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 Uncertainty Quantification (UQ) is an emerging field in 
computational engineering that can provide certificates of 
fidelity in a simulation beyond the standard numerical error, 
and it includes uncertainty in boundary conditions, constitutive 
laws, materials properties and geometries. UQ is particularly 
impornat at microscales where geometric roughness and 
material properties cannot be readily quantified experimentally. 
Here we present a general framework for UQ based on the 
generalized polynomial chaos approach and various extensions 
that do not require modification of existing codes and are 
particularly effective in Microsystems with many uncertain 
parameters (e.g. high dimensionality). 
 
UQ requires the propagation of uncertainty through a given 
mathematical model and affects all stages of numerical 
simulation. Specifically, partial differential equations widely 
used to formulate mathematical models of physical systems 
must be reformulated as stochastic partial differential 
equations, posing new challenges for mathematics (pure and 
applied alike), parsimonious parametric description of 
stochastic input data and model calibration requires methods 
from statistics, and the numerical solution of stochastic partial 
differential equations will equally impact numerical analysis 
and scientific computing.  

In practical applications, at most second-order expansions are 
employed -- the so-called ‘first order - second moment 
analysis’ [1] that has been used extensively in engineering 
applications.  An inherent limitation of such first order 
perturbation methods is that the uncertainties must not be too 
large, i.e., the fluctuations of the random fields should be small 
compared to their mean values (typically less then 10%). This 
requirement needs to be satisfied not only by the stochastic 
inputs but also by the stochastic outputs; this is especially 
difficult to verify a priori for  nonlinear problems, as small 
fluctuations in  random inputs may result in large fluctuations 
in the systems' responses. Also, higher-order statistics of input 
data are not readily available. A related approach is based on 
manipulation of the stochastic operators. Methods include the 
Neumann expansion, which is based on expanding the inverse 
of the stochastic operator in a Neumann series [2], and the 
weighted integral method [3]. These methods have limitations 
on the type of model equations they can address, and, if 
truncated after second moment terms, are also restricted to 
small uncertainties. Here, we review an efficient approach for 
the deterministic approximation of second and higher order 

spatial correlations of random solutions, based on polynomial 
chaos expansion, where the “stochasticity” in the solution is 
transferred in the trial basis and hence one solves for 
appropriate PDEs for the deterministic coefficients of the 
polynomial chaos expansion. 

Ghanem and Spanos in [4] pioneered the computational use of 
the polynomial chaos (PC) expansion method, and have 
successfully applied it to various problems in solid mechanics.  
PC expansions are based on the homogeneous chaos theory of 
N. Wiener and are essentially spectral expansions of Gaussian 
random fields into Hermite Polynomials. PC expansions allow 
high-order deterministic approximation of random fields and 
appear to exhibit spectral convergence in many cases as we 
will show. Classical Wiener-Hermite PC expansions are based 
on the Hermite polynomial functionals in terms of Gaussian 

random variables. In theory, they converge to any 2L  

functional on the random space. However, in practice they 
converge slowly for non-Gaussian random fields and do not 
apply to random fields with discrete distributions. Accordingly, 
for fast convergence in PC expansions and, hence, for 
computational efficiency, the “coordinates in probability 
space” in which PC expansions of the random solution are 
sought should be adapted to the statistics of the input data and 
of the random solution. Galerkin projection can be employed 
to obtain the deterministic system of equations, and this has 
been done in various engineering systems.   

In generalized polynomial chaos (gPC), the polynomials are 
chosen from the hypergeometric polynomials of the Askey 
family, where the underlying random variables are not 
restricted to Gaussian random variables. In fact, there exists a 
unique correspondence between the probability distribution 
function (PDF) of the stochastic input and the weighting 
function of the orthogonal polynomials. The convergence 
properties of different trial bases were studied in [5] and 
exponential convergence rate was demonstrated 
computationally for model problems. The aforementioned 
correspondence can be extended to arbitrary PDFs with the 
orthogonal polynomials constructed on-the-fly; this extension 
was presented in [6].  For nonlinear operators, gPC with 
Galerkin projection may not be efficient because of the 
resulted undesirable complexity. Recently, collocation 
projection of gPC method, based on sparse grids, has received 
considerable attention due to its simplicity and efficiency in 
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dealing with nonlinear operators.  Depending on the 
stochastic regularity in the parametric space, it can be 
advantageous to combine mesh refinement with increase of the 
polynomial degree, leading to an hp-generalization of gPC 
approximations, see [7]. There exist various ways to construct 
local polynomial chaos basis, such as piecewise polynomials 
in [8] and wavelets in [9]. The multi-elment generalized 
polynomial chaos (ME-gPC) was developed in [7], where 
local orthogonal basis is constructed numerically according to 
the local conditional PDF. 

For a general (nonlinear) operator, a Galerkin projection on the 
polynomial chaos basis can result in a highly coupled PDE 
system, which may not be easy to solve numerically. To 
enhance the efficiency of polynomial chaos methods without a 
sacrificing accuracy, we can consider the collocation 
projection. The key of collocation projection is how to choose 
the grid points in the parametric multi-dimensional space. 
Obviously, full tensor-products of one-dimensional grid points 
are not proper due to the “curse of dimensionality”. So far, 
much attention has been paid on the sparse grids because of its 
weak dependence on dimensionality. In figure 1, we compare 
the patterns of full tensor-product grids and nested sparse 
grids.  

 

Figure 1. Patterns of full tensor-product grids 
(upper) and sparse grids (lower). ‘ ’ and ‘ o ’ 
indicate grid points at two subsequent levels. 

Several examples from fluids and heat transfer will be 
presented demonstrating some of the advantages of stochastic 

modelling of Microsystems, including global sensitivity 
analysis, which is a natural by-product of the PC formalism. 
The most effective approach for high-dimensional parametric 
uncertainties is the multi-element probabilistic collocation 
method combined with ANOVA, see [10]. 
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