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Abstract. The accuracy of stereo algorithms or optical flow methods
is commonly assessed by comparing the results against the Middlebury
database. However, equivalent data for automotive or robotics applica-
tions rarely exist as they are difficult to obtain. As our main contri-
bution, we introduce an evaluation framework tailored for stereo-based
driver assistance able to deliver excellent performance measures while
circumventing manual label effort. Within this framework one can com-
bine several ways of ground-truthing, different comparison metrics, and
use large image databases.

Using our framework we show examples on several types of ground-
truthing techniques: implicit ground truthing (e.g. sequence recorded
without a crash occurred), robotic vehicles with high precision sensors,
and to a small extent, manual labeling. To show the effectiveness of our
evaluation framework we compare three different stereo algorithms on
pixel and object level. In more detail we evaluate an intermediate repre-
sentation called the Stizel World. Besides evaluating the accuracy of the
Stixels, we investigate the completeness (equivalent to the detection rate)
of the Stixel World vs. the number of phantom Stixels. Among many find-
ings, using this framework enables us to reduce the number of phantom
Stixels by a factor of three compared to the base parametrization. This
base parametrization has already been optimized by test driving vehicles
for distances exceeding 10000 km.

1 Introduction

Today’s stereo and flow algorithms have reached a maturity level that allows
their use in real-world systems. The development of efficient stereo algorithms is
the first step in making vehicles able to recognize their surroundings and even-
tually drive themselves in the future. Unfortunately, the performance evaluation
for such algorithms is still mostly limited to comparisons on the Middlebury
database! [32]. There, stereo and flow algorithms are benched against a few in-
door images under controlled conditions. Most applications have to deal with a

! e.g. http://vision.middlebury.edu/stereo/
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lot of different conditions which are not covered by such controlled data sets.
Especially in the automotive field a limited sensitivity to adverse weather condi-
tions is crucial. This requires a certain robustness of the applied algorithms. For
such an outdoor imagery evaluation we need metrics to evaluate different algo-
rithms or parameters and to compare their performance. The goal is to create
a system that will automatically evaluate the computed 3D scene description
of the environment. For this purpose, we introduce a performance evaluation
framework considering the following three levels:

1. low-level: pizel-level, e.g. false stereo correspondences - based on stereo data
where we use knowledge about object-free volumes to detect violations.

2. mid-level: freespace/Stizel [2], the object-free space in front of the car — the
inverse is also called evidence grid /occupancy grid. This is computed directly
from the stereo correspondences. The freespace forms a basis for many other
object detection algorithms and thus is suitable for a mid-level evaluation.
Similar, the Stixel World describes the objects limiting the freespace and is
evaluated in detail here.

3. high-level: leader vehicle measurement. We pick one particular application
where the leading vehicle is measured in front of the ego-vehicle. This data is
needed for all adaptive cruise-control (ACC) variants. Depending on the im-
plemented driver assistance function, different accuracy demands are needed
for the distance, relative velocity, lateral position and width of the leading
vehicle. We focus on the lateral position and width of the leader vehicle since
we have a RADAR system that determines the distance and relative velocity
very accurately and serves as ground truth for that part. The challenge for
such applications is to create a correct object segmentation, and it is here
that the choice of stereo algorithm becomes apparent.

Our evaluation framework working on these three levels covers the range of
applications in which stereo is used in today’s automotive industry (e.g. [37]).

The structure of this paper is as follows: The related work on our system
is detailed in Section 2. The basic framework for this analysis is described in
Section 3. The ground truth needed to evaluate the tasks is introduced in the
same section. To show the power of the evaluation framework we select several
algorithms for evaluation that are described briefly in Section 4. In Section 5
more details on the used metrics to measure the performance are given. We have
tested three different stereo algorithms on all evaluation levels of detail and show
the results in Section 6.1. Evaluation results focusing on several aspects of the
Stixel World are presented in Section 6.2.

2 Related Work

2.1 Evaluation of Computer Vision Algorithms

In the field of automotive, computer vision systems become increasingly power-
ful. Consequently, many driver assistance systems make use of them for. However,
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under adverse weather conditions these systems do not posses the reliability re-
quired. Using image based sensor information for active braking or autonomous
steering requires high safety levels, robustness, and accuracy with respect to the
used algorithms. The more safety critical a system is the more effort has to be
spent in the evaluation process of such vision algorithms. The correctness and
the required integrity of these systems gain special importance when upcoming
norms like ASIL (Automotive Safety Integrity Levels or ISO 26262) come into
effect.

In [27], a general framework for performance evaluation of Computer Vision
algorithms is presented, with a focus on object detection algorithms. However,
all introduced metrics are limited to monocular sequences and to metrics within
the image plane. Both methods are less relevant to robotics and driver assistance
scenarios.

One of the major problems in evaluating computer vision algorithms is the
generation of ground truth data against which results can be tested. Tradition-
ally, most of the algorithms in literature are evaluated by measuring differences
between the computed result and the Middlebury database [44]. However, for au-
tomotive applications this is not sufficient, because the automotive field is faced
with a couple of challenges: Firstly, it has to deal with adverse weather and
lighting conditions which are not covered by such controlled data sets. Secondly,
the tremendously rising complexity of modern vision systems demand for new
evaluation methods which cannot be performed on single images. In addition, a
pixel-by-pixel comparison (as on Middlebury) is not applicable to sparse stereo
or flow algorithms - an algorithm class that might serve driver assistance tasks
very well.

