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Abstract Thermal convection in vertical concentric cylinders under the influence of different buoyancy force fields is the focus
of the experimental project ’CiC’ (Convection in Cylinders). The objectives are to investigate thermal convective flow in natural
gravity with axial buoyancy and in micro-gravity environment of a parabolic flight with radial buoyancy, and additionally also
the superposition of both buoyancy force fields. The radial buoyancy is forced by the dielectrophoretic effect due to applying
a high-voltage potential Vapp between the two cylinders. The experiment contains two separately fully automated experiment
cells, which differ only in their radius ratio η = b/a. The convective flow is observed with tracer particles and laser light sheet
illumination. For the case of natural convection, there exists a stable single convective cell over the whole Rayleigh number
domain with Ra ∼ ∆T with increasing the temperature difference between the inner and outer cylindrical boundaries. For the case
of a pure dielectrophoretic driven convection in micro-gravity environment, stratification effects are described with RaE ∼ Vapp

with increasing the high voltage potential. The superposition of both buoyancy forces indicates the disturbance of the single
convective cell and therewith the onset of instabilities at very low Ra for the smaller η. The presented results demonstrate that the
dielectrophoretic effect can be used for flow control and enhancement of heat transfer applications in space as well as on Earth.
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1. Introduction

Research in microfluidics focuses on fluid dynamics at small
scales. These small scales offer the possibility of setting up
physical effects, which are more efficiently at those ranges.
With regard to industrial applications, especially of electro-
hydrodynamic forces, e.g. in heat exchangers, pumps and
micro-dosing systems, cylindrical geometries come to the fore.
The project ‘Convection in a Cylinder’ (CiC) studies heat trans-
fer enhancement for the case of two concentric, vertically
aligned cylinders at small scales. The annular cavity is defined
by the radii a and b, resulting in a gap width of d = 5mm,
and the length L = 100mm, which lead to an aspect ratio of
Γ = L/d = 20. The cylindrical gap is filled with a dielectric liq-
uid, which viscosity is just few times higher than that of water.
The inner cylinder is heated and the outer one is cooled.

When a dielectric fluid in an annulus is under common action
of a radial temperature gradient and a radial alternating electric
field, the variation of dielectric permittivity with temperature
creates a radial stratification of the permittivity. This stratifica-
tion, and the radial inhomogeneity of the electrical field, leads
to the generation of a radial electric buoyancy force, which in-
creases with increasing the applied high tension and/or with de-
creasing the annulus radii. An outstanding effect of this electric
buoyancy force is an enhancement of heat transfer thanks to the
convective flow pattern it creates Chandra and Smylie (1972),
Takashima (1980), Smieszek et al. (2008).

However fundamental properties of the electro-hydrodyn-
amic instabilities for cylindrical annulus have to be clarified,
and further aspects arise due to the competition with natural
convection. In Fig. 1 two cases of radial temperature gradient

induced convection are distinguished. On the left side, the flow
formation is resulting from natural gravity g, which is present
in a laboratory. On the right side, a radial gravity gE is set-up in
micro-gravity µg conditions by means of an electric field, which
will be discussed afterwards. The set-up in a natural gravita-
tional buoyancy field leads to a fluid movement in form of a
single convective cell, in which hot fluid is rising at the inner
heated boundary and cold fluid is sinking at the outer cooled
boundary. The top and bottom part of the system shows hori-
zontal movement, again in boundary layers. The strengthening
of temperature gradient results into instabilities of that convec-
tive motion, as presented by means of a stability analysis and
direct numerical simulation in Mutabazi and Bahloul (2002).
The instabilities are characterized by small scaled convective
cells, which start to develop in the center of the annulus.

The set-up of a pure radial gravity leads to much more com-
plex patterns. An initial experimental and numerical study on
the stability of thermal convection in such dielectric-insulating
fluids were done by Chandra and Smylie (1972). They con-
clude, that it is feasible to overlay the axial natural gravity with
a radial gravity, due to a high voltage field, and observed the
onset of thermal convection with temperature and power mea-
surement of the heat transfer. Takashima (1980) extended the
work of Chandra and Smylie and solved numerically the linear
stability problem. In both numerical studies, the flow system
was considered to be infinite. However, the impact of the elec-
trical field on the flow has not been fully clarified.

