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Abstract Complexity of transport phenomena - ranging from macroscopic motion of matter, heat transfer, 

over to the molecular motions determining the overall flow properties of fluids, or generally aggregation 

states of matter – inhibited development  of a single mathematical model describing simultaneously 

transport processes at  all relevant scales. In classical engineering sciences at each scale level we have 

different equations, different fundamental variables and different methods of solution [4]. The established 

basis of the classical fluid dynamics  - the Navier-Stokes equations [1, 3] - have apparently nothing in 

common with molecular physics. At the macroscopic scale of motion  the molecular structure of matter 

and the microscopic molecular motions are ignored (even though they determine the local macroscopic 

behaviour) [1, 3, 4]. To describe multiphase flows, still other methods must be used – increasing further the 

number of equations, methods of solution etc. The serious disadvantage of this approach is, that equations 

describing macroscopic models (Navier-Stokes and there from derived equations), introduce multiple 

theoretical problems:  

-  higher order continuity requirements [3],  

-  numerous  paradoxes  in  simple  macroscopic flows (Bernoulli eq.), 

-  different equations with different fundamental variables and different methods of solution,  build a set of 

disciplines devoted in principle to a single problem – dynamics of disperse systems.  
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1. Introduction 

Purpose of this work is mathematical model 

aiming at the  broadest possible range of 

micro- and macroscopic transport phenomena 

with help of a minimum of basic concepts of 

corpuscular physics [2, 3]. This paper 

presents the created transparent and simple 

model of transport related phenomena 

designed to facilitate interdisciplinary 

education. It may be used to derive 

practically all basic equations describing 

phenomena caused by motion of matter 

understood as disperse system built of 

particles characterized by mass and velocity 

(momentum). The possible range of 

engineering applications starts with motion of 

elementary particles [2, 3], heat flow and 

generation, classical single and multiphase 

flows over to applications in non-relativistic 

astrophysics [7 - 12]. The difference between 

the proposed method and classical methods 

of fluid mechanics [4] - is the applicability 

of a single, very limited set of basic concepts 

and equations to the possibly broadest 

range of phenomena. Thereby, elements of  

Statistical Physics [2], respectively of  

Microscopic Fluidics are applied to motion of 

particle systems under influence of forces 

defined by observed changes of the state of 

motion [7 – 13]. Model used in this work 

applies directly Newton ‘s second law [7 – 13] 

and conservation laws [1] to motion of matter 

understood as a disperse system [2, 3, 5 - 12]. 

Newton’s law and relevant conservation laws 

define forces and bulk physical quantities of 

flowing systems as result of  particle properties 

and interactions at considered micro scales and 

originate all resulting equations for practical 

application. Results show, that: the differential 

- integral formulation of Newton’s second 
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law and conservation laws  provides a 

transparent common physical background of 

motion related phenomena across all 

technically relevant application scales.  
 

2. Theoretical foundations  
Newton’s law used to define individually the 

possible interaction forces reads [11, 12]: 

  ∫=

V

dVvρ
td

d
F   (1) 

The right side of the above equation represents 

the total time rate of change of momentum in 

Volume V (i.e. mass times acceleration = m a) 

in terms of the velocities v of volumes dV with 

density ρ within the time (t) interval dt. 

Vectors are marked by underlining. Thereby, 

critical for all derivations is, that: time rate of 

momentum change defining the relevant 

forces F  may be expressed in terms of 

momentum conservation [7-12]: 

( )∫ ∫∫ •+
∂

∂
==

V A

dAvvρdVvρ

V

dVvρ
td

d
F

t

                         (2) 

Thereby A denotes the considered control 

surfaces, or their oriented (vector) elements 

dA. The above two equations define the 

particle-particle interaction forces 

(Applications of (1) below, [11, 12]). Result of 

application of eqs. (1) and (2) written in a form 

suitable to describe the macroscopic flow 

phenomena in process engineering applications 

reads [7 - 12]: 

                                   

( )∫ ∫ ∫ ∫ •+−=

V V A A

dAηtdApdVgρdVvρ
td

d

                        (3) 