In general, algorithms need to be tested on much larger datasets for obtain-
ing statistically meaningful performance measure [9]. A step towards creating
large ground truth datasets was made in [18]. The authors presented a reliable
methodology for establishing a large database of ground truth data for a vari-
ety of sensors on mobile platforms. The goal was to publish large datasets to
support other researchers to verify and evaluate their algorithms. An evaluation
strategy for stereo algorithms on large amounts of images was also proposed
in [36]. In that publication a performance evaluation scheme and corresponding
metrics were suggested. The authors describe a method for producing low effort
evaluation results without having real ground truth data. Some of the obtained
results are reiterated in this research.

2.2 Ground-Truthing

In recognition tasks (e.g. [10,12]) manually annotated ground truth is widely
used where Receiver-Operator-Curves (ROC), Precision-Recall-Curves, or clas-
sification rates are compared. There, ground-truthing is already necessary to
provide the recognition algorithms with training data.

An example used to easily obtain some ground truth data is shown in [24],
where an orthogonal method to determine the street plane is used to evaluate
stereo algorithms. However, the street plane investigation only verifies small
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parts of the image whereas for real automotive applications there are many
other parts of the 3D scene which are of high importance.

In the current literature, several concepts have been used for generating
ground truth data. Each of them have their corresponding advantages and draw-
backs. The following sections will give a short overview of those concepts.

Multi Sensor Technology Modern test vehicles are usually equipped with
multiple sensors. LIDAR (Light Detection And Ranging), RADAR (Radio De-
tection and Ranging) and optical cameras are examples for those sensors. Using
a multi sensor system has the advantage of detecting (or even compensating) for
the various errors produced by each method yielding more reliable and accurate
data. Different approaches have been found which propose an efficient fusion
strategy as well as solutions in handling divergent data [11,17,42].

In [31] an evaluation strategy for the Stixel World was published using a high
precision LIDAR as a reference sensor. The Stixel’s distance information was
compared against the LIDAR measurements. Different scenarios were recorded
and the errors in various distances were analyzed. In order to realize the proposed
concept with low effort, the technical challenges in synchronizing the different
sensors were circumvented using the stop motion principle. Leaving, only simple
scenarios (without any dynamic driving maneuvering) can be analyzed.

According to [31], Semi-Global Matching (SGM) and LIDAR behave dif-
ferently to reflective vehicle objects like windows, mirrors or puddles. While the
SGM stereo estimation smooths over these areas, the LIDAR looks right through
those or even follows the reflected rays of light: an undesirable property of such a
system. Consequently, using LIDAR as ground truth sensor makes an evaluation
in these areas impossible.

Another evaluation example using several sensors of the same type was pub-
lished in [28]. In this approach various common stereo matching algorithms were
evaluated using three cameras. Two of them were used for the stereo matching
and the third was used for reference in order to estimate the prediction error.
By using metrics assessing the intensity differences of the first two cameras and
comparing those with the output of the virtually computed third camera, it was
possible to rate different stereo algorithms on real-world scenes.

Manual Labeling Methods One of the most commonly used methods in gen-
erating ground truth data is the involvement of human expert interactions called
labeling. As every application or algorithm has different requirements numerous
approaches exist in designing ground-truthing tools. In general these can be cat-
egorized as automatic or semi-automatic ones [19]. The majority of the tools
are semi-automatic as in most cases some additional information is needed for
starting the ground truth extraction.

Tools supporting manual input often have the advantage that errors raised
from model approximations or noisy data can be minimized through human
verification and correction. These semi-automatic tools are not very efficient in
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generating large ground truth datasets as they involve human effort during the
process.

Driver assistance imagery exhibit highly dynamic driving scenarios and often
at least 50 frames are necessary in order to make a reliable statement on the
performance of the applied algorithm. Consequently, labeling large amounts of
sequences is time consuming. To overcome this problem some approaches were
published incorporating available tracking mechanisms in ground-truthing tools
[18]. Instead of labeling each frame from the beginning, trackers can be used to
follow objects from one frame to the next so human inputs or corrections are
only required if deviations occur [26].

Synthetic Data Today a lot of effort is put in generating realistic synthetic
scenes. Based on a physical model, static and moving objects are rendered and
placed into a defined scenario.

Using synthetic sequences has the advantage that all parameters for every
object are previously known. This accounts especially for the trajectories of the
moving objects. Hence, an evaluation becomes simple because ground truth data
can be calculated from ray-tracing principles and thus is available for every single
image of the sequence. Moving the viewpoint of a virtual image makes it possible
to generate image pairs for simulating stereo-vision and computing the ground
truth disparity image.

The drawback of using synthetic scenes is the increased entropy of real life: it
is next to impossible to create models for all the real-world situations. Adverse
weather conditions such as rain, sun glare or snow are examples of that as their
physical background is too complex for mapping it to a computer model.

Study [40] shows how synthetic scenes can have an negative impact on the
performance of stereo and motion estimation. Their results show that optimizing
algorithms for synthetic data can even make the results on real-world scenes
worse. For example motion blur, weather, and exposure differences between the
left and right image can highly influence the performance of the algorithms.

