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Abstract

This thesis describes the design of novel magnetic lattices for the transport line and

gantry of a charged particle therapy complex. The designs use non-scaling Fixed Field

Alternating Gradient (ns-FFAG) magnets and were made as part of the PAMELA

project. The main contributions in this thesis are the near-perfect FFAG dispersion

suppression design process and the designs of the transport line and the gantry lattices.

The primary challenge when designing an FFAG gantry is that particles with different

momenta take up different lateral positions within the magnets. This is called dispersion

and causes problems at three points: the entrance to the gantry, which must be rotated

without distortion of the beam; at the end of the gantry where reduced dispersion is

required for entry to the scanning system; and a third of the way through the gantry,

where a switch in curvature of the magnets is required. Due to their non-linear fields,

dispersion suppression in conventional FFAGs is never perfect. However, as this thesis

shows, a solution can be found through manipulation of the field components, meaning

near-perfect dispersion suppression can be achieved using ns-FFAGmagnets (although at

a cost of irregular optics). The design process for an FFAG dispersion suppressor shown

in this thesis is a novel solution to a previously unsolved problem. Other challenges in

the gantry lattice design, such as height and the control of the optics, are tackled and a

final gantry design presented and discussed.

The starting point for the transport line is a straight FFAG lattice design. This is

optimised and matched to a 45◦ bend. Fixed field solutions to the problem of extracting

to the treatment room are discussed, but a time variable field solution is decided on for

practical and patient safety reasons. A matching scheme into the gantry room is then

designed and presented.
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Chapter 1

Introduction

In 1838, investigations into why electric sparks travelled further in the ‘rarified air’ of

partially evacuated glass tubes than in normal air, led Michael Faraday to notice a

coherent arc of light emerging from the negative spark generating terminal. By 1870

William Crookes had invented a tube with a vacuum good enough to produce an invisible

beam which travelled from the cathode, all the way passed the anode, and fluoresced

against the glass at the end (figure 1.1 shows Crookes holding one such tube). The term

‘cathode ray’ was coined to describe it.

Nearly thirty years later, in 1897, J.J. Thomson showed, by observation of the lack of

diffraction patterns around the silhouettes of objects, that these cathode rays were in

fact made up of particles (called electrons) [3]. Soon after, Wilhelm Roentgen discovered

the X-ray using a Crookes type tube when he noticed radiation coming from the point

where the cathode ray hit a target and causing flourescence on the other side of the room

[4]. It is difficult to overstate the importance of both discoveries. They were a vital step

on the way for a whole swathe of technologies and areas of knowledge from welding to

the study of cosmology. The two intellectual descendants of this work that are of interest

1
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Figure 1.1: William Crookes with cathode tube in Vanity Fair, 1902 [1]. The caption
read ‘ubi Crookes ibi lux’ which translates to ‘Where there is Crookes there is light’ [2].

to this thesis, however, are particle accelerators and radiotherapy. The first section of

this chapter gives an overview of the history of particle accelerators while the second

gives an introduction to radiotherapy and, more specifically, Charged Particle Therapy

(CPT).

1.1 History of Particle Accelerators

The increase in energies reached by particle accelerators has been phenomenal over the

last century and the Large Hadron Collider continues to grab headlines as it achieves

energies closer and closer to those at the Big Bang. The rise of maximum energy can

be seen in figure 1.2 and this section will give an overview of its history. However,

the number of accelerators with more earthly purposes has also expanded dramatically

as new applications from isotope dating to food preservation and virus crystallography

continue to be found [6]. There are now more than 30,000 accelerators around the world

[7, p.82] and over 150 of those are in the UK (see figure 1.3) [8].
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Figure 1.2: The exponential rise of energies achieved by accelerators in the twentieth
century. The lines join up the type of technology used. [5, p.2]

The study of particle accelerators really got going in the 1930s. The Crookes type ma-

chines suffered electrical breakdown at anything over a few tens of kV [5], so radioactive

sources had been used to study the nature of particles. However, with the discovery of

quantum mechanics, higher energies were required to study the realm of the very small,

while Einstein’s famous energy equation E = mc2 gave good reason to reach energies

high enough to create new particles.

In their early development, accelerators could be split up into three distinct groups, based

on their method of acceleration [9]: electrostatic, resonant and betatron acceleration.
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Figure 1.3: Map showing the sites of all 150 particle accelerators in the UK. Created
using Google Maps at [8].

1.1.1 Electrostatic Accelerators

An electrostatic accelerator is, in principle, the most straight forward method of acceler-

ation. A large potential difference is built up and a charged particle is accelerated over

it.

Some of the first big leaps away from the limitations of the early Crookes style tubes

were achieved by Cockroft and Walton. Their accelerator, as shown in figure 1.4, has

a straight forward potential difference with a source at the top and a target at the

base. Their great technological advance, however, was their ‘cascade’ type generator

which could be used to accelerate to energies approaching 1MeV (that is the energy an

electron gains when it is accelerated with a potential difference of 1 × 106 Volts) [10].

This generator, shown in figure 1.4(b) charged up capacitors connected with diodes to

prevent immediate discharge. The first half cycle of the AC source would charge the

first capacitor to its peak voltage and the second half-cycle loads the second and so on
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until the large potential difference is created. In 1932 they became the first people to

trigger a nuclear reaction using a particle accelerator when they transmuted Lithium

into Helium with 700 keV protons [10].

Figure 1.4: Cockroft and Walton’s accelerator and voltage generator. The accelerator
has large potential difference built up between the terminal at the top and the earth.
The particles are fired downwards through the evacuated drift tube to a target at the
bottom. The generator has large capacitors, encased in the vertical pipes, and diodes,

in the diagonal pipes, to prevent them discharging. Image from [11]

A different approach to creating large voltages was invented by R. van de Graaff [12]

in 1931. The van de Graaff generator carries charge from the low to the high voltage

terminal on a belt and can reach ≈ 10 MV.

The problem all electrostatic accelerators encounter is voltage breakdown due to coronal

discharge [13, p.9]. A charged particle will only be accelerated to the energy created

by the potential difference built between two terminals, so as the voltage increases,

the limitation becomes how well the space between the terminals, or the earth, can be
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insulated. To overcome these limitations, it was found that much higher energies could

be reached if the particle was accelerated with small pushes, rather than in one go.

1.1.2 Resonating Accelerators

The limitations of the electrostatic accelerators were overcome using the pulsed nature

of alternating current electricity, which allows acceleration to be built up in a series of

smaller kicks, rather than stacks of higher and higher voltages.

The first design to use this technique was that of the linear accelerator (linac). A design

was proposed by Ising in 1924 [14] in which particles were accelerated in the gaps between

copper drift tubes, which all alternated between positive and negative potential at the

same time. In this set-up, the charged particles are shielded within the copper tubes

when they would be decelerated and are in the gaps when accelerated.

Figure 1.5: A schematic of Widerøe’s linac. The alternating current means that the
electron will be accelerated at each gap.

This idea was improved by a young Norwegian student Rolf Widerøe, into what became

the standard design for a linear accelerator. He saw that ions (he used sodium ions) could

be accelerated in both phases of the AC cycle if every other drift tube was connected

to earth. Figure 1.5 shows this in principle. The timing must be such that the gap in

which the ion is in should always have an accelerating field; so as the particle accelerates,

larger distances have to be made between gaps. A three tube model of this device was
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accepted as his thesis in 1928 and although he saw that it could be extended indefinitely,

he abandoned research to take up a job designing circuit breakers [5].

Shortly after Widerøe’s linac, Lawrence realised the acceleration idea could be used in

a circular accelerator, which was called the cyclotron [15]. Figure 1.6 shows how this

works. The particles are again accelerated in the gap between points of alternating

potential, however, now they are bent in a circle by a large magnet so that the same two

accelerating gaps can be reused. The acceleration increases the radius of the particle’s

motion until it eventually has enough energy to be ejected.

Figure 1.6: A schematic of Lawrence’s cyclotron. [15].

Timing is again important as the voltage over the gap has to be of the correct sign at

the arrival of the particle. However, this is a situation where the laws of physics lend

a helping hand. Because of the increased path length caused by a particle’s increasing

radius, the bending field strength can be chosen so that the frequency of a particle’s

rotation does not change as it accelerates, meaning a constant stream of particles can

be accelerated all at the same time.

This useful balance of effects breaks down as the particles approach the speed of light and

energy put in by the accelerator increases their velocity less and less. The radius of their
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orbits still increase, however, so the frequency of rotation is reduced and acceleration

will stop.

Developments in cyclotrons have tried to overcome this limitation using variable field

strengths and more complicated acceleration schemes but they are also limited by the

size of the magnets required for larger energies and the difficulties in evacuating such

large spaces. However, cyclotrons remain one of the most prevalent type of accelerator

because of their compact size and simplicity at non-relativistic energies.

1.1.3 Betatron Accelerators

The first design for a circular accelerator came as early as 1923 from the notebooks of Rolf

Widerøe, even before he had built the first linac. Although it was unfortunately never

built due to some unfounded criticisms from the inventor’s professor [5], his design of

the ‘Ray Transformer’, laid the groundwork for later work into the betatron accelerator.

The ray transformer was reinvented in 1940 by Kerst and Serber in the United States and

renamed the ‘betatron’ [5, p.11]. Uniquely among accelerator designs, it uses magnetic

fields to accelerate the beam, but it was also the first design to increase the strength of

the magnetic bending field to keep the radius of rotation fixed during acceleration.

In a betatron, the particles are contained in a doughnut shaped vacuum chamber. A

magnetic flux through its centre provides the acceleration in the ring in a similar way to

how current is induced in a loop encircling a current carrying wire. A guide field to hold

the particles in orbit is placed over the tube and its strength increased with acceleration

[16, p.10].
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1.1.4 Synchrotrons

The Second World War saw advances in technology requiring radio frequency (RF)

signals, with inventions such as the klystron (which uses rapidly oscillating electrons to

amplify the power of high frequency signals) benefiting the study of particle accelerators

[17].

After the war, as the energy requirements of the study of fundamental physics grew,

a new type of accelerator was conceived by Mark Oliphant [18], pulling together the

ideas of resonating cavities and of varying magnetic fields to keep a fixed radius during

acceleration. This was called the synchrotron, because the frequency of the RF increases

in synchronisation with the strength of the magnetic field in the bending magnets.

The development of synchrotron technology has been the driving force in the continued

exponential rise in particle energies from about 1950 onward. There are a few reasons

why synchrotrons can reach such high energies including: the splitting up of the single

bending magnet into smaller elements, the strength of focusing and the space freed up

for extra accelerating elements (called RF cavities).

Instead of a single bending magnet, as in the betatron and cyclotron, the synchrotron is

made up of many smaller magnets. This means the radius can be orders of magnitude

greater while the increase in the sum of magnet size for the whole accelerator will increase

with its circumference, not its area, requiring much less magnet material and volume

covered by the vacuum system.

A consequence of having bending split up in this way is that space can be made between

the bending magnets to place many more RF cavities. This means that much more

energy can be given to a circulating particle.
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One necessary development for the circulation of such high energy beams was the devel-

opment of ‘strong’ or ‘alternate gradient’ (AG) focusing by Christofilos [19] and Courant,

Snyder and Livingston [20] at the Brookhaven National Laboratory in the United States.

This will be explained in section 2.4.3, but it keeps the particle beam very small, which

further decreases the size of the magnets, but also makes the design of RF cavities much

easier, meaning more powerful ones could be built.

Technically speaking, the current accelerator reaching the highest energies, the Large

Hadron Collider (LHC) at CERN, is called a ‘storage ring’. This refers to an accelerator

in which beams can circulate for very long periods (e.g. around 20 hours at the Diamond

Light Source [21]). The LHC is also, as the name suggests, a collider because it has

two beams travelling in opposite directions, to maximise the kinetic energy available,

and collision points where detectors are placed to analyse the debris. Storage rings (a

translation of the Italian ‘Anello di Accumulazione’) and colliders have been developed

from the ideas of Bruno Touschek and Rolf Widerøe, working together in the early 1960s

at Frascati National Laboratories, Italy [22].

The energies being reached at the LHC make this a very exciting time, with the promise

of the possibility a deeper understanding of physics within the next few years [23].

1.1.5 Fixed Field Alternating Gradient Accelerators

One type of accelerator has so far been left out of this history: the Fixed Field Alternat-

ing Gradient (FFAG) accelerator. As the name suggests, these use alternating gradient

focusing, but with fixed magnetic fields. FFAGs are usually reduced to footnote status

in the history of particle accelerators as their development was abandoned in the fifties

because they were deemed too complicated. However, there has recently been a revival
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in interest based around the requirements of muon generation [24] (where high currents

of high energy protons are needed), muon acceleration [25] (where a large acceleration

is needed in the small time these ephemeral particles exist before they decay) and the

treatment of some cancers [26] (where high currents of charged particles need to be

accelerated reliably to a range of moderate energies).

This thesis will be mainly concerned with this type of accelerator, so their details and

history will be more fully explained in sections 2.5 and 3.4 after some of the basic physics

has been explored.

1.2 Introduction to Radiotherapy and Charged Particle

Therapy

In the months following Roentgen’s discovery of X-rays in 1895, doctors had already

started using them to locate bullets in patients and photograph broken bones [27]. While

only two years later, the first radiotherapy treatment took place of a young woman with

a sarcoma.

Since then, after a tragic naivety about the dangers of radiation in the early years was

overcome, the use of ionising radiation to treat some cancers has gone on to save millions

of lives and relieve pain in many more with palliative treatments.

Mainly this has been done with X-rays, however in 1946, Wilson proposed the use of

protons [28] as a more precise alternative. This was the beginning of Charged Particle

Therapy (CPT), which as the name suggests is radiotherapy with electrons, protons or

any ion.
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This section will give an overview of radiotherapy with particular attention paid to the

relative benefits of X-rays, protons and carbon ions.

1.2.1 The Molecular Effects of Ionising Radiation

Radiotherapy works by damaging the DNA of cancer stem cells in the developmental

stages of their life-cycle, destroying their ability to reproduce. Figure 1.7 shows that this

can be done by two mechanisms: either when the incident radiation directly ionises the

DNA, or indirectly when it creates chemically active molecules with missing electrons

(free-radicals) from the surrounding tissue [29].

The damage to DNA is in the form of broken bonds in the individual strands of the double

helix. An isolated break can usually be repaired easily as part of the DNA’s normal

function, however increased exposure to radiation will force errors in the recombination

mechanism. This can happen in two ways: if two strands of DNA are broken in close

proximity, the lose ends of one strand can recombine with the ends of the other strand,

or a single break can connect to a free-radical.

Radiation damage can also occur, via the creation of free-radicals, to cell membranes

and other important cell organelles.

1.2.2 Dose Response Curves

Ionising radiation can damage any living cell, so it is unavoidable that healthy tissue will

be damaged during radiotherapy, however this damage must be minimised, especially

where vital organs are at risk. Cancer tumours are caused by over active, or unrestrained,

stem cells giving them a seemingly improvised and haphazard physiology, which can
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Figure 1.7: Direct and indirect effects of radiation on DNA [29].

make them more responsive to radiation damage and less efficient at repairing it than

healthy tissue. This can go some way towards minimising the iatrogenic effects.

Figure 1.8: Examples of dose response curves for normal tissue and a tumour[30].
The more the overlap, the more precise the delivery of dose to the tumour needs to be.

The relative responses to radiation dose is plotted as ‘dose response curves’. An example

of this is shown in figure 1.8. The ideal situation would be one in which there is no overlap

between the two curves and the tumour responds to a significantly lower dose than the

surrounding healthy tissue. In this case an equal dose could be given to all the tissue
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and the tumour will be destroyed, however, very often there is overlap and significant

damage can be done to healthy tissue when controlling the tumour. When the radiation

affects healthy and cancerous tissue equally, it is very important to be precise about

where the dose is delivered. This is where the main benefit of CPT can be found.

1.2.3 Dose Distributions

Figure 1.9 compares the dose deposition in water of X-rays and protons as a function

of depth. When X-rays travel through water, they bounce off the water molecules very

frequently in almost random directions. At each interaction they will deposit a small

amount of energy, which, on average, will be the same until it is absorbed. The random

nature of this behaviour creates the exponential decay part of the dose deposition curve

and the very long tail. The peak at start of the curve is caused by backscatter from the

point where, on average, the X-rays undergo their first interaction.

Figure 1.9: Comparison of dose depositions in water of X-rays and protons as a
function of depth and normalised to the peak dose of the X-rays. The spread out Bragg
peak (blue lines) is made up of many smaller doses, shown here as the space between

the blue lines, with the red area showing the first dose [31].
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Protons interact with water molecules in a different way to X-rays. At high kinetic

energies, the probability a proton will collide is fairly low compared to an X-ray and the

result of the interaction will mainly be a small amount of energy transmitted from the

proton to the water. As the kinetic energy of the proton decreases, the probability of an

interaction will increase, slowing it down even further, until all the energy is deposited.

This creates the sharp ‘Bragg Peak’ (named after William Bragg who discovered it in

1903), which can be seen at the end of the curve and the very sharp fall off in dose

afterwards. The small tail visible after the Bragg peak is because of freed electrons

which deposit dose. However, even with the tail, the dose deposited before and after the

Bragg peak is small compared to X-rays.

In practice, the Bragg peak is too small to treat the full volume of a tumour, so a spread

out Bragg peak is used (SOBP). This uses the energy dependence of the Bragg peak to

build up a uniform dose over a range of depths with lots of smaller doses of less energetic

protons. A negative side effect of this is to increase the dose in front of the tumour, but

the advantage over X-rays is still apparent, especially behind the tumour.

