Lagrangian approach because of the original choice of
the relaxed constraints, which is not made to obtain
easier-to-solve subproblems (in fact, after reformula-
tion, they have a mixed-integer problem). They test
their algorithm with the global optimization software
BARON (Sahinidis 1996) on several problems from
the literature and on four new difficult instances.
This paper is divided into three parts. In the next

section, we analyze two different ways of modeling

the pooling problem into BLP problems. The variables
are partitioned into either flow and attribute variables
(as suggested in Haverly 1978 and made more formal
in Foulds et al. 1992) or flow and proportion vari-
ables (as in Ben-Tal et al. 1994). A combination of
these two, called the hybrid model, is also presented
for the generalized pooling problem. This type of
formulation is seen to affect the number of nonlin-
ear variables obtained in the model. The second part
of the paper applies a recent branch-and-cut algo-
rithm (Audet et al. 2000) to the flow and propor-
tion models of several problem instances taken from
the literature. The results suggest that the proportion
formulation is preferable for this algorithm. The com-
putational results also demonstrate that good heuris-
tics are needed to obtain starting solutions for exact
methods and solve larger problem instances approx-
imately. The last part of the paper introduces a new
variable neighborhood search heuristic (VNS) and
compares this method to the successive linear pro-
gramming method and the alternate procedure. VNS
is seen to outperform the existing heuristics on the
same set of problem instances from the literature as
well as on large randomly generated problem sets.

2. Model Formulation
The classical blending problem determines the opti-
mal way of mixing feeds directly into blends. The
basic structure of the pooling problem is similar
except for one set of additional intermediate pools,
where the feeds are mixed prior to being directed to
the final blends. Therefore, there are three types of
pools: source pools, having a single purchased feed
as input; intermediate pools with multiple inputs and
outputs; and final pools, having a single final blend
as output. The objective function is derived through
the input of the source pools and the output of the
final pools.
It is assumed that the intermediate pools receive

flow from at least two feeds and are connected to at
least two blends. The motivation behind these condi-
tions is that if either is not satisfied, the intermediate
pool can be eliminated by merging it to the feed or the
blend, thus trivially simplifying the model. Let Fi, Pj ,
and Bk denote feed i, pool j , and blend k, respectively.
The following parameters are introduced.

nF �nP �nB�nA: number of feeds, intermediate pools,
blends and attribute qualities

X: the set of indices {�i� k�: there is an arc from Fi
to Bk}

W : the set of indices {�i� j�: there is an arc from Fi
to Pj }

Y : the set of indices {�j� k�: there is an arc from Pj

to Bk}
pFi � p

B
k : prices of feed i and blend k for i =

1�2� � � � �nF and k= 1�2� � � � �nB
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lFi � u
F
i : lower and upper bounds on the availabil-

ity of feed i for i= 1�2� � � � �nF

lBk �u
B
k : lower and upper bounds on the demand

of blend k for k= 1�2� � � � �nB

lFBik �u
FB
ik : lower and upper bounds on the capacity

of arc �i� k� ∈X
lPj �u

P
j : lower and upper bounds on the capacity

of pool j for j = 1�2� � � � �nP

lFPij � u
FP
ij : lower and upper bounds on the capac-

ity of arc �i� j� ∈W
lPBjk �u

PB
jk : lower and upper bounds on the capacity

of arc �j� k� ∈ Y
sai : attribute quality a of feed i for a = 1�

2� � � � �nA and i= 1�2� � � � �nF

lak�u
a
k: lower and upper bounds on the require-

ments of attribute quality a of blend k for
a= 1�2� � � � �nA and k= 1�2� � � � �nB

Throughout the paper, the following notation is used
concerning sets of pairs of indices such as X. For a
given first element i of a pair of indices, X�i� is defined
to be the set of forward indices %k � �i� k� ∈ X&, and
for a given second element k, X−1

�k� is the set of back-
ward indices %i � �i� k� ∈ X&. The set of forward and
backward indices of elements of W and Y are defined
in a similar fashion. The flow conservation property
allows the number of variables to be reduced. To do
so, at each intermediate pool, the flow of one of the
entering feeds is deduced by the difference of the total
exiting blend and the sum of the other entering feeds.
An additional index parameter that identifies which
entering feed is deduced from the others is required;
we denote by

i�j�� the smallest index of W−1
�j� for j = 1�2� � � � �nP �

When different products are mixed together, it is
assumed that the attribute qualities blend linearly:
The attribute quality of the pool or blend is the
weighted sum of the entering streams, where each
weight is the volume proportion of the corresponding
entering stream over the total volume. In what fol-
lows, we assume that all attribute qualities blend in
this manner. DeWitt et al. (1989) present more precise
models for octane and distillation blending. However,
because of their complexity (they contain logarithms
or fourth-order terms), these models are not consid-
ered in this paper.
The flow variables follow.
xik: flow from Fi to Bk on the arc �i� k� ∈X
wij : flow from Fi to Pj on the arc �i� j� ∈W
yjk: flow from Pj to Bk on the arc �j� k� ∈ Y

We present two bilinear formulations of the pooling
problem that differ in the representation of the flow
from the feeds to the intermediate pools.

2.1. Flow Model of the Pooling Problem
In this subsection, we develop a BLP model of the
pooling problem based on the primary flow variables.
For each arc �i� j� in W , the flow originating from
feed i to pool j is denoted by the variable wij , except
when i is the index i�j�. Recall that i�j� ∈ W−1