3 Evaluation Framework

The main aim of our evaluation framework is to provide an automatic method
for evaluating and optimizing different stereo and flow algorithms over a large
dataset [36]. By now, it has proved its strength to be well suited for all kind
of image processing tasks. A large sequence database with more than 1500 se-
quences (200-400 frames per sequence) serves as input for the evaluation task.
Since most of the vision algorithms consume a lot of computing power the idea
is to write the raw data measurements into an Evaluation Database (EDB) and
calculate the metrics afterwards. This has the advantage that a recalculation
of our metrics can be done within seconds. Figure 1 shows an overview of the
framework.

All algorithms that are tested perform their image processing tasks with a
predefined parameter set on the stored test sequences. For a meaningful eval-
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uation, the content of the database has to differ with respect to daytime (day,
night), weather (rain, snow, fog), location and environment (city, rural roads,
highway). In an Evaluation Run (ER) for each frame of the sequence the mea-
sured raw data is written into the EDB. The ground truth data against which
will be tested is either collected during a specific test run or defined manually
by experts (manual ground-truthing). In case of manual ground-truthing, an ap-
propriate software module is used providing manual interactions with the image.
As a result of the image processing task a dataset with ground truth data and
measured raw data is available in the EDB. A Metrics-Generator C+-+ mod-
ule uses the generated datasets, computes the user defined metrics from it and
saves it as an XML file back into the database. The processed data is visualized
in a browser front-end by transforming the XML files with a predefined XSLT
(http://www.w3.org/TR/xslt) style-sheet to SVG images. The transformation
language (XSLT) provides an efficient strategy to transform a huge number of
measurements into a few compact and easily explorable representations.

In addition, for each sequence a score is extracted by integrating the metrics
frame-wise. By means of color encoded rankings one can easily determine those
sequences which are relevant for further algorithm improvements. The user em-
ploys the sequence-wise accumulated metrics to choose candidates which could
outperform the current ground truth. It takes only seconds in order to find and
inspect relevant frames and to decide if the current candidate is a better ground
truth or not. In order to verify the automatic testing process we use a subset of
about 20 manually labeled ground truth datasets. A 3D editor and a tracking
mechanism [4] allows effortless labeling of the scene infrastructure for this subset
of sequences (see Figure 2). The accuracy of the manual ground truth is about
0.05m error on average in the considered range (0m - 40 m).

The 3D editor displayed in Figure 2 is used to create artificial ground truth
data. For this purpose, static scene content from recorded sequences is projected
into a virtual 3D view. Within that view, scene geometry is defined using basic
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Fig.2: A 3D editor is used to manually create ground truth scene data. The
right image shows the corresponding 2D output. The blue walls describe static
scene infrastructure and the red boxes result from an object tracking algorithm
to effectively evaluate moving objects.

geometrical shapes. During this step, dynamic scene content is taken into account
by using the boxed-based tracking scheme proposed by Barth et al. [5,6].

An additional source of ground truth are robotic vehicles operated on a prov-
ing ground. For accuracy evaluation these robotic vehicles (having high-precision
IMU) are used to perform predefined maneuvers repeatedly with high accuracy
(errors < 0.02m). This results in accurately known position and motion states
of the observed vehicles.

4 Algorithms Used

4.1 Stereo Algorithms

The initial motivation to build the evaluation system was in order to compare
the following three stereo algorithms. All of these algorithms have real-time
processing capability.

— Signature-Based Stereo: A signature based algorithm that searches for unique
(corresponding) features of pixels [35].

— Correlation Stereo: A patch based correlation stereo algorithm using ZSSD
(zero-mean sum of squared differences) [13].

— Semi-Global Matching (SGM): Computes an approximated global optimum
via multiple 1D paths in real-time [16].

4.2 Stixel World

The Stixel World [3,30] is a compact medium-level representation that describes
the local three-dimensional environment. Stixels are defined as earthbound and
vertically oriented rectangles with a fixed width (e.g. 5 px) and a variable height.
Under these restrictions, Stixels are a 2.5D representation similar to Digital El-
evation Maps [8]. From left to right, every obstacle within the image is approxi-
mated by a set of adjacent Stixels. This way, Stixels allow for an enormous reduc-
tion of the raw input data, e.g. 400.000 disparity measurements (1024 x 440 px
stereo image pair) can be reduced down to only 200 Stixels.
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Stixels simply give access to the most task-relevant information such as
freespace and obstacles. For providing multiple independent vision-tasks with
stereo-based measurement data, the Stixel World is neither too object-type spe-
cific nor too general and thus efficiently bridges the gap between low-level (pixel-
based) and high-level (object-based) vision.

Stereo Image Pair Stereo Disparities Occupancy Grid Freespace Result

Height Segmentation Height Cost Image Membership Votes l

| | {
4—4—

Fig. 3: The Stixel World is extracted from stereo data in a cascade of multiple
processing steps. This includes stereo matching, mapping stereo data to occu-
pancy grids, freespace computation, a height segmentation and the final Stixel
extraction step.