The Bragg peak, with its reduced dose before the tumour and very small dose behind,

makes it possible to side-step some of the problem caused by overlapping dose distribu-

tion curves as well as increase the dose given to the tumour at any one time. This is

especially true where vital organs are adjacent to the target tumour.

Dose given outside the tumour can also be reduced by delivering it from a number of

different angles, and this is of great benefit to X-ray therapy, where state of the art

‘Tomotherapy’ techniques deliver dose in very small amounts from a source spiralling

around the patient [33]. However, in some cases at least, the well defined maximum

range of protons can be used to deliver a much better defined dose distribution, which
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Figure 1.10: Comparison of tomotherapy and multi-beam proton therapy [32]. The
colours represent percentage dose normalised to the prescribed dose within the tumour.
The red lines demarcate areas of interest. The especially sensitive organs are the ocular

nerves at the top of the image and the brain stem in the middle.

is especially useful when sensitive organs such as the brain are at risk. Figure 1.10

demonstrates this with treatment plans for a large tumour at the side of a brain. Figure

1.10(a) shows the dose distribution in a treatment plan using tomotherapy and 1.10(b)

shows the distribution using protons. The tomotherapy plan manages to avoid depositing

dose in the sensitive ocular nerves (outlined in red at the top of the image), where

blindness can be caused by 50 Gy [34], and limiting the dose to the brain stem (at the

centre of the image). However using only three beams, the proton plan manages to

entirely avoid the ocular nerves, the brain stem and over half of the rest of the brain

[32].

1.2.4 Other Benefits of Charged Particle Therapy

The benefits of using charged particles over photons for radiotherapy do not stop there. It

has already been noted that X-rays and charged particles deposit their energy differently.

Another way of talking about this is the Linear Energy Transfer (LET). This is the

amount of energy deposited per unit length and depends on the material as well as the

type of radiation, but it tends to be higher when using charged particles [29].
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The Radio-Biological Effectiveness (RBE) of a radiation gives a measure of how much

damage a given dose will do. Heavier particles tend to do more direct damage to the

DNA of tumour stem cells than X-rays, which combines with their higher LET to give

them an increased RBE. This effect is increased even further between protons and ions

such as carbon [29].

Many of the chemical reactions that make up the indirect effects of radiation involve

oxygen and the degree to which oxygen is required is encapsulated in the ‘oxygen en-

hancement ratio’ (OER). Because the effects of X-ray radiation are about two thirds

indirect, it means X-rays have a high OER, however, it also means they lose effective-

ness in hypoxic tissue. This is of particular concern because the peculiar physiology of

cancer tumours mean they can have large volumes, especially at their centres, where

blood vessels carrying oxygen do not reach. Ions like carbon create more direct effects

which do not need the presence of oxygen, so this problem is reduced.

Figure 1.11: Radio biological effectiveness (RBE) and oxygen enhancement ratio
(OER) for a variety of radiation types. A low OER is desirable because it means the

radiation can be effective in hypoxic regions of a tumour [35]

Figure 1.11 shows the relative RBEs and OERs for a number of different radiation

types. From this it can be seen that the advantage protons have over X-rays in their
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dose distributions is not matched by an advantage here. However, carbon ions represent

a major improvement over both protons and X-rays for RBE and OER.

Figure 1.12: Comparison of the effect of fractionation in X-ray therapy and charged
particle therapy [36, p.43]. The dotted lines show the response to a single dose and the
solid lines show the response to fractions. There is a dramatic difference in the number

of fractions required and the total dose.

The reason LET, RBE and OER are of practical importance is to do with the amount

of time a patient spends being treated. Because of the effects to healthy tissue, the

complete dose is given to a patient in a series of smaller doses called ‘fractions’. Figure

1.12 shows the difference in the number of fractions required when using X-rays and

ions. This does not just save time; because tumour cells will recover between fractions,

reducing the number of fractions can reduce the total dose required to control a tumour

by a factor of 2 → 10 depending on the clinical application [26]. This reduces the

side effects to the patient, reduces the probability of secondary cancers caused by the

treatment radiation and the reduced time it takes to control a tumour can increase the

amount of people treated at a facility.
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1.2.5 Caveats to the Superiority of Charged Particle Therapy

Although the benefits of CPT (especially carbon) are overwhelming in principle, they

must be qualified by some of the problems with their practical application.

CPT will not take over X-rays as the main form of cancer therapy in the foreseeable

future mainly because of the relative costs and space requirements. X-rays are usually

produced by compact electron linacs using readily available and cheap technology (≈

£1 → 2 million [37]). Whereas, even though it can be bought almost ‘off the shelf’ at

present, the technology for delivering protons is still around 20 times more expensive

than conventional X-ray radiotherapy [38, p.342]. Carbon therapy is even more difficult

to achieve as the technology is still largely experimental and requires very large amounts

of space.

There is also a practical problem with determining the exact location of dose delivery

within a patient. If CPT is going to be used to deliver much larger doses than at present,

the clinical practitioners have to be completely certain that this dose is being deposited

completely within the tumour. Unfortunately, due to the limitations of current imaging

as well as the effects of organ motion and tumour shrinkage during treatment, this cannot

always be done. This can result in practitioners either reducing the dose or adding safety

margins to the treatment area, which can eat away at the advantage CPT has over X-ray

therapy [39]. However, an effort to produce good quality real time imaging is ongoing

[40], so this may not be a problem forever.

The final caveat is the proof of the biological benefits of CPT, especially using carbon

ions, is not entirely there. This section has shown that in principle CPT should be

a much better treatment than conventional radiotherapy in both tumour control and

cancer recurrence rates, however, according to the US Agency for Healthcare Research
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and Quality there is not enough clinical data to say this for sure [41]. This may be true,

but the only way to discover if CPT really is better than X-ray therapy is to do long

term studies, which means many more CPT centres will be required and new ways of

delivering therapeutic protons and carbon ions must be found.

1.3 Chapter Summary

This chapter demonstrated the author’s understanding of the general history of particle

accelerators (section 1.1) and Charged Particle Therapy (section 1.2). The history of

particle accelerators could be said to have started with the discovery of the electron,

but the roots of modern accelerators are in three types of accelerator technology: the

electrostatic accelerator, the resonating accelerator and the betatron (sections 1.1.1,

1.1.2 and 1.1.3). In modern high energy physics the synchrotron is dominant (section

1.1.4), but cyclotrons and linacs are used more generally for industrial and medical

applications. Charged particle therapy has two main advantages over X-ray therapy: it

is more precise (section 1.2.3) and requires fewer dose fractions (section 1.2.4). X-ray

therapy is, for the foreseeable future, cheaper and uses much less space (section 1.2.5).



Chapter 2

Basic Particle Accelerator Physics

2.1 Introduction

In the broadest sense, a particle accelerator is a series of electromagnetic elements which

increase the momentum of a beam of particles, direct it and keep it focused. Electric

fields [13, p.19] are generally used to accelerate the particles, while the focusing and

bending is done by a configuration of magnets [42, p.38]. This configuration is called the

magnetic lattice and is the part of accelerator physics that this thesis mainly considers.

Beyond this simple premise lies a very complicated and detailed field of science that

has developed from J.J Thompson discovering electrons in 1897 to the Large Hadron

Collider probing the nature of mass in 2010; while splitting the atom, the invention of

the television set and the discovery of quarks and much more were achieved along the

way. More complete descriptions can be found in a variety of text books ([13], [5] and

[42] for example) however, this section aims to give a brief introduction to the concepts

required to understand the area of accelerator physics that this thesis deals with as well

as its wider context.

21
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2.2 Coordinate System

Figure 2.1: The co-ordinate system.

The coordinate system this thesis uses is that used by the particle accelerator simulation

code Zgoubi [43, p.13] and is shown in figure 2.1. The coordinate s is the distance along

an ideal path through the accelerator called the reference orbit, y is the horizontal axis

which runs from the centre of the accelerator through s and outwards, z is the vertical

axis, perpendicular to both y and s, t is the angle the direction of the particle makes

with s in the horizontal plane and p is the equivalent in the vertical plane(alternately,

these may be referred to as y′ and z′).

2.3 Accelerator Types

There are four main types of particle accelerator: linear accelerators (linacs), cyclotrons,

synchrotrons and Fixed Field Alternating Gradient accelerators (FFAGs). Linacs are

linear accelerators and are the most common. Cyclotrons are the simplest of the circular

accelerators and generally use fixed magnetic fields while accelerating high currents of
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particles over a limited energy range. Synchrotrons achieve the highest energy (the

LHC at CERN is a synchrotron), but are more complicated than Cyclotrons and require

magnets with fields that vary over time. Fixed Field Alternating Gradient accelerators

take aspects from Cyclotrons and Synchrotrons, but their development was abandoned in

the 1950s because they were deemed too complicated. They have been recently revived,

however, and may offer solutions to problems in which very fast acceleration of a high

current of particles to moderate energies is required [44].

2.4 Circular Motion and Magnetic Rigidity

A charged particle moving in a magnetic field, B, experiences a force, F , perpendicular

to the direction of the field and the direction of motion:

F = qv ×B (2.1)

where q is the charge of the particle and v is its velocity. If the field is uniform, this

results in circular motion in the plane of the force and the direction of v (figure 2.2),

with the radius dependent on the strength of the field, the particle’s momentum and

charge. This is characterised by the magnetic rigidity:

Bρ =
p

q
(2.2)

where ρ is the radius of curvature and p is the momentum of the particle. This is an

interesting equation to help understand the differences between the types of circular

accelerators. In all three, momentum will increase as the particle accelerates. In most

cases the charge will remain constant, so the increase in momentummust be compensated
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F

B

v

Figure 2.2: A particle travelling in a uniform magnetic field will move in a circle

for by an increase in B, ρ or both. Generally speaking, in a Cyclotron, B is kept constant

and ρ increases; in a Synchrotron, ρ is kept constant and B is increased; and in an FFAG,

a combination of ρ and B is varied.

2.4.1 Aperture

The change in ρ also has an impact on the ‘aperture’ of each type of machine. The

aperture is defined as the space required in a magnet to fit the beam over the whole of

the energy range. So the Cyclotron has the highest aperture, because ρ is allowed to

grow as the particle accelerates; the Synchrotron has the smallest aperture, because ρ

does not change; and the FFAG is somewhere in between.

2.4.2 Closed Orbits

A closed orbit is a path through a periodic structure in which the start point and

the end point are the same. In a non periodic structure, this thesis may refer to an
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equilibrium orbit or reference orbit instead, which is the ideal path of a particle with

a given momentum. In reality, most particles will not be exactly on the closed orbit.

They may have slightly different starting positions or angles, which if left unchecked

could result in them being lost from the accelerator. This is where focusing is required.

2.4.3 Focusing

The simplest form of focusing happens in a completely uniform field. If a particle starts

at a position slightly removed from the desired closed orbit, it will simply shift its centre

of rotation. From the point of view of the reference orbit, the particle will be oscillating

around it. This is called ‘weak focusing’ and is only important in basic Cyclotrons. The

more important ‘strong focusing’ uses fields that are not uniform, but have a gradient.

Consider the rigidity equation (equation 2.2). If a particle is displaced horizontally from

its closed orbit away from the centre of the accelerator, it could be angled back by

increasing the field strength. Conversely, if the particle were inside the closed orbit,

the field could be reduced and the particle moved outwards. For this reason, adding

a gradient to the field where dBz

dy
> 0 will force off orbit particles towards their closed

orbit and stop them from being lost; this is called strong focusing. However, there is a

problem. From Maxwell’s equations, it follows that [45, p.29-5]:

dBz

dy
=

dBy

dz
(2.3)

Unfortunately for accelerator physicists, a positive gradient in the vertical plane will

force particles away from the closed orbit; defocusing the beam. To understand this,

consider a particle immediately above the closed orbit in a field with positive horizontal

and vertical field gradient. Assuming the horizontal field is zero at the closed orbit,
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Figure 2.3: A particle just above the reference orbit will experience a force upwards
if By is positive.

a positive gradient means the particle will feel a positive field. As shown in figure

2.3, a positive Bz gives the particle a force towards the centre of the accelerator, but

the corresponding By field will result in an upward force being applied to the particle.

A particle below the closed orbit will feel a negative field and a downward force. A

negative gradient will produce focusing in the vertical plane, however, it will also produce

defocusing in the horizontal plane.

As already mentioned, Cyclotrons have weak focusing in the horizontal plane. However,

in a completely uniform field, any particle with a deflection in the vertical plane will

spiral away until it is lost. Luckily only a small amount of focusing in the vertical plane is

required to prevent this, and the defocusing it causes in the horizontal plane is tolerated

[5, p.15].

The focusing in the Cyclotron is not sufficient for higher energy machines involving many

revolutions. To increase focusing and solve the problem created by equation 2.3, ‘alter-

nate gradient focusing’ is employed [45, p.29-6]. This is where elements with horizontally

focusing and defocusing fields (simply referred to as focusing and defocusing) are used in

combination to bring about overall focusing in both the vertical and horizontal planes[5,

p.30].
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2.4.4 Betatron Oscillations and the Effective Gradient

The behaviour of off-orbit particles is important to the design of particle accelerators

because the focusing gradient will not make all the particles move neatly along the

closed orbit. In fact, the field gradient causes the off-orbit particles to oscillate around

the closed orbit, this motion is called a betatron oscillation. Consider a field where:

dBz

dy
∝ c · y (2.4)

where c is an arbitrary constant. This is called a linear field because the gradient is

proportional to the linear term; y. If the field gradient is related to y in any other way,

it would be a non-linear field.

We are interested in the motion of the particle along the coordinate s, so consider the

deflection given by this field over the short distance; ds. The force is proportional to

the field (equation 2.1) which we have set as proportional to y, so we can see that:

dy

ds
= ke · y ds (2.5)

where ke is a constant of proportionality. To understand the characteristics of ke, con-

sider that the deflection in y, will be proportional to the field gradient, and inversely

proportional to the rigidity of the particle. This is expressed as the effective gradient [5,

p.32]:

ke =
1

Bρ

dBz

dy
(2.6)
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Particle accelerators do not have uniform fields all the way round the ring, so ke is a

function of s. Equation 2.6 differentiated is [5, p.33]:

y′′ +

[

1

ρ(s)2
− ke(s)

]

y = 0 (2.7)

which is similar in form to a simple harmonic oscillator, except here we use s instead

of time. In the vertical plane, where there is no bending and so no rigidity term, the

equation of motion is even simpler:

z′′ + ke(s)z = 0 (2.8)

These are forms of Hill’s equation [42, p.250] and the solution gives us more insight into

how the motion of a particle around the accelerator can be described [5, p.33].

y =
√

β(s)ε cos[φ(s) + φ0] (2.9)

φ is called the phase and
√

β(s)ε is the amplitude modifier, which is made up of what

are called the beta function (β(s)) and the emittance (ε). The phase of an oscillation is

a measure of the point the oscillation has reached, so a phase of π radians, would be half

way through and a 2π phase would be a complete oscillation. The amplitude modifier

in an oscillator describes the maximum and minimum points in the oscillation, since the

cos or sin part will always have the range −1 ≤ cos(φ) ≤ 1.

Equation 2.9 is, again, analogous to simple harmonic motion, with a phase φ and an

amplitude modifier
√

β(s)ε. However, there are some important differences. Firstly,

part of the amplitude modifier is a function of s, but also, the phase is not dependent

on s in a simple way, as it would be with time in, for example, a pendulum.
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The beta function’s dependence on s comes from the fact that it is a property of the

magnetic lattice, and describes the shape of the envelope of possible particle positions,

relative to the closed orbit, through the lattice. The emittance, on the other hand, has

no s dependence and its precise meaning will be explained shortly, but for now it is

sufficient to know it limits the size of a particle’s betatron oscillation.

The relation of φ to s depends on how the effective gradient changes with s; which will

have been constructed by the designer along with bending elements and drift spaces.

However, φ and β have to have the same periodicity in a closed ring and are linked by

[5, p.33]:

φ′ =
1

β
and φ =

∫

ds

β
(2.10)

So the higher β the smaller φ (referred to as the phase advance) and vice-versa. This

holds for any length of lattice, so it gives the lattice designer their control over the

beta function. Qualitatively, it is straight forward to see that the effective gradient will

control the amplitude of the oscillation and its phase advance: The higher the gradient,

the more quickly the field strength will diverge from its value at the equilibrium orbit,

so the shorter a distance the particle will travel before being forced back. Figure 2.4

is a visualisation of the path a particle might take through a circular accelerator. The

amplitude and frequency of the betatron oscillation will vary depending on the field the

particle is travelling through.

2.4.5 Tune

The tune is defined as the number of betatron oscillations over some length of s. So

the ‘machine tune’ will be the number of oscillations in one turn of the accelerator.

Accelerators are commonly split up into ‘cells’, which are sections of lattice that have
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Figure 2.4: Possible path of a particle through a section of a circular accelerator The
black line is the closed orbit and the blue line is the particle path.

some periodicity about them. For example, an accelerator might be made up of cells

which have one focusing and one defocusing magnet separated by lengths with spaces

in between (called FODO cells). A ‘cell tune’ will be the number of oscillations per cell.

2.4.6 Resonances

The tune is important because under the right circumstances in accelerators in which

particles circulate many times, betatron oscillations can resonate and destroy the beam.

This subject is not immediately relevant to this thesis, however, it is worth touching

upon to help explain some of the characteristics of Synchrotrons and FFAGs. There are

two ways in which this can happen. One way is the horizontal and vertical betatron

oscillations constructively interfering with each other if the sum or the difference of

their tune is an integer [13, p.188]. The other is for a betatron tune to resonate with

an imperfection in the lattice [5, p.87]. If there is an imperfection at any point in the

ring, the particle may receive a small kick; and if a particle has an integer number of

betatron oscillations per turn, the particle will come to exactly the same point every

time it completes a revolution and will receive the same kick over and over again until

the particle is thrown out of the ring. The same will happen with a tune that is an exact
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fraction, m
n
(where m and n are integers), because the particle will receive the kick every

n turns. If the tune is not an integer or exact fraction, the particle will receive the kick

at different phases of its oscillation each time and the effect of the kick will average to

zero.