�j� is
defined as the smallest index of the input feed con-
nected to the intermediate pool Pj . The flow conserva-
tion property ensures that the flow on the arc �i�j�� j�
ofW is the difference between the total flow exiting Pj

and the flows on the other arcs entering Pj :

wi�j�j =
∑
k∈Y�j�

yjk −
∑

i∈W−1
�j�

i �=i�j�

wij �

Thus, the variable wi�j�j is not required in the model.
For each attribute quality a ∈ %1�2� � � � �nA&, a vari-

able taj is introduced to represent the attribute quality
of the intermediate pool Pj . Assuming that the
attribute qualities blend linearly, we obtain that

taj =
sai�j�

(∑
k∈Y�j� yjk−

∑
i∈W−1

�j� �i �=i�j�wij

)
+∑i∈W−1

�j� �i �=i�j�s
a
i wij∑

k∈Y�j� yjk
�

This equation simplifies to the bilinear constraint∑
k∈Y�j�

�sai�j� − taj �yjk −
∑

i∈W−1
�j�

i �=i�j�

�sai�j� − sai �wij = 0�

The attribute quality a = 1�2� � � � �nA of blend k =
1�2� � � � �nB may be calculated as the ratio∑

i∈X−1
�k�
sai xik +

∑
j∈Y−1

�k�
taj yjk∑

i∈X−1
�k�
xik +

∑
j∈Y−1

�k�
yjk

�

The flow BLP formulation that maximizes the net
profit of the pooling is shown in Figure 1.
Observe in the flow formulation that the objec-

tive function and all constraints are linear except for
those constraints dealing with the attribute qualities
of pools and final blends. The bilinear variables are
divided into two sets: %taj & and %yjk&, giving a total of
nAnP +�Y � nonlinear variables. Furthermore, there are
as many as nA�nP + 2nB� bilinear constraints.
Note also that if the taj variables are fixed at a fea-

sible point in the solution subspace, a feasible solu-
tion of the pooling problem is obtained by solving the
resulting LP on the flow variables. Given a feasible set
of flow values, the taj are the unique solution obtained
directly from the attribute constraints for the pools.

2.2. Proportion Model of the Pooling Problem
A bilinear formulation is presented in this subsec-
tion, based on the proportion of flow entering at the
intermediate pools. The parameters are the same as
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Figure 1 Flow Model

max
t�w�x�y

∑
�i� j�� j�∈W

pF
i� j�

( ∑
i∈W−1

� j�
i �=i� j�

wij −
∑

k∈Y� j�
yjk

)
− ∑

�i� j�∈W
i �=i� j�

pF
i wij

+ ∑
�i� k�∈X

(
pB
k − pF

i

)
xik +

∑
� j� k�∈Y

pB
k yjk

subject to:

supply i= 1�2� � � � �nF :

lFi ≤
∑

�i� j�� j�∈W
i=i� j�

( ∑
k∈Y� j�

yjk −
∑

i∈W−1
� j�

i �=i� j�

wij

)
+ ∑

j∈W�i�

i �=i� j�

wij +
∑

k∈X�i�
xik ≤ uF

i

demand k= 1�2� � � � �nB : lBk ≤
∑

i∈X−1
�k�

xik +
∑

j∈Y−1
�k�

yjk ≤ uB
k

pool capacity j = 1�2� � � � �nP : lPj ≤
∑

k∈Y� j�
yjk ≤ uP

j

attribute a= 1�2� � � � �nA of pool j = 1�2� � � � �nP :

∑
k∈Y� j�

(
sai� j� − taj

)
yjk −

∑
i∈W−1

� j�
i �=i� j�

(
sai� j� − sai

)
wij = 0

requirement of attribute a= 1�2� � � � �nA of blend k= 1�2� � � � �nB :

lak

( ∑
i∈X−1

�k�

xik +
∑

j∈Y−1
�k�

yjk

)
≤ ∑

i∈X−1
�k�

sai xik +
∑

j∈Y−1
�k�

taj yjk

≤ ua
k

( ∑
i∈X−1

�k�

xik +
∑

j∈Y−1
�k�

yjk

)

capacity of the arcs:

lFPi� j�j ≤
∑

k∈Y� j�
yjk −

∑
i∈W−1

� j�
i �=i� j�

wij ≤uFP
i� j�j � �i� j�� j� ∈W

lFPij ≤ wij ≤uFP
ij � �i� j� ∈W� i �= i� j�

lFBik ≤ xik ≤uFB
ik � 4�i� k� ∈X

lPBjk ≤ yjk ≤uPB
jk � � j� k� ∈ Y

nonnegativity: w ≥ 0� x≥ 0� y ≥ 0

for the flow model, including the index i�j�. How-
ever, instead of incorporating explicitly the flow vari-
ables from the feeds to the intermediate pools, and
the attribute variables, only proportion variables are
introduced as follows; we denote by

qij : the proportion of the total flow into Pj from Fi
along the arc �i� j� ∈W , for all i �= i�j�.
The proportion variables allow computation of the
flow on the arc �i� j� ∈W , i �= i�j�, as

wij = qij
∑
k∈Y�j�

yjk�

The flow on the arc �i�j�� j� ∈W is

wi�j�j =
(
1− ∑

h∈W−1
�j�

h�=i�j�

qhj

) ∑
k∈Y�j�

yjk�

The total flow leaving Fi, i= 1�2� � � � �nF , is given by

∑
k∈X�i�

xik +
∑

j∈W�i�

i �=i�j�

qij
∑
k∈Y�j�

yjk +
∑

j∈W�i�

i=i�j�

(
1− ∑

h∈W−1
�j�

h�=i�j�

qhj

) ∑
k∈Y�j�

yjk�

The attribute a= 1�2� � � � �nA of intermediate pool j =
1�2� � � � �nP is

∑
i∈W−1

�j�

i �=i�j�

sai qij+sai�j�

(
1− ∑

i∈W−1
�j�

i �=i�j�

qij

)
=sai�j�+

∑
i∈W−1

�j�

i �=i�j�

(
sai −sai�j�

)
qij �

The attribute quality a = 1�2� � � � �nA of blend k = 1�
2� � � � �nB is∑

i∈X−1
�k�
sai xik +

∑
j∈Y−1

�k�

(
sai�j� +

∑
i∈W−1

�j�

i �=i�j�

�sai − sai�j��qij

)
yjk

∑
i∈X−1

�k�
xik +

∑
j∈Y−1

�k�
yjk

�

Note that the objective function is no longer lin-
ear. The bilinear variables are now given by the two
sets, %qij & and %yjk&. Hence, the total number of nonlin-
ear variables equals �W �−nP +�Y �, which is indepen-
dent of the number of attribute qualities. Including
arc capacities, there are as many as 2�nF +nAnB�+�W �
bilinear constraints. Also note that given any feasible
point in the solution subspace �qij �, the feasible region
of the �yjk� is defined by a polyhedron, and vice versa.
The proportion BLP formulation is given in Figure 2.

