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Abstract The paper briefly refers to the present treatments of micro-channel flows that are based on 
the existing Navier-Stokes-Equations and the employment of wall-slip boundary conditions. The 
Maxwell slip velocity is employed for this purpose. This theoretical treatment is questioned. It is 
shown by the authors that the existing Navier-Stokes-Equations are incomplete. They do not contain 
terms for the self diffusion of mass. Introducing these terms yields the extended Navier-Stokes-
Equations that allow micro-channel flows to be treated without the assumption of Maxwellian slip 
velocities at the wall. A pressure driven slip velocity occurs at the wall and it results as part of the 
solution for flows in micro-channels by the “Extended Navier-Stokes Equations”. Using these 
equations, analytical treatments of micro-channel flows are presented. Good agreement with 
existing experimental results is obtained. 
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1. Introduction and Aim of Work 

Micro-channel flows have excited fluid 
mechanics researchers all over the world and 
in the last few decades, a large number of 
publications treating this kind of flow have 
been published. Until very recently, the 
published theoretical treatments were based on 
the assumed wall slip velocity of Maxwell 
(1879), who reported the slip velocity to be  
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This expression for the slip velocity is based 
on the assumption that a fraction of the 
molecules, interacting with the wall, is 
reflected in a deterministic way and the rest is 
reflected specularly. It is this approach that is 
seen in nearly all theoretical treatments of 
micro-channel flows. 

It can be observed from the literature that in 
gaseous flows through micro-channels, under 
some conditions (Pfahler et al. (1991), Pong et 
al. (1994), Harley et al. (1995), Liu et al. 
(1995), Shih et al. (1995), Shih et al. (1996)), 

the measured mass flow rates can be higher 
than those computed from the Classical 
Navier-Stokes Equations (CNSE), for certain 
given inlet and outlet pressures. 
Considerations show that the differences 
between experimental and theoretical results 
exist when the Knudsen number of the flow is 
high, at least in parts of micro-channels. 
Moreover, in a gaseous flow through a micro-
channel, one observes that the pressure no 
longer decreases linearly along the length of 
the channel. The presented treatment of micro-
channel flow also results in a slip velocity at 
the channel walls, but this has not been 
introduced in an empirical manner. It is 
derived as part of the analytical treatment of 
the flow.  

In some of the recently published articles, 
Durst and co-workers (2006) have questioned 
the Maxwell slip velocity approach. They have 
shown that the CNSE are valid for constant 
fluid property flows only. If there are 
densities, pressure or temperature gradients in 
the fluid domain, self-diffusion will set in and 
this is not taken into account by the CNSE. In 
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order to overcome this difficulty, Durst and 
co-workers derived the Extended Navier-
Stokes-Equations (ENSE), e.g. see Durst et al. 
(2006), and employed them for the numerical 
treatment of micro-channel flows using the 
commercial software FLUENT, e.g. see 
Sambasivam & Durst (2010). Furthermore, 
very recently analytical treatments of fluid 
flows through micro-channels became 
available, e.g. see Filimonov et al. (2010), 
using the ENSE. The velocity profiles at every 
location of the micro-channel could be derived 
and the expressions for these profiles were 
integrated to yield convective, diffusive and 
total mass flow rates. The latter were 
compared with corresponding experimental 
results to verify the applied solution approach. 
Very good agreement with available 
experimental data was obtained for the derived 
total mass flow rate. 

However, the velocity profile alone does not 
bring out the micro-channel flow physics and 
its distinctive characteristics. It is important to 
understand the special features of the pressure 
distribution along the flow direction and the 
role of the characteristic pressure in the flow 
process. The semi-analytically derived 
pressure results are compared with the 
corresponding experimental data and 
numerical simulations available in the 
literature and, again, very good agreement is 
achieved. This funding encouraged the present 
authors to derive analytical results for other 
properties of micro-channel flows. The 
characteristic pressure is introduced for 
channel flows and its physical meaning is 
considered and explained. With the 
presentation, the authors’ theoretical research 
work on isothermal micro-channel flows is 
summarized. A new approach to handle micro-
channel and micro-capillary flows was taken. 
The suggested approach will also allow heat 
and mass transfer to be taken into 
consideration. Micro-channel flows with and 
without changes in their cross-sectional areas 
will become, in this way, theoretically 
treatable in the same manner as other fluid 
flows through channels with larger cross-
sections and at lower pressure gradients than 
are usually employed in micro-channel flows.  

The resulting equations can be employed to 
yield new results for micro-channel flows. 