This is why controlling the tune, and the effective gradient, is such an important part of

Synchrotron and FFAG design. In Synchrotrons, the field gradient (as well as the dipole

strength and, at low energies, RF frequency) is varied over time in synchronisation with

the accelerating particles, and in the FFAG, the gradient is varied over position to match

the closed orbits (this will be discussed in greater depth in 2.5). This thesis deals with

lattices through which particles will only travel once, so resonances will not always be

as important as in a recirculating lattice, however, if the resonance is large enough it

could effect the emittance of the beam, which will be explained in the next section.

2.4.7 Bunches and the Phase Space Ellipse

At this point, it is important to recognise that particles do not travel through real

accelerators one at a time. Instead, particles travel as part of ‘bunches’, which are a

large number of particles having a distribution of slightly different starting angles and

positions, as well as different starting phases; φ0. The bunching is an artefact of the

acceleration process [5, p.59] and the distribution is determined by how the particles are

sourced.

The tracks of a bunch of five particles may look something like figure 2.5 (in reality, the

number of particles in a bunch would likely be nearer ≈ 109). Note that the different

particle oscillations have different maximum amplitudes; some particles stay close to the

closed orbit, while others stray further away. This might not, at first, seem possible,
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Figure 2.5: A number of particle oscillations with differing φ0s and amplitudes. φ is
the same for each particle, however.

because all these particles are described by the same equation of motion (equation 2.9).

However, the factors of the amplitude modifier, ε and β(s) have not yet been properly

defined because we have not been using ε and β in relation to bunches of particles.

The emittance and the beta function do describe the amplitude of the oscillations of

the particles, but it is done in a statistical way, as would be expected when dealing

with such large numbers of particles. Both these terms are defined by the particles with

the highest amplitudes in the bunch, (or more precisely, at some number of standard

deviations away from the particle with the mean amplitude [5, p.50], but for simplicity,

they will be referred to as having the maximum amplitude).

So when we plot the beta function, we are showing how the maximum amplitude changes

through the accelerator. However as we have a bunch of particles, all with different φ0s,

at any one point there will probably always be a particle at that maximum amplitude.

This means that the shape of the β function (or more precisely its square root) is the

shape that the bunch makes as it travels along the closed orbit. The β function can

also be described as the ‘betatron envelope’: the shape of the space to which a particle

travelling around the accelerator is restricted.

It is important to be careful to refer to the ‘shape’ of the β function, rather than its

absolute size, because although it is measured in metres, in equation 2.9, β is modified
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by the emittance. As has been said, the β function is a property of the specific lattice

design, but we can now see that the emittance is purely a property of the particle bunch.

To understand its physical significance, consider the motion of one of the maximum

amplitude particles in a two dimensional space made up of its horizontal distance from

the closed orbit and the angle it makes with it, which is called the ‘phase space’. If the

equation of motion were simply:

y = cos(φ+ φ0) (2.11)

the shape of the motion in phase space would describe a simple circle: as the particle

increases in y, it decreases in y′. However as equation 2.9 has an s dependent amplitude,

the situation becomes much more complicated. By differentiating equation 2.9 we find

that:

y′ = −
√

ε

β(s)
sin[φ(s) + φ0] +

√

ε

β(s)

β′(s)

2
cos[φ(s) + φ0] (2.12)

and the phase space diagram for a single particle travelling around the ring would be

very complicated and not very instructive. However, at a single s, β and φ will be fixed,

but a bunch of particles will have a full range of φ0s and there will be a large number

with the maximum amplitude. Plotting the maximum amplitude particles together will

give a simple ellipse, such as that in figure 2.6.

The emittance is the area of this ellipse, and through simple magnetic lattices, with no

acceleration, collimation or other forms of beam loss, it will remain constant [5, p.45].

Collimation can bring down the emittance because, if you take away the maximum

amplitude particle in figure 2.5, the new emittance will be defined by the second highest

amplitude particle, and so on.
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Figure 2.6: At a single s, there are enough particles with the maximum amplitude to
have a full range of φ0s and describe an ellipse.

The decrease and increase of emittance with acceleration and deceleration is called ‘adi-

abatic damping’ and is caused by the effects of relativity. ‘Adiabatic damping’ is a bit

of a misnomer because just by using a different reference frame, it can be seen that

emittance is constant when accelerating into relativistic speeds. Emittance will shrink

in the lab frame as the particles accelerate if we use Classical mechanics, however, an

emittance defined using Hamiltonian mechanics will not be affected [5, p.48] [42, p.292].

While discussing adiabatic damping, γ and β take on their relativistic definitions, rather

than the Twiss definitions used elewhere.

With Hamiltonian mechanics, coordinates in phase space would not be (y, y′), but in-

stead be the ‘canonical coordinates’ (q, p), where:
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q = y, p = γmy′ (2.13)

where m is the mass and γ is the relativistic definition

γ =
√

1− β2 (2.14)

and β is the relativistic definition

β =
v

c
(2.15)

not the β function described above in equation 2.9 and the γ defined later in equation

2.18. v and c are the velocity of the particle and the speed of light respectively. Using

these coordinates, we find a ‘normalised emittance’ which is defined as

ε∗ = (βγ)ε (2.16)

and remains constant throughout acceleration[5]. Again, γ and β are their relativistic

definitions, however, from this point on, they revert back to their definitions as Twiss

parameters.

The phase space ellipse can tell us the value of the β function (from equation 2.9, not the

relativistic version) by taking the highest amplitude particle: i.e. when cos[φ+ φ0] = 1,

y =
√

εβ(s). There are also two other functions related to β that are used to describe

the beam and can be calculated from the phase space ellipse. α is a measure of the rate

of change of β and is defined as:

α =
β′

2
(2.17)
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γ is the equivalent of β in y′ in that y′max =
√
εγ. It is defined as:

γ =
1 + α2

β
(2.18)

with β , α and γ defined, we can calculate the emittance thus:

ε = βy′2 + 2αyy′ + γy2 (2.19)

where y and y′ are taken as the highest value in the ellipse. This is also known as the

‘Courant Snyder Invariant’ [5, p.46] and collectively, β, α and γ are referred to as the

Twiss parameters1.

2.4.8 Acceptance and Smear

Acceptance is usually defined as the largest emittance the beam can have before it grazes

an obstacle, usually a collimator, divided by π [5, p.51]. This thesis, however, is looking

at short lengths of transport line as opposed to thousands of turns of accelerator rings,

so a more sensitive definition is perhaps more useful. For this, the concept of ’Smear’ is

useful.

’Smear’ is a measure of the distortion of the beam, or more precisely, the deviation of a

circle of particles from their initial configuration and is defined as:

smear =

√

〈(εi − 〈εi〉)2〉
〈εi〉

(2.20)

1By rights these should be also be named after Courant and Snyder, as they developed them. However

this thesis will use the more widely accepted name for clarity.
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where εi is calculated using equation 2.19, but is not exactly the same as the emittance.

It is calculated for each individual particle with y and y′ in the place of ymax and y′max.

Vertical phase space (z, z′) smear is calculated in the same way.

So the smear is the mean deviation from the average individual particle emittance,

divided by the average individual particle emittance, but to get a visual idea of what it

means, consider figure 2.7. The blue dots represent the particles at the start of a section

of lattice, and the red dots represent the same particles at the end. The different rings

of particles have been given different emittances and result in different values of Smear.

As you can see, the central ring with the smallest emittance has a very small smear

(the blue ring is obscured by the red, they are that closely matched); while the outer

ring has become very distorted and has a smear a factor of ten larger.

Figure 2.7: Phase space ellipses with smears of (from centre) 0.1, 0.25, 0.5 and 1.



Chapter 2. Basic Particle Accelerator Physics 38

The acceptance, then, is defined as the initial emittance given to particles which results

in an arbitrarily defined smear at the end. A smear of 0.1 was chosen to be acceptable

initially, however this may change as the studies develop. A smear of 0.1 means the

average deviation from the average particle emittance is 10% when the particles reach

the end. The initial emittance is equal in both planes and the acceptance is found when

the smear reaches the limit in either plane.

Figures 2.7 and 2.8 give an illustration of why a smear limit of 0.1 was chosen. In figure

2.7 phase space ellipses with smears of 0.25 upwards show noticeable distortion, so a

significant change to the properties to the beam over the full range of the transport line

is likely to occur; whereas the ellipse with a 0.1 smear is much less effected. The 10π

(mm mrad) emittance shown in figure 2.8 appears only slightly affected through a lattice

with an acceptance of 54π (mm mrad) and has a smear of just 0.004.

Figure 2.8: A 10π (mmmrad) emittance in a lattice with a 54π (mmmrad) acceptance
defined using a smear of 0.1.
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2.4.9 Dispersion

Just as a bunch of particles will have a distribution of y and y′ within it, it will also

have a distribution of momenta. Most acceleration schemes deal with this by giving

more of an accelerating kick to particles travelling slower than an ideal particle and less

of a kick to those travelling quicker. In a similar way to off-orbit particles oscillating

around the closed orbit, this leads to particles oscillating around the ideal momentum,

without precisely joining it[5, p.60]. The details of this is not immediately relevant to

this thesis because we will be studying non-circulating sections of lattice and will not

need to design an acceleration scheme. However, the dispersion itself is relevant because

it will be important to control it through certain sections of the lattice.

For a particle with momentum p travelling in a bunch where p0 is the ideal momentum,

the deviation is defined as:

δ =
∆p

p
(2.21)

where:

∆p = p− p0 (2.22)

In practice, the different momenta of the particles will result in slightly different closed

orbits given by:

y(s) = δD(s) (2.23)

The dispersion function D(s) is derived from the equation of motion (equation 2.7), but

with a driving term. D(s) can be obtained experimentally by observing the difference

in the positions of two particles with different δs at any given s. Using equation 2.22.

D(s) =
∆u

δ2 − δ1
(2.24)
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Where ∆u is the difference in energy between the two particles [42, p.177].

2.4.10 Dispersion Suppression

In order to reduce this dispersion, one can use betatron oscillations to our advantage.

Consider figure 2.9. A particle with a momentum deviation δ has the closed orbit

position δD(s)1 in Cell 1 and δD(s)2 in Cell 2. If the particle is exactly on the closed

orbit in Cell 1, it will start to oscillate around the new closed orbit in cell 2. Now, if

Cell 2 is designed so that δD(s)2 is half way between δD(s)1 and the ideal orbit, half a

betatron oscillation will bring the particle to the ideal orbit [16, p.77]. This idea can be

applied to a distribution of δs if a field can be designed in which the δD(s)2 positions

are half the δD(s)1 positions for all particles.

0 Π

2
Π

Ideal Orbit

∆DHsL2

∆DHsL1

Cell 1 Cell 2 Drift

Phase Advance

Figure 2.9: Half of a betatron oscillation can be used to move a particle from one
orbit to another. This is the principle behind dispersion suppression.
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2.5 Fixed Field Alternating Gradient Accelerators

Fixed Field Alternating Gradient accelerators were conceived of in the early 1950s as a

way to reduce the radius relative to existing circular accelerators. However, their devel-

opment was stalled due to the complexity of their magnets compared to the developing

Synchrotron. A useful, and classic, paper on this subject is [46]. The simplest of the

designs presented, and one most relevant to this thesis, is the ‘Radial-Sector FFAG’ [46,

p.1838]. (See section 3.4 for further discussion.)

Figure 2.10: A drawing of a section of a radial sector FFAG taken from [46].

Consider a simple dipole field as one would find in a basic Cyclotron. To reduce the

aperture, a gradient can be added to the field. This will increase the field strength,

B, with radius meaning that the equilibrium orbits will have a smaller ρ at any given

momentum than in the dipole case (equation 2.2). However, as discussed in sec.2.4.3,

this will result in vertical defocusing and loss of the beam. To deal with this, ‘alternate

gradient focusing’ is introduced. Now, rather than a continuous field, the magnet can be

split up into focusing and defocusing elements (see figure 2.10) and create spaces to fit
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accelerating cavities and all the other elements required to inject, extract and monitor

the beam.

2.5.1 Scaling Law

The simple model described so far has fixed magnetic fields and alternating gradient,

so is an FFAG by definition. However, there is an important problem that arises. As

shown in equation 2.6, if the gradient, dBz
dy

remains constant, the effective gradient, ke

will decrease as the momentum of the particle increases. This will cause the tune to vary,

which is called ‘chromaticity’, which may cause a loss of the beam due to resonances,

and will at least will distort the Twiss functions.

There are a few strategies for dealing with this, but in a radial-sector FFAG the ‘zero

chromaticity condition’ is strived for, where the tune does not vary with momentum.

More specifically, at any point around the accelerator:

δρ

δp
= 0 (2.25)

and

δke
δp

= 0 (2.26)

which means that the shape of the orbits must remain the same with momentum, but

the gradient must change so that ke in equation 2.6 remains constant. The field which

allows this is described by the Scaling Law [46, p.1838]:

Bz = Bz0

(

y

y0

)k

(2.27)
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where Bz = Bz0 when y = y0 and k is called the field index and is a measure of the

‘momentum compaction’: the higher k, the closer together the equilibrium orbits of

particles with different momentum. Figure 2.11 shows the profile of a scaling field in a

focusing and a defocusing magnet.
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Figure 2.11: An example of focusing and defocusing fields that obey the scaling law.

The equilibrium positions of the different momentum particles in such a field can be

derived from the similar equation [46, p.1838]:

p = p0

(

y

y0

)k+1

(2.28)

2.5.2 Focusing is Tied to Bending

Alternate gradient focusing in a radial sector FFAG is different than in a Synchrotron.

In a Synchrotron, the bending and focusing elements are usually split up into different

magnets, so focusing and defocusing will have no effect on bending.
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In a radial sector FFAG, however, focusing and bending are done in the same magnet.

In a scaling magnet which obeys equation 2.27, the gradient is given by:

dBz

dy
= k

Bz0
y0

(

y

y0

)k−1

(2.29)

So to swap the sign of the gradient, we can change the sign of Bz0, however, this will

also change the direction of bending in the magnet. For this reason, alternate gradient

focusing in FFAGs also gives rise to alternate curvature bending, which increases the

radius of the FFAG beyond a Cyclotron for a similar energy range.

2.5.3 Negative k

Of course, the sign of the gradient in equation 2.29 can also be changed by swapping

the sign of k. This can indeed produce a lattice in which the focusing and defocusing

elements bend in the opposite way to a positive k lattice, and it might be tempting

to think that alternating k rather than Bz would be a way of eliminating the negative

bend of the FFAG. However, as figure 2.12 shows, a negative k field not only swaps

the gradient of the field, it also flips the magnitude of the field around y0, which swaps

the equilibrium positions of the particles. This results in the higher energy particles

travelling on the inside of the curve and the lower energy particles travelling on the

outside of the curve. This will be discussed further in section 4.2.1.1

2.5.4 Non-Scaling Fixed Field Alternating Gradient Accelerators

The first Non-Scaling FFAG was proposed in 1997 [47] for a rapid cycling muon collider,

but the first to be built is called the Electron Model of Many Applications (EMMA)

and is just nearing completion [48]. In these designs, the zero chromaticity condition is
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Figure 2.12: Swapping the sign of k in a scaling field results in the equilibrium
positions being flipped around y0.

abandoned, so the shapes of the orbits vary with energy (figure 3.15), as does the effective

gradient and tune. The problem of resonances is sidestepped, in theory, by accelerating

so fast that they do not have time to build up. The advantages of these designs are that

they use simple magnets with linear fields, and the variation of orbit shape can create a

smaller aperture, meaning the magnets are relatively easy to manufacture.

This approach runs into a problem when trying to accelerate anything more massive

than an electron because acceleration systems that can accelerate them fast enough to

avoid resonances do not yet exist [49].

Another form of ns-FFAG uses the scaling FFAG as a starting point, but approximates

the scaling law using a Taylor expansion, which can be written as:

Bz = Bz0

[

1 + b1
y

y0
+ b2

(

y

y0

)2

+ b3

(

y

y0

)3
]

(2.30)

where

b1 = k b2 =
(k − 1)k

2!
b3 =

(k − 2)(k − 1)k

3!
(2.31)
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Each term represents a different multipole field which can can then be tuned by varying

bn. Figure 2.13 shows the first five multipole components that sum to the fit of a scaling

field. Notice that the dominant terms are the dipole, quadrupole and sextupole terms,

but the higher order terms become more important the larger the distance from y0.

Figure 2.14 shows the magnitude of the scaling field minus the magnitude of the sum

of the first four terms of the Taylor expansion. The difference becomes much larger the

further away from y0 you go because this is where the missing terms would have had an

effect.
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Figure 2.13: The first five multipole components which sum to make a scaling field.

2.6 Simulation Code

The tracking code used for all the studies is Zgoubi [43]. It is written in Fortran and

takes input in the form of a text file with key words followed by lists of numbers. This

form of input is impractical for large projects, so an addition has been written using

Python to make the input more user friendly, called Pyzgoubi [50].
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Figure 2.14: The difference between a scaling field and the sum of the first four terms
of its Taylor expansion. Within +/- 20cm of y0, they are very similar.

Zgoubi calculates the trajectories of charged particles in electric and magnetic fields [43,

p.12]. It is particularly useful for FFAGs because it is able to calculate the trajectories

of off orbit particles better than other packages considered like MAD-X [51].

The main geometry Zgoubi uses to model magnets is sections of arcs (see figure 2.15).