The forces F on the right side of (3) are 

identified as [11, 12]: gravity g, pressure p, 

friction t etc. acting in V and, respectively, on 

its limiting surfaces A. The double underlining 

denotes the considered term (here t) as tensor 

of second order.  Thereby the so called “fluid 

quantities” are understood as result of 

averaged application of Newton’s law eq. (1) 

and momentum conservation law eq. (2) to 

micro scale particle systems (fluid). Thus the 

statistical “fluid quantities” like density ρ, 

pressure p and friction t (represented as 

function of the dynamical viscosity η), are all 

defined at the micro scale by molecular 

numbers, masses, volumes, average collision 

free paths etc. [2, 3, 7 - 13]. In compliance 

with this understanding “fluid quantities” like 

pressures p (similarly also the viscosity η) and 

such macroscopic equivalents as “body forces” 

are specialized representations of the averaged 

molecule impact forces. Mass conservation 

law used together with eqs. (1, 2, 3) reads [1, 

13]: 

∫ ∫∫ •+
∂

∂
=

V A

dAvρdVρ

V

dVρ
td

d

t
 (4) 

Beside eqs. (1-4) the model uses  

conservation laws of other characteristic 

physical quantities transported with matter. 

Thus, e.g. for explanation of heat transfer in a 

particle system useful is representation of the 

stochastic, thermal molecule momentum in 

terms of the quadratic mean value of the 

thermal molecule velocity λv in volume V 

along the mean free travelling path λ  of the 

molecules. Using the general structure of the 

conservation laws as given e.g. in [1] we may 

write [8 - 13]: 

                                           

∫ ∫∫ •




+

∂

∂
=

V A

dAv2
λ

vρdV2
λ

vρ

V

dV2
λ

vρ
td

d

t

                        (5) 

Where vλ  represents the thermal molecule 

velocity along its collision free path λ. 

 

Besides advantages mentioned till now [7, 13] 

i.e.:  

- simplicity combining the elementary 

school physics with e.g. process 

engineering (1), (3) [11, 12], 

- conciseness and transparency of all 

above equations (1 – 5), 

- simple application to the analysis of 

complex disperse  (discontinuous) 

systems [7 - 13],  

- applicability to arbitrary technical or 

natural material systems [12], 

- simple derivation of the practically 

used parameters and dimensionless 

numbers [11, 12], 
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- physically coherent interpretation  of 

the basic measured properties of matter 

[11, 12],  

- analysis of experimental results [13].  

 

The most important advantage of the model is 

its ability to avoid paradoxes in practically 

relevant flows. 

 

3. Application examples: important 

advantage of the above model [7 - 13] is its 

simple applicability to the analysis of disperse 

systems at multiple scales of resolution. 

Newton‘s equation of motion applied to an 

arbitrary  material disperse system defines its 

physical properties and the involved forces in 

terms of momentum exchange at particle level 

[7 – 13]  (Fig. 1 below):  

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1: Fluid modelled as a molecular disperse 
system [7 - 13]. Schematically  shown are gas 
molecules in stochastic thermal motion. 
Arrows symbolize the thermal molecule 
velocities.  

 

3.1 Derivations  of the involved statistical 

physical quantities and e.g. of basic equations 

of continuum mechanics. Definitions of the 

statistical quantities like pressure, viscosity 

etc., used in descriptions of macroscopic 

flows,  follow from the analysis of molecular 

motions in respect  to  chosen  control  

surfaces A.   

Basic examples are: 

 

Thermal gas pressure: eq. (2) with 

assumption: )z(λv)λz(λv =± results in [11, 

12]: 

          
2
λ

v
G
ρp

Z
=            (6)                                     

Thermal pressure defines together with the 

molecular binding forces [12] the melting 

point of solids and the boiling point of liquids 

[12]. Result (6) shows in particular, that: 

Temperature T is just an indicator of the 

stochastic thermal molecule velocities:   

             2
λ

vkT
Z

=           (7)          

Gas laws: expressing density ρG in (6) by 

molecule numbers and masses in volume V we 

obtain [11, 12]: 

           constRn
T

Vp
m ==        (8)                                   

with R representing the universal gas constant 

[1, 2]: R≈8.314 J/mol K.        