2.3. Comparison of the Flow and Proportion
Models

For comparison purposes, the following 10 examples
are taken from the literature: Haverly’s (1978) pooling
problem (referred to as H1, H2, and H3), the fourth
and fifth pooling problems (BT4, BT5) in Ben-Tal
et al. (1994), Rehfeldt and Tisljar’s (1997) first and sec-
ond problems (RT1, RT2), the second problem (F2)
in Foulds et al. (1992), and the four examples pro-
posed in Adhya et al. (1999), referred to as AST1, 2,
3, and 4. For brevity, only RT2 is shown in detail in
the appendix. The data describing all examples con-
sidered in the paper can be found at www.gerad.ca/
Charles.Audet.
A complete description of the number of vari-

ables and constraints for these 10 examples appears
in Table 1. The table is divided into five groups
of columns. The left column (Example) displays the
name of the problem. The second column (Lin var)
shows the number of variables that are not involved
in bilinear terms (the linear variables). The next group
details the number of bilinear variables. These vari-
ables are partitioned in two subsets (each bilinear
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Figure 2 Proportion Model

max
x�y� q

∑
�i� j�� j�∈W

pF
i� j�

( ∑
h∈W−1

� j�
h�=i� j�
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term consists of the product of one variable from each
subset), and the number of variables in each sub-
set of the partition is set in parentheses (Pool+Flow).
Flow is the number of flow variables, and Pool is the
number of attribute or proportion variables (depend-
ing on the model used). These numbers are decom-
posed in the fourth group to explain the total number
of bilinear terms (Trm) introduced by the intermedi-
ate pools. For example, the flow model of RT2 has
four attributes and three exiting feeds at each pool, P1
and P2. The number of bilinear terms is the number of
cross-product elements of %t11� t

2
1� t

3
1� t

4
1&× %y11�y12�y13&

and %t12� t
2
2� t

3
2� t

4
2&× %y21�y22�y23&; therefore, there are a

total of 4×3+4×3= 24 bilinear terms. The last group
of columns gives the number of linear inequalities L≤,
quadratic inequalities Q≤, and quadratic equalities Q=
in the constraint set of each problem.
The difficulty of the BLP problem can be roughly

estimated by the number of bilinear variables, terms,
and constraints. The advantage of the flow model
occurs when there are few attributes. The num-
ber of complicating variables (the taj ) will then be
small. When the number of attributes increases, the
advantage of the proportion model becomes apparent
because the number of bilinear variables and terms
stays the same. These numbers are determined by the
number of entering and exiting flows at the interme-
diate pools. (For total number of bilinear variables,
the turnover between the flow and proportional mod-
els occurs when nA = �W �/nP − 1; that is, the average
number of entering arcs at the intermediate pools less
one.) Referring to Table 1, we see that the proportion
models of Examples RT1 and RT2 are considerably
smaller than the corresponding flow models. At first
glance, the flow model appears to be simpler than the
proportion in BT5. We will see in the next section that
this is not the case when these problems are solved
exactly. The number of bilinear constraints is also an
important factor.

2.4. Generalized Pooling Problem
The complexity of the model increases when several
pools are linked together in parallel or in series. We
present in Figure 3 (and Table 2) an example in which
the intermediate pools are allowed to be intercon-
nected. The pooling problem is thus extended to the
case where exiting blends of some intermediate pools
are entering feeds of others.
The proportion model of the generalized pooling

problem is not a bilinear program, because the vari-
ables are not partitioned into two sets. Some bilinear
terms will be of the form qijqlm. Therefore, this formu-
lation belongs to the class of quadratically constrained
quadratic programs.
A hybrid formulation may be used for the general-

ized problem. The flow model is applied to interme-
diate pools that receive flow from at least one other
intermediate pool, and the proportion model is used
otherwise. In both cases, the exiting flow of an inter-
mediate pool is modeled through flow variables.
A hybrid model for GP1 is given below, where v12

denotes the flow from P1 to P2 (all other variables are
defined as before).

max
q�t�v�w�x�y

−6�x11+y12+v12−q21�y12+v12��

−16q21�y12+v12�−10�x32+y21+y23−v12�

+9�x11+y21�+13�y12+x32�+14y23
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Table 1 Summary of the Number of Variables and Constraints

Bilinear Bilinear Constraints

Example Lin Var Var (Pool+ flow) Trm
∑
(Pool× flow) L≤ Q≤ Q=

Flow model
AST1 3 16 �8+ 8� 32 �4× 4�+ �4× 4� 10 32 8
AST2 3 20 �12+ 8� 48 �6× 4�+ �6× 4� 10 48 12
AST3 5 30 �18+ 12� 72 �6× 4�+ �6× 4�+ �6× 4� 13 48 18
AST4 6 18 �8+ 10� 40 �4× 5�+ �4× 5� 11 40 8

BT4 4 3 �1+ 2� 2 �1× 2� 6 4 1
BT5 14 21 �6+ 15� 30 �2× 5�+ �2× 5�+ �2× 5� 18 20 6

F2 10 10 �2+ 8� 8 �1× 4�+ �1× 4� 12 8 2

H1 3 3 �1+ 2� 2 �1× 2� 6 4 1

RT1 7 12 �7+ 5� 17 �4× 2�+ �3× 3� 16 20 7
RT2 8 14 �8+ 6� 24 �4× 3�+ �4× 3� 14 21 8

Proportion model
AST1 0 11 �3+ 8� 12 �1× 4�+ �2× 4� 7 37 0
AST2 0 11 �3+ 8� 12 �1× 4�+ �2× 4� 7 53 0
AST3 0 17 �5+ 12� 20 �1× 4�+ �2× 4�+ �2× 4� 9 56 0
AST4 0 14 �6+ 8� 24 �3× 4�+ �3× 4� 9 48 0