2. Analytical Treatments of Micro-Channel 
Flows 

2.1 Order of Magnitude 

The gas flow is assumed to be two-
dimensional for micro-channels in rectangular 
coordinate system. Further, it is also assumed 
to be steady and isothermal in nature.  Since 
the flow is isothermal, the viscosity is also 
considered to be constant. The extended 
Navier-Stokes equations in the total velocity 
form can be written for steady, isothermal gas 
flows, see Sambasivam and Durst (2010), as 
given below: 
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with the density ߩ calculated from the equation 
of state ߩ ൌ ܲ/ܴܶ and molecular momentum 
transport given by: 
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Further, equations (2.1) and (2.2) can be 
expanded for a two-dimensional flow 
situation, employing equation (2.3), as given 
below: 

Continuity equation: 
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2/1x - momentum equation: 
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 For the case of gas flows through straight 

micro-channels, there is no diffusion transport 
of mass in the cross-stream direction since the 
pressure is constant in this direction.  
Similarly, the convection velocity in the cross-
stream direction is also zero since the flow is 
fully developed. Further, it can be shown that 
the convective acceleration terms are 
negligible in the momentum equations for the 
case of gas flows through micro-conduits. 
Therefore, equations (2.4) to (2.5) can be 
simplified as follows: 
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Further, one can employ the order of 
magnitude analysis to further simplify 
equations (2.6) – (2.8). The characteristic 
velocity and length scales for this analysis are 
as follows.  The convective velocity can be 
scaled with the average velocity at the exit of 
the channelU  and the diffusion velocity is 
scaled as Lρμ~ based on the expression for 

the diffusion transport of mass given by 
equation: 
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Further, the characteristic length for the 
streamwise and cross-stream directions are the 
length L and height H of the channel, 
respectively where H<<L. Furthermore, one 
can scale the pressure with 2Uρ . 
Subsequently, one can perform the order of 
magnitude estimates for the various terms in 
equation (2.8) as given below: 
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The terms in equation (2.10b) can all be 
neglected and equation (2.7) can be rewritten 
as: 
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Similarly, the order of estimate analysis of the 
various terms in equation (2.8) is given below: 
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Neglecting the terms from equation (2.12b), 
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equation (2.8) can be reduced to the following 
form. 

                  0
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It is evident from equation (2.13) that the 
pressure is only a function of the streamwise 
coordinate, 1x  in micro-conduits. It is well 
known that the diffusion velocity, defined by 
equation (2.10) is only a function of the 
streamwise coordinate 1x  and hence one can 
write the following expression: 
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Employing equation (2.14), equation (2.7) can 
be written as: 
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since the dynamic viscosity μ  is a constant 
for isothermal gas flows through micro-
channels. The final set of simplified governing 
equations for gas flows through micro-
channels is given below: 

Continuity Equation          
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3. ANALYTICAL TREATMENTS OF 
MICRO-CHANNEL-FLOWS 

3.1 The Derivations of the Velocity 
Distribution 

The final equations of section 2 describe the 
flow in a two-dimensional micro-channel, 
where ߩ is the fluid density, ்ܷ is the total 
velocity and ߤ is the viscosity of the fluid, ܲ is 
the pressure and ݔଵ and ݔଶ are the coordinates 
in the flow and cross-flow direction, 
respectively. 

்ܷ consists of the convective velocity ܷ and 
the diffusive velocity ܷ: 

்ܷ ൌ ܷ  ܷ           (3.1) 
According to the diffusion term, shown in 
equation (2.9), derived by Durst et al. (2006), 
one can write  

ܷߩ ൌ െ ఓ


డ
డ௫

                                   (3.2) 
Noting that ܲ is a function of the flow 
direction only (because of the boundary layer 
approximation of the derived equations), 
equation (2.2) can be integrated in the 
ଶݔ െdirection (normal to the flow), to give 
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where ܲ and ሺ݀ܲ/݀ݔଵሻ are the local pressure 
and pressure gradient inside the micro-channel 
respectively. Hence, there is the actual 
expression for the velocity distribution in 
isothermal micro-channel flow on the right 
hand side. The ideal gas law ܲ=ܴܶߩ has been 
used to eliminate the density ߩ in equation 
(3.3) which readily shows that the velocity 
profile consists of two parts: 

Term (I): Parabolic part of the velocity 
profile due to convection 

Term (II): Constant part of the velocity 
profile due to diffusion 

At every ݔଵ-location in the micro-channel, 
where ܲ and ݀ܲ/݀ݔଵ are known, the total 
velocity ்ܷ can be computed with the help of 
equation (3.3). From the second part of this 
equation, we can see that the diffusive part of 
the velocity profile will only make strong 
contributions to the follow for low pressures ܲ 
or for high temperatures ܶ. Hence, to achieve 
“micro-channel effects” at room temperatures, 
the pressure at the exit of the micro-channel 
has to be chosen very low.  
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3.2 Derivation of the Pressure Distribution 

The total mass flow rate, flowing through any 
cross-section of the micro-channel, is obtained 
by integrating the mass flux over the cross-
sectional area of the channel, e.g. one can 
write: 

Mሶ  ൌ  w  ሺρUሻ dxଵ
୦

ି୦  ൌ 
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Due to the principle of conservation of mass, 
ሶܯ ் is a constant in the ݔ-direction.  