Heat conductivity: from eq. (5), assuming 

[11, 12] that: 

     
x

2
λ

v
λ)x(2

λ
v)λx(2

λ
v

∂

∂
±=±     (9) 

We obtain: =
∂

∂
=

∂

Θ∂
∫

R

C

V

dV
2
λ

v
G
ρ

t
R

V
t

 

        
XA

x

2
λ

v
λ

)λx(
v

G
ρ

∂

∂
−=    (10)           

Where ΘC is the content of heat momentum in 

the considered volume VR of a substance. 

Thereby, the product: λ
)λx(

v
G
ρ  defines 

the coefficient of thermal conductivity [11, 

12]:   

           λ)λx(vGρ=κ        (11)          

in:                                                      

Fourier ’s  law of heat conductivity [8- 12]:   

       
x

T
XA κ

∂

∂
−=

∂

Θ∂

t
C           (12)          

(Extension to 3-D space by induction method 

[7 - 12]). The content of the thermal 

momentum Θ reads as [11, 12]: 

TmSC ∆=Θ∆  with CS – heat capacity and 

m = Vρ  mass of the substance. It follows: 

     
x

T
A κ

t

T
VρC XS

∂

∂
−=

∂

∂
    (13)          

    

z 

 
x 
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Bernoulli equation [1] requires 

implementation of simplifying assumptions in 

eq. (3) to reduce vector quantities to scalars, 

the derivation will here be omitted. The 

derived form reads [11, 12]: 

  

sd
nS

S
t

v
ρ

T
P∆

1
p

1
zgρ

2

2
1

v
ρ

n
p

n
zgρ

2

2
n

v
ρ

1

∫
∂

∂
−−++=

=++

 (14)                                    

Thereby index n denotes the values of the 

marked quantities as belonging to the n-th 

point of the streamline containing the 1- st 

point (index 1), z represents the height in the 

potential field. ∆pT represents the influence of 

friction and the last term the influence of 

accelerations/decelerations along the 

streamline path s. In practical purposes most 

frequently used is the reduced form of eq. 

(14):  

1
p

1
zgρ

2

2
1

v
ρ

n
p

n
zgρ

2

2
n

v
ρ ++=++    (15) 

The consequences of reducing vector 

quantities in eq. (3) to scalars and use of the 

form (15) are easily recognizable on example 

2.a and 2.b below.   

 

Dynamic viscosity follows accordingly [7 - 

13] from eq. (2) for the macroscopic relative 

shearing motion of fluids at temperatures 

above absolute zero with assumption (Fig. 2:2 

above) that e.g.: 

     
z
x

v
λ)z(

x
v)λz(

x
v

∂

∂
±=±      (15)                             

Eq. (2) with inserted assumption (15) defines 

the statistical average of the friction force as: 

     
z

v
Aλ

zλ
vρF X

ZGXT,
∂

∂
=       (16)                                                      

Dynamic viscosity results accordingly as:  

          λ
zλ

vρη G=            (17)                                                             

Navier – Stokes equations follow from eqs. 

(1), (2), (3) with approximations (15) and 

other [11, 12],  introducing together the 

higher order continuity requirements of the 

continuum model [3, 5 -13]. As partial 

differential equations of second order they 

require double integration and determination 

of integration constants [7-13]. Examples of 

technical calculations point to advantages of 

the system (1), (2), (3) in comparison with 

corresponding applications of the Navier – 

Stokes equations: 

  

3.2 Examples of technical calculations. The 

following summarizes basic advantages of the 

model for technical calculations on simplest 

examples of educational and practical 

relevance:   

 

Example 1: integral notation of equations 

based on micro fluidic concepts saves 

integration steps and makes calculations 

direct, short and simple [7 - 13] We consider 

Hagen - Poiseuille flow [1, 8 - 13] i.e. real, 

macroscopic, steady, laminar, fully developed 

flow in a pipe of circular cross-section:  

Starting point here is the equation of 

macroscopic motion (3): 

                                               

∫ ∫ ∫∫ •+−=

V A A

dAtdAp

V

dVgρdVvρ
td

d
(18)                             