BT4 2 4 �2+ 2� 4 �2× 2� 5 7 0
BT5 5 24 �9+ 15� 45 �3× 5�+ �3× 5�+ �3× 5� 14 24 0

F2 8 10 �2+ 8� 8 �1× 4�+ �1× 4� 8 12 0

H1 2 3 �1+ 2� 2 �1× 2� 4 6 0

RT1 5 7 �2+ 5� 5 �1× 2�+ �1× 3� 9 23 0
RT2 4 10 �4+ 6� 12 �2× 3�+ �2× 3� 11 24 0

s.t. supply: x11+y12+v12−q21�y12+v12�≤18
q21�y12+v12�≤18
x32+y21+y23−v12≤18

demand: x11+y21≤10
y12+x32≤15
y23≤20

capacity: y12+v12≤20
y21+y23≤20

Figure 3 Generalized Pooling Problem (GP1)
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2.5. Simplification of Some Pooling Problem

Instances
It is sometimes useful to analyze the basic structure
of a given pooling problem to attempt to simplify it.
Consider, for example, the instance detailed in RT1
and reproduced in the left part of Figure 4.
A closer look at the definition of the problem allows

considerable simplification. Observe that the flows
x21, x31, and y21 entering blend B1 originate solely
from the two feeds F2 and F3. A positive flow y21
of any feasible solution could be transferred to the
unconstrained flows x21 and x31 without affecting fea-
sibility or objective function value. Therefore, we can
assume without any loss of generality that the flow
variable y21 is fixed to zero.
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768 Management Science 50(6), pp. 761–776, © 2004 INFORMS

Table 2 Characteristics of GP1

Feed Price $/bbl Attribute quality Max supply Pool Max capacity Blend Price $/bbl Max demand Attribute max

F1 6 3 18 P1 20 B1 9 10 2�5
F2 16 1 18 P2 20 B2 13 15 1�75
F3 10 2 18 B3 14 20 1�5

Similarly, by considering the flows y13, x13, and x33,
we can deduce that y13 can be fixed to zero. This
observation has important consequences: The pool P1
has therefore a unique exiting flow y12, and thus that
pool can be combined with the final pool B2. The flow
from F3 to B2 is bounded above by the capacity of
pool P1. This constraint is, however, redundant, since
the maximum demand of B2 is less than that capac-
ity. These simplifications are illustrated on the right
part of Figure 4, and they lead to new ones. Indeed,
consider the flow from the feed F3 to the intermediate
pool P2: It can be transferred to x32 and x33 without
altering feasibility or objective function value, thus
allowing it to be fixed to zero. It follows that the
intermediate pool P2 can be combined with F2, as the
capacity of pool P2 is greater than the availability of
feed F2. Therefore, this example can be reduced to an
equivalent blending problem because all intermediate
pools may be eliminated. Thus, Rehfeldt and Tisljar’s
(1997) first pooling problem can be solved by linear
programming.
The instances F3, F4, and F5 of Foulds et al. (1992)

can also be simplified. In fact, the linear structure
describing these instances allows an analytical solu-
tion. We will show how to solve F3; F4 and F5 can be
treated similarly. In that instance, the single-attribute
value and cost of the 11 feeds are s1i = �9+ i�/10 and
pFi = 21 − i for i = 1�2� � � � �11. The capacities of the
arcs and pools are unlimited. Each of the 16 blends
has a maximal demand of 1. Their price and maximal
attribute values are pBk = �41− k�/2 and u1k = 1+ 0�05k
for k= 1�2� � � � �16.
A consequence of this linear structure is that the

cost of producing a unit amount of a blend with fixed
attribute , ∈ -1�2. comprises a constant purchase cost,

Figure 4 Simplification of Rehfeldt and Tisljar’s (1997) First Pooling Problem (RT1)
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30 − 10,, independent of which feeds are blended
together. Therefore, a strategy to achieve the optimal
solution is to simply direct 9.2 units of feed F1 into
pool P1 and 6.8 units of F11 into P8, then blend 2−u1k
units of P1 together with u1k − 1 units of P8 into
blend Bk, for k= 1�2� � � � �16. This optimal solution is
displayed in Figure 5.

3. Computational Results for
Exact Solution

Since the objective function and feasible region are
nonconvex, the pooling problem requires a global
optimization approach. Methods using local searches
along descent directions, such as SLP, are only guar-
anteed to find a local optimum, the quality of which
is unknown.
The pooling examples described in the preced-

ing section are solved to global optimality using
a recent branch-and-cut algorithm by Audet et al.
(2000) for the general class of nonconvex quadrati-
cally constrained quadratic programs. Their method is
inspired by Al-Khayyal and Falk’s (1983) branch-and-
bound algorithm for bilinear programming and the
reformulation-linearization techniques of Sherali and
Tuncbilek (1992; 1997a, b). The improvements to these
methods are as follows: (i) selection of the branch-
ing value—splitting of the hyper-rectangle is done in
a way that minimizes the resulting potential error,
and thus not necessarily in its middle; (ii) approx-
imation of bilinear terms—instead of systematically
adding all linear inequalities defining the convex and
concave envelopes, only those violated are added to
the model, thus keeping the linear program size from
growing too fast; (iii) introduction of a new class of
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Figure 5 Simplification of F3, F4, and F5
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cuts—cuts derived from underapproximation of the
convex paraboloid are used to force linear variables
to approach the corresponding bilinear term; (iv) the
proposed algorithm is of the branch-and-cut type—
cuts introduced at any node of the exploration tree
are valid at all other nodes.
Computational experiments were completed on a

Sun Ultra-60 (UltraSPARC II 360 MHz processor, and
LINPACK score of 10 Mflops/s) with a C++ imple-
mentation of the algorithm. The stopping criterion
is an absolute tolerance of �r = �z = 10−6. The tested
instances have been reviewed in §2, and their charac-
teristics are summarized in Table 3. We also include
two variants of H1 given by Haverly (1978), which
are denoted by H2 and H3, respectively, and the gen-
eralized pooling problem GP1.
The following tables display the computing time

in seconds of the preprocessing phase and the explo-
ration of the search tree phase, as well as the total
time. The total number of nodes in the search tree, as
well as the number of additional variables (Var) and
constraints (Cstr) generated by the algorithm are also
presented.
For all instances, the algorithm was executed twice.