Therefore, ݀ܯሶ  ଵ = 0. Hence from theseݔ݀/்
considerations, a differential equation for the 
pressure results: 
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A further simplification and some 
rearrangements of the terms yield the 
following equation:  
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Equation (3.5) is the governing equation for 
the pressure profile in the fluid along the flow 
direction of the channel with boundary 
conditions P୧୬ and P୭୳୲ specified according to 
the experimental conditions. To yield the 
required pressure information, equation (3.5) 
was solved in this work using a Runge-Kutta 
method and the results were validated against 
data available in the literature. 

 

3.2 Characteristic Pressure of Micro-
Channel Flow 

Equation (3.4) describes the total mass flow 
rate through any cross-section of a micro-
channel. As mentioned earlier, it consists of 
two terms. The first term on the right-hand 
side represents the convective mass flux and 
the second term represents the diffusive mass 
flux. Hence equation (3.4) can be rewritten by 
taking the term for the diffusive mass flux out 
of the brackets, yielding an expression for ܯሶ ் 
in following form:  
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Further, by rearranging the terms, we obtain: 
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where the characteristics pressure ܲ, as 
suggested by Adachi et al. (2010) was 
introduced  

 ܲ ൌ ఓ√ଷோ்


                                           (3.8)  

 

Fig. 1: Fraction of the diffusive mass flux on 
the total mass flow with experimental ranges 
of I – Maurer et al. (2003), II – Arkilic et al. 

(1994) and III – Colin et al. (2004). 

From equation (3.7) we can see that for 
ܲ ൌ  ܲ the diffusive mass flux is equal to 50% 
of the total mass flux. This means that in this 
case the convective and the diffusive parts are 
of the same magnitude. With decreasing 
pressure ܲ, along the flow direction of a 
micro-channel, first the convective mass flux 
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dominates the total mass flux (for ܲ  ܲ) and 
after reaching the characteristic pressure (for 
ܲ ൏ ܲሻ the diffusive part starts to dominate 
the total mass flux. 

This is sketched in Figure 1, which shows the 
ratio ܯ/்ܯ as a function of ܲ/ ܲ. The figure 
also contains the pressure ranges of the 
experimental data of Maurer et al. (2003), 
Arkilic et al. (1994) and Colin et al. (2004). As 
mentioned earlier, Maurer et al. (2003) 
obtained significant deviations from the 
classical theory, which can now be explained 
by the strong diffusion effects in the pressure 
range of their experiments. In the pressure 
range of Arkilic et al. (1994) the diffusion 
effects are present but they are quite small 
whereas in the case of Colin et al. (2004) there 
are no diffusion effects at all and therefore 
good agreement between experimental results 
and the classical channel flow data must exist.  

4. RESULTS AND COMPARISONS WITH 
EXPERIMENTS 

As already mentioned, equation (3.5) was 
solved in the current work semi-analytically 
using a fourth order Runge-Kutta method. 
Pressure and pressure gradient profiles 
obtained as the solution were subsequently 
used to calculate the total mass flow rate, 
given by equation (3.4), for different inlet and 
outlet pressure values. In Figure 2, 
experimental results from Maurer et al. (2003) 
for total mass flow rates are shown together 
with the semi-analytical solutions obtained in 
this work using ENSE and analytical solutions 
using CNSE. In this case, the abscissa is a 
product of the mean pressure ܲజ ൌ
0.5 ሺ ܲ   ܲ௨௧ሻ and the pressure difference 
Δܲ ൌ  ሺ ܲ െ  ܲ௨௧ሻ. It can be seen that there 
is good agreement between the experimental 
data and the solution based on ENSE over the 
whole range of pressure ratios. Good 
agreement can also be seen between the 
present total mass flow rate and the 
corresponding data of Sambasivam & Durst 
(2010). In comparison with the ENSE solution, 
the results based on the classical NS equations 
shows closer agreement only for higher 
differences between the inlet and outlet 

pressures. It is important to realize that the 
comparison in Figure 2 is a good basis for the 
conclusion that the present treatment of micro-
channel flow is physically correct for the 
computed mass flow rate, the corresponding 
velocity profile and the pressure. 