With the involved simplifying assumptions 

(circular, steady, horizontal, fully developed 

laminar flow)  and  the mean value theorem, 

for components along the flow direction 

follows:               

dr

dv(r)
AηApAp0 W2211 +−=        (19)           

Eq. (19)   applied   to   a  cylindrical 

volume V with radius 0 < r < R and length L  

and   surfaces A1 = A2  and Aw defined by 

the proper geometrical relations results in: 

                                                        

dr

dv(r)
rLπ2ηπrpπrp0 2

2

2

1 +−=      (20)          

Transformation of (20), simplifying, indefinite 

integration on both sides and determination of 

the constant C from the boundary condition v(r 

= R) = 0 results in: 

       ( )2221 rR
Lη4

pp
v(r) −

−
=      (21)           

The same analysis with help of the Navier-

Stokes equations requires many more steps 

and is much more complex [12].  



3rd Micro and Nano Flows Conference 

Thessaloniki, Greece, 22-24 August 2011 

- 5 - 

 

Example 2: use of the micro fluidic force 

concept improves at least the plausibility of 

the theoretically derived macroscopic 

results in engineering practice:   

Applying eq. (2): 

  

( )∫ ∫∫ •+
∂

∂
==

V A

dAvvρdVvρ

V

dVvρ
td

d
F

t

to: 

a) change of flow direction in a steady, 

horizontal, frictionless flow from 1 to 2 by an 

arbitrary angle α shows, that change of 
direction of flow requires a corresponding 

force respectively, in terms of macroscopic 

terminology, the corresponding pressure 

difference: 

  

 ∆p = ρ v1 v1 – ρ v2 cos (α) v2   (22)                     

               

With p0 representing the reference pressure 

of the environment we may define the 

pressures at the entrance (1) and exit (2) as: 

               

p1 = p0 + ∆p   and:  p2 = p0 – ∆p     (23)      

                                  

Result (23) follows directly from eq. (3). It 

does not introduce any paradox and complies 

with the basic knowledge about the structure 

of matter. Analysis of the same problem 

with help of Bernoulli equation (15) is 

equally simple, but it predicts the pressure 

difference ∆p=0 implying, that change of 

direction of motion requires neither force 

nor energy. From the point of view of school 

physics this is a paradox. 

 

b) contraction of frictionless, steady flow 
of volumetric intensity Q through a 

horizontal element of cross-section area from 

A1 to A2 defines a single force F, which may, 

however, depending on the cross-section in 

which the force is applied (e.g. using a 

piston), generate two different pressures:                                 











 −
==

2A2
1A

2A1A2Qρ
1A

F
1p

 














−

==
2
2

A1A

2A1A2Qρ
2A

F
2p:or

       (24)                             

Analysis of the same problem with help of 

the Bernoulli equation (14 or 15) is equally 

simple, but it predicts a single pressure 

difference, equal exactly to the mean value of 

the both results (24), which do not include so 

many simplifying assumptions as Bernoulli 

eq. (14). The list of the above examples, 

elementary to the point of triviality, may be 

further extended. Important here is, that: it 

points to interpretation problems in complex 

technically relevant macroscopic flows as 

well. 

 

c) complex flows e.g. in fluidized beds, and 

numerical calculations [12] provide further 

arguments in favour of use of the observed 

change of momentum (force) as a primary 

reference quantity for analysis of derived, 

statistical quantities like pressure.  

Thereby, purpose of here qualitative 

discussion of an idealized fluidized bed is:
  

- to show the applicability of the method 

to the analysis of complex systems 

concerning simultaneously single- and 

multiphase flows, 

- to show that, the observed changes of 

momentum (forces) are better suited to 

serve as primary reference quantities in 

system analysis, than the derived, 

statistical quantities like pressure,  

- to imply the basic similarity of the 

behaviour of the considered system of 

disperse particles with the behaviour of 

an ideal gas (Fig. 1) or (Figs. 1 and 2) 

a melting solid,   

- to introduce definitions of parameters 

resulting directly from eqs. (1 – 5).       

Comparison with measurement results is not 

aimed at, because instrumental fulfillment of 

all theoretical assumptions of e.g. uniform 

velocity distribution, uniformity of particle 

properties etc. in a real fluidized bed is not 

possible. 