To filter out the pure electro-hydrodynamic effects, reduced
gravity conditions are required. Parabolic flights give that op-
portunity, to investigate thermal convection and heat transfer in
three different gravity conditions, see Fig. 2. Additionally to
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Fig. 1: Schematic representation of the annular cavity with natural
axial gravity g as first case and with radial gravity gE as second case.
The expected convective cell formation is plotted.

Fig. 2: Natural gravity ranges in one parabola of a parabolic flight.
Each parabolic flight consists of 31 parabolas. Image source: Noves-
pace.

the 1g-laboratory situation, there are hyper-gravity ranges with
an approximately double-g axial force field, i.e. 1.8g for about
20 seconds, and the micro-gravity µg range, which is very close
to zero-g for a time-scale of 22 seconds.

With the goal to qualify that impact, Sitte and Rath (2003) set
up an electrode experiment and, moreover Sitte et al. (2001) and
Sitte Sitte (2004) performed a first parabolic flight experiment,
in which they used a Schlieren-technique for fluid flow moni-
toring in the azimuthal plane, and only during the µg phase. In
addition, their electrode experiment implicates the application
of the dielectrophoretic force as flow control parameter in ther-
mal convective effects, by controlling the onset of instabilities,
due to g, with superposition of radial buoyancy, due to gE .

This work will present thermal convection experiments in the
vertical annulus for both buoyancy forces, the axial and the ra-
dial gravity. First it will introduce the physical basics, followed
by the description of the experiment setup. Afterwards, the pre-
sentation of first results, which refer to three different situations;
first the natural convection in the axial gravity, second the ther-
mal convection in the radial gravity, and finally, the superposi-
tion of both gravities.

2. Physical basics

2.1. Thermal electro-hydrodynamic convection
The hydrodynamic convection in fluids, which are caused

by density and temperature gradients, are described with the
equations of continuity, motion and heat conduction. Before

introducing these equations for the system, the analogy of tem-
perature induced density changes and temperature induced per-
mittivity changes will be discussed, which supply a so called
thermal electro-hydrodynamic convection.

Regarding temperature gradients in incompressible and iso-
viscous homogeneous Newtonian fluids, with low values for the
coefficient of volume expansion α, it is possible to assume a
linear dependency for density changes, with the functional re-
lation for density ρ and temperature T , Chandrasekhar (1981)
describe:

ρ = ρ0[1 − α(T − T0)],
with ρ0 = ρ(T0),

(1)

where the index 0 marks the reference values for the used vari-
ables. This is known as the Boussinesq approximation, which
also sets the density ρ as constant in all terms of the conserva-
tion laws, besides the external force, i.e. the buoyancy force
itself.

In analogy to this buoyancy force, which is raised by density
changes in natural gravity, there exists an electro-hydrodynamic
buoyancy force, if the permittivity varies in dielectrophoretic
force field:

ε = ε1[1 − γ(T − T0)],
with ε1 = ε(T0).

(2)

Here, the temperature-dependency of the dielectric permittiv-
ity ε is described with γ as the thermal expansion coefficient,
relating also with the following:

γ = α
(εr − 1)(εr + 2)

(3εr)
(3)

with εr as the relative permittivity of the fluid, as shown by Ya-
vorskaya et al. (1984). That dielectrophoretic force field is real-
ized by means of an alternating high voltage potential between
the inner and outer boundaries of the system and the use of a
dielectric liquid as experimental fluid, as shown by Hart et al.
(1986).

Considering the concentrically cylindrical set-up, the accel-
eration due to gravity is acting along the vertical axis, which
refers to an axial force field. The acceleration due to the dielec-
trophoretic force is acting in radial acceleration due to the volt-
age potential set up between the inner and outer cylinder. This
refers to a radial force field. While in the laboratory both forces
superimpose each other, in micro-gravity environment the ax-
ial gravity tends to zero and offers the possibility to distinguish
between both effects.