The user defines a radius, then a total angle for the ‘map’ within which a number of

magnets can be created. Reference positions for each magnet are specified as angles from

the entrance to the map and the relative positions of its faces are specified as angles to

the reference. The fields can be defined either by using the scaling law equation 2.27 or

a Taylor expansion equation 2.30.

2.7 Parameter Searches and Downhill Fitting

When designing anything with a number of parameters that can be changed to not

entirely obvious effect, it is often a good strategy to try a large number of different

combinations of these parameters to find the most useful. This is called a parameter
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Figure 2.15: Zgoubi defines magnets along arcs. Angles are given to define the size
of the ‘map’, the positions of the magnets and the magnet faces. The radius and the

exit and entrance angles can also be defined.

search, or brute force fitting and is effective if the ranges the parameters are varied over

are chosen carefully.

If all the combinations in a parameter search were set out in N-dimensional space,

where N is the number of parameters, an ideal situation would be to search through all

points in that space in very small small steps. However, processing time often limits the

number of combinations which can be tried and the steps between points will usually

be significantly larger than the precision required. For this reason, once a parameter

search has found its best value, a different type of fitting is required that will find the

best combination in a local area.

One method useful for this is called ‘downhill fitting’ [52, p.415]. Given a starting point

(P0) and direction (u0) in the N-dimensional parameter space, a down hill fitting function

will assess all the values over small distances in N different directions and find the best

point (P1). It then starts again from P1 with direction pointing directly away from the
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previous point (i.e. P1 - P0). Eventually, when the distance between some point Pm

and the next point Pm+1 is small enough, it will stop and return the combination of

parameters at that point.

The combined use of parameter search and downhill fitting function will be a major part

of the design strategies for all of the design studies in this thesis.

2.8 Chapter Summary

This chapter explained the basic physics required to understand the major work in this

thesis and demonstrated the author’s grasp of the important concepts. It started with

the motion of a particle in a uniform magnetic field (section 2.4), built up a picture

of the behaviour of particles in alternating gradient fields (section 2.4.3) and explained

the important points about non scaling Fixed Field Alternating Accelerators (section

2.5.4).



Chapter 3

Immediate Context

This chapter aims to put this thesis into context by giving an overview of the project

that the gantry and transport line are designed to be a part of as well as gantries and

transport lines for other purposes, both existing and proposed.

3.1 The CONFORM Project and EMMA

The CONFORM project (COnstruction of a Non-scaling FFAG for Oncology, Research

and Medicine) was set up in 2007 and includes three main projects: EMMA, the Elec-

tron Model With Many Applications; PAMELA, the Particle Accelerator for MEdical

Applications; and a project to assess other potential applications for ns-FFAGs such as

drivers for subcritical reactors [53].

EMMA is a test case for the principles of ns-FFAGs and has been successfully built at

the Science and Technology Facilities Council (STFC) Daresbury Laboratory. This is

a major achievement for all involved as it is the world’s first working ns-FFAG, which

will show that the principle of accelerating quickly using simple fixed field magnets is

50
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a sound one. This may signal a much wider use of this technology in the future given

the advantages of combining the high current and fixed fields of the cyclotron with the

variable energy extraction of the synchrotron. It is also very important to the PAMELA

project as it validates the concepts of ns-FFAGs as well as the simulation software.

Figure 3.1: The EMMA accelerator at the Daresbury Laboratory [48].

Made up of 42 cells, EMMA (see figure 3.1 for a schematic) accelerates electrons from

10 → 20 MeV. Each cell (figure 3.2) is made up of only a focusing and a defocusing

quadrupole so, ingeniously, bending is achieved by the beam being slightly horizontally

displaced from the magnet centres. There are 19 RF cavities in total, one in every other

gap between cells, except where the beam is injected from another accelerator ALICE

and where it is extracted to a diagnostic beam line [48].

The remarkable thing about EMMA is its linear fields. With scaling FFAGs, great

lengths are gone to ensure that the effective gradient remains constant throughout ac-

celeration, meaning the use of complicated non-linear fields and very wide (in the region

of 1m) orbit excursions. This is done so that the accelerating particles do not cross
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Figure 3.2: Four EMMA cells, each one consisting of a small red focusing magnet
and larger blue defocusing magnet. Also shown are two RF cavities, an ion pump and

a wall current monitor. [48].

resonances which destroy the beam. The principle with EMMA is that the particles can

be accelerated through resonances so quickly that they do not have time to build up.

3.2 PAMELA

This section gives a brief overview of the PAMELA project, its various components and

how this thesis fits into it.

According to the PAMELA design report [26], “the aim of the PAMELA project is

to design a highly efficient CPT facility, using the features of ns-FFAG technology to

improve performance over existing facilities”. Using fixed fields allows kHz acceleration

rather than the Hz possible in a synchrotron, but the variable energy extraction is

preserved. It is claimed that this will “result in a much improved patient experience,

greater patient throughput due to shorter treatment durations and in the case of Carbon

fewer treatment sessions”.

Figure 3.3 shows the layout of the proposed PAMELA accelerator. Carbon ions originate

at the source in the bottom left of the figure and are shaped into bunches, ready for
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Figure 3.3: The layout of the PAMELA accelerator. The larger ring is the carbon
accelerator and the proton ring sits inside. The transport line to take the beam to the

treatment rooms will attach in the top right of the picture [26].

acceleration, then pre-accelerated with the 7MeV linac; whereas the protons originate

from a source inside the cyclotron where they are also pre-accelerated and then shaped

into bunches (see section 3.2.7). Both types of particle are matched into the same

transport line with a switchable dipole, from where they are transported to the injection

system, which injects them into the smaller proton accelerator. The PAMELA cells

(section 3.2.3) are made up of three superconducting magnets each (section 3.2.4), which

require the cryostat arrays visible in the figure. There is space in between each cell for

the RF cavities (section 3.2.6, diagnostic devices and injection and extraction magnets

(section 3.2.6). Protons can be extracted from the accelerator at any momentum up to

a maximum of 0.729 GeV/c, but the carbon ions are accelerated up to 0.729 GeV/c in

the smaller ring before being transported to the larger, outer ring with the proton to

carbon transfer line. They are then accelerated to a maximum of 1.909 GeV/c before

being extracted into the transport line to the treatment rooms.
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Table 3.1: Summary of the clinical requirements of PAMELA. See [26] for a more
complete version.

Parameter Value Units

Horizontal dose filed size 15 ×15 cm

Maximum SOBP width 13 cm

Maximum depth 25 cm

Energy range (p+) 70 → 250 MeV

Energy range (C6+) 110 → 430 MeV

Dose field uniformity < 2 %

Dose field tolerance < 2 %

Beam spot size (FWHM) 4 ×4 → 10 × 10 mm

Scanning speed >100 Voxel/sec

Energy Step 0.5→2 MeV

Single dose 1 → 7 Gy

Intensity range 0.05→1.5 nA

Bunch intensity 2.5× 105 → 6.5× 106 ppp

Scanning speed 0.5 cm/msec

3.2.1 Clinical Requirements

The clinical requirements are meant to reflect an ‘oncologists’ wish-list’ which currently

cannot be met due to the limitations of existing technology. These are summarised in

table 3.1 [26, p.16] and the parameters that apply directly to the gantry and transport

line are: the field size, the beam spot size and the energy range.

3.2.2 Spot Scanning Issues

One of the advantages of using charged particles is that, due to the low beam divergence

as it passes through the patient, it is possible to deliver the dose in series of precise

‘pencil beams’. One of the goals of the PAMELA project was to be able to do this. It

requires small active dipole magnets to control the transverse beam position as well as

active quadrupole magnets to control the beam size. The design of this will be discussed

further in chapter 4, but it was important for the design of PAMELA to know what

kind of beam size would be useful and what errors could be tolerated.
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There are two main considerations when delivering a dose of radiation to a target volume:

‘uniformity’ and ‘tolerance’. Uniformity is the maximum dose deviation from the average

dose, which should be within 2%, and tolerance is the deviation of the average dose from

the prescribed dose, which should be within 5% maximum, however 2% is desirable [26,

p.8].

These requirements inform beam size requirements and the upper limit on beam posi-

tioning errors. Using information about the spread of beams in tissue and the minimum

resolution of medical imaging technology, the required beam spot size was between 4×4

mm and 10×10mm. A study of beam uniformity with beam positioning errors was car-

ried out. This showed that to achieve the 2% requirement, a maximum of 0.2mm error

can be tolerated, if the volume is rescanned five times or a 0.3mm error if a maximum

overdose in the tumour of 10% is allowed.

3.2.3 The PAMELA Lattice

For obvious reasons, the success of EMMA would be a great moment for all involved,

but was also very important for those working on PAMELA because it will show that ns-

FFAGs are possible. However, the concept at the heart of PAMELA is different to that

of EMMA. While linear magnets were suitable for electrons, it was found that the same

type of design could not be used for protons or carbon ions as their extra inertia increases

the time needed for them to accelerate to therapeutic energies, and crossing resonances

will distort the beam significantly [54]. Instead, PAMELA had to develop a new type

of lattice that is both non-scaling (to preserve the small momentum compaction) and

non-linear (to avoid the tunes moving into resonances with acceleration) [49]. The type

of cell that was developed is used as a starting point for the designs in this thesis.
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Figure 3.4: Conversion from FFAG sector shaped magnets to ns-FFAG rectangular
magnets. [49].

The design strategy is to start with a scaling FFAG in an FDF configuration and with

a very high k value, then break the scaling law by only using the dipole and the first

few multipole components (see section 2.5.4). Also, the magnets, which in a scaling

FFAGs are usually sector shaped, are straightened out into rectangles (figure 3.4(a)),

made parallel (figure 3.4(b)) and allowed to reach superconducting strengths [55] [49]

[26, p.42].

The proton ring uses 12 triplet cells of the type described above (see figure 3.5). The

ratio of magnet length to accelerator circumference was set as a balance between the

requirement for a compact design and the stability of the beam, which is improved by a

lower ratio. Specific values of k and the DF ratio were then found by a parameter search

and the magnet length within the cell increased slightly to reduce the peak magnetic

field. Table 3.2 shows the parameters of the final proton ring design and the effect these

parameters have are discussed again in section 5.4 where the design of the gantry is

described.

An interesting characteristic of the PAMELA design is the use of the ‘second stability

region’ in Hill’s Equation (equation 2.9). As discussed in section 2.4.6 if the tune in

one cell reaches certain values the beam will resonate and blow up. A large resonance
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Parameter Inj. Ref. Extr.

Proton Kinetic Energy [MeV] 30.95 118.38 250
C6+ Kinetic Energy [MeV/u] 7.84 30.98 68.36
Bρ [Tm] 0.811 1.621 2.432

Cells 12
r0 [m] 6.251
Magnet length [m] 0.3144
Packing factor 0.48
Field index, k 38
Orbit excursion [m] 0.176

Table 3.2: Lattice parameters for the PAMELA proton ring [26].

is at a π phase advance per cell, so if a magnet designer were to increase the k value,

increasing the tune per cell, at some point close to π, the beam would blow up and be

of no use. However, it is perhaps not widely known that there are usually further stable

values of k beyond the π barrier, which have large values of k and so small momentum

compaction. This is how the PAMELA lattice manages to keep the aperture low enough

to be practicable for superconducting magnets.

Unfortunately, this concept cannot be used in the gantry and transport line, as there are

sections of lattice that will need exactly a π phase advance to create points of dispersion

suppression. These dispersion suppression points will be discussed in chapters 5 and 6,

but from the explanation in section 2.4.10, it can be seen that anything greater than a

π phase advance will not result in dispersion suppression. So, since the second stablity

region in Hill’s Equation is defined by having a phase advance per cell greater than π,

the first stability region must be used.

The carbon ring requires a scaling up in size of the proton lattice because of the increased

rigidity of the carbon ions [56] [26]. The design process was similar to that of the proton

ring and it proved, again, to be a careful balance between the desire to make as small an

accelerator as possible the requirements imposed by beam stability, the limits of magnet
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Figure 3.5: The PAMELA proton lattice with particle tracks at the injection (inner
dotted line) and extractions energies (outer dotted line) [26].

technology and the need for space between cells to fit the RF units. The parameters of

the carbon ring are shown in table 3.3.

Parameter Value

Cells 12

r0 9.3 m

Magnet length 0.6330 m

Packing factor 0.65

Field index, k 42

Orbit excursion 0.217 m

Table 3.3: Lattice parameters for the PAMELA carbon ring [26].

Both rings underwent rigorous testing in simulation for tune variation, dynamic aperture

and sensitivity to positioning errors and in all of these were found to be successful.
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3.2.4 Magnet Design

The high fields in both PAMELA rings coupled with their non-linear nature, presented

a real challenge for magnet design [57]. This resulted in some unconventional magnets

being designed using so called ‘tilted solenoid’ or ‘double helix’ technology [58]. Figure

3.6 shows a basic dipole design, with concentric helical coils made out of the same piece

of superconducting, niobium-tin wire. Each coil creates a solenoid field and a dipole

field, but since the current in each is flowing in an opposite direction, the solenoid fields

cancel and only the dipole field remains. Further multipoles can be produced by adding

further pairs of coils around the outside [26, p.62]. Depending on the aperture and

number of multipoles required, field strengths of up to around 4T can be achieved.

Successful tests have been done in simulation to see if these magnets are indeed suitable

for PAMELA [26, p.69] and figure 3.7 shows the result of a small test of the complicated

winding procedure.

3.2.5 Extraction

Extraction from the accelerator into the transport line is done with the use of kicker and

septum magnets (figure 3.8). The kicker gives a short pulsed field to the particles to be

extracted, which is just enough to knock them vertically out of the aperture before they

are bent further by the high field strength septum after the next cell.

The challenge in the kicker is the very fast rise times required of the magnet. Vertical

extraction was a necessity because the fields required to overcome the large horizon-

tal beam excursion would require a much slower magnet than would be suitable for

PAMELA.
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Figure 3.6: An example of the ‘tilted solenoid’ type of magnets used by PAMELA.
This is just a simple dipole, whereas the PAMELA magnets would have more coil pairs

around the outside.

Figure 3.7: A trial to see if the complicated winding techniques required would be
possible.
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In the septum, the challenge was in varying such a high field (≈ 4T) at the rate of a

kHz with such a wide aperture. Superconducting magnets can easily reach such high

fields, but would be far too slow to cope with PAMELA’s repetition rate. The solution

was to conceptually design a so called ‘FFAG septum’ which has a varied field along its

aperture.

Figure 3.8: The extraction set-up in the PAMELA ring. The kicker knocks a particle
vertically just out of the aperture, where it is collected by the septum, which with a

much higher bending field, fully removes it from the ring.

3.2.6 Acceleration

PAMELA requires a repetition rate in the RF system of over an order of magnitude

higher than anything achieved by existing rapid cycling proton synchrotrons [26, p.93].

The design that will be investigated further is the well established ferrite loaded rf

cavity system, except with a type of ferrite not commonly used. The properties of this

ferrite need to be tested to show that it can create the cavity performance required for

PAMELA to be a realistic design.

3.2.7 Pre-Acceleration

PAMELA will employ a different pre-acceleration scheme for protons and carbon ions.

Protons require a simple cyclotron, whereas the carbon ions require a more complicated
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arrangement involving a source of four different carbon ions, selection of C4+ using a

dipole, bunching with a chopper, pre accelerating and focusing with an quadrupole that

pulses at radio-frequencies (called an RFQ), accelerating further with a linac and using

a stripping foil to convert the C4+ to the C6+ required by PAMELA.

After pre-acceleration, the beams pass through a switching dipole and are matched into

the main accelerator. A fuller explanation can be found at [26, p.18].

3.3 Existing Gantries

A gantry is a rotating structure, designed to deliver beam to the patient. These vary

greatly in size, from ≈ 3m high X-ray gantries which fit inside normal sized rooms and

have electron linacs and X-ray producing targets mounted on them, to ≈ 15m high

carbon gantries which have treatment room built inside their turning radius so that the

patients are not worried by the tonnes of equipment rotating around them. Figure 3.9

shows the end of the Heidelberg Gantry to give an impression of the size of the structure.

No FFAG transport lines or gantries exist, but variable field ones do, so it is worth

looking at them. Table 3.4 gives an overview of the types and sizes of existing gantries

that will be used as comparisons for the design in this thesis.

All but one of them are isocentric, which means they rotate around a fixed centre (the

isocentre) where the patient lies. The other option is to have exocentric gantries, where

the patient moves around a central point (figure 3.10). In the case of the ‘Riesenrad

Gantry’ design [60] the bending magnets are at the central point and the patient rotates

around it as if on a ferris wheel (in fact, this type of gantry is named after one such wheel
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Figure 3.9: The last section of the Heidelberg gantry gives an impression of the scale
of the structure. [59].

Table 3.4: Parameters of existing gantries. Key: a = assembly, o = in operation,
c = commissioning, d = design, iso = isocentric rotation, exo = exocentric rotation.

Information from [59].

Site Munchen PSI 1 PSI 2 Hyogo Chiba Shizuoka Heidelberg Chiba

Ion H+ H+ H+ H+ H+ H+ C C

Status a o c o o o a d

Type iso exo iso iso iso iso iso iso

Energy
(MeV/u)

250 230 230 230 235 235 430 400

Length
(m)

10.1 10.2 11.6 9.5 10.7 9.0 19.0 16.9

Radius
(m)

5.0 1.4 3.2 4.8 5.0 4.8 5.6 7.1

Number
of Dipoles

2 3 3 2 2 3 3 3

Number
of Quads

7 7 7 7 9 4 8 7
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in Vienna). However, exocentric schemes can also be a compromise between patient and

magnet movement, as is the case in the very compact PSI 1 gantry [61].