To start with, we consider the schematic 

representation of a fixed bed shown in Fig. 2 

below.  
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Fig. 2. Schematic representation of particle 
bed at rest. Particles rest on the sieve and are 
supported with total force FS  equal to total 
particle weight less weight of the displaced 
fluid.       
 

 
 
Fig. 3 Schematic representation of  
fluidized particle bed. Particles are separated 
from each other by the flow and move freely 
above the supporting sieve. The average 
sedimentation velocity of the particles (e.g. 
black arrow wg) is approximately equal to the 
average upward interstitial fluid velocity 
(blue arrow). Flow intensity through the 
fluidized bed QFB is larger than flow 
intensity through the particle bed at rest QFB 
> QPB. The resulting length LFB of the 
fluidized bed in steady state results from 
equilibrium of particle weight and drag 
exerted by the flow and exceeds the length of 
the particle bed at rest LFB > LPB.  
 

 

The estimative analysis of the idealized 

fluidized bed starts with determination of 

forces F acting on particle. These result from 

equation (3) applied to particles. It reads: 

 

( ) S

p p p

p

p

F

V A A

dAηtdApdVgρ

V

dVvρ
td

d

+•+−=

=

∫ ∫ ∫

∫
            

                                  (25) 

Thereby Vp is the volume filled by the 

particles; ρp is the density of the particles; Ap 

is respectively the particle surface regarded 

here as total wetted surface; FS denotes the  

support forces acting on particles resting on 

the supporting sieve. For the upward 

direction follows [7, 11, 12]: 

HPR
relv

WAη(Re)FBkpV)Fρpρ(SF −−= g

                (26) 

Thereby ρF is the fluid density. The last term 

on the right side of eq. (26) represents direct 

extension of the micro fluidic derivation of 

the viscous friction force (eqs. (16, 17)) to 

technically relevant geometries. Thereby 

kFB(Re) is the drag coefficient characteristic 

for a given flow geometry, here for the 

particle bed.[8, 11, 12]; AW is the wetted area 

of the particles, here is AW = Ap; further vrel 

the relative particle–fluid velocity i.e. the 

difference between the average interstitial 

fluid v and particle velocity w [7, 11, 12]:  

v rel = v – w ; RHP is the hydraulic radius 

estimating the boundary layer thickness in 

the pores between the particles [8, 11, 12]: 

RHP = Vε / AW. The quotient of the 

interstitial velocity v and of the hydraulic 

radius RHP estimates the velocity gradient in 

the boundary layers of the interstitial spaces. 

This in conformance with the micro fluidic 

definition of the viscous force given by eq. 

(16). The above simplified form of eq. (25) is 

valid for particle phase for situations 

represented in Figs. 2 and 3 during all 

periods of time in which the average absolute 

velocity of the particles wg along the gravity 

vector vanishes i.e. : wg = 0 and vrel = v.  

The first term on the right side of the above 

eq. (26) represents weight of the particles 

reduced by weight of the displaced fluid 

(Archimedes law). The second term describes 

QPB = A vF 

vF 

LFB 

1 

v 

wg 

LPB 

QPB = A vF 

g 

2 

1 

Fs 

g 
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the viscous drag force. The only variable 

term on the right side of eq. (26) is the 

interstitial flow velocity v in spaces between 

the particles. Controlled by the flow intensity 

Q and by the geometry of the interstitial 

flow:  

  Q = v A ε        (27)                   

A is the total cross-section of the column and 

ε represents the porosity of the considered 

particle ensemble.  

Flow intensity Q defines several operation 

modes of the system: 

I) Particle bed at rest is characterized by the 

condition of total particle weight less weight 

of the displaced fluid being larger than the 

drag exerted by the flow i.e., in respect to eq. 