Refer to Yavorskaya et al. (1984), Hart et al. (1986) and also
Futterer et al. (2010), who introduced this technique in spher-
ical applications in long-term µ-gravity experiments on space
flights and on the International Space Station. Sitte and Rath
(2003) introduced the technique for cylindrical application in
short-term µ-gravity conditions on parabolic flights.

2.2. Equations
The equations are scaled with outer radius b for length, the

thermal diffusive time τtherm = d2/κ for time, the temperature
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difference ∆T = Ta − Tb with Ta > Tb for temperature, where
κ is the thermal diffusivity and the indexes a and b refer to inner
and the outer base, respectively. The non-dimensional Boussi-
nesq equations for velocity field U and temperature field T for
thermal convection under influence of a dielectrophoretic act-
ing, radial buoyancy force field is described by the continuity
equation:

∇ · U = 0, (4)

and by the Navier-Stokes-equation:

ρ

[
∂U
∂t

+ (U · ∇)U
]

= −∇p + µ∇2U + ρ(T )g + ε(T )gE (5)

with the pressure p and the dynamic viscosity µ. The gravita-
tional acceleration is marked with g and the electro-hydrodyn-
amical acceleration with gE . The equation of energy conserva-
tion can be simplified to

∂T
∂t

+ (U · ∇)T = κ∇2T (6)

by neglecting the viscous and electric dissipation terms.

2.3. Parameters
The flow behavior depends on the physical properties for the

fluid is described by the Prandtl number:

Pr =
ν

κ
(7)

with the kinematic viscosity ν. The thermal buoyancy forces
are balanced with the Rayleigh number. In natural buoyancy
condition with axial gravity, the Rayleigh-number is defined to

Ra =
αg∆T (b − a)3

νκ
(8)

with natural gravity g = 9.81m/s2 in axial direction, but it is
only of relevance in the laboratory. The radial gravity is in-
volved with the electrical Rayleigh number RaE :

RaE =
γgE∆T (b − a)3

νκ
(9)

with the radial acceleration gE :

gE =
ε0εr

ρ(T )
1
2

(
Vapp

ln(a/b)

)2 1
b3 , (10)

which is induced by an alternating electrical field with the ap-
plied voltage Vapp as peak-to-peak value.

3. Experiment setup

The experiment consists of two experiment cells. Each cell
is a stationary coaxial cylinder system, see Fig. 1, with the radii
a and b for the inner cylinder and for the outer cylinder respec-
tively, and, in addition, the length L of the system. The cylin-
drical geometry is described with two non-dimensional param-
eters, i.e. the radius ratio η = a/b and the aspect ratio Γ = L/d.

Tab. 1: Geometrical parameter of the experiment. The experiment
container contains two separate experiments with different radius ratio,
presented with ’A’ and ’B’.

Parameter A B
radius inner cylinder a[m] 5.0 · 10−3 4.7 · 10−2

radius outer cylinder b[m] 1.0 · 10−2 5.2 · 10−2

Length L[m] 1.0 · 10−1 1.0 · 10−1

radius ratio η[ ] 0.5 0.9
aspect ratio Γ[ ] 2.0 · 101 2.0 · 101

Tab. 2: Fluid parameters of the working fluid Wacker AK5. The ther-
mal expansion coefficient γ, applied in radial gravity in micro-gravity
environment depends on the relative permittivity εr, see Eq. 3.

Parameter Value
kinematic viscosity ν[m2/s] 5.00 · 10−6

density ρ[kg/m3] 9.20 · 102

relative permittivity εr[ ] 2.70
therm. diffusivity κ[m2/s] 7.74 · 10−8

therm. expansion coeff. α[1/K] 1.08 · 10−3

therm. expansion coeff. for rel-
ative permittivity

γ[1/K] 1.07 · 10−3

Both experiment cells vary only in the radius ratio, aspect ratio
and real scaled gap width d = b − a are equal. The geometric
parameters are given in Table 1, too.

Besides the geometrical parameters, there are the fluid pa-
rameters of the used working fluid, i.e. silicone-oil Wacker
AK5, which are summarized in Table 2. Finally the physical
properties are captured with the Prandtl number of Pr = 64.64.