Figure 3.10: Examples of isocentric (left) and exocentric (right) gantries [62, part 2,
p.151]. The patient stays at the fixed centre of an isocentric gantry, while they move
around a circle in an exocentric gantry. Exocentric gantries can take the form shown
here, or both the magnet and the patient can rotate around different circles, to make a

more compact design.

Exocentric designs make perfect sense from the point of view of an engineer because

of the vast weight difference between the bending magnets and the patient. However,

isocentric designs predominate because of requests from clinicians to move the patient

around as little as possible.

Figure 3.11 gives an idea of the main components of a typical gantry. A dipole field

bends the beam upwards, to create height, then two more rotate it to the vertical so it

can be directed at the patient. The scanning magnets are placed before the final dipole

magnet to give a wider field and so that the beams at the patient are almost parallel.

It also allows the height to be reduced, since the scanning magnets can be horizontal,

rather than vertical. However, this does mean that a large aperture is required in the

final magnet making it very bulky and requiring it to contain a large vacuum.
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Figure 3.11: An example variable field gantry design which rotates 360◦. The solid
lines are particle tracks at three different energies [63].

3.3.1 Designs for Matching into a Rotating Gantry

The rotation of the gantry can cause problems with optics, especially when the beam

from the accelerator is an unusual shape. In this case, complicated rotator magnet

designs have to be devised [64], and time varying magnets are required. However it is

likely that the beam into the PAMELA gantry will be more reliable and a rotationally

invariant beam can be created.

There are three methods for matching into a rotation gantry and they are discussed in

depth in [62, part 1, p.144]. These are called:

• Symmetric beam method

• Round beam method

• Rotator method

The symmetric and round beam methods are really requirements of how the optics are

set up either side of the rotation point, whereas the rotator method uses an extra piece

of matching lattice between the transport line and gantry that rotates to half the angle

of the gantry.
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The symmetric method is by far the easiest to understand. The idea is to create a

rotationally invariant beam by having equal horizontal and vertical emittances, Twiss

functions as well as zero dispersion. This design is very useful when the beam is a regular

shape as it will be in PAMELA.

The round beam method is more relaxed about the shape of the beam at the start

of the gantry:
√
εβ in the vertical and horizontal planes have to be equal and it is

advised that the alpha functions both equal zero [62], presumably to simplify matching

the β function by keeping it constant through the interface betweeen transport line and

gantry. However, it also requires that the phase advances over the length of the gantry

are integer multiples of π and that allowances are made for the Twiss functions changing

within the gantry as it rotates. This could cause a problem with scanning magnets, but

if a point can be created before the end of the gantry where the phase advances in both

planes are integer multiples of π, the optics in the lattice after this point will be invariant

with rotation and the workings of the scanning system would be unaffected.

Figure 3.12: A schematic of a ‘rotator’ section used to map a beam from a transport
line to a rotating gantry. φy = 2π and φz = π within the rotator quadrupoles. The
rotator is rotated to half the angle of the gantry relative to the transport line [62].

The rotator method maps the Twiss functions from the end of the transport line into the

rotating gantry. It makes no requirements of the beam, except that it must have zero
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dispersion at the exit of the gantry, which makes it very useful in situations where the

beam has a very irregular shape [64]. The principle is shown in figure 3.12. The rotator

section of lattice has to have a 2π horizontal phase advance, a π vertical phase advance

and a rotation angle of exactly half of the gantry rotation. When the beam arrives at

the gantry, it will have exactly the same Twiss functions, but be rotated by the same

angle as the gantry. As this scheme will not be used in this thesis, the mathematics of

how this works will not be reproduced here, however they are explained in [62, part 1,

p.152].

3.4 FFAG History and Relevant Literature

The history of FFAG design can be seen as a history of trying to battle against the effects

of tune variation. Some designs try to keep the tunes steady by changing gradient with

horizontal position, some use the shape of the magnets, while others use the acceleration

speed made possible by fixed fields in the magnets and fixed frequencies in the RFs to

make resonance effects negligible.

This section deals with the existing literature on FFAGs and ns-FFAGs which could be

useful to the design of the gantry and transport line. First there will be a discussion of the

history of FFAGs and examples of different basic cell types designed for accelerators and

their relative properties, followed by gantry and transport line designs more specifically.

3.4.1 Early FFAGs

The concept of the FFAG follows so naturally on from the concept of alternating gradient

focusing, that it was proposed independently four times in the early 1950s soon after

alternate gradient focusing was invented. In the USA it was proposed by Haworth and



Chapter 3. Immediate Context 68

Snyder [65] as well as Symon [46]; in Japan it was proposed by T. Ohkawa [66]; and in

the USSR by Kolomesky [67].

A 1956 paper by Symon et al. [46] summarises the different types of FFAG conceived of

at the time. The two main types were the radial sector FFAGs and the more compact

spiral sector FFAG. The radial sector type is most useful to this thesis and it is discussed

in section 2.5.

Figure 3.13: A section of a spiral sector FFAG as drawn in [46]. Alternate gradient
focusing is provided by the particle travelling over the peaks and troughs in the field

as they spiral outward.

The spiral sector FFAG uses more complicated magnets than the radial sector FFAG

(figure 3.13). Like the radial type, the field increases with radius overall, but on the small

scale, the gradient is alternating (figure 3.14). The peaks and troughs of the gradient

actually spiral out, so that a particle experiences an alternating gradient as it travels

around the orbit, which keeps the beam focused. The lack of the negatively bending

defocusing magnets makes for a much more compact design, however complications arise

with injection and extraction.

The benefits these designs had over the cyclotrons of the time was partly that the edges
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Figure 3.14: A radial slice through the field of a spiral sector FFAG as drawn in
[46]. These peaks and troughs actually spiral outward so that a particle will experience

alternate gradients in quick succession as it travels around the accelerator.

of the sector magnets create focusing quadrupole and sextupole fields, but also that

the space between magnets could be used for RF cavities, leading to higher achievable

energies. Also, compared to the large disk magnets in cyclotrons, FFAG magnets could

be horizontally thinner, leading to much smaller and cheaper vacuum systems, as well

as the reduced cost of the magnets themselves [65].

After over a decade of research into FFAGs by MURA (the Midwestern Universities

Research Association) based in Chicago, they were abandoned as synchrotrons became

the dominant accelerator type in high energy physics. Several innovations came from

the study of the non-linear fields in these machines. One which is very relevant to this

thesis is the tracking of particles by computer simulation [5, p.17].

After MURA ended its interest, the idea of FFAGs was not seriously entertained again
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until the 1980s. Unfortunately, this interest was short lived, and proposals for spallation

sources (where high Z materials are bombarded with high energy protons to produce

neutrons [68]) were rejected in the US and Germany [65].

3.4.2 Revival of the Fixed Field Alternating Gradient Accelerator

In 2000 the first proton FFAG was switched on at KEK in Japan [69]. It had a maximum

energy of 1MeV, eight radial sector triplet magnets in the DFD configuration and an

orbit radius of 0.8 → 1.1m. Major innovations were introduced in magnets and RF

design for this FFAG and it paved the way for nine more FFAGs to be built by 2008

with energies reaching 150MeV [65].

There are also many FFAGs in design or production, ranging from the tiny MEICo

Laptop [70], which has a maximum radius of only 2.8 cm and maximum energy of only

1MeV, to the largest J-PARC Neutrino Factory Accelerator, which has a radius of 200m

and will accelerate muons to 20,000 MeV [65, p.25].

Both of these are being developed in Japan, which has emerged as the main centre for

this technology. However, there is also interest in France, where the RACCAM project

aims to build a spiral sector FFAG for proton therapy [71]; as well as in the USA where

there is, among other things, interest in using FFAGs for acceleration of high power

beams for medicine and industry [72].

3.4.3 The First Non Scaling FFAG Design

A huge leap in the development of FFAGs came in 1997, when the study of rapid cycling

rings for muon acceleration led to the realisation that if acceleration is fast enough,

resonances do not have time to build up and the careful adherence to the scaling law
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can be abandoned [65] [47]. This allows a number of useful advantages to be gained,

like the use of linear magnets and a reduction in aperture due to a higher field gradient

being possible.

Figure 3.15: Comparison of FFAG and ns-FFAG orbit positions [65]. Shows the
definition of ‘non-scaling’ because the orbits change shape with energy. In this example
the field gradient is reversed in the ns-FFAG case to reduce the aperture in both F and

D magnets, but this is not necessary, nor is the swapping from DFD to FDF.

The idea was developed into a full ring by 1999 [73], with magnets with a field gradient

that reduces radially, rather than increases. Perhaps counter intuitively, this creates a

smaller aperture in the F magnet and an even smaller one in the large D magnet. A

number of designs followed and EMMA, as mentioned, has been successfully built.

There are three accelerator designs in particular that are of interest to the development

of PAMELA and the designs in this thesis.
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Figure 3.16: The three rings of the KST lattice [74].

3.4.4 The Keil, Sessler, Trbojevic Lattice

The linear non-scaling idea, was developed for accelerating protons and carbon ions and

formed into a lattice design by Keil, Sessler and Trbojevic (called the KST lattice) [74].

The KST lattice uses three rings to accelerate protons to 250MeV and C6+ to 400MeV/u

(figure 3.16). The central ring works as the extraction ring for protons as well as the

injection ring for carbon, with the inner and outer rings taking only one species. Like

EMMA, it uses a doublet cell, but the magnets are combined function, rather than the

bending being caused by magnet offsets. Figure 3.17 shows one of these cells. The KST

lattice is very compact, leaving only 8cm between magnets in the cell and 29cm between

cells in the central ring. This helps to produce low beta functions and dispersion, but

may be a problem with overlapping fields and fitting in RF units.

This design was critiqued from a PAMELA perspective in [75] and found to be too

sensitive to positioning errors to accelerate a proton beam without inducing resonances.

However, this does not automatically discount the basic design from use in the gantry
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Figure 3.17: A KST lattice cell [75].

as single pass transport lines cannot build up resonances and a compact design will be

desirable. D. Trbojevic has followed this line of inquiry in a number of papers, which

will be discussed in section 3.4.7.

3.4.5 Edge Focusing ns-FFAG

How PAMELA got round the problem of resonances has been discussed in section 3.2, but

another way of doing it has been investigated by Carol Johnstone and Shane Koscielniak

[76]. While non-linearities are reintroduced to the fields in PAMELA to control tune

variation, in this design, it is attempted with a combination of weak focusing (see section

2.4.3), a radial shaping of the pole tip, edge focusing and the linear focusing from the

quadrupole gradient.

Edge focusing arises when a beam goes through the fringe field of a magnet at an angle.

Different angles will give different strength focusing, so changing the angles of the magnet

entrance with radius, keeps the tunes stable with acceleration.

In simulation, this produces some impressive results so far, however, it was rejected by

the PAMELA project through fears that the magnets would be problematic to manufac-

ture; especially if they are to be superconducting. This is also a valid reason to discount
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it for the studies in this thesis.

3.4.6 Grahame Rees Pumplet Design

What all the slow cycling ns-FFAGs have in common is an increase in variable parameters

to adjust compared to the original ns-FFAG concept. Johnstone and Koscielniak have

extra modes of focusing, the PAMELA lattice has extra field components, while Grahame

Rees has added extra magnets [77].

Figure 3.18: A ‘pumplet’ cell. The term derives from the Welsh for ‘five’.

Rees’s ‘pumplet’ (pronounced ‘pimplet’) cells, shown in figure 3.18, are flexible enough

to match different types of cell together to allow for insertions with long drift lengths

where needed. This design is being considered for use as a proton driver for a proposed

neutrino factory and it has been adapted for medical applications [77], with a gantry

proposal discussed below.

3.4.7 Gantry Design Developed from the KST Lattice

This design has developed out of the KST lattice [74]. The geometry is created by taking

three quarters of a ring, then turning around the first quarter. Magnets can then be

taken out either side of the point where the line has been switched, to lower the height

[78–80].
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Dispersion and beta functions are kept low with a very dense lattice, but the design pro-

poses small permanent magnets, so the weight should be less than conventional gantries

[80]. The height is only 2.61m and it uses scanning magnets at the end of the gantry (see

figure 3.19). A variation on this gantry is also discussed in [80] using superconducting

magnets and with the scanning magnets placed before the final triplet. This is also a

very compact and dense design.

Figure 3.19: A gantry developed from the KST lattice [80].

This gantry has been proposed for use with the PAMELA lattice, however, it will not

be pursued. This because the density of the magnets is too great. Although the gantry

will not require any RF cavities, the magnet design here would be very challenging (for

example, at the switch of the point of curvature, opposite bending magnets are placed

immediately next to each other). The designers point out that permanent magnets are

available that could overcome these problems [80], however, the PAMELA lattice is

already using non-conventional magnets in its main ring, so further unconventional type

magnets in the gantry would probably be too high a risk.
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However, the overall geometry is a good place to start for the design of an FFAG gantry

and will be used in this thesis.

3.4.8 Gantry Design by Grahame Rees

This is a proposal for a new geometry of a gantry that aims to overcome the problem of

the reverse bend in conventional gantries and the idea can be seen clearly in figure 3.20.

The 270◦ bending is done by large combined function (dipole and defocusing quadrupole)

magnets with small focusing magnets between each cell. In the initial plans, it has a

10m diameter, which is about half the length of the Heidelberg gantry, but its circular

shape means it also has a 10m radius — roughly double the height. Scanning is done in

the nozzle above the patient, but there would also be a tracking dipole where the ions

are injected below the patient platform.

The idea of an horizontally compact gantry design with no reverse bend and simple

magnets that neither ramp over time or create complicated beam dynamics, is very

appealing. However, the large bending magnet next to the patient may cause problems

and it has a very high vertical radius compared to the other gantry designs. The reason

it will probably always be higher than conventionally shaped gantries is that it has to

do a complete 270◦ bend, whereas conventional gantries can flatten out by not bending

an initial 90◦ before bending back.

3.4.9 Transport Line Design by Shinji Machida

As bending is tied to focusing in FFAG magnets, transporting a beam in a straight line

is not entirely straight forward. The scaling law itself, assumes a curvature by defining

a radius. The solution proposed by Shinji Machida in [82] is to make the curvature very
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Figure 3.20: A proposed gantry layout without a reverse bend [81].

small by making the radius of curvature very large. The scaling law is rewritten as:

Bz = Bz0

(

y + y0
y0

)k

(3.1)

Where y0 >> y.

Machida uses a quadruplet cell, which can really be thought of as a doublet with the F

and the D magnets split in half. A long straight can then be added between either F or

D magnets because the deflections of the particles and the Twiss parameter alpha, will

be zero at these points, as shown in figures 3.21 and 3.22.



Chapter 3. Immediate Context 78

Figure 3.21: Tracks through a quadruplet straight transport line cell. [83].

Figure 3.22: Beta functions through a quadruplet straight transport line cell. [83].
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It is also shown in [82] how an FFAG dispersion suppressor can be designed by doubling

the k value of the cells.

This paper is obviously a good base to build the transport line design on and it will be

studied further, along with the dispersion suppression technique.

3.5 Motivation for a New Gantry and Transport Line

From this review of the existing literature, it can be seen that a new line of inquiry is

desirable for the PAMELA gantry and transport line. Although the PAMELA accel-

erator would still be advantageous with a variable field gantry and transport line [26],

its full potential would probably only be reached using fixed fields for the down stream

elements because this will allow the fastest switching between energies and subsequently

reduced treatment times.

For reasons already discussed above, of all the approaches to FFAG design, the one used

in the main PAMELA ring seems the most practically appropriate.

3.6 Chapter Summary

This chapter gives an overview of the immediate context to the work in this thesis

which shows the author’s understanding of the specific field in which he is working. The

PAMELA project was explained (section 3.2) because the work in this thesis is for that

project. Existing gantries and rotator systems are discussed in sections 3.3 and 3.3.1

because a gantry is to be designed. A history of FFAGs is presented in section 3.4 which

builds up to a review of the current literature on the subject.
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Specifications and Challenges

The broad aims of this thesis are to design a transport line and gantry for the PAMELA

project using ns-FFAG magnets. This chapter will narrow down the exact specifics, give

an overview of the challenges these create and identify possible starting points for the

task ahead.

The statement of the aims of this thesis as ‘designing the transport line and gantry

for PAMELA’ is a concise, but broad statement, which could include a wide range of

areas of study I do not intend to go into. This thesis is really concerned with a lattice

design for the main bending and focusing magnets. This means that, for example, it will

not go into detail about how a particular magnet will be fabricated, or the engineering

issues involved in rotating 5m high gantry holding 30 superconducting magnets and all

the liquid nitrogen required to keep them cool. These are interesting and important

problems, but beyond the scope of this thesis. I will also only be designing beyond the

start of the bending magnets in the transport line and before the end of the bending

bending magnets in the gantry, as a result the extraction system from PAMELA and

the scanning system at the patient will not be tackled. The PAMELA project intends

80
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to treat with protons and carbon. This thesis, however, will mainly design for proton

therapy, since the principle needs to be shown with these, lighter, particles first, before

the higher magnetic rigidity of the carbon ions can be tackled.

4.1 Specifications

There are three sets of requirements that the transport line and gantry must meet.

Firstly, and most obviously, the magnets have to be engineerable; there may be so-

lutions with 6T fields and 20cm long magnets, but they would only be useful to this

study if a general proof of principle is required and could be refined into a reasonable

design. Secondly, there are clinical requirements; this is a design which will be used for

medical applications, hopefully within hospital buildings, so there are constraints on the

beam that is delivered and the space that can be used in doing so. Thirdly, there are

requirements specific to the PAMELA project; the transport line has to match to the

extraction point of the PAMELA ring as well as be constructed at the same time.