A first execution was done to solve the instance

Table 3 Instances Characteristics

Example Ref nF nP nB nA Solution

AST1 Adhya et al. (1999) 5 2 4 4 549�803
AST2 Adhya et al. (1999) 5 2 4 6 549�803
AST3 Adhya et al. (1999) 8 3 4 6 561�048
AST4 Adhya et al. (1999) 8 2 5 4 877�649

BT4 Ben-Tal et al. (1994) 4 1 2 1 45
BT5 Ben-Tal et al. (1994) 5 3 5 2 350

F2 Foulds et al. (1992) 6 2 4 1 110

H1 Haverly (1978) 3 1 2 1 40
H2 Haverly (1978) 3 1 2 1 60
H3 Haverly (1978) 3 1 2 1 75

RT1 Rehfeldt and Tisljar (1997) 3 2 3 4 4�136�22
RT2 Rehfeldt and Tisljar (1997) 3 2 3 4 4�391�83

GP1 3 2 3 1 60�5

without any additional information. A second exe-
cution was done to evaluate the performance of the
algorithm when jointly used with a good heuristic
method. The optimal solution (from Execution 1) was
fed to the algorithm, and the second execution was
used to prove the optimality of the solution.
Table 4(i) displays the computational results on the

flow model of the pooling problems. The preprocess-
ing time is listed under column P.P., and the tree
exploration phase under Tree. The “—” for the AST2
and AST3 instances indicate that the memory limit
imposed by the current implementation of the algo-
rithm was reached.
Table 4(ii) shows the performance of the optimal-

ity proof on the flow model of the pooling problems.
An additional constraint that bounds the objective
value is added to shrink the feasible region. At the
early nodes of the enumeration algorithm, branching
is done on the incumbent variables involved in
quadratic terms that are not at either their lower or
upper bound. This allows a more precise linearization
near the incumbent solution. Computational times
remain comparable for the small instances but drop
significantly for the larger problems, except for AST4,
where proving optimality is more expensive than
searching from scratch. This seems to justify the
joint use of a heuristic to obtain a good incumbent
solution.
Results of the algorithm on the proportion model

of the pooling problem are displayed in Table 4(iii).
For the larger instances, the proportion model is sig-
nificantly easier to solve than the flow model, even
for BT5, where this model has a greater number of
bilinear variables and terms than the former one.
Note, however, that the proportion model of BT5
has fewer bilinear constraints than the flow model
(11 versus 16). The significant difference in compu-
tation times in Tables 4(i) and 4(iii) suggests that
care should be taken initially to choose the right
model.
Optimality proof performance on the proportion

model of the pooling problems appears in Table 4(iv).
Again, the proportion model seems easier to solve
than the flow model. Moreover, the time required for
the optimality proof is less or comparable to the time
of solving the original problem, except for the prob-
lem AST and for Example RT2, where the computa-
tional time increased. As for the remaining examples,
the preprocessing time increased, but the tree explo-
ration phase decreased. This is explained by the addi-
tion of the nonlinear constraint to bound the feasible
region. The feasible region becomes small and hard to
approximate by outer approximations.
Tables 4(v) and 4(vi) display computing times for

solving the three equivalent formulations of the gen-
eralized pooling problem presented in Example GP1.
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Table 4 Computational Results
(i) Flow Model, Complete Solution (ii) Flow Model, Optimality Proof

Time (sec) Additional Time (sec) Additional

Example P.P. Tree Total Nodes Var Cstr P.P. Tree Total Nodes Var Cstr

AST1 7�39 7�778�65 7�786�04 4�145 108 6�991 10�23 4�258�53 4�268�76 3�177 80 5�801
AST2 — — — — — — — — — — — —
AST3 — — — — — — — — — — — —
AST4 13�87 940�03 953�9 723 50 3�414 55�43 4�587�01 4�642�44 2�355 43 3�656

BT4 0�17 0�05 0�22 9 4 41 0�19 0�03 0�22 1 0 7
BT5 5 660�63 665�63 97 30 5�776 1�28 0�16 1�44 1 0 90

F2 0�51 0�16 0�67 15 10 128 3�66 6�34 10 155 33 687

H1 0�2 0�06 0�26 9 4 41 0�21 0�02 0�23 1 0 7
H2 0�13 0�03 0�16 3 2 20 0�4 0 0�4 0 0 0
H3 0�14 0�03 0�17 3 1 15 0�17 0�02 0�19 1 0 6

RT1 2�12 29�69 31�81 179 38 1�546 13�69 0�48 14�17 43 10 225
RT2 3�97 201�02 204�99 489 63 2�581 8�37 366�28 374�65 1�381 62 2�626

(iii) Proportion Model, Complete Solution (iv) Proportion Model, Optimality Proof

Time (sec) Additional Time (sec) Additional

Example P.P. Tree Total Nodes Var Cstr P.P. Tree Total Nodes Var Cstr

AST1 0�47 8�59 9�06 245 40 838 1�26 14�47 15�73 391 48 874
AST2 0�39 9�28 9�67 267 35 777 1�91 2�55 4�46 139 18 408
AST3 2�45 66�06 68�5 537 38 1�065 2�19 173�67 175�86 911 44 1�416
AST4 2�83 175�15 177�98 693 48 205 5�91 681�14 687�05 2�127 47 2�324

BT4 0�15 0�88 1�03 43 14 197 0�75 0�14 0�89 27 8 112
BT5 1�81 29�29 31�1 39 20 1�274 0�52 0 0�52 0 0 0

F2 0�35 0�05 0�4 1 0 24 0�32 0�02 0�34 1 0 24

H1 0�17 0�05 0�22 9 6 57 0�18 0�02 0�2 1 0 7
H2 0�13 0�04 0�17 13 6 41 0�14 0�01 0�15 0 0 0
H3 0�13 0�04 0�17 7 4 35 0�23 0�03 0�26 11 5 37