According to [3], Stixels are computed in a cascade of multiple processing
steps: Mapping disparities to occupancy grids, a freespace computation, a height
segmentation, and the final Stixel extraction step. For clarity, that process is
visualized in Figure 3. Besides using Stixels to represent static environments, re-
lying on the 6D-Vision [14] based Kalman filtering techniques allows for robustly
tracking Stixels over time. Since the tracked objects are expected to move earth-
bound, the estimated state X is four-dimensional and consists of the lateral (X)
and longitudinal (Z) position as well as the corresponding velocity components,
such that X = (X, Z, X , Z )T. As a result, motion information about the obsta-
cles in the scene is available for every Stixel independently [30].

Making this work demands to have knowledge about the own motion state
and requires to measure displacements of Stixels between two consecutive images.
Ego-motion is provided by either visual odometry [1,15], SLAM [21,22,23] (self
localization and mapping), or the inertial motion sensors of the vehicle. Stixel
motion is obtained by computing optical flow correspondences. To achieve this a
number of different methods are described in current literature. A short selection
of those methods is listed below.

4.3 Optical Flow Schemes

Tracking Stixels over time in order to estimate the velocity of other moving
obstacles requires the measuring of the two-dimensional displacement of these
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objects within the images of two consecutive time steps. This is achieved by
computing the optical flow correspondences for exactly those areas.

Within the scope of this evaluation, four different flow methods have been
chosen for testing. In the following, their particular differences, assets and draw-
backs are highlighted briefly.

Sparse KLT In [25], Lucas et al. suggest an optical flow scheme for feature
tracking that relies on the gradient-based Lucas-Kanade method. The actual
displacement is computed by solving the optical flow equations resulting from
the constant brightness assumption for all the pixels in the neighborhood of a
center point. This is achieved by means of a least squares error minimization.

Aiming at gaining robustness to global illumination changes, the matching
criteria of this scheme is adapted to support a more robust measure, the zero-
mean sum of squared differences (ZSSD).

A benefit of this method is the possibility to use the Kalman filter prediction
of the tracked objects for initialization. This noticeably supports the estimation
of large optical flow vectors and reduces effects resulting from texture ambigui-
ties (e.g. repetitive patterns such as guard rails).

Patch KLT The Patch KLT method is an extension of the KLT feature tracker
to larger m x n sized feature patches. In order to take perspective effects into
account the change of scale is part of the estimation process. Additionally, an
individual weight is considered for each pixel that is computed from the corre-
sponding disparity measurement and the disparity of the tracked Stixel. This
way, the influence of (background) pixels that lie within the patch (but do not
belong to the actual tracked object) is minimized.

The Patch KLT benefits from leveraging texture information much better
than competitive methods. Just like the sparse KLT method, the Patch KLT
allows to be initialized with the prediction of the Kalman filter state.

Census Optical Flow Stein [35] presents a method that allows to compute
optical flow using the Census transform [41] as matching criteria. The census
signatures are mapped to a hash table which is then used to determine optical
flow correspondences between two images.

The benefit of this method is the constant run time independent of the max-
imum optical flow vector length. On the downside, this scheme does not allow
to incorporate the motion state of the tracked object during initialization.

Dense TV-L1 Optical Flow Miiller et al. [29] have proposed a dense TV-
L1-based method that puts dedicated focus on the application in open road
scenarios. It incorporates additional stereo and odometry knowledge about the
three-dimensional scenario. Their scheme is a variant of the work proposed by
Zach et al. [43]. The implementation used does not consider information about
the objects motion state for initialization.
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5 Used Evaluation Metrics

Evaluating over large datasets demands effortless execution strategies and sim-
ple metrics which yield valuable information on the robustness and accuracy of
an algorithm. Low-level metrics reflect the performance of a pixel-wise algorithm
(e.g. the stereo matching scheme), mid-level metrics rate the quality of a pos-
sible intermediate representation at a later stage (e.g. the Stixel World) in the
data processing chain, and high-level metrics consider the object level. The used
metrics are described in more detail in [33].

Typically, errors occur on sensor failures, atypical events (e.g. wipers crossing
the windshield), or adverse weather and poor lighting conditions. Thus, for the
purpose of our evaluation the following two aspects are examined:

— Robustness: represents the algorithm’s ability to deal with challenging situ-
ations like adverse weather and lighting conditions.

— Accuracy: describes the precision with which a Stixel represents the object
in the real world.

5.1 Robustness

In the context of safety-critical vision-based driver assistance, the robustness
of the used algorithms is of uttermost importance. With respect to robustness,
it is reasonable to distinguish between algorithms operating on the pixel layer
and those that use the object layer. For instance, a single error during stereo
matching is rather unlikely to lead to a drastic automatic intervention of the
driving car. However, the situation might be different for several false alarms in
the medium-level representation.

Naturally, object occurrences in the driving corridor have a high priority,
because those objects might lead to a critical change in driving. Hence, the
evaluation primarily focuses on errors occurring within the driving corridor.

