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Abstract Dissipative particle dynamics (DPD) with energy conservation was applied to simulate forced con-
vection in parallel-plate channels with boundary conditions of constant wall temperature (CWT) and constant
wall heat flux (CHF). DPD is a coarse-grained version of molecular dynamics. An additional governing equa-
tion for energy conservation was solved along with conventional DPD equations where inter-particle heat flux
accounts for changes in mechanical and internal energies when particles interact with surrounding particles.
The solution domain was considered to be two-dimensional with periodic boundary condition in the flow di-
rection. Additional layers of particles on top and bottom of the channel were utilized to apply no-slip velocity
and temperature boundary conditions. The governing equations for energy conservation were modified based
on periodic fully developed velocity and temperature conditions. The results were shown via temperature pro-
files across the channel cross section. The Nusselt numbers were calculated from the temperature gradient at
the wall using a second order accurate forward difference technique. The results agreed well with the exact
solutions to within 2.3%.
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1. Introduction

Dissipative particle dynamics (DPD) was first
introduced by Hoogerbrugge and Koelman (1992).
It emerged as a simple yet potentially power-
ful alternative for mesoscopic simulations. It is
a coarse-grained version of molecular dynam-
ics. It is a particle-based simulation method,
where each particle represents a group or packet
of actual molecules of the flow field. It has
been applied to simulate the behavior of vari-
ous complex fluids such as dynamics of colloids
and suspensions (Koelman and Hoogerbrugge,
1993; Boek et al, 1997), surfactant aggregation
and micelle formation (Groot, 2000; Dong et al,
2004), study of lipid bilayer and cell membrane
damage (Groot and Rabone, 2001) and simple
and complex fluid flow in microchannel (Fan
et al, 2003; Symeonidis et al, 2006; Kumar et al,
2009; Abu-Nada et al, 2011).

The energy conservation equation for DPD
was introduced by Español (1997), which en-
abled the modeling of heat transfer scenarios

in DPD, called DPD with energy conservation
(DPDe). DPDe have been used to model sev-
eral heat transfer problems. Ripoll et al (1998)
used dissipative particle with energy conserva-
tion for the simple case of thermal conduction.
The model showed correct equilibrium fluctu-
ations and reproduced Fourier’s law. Mackie
et al (1999) applied DPDe to both conduction
and convection heat transfer problems in a box
and the results quantitatively agreed with the
conventional continuum numerical solution for
incompressible system. Qiao and He (2007) and
He and Qiao (2008) applied DPDe to heat con-
duction problems in nano-composite materials
and nanofluids. Dimensionless DPDe parame-
ters were expressed and the formulation was ap-
plied to heat conduction problems by Chaudhri
and Lukes (2009). Abu-Nada (2010a) integrated
different types of thermal boundary conditions
of heat conduction problems in DPDe. The bound-
ary conditions used in the study were combi-
nations of constant temperature, constant heat
flux, adiabatic and convective heat transfer. Abu-
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Nada (2010b) also applied DPDe to natural heat
convection problems. The results were com-
pared well with finite volume results. DPDe
was mostly applied to heat conduction and there
exist only a few investigations on convective heat
transfer (Mackie et al, 1999; Abu-Nada, 2010b).
Moreover, there is no literature available on forced
convective heat transfer using DPD.

The study of forced convection heat trans-
fer at micro and mesoscale is crucial for fur-
ther development of compact devices such as
micro-electromechanical systems (MEMS), in-
tegrated circuit boards, and other miniaturized
devices. In the heat exchangers for these de-
vices, coolants flow through microchannels. The
enhancing techniques ( for example, additional
surface by fins ) used for macroscale heat ex-
changers can be hardly applied in microscale
because of fabrication difficulties. Therefore,
other methods are required to improve the effi-
ciency. For example, nanofluids have great po-
tential for the enhancement of heat transfer and
there exist many studies in heat transfer charac-
teristics of nanofluids to investigate the effect of
nanoparticles on heat transfer enhancement us-
ing computational fluid dynamics (CFD) (Heris
et al, 2007; Raisee and Moghaddami, 2008; Bianco
et al, 2009). However, CFD is not the suitable
methodology to handle those two-phase fluids
with micro- and nanopaticles at such a small
scale. DPDe is a more suitable method and thus
its application to forced convection heat transfer
prompts further development of the studies on
mesoscopic heat transfer, which motivates the
present study.