RT1 0�55 0�05 0�6 7 4 37 0�4 0�05 0�45 1 0 15
RT2 0�85 1�11 1�96 59 19 347 6�89 0�31 7�2 47 11 175

(v) Generalized Pooling Problem (GP1), Complete Solution (vi) GP1, Optimality Proof

Time (sec) Additional Time (sec) Additional

Model P.P. Tree Total Nodes Var Cstr P.P. Tree Total Nodes Var Cstr

Flow 0�19 0�59 0�78 47 18 238 0�62 0�07 0�69 13 6 78
Prop. 0�22 2�5 2�72 35 18 457 1�23 0�17 1�4 17 8 132
Hybrid 0�68 0�53 1�21 27 12 225 0�62 0 0�62 0 0 0

Contrary to the standard pooling problem, the pro-
portion model of the generalized problem appears to
be harder to solve than the flow model. Including the
variable q22 that represents the product of two pro-
portion variables adds a level of complexity to the
outer approximation scheme. It seems that the hybrid
model is the easiest one to solve. The proportion vari-
ables allow elimination of the attribute variable of
pool P1 without adding complexity.
Table 5 shows a computational results comparison,

similar to that of Adhya et al. (1999). For the easier
problems—that is, BT4, BT5, F2, H1, H2, and H3—
the state-of-the-art algorithm of Adhya et al. (1999)
takes less computer time than the algorithm of Audet

et al. (2000); however, for the three difficult instances
AST1, AST2, and AST3, the CPU times of this last
algorithm are 46 to 282 times (or 17 to 104 times, tak-
ing into account the relative CPU speeds) less than
those of Adhya et al. (1999). So use of the proportion
model and the Audet et al. (2000) algorithm appears
to be competitive, for many difficult instances, with
the state of the art.

4. Heuristic Methods
As implied in the preceding section, heuristic
approaches to the pooling problem are required to
obtain (i) good solutions for larger problem instances
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Table 5 Comparative CPU Times for Exact Solution

Foulds et al. (1992) Floudas and Visweswaran (1993b) Floudas and Visweswaran (1996) Adhya et al. (1999) Audet et al. (2000)
CDC 4340 HP9000/730 HP9000/730 RS6000/43P Ultra-60

Example 25 MHz 67 MHz 67 MHz 100–133 MHz 360 MHz

AST1 — — — 425 9�06
AST2 — — — 1�115 9�67
AST3 — — — 19�314 68�5
AST4 — — — 182 177�98

BT4 — 44�54 0�95 0�11 0�22
BT5 — 40�31 5�8 1�12 31�1

F2 3 — — 0�1 0�4

H1 0�7 0�95 0�22 0�09 0�22
H2 — 3�19 0�21 0�09 0�16
H3 — — 0�26 0�13 0�17

RT1 — — — — 0�6
RT2 — — — — 1�96

GP1 — — — — 0�78

and (ii) good initial solutions for use in exact algo-
rithms. In this section, we propose a local search
procedure that alternately fixes the noncomplicating
and complicating variables (y and z, respectively) and
solves the linear program in the resulting subspace.
The polyhedron structure of both feasible sets leads
to a natural neighborhood structure, defined by the
number of pivots from a current extreme point. This
will allow us to develop a new VNS procedure. The
alternating and VNS methods are applied to the prob-
lem cases of §2 and to a large set of randomly gener-
ated pooling problems. The results are compared with
the commonly used SLP method.

4.1. Alternate Heuristic
The principle of the alternate heuristic (ALT), given
two subsets of variables, consists of alternately
solving the problem with the variables of one of the
subsets fixed. These two problems, by the choice of
the subsets, must be linear. When one of these lin-
ear problems is solved, its solution becomes a set
of parameters in the other one. For the general BLP
given in the introduction, we proceed with the steps
described in Figure 6.
In the proportion model, z denotes the set of qij

variables, y the set of yjks, and x the xiks. For the

Figure 6 Alternate Heuristic (ALT)

-1. Give some feasible initial values for the complicating
variables z (or noncomplicating variables y).

-2. Solve the resulting LP in (x�y) (or in (x�z)).

-3. For y (or z), found in the previous step, solve the LP in
(x�z) (or in (x�y)).

-4. Repeat Steps 2 and 3 until stability is reached (with a
given tolerance).

flow model, z becomes the attribute variables taj , y
remains the same, and x includes the xik and wij vari-
ables. Observe that in the flow formulation, if both
sets of flow variables x and y found in the previous
iteration are fixed (not only y, as in ALT), the taj may
be updated directly from the equality constraints for
the attribute values at the pools. Repetitively solv-
ing for �x�y� and updating the taj leads to the popular
recursive technique first given by Haverly (1978). This
recursive procedure (in its original form) does not
extend to the proportion model. The ALT is a natural
solution approach to the bilinear program. It has been
suggested before in other contexts than the pooling
problem (e.g., see Brimberg et al. 1997). However, to
our best knowledge, this is the first time that compu-
tational experience is reported.

Proposition 4.1. Assuming a unique solution in each
iteration of Steps 2 and 3, ALT converges to a local
optimum (i.e., varying �x�y� or �x� z� does not improve
the objective function value).