 

Fig. 2: Total mass flow rate for semi-
analytical (present results) and numerical 
(Sambasivam & Durst (2010)) solution of  

ENSE and the experimental data from Maurer 
et al. (2003), plotted against ܲజܲ߂. 

In Figure 3 the local mass flow rate is 
presented showing its composition of the 
convective and diffusive parts. The pressure 
along the micro-channel is also presented 
normalized by the characteristic pressure. In 
the graph below, i.e. in Figure 3 the 
development of the axial velocity profile is 
presented and again the normalized pressure 
along the flow direction is given to show how 
the velocity develops in the flow direction.  

For better visualization and comparison with 
corresponding pressure and pressure gradient 
profiles, distributions of the diffusive and the 
convective velocity along a micro-channel are 
illustrated in Figures 5(a) and 5(b), 
respectively. Comparing Figures 5(b) and 5(d), 
one can easily see that the maximum of the 
convective velocity occurs at the same axial 
position as the minimum of the pressure 
gradient, as already mentioned. 
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Fig. 5: Diffusive velocity (a), mean convective 
velocity (b), pressure (c) and pressure 

gradient (d): axial profiles for a micro-
channel with ܲ ൌ 4.5 ܲ, ܲ௨௧ ൌ 0.2 ܲ and 

ܲ ൌ 41484.5 ܲܽ. 

 

Fig. 3: Mass flow rate in the micro-channel 
represented by ்ܷߩሺݔଶሻ ൌ ଶሻݔሺܷߩ 

 - greyܷߩ  ,ሻ- black arrowsݕሺ்ܷߩ :ଶሻݔሺܷߩ
colored 

 

Fig. 4: Corresponding velocity profiles along 
the micro-channel (compare figure 3). 

For the diffusive velocity, shown in Figure 
5(a), one can note its considerable increase 
close to the outlet of the micro-channel for the 
given inlet and outlet pressures. In the same 
region, there is a change of the curvature of the 
pressure profile (Figure 5(c)) due to the 
minimum in the pressure gradient (Figure 
5(d)). As mentioned before, the minimum in 
the pressure gradient is reached at the 
characteristic pressure ܲ. At this point the 
diffusive mass flux is equal to the convective 
mass flux and the diffusive effects start to 
dominate the flow through the micro-channel 
further downstream. This behavior was already 
discussed and explained in Figure 1.  
  Figure 5 makes clear that it is very difficult to 
foresee the fluid and flow property variation in 
micro-channel flows, without the theoretical 
treatment of the flow, either analytically or 
numerically. Hence, the present treatment 
provides a sound basis for understanding of 
flows through micro-channels. 

5. CONCLUSIONS AND FINAL 
REMARKS 
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For micro-channel flows the local velocity 
profile depends on the local pressure and also 
on the local pressure gradient in the flow 
direction. Usually, this information is not 
known, since only the inlet and the outlet 
pressures are given. For this reason, in the 
present paper, an ordinary differential equation 
for the pressure is derived and it is solved with 
the help of a fourth-order accurate Runge-
Kutta integration method. Through this, the 
pressure in the flow direction in the micro-
channel and the corresponding pressure 
gradient are known at every location in the 
flow for given inlet and outlet pressures. 
Hence the gas flows in micro-channels can be 
treated semi-analytically for the pressure 
distribution and the corresponding velocity 
profile at every axial location in the channel.         
  The results presented in this paper were 
obtained by solving the extended Navier-
Stokes-Equations for micro-channel flows 
without any assumption of slip velocities at the 
channel walls. The slip velocity comes out as 
part of the solution for the velocity profile. To 
confirm the validity of the chosen solution 
approach, comparisons of various data, 
obtained by solving the derived semi-
analytical solution, are made with 
corresponding experimental and numerical 
results available in the literature. Very good 
agreement is obtained. This confirms that the 
slip velocity obtained in the micro-channel 
flows is not due to Maxwellian interactions of 
the molecules with the wall but is due to a 
pressure-driven diffusive mass flux building 
up in the channel, in addition to the convective 
mass flux of the flow. 
  Utilizing the derived equations, the authors 
were able to show that the micro-channel flow 
possesses a characteristic pressure. At such a 
characteristic pressure, the flow properties 
such as pressure, pressure gradient, mass flow 
rate, etc. start to behave differently. Using the 
analytical solution for the velocity and the 
semi-analytical solution for the pressure, the 
authors were able to fix the value of the 
characteristic pressure. 
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