The aim of this study was to apply DPDe
to forced convection heat transfer problems and
obtain generalized fully developed temperature
profiles in the system. Thermal boundary con-
ditions of constant wall temperature (CWT) and
constant wall heat flux (CHF) were considered.
Periodic temperature boundary conditions were
applied in the flow direction via the methodol-
ogy used by Patankar et al (1977). The equation
of energy conservation was modified based on
the methodology. The DPD method was bench-
marked by simulating the heat transfer in parallel-
plate channels. Heating and cooling cases were

implemented for both thermal boundary condi-
tions. The fully developed temperature profiles
were presented as the result of the simulation.
Nusselt number was calculated from the results
and compared with the exact solutions for both
CWT and CHF.

2. Methodology

2.1 Governing equations

In DPD, each DPD particle represents a cluster
of actual molecules of the flow field and move
in Lagrangian fashion (Español and Warren, 1995;
Groot and Warren, 1997). Each particle inter-
acts with surrounding particles through a set of
distance and velocity dependent forces within
a certain cutoff radius. Time evolution is gov-
erned by Newton’s second law and is given by,

mi
d~vi

dt
= ~finternal +~fexternal , (1)

where ~finternal is the inter-particle forces act-
ing between DPD particles and ~fexternal is the
external force which is applied to each particle
for the dynamics of the flow. The total momen-
tum of the interacting particles are conserved
and the system exhibits correct hydrodynamics
of the flow. There are three types of forces in
DPD, which are conservative, ~fC

i j , dissipative,
~f D

i j , and random forces, ~f R
i j , and are expressed

as

~fC
i j = ∑

j 6=i
ai jω(ri j)~ei j , (2)

~f D
i j = ∑

j 6=i
γi jω

2(ri j)(~ei j ·~vi j)~ei j , (3)

~f R
i j = ∑

j 6=i
σi jω(ri j)ζi j∆t−1/2~ei j . (4)

~fi j represents the total force on particle i due
to the surrounding j particles. The vector ri j
points i to j such that ri j = ri − r j and vi j =
vi− v j. ~ei j is the unit vector pointing in direc-
tion from i to j. The parameter ai j is the max-
imum repulsion between the particles. Param-
eters γi j and σi j are the strength of dissipative
and random forces, respectively.
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For DPDe, an additional governing equation
is required to conserve the total energy in the
system. Each DPD particle interacts with sur-
rounding particles and exchange energy through
heat fluxes within the same cutoff radius as the
momentum equations. The energy equation is
given by Español (1997).

Cv
dTi

dt
= qi j , (5)

where T i is temperature and Cv is the heat
capacity at constant volume for DPD particle.
The heat capacity of DPD particle is usually
given as the dimensionless value, C̄v = Cv

kB
. qi j

is the inter-particle heat flux between DPD par-
ticles. It accounts for the heat fluxes by the
changes in mechanical and internal energies. The
change in mechanical energy leads to viscus heat-
ing (qV

i j). The change in internal energy consists
of two terms: one corresponds to the heat trans-
fer by a temperature difference (qC

i j) and another
takes into account the fluctuations due to ran-
dom heat fluxes (qR

i j). qV
i j, qC

i j, and qR
i j are ex-

pressed as,

qV
i j = ∑

j 6=i

1
2Cv

[
ω

2(ri j)
{

γi j(~ei j ·~vi j)
2

−
σ2

i j

mi
}− σi jω(ri j)(~ei j ·~vi j)ζi j

]
, (6)

qC
i j = ∑

j 6=i
κi jω

2(ri j)