Proof. Fixing feasible values in z (or y) leads to
an LP with a nonempty feasible region in �x�y�
(or �x� z�). Thus, the sequence of LPs will maintain
feasibility and provide a monotonic sequence of
improving solutions. Since a well-formulated pooling
problem must have a bounded feasible region, we
conclude that the sequence of solutions will converge
to a unique finite value of the objective function. Since
there are no ties in the LP iterations, this must corre-
spond to a unique attraction point. Furthermore, local
ascent is not possible, since the �x�y� and �x� z� sub-
spaces only permit local descent. �

4.2. Variable Neighborhood Search
We assume a knowledge of the basic rules of VNS.
For a review of VNS and its applications to a range of
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problems, see Hansen and Mladenović (1997, 1999). In
a nutshell, the VNS consists of repeating the follow-
ing two steps: (i) Perturb the current solution within a
neighborhood of length k (initially set to 1); (ii) from
this perturbed point, find a new point with a local
search. If this new local optimum is better, it becomes
the new current point, and the k parameter is set
again to 1, or else the original current point is kept
and the k parameter is increased, for a bigger pertur-
bation in the first step.
Let s = �x′�y′� z′� be a feasible solution obtained by

ALT. It follows that �x′�y′� and �x′� z′� are extreme
points of a polyhedron in the respective subspaces.
Let us denote these two polyhedrons by �1�s�
and �2�s�. The first neighborhood �1�s� is represented
by the union of all feasible extreme points adja-
cent to either �x′�y′� (in �1�s�) or �x′� z′� (in �2�s�).
Thus, the cardinality of �1�s� is less than or equal to
2n1+n2+n3, because the number of adjacent points
in a polyhedron cannot be larger than the dimension
of the space. The equality occurs when the LP prob-
lems are not degenerate (in both �x�y� and �x� z� sub-
spaces). �2�s� would then be the set of adjacent
extreme points on �1�s� or �2�s� obtained by chang-
ing exactly two elements in the respective bases, �3�s�
exactly three elements, and so on. It is easy to see that
the cardinality of �k�s� increases exponentially with k.
For solving BLP by VNS, we define the shaking

operator with respect to the neighborhoods �k. That
is, a point s′ from �k�s� �k = 1� � � � � kmax�, is taken at
random. A local search is then carried out from s′

using ALT. In the description of the VNS heuristic
that follows, we use a Boolean variable 0 that has
values 1 or 0 if the search is performed in �1 or �2,
respectively. If the shaking is done in �1, the search
by ALT will start in �2. The next shaking operation
will also be carried out in �2. That is, we alter-
nate between subspaces by setting 0 to its comple-
ment 0̄. The detailed VNS algorithm is shown on
Figure 7. Note that the second step of the algorithm
can be repeated several times, which is decided by
the parameter nt (see §4.3.1).
Implementation of the VNS rules to solve BLP is

not hard. However, there are theoretical questions
that need to be clarified. The current reduction (dis-
cretization) of the continuous solution space to the
extreme points of �1 and �2 does not mean that
the global optimum necessarily belongs to the set⋃

k�k�s�, as is the case in combinatorial optimiza-
tion. This last set depends on the current solution s =
�x′�y′� z′�; i.e., for each s = �x′�y′� z′� we can construct
a different exponential discretization of the continu-
ous solution space Rn. In fact, in solving the contin-
uous BLP problem, we first introduce the finite set
�s that consists of all feasible extreme points of �1�s�
and �2�s�. A distance function 1s is then specified for

Figure 7 VNS Algorithm

[1] Initialization
find an initial feasible solution s

choose a stopping condition nt

it← 1
[2] While it ≤ nt

k← 1
While k≤ kmax
[i] Shaking

get s′ from �k�s� at random using current value of 0
[ii] Local search

0← 0̄

use ALT with s′ as initial solution to obtain local
optimum s′′

[iii] Move or not
if s′′ better than s

move to s′′ �s← s′′�
k← 1
update the neighborhoods �k�s� for the new
current solution (i.e., update the simplex
table, or polyhedron, where s′′ is found)

else k← k+ 1
it← it+ 1

the set �s (subscript s indicates that the discretization
depends on the current solution). Let s1 and s2 be any
two solutions that belong to �s , and let �1 and �2 be
the corresponding sets of basic variables. We say that

1s�s1� s2�= k ⇐⇒ ��1\�2� = ��2\�1� = k�

that is, the distance metric is defined by the symmet-
ric difference of two sets.

4.3. Computer Results
Three heuristic methods were tested: an efficient ver-
sion of SLP (noted as SLPR in Palacios-Gomez et al.
1982), and the alternate and VNS procedures given
above. All three heuristics were coded in C++ and
run on the Ultra-60 station as before. Recall that find-
ing a feasible initial solution (a requirement for all
three heuristics) is in itself a very difficult problem.
For example, in RT2, 10,000 sets of proportion values
were generated at random, and not one feasible solu-
tion was found by ALT. The following “tricks” were
used to significantly improve the rate of success:
(i) Because the solutions of the LPs typically have

many zero-valued variables, set every variable in z
(or y) to zero with probability 0.5; if the variable is
decided to be nonzero, set its value randomly,
(ii) For some problem instances, we observe that

it is better to start with random values of z, while
for others a feasible solution is easier to find if the
variables from y are fixed at random. Therefore, we
choose to start with y or z with probability 0.5.



Audet, Brimberg, Hansen, Le Digabel, and Mladenović: Pooling Problem
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Table 6 Pooling Test Problems from the Literature

Parameters Solution CPU time (sec) Error (%)

Example nsp kmax nt Exact MSLP MALT VNS MSLP MALT VNS MSLP MALT VNS

Flow model
AST1 1�000 10 1 549�803 276�661 532�901 545�27 2�20 2�45 2�81 49�68 3�07 0�82
AST2 1�500 10 1 549�803 284�186 535�617 543�909 9�18 5�21 5�68 48�31 2�58 1�07
AST3 1�000 10 1 561�048 255�846 397�441 412�145 18�71 4�96 5�34 54�35 29�09 26�47
AST4 230 0 0 877�649 — 876�206 876�206 0�82 0�77 1�01 — 0�16 0�16

BT4 5 0 0 45 39�6970 45 45 0�01 0�01 0�01 11�78 0 0
BT5 10 15 2 350 327�016 324�077 350 0�03 0�09 1�11 6�57 7�41 0

F2 120 10 1 110 100 107�869 110 0�07 0�44 0�57 9�09 1�94 0

H1 5 0 0 40 40 40 40 0�02 0�01 0�01 0 0 0
H2 5 0 0 60 60 60 60 0�02 0�01 0�01 0 0 0
H3 5 3 1 75 60�7332 70 75 0�02 0�01 0�03 19�02 6�67 0