False Stereo Correspondences (low-level) When dealing with a large se-
quence database it is neither practical nor expedient to create ground truth
data manually. This is especially true for disparity depth maps, as this method
turns out to be a very time-consuming and hardly a feasible undertaking. In our
research, a different strategy was chosen:

The vehicle’s driven path through the three-dimensional scene is reconstructed
before the evaluation. This is achieved by looking ahead the vehicle’s odometry
information (velocity and yaw rate) from the recorded sequence meta-data. It
enables us to evaluate the false positive rates up to distances of 40 m. In case
of having other moving vehicles in the scene, the actual freespace is addition-
ally restricted by using an independent RADAR sensor (Continental ARS300
long range RADAR [34]). During this process, the RADAR is considered as
ground truth and the RADAR results were checked visually by backprojecting
the RADAR results into the image. For clarity, the described strategy is illus-
trated in Figure 4.
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Given good visual conditions, no stereo measurements should fall into that
volume. Hence, all stereo correspondences that do so are registered as potential
errors of the stereo matching scheme. Following that strategy allows us to process
many sequences without the need for human inspection or interaction. In return,
that gives us the opportunity to evaluate very large sequence data bases with
minimal effort.

Fig.4: With a prediction of the ego vehicle’s current state it is not possible
to detect the oncoming sharp right-hand bend early enough (marked with the
yellow ellipse). That means that only a prediction around 25 m would be possible.
Instead, by looking ahead the odometry information and RADAR information
allows us to define the drivable freespace up to distances of 40 m. The diagram
on the right side depicts such a freespace.

False Positives (mid-level) In order to test for false positive detections on
the medium level, the same strategy (as above) is followed.

In terms of the Stixel representation, a false positive is defined as a Stixel
detection that cannot be associated to an actual object in the real world. Thus,
similar to detecting false stereo correspondences, all Stixel observations that lie
within the driving path are considered as false detections.

Detection Range Another important characteristic for a vision system is the
achieved detection range. Thus, for judging this property adequately, a so called
completeness measure is defined. It reflects the detection rate of objects in the
scene using ground truth object data.

For this evaluation task we use two different types of input data: Manually
labeled sequences with a known 3D world geometry as well as robotic sequences.
Robotic sequences correspond to driving scenarios with automated vehicles of
which one carries the stereo system. Their motion path is known precisely by
using iIMAR iTrace-RT-F200 [20] IMUs as well as differential GPS.

For each time step in this database a corresponding ground truth Stixel
representation is computed. A particular ground truth Stixel is considered as
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detected if a corresponding Stixel is computed from the input images (true pos-
itive). Consequently, both Stixels have to be within a depth-range of +1m or
+3 px disparities. Otherwise, the object is considered as missed (true negative).
The corresponding completeness measure is defined as the ratio of the number
of detected Stixels over the expected total amount of Stixels.

Colliding Stixels In order to determine the robustness of the Stixel velocity
estimate, it is preferable to have real-world ground truth data for all moving
objects in a scene. Again, this is hard to achieve for a large dataset so instead of
performing a direct comparison, we use the Time To Collision (TTC) of a Stixel
as an indicator for tracking errors. Since all of the scenarios in the database
are recorded without having a collision, it can again be assumed that the TTC
to other objects (static and moving) is greater than 1s. Hence, if the predicted
position of a Stixel intersects with the predicted vehicle position, a tracking
error is registered. Figure 5 shows an exemplary inner city scenario. The red
area visualizes the ego vehicle’s position within the next second. The arrows on
the ground plane denote where the Stixels will move in that same period of time.

{ hl

T

Fig.5: Exemplary inner city scenarios with colliding Stixels. The red carpet
indicates the ego vehicle’s position in the next second. The white arrows denote
the Stixel positions in the same period of time. On the right the intersection
check is visualized.

5.2 Evaluation of Accuracy

For accuracy evaluation the robotic vehicles are used. The vehicles perform pre-
defined maneuvers. The IMU units record the exact paths of both platforms.
The data is used for testing the accuracy of the distance measurement as well
as the precision of the estimated velocity.

Distance Error Both IMU units provide an accurate motion state for every
frame. Using this data allows to transform all robotic motion states into the ego-
system of the stereo camera rig used for testing. From that point onwards, it is
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straightforward to extract all Stixel measurements that are located on the other
vehicle’s front and determine their mean distance so. This value is compared to
the ground truth data of the IMU units.

Velocity Error The evaluation of the velocity tracking error is split in two
parts. Firstly, under the assumption that the current sequence is recorded in a
static environment (i.e. without any moving objects), the mean absolute velocity
error over all Stixel velocity estimates should equal to zero. Secondly, to evaluate
while dealing with moving objects the robotic sequences are used. This way, the
IMU velocity data is compared to the mean velocity estimate of those Stixels
that represent the vehicles front in the image.

6 Evaluation Results

6.1 Stereo Performance

The sequences we used for stereo evaluation are divided into 50 % bad weather
conditions (rain, snow, night) and 50 % normal conditions and contain a total of
22.100 frames recorded at 25 fps. The mixture is chosen to find failure modes of
the algorithms as quickly as possible so less data will be needed.

The results in Table 1 show that the Signature-Based Stereo exhibits some
shortcomings. Correlation Stereo is far better than Signature-Based Stereo, but
the best method at all levels and metrics is SGM. The results from the bad
weather part of the database are shown separately using parentheses.