The beam specifications are dictated by the clinical requirements [26]. Firstly the energy

range has been chosen so that the beam can penetrate between 3cm to 25cm into the

body, to reach the most deep seated tumours from any angle. The lower limit corresponds

to the energy at which protons become useful [26]. This corresponds to an energy range

in the transport line and gantry of 60 to 240 MeV or a momentum range of 0.369 to

0.729 GeV/c. From the point of view of the gantry and transport line, switching between

these energies should be treated as instantaneous.

The voxel size should be between 4×4×4 mm and 10×10×10 mm (or 64 mm3 and 1000

mm3) [26], though only the transverse dimensions are important to this thesis. These
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put a constraint on the beta functions at the end of the gantry, because it means the

√
εβ in both the horizontal and vertical planes should be between 4 and 10 mm.

The scanning system may take a slightly different form than that defined in [26]. All

existing scanning systems have no variation of horizontal position with momentum, so a

volume will be filled voxel by voxel, with a beam shape as regular as possible. However,

as FFAGs have an inherent dispersion, a less conventional way of filling a volume could

possibly be used. Assuming the intensity of the beam can be varied as quickly as the

energy, it would be theoretically possible to fill a volume with an irregular shape like

a curve. This would be a great aid to lattice design, but would put a burden on the

treatment planning software [84].

The advantage of using an FFAG accelerator is that scanning through the energy range

can be done very quickly; considerably reducing the time it takes to scan any given vol-

ume. In principle, the transport line and gantry should not slow this down by introducing

variable field magnets, so FFAG magnets should be used throughout. However, as this

thesis will show, there are reasons why this is not always possible, or even desirable, but

it is an important goal in the first approximation.

Due to the non-linear nature of the type of magnets this thesis considers, scanning

cannot be done before the final 90 degree bend as it is in most existing gantries [26,

p.148]. The fact that scanning must be done after the bending places a constraint on

the space between the last bending magnet and the centre of rotation. This length is

determined by the maximum angle needed to be swept by the scanning magnets added

to the space needed for the patient.

The PAMELA project requires an area 20cm × 20cm to be treated from any given

rotational position of the gantry. This can be achieved with a 0.1 rad deflection and 2m
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of drift. However, this will not be the upper limit because at least a metre is required

for the patient to fit into without feeling claustrophobic and another 2 metres will be

needed for the scanning dipoles and quadrupoles to control the beam size. Therefore

there should be three metres between the end of the bending magnets and the isocentre

(figure 4.1).

Figure 4.1: Schematic of the end of the gantry showing that 3m is needed between
the last bending magnet and the isocentre. 50mrad ≈ 3◦

To keep costs of the project down, it was suggested that the magnets used be similar

to those used in the PAMELA main ring (section 3.2.4). Turning that requirement into

concrete numbers is difficult as designing them is a complicated process. However, at

the time of design, as a rule of thumb, the author was advised that the peak field should

not exceed 3T and the length should be a minimum of about twice the aperture [85].

(Although, if a design can be made with fields less than 1T, it might be possible to

use more conventional warm magnets, which would theoretically be cheaper than the

PAMELA type magnets). Another constraint this imposes is that the magnets must

be rectangular in the horizontal plane and be orientated parallel to the other magnets
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within the same cell. The cost issue also means as few magnets as possible should be

used.

The geometry of the gantry is constrained by the space it should fit in to and the distance

needed between the end of the bending magnets and the patient. In hospitals, height

is often more expensive than length, so the design should prioritise appropriately. The

gantry at Heidelberg is the largest currently existing and requires 10m of height to do a

360◦ revolution; this is considered to be too large for anything comparable to be built

again. The PAMELA design should be smaller.

4.1.1 Summary of Specifications

Beam Specifications:

• Momentum range = 0.369 GeV to 0.729 GeV

• Switching between momentum at a rate of ≈ 1kHz

• Positional dispersion limited to 5cm at end of gantry.

• Angular dispersion limited to within around 0.03◦ (0.5 mrad) at the end of the
gantry.

• No distortion of the beam due to rotation of gantry.

• 0.4cm <
√
εβ < 1.0cm

Magnet specifications:

• Fixed fields throughout the transport line and gantry

• Rectangular in the horizontal plane

• Magnets parallel with in cells

• Aperture of the magnets around half the size of the length

• Fields no higher than 30T

• As few magnets as possible to be used

Space Specifications:
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• 3m from bending magnets to patient

• Total height less than 10m

• Height more important than length

4.2 Design Challenges and Possible Solutions

The purpose of this section is to identify the main challenges involved in transporting

the beam from the PAMELA ring to the patient, and propose possible solutions, before

discussing the design studies that will be undertaken. There are three main challenges:

the transport line, the gantry and matching between the different sections.

4.2.1 The Design of the Gantry

In [78] the elevation and rotation of the beam required in the gantry is created by taking

three quarters of an FFAG ring and turning the bottom around. Fig.4.2 shows how this

would look using the PAMELA ring. This is a good place to start the design because it

fits the criteria of using the same magnets as PAMELA. However, there are a number

of problems that need to be overcome to make this into a reasonable gantry design.

4.2.1.1 Switch of Curvature

The most striking problem is that the curvature changes at point B in fig.4.2, meaning

that a high energy particle travelling on the outside of the curve between A and B would

have to either travel on the inside of the curve between B and C (negative dispersion),

or switch sides at point B in fig.4.2.

As discussed in section 2.5.3, the scaling law offers the possibility of negative dispersion.

However, the momentum compaction in a negative k field is different to that using a
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Figure 4.2: Schematic of the PAMELA lattice turned into a gantry by taking three
quarters of the ring and flipping the bottom quarter. Points A, B and C are referred

to in the main text.

positive k. This can be seen in equation 2.28, which rearranges to:

y = y0

(

p

p0

)
1

k+1

(4.1)

For any given p, the effect of swapping the sign of k is more than simply swapping the

sign of y. This means that matching between the regions would be problematic.

The more appealing approach is to create a lattice that will switch the equilibrium orbit

positions from one side to the other either side of point B. This involves the dispersion

being reduced to zero and recreated afterwards.

4.2.1.2 Rotation

As mentioned in section 3.3.1 all existing rotator systems rely on time varying magnets

to match the beam to the rotating gantry. This clashes with the need for an entirely

fixed field system, and it would be desirable to design a novel solution to this problem.



Chapter 4. Specifications and Challenges 87

The major problem, however, is that every energy is necessarily travelling along the

same path through the rotator, so it is very difficult to see how manipulating the Twiss

functions of each energy independently would be done with fixed fields.

Of the existing solutions discussed in 3.3.1, only the symmetrical beam method would

be appropriate. The rotator method is mainly useful for irregularly shaped beams and

would add unwarranted complexity to the design. Whereas the round beam method

requires some point within the gantry at which the phase advances are an integer multiple

of π in both planes. As will become apparent in section 5.5, achieving this for all

momenta with fixed fields would be very problematic due to the non-linear nature of

suppressing dispersion with FFAG fields.

The symmetrical beam method works by making the beam rotationally symmetrical at

the entrance to the gantry (point A in fig.4.2). This means that dispersion should be

zero and the transverse shape of the beam should be circular. A circular beam requires

βy = βz and αy = αz = 0 and the transport line should be designed in a way that it

delivers this with fixed field magnets if at all possible.

4.2.1.3 The End of the Gantry

At the end of the gantry (point C), the beam will go into the scanning system. From

discussions with the designer of this system [84], it was decided that the beam must

have zero angular dispersion (to within 0.03◦ or 0.5mrad), and a reduced positional

dispersion. As at points A and B in fig.4.2, dispersion suppression is required. This will

be discussed in section 4.2.5.
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4.2.2 Transport Line

The schematic in fig.4.3 shows a possible layout for the treatment rooms and the trans-

port line. It contains the major challenges that any transport line design will have to

overcome: transporting the beam in a straight line; bending the beam; and reverse-

bending the beam into the treatment rooms with a switchable magnet.

Figure 4.3: Schematic of the transport line and treatment rooms.

4.2.2.1 Transporting the beam in a straight line

The problem of straight FFAGs has been discussed in section 3.4.9 with reference to

[82]. This is the approach this thesis will use as a starting point.

4.2.2.2 Bending

Once a straight design has been achieved, it will be another challenge to disrupt the

periodicity of the lattice and introduce the matched bending section shown in fig.4.3.

This is a lattice design problem and involves creating a section of lattice which matches
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to the equilibrium positions and the Twiss functions in the straight sections either side

of the bend.

4.2.2.3 Switching into Treatment Rooms

An even bigger challenge will be the extraction to the treatment rooms because these

are reverse bends, which, as discussed already, will be problematic with FFAG magnets.

Moreover, a switchable magnet will have to be used to redirect the beam to the treatment

room.

The obvious solution for the switching magnet is to put a dipole somewhere in the long

drift between cells. This has the advantage of using simple magnets to do the switching,

but there will have to be matching to cope with the dispersion created by the dipole.

Another possible solution is to switch off one of the magnets in the main transport cell

in a way that angles the beam away from the straight. This means that no new magnets

need be manufactured and there will be no added dispersion, however if the magnets

are superconducting, it may not be an easy thing to turn off a magnet within a cell.

As in the gantry, where a similar problem involving reverse bends is faced, a solution

using dispersion suppression should be explored.

4.2.3 Matching to PAMELA

At the time of writing, an extraction scheme has not been fully worked out for PAMELA,

so any design will have to be flexible enough to add a matching section. As a guide,

however, this thesis will use the characteristics of the beam at the centre of PAMELA’s

long drift.
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4.2.4 Matching from Transport line into the Gantry

The point at which the transport line and the gantry meet is very important because

the gantry has to be able to rotate through 360 degrees without distortion of the beam.

There are various ways of dealing with this (outlined in [62, p.143]), but none specifically

proposed for FFAG gantries.

The simplest solution would be to create a perfectly round beam at this point with

horizontal beta equal to the vertical beta and both alphas equal to zero (see section

3.3.1). Dispersion would also have to be zero here. This is especially challenging for

an FFAG type machine because the gradient of the field effects both the equilibrium

orbit positions (which have to be bought together to eliminate dispersion) and the beta

functions.

4.2.5 Dispersion Suppression with Scaling Magnets

As discussed in section 2.4.10, dispersion suppression can be achieved by creating a

section of lattice which has half the closed orbit of the previous section and excites half

of a betatron oscillation; a π phase advance. In a scaling field, the closed orbit positions

can be halved by doubling k [82]. This is shown by taking the first term of the expansion

of equation 4.1:

y = y0 +
y0

k + 1

p

p0
(4.2)

So for a given p, y ∝ 1

k+1
. As will be explained in sec 5.2, k >> 1, so for all momenta:

y ∝ 1

k
(4.3)



Chapter 4. Specifications and Challenges 91

and doubling k halves the equilibrium orbit position. This is the technique that will be

used for all dispersion suppression points, however, because this only uses the first term

of the expansion of the scaling law, it is not exact, so does not provide perfect dispersion

suppression in all cases. This will be tackled in section 5.5.

4.3 Chapter Summary

This chapter sets up the two design chapters, demonstrating the author’s clear idea of

the project being undertaken. The specifications are set out in section 4.1.1 and the

challenges which will be tackled are identified subsequently.



Chapter 5

Gantry Design Studies

5.1 Introduction

This chapter deals with the process of designing the FFAG gantry. It starts in sections

5.2 and 5.3 with a design of a circular FFAG lattice that is known to work. Three

quarters of this ring is then taken and the bottom quarter turned around; as in [78] (see

also figure 4.2). In section 5.4 the problems of dispersion described previously in section

4.2.1 are solved (5.5) and it is shown that a gantry design using these type of magnets is

possible in principle (5.6). The author presents his own, novel work when describing the

solution for the problem of perfect dispersion suppression in section 5.5 and the gantry

design presented in section 5.6.

The author’s own work is also presented in section 5.7 with a novel design, which reduces

the overall height. This requires a complete re-design, which is split up into stages: The

final 90◦ bend is tackled in section 5.7.2; with the preceding S shaped part of the lattice

tackled in section 5.7.3; the whole gantry is tied together and its properties presented

in 5.7.4. This design is novel and all the work towards achieving it is the author’s.

92
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The final section of this chapter (5.10) acknowledges that the final design is probably

too large for the PAMELA project and discusses ideas for further work and new lines of

inquiry.

Parts of this work are in [86] (section 5.5), [87] (section 5.7) and have been used for the

PAMELA design report [26].

5.2 Basic Magnet Design

The magnets are modelled in the same way as in the main PAMELA lattice [49]. This

starts with the radial sector magnet design described in [46], but for simplicity of man-

ufacturing, the magnets are made rectangular. The field lines within the magnets are

regular and parallel with the magnet faces.

The magnets in Zgoubi are defined on an arc (see sec.2.6) because they have to be made

rectangular using a very large radius of curvature; making y0 >> y and using the version

of the scaling law described in [82]: equation 3.1. The exact size of y0 is arbitrary, but

for convenience of calculation, y0 = 1km will be used. In a 1m magnet, this gives a

curvature of 0.6◦, which can be compensated for when specifying the exit angle in the

definition of the magnet in Zgoubi.

To maintain the focusing strength, k has to increase by the same order of magnitude as

y0. So as y0 is going from ≈ 1m to 1km, k should become k × 1000. This can be seen

by looking at the expansion of the scaling law (equation 2.30). Taking the quadrupole

term:

Bz = B0

k

y0
y (5.1)
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If k is not increased by the same factor as y0, increasing y0 would have the effect of

reducing the quadrupole strength to close to zero. This thesis will take the multiplication

factor of k as implicit, so a k of 5000, for example, will be referred to as 5.

The shape of the field going through the magnet in the s dimension is not uniform. Each

magnet has a fringe field that extends beyond the edges of the magnet and the field does

not jump to its full strength immediately within the magnet. Because the magnets are

rectangular, the shape of the field is actually defined along x, the dimension tangential

to s (see figure 2.1). The shape of the field along x is defined using the Enge function

F(x) [43, p74]:

F (x) =
1

1 + exp

[

∑

5

i=0
Ci

(

x
g

)i
] (5.2)

Where Ci are the Enge coefficients and g is the extent of the fringe field beyond the

edge of the magnet, as well as how far into the magnet the full field is reached. Figure

5.1 is an example of what an Enge function looks like using the same coefficients (Ci) as

the main PAMELA ring: (0.1455, 2.2670, -0.6395, 1.1558, 0, 0)[49] as well as the same

value of g: 0.15m.

X

FHxL

1

g

Figure 5.1: An example Enge function: used by Zgoubi to model the fringe fields.
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The Enge function is combined with the scaling law 3.1, to give the field profile in the

y and x dimensions:

Bz(y, x) = Bz0

(

y + y0
y0

)k

F (x) (5.3)

5.3 Basic Cell Design

There are two basic cell layouts that this thesis considers: the triplet (comprising three

magnets) and the quadruplet (comprising four). The quadruplet will be used for the

transport line and will be discussed in section 6.2.

Triplet

The triplet is used for all curved lattices and has the structure of two focusing magnets

either side of a defocusing one (FDF). This ensures that the focusing magnets do the

bending while the defocusing magnet adds vertical focusing. Figure 5.2 shows an example

layout with three particle trajectories drawn through. The D magnet is offset to minimise

the aperture.

5.4 Proof of Principle Gantry Design

Aims

The aim of this study is to show that an FFAG gantry with dispersion suppression

points is at least possible in theory. The main thing to establish is that a lattice can

be created with equilibrium orbits that start and finish with zero dispersion; the other

requirements set out in section 4.1.1 are secondary in this section.
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Figure 5.2: An example triplet cell (FDF) with three particle trajectories shown
(yellow = 0.369 GeV/c, blue = 0.549 GeV/c, black = 0.729 GeV/c). The thick black
lines give an idea of where the magnets are and the dotted line is the X dimension.

Methods

For this gantry to work, dispersion suppression as described in section 4.2.5 has to be

achieved, which requires stable orbits to be found for cells with k and 2k field indexes.

There also has to be a section of 2k lattice which has a π phase advance. Theoretically,

this could be achieved over any number of cells, however, a π phase advance in one cell

would be difficult to design because it would create a resonance when stable orbits are

being searched for, conversely, if too many cells are used, the gantry would be excessively

large.

To find suitable cell designs, a parameter search of single cells was undertaken. Table

5.1 summarises which parameters were varied and the resulting effects.

From the working lattices available in the results of the parameter search, a cell design

was then chosen which had a phase advance close to π
4
. Because there were a number of

candidates available with a suitable phase advance, the number of magnets required by



Chapter 5. Gantry Design Studies 97

each one to bend the beam through 270◦ could also be considered in the hope it could

be turned into a practical design.

Table 5.1: Summary of the parameters of a cell and their significant effects.

Parameter Range Description Effects

k 1 → 17 The field index. Phase advance and mo-
mentum compaction.

D/F 0.8 → 1.8 The ratio of the
strength of the D mag-
net to the F magnet.

Phase advance and
maximum field.

Bend angle 12.875 → 45 Bend angle per cell Number of cells in the
gantry, the phase ad-
vance and maximum
field.

Cell length 75 → 200 The length of each cell Size of the gantry, phase
advance and maximum
field.

Packing factor 0.5 → 0.9 The ratio of magnet to
drift space within the
cell

Phase advance and
maximum field.

The next step was to vary k and the D/F ratio to make the phase advance equal π
4
exactly.

y0 is then altered in both the normal and suppressor cells so that the equilibrium orbits

of the central momentum were aligned.

A gantry was then simulated using scaling fields. It is summarised in table 5.2, while

figure 5.3 shows a schematic of the layout. Zero dispersion was assumed at the entrance

and a 3m drift was added to the end to give an idea of what the beam might look like at

the distance a patient would be. Success is measured by the amount of dispersion after

the last bending magnet and before the scanning system (point C in figure 5.3).