RT1 5 0 0 4�136�22 126�913 4�136�22 4�136�22 1�34 0�04 0�04 96�93 0 0
RT2 5 5 1 4�391�83 — 4�330�78 4�391�83 0�04 0�47 0�60 — 1�39 0

GP1 50 5 1 60�5 28�732 35 46 0�01 0�04 0�08 52�51 42�15 23�97

Proportion model
AST1 1�000 10 1 549�803 544�307 532�901 533�783 1�14 2�38 2�61 1 3�07 2�91
AST2 1�500 10 1 549�803 548�407 535�617 542�54 3�04 4�97 5�37 0�25 2�58 1�32
AST3 1�000 10 1 561�048 551�081 397�441 558�835 4�98 4�98 5�93 1�68 29�09 0�3
AST4 230 0 0 877�649 — 876�206 876�206 1�19 1�21 1�55 — 0�16 0�16

BT4 5 0 0 45 39�7019 45 45 0�01 0�02 0�02 11�77 0 0
BT5 10 15 2 350 292�532 323�12 350 0�12 0�16 1�53 16�42 7�68 0

F2 120 0 0 110 110 110 110 0�15 0�49 0�49 0 0 0

H1 5 0 0 40 40 40 40 0�02 0�01 0�01 0 0 0
H2 5 0 0 60 60 60 60 0�02 0�01 0�01 0 0 0
H3 5 3 1 75 69�9934 70 75 0�02 0�01 0�02 6�68 6�67 0

RT1 5 0 0 4�136�22 3�061�03 4�136�22 4�136�22 0�07 0�03 0�03 25�99 0 0
RT2 5 5 1 4�391�83 4�391�02 4�330�77 4�391�82 0�04 0�58 0�72 0�02 1�39 0

The above procedure allowed us to obtain about 25%
feasible solutions in RT2. The choice of the set of vari-
ables to be fixed has in general no important inci-
dence on the efficiency of this method, except for the
AST problems under the flow formulation: No fea-
sible point was generated when the set of smallest
cardinality was chosen.
To improve the quality of the solutions, multistart

versions of SLP and ALT (referred to as MSLP and
MALT, respectively) were used. The rule above was
taken for the starting values of MALT. The starting
procedure suggested in Palacios-Gomez et al. (1982)
was applied in MSLP. If the starting solution was
found to be infeasible, iterations of ALT were allowed
to continue until a feasible point was found. The best
solution from MALT was taken as the initial solution
for VNS. In Tables 6 and 7, a “—” means that the
MSLP method could not find a solution or that the
memory limit was reached for the exact algorithm.

4.3.1. Pooling Problems from the Literature. We
first tested the heuristics on the problem instances dis-
cussed in §§2 and 3, for which exact solutions were
already found. The results are summarized in Table 6

for flow and proportion models. In this table, we
give the parameters used for the three methods MSLP,
MALT, and VNS. They are—

nsp: number of starting points for the MSLP and
MALT algorithms

kmax: VNS parameter, maximum length of the
neighborhood

nt: VNS parameter, number of repetitions of VNS’s
Phase 2 (see the algorithm in Figure 7).
Because the proportion formulation of GP1 is not a
bilinear problem, only the resolution with flow for-
mulation is made.
Given that the initial solution of VNS is the best

solution of MALT, the CPU times given for the VNS
include the time of MALT. If no improvement can be
made by the VNS, the kmax and nt parameters are set
to zero, and the times for MALT and VNS are the
same.
Table 6 shows that there is not a significant differ-

ence between the flow and proportion formulations
(except for AST3 and F2). We note that MALT gives
the optimal solution for five instances, MSLP in only
three instances, and VNS obtained the exact solution
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Table A1 Characteristics

Price Supply Capacity Price Demand
Feed DM/bbl × 102 bbl Pool × 102 bbl Blend DM/bbl min×102 bbl Arc Max× 102 bbl

F1 49�2 60�9756 P1 12.5 B1 190 5 x12 7.5
F2 62�0 161�29 P2 17.5 B2 230 5 x31 7.5
F3 300�0 5 B3 150 5

Attribute Minimum Maximum

Feed DEN BNZ ROZ MOZ Blend DEN ROZ MOZ DEN BNZ

F1 0.82 3 99�2 90.5 B1 0.74 95 85 0.79 —
F2 0.62 0 87�9 83.5 B2 0.74 96 88 0.79 0.9
F3 0.75 0 114 98.7 B3 0.74 91 — 0.79 —

in all cases except the AST problems. This is caused
by the degeneracy in the AST problems, which does
not allow efficient shaking. Note that any improve-
ments by VNS to MALT were obtained very quickly.

4.3.2. Randomly Generated Pooling Problems.
We generated 19 problems with the following prede-
termined characteristics.
• number of feeds nF varies from 6 to 12
• number of pools nP varies from 3 to 10
• number of blends nB varies from 4 to 11
• number of attributes nA varies from 3 to 30

All other input parameters of the model are generated
at random within intervals derived from feasibility
requirements.
Computer results for the random pooling problems

are summarized in Table 7. The flow formulation is
used here, and we use the same following parameters
for all the instances: nsp= 100, kmax = 100, and nt = 1.
Observe several things:
• VNS always gives the best results,
• MALT and VNS outperform MSLP in all cases,
• the improvements made by VNS are obtained in

small amounts of additional computing time over that
of MALT,
• the exact algorithm solves larger instances than

previously, in very moderate time,
• the largest instances (R13 and above) could not

be solved by the current version of the exact algo-
rithm because of memory limitation, and
• MALT and VNS are always optimal for the prob-

lems solved exactly and differ in three instances.
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Figure A1 Rehfeldt and Tisljar’s Second Pooling Problem
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Appendix
Figure A1 and Table A1 summarize the second pooling
problem in Rehfeldt and Tisljar (1997).
Since each feed may enter each intermediate pool and

each intermediate pool is connected to each final blend, we
may assume without any loss of generality that the flow
in the largest pool is greater than or equal to that of the
smallest. This additional constraint significantly reduces the
feasible region.
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