(
1
Ti
− 1

Tj

)
, (7)

qR
i j = ∑

j 6=i
αi jω(ri j)ζ

e
i j∆t−1/2 , (8)

where κi j and αi j are the strength of the con-
ductive and random heat fluxes. The weight
function ω decreases monotonically with particle-
particle separation distance and becomes zero
beyond the cutoff radius. The same weight func-
tion was used for the momentum and energy
equations and is given by,

ω(ri j) =


5
π

(
1+3

ri j

rc

)(
1−

ri j

rc

)3

: (ri j < rc)

0 : (ri j ≥ rc) .
(9)

ζi j is a random number with zero mean and
unit variance. Each pair of interacting particles
has a corresponding number of ζi j and ζi j = ζ ji
ensures that the momentum of the interacting
pair of particle is conserved. ζ e

i j is also a ran-
dom number with zero mean and unit variance.
Each pair has antisymmetric number of ζ e

i j and
ζ e

i j = −ζ e
ji ensures that the energy of the inter-

acting pair of particles is conserved. γi j and σi j
depend on the individual temperatures of each
DPD particle, and is given by,

γi j =
σ2

i j(Ti +Tj)

4kBTiTj
, (10)

where kB is the Boltzmann constant. Also,
κi j and αi j are expressed as,

κi j =
C2

v ko(Ti +Tj)
2

4kB
, (11)

αi j =
√

2kBκi j , (12)

where ko is a constant which controls the
thermal conductivity of DPD particle (Ripoll,
2002). The problem is solved in DPD units and
the mass of DPD particles and the cutoff radius
rc were set to unity in the entire study.

2.1 Boundary conditions for forced heat con-
vection problems

In this section, the detail of the temperature bound-
ary conditions for CWT and CHF in DPD sys-
tem are presented. Patankar et al (1977) intro-
duced a methodology of the temperature bound-
ary conditions for the continuum momentum and
energy equations, which created generalized fully
developed flow and temperature profiles using
periodically varying cross section. This method
is integrated into DPD method as follows.

Constant wall temperature

For the case of constant wall temperature bound-
ary condition, the fluid temperature approaches
the wall temperature in the fully developed re-
gion. Therefore, the following dimensionless
temperature, Θcwt, is introduced.
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Θcwt =
T −Tw

Tm−Tw
, (13)

where Tw is the wall temperature and the de-
nominator is given by,

Tm−Tw =

∫
(T −Tw)udy∫

udy
. (14)

For the periodic thermally developed region,
the dimensionless temperature satisfies follow-
ing relationship.

Θcwt (x,y) = Θcwt (x+L,y)
= Θcwt (x+2L,y) = . . . (15)

Therefore, the fully developed dimension-
less temperature field repeats itself at subsequent
positions along x-direction. The energy equa-
tion for CWT is modified based on the dimen-
sionless temperature and expressed as

dΘcwt,i

dt
=

1
Cv (Tm−Tw)

(
qV

i j +qC
i j +qR

i j

)
.

(16)
Note that the heat fluxes, qV

i j, qC
i j and qR

i j
are calculated based on T because the temper-
ature in Eqs. 6-8 cannot be directly replaced by
Θcwt. T for each DPD particle is calculated at
each time step from its dimensionless tempera-
ture using Eq. 13.

Constant wall heat flux

For the case of constant wall heat flux boundary
condition, the temperature, T, is subdivided into
two parts.

T = Ωx+ T̂ (x,y) , (17)

where the term Ωx represents the non-periodic
temperature rise (or drop) which occurs in the
flow direction. Ω is constant and given by

Ω =
Q

ρDPDV̇CvL
, (18)

where Q is the rate of heat addition to the
fluid in the period of L. ρDPD is the number den-
sity of DPD particles in a unit cell and V̇ is vol-
ume flow rate. T̂ is a periodic function from
module to module which satisfies,

T̂ (x,y) = T̂ (x+L,y) = T̂ (x+2L,y) = . . .
(19)

Equation 5 can be rewritten using T̂ and is
given by,

dT̂i

dt
=

1
Cv

(
qV

i j +qC
i j +qR

i j

)
− viΩ , (20)

where viΩ is the source-term arising from
the assumption of constant wall heat flux bound-
ary condition. The heat fluxes, qV

i j, qC
i j and qR

i j
are calculated based on T, which is from the pe-
riodic temperature, T̂ , using Eq. 17.