Furthermore, the freespace computation and the leader vehicle measurement
parameters were tuned for the Correlation Stereo method. For this reason, the
obtained results underline the overall good and stable performance of SGM. If
the applications were tuned with respect to SGM, the results of SGM would
be even better. Especially the availability of the leader vehicle measurements
outperforms the correlation approach by far. With the used freespace algorithm
and metric at hand, we obtain similar results and the same ranking of stereo
algorithms using the Stixels as intermediate representation.

Metric low-level mid-level high-level (LVM)

False Corr. FS Diff. ALat.Pos. AWidth Availability
Algorithm  / Unit mye ] mys [pX] mup [em] My [cm] (%]
Signature-Based Stereo 7.45 (10.35) 3.04 (3.06) 19 (22) 26 (35) 80 (88)
Correlation Stereo 1.02 (1.47) 1.26 (1.72) 13 (15) 19 (37) 95 (99)
Semi-Global Matching ~ 0.98 (0.94) 0.68 (0.79) 11 (12) 14 (32) 99 (99)

Table 1: Evaluation result comparing census-stereo, correlation stereo, and SGM.
SGM outperforms the other algorithms on all levels of detail.
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6.2 Stixel Robustness

For the robustness evaluation of the Stixels, the complete database with more
than 500 recorded sequences was used. It includes typical urban environments,
rural roads and highway scenarios at different day times and weather conditions.

Phantom Rate The Stixel phantom rate was determined in the categories
Sunshine, Night, Rain, Heavy rain and Snow and is measured in phantoms per
frame. Examples of challenging scenes with occurring phantoms are shown in
Figure 6.

(c) Snow scenario with phantom Stixels.

Fig. 6: The depicted Figures show different challenging scenarios of failure cases
for the stereo computation and thus for the Stixel extraction. The visualization
shows both the freespace/Stixel result as well as the disparity image.

The results in Figure 7 primarily show that under optimal environmental
conditions an excellent low error rate is achieved. However, this result change
for adverse weather conditions such as Rain or even Heavy Rain, where the
phantom rates are considerably higher. Snow on the other hand turns out to be
less of a problem than anticipated. This effect is mainly explained by the fact
that, in contrast to rain, snow does not necessarily lead to a wet windshield and
therefore does not cause a blurred sight.

In order to optimize for a low phantom rate, different parameters of the Stixel
extraction schemes have been fine-tuned. At the same time it was important
to consider the completeness metric. Otherwise, minimizing the phantom rate
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Fig. 7: The diagram depicts the Stixel phantom rates in the categories Sunshine,
Rain, Heavy rain and Snow evaluated on a dataset exceeding 500 sequences.

would inevitably lead to an arbitrary and possibly undesirable reduction of the
object detection rate. In the sense of an ROC-curve, this dependency is visualized
in Figure 8. The optimization was performed using manually labeled ground
truth sequences with available 3D world geometry. This database consists of
20 manually labeled sequences with a total sum of approximately 1000 objects.
The images in Figure 8 illustrate an extract of labeled database objects (red is
moving, blue is static). In addition, the diagram depicts the limit up to which
an optimization allows a robust object detection. A 100 % detection rate can not
be reached due to violations of the assumed vertical pose constraint.

Detection Analysis in an Optimization Process
09
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Fig.8: The figure visualizes the completeness measure averaged over all labeled
objects in the database. With an increasing optimization level, the number of
phantoms decreases. However, a small phantom rate results in a low complete-
ness. The diagram shows the limit after which further optimizations would down-
grade the detection rate too much.
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Detection Range The detection range was evaluated on robotic scenarios. The
priority was on that distance where the object detection exceeds 90 % complete-
ness on the robotic vehicle. Consequently, for this purpose, only scenarios with
an oncoming vehicle covering a range of 0m — 80m were of interest. Figure 9
shows the completeness over the distance. In order to have a meaningful result,
the completeness is averaged over several sequences of the same type.

Completeness Analysis - Robotic Scenario
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Fig.9: The diagram shows the completeness in relation to the distance. The
embedded histogram show the distribution of the distances at which the robotic
vehicle reaches the 90 % completeness level for the first time.

6.3 Tracking Performance - Testing Different Optical Flow Methods

Within Section 4.3 different Stixel tracking strategies have been discussed. This
section aims to evaluate their performance and their quality with respect to the
estimated motion states.

In terms of the object tracking, a core aspect is the computation of the Stixel
displacement between the two consecutive images. For that task, we discussed
multiple approaches that differ with respect to their technical prerequisites, their
scope of action to combine the optical flow computation directly with the actual
tracking process, and their computational effort. The Stixel tracking was tested
in a stationary environment that contained no moving objects. Even though our
own car was moving, the goal was to detect that the environment around us
remains static.

The test using a static environment took place in a narrow urban environ-
ment with cars parked on both sides of the road. Naturally, the expectation for
the motion state of all tracked objects is to have zero velocity. To stress the
optical flow methods, the scenario was recorded several times while driving at
different speeds, which includes 4, 8, 14 and 20™/s ego-velocity. A snapshot of
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that sequence is depicted in Figure 10. The given figure also discusses different
challenging aspects for the optical flow computation.

NG, e e -~

(a) Correct estimation of the environment consisting of static objects. Thus, all
Stixels are drawn with a white coloring which denotes a velocity close to zero.