The thermal convection is realized by a temperature gradi-
ent between the heated inner and cooled outer cylinder. The
fluid flow measurement is realized with tracer particles in the
fluid and an axial laser light sheet illumination. Those particles
are chosen in such a way, that they follow the fluid flow and,
primarily, do not align in the applied high voltage potential.

The high voltage potential is connected to the outer cylinder
made of glass. The inner surface of the glass tube is coated
with Indium-Tin-Oxide ITO to have a conductive surface on the
one hand. On the other hand, to have a transparent surface for
observing the convective flow. The inner cylinder is made of
aluminum and connected to ground. The functional principle is
similar to a cylindrical capacitor.

A camera is installed perpendicular to the laser illuminated
plane, see Fig. 3, and can observe the whole length of the in-
vestigation gap. Images are analyzed by cross-correlation func-
tions, which is based on theories derived from a real particle
image velocity (PIV).

The investigation distinguish between three buoyancy cases
for the experiment. First, case introduce the natural convec-
tion in axial gravity. Second case regarding the set-up during
a parabolic flight, i.e. the thermal convection in radial gravity.
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Fig. 3: Drawing for the fluid cell assemblies, integrated in the ex-
periment container, including the measurement technique and thermal
control. The fluid cell, which is marked with Exp. A has the smaller
radius ratio η = 0.5 and Exp. B with the η = 0.9, respectively.

And, third case will present the superposition of axial and radial
gravity, inducing electro-hydrodynamic convection. For all the
three cases, different approaches have been used. First, the ∆T
just increase and therefore the Rayleigh number Ra. During µg
experiments the Rayleigh number RaE is varied, and therewith
by keeping the thermal heating constant with ∆T = 10K and
the applied electrical field is varied with 0kV ≤ Vapp ≤ 10kV .
In laboratory, ∆T is varied between 1 − 10K as well as Vapp is
varied between 0 − 10kV , refer to Fig. 4 for illustration of the
parameter domain. The Ra-axis characterize the variations in
∆T and RaE-axis the variations in Vapp, resectively. By varying
buoyancy forces, there exist time scales, in which the pattern
formation in the fluid is transient. The thermal diffusion time of
τtherm = d2/κ describes timescales, due to a variation of ∆T and
is τtherm ≈ 5min 40s. The viscous diffusion time τviscous = d2/ν
characterize the timescale of transient states in the fluid, due to
the applied synthetic radial force field and is τviscous ≈ 5s.

The experiment container is integrated in an experiment rack,
which is designed for installing in the aircraft for parabolic
flights. The experiment can be controlled fully automatically,
so as in parabolic flights with varying electrical gravity fields,
as also in a laboratory with extended time scales.

4. Results

The following section presents the results for the three dif-
ferent convective set-ups, induced by axial natural and radial
dielectrophoretic gravity in the laboratory and µg-environment,
as describe in Fig. 4. In axial natural gravity g, the Rayleigh
number Ra varies mainly with the temperature gradient ∆T , as
indicated on the x-axis in Fig. 4. The initial condition for the
convective flow in radial buoyancy is fixed with ∆T = 10K to
the highest Ra. With the beginning of µg-environment the axial
buoyancy tends to zero and the convective flow is driven only
by the electrical Payleigh number RaE due to strength of the
applied high voltage field, as indicated on the y-axis in Fig. 4.
In laboratory experiments natural and electrical gravity is su-
perposed and therewith the parameter domain is captured in the
region between.

Fig. 4: Parameter domain of the experiment, where the � marks the
different set-points. The brightness of the � increase with increasing
high voltage field V . The variation of the axial buoyancy is charac-
terized with Ra, which is adjusted on ∆T , with 1K ≤ ∆T ≤ 10K in
increments of 1K. The variation of the radial buoyancy is described
with RaE which is adjusted on the square of Vapp, which is varied be-
tween 0kV ≤ Vapp ≤ 10kV in increments of 0.5kV .