(26) when:   FS ≥ 0             (28) 

II) Unstable state of the bed beginning when 

the flow drag approaches the total weight of 

the particle bed diminished by the weight of 

the displaced fluid, so that the supporting 

force FS (eq. (26)) vanishes (s. Fig. 4). The 

interstitial fluid velocity in spaces between 

the particles v is still smaller than the average 

absolute sedimentation velocity of the 

particles wg. The porosity of the particles ε 

varies locally between porosity of fixed bed 

εFB and 1. Then following conditions prevail:  

  FS = 0 ;  v < wg ;  εFB ≤ ε ≤ 1   (29) 

III) Steady state begins when the interstitial 

fluid velocity v reaches the sedimentation 

velocity of single particles wg throughout the  

whole particle bed at porosities ε just starting 

to  exceed the  porosity of a fixed bed εFB . 

This operation mode is approximated by 

equilibrium of drag and weight of single 

particles (FS=0). Individual particles start 

moving freely in the flow as shown in Fig. 3 

building together a macroscopic model of a 

liquid  (compare Figs. 1 and 3). Porosity of 

the particles ε is estimated by an 

approximately continuous function of the 

flow intensity Q and of characteristic 

dimensions and velocities in the column as:  

 
gW
Fv

AgW

Q
ε ==        (30) 

Porosity of the fluidized particle layer 

increases continuously with increasing flow 

intensity Q from porosity of the fixed bed εFB 

till the value of 1. 

 

In respect to the calculation of pressures in 

the column it is to be remarked:  
a) forces relevant for the behavior of the 

particles remain constant under steady 

operation conditions and allow simple analysis 

and fairly definite representation of results (s. 

Fig. 4 below)  
 
 

 
 
Fig. 4: FS(i): force exerted by the particles on 
the supporting sieve (weight of the particles 
less  weight of the displaced fluid and less 
viscous drag of flow in the fixed bed s. eq. 26).  
FG(i): Drag force on the particles in the fixed 
bed and in steady state of the fluidized bed 
(green line in and after the grey block of 
unstable operation mode), FL(i): viscous drag 
force exerted by the flow on the particles. FL(i) 
rises till unstable mode (grey block region) is 
reached. In the unstable region “anything” 
may occur. Red interrupted line shows viscous 
drag in the unstable bed increasing till bed 
breakup occurs (abrupt fall of the interrupted 
FL(i) line to FG(i) level).       
 

 

 

 

b)  calculation of pressures relates forces to 

the magnitudes of the cross-sections available 

to the flow. Free cross sections depend on the 

porosity. Thus pressure is a function of 

porosity and flow intensity: p = f(ε(Q)). It may 

also be calculated by relating forces to the 

column cross section A. This introduces the 

possibility of multiple interpretation of 

principally identical results (s. Fig. 5 below).   

 

0 0.2 0.4
0

5000

1 .10
4

FS i( )

FG i( )

FL i( )

Q i( )
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Fig. 5 Calculated pressures. It is recognizable 
that two different pressure values (∆pL(i) and 
∆pLε(i) may be derived from a single force 
value FL(i) (s. Fig. 4). The same is valid for 
the drag force FG(i), in fixed particle bed and 
in steady state of the fluidized bed (green line 
in and after the grey block of unstable 
operation mode).       
 

Further  increase of the flow intensity Q blows 

particles out of the column and begins the: 

IV)  Single phase flow mode. Interesting is 

here, that the analysis of the single phase 

flow does not require theoretical tools other 

than those used for the analysis of disperse 

particle systems (s. examples 1 and 2a, b 

above) and vice versa.  

 

4.  Conclusions: Explicit application of 

Newton's second law (eqs. (1), (2), (3)) and 

conservation laws in the differential-integral 

notation [1, 7 - 13] to fluids modelled 

basically as molecular disperse systems [7 - 

13],  provides a self  consistent,  

physically coherent, concise and simple 

description of non - relativistic transport 

phenomena. Set of equations to  remember is 

very small and  provides a transparent 

common physical background for multiple 

applications in process engineering.  

In view of the experimental evidence gathered 

in the fields of corpuscular physics, also in the  

kinetic gas theory [2, 3], as well as in classical 

astrophysics [6], Newton’s law represents the 

experimentally best confirmed law describing 

the non relativistic motion of matter generally. 

The purpose of the paper is to promote its use 

as an explicit reference standard and starting 

point of analysis of all phenomena in material 

systems, which may be discussed in terms of 

dynamics of disperse systems.  
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