(b) Three typical sources for velocity errors during tracking within static envi-
ronments are illustrated. The first figure shows a reflecting surface, the middle
figure shows a jump in depth, and the third figure shows difficulties with motion
estimation at large distances.

Fig. 10: Color visualizes motion. Ideally, all static objects should have a white
coloring denoting zero velocity. This real-time color coding was used as quality
indicator for the different tracking schemes. Figure (a) shows a good example,
Figure (b) shows typical sources of error.

For estimating the optical flow between consecutive time steps the Census-
based feature flow proposed by Stein [35], the dense T'V-L1 based optical flow
scheme proposed by Miiller [29], the KLT-based feature tracker proposed by
Tomasi [39] and our own Patch KLT method were used. For the latter, a patch
size of 40 x 16 px (widthxheight) has proved a good working choice.

The results for the static environment are depicted in Figure 11. On the left
side, for rating the tracking performance of the individual tracking schemes, the
mean absolute velocity of all tracked Stixels is computed. Depending on the ego-
velocity of the test vehicle, each sequence contributes about 300 to 1,000 frames.
The evaluation is limited to a distance of 40 m.

Apparently, for the current setup, the different optical flow schemes are
closely matched, such that there is no clear winner. Depending on the driven
speed it is shown, that the mean velocity errors of all schemes rise with a lin-
ear characteristic. Yet, in reference to the total system complexity, that error
is relatively small and lies between 6 % and 8 % of the driven ego-velocity. The
obtained error curves seem plausible and match our expectations.

Altogether, the good performance of the investigated techniques is reasoned
in the fact that the considered scenario is relatively simple. Thus, by changing to
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Fig. 11: Direct comparison of the four different tracking schemes. Ideally, the
mean absolute velocity should be zero. The quality of the optical flow measure-
ment plays a significant role in this process. Thus, depending on the optical flow
scheme, that goal is more or less achieved. For this static urban environment,
the differences are rather small.

a highway-like environment, a more challenging scenario is taken into account.
It features neither cars nor moving objects but has guard rails on both sides
of the road. Naturally, due to their repetitive patterns, guard rails are likely to
cause problems for the optical flow computation when driving along in parallel
at high speeds. These problems are widely referred to as the aperture problem
or the blank wall problem [7,38]. This is illustrated in Figure 12.

(a) Unreliable optical flow estimates on  (b) In contrast, successful optical flow
guard rails lead to wrong Stixel velocity computation allows to obtain correct
estimates. Additionally, the guard rail is Stixel velocity estimates. The guard rail
not covered completely. is covered much better.

Fig.12: A precise optical flow estimate is essential for estimating the Stixel mo-
tion state reliably. Especially for structures that suffer from aperture problems
at high ego velocities, this is a very challenging task. That matter is exemplified
with a guard rail scenario.
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To increase the degree of difficulty, the ego-velocity is gradually increased to
speeds of 8, 14, 20, 28 and 36 ™m/s. When looking at Figure 12a another impor-
tant aspect becomes obvious. Problems within the optical flow estimation lead
to holes within the line of Stixels covering the guard rail. Typically, this effect is
caused by missing or erroneous optical flow measurements. Therefore, in order
to draw a more practical conclusion, the performed tests included the complete-
ness measure for the guard rail. This ratio is computed by using ground truth
geometry. The corresponding evaluation results are shown in Figure 13.
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Fig. 13: This figure shows the results of the performance evaluation for the dif-
ferent tracking strategies using the guard rail scenarios. The left figure denotes
the remaining mean absolute velocity for the different driven vehicle speeds
(8, 14, 20, 28 and 36 /s). Correspondingly, the right side shows the achieved
completeness measure of Stixels covering the guard rail.

Contrary to the previous more static test, the highway environment reveals
severe differences between the tracking techniques. Depending on the particular
tracking procedure, the velocity estimates as well as the detection rates vary
noticeably. The best trade-off with respect to a low velocity error and a satisfying
completeness measure is achieved by using the proposed Patch KLT procedure or
dense T'V-L1 optical flow. Altogether, those two schemes are closely matched. In
contrast, the point feature based KLT method and the Census-based optical flow
tracking scheme have serious difficulties estimating the velocity correctly. The
sparse KLT method yields a high completeness, but its mean absolute estimated
velocity is unacceptably high when driving faster than 14 m/s. Even though the
Census-based feature flow performs slightly better, the achieved velocity estimate
is still not good enough to be used in terms of our objectives. Also, that flow
scheme has severe problems regarding the detection rate. Thus, when going 14 m/s
or faster, that ratio rapidly drops below 75 % completeness.

The good performance of the T'V-LI-based optical flow is reasoned by the
fact, that for every image the assumption of the world to remain static is used as a
weak but apparently effective regularization prior for the optical flow estimation.
Additionally, the globally optimizing property of TV-L1 supports a solution that
is smooth and thus supports our world model too.
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With regard to the Patch KLT, things are quite similar. The used tracking
scheme makes strong use of the Kalman filter prediction as a feed-forward sig-
nal. This clearly helps to resolve textural ambiguities of the tracked structures.
This way, even though the sparse feature based KLT technique allows for the
same procedure, things behave somewhat differently. For our understanding, the
weakness of the sparse KLT method performance results from not considering
the change of scale for the feature patch.