4.1. Axial buoyancy force field
For low Rayleigh numbers, which correlates with Ra ∼ ∆T ,

see Eq. 8,a single convective cell in the natural convection is
expected, as shown in the left schematic in Fig. 1. For higher
Rayleigh number it is expected, that the single convective cell
is divided into several smaller cells, beginning in the center of
the cylinder height, as shown by Mutabazi and Bahloul (2002).

The experimental setup is started at ∆T = 2K, which corre-
sponds to a Rayleigh number of Ra = 3.7 · 103 for both radius
ratio. The observation starts after a waiting period of 3 · τtherm

to ensure, that the flow is stabilized. The images in Fig. 5 visu-
alize the velocity vector field from the PIV analysis algorithm,
the axial and radial velocity component, as well as the vorticity.
All components show very clearly the single convective cell,
where the fluid rise upwards at the heated inner cylinder, which
is always on the left boundary. At the cooled outer cylinder the
fluid goes downwards, as expected. Moreover the top and bot-
tom horizontal movement is visible, which are not captured by
infinite cylinder systems in numerical simulation studies.

If Ra increases, by varying ∆T in increments of 1K to the
maximum applicable temperature gradient of ∆T = 10K. The
Fig. 6 show, that the convective cells become unstable, with the
wide gap η = 0.5 more pronounced than the small gap with the
radius ratio η = 0.9. But in both cases the single cell is not
broken into smaller onces. This observation leads to the result,
that the onset of first instabilities of the single convective cell is
near.

4.2. Radial buoyancy force field
In this radial buoyancy force field, the focus is to investigate

the transition to convective rolls in µg, coming from the single
convective cell from the 1g phase, which is stabilized in the 2g
phase due to the rise before the µg parabola, as shown in Fig. 2.
In micro-gravity conditions, the effect of radial buoyancy with-
out disturbances due to natural gravity can be observed. The
natural gravity is reduced to a negligible mean gravity range of
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Fig. 5: Axial buoyancy at Ra = 3.7 · 103 for both radius ratios of
η = 0.5 in experiment A (left) and η = 0.9 in experiment B (right).
The frames show the mean of a) the vector field of the velocity, b) the
axial velocity, c) the radial velocity and d) the vorticity of the flow. The
radial temperature gradient in axial gravity fields delivers the single
convective cell inside the annulus.

Fig. 6: Axial buoyancy at Ra = 3.6 · 104, illustration follows that of
Fig. 5. Transition into first instabilities of the single convective cell are
visible for both radius ratio.

±0.05g, within the µg-range in parabolic flight. One parabolic
flight includes 31 parabola, which is used to define the incre-
ment for RaE to ≈ 610, the temperature gradient is fixed to
∆T = 10K, the applied high voltage results from the set RaE ,
∆T and the experiment parameter. Relating to the set-points
of the experiment in Fig. 4, it means the last column with
Ra = 3.6 ·104 was investigated during the µg-range in parabolic
flight.

For a very low radial buoyancy, like in Fig. 7, the flow mostly
’freezes’. The vector in image part a) becomes very small, re-
duced to the size of a dot. For the greater radius ratio, this effect
is more relevant, because for radial buoyancy force RaE ∼ gE ,
i.e. it relates with the square of the applied electrical field
gE ∼ V2

app and cubic of the geometry gE ∼ b−3. This decreases
the RaE for the experiment with η = 0.9 enormously, and the
impact of the radial buoyancy field, respectively. In the labora-
tory case (Sec. 4.1), the Rayleigh number Ra is equal for both
radius ratio, it only depends on ∆T due to constant g.

Other interesting aspect is observed. If the µg range starts
and g vanishes, the thermal convection stops immediately. For
small RaE there seems to be some kind of stratification effects
with the tracer particles, with higher RaE this effect minimizes,
as observable in Fig. 8, due to stronger movement of the con-
vection. A similar effect can be observed in natural gravity con-
dition with very small ∆T , when the density of the particles and
the fluid varies a bit. In radial gravity supervenes that little dif-
ferences in permittivity between fluid and particles, lead to a
similar effect, due to dielectrophoretic force. But these effects
decrease with higher RaE , where is to be seen some kind of
wavy movement in axial and radial direction for η = 0.5 at the
top part in the vector field of experiment A. In experiment B, the
vector field shows a small increasing of movement along the
centerline of the investigation gap. The velocity field in axial
(b) and radial (c) direction confirm this identification in direct
comparison of Fig. 7 and Fig. 8. The observation of the transi-
tion to more complex convective flow show promise to increase
µg range to more than τtherm for more precise investigations, the
more for small η than for big η.