5.4.1 Results and Discussion

At this point, the values of interest are the final positions of the particles: if these are

not satisfactory, the gantry will not work. The required uniformity and range of the final

positions are constrained by what compensation is possible in the design of the scanning
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Table 5.2: Parameters of the scaling gantry design.

Parameter Value Units

k 1.982

D/F 1.18

Bend angle 22.5 degrees

Cell length 75 cm

Magnet length 15 cm

Peak Fields (F,D) 6.65, -6.05 T

Max aperture 36.8 cm

Total Cells 12

Height 636 cm

Figure 5.3: A schematic of the layout of the scaling FFAG gantry design summarised
in Table 5.2. Points A, B and C are the points of zero dispersion suppression.

magnets at point C in figure 5.3 of the gantry and specified in 4.1.1. This states that the

final positions across the energy range should be within 5cm and the angles should all

be less than 0.6◦ (1mrad). The results of the simulation are summarised as the following

series of three plots showing the tracks of particles travelling through the gantry and

their final positions. Figure 5.4 shows the tracks of five particles over the entirety of the

energy range. Figure 5.5 shows the final positions of the particles and figure 5.6 shows

the final angles. The final positions and angles of the particles clearly show that this

design is not good enough to use. The problem is that the dispersion suppression is

not perfect at the swap point (point B in figure 4.2) and after the final bending magnet
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(point C), so the next section looks at how to create near perfect dispersion suppression

using FFAG magnets.

A
B C
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Figure 5.4: The particle tracks of five different momenta through the scaling gantry.
Points A,B and C correspond to those in figure 5.3. The irregularity after point B is
due to less than perfect dispersion suppression and excitation at points A, B and C.

Figure 5.5: Final particle positions in the scaling gantry design. Zero dispersion was
assumed at start.
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Figure 5.6: Final particle angles in the scaling gantry design. Zero dispersion was
assumed at start.

5.5 Near Perfect Dispersion Suppression

FFAG dispersion suppression has been discussed in section 4.2.5 and [82], where it is

noted that the energy range for perfect dispersion suppression is limited. This section

presents a procedure to design a non-scaling FFAG dispersion suppressor that improves

upon the equivalent scaling design in final horizontal position by around a factor of 30

and deflection by around a factor of ten.

5.5.1 Cell Description

The cell this section concerns uses rectangular magnets in an FDF configuration (see

figure 5.7) and the k value and ratio of D to F magnet strengths were chosen so that

the horizontal phase advance through the centre of the suppressor cells equals exactly π

(see table 5.2).
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Figure 5.7: Schematic of the cell lay-out for the suppressor. There is 22.5◦ bending
in each cell.

5.5.2 Non-Linearity

The scaling field in the FFAG is designed to keep the betatron oscillations of particles

uniform, regardless of their rigidity, by varying the gradient. This works perfectly for

small betatron oscillations because the field gradient over δy can be approximated to a

quadrupole field. However, over large oscillations, the non-linearity of the field has an

effect, and this causes problems for dispersion suppression.

In the linear case, dispersion suppression can be achieved when two conditions are met

(see 2.4.10):

(i) The closed orbit for each particle is half its horizontal position at entrance,

(ii) The phase advance for all off-orbit particles is π.

As mentioned in section 4.2.5, to fulfil condition (i) in an FFAG, the closed orbit positions

can be halved for all momenta by doubling the field index ‘k’[82]. However, because

equation 4.2 contains only the first term of the Taylor expansion of the scaling law, it is

only an approximation and condition (i) will not be fulfilled exactly.
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Figure 5.8: The equations of motion for a linear field (dotted line) and a scaling field
(solid line). A π phase advance in the linear field would take a particle to the exact

opposite y position, whereas in the scaling field it is more complicated.

To illustrate this, consider figure 5.8. This shows plots for the equations of motion

of two particles around a shared closed orbit position at a fixed s. The dashed line

shows the motion of a particle in a linear field, with only the quadrupole component of

equation 2.30 present. The solid line shows what happens when the sextupole, octapole

and decapole fields are added. In the linear case, the motion around the closed orbit

is circular, while in the non-linear case, the motion is compressed at higher y positions

and extended at lower ones. The relevance this has to dispersion suppression is that

the π phase advance required will go either from a to b or vice versa. In the linear

case, point a is exactly the same distance from the centre as point b, which is what is

required for dispersion suppression. However, in the non linear case, a particle starting
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at point a will undershoot the exact opposite position and a particle starting at point b

will overshoot it.

Another illustration of the problem is given in figure 5.9. This shows the difference

between the magnitude of the linear quadrupole field and the non-linear scaling field.

If points a and b mark the extremities of a betatron oscillation in a linear field, you

can see that at point a in the scaling field, the gradient is steeper and the particle

will experience stronger focusing, which will cause a shorter amplitude to be described.

Whereas at point b, the gradient is less and so the amplitude will be greater.
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B
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Figure 5.9: Comparison of linear (dotted line) and scaling (solid line) field profiles.
Points a and b mark the extremities of a large amplitude betatron oscillation in the

linear field. Notice the difference in gradient at these two points.

In the case of the dispersion suppressor under consideration, lower momentum particles

are below the central orbit, so are likely to undershoot it as they complete a π phase

advance, and higher momentum particles are above the central orbit, so will overshoot it.

This will result in a final displacement below the central orbit dependant on momentum.

Additionally, when the idea of circular motion of a particle in an idealised field is replaced

by the more realistic picture of a particle moving through a section of non-linear lattice,

not all off-orbit particles will have a phase advance of exactly π. The particles that
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travel the furthest in fields with gradients different from at their equilibrium orbit will

be effected the most and have phase advances furthest from π.

So, if figure 2.9 is the path of a particle in a linear dispersion suppressor, then figure

5.10 is what the path might look like in a scaling field.

0 Π

2
Π

Alignment
Orbit

Normal Cell Suppressor Cell Drift

Phase Advance

Figure 5.10: Sketch of dispersion suppression in a scaling field. Particles miss the
alignment orbit and have phase advances 6= π.

Indeed, this is what is seen when the dispersion suppressor (figure 5.7) is simulated.

Figure 5.11 shows the tracks through one normal cell and two suppressor cells of five dif-

ferent momenta covering the entire energy range; figure 5.12 shows how the final position

depends on the momentum of the particle and figure 5.13 shows the final deflection.

5.5.3 Fitting Method

These displacements must be compensated for in some way if perfect dispersion sup-

pression is to be achieved, however this cannot be done with purely scaling magnets.

To understand why, consider compensating by changing the closed orbit positions in the

suppressor cells. The lower momentum orbits would have to be compacted and shifted

towards zero, while the orbits further out from the centre would have to be spread out.
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Figure 5.11: Tracks through a scaling dispersion suppressor for five different mo-
menta. Significant dispersion is visible at around 400cm.

Figure 5.12: Horizontal position vs momentum at the end of a scaling dispersion sup-
pressor. Notice how the non-linearity causes the particles above the orbit to overshoot

and the particles below it to undershoot.
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Figure 5.13: Horizontal deflection vs momentum at the end of a scaling dispersion
suppressor. The deflections are different because most particles have not gone through
exactly a π phase advance. The different phase advances are due to each particles

different path through the non-linear field.

This rules out simply varying k, as it would result in all closed orbits being either closer

together or further apart. The scaling law has to be broken.

To do this, a Taylor Expansion of the scaling law is truncated at the decapole term and

the individual multipole components varied in each of the two suppressor cells as well

as the normal cell.

For simplicity during the fitting process, the dispersion suppressor was considered ‘back-

wards’; i.e. the particles were started with zero horizontal position and angle at the end

of suppressor cell 2 in figure 5.7 and passed through suppressor cell 1 and into the normal

cell.

There is a choice whether to compensate by changing the closed orbits in the suppressor

cells or in the normal cell. Because there is less overlap of particle positions within the

magnets, it was found to be easier to fit the position of the closed orbits in the normal
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cell to the amplitude of the betatron oscillations in the suppressor cells, rather than vice

versa.

To correct for the variations in phase advance, the two suppressor cells were varied so

that the exit angles were zero for all momenta. To avoid the fitting function arriving at

a solution with zero field through all magnets, and because of the overlapping particle

tracks in cell 2, only cell 1 was varied. The k value of suppressor cell 2 can be used

to tweak the momentum compaction in the resulting normal cell, so for example, if the

resulting aperture is too large, the k of suppressor cell 2 could be increased to reduce it.

This can only be taken so far, however, as varying k has an effect on the phase advance.

This is a summary of the procedure:

(i) Fit the tune of the alignment orbit particle to π through both suppressor cells.

(ii) Ensure π phase advance for all momenta by fitting the exit angles out of suppressor

cells to zero by varying suppressor cell 2 only.

(iii) Fit the closed orbit positions in the normal cell to the exit positions from the

suppressor cells.

5.5.4 Results

The resulting dispersion suppressor restricts the final dispersion to within 0.5mm and

0.025◦ (0.4 mrad), which can be seen in figures 5.15 and 5.16. Figure 5.14 shows the

tracks through the fitted dispersion suppressor. Note that in comparison to figure 5.11

the closed orbits in the normal cell have been stretched in the y dimension below the

central orbit and compressed above it. The values of the constants in equation 2.30 are

summarised in Table 5.3.
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Table 5.3: Values for the multipole constants (bn) in equation 2.30 for a non-scaling
dispersion suppressor.

Cell y0(cm) Bz0(T) [F,D] b1 × 103 b2 × 106 b3 × 109 b4 × 1010

1 100033.9 3.816, -4.507 1.907 2.405 2.733 0.1154

2 100012.6 3.371, -3.982 4.143 5.776 23.21 459.4

3 100013.2 3.388, -4.002 4.003 7.461 8.307 1164

0 100 200 300 400

-20

-10

0

10

SHcmL

Y
Hc

m
L

Figure 5.14: Tracks through a non-scaling FFAG dispersion suppressor with the
multipole components varied to create zero dispersion at the end.

Figure 5.15: Horizontal position vs momentum at the end of a non-scaling dispersion
suppressor. Notice the change in scale from figure 5.12.
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Figure 5.16: Horizontal deflection vs momentum at the end of a non-scaling dispersion
suppressor. Notice the change in scale from figure 5.13.

The β functions through the dispersion are shown in figure 5.17 and the phase advance1

in figure 5.18. Because of the different paths through the suppressor cells, there is a

variation in all the Twiss functions and the phase advance dependent on momentum.

This might result in periodic orbits not being available for all momenta because the

variation in tune may excite a resonance. Other designs might be able to overcome

this problem, but since the design considered here is for a single pass lattice, a periodic

solution is not strictly necessary.

5.5.5 Error Study of A Dispersion Suppression Point

The purpose of this study is to assess how sensitive the dispersion suppression point is

to transverse errors in magnet positions. The dispersion suppression point was chosen

because it is likely to be the most sensitive type of lattice section in the transport line

and gantry, so it will give a lower limit on the precision required. Also, this point is the

1Please note that this is the phase advance of the small amplitude betatron oscillations on top of the

large amplitude oscillation excited by the dispersion suppressor.
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Figure 5.17: Beta functions thorough the non-scaling dispersion suppressor. Initial
values are the periodic beta values for the normal cell. The discontinuities seen at
around 0, 125, 250 and 370 cm are artefacts from how drift spaces are simulated in

Zgoubi. They have no impact on the real values of the simulation.
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Figure 5.18: Phase advance through the non-scaling dispersion suppressor. As in
figure 5.17 the discontinuities are artefacts and can be ignored.
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most novel part of this thesis, in that the dispersion suppressor has not been studied

elsewhere, so it is useful to investigate it further.

It was decided to add errors only to the horizontal transverse position of the magnets

because these are the most straight forward to model in Zgoubi. It may be reasonable

to assume that this will be the primary source of error in any case. Longitudinal errors

can probably be discounted because a longitudinal positional error will manifest itself

as a transverse error when the particle reaches the magnet face, but because the angle

of incidence will typically be small, the error produced will be negligible compared to a

transverse error of the same size.

To test the importance of vertical errors, the field experienced by a particle displaced by

a small amount on the z axis was compared to a field experienced by a particle displaced

by the same amount on the y axis. It was found that the ratio of the strength of a

kick from a z displacement to a kick from a y displacement ranged from ≈ 10−4 for a

displacement of 50 µm to ≈ 0.1 for a displacement of 1cm. However, by itself this does

not show that a vertical error is unimportant. To do that, the relative sensitivities must

be considered.

The relative importance of the vertical and horizontal errors can be calculated using the

equation for the linear approximation of closed obit response to dipole kicks [88, eq.1]:

∆χ(s) =

√

βχ(s)

2 sinπνχ
·∆θχ ·

√

βχ(skick) · cos(|φχ(s)− φχ(skick)| − πνχ) (5.4)

Where χ indicates either y or z, and ∆χ(s), βχ(s), φχ(s), νχ(s), θχ, and skick are the

displacement of the closed orbit, the beta function, the phase advance, the tune, the

kick angle, and the location of the kick along S, respectively [88].
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This study will look at the four closest magnets to a dispersion suppression point, giving

a 2π horizontal phase advance between skick and s. ∆θ will be equal in both cases and

all the other values were found from simulation.

For the central momentum, the closed orbit responses of a z axis kick was found to be

≈ 2

5
of the response in the y axis. Combined with the relative kick strengths due to

the fields experienced, it can be said that positional errors in the y direction will be the

most important. However, due to the non-linear nature of the fields, it could only be

said for certain with a full error study involving z displacement.

5.5.5.1 Method and Results

The section of lattice selected to study was the four cells closest to the dispersion switch-

ing point in the final design of the gantry (see section 5.7.3). This covers a 2π betatron

oscillation and a switch in curvature.

The most straight forward way to model separate horizontal displacements in every

magnet in Zgoubi is to use the dipole fields. An initial test was done to find how

a closed orbit position changes due to the same change in the dipole fields of every

magnet in a cell. The result of this was then used to calculate the required dipole field

for a given error.

To simulate random positional errors, nine magnitudes of error were chosen, ranging

from 10µm to 1cm. These were used as standard deviations on Gaussian distributions

with means of zero. At every magnitude, each magnet was given a different error from

the distribution and particles at five momenta were tracked with their final positions

being recorded. This was repeated 500 times to improve the statistics.
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Presented below are plots of the standard deviations of the resulting errors in position

(figure 5.19) and angle (figure 5.20). The gradient of the fitted straight line is known as

the amplification factor and is shown for each energy in the figures.
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Figure 5.19: Sensitivity of particle position to errors in the magnet positions in an
FFAG dispersion suppressor with the Amplification Factors shown in the legend. Both
errors are the standard deviation of random distributions. Five momenta are shown in

the range 0.369 (black) → 0.729 (yellow) GeV/c.
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Figure 5.20: Sensitivity of particle deflection to errors in the magnet positions in an
FFAG dispersion suppressor with the Amplification Factors shown in the legend. Both
errors are the standard deviation of random distributions. Five momenta are shown in

the range 0.369 (black) → 0.729 (yellow) GeV/c.
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5.5.5.2 Discussion of the Results of the Error Study

Both position and angle errors increase fairly linearly with magnet displacement over

the range, although the angle seems to deviate close to 1mm. The amplification factors

are displayed as legends in figures 5.19 and 5.20.

As you can see, the worst case in both plots is the lowest momentum (0.365 GeV/c),

which is almost 2:1 positionally and 4:10 degrees per cm angularly. This means that at

50 microns, around the limit for positional accuracy, the position will have an error of

around 0.1mm, and an angular error of around 0.002◦, or 0.03mrad.

A similar study was carried out in the main PAMELA ring [75, p.79], albeit over 1000

turns, and the displacement due to a 50µm error was found to be ≈ 0.2mm, so that

this section of the lattice introduces half as much positional error as the whole of the

main ring is not ideal. It is also comparable in size to the target positioning error in the

PAMELA Design Report of 0.3mm [26, p.12].

To get the full picture of what this means, the study would have to be repeated for the

whole gantry. Also, a fuller study would include rotational errors, errors in the field

gradients of the magnets and errors in all the positional dimensions that were ignored in

this study. Moreover, using the dipole field to simulate magnet displacement does not

take into account the effect of how the magnet’s fringe fields will change with particle

position, but that kind of study would have to wait until field maps using more advanced

designs of the magnets were created and will be left for further work.
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5.5.6 Discussion of the Dispersion Suppression Study

Near perfect dispersion suppression in an FFAG has been achieved in simulation by

compensating for the non linearity in the scaling field in the closed orbit positions in

the normal cell. This successfully brings all equilibrium orbits to the same trajectory,

however, the effect of the non-linear fields have on the the Twiss parameters, could be

problematic (see figure 5.17). This technique is novel and was first presented by the

author in [87]. Sensitivity to random errors in the magnet positions was explored and

found to be comparable to that of the main PAMELA ring, as well as to the target

accuracy for the gantry. This means it would be a significant factor in any design which

included it and a full error study of the whole system will be required to assess its effect.

5.6 Properties of the Non-Scaling Gantry

The next step is to apply the dispersion suppression technique to the gantry design in

section 5.4. Figure 5.21 shows tracks through the gantry assuming zero dispersion at the

entrance. Figures 5.22 and 5.23 show how the final positions and angles of the particles

vary with momentum 3m after the end of the bending magnets.

The β functions through the bending sections of the gantry look like figure 5.24. These

are unruly, but as the PAMELA design report shows, not unreasonable for the scanning

system to cope with [26, p.150].