3. Results and discussion

3.1 Validation of the methodology

The DPDe code was first validated by simulat-
ing a scenario of unsteady heat conduction in a
one-dimensional slab with temperatures of TC
and TH . The schematic of the solution domain
is shown in Fig. 1 (a). DPD particles are ran-
domly distributed in a 2D lattice of 4×30 (x×y).
The particles were enclosed with infinite walls
with constant temperatures. The walls were cre-
ated by freezing the particles with a constant
temperature in the extra layer of the domain.
Periodic boundary condition was imposed in x-
direction. The temperatures at top (TH) and
bottom (TC) walls were maintained at 2.0 and
1.0, respectively. The time step was taken to
be 0.0005. By this means, the temperature pro-
files at different times were obtained by averag-
ing the values. The simulation with lower time
steps was also conducted with no effect on the
results.

The initial temperature of the DPD particles
was selected to be the average of the temper-
atures of the bottom and top walls (T initial =
1.5). The dimensionless heat capacity (C̄v) was
fixed to be 1.0× 105 (Qiao and He, 2007) and
the number density was 4. ko was selected to
be 1.26× 10−4. The analytical solution of this
problem is given by Carslaw and Jaeger (1959),
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T (y, t) = TC +(TH−TC)
y
l

+
2
π

∞

∑
n=1

[
TH cos(nπ)−TC

n

× sin
nπy

l
exp
(
−Dn2π2t

l2

)]
− 2Tinitial

lπ

∞

∑
n=1

[
cos(nπ)−1

n

× sin
nπy

l
exp
(
−Dn2π2t

l2

)]
(21)

where l is the distance between top and bot-
tom walls and D is thermal diffusivity. The tem-
perature profiles along y-direction of the system
with different times (t = 0.5, 5.0, 15, 100) are
given in Fig. 1 (b), where the dot symbols and
lines show DPD and analytical results, respec-
tively. As shown in the figure, the temperature
profiles is developed to steady state (linear pro-
file) as time advances for both DPD and analyt-
ical results. The result of the temperature evolu-
tion for DPDe simulation is in a good agreement
with the analytical solution.

3.2 Forced convection heat transfer problems

After the validation of the methodology, forced
convection heat transfer problems were imple-
mented. The problem considered was two di-
mensional parallel-plate channels with height,
M, and length ,L, respectively. The solution do-
main was divided into 4 and 40 cells in the x
and y directions, respectively. The schematics
of the domain and boundary conditions for flow,
CWT and CHF are shown in Fig. 2. The pa-
rameters used in the problems are given in Ta-
ble 1. Note that ai j and σi j are constant, while
the other DPD parameters (γi j, κi j, αi j) were
calculated based on Eqs. 10 - 12 as the tem-
perature of each DPD particle changes at each
time step. The initial temperature of fluid parti-
cle was fixed at 1.0 for both CWT and CHF.

In order to obtain a Poiseuille flow in the
channel, an external force, fexternal = 0.01, was
applied to each particle in the axial direction.
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Figure 1: (a) The schematic of the solution domain
for 1D slab conduction and (b) Tem-
perature evolution: Comparison between
DPDe method and analytical solution

No-slip was applied at the top and bottom of
the domain and a periodic boundary condition
was imposed at the left and right faces (Ku-
mar et al, 2009). The computation was first
performed with constant fluid temperature until
the fully developed flow field was established
(about 250,000 time steps).