4.3. Superposition of axial and radial buoyancy force field

As already discussed in Sec. 4.1, a Rayleigh number of
Ra = 3.6 · 104 (which means ∆T = 10K) is to low to break
the stability of the thermal convective cell at these small scales.
Now, Ra will be decreased to Ra = 7.3 · 103 (∆T = 2K) and the
radial buoyancy force field will be increased, by applying a ra-
dial electrical field, presented by the electrical Rayleigh number
RaE .

With the superposition of axial and radial buoyancy force
field an enhancement of heat transfer is observed in the numer-
ical studies of Smieszek et al. (2008). By applying the electro-
hydrodynamic force field on a stable convective single cell, dis-
turbances induce separations into convective cells, already at
low temperature gradients.

First instabilities in the single convective cell are observed
for the experiment with η = 0.5, as shown in Fig. 9. The ex-
periment with η = 0.9 show no response to the superposition
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Fig. 7: Radial buoyancy at low RaE , illustration follows that of Fig. 5.
Drift of particles in radial direction at RaE = 3.2 · 102 for experiment
A with η = 0.5. For experiment B with η = 0.9 the inertial convective
cell is mostly frozen at RaE = 1.2 · 102.

Fig. 8: Radial buoyancy at high RaE , illustration follows that of Fig. 5.
Wavy movement of particles in radial and axial direction at RaE =

9.3 · 103 for experiment A with η = 0.5 on top part of the cavity.
Experiment B with η = 0.9 show some concentration of particles along
the centerline of the gap, the movement of particles is very low at
RaE = 3.1 · 103.

Fig. 9: Superposition of axial buoyancy with radial buoyancy at low
Ra, illustration follows that of Fig. 5. The radial electrical field induce
disturbances in the convective cell if there is a small radius ratio as in
experiment A with η = 0.5.

Fig. 10: Superposition of axial buoyancy with radial buoyancy at high
Ra, illustration follows that of Fig. 5. In the annulus of large aspect
ratio, there exists no single convective cell anymore. Instead of the
small aspect ratio annulus in experiment B, where the radial buoyancy
force field has no impact on the well known single convective cell. RaE

is equal to Fig. 9 and Ra = 3.6 · 104.
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with the radial buoyancy field. The electrical Rayleigh num-
ber are RaE = 9.3 · 103 for experiment A and RaE = 3.1 · 103

for experiment B. The strength of the applied high voltage is
Vapp = 10kV for both RaE

Also at high Ra = 3.6 · 104 (∆T = 10K) is the effect of
the radial buoyancy force field on the convective cell, due to
the natural gravity, not observable for η = 0.9, see Fig. 10.
For the radius ratio η = 0.5 the effective superposition is in-
creased, which become clear by comparing the axial (b) and
the radial (c) velocity field of both experiment set points (Fig. 9
and Fig. 10).

These first results demonstrate that the application of electri-
cal fields as additional buoyancy force field to the natural grav-
ity lead to an enhancement of heat transfer. Further it is possible
to control the thermal convection due to setting up the strength
of the electrical field.

5. Outlook

The combination of a radial temperature gradient and an al-
ternating electrical force field has great impact on fluid flow
patterns, which organize the heat transfer on convection. The
presented results demonstrate, that a convective motion in the
homogeneous fluid can be controlled by the dielectrophoretic
effect.

Further planned studies with a variation of the Prandtl num-
ber will help to analyze the onset of instabilities in detail. More-
over the system shall be analyzed with the focus on power mea-
surement. This power measurement assigned to the Nusselt
number will afford a quantitative analyzes of the enhancement
of the heat transfer.
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