The proposed evaluation scheme is practicable as long as there are no mov-
ing objects within the scene. With respect to a robustness evaluation on larger
datasets it is required to apply other metrics. Therefore, we use the number of
colliding Stixels as indicator for tracking errors. Figure 14 demonstrates that the
percentage of colliding Stixels correlates perfectly with the mean velocity error
presented in the previous section.

E Tracker Comparison - Colliding Stixel
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Fig.14: The diagram shows a comparison of the four tracking approaches
(Sparse-KLT, Patch KLT, Census Feature Flow and Dense TV-L1 Flow) in terms
of colliding Stixels. The Patch KLT exhibits the fewest tracking errors.

Finally, this allows us to evaluate the robustness of different tracking schemes
under various weather conditions.

6.4 Stixel Accuracy

We use the robotic vehicle scenes to assess the Stixel velocity accuracy. The
different flow algorithms performed similarly, hence we use the real-time Sparse
KLT in the following scenarios. The accuracy of the Stixel measurements was
evaluated on 30 robotic scenarios. Therefore, the defined metrics were analyzed
within the scope of three different scenario types: Oncoming vehicles, turning
maneuver and vehicles passing by.
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Velocity Error Robotic vehicles are used to obtain precise ground truth motion
data. That data is used for testing the Stixel Kalman filter systems. For this
evaluation all dynamic Stixels in the robotic vehicle ROI with an age greater than
three frames were used. The resulting weighted mean velocity was compared to
the robotic ground truth velocity. Hereby, the goal was to minimize the velocity
error for the robotic sequences as well as for the static scenarios. Therefore, more
than 20 different filter configurations have been tested.

Figure 15 shows the resulting velocity estimation of an approaching vehi-
cle before and after the optimization process. Both filter configurations perform
similarly on the static scenes described in the previous section. The curves illus-
trate, that in contrast with the optimized filter configuration, the default filter
configuration reaches the final velocity approximately 20 m later while exhibiting
the same noise level on static scenes. The corresponding qualitative test results
are shown in Figure 16.
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Fig. 15: This figure illustrates the velocity error for an oncoming robotic vehicle
(c.f. Figure 16). The diagram shows the Kalman filtered velocity component
of two different filter configurations. The ground truth velocity of the robotic
vehicle is visualized in red. In contrast to the optimized filter configuration, the
default filter configuration reaches the final velocity approximately 20 m later.

Fig. 16: Sequence of an approaching robotic vehicle. That vehicle starts at a
distance of approximately 70 m and closely passes our vehicle to the left.
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Distance Error The distance error was evaluated for static and dynamic Stixel
measurements on a variety of sequences with approaching robotic vehicles (see
Figure 17). With the optimized filter configuration, both the measured and fil-
tered Stixel’s distance information averaged over the vehicle front yield congruent
output.

Fig. 17: Example images for the distance error evaluation. The calculated robotic
vehicle position (marked in magenta) is projected into the image plane and used
for collecting all the Stixel measurements representing the vehicle’s front. On
the right a 3D representation of the scene is visualized.

Figure 18 depicts the mean distance error to our robotic ground-truth dis-
tance of all static Stixels representing the front of the robotic vehicle. The sec-
ond axis shows the calculated standard deviation for these Stixel measurements
added on the mean error.
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Fig. 18: The diagram shows the mean distance error of all Stixel measurements
that are located at the front of the vehicle. The error increases in greater dis-
tances due to measurement noise as well as in the close-up range. The latter is
explained by the violated vertical pose constraint on the engine hood. The 3D
representation in Figure 17 visualizes the displaced Stixel position.

The curves show a noisy depth estimation at larger distances as well as an
increasing distance error in the close-up range (< 15m). The measurements
near the ego vehicle address the violated vertical pose constraint described in
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Section 4. As a consequence, if the vehicles front with its engine hood is modeled
end-to-end by one Stixel, its position in z direction will be displaced towards the
windshield (see Figure 17). That means, the Stixel measurements are seen as
too far away. More details on the static Stixel position accuracy can be found
in [31].

7 Conclusion

In this research we presented an evaluation framework for stereo-based driver as-
sistance that operates on large image data bases and demands very little ground-
truthing effort. To show the power of the evaluation framework, we performed
evaluations on several stereo algorithms where we found the Semi-Global Match-
ing (SGM) to be the best performing stereo algorithm on pixel-level, on freespace
level and on object level. For the intermediate representation, the Stixel World,
we detected Stixel phantoms only for challenging weather scenarios. By using the
evaluation framework, the phantom rate could be further reduced by a factor of
three while maintaining the detection rate of the Stixel representation. Compar-
ing four optical flow algorithms used to generate dynamic Stixels we found the
Patch KLT to be the best performing algorithm under the aspects of accuracy
and robustness. For the absolute Stixel accuracy we determined a 0.5 m position
error at 40 m distance using data from robotic vehicles as reference.

For future work we will extend this analysis framework to all vision-based
driver assistance algorithms currently under development, to obtain meaningful
performance figures. In addition, we consider making parts of the used data
publicly available as part of a challenge that specifically addresses 3D outdoor
scene analysis under all weather conditions.
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