Constant wall temperature

A constant wall temperature was applied to top
and bottom walls and periodic boundary con-
ditions were imposed at left and right bound-
aries using the methodology. In order to ver-
ify that the method can be used for both heat-
ing and cooling cases, the simulations were per-
formed for two different wall temperatures, 1.2
(heating) and 0.8 (cooling). For these cases,
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Figure 2: The schematics of the solution domain
and boundary conditions for flow and
temperature (CWT or CHF)

Table 1: DPDe parameters for CWT and CHF

ai j 18.75
σi j 3.0
ρDPD 4
C̄v 1.0×105

ko 1.26×10−4

Total number of iterations 1.5×106

Number of iteration for averaging 1.0×105

Tw (CWT) 0.8, 1.2
qw (CHF) -1000, 1000
Time step (∆t) 0.01

the dimensionless temperature profile across the
channel cross section is the same regardless of
the wall temperature.

The dimensionless temperature distribution
is shown in Fig. 3. As can be seen in this fig-
ure, the fully developed temperature regime for
heating and cooling cases coincides with each
other.

Nusselt number (Nu) is an important param-
eter for forced convection heat transfer, which is
described as the ratio of convective to conduc-
tive heat transfer across the boundary. Nusselt
numbers for heating and cooling cases were cal-
culated from the profile using following equa-
tion.

Nucwt =
hDh

k
= Dh

(
−dΘcwt

dy

)
wall

. (22)

The calculated Nu for heating and cooling
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Figure 3: Dimensionless temperature distribution
across the channel cross section (CWT)

cases were 7.42 and 7.71, respectively, which
are in a good agreement with the analytical value
of 7.54 within 2.3%.

Constant wall heat flux

For constant wall heat flux boundary condition,
a constant wall heat flux was applied to top and
bottom walls and periodic boundary condition
was imposed at left and right boundaries. The
wall temperature was not constant and was cal-
culated at each time step using a second order
forward difference formula (Abu-Nada, 2010a).
It was obtained based on the first and second ad-
jacent cells to the wall boundary as was given
by the following equation.

Tw =
2∆y

(qw
k

)
+4T1−T2

3
. (23)

where ∆y is the width of unit cell and the
subscripts ,1 and 2, describe the first and second
adjacent cells to the wall, respectively. Similar
to the CWT problems, two different cases, heat-
ing and cooling, were simulated. The wall heat
fluxes for those cases were fixed at 1000 and -
1000, respectively.

In order to compare the temperature profiles
for heating and cooling cases, the calculated tem-
perature was normalized by the following equa-
tion.

Θchf =
T̂w− T̂
qwDh/k

, (24)
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Figure 4: Dimensionless temperature distribution
across the channel cross section (CHF)

where qw and Dh are constant wall heat flux
and hydraulic diameter (i.e Dh = 2M for a parallel-
plate channel). k is thermal conductivity and
was calculated to be 3.6×105 (Ripoll, 2002).
Figure 4 shows the normalized temperature across
the channel. As can be seen in this figure, the
profiles for heating and cooling cases agreed well
with each other. Nusselt number was also calcu-
lated from the profile using following equation.

Nuchf =
hDh

k
=

Dh

T̂w− T̂m

(
−dT̂

dy

)
wall

. (25)

The calculated Nusselt numbers for heating
and cooling cases were 8.05 and 8.06, respec-
tively, which are in good agreement with the
analytical value of 8.235 within 2.2%.

Conclusions

Forced convection heat transfer with tempera-
ture boundary conditions of constant wall tem-
perature (CWT) and constant wall heat flux (CHF)
in parallel-plate channels was simulated using
dissipative particle dynamics (DPD). Periodic
temperature boundary conditions were applied
in the flow direction via the methodology used
in the literature. The governing equation for en-
ergy conservation was modified based on the
method. The DPD methodology was bench-
marked by comparing Nusselt number of the

numerical results with the analytical solution.
The DPD results agreed well with the analyti-
cal solutions for both CWT and CHF to within
2.3%.
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