5.6.1 Discussion

The equilibrium orbit positions of this design meet the requirements set out in section

4.1.1, so from that point of view it is a success and shows that, in principle, this approach
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Figure 5.21: Tracks through a non scaling FFAG gantry using the dispersion sup-
pression technique outlined in the previous section.

Figure 5.22: Horizontal position vs momentum at the end of a non-scaling gantry.

to the gantry has promise. However, no attention has been paid to the other requirements

in section 4.1.1. There are many things wrong with this design.

Firstly, it is too tall needing around 13m to be rotated through 360◦, which is 3m larger

than that of the gantry at Heidelberg. This is a big problem, because the magnets are

also too short for the aperture, which means that the gantry will only get bigger as

they are extended to a more realistic length. The other problem is that, because the
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Figure 5.23: Horizontal deflection vs momentum at the end of the non-scaling gantry.

combination
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Figure 5.24: Beta functions through the bending sections of the gantry. The drift at
the end has been ignored, because the beam size will be manipulated by the scanning

system.

dispersion suppression makes use of fields with high ‘k’ and wide amplitude betatron

oscillations, the peak field can become too high. However, this might be solved by

increasing the magnet length. The next section describes an attempt to create a gantry

design with more realistic magnets and overall size.
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5.7 Flattened Gantry Design

A major problem with the gantry in section 5.6 is its height. The following section is an

attempt to reduce the height, while paying attention to all the other requirements. The

height could be reduced by taking out cells either side of point B in figure 4.2, reducing

the total bend angle between the entrance and the swap point, as well as the bend angle

between the swap point and the top of the gantry. In fact, only the final bend needs to

be 90◦, which means the height is constrained by the 3m clearance plus the height of

the final bend. This also helps reduce the field in the dispersion suppressors of the first

section as well as the bending, which could have a beneficial effect on the beta functions.

5.7.1 Design strategy

To make things simpler, the gantry can be split up into four different sections marked on

figure 5.25: The section from the entrance to the swap in curvature (section 1), from the

swap in curvature to the top of the magnet (section 2), a large bending section (section

3), and a dispersion suppression section at the end (section 4). Splitting the final 90◦

bend into two sections was done because bending and suppressing the dispersion at the

same time will increase the peak field.

Figure 5.25: The gantry split up into four sections. A, B and C are the dispersion
suppression points.
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The design of this gantry has to begin with the final 90◦ bend (section 3 in figure

5.25). How it is achieved determines the overall height of the gantry and constrains the

characteristics of all other sections. So the starting point has to be an FFAG cell with

the largest bend possible in the smallest space. After that is set, the cell that makes up

what is left of the 90◦ bend (section 4) should also act as a dispersion suppressor for

point C. Thankfully, this does not have to be as good as at points A and B and can be

done in a single cell.

Next, a scheme has to be worked out to go from zero dispersion at point B to the

closed orbit positions in the large bending magnet (section 2 in figure 5.25). Then, the

entrance section can be designed with the opposite total bend, a height to make sure

the clearance at C is 3m and dispersion suppressors at either end (section 1). Finally,

because creating perfect dispersion suppression involves fitting the equilibrium orbit

positions in the normal k cells, sections 3 and 4 will have to be tweaked to match to

section 2.

5.7.2 The 90◦ Bending Section

Although sections 3 and 4 of the gantry have different requirements, they can be designed

together. Figure 5.26 shows a schematic of these sections. Preliminary tests for a

parameter search found that the aperture would probably be somewhere in the region

of 30cm. Given the rule of thumb in sec.4.1.1 that the magnet length should be no less

than twice its aperture, the range of magnet lengths was set around 60cm.

Immediately there is a problem, however. If the magnets will be around 60cm and if

20cm is left between magnets to avoid the overlap of fringe fields [85], the total length

of a cell is around 220cm. Assuming a 30cm drift between cells, figure 5.27 shows how
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Figure 5.26: A schematic of the last two sections of the gantry.

the height of the gantry depends on the bend angle of the first cell. 500cm represents

a total gantry height of 10m which is the upper limit set out in section 4.1.1. As figure

5.27 clearly shows, if section 3 has a bend angle of 45◦, which is the minimum one would

expect, the gantry will be close to 600cm high, which results in a total height of 12m if

the gantry is to rotate around 360◦.

This seems an intractable problem if two triplets are to be used, but it will be useful

to design a gantry in this way to show the smallest possibility with this set-up, then

explore possible ways to shorten it.

5.7.2.1 Parameter Search

Both magnets are single pass magnets, so in the design, I abandoned any hope of finding

closed orbits or periodic Twiss functions. It helps that the dispersion suppression does

not have to be perfect at point C in figure 5.25, because the phase advance does not have
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Figure 5.27: How the total height of the gantry depends on the bend angle of the
section 3 triplet.

to be exactly π
2
. Instead, various values of k can be tried in section 4 to find a suitable

value. This is a less precise method than that used in section 5.5, but good enough for

this purpose. The parameters varied are summarised in table 5.4. The magnet length

was assumed to be the same in all cells for ease of calculation (cells next to dispersion

suppression points could be made shorter as they will have a smaller aperture, but that

is a consideration for later in the design process).

Table 5.4: Parameters varied in the two triplet design of the final 90◦ bend.

Parameter Range

Magnet Length 50 → 70 cm

Section 3 Bend Angle 46◦ → 60◦

Section 3 D/F 0.2 → 1

Section 4 D/F 0.2 → 1

Section 3 k 2 → 5

Section 4 k multiple 1.3 → 1.7

The values the lattices were tested for were aperture, peak field and final beta value. The

particle positions on the entrance to the lattice were assumed to be on the equilibrium

orbit of the section 3 triplet and the initial beta values in horizontal and vertical were

arbitrarily chosen as 5m; which initial tests showed are approximately what can be

expected from the first two sections of the gantry.
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5.7.2.2 Parameter Search Results

Out of the valid configurations found by the parameter search, lattices with apertures

less than 30cm and peak fields less than 30T were considered. The parameters of the

gantry were then tweaked by small amounts for local optimisation. Table 5.5 has the

specifications of these magnets, figure 5.28 shows the tracks through the two triplets,

figure 5.29 shows the fields and figure 5.30 shows the beta functions.

Table 5.5: Characteristics of the best lattice from the parameter search.

Parameter Section 1 Section 2 Units

k 3.5 4.55

D/F 0.7 0.7

Bend angle per cell 46 44 degrees

Cell length 220 220 cm

Magnet length 60 60 cm

Peak Fields (F,D) 2.466, -1.397 2.528, -1.283 T

Max aperture 29.7 28.0 cm

Height 307 cm
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Figure 5.28: Tracks through the best lattice from the parameter search.
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Figure 5.29: Fields experienced by five particles with different momenta travelling
through the best lattice found by the parameter search.
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Figure 5.30: Beta functions through the best lattice from the parameter search.

5.7.2.3 Optimisation

The dispersion suppression in section 4 does not produce small enough positional (within

5cm) or angular (within 0.3◦) dispersion. This can be addressed by varying the k value

and the DF ratio in section 4. In trying to optimise for final position and angle using an

automatic minimising programme, however, the results tend towards DF → 0, meaning

a very low defocusing field. Figure 5.31 shows the resulting tracks. Obviously, this has a
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very detrimental effect on the vertical beta function (figure 5.32), which is very difficult

to remedy using triplets.
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Figure 5.31: Particle tracks through the lattice created by automatically optimising
the results of the parameter search using exit dispersion as the only criteria.
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Figure 5.32: Beta functions through the optimised triplet cell in section 4.

From examining, figure 5.30, the reason this has a lower maximum β than other con-

figurations in the parameter search can be attributed to the uniform way the vertical

β function goes through section 3 and the low α at its end. They both then go awry

through Section 4.
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From this observation, as well as the difficulty in creating decent dispersion suppression,

and because of the height issue, it was decided to look at abandoning the idea of using

a triplet in section 4.

5.7.2.4 Triplet alternative in section 4

The final section will clearly need both focusing and defocusing magnets, but one ques-

tion to consider is the order in which they should go. Figure 5.30 might suggest that

the defocusing magnet should follow the last focusing magnet in section 3. However, a

single dispersion suppressing focusing magnet will act like a focusing lens in converging

all the particle paths towards each other (the non-linearity prevents a single focal point

however), so a defocusing magnet will be required at the end to straighten the paths.

Figure 5.33 shows the proposed layout.

Figure 5.33: Alternative scheme for the end of the gantry. The triplet in section 4
is replaced with a large focusing ns-FFAG magnet and a small non-bending defocusing

multipole magnet.
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The advantage of this scheme, is that the defocusing magnet can have a reduced aperture

and does not even have to be a bending magnet, which means it can be a small multipole

that does not add too much to the height. Also, because there is no reverse bend, the

focusing magnet will then not have to bend as much as the combined positive bending

in the triplet design, which may help reduce the peak field and the total length of the

section. It may even turn out that this magnet can do the majority of the 90◦ bend. To

find out, another parameter search was undertaken.

5.7.2.5 Parameter Search for Alternative Design to the End of the Gantry

The small defocusing magnet will be designed to fit with the requirements of the large

focusing magnet, so there is no need to include it in the parameter search. This param-

eter search is the same as in section 5.7.2.1 except there is no range of DF ratios for

section 4.

Preliminary tests showed that the focusing magnet could be 1m long and create a 45◦

bend with a reasonable peak field and aperture, so this was taken as a starting point for

the parameter search. Table 5.6 summarises the parameters which were varied and the

ranges that were covered.

Table 5.6: Parameters varied in the alternative design of the final 90◦ bend.

Parameter Range

Triplet Magnet Length 50 → 70 cm

Single Magnet Length 75 → 125 cm

Section 3 Bend Angle 46◦ → 60◦

Section 3 D/F 0.5 → 1

Section 3 k 2 → 5

Section 4 k multiple 1.3 → 1.8



Chapter 5. Gantry Design Studies 127

5.7.2.6 Alternative parameter search results

The results of the parameter search were filtered down to four lattices that had maximum

fields less than 30T and apertures less than 30cm. Of these, the lattice was chosen which

had the lowest maximum beta value in the hope of keeping the beta functions small in

the final version. The chosen configuration is summarised in table 5.7 and figures 5.34,

5.35 and 5.36 show the tracks, fields and beta functions through the lattice. The height

in table 5.7 is the height of the triplet and the large focusing magnet only; the height of

the whole gantry will be calculated during the design of the small defocusing magnet.

Table 5.7: Characteristics of the best lattice from the parameter search.

Parameter Section 1 Section 2 Units

k 4 1.4

D/F 1 n/a

Bend angle per cell 50 40 degrees

Cell length 220 n/a cm

Magnet length 60 75 cm

Peak Fields (F,D) 2.989, -2.056 2.701 T

Max aperture 27.39 23.11 cm

Height 203.86 cm
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Figure 5.34: Particle tracks through the result of the parameter search for a gantry
end consisting of one triplet and one large focusing magnet.
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Figure 5.35: Fields experienced by particles travelling through the result of the pa-
rameter search summarised in table 5.7.
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Figure 5.36: Beta functions through the result of the parameter search summarised
in table 5.5. The discontinuity at S = 275cm is an artefact of the way drift spaces are

dealt with in the simulation code and does not effect the accuracy of the plot.

5.7.2.7 The Defocusing Magnet

This will have to be redesigned when section 3 and the focusing magnet are tweaked

after sections 1 and 2 have been completed, but an initial design needs to be made so

that a height can be set.

The defocusing magnet will have no bending, but will need one or more of the higher
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order multipole fields to compensate for the non-linearity in the particle positions caused

by the FFAG magnets. The drift space after the large focusing magnet can be used as a

free parameter to control the spread in horizontal position at the end, although obviously

the shorter the distance the better, so the k of the final magnet could also be used.

Figure 5.37 shows that such a scheme can be designed and figure 5.38 shows that the

fields experienced by the different momenta particles will be relatively small in the

defocusing magnet. However, this is not a finalised design, but it shows that the length

of the magnet can be reasonably set at 20cm and the drift at around 30cm. This

makes the total height of the gantry around 550cm (that is 204cm for section 3 and the

large defocusing magnet, 300cm for the scanning magnets and around 500cm for the

defocusing magnet).
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Figure 5.37: Tracks through initial design of final focusing and defocusing magnets.
Magnet shapes are drawn for clarity.

5.7.3 The Design of Gantry Sections 1 and 2

Section 1 is probably the most flexible section as its two zero dispersion ends make it

relatively self contained. For this reason it can be left to last to make up whatever height
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Figure 5.38: Fields through initial design of final focusing and defocusing magnets.
The defocusing magnet has peak fields five times smaller than the main FFAG magnets.

is left over after section 2 is designed. However, both sections have to have the same

bend angle, so the question is how to create a 2π phase advance in section 1 and a π

phase advance in section 2 with the same bend angle in each section.

One way is to give all cells the same size and bend angle. The different dispersion

suppression requirements could then be met by having differing phase advance per cell

in each section, and/or different numbers of suppressor cells per section. For example,

a design with four cells in each section, could split the π phase advance over two cells

in section 1 and 4 cells in section 2 or it could split the π phase advance over two cells

in both sections and make up the rest of the bending in section 2 with normal k cells.

The phase advance can be changed by varying:

• Magnet length.

• Ratio of drift space to magnet within the cell (called the packing factor).

• Length of the long drifts between cells.

• Bend angle.

• k.

• DF ratio.



Chapter 5. Gantry Design Studies 131

However, in this design, a lot of those will be fixed. The magnet length should be as low

as possible to reduce weight and size of the overall gantry. Given that the aperture in

section 3 is around 30cm, means the length should be around 60cm. Similarly the short

drifts between magnets should be around 20cm to avoid the fringe fields overlapping, so

the packing factor is more or less fixed. Again the lengths of the long drift should be

as small as possible while leaving ample room between cells for maintenance. For the

purposes of this study, this was estimated at 500cm, which is a high estimate because

any reduction can only be beneficial. The bend angle is fixed by the height of the gantry

and the length of the cells and long drifts; however, it can be varied indirectly by the

total number of cells used. This leaves only the k values and the FD ratio which can be

used to achieve the right tune; although the k value can only be varied in section 1 as

it is fixed to k = 4 for normal cells and k = 8 for suppressor cells in section 2, so that

the equilibrium orbit positions match to section 3.

5.7.3.1 Parameter Search

As mentioned, the total number of cells is a variable which must be considered. Obvi-

ously, the fewer cells the better, however, given the constraints, the correct tune may

not be available in every configuration. Figures 5.39 → 5.42 show the working points for

4, 6, 8 and 10 cell configurations respectively. These were created by finding the bend

angle which made a lattice of the required height, then varying the DF ratio and the k

value and finding the tune using the alignment orbit (0.549 GeV/c). The dots show all

the configurations that were stable enough to produce a tune and any point with k = 8

(the required k for the suppressor cells so the normal cells, with k = 4, match to section

3) is coloured red. The size of each point is a representation of the DF ratio just to give

an idea of how changing it effects the tune.
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Figure 5.39: Tunes for a 4 cell solution to sections 1 and 2. The dots represent all
the combinations of DF and k which give stable tunes. The tunes are represented as
fractions of 2π, so a cell with a π

2
phase advance would be on the line = 0.25. The red

dots are working points where k = 8, which is desirable to match to section 3.
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Figure 5.40: Tunes for a 6 cell solution to sections 1 and 2. The size of the blue dots
is proportional to the value of the DF ratio to give an idea of how it effects the tune. A
red dot indicates a working point where k = 8, which is desirable to match to section

3.
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Figure 5.41: Tunes for an 8 cell solution to sections 1 and 2. A red dot indicates a
working point where k = 8, which is desirable to match to section 3.
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Figure 5.42: Tunes for a 10 cell solution to sections 1 and 2. A red dot indicates a
working point where k = 8, which is desirable to match to section 3.

The four cell lattice, was probably always going to be unrealistic in section 1 as creating

a cell with a π phase advance is very difficult due to resonances, but the fact that there

are no working points with k = 8 anywhere near a π phase advance underlines that it is

not worth pursuing.

The six cell lattice has working points with a phase advance of 2π
3
, so the 2π phase
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advance required in section 1 could be achieved here. However, section 2 would either

have to consist of 3 suppressor cells of phase advance π
3
, or 2 suppressor cells with phase

advance π
2
and a normal k cell, and there are no working points available at all with a

k of 8.

The 8 cell lattice could consist of four suppressor cells in section 1 and two in section 2,

with all suppression cells having a phase advance of π
2
. However, looking at figure 5.41,

there are no working points available with k = 8 and the correct phase advance.

Similarly, the 10 cell lattice would have four suppressor cells in section 1 and two in

section 2, but there would also be an extra normal cell in each section. Again there are

no ideal working points, for section 2, however, the length of this gantry would be 26m,

which is already prohibitively long, so trying a gantry with 12 cells would be pointless.

5.7.3.2 Matching Sections 2 and 3 using intermediate k values

One solution to this problem is to decrease k in section 4 of figure 5.25. One of the

working points with a phase advance of π
2
has a k = 6, which would correspond to k = 3

in the normal cell and section 3. The problem is that this would increase the aperture

in section 3, and although it would only be by a few centimetres, the fields are so high

in that magnet, it is important to keep the aperture as low as possible.

Another possible solution is to use a value of k intermediate between the normal cell in

section 3 and section 4. Figure 5.43 gives an idea of how this works. There is a π phase

advance through a field with the highest k possible (k1), which takes the particle to the

equilibrium orbit position of a k1
2

cell. Then, to take the particle to the closed orbit

position of a k2 cell, another π phase advance is taken through a field with k half way

between k1
2
and k2. This shares the problem with the previous solution of increasing the
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aperture, however, because the bending is less, the fields are lower in section 2 and an

increased aperture will be less of a problem.
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Figure 5.43: A particle is at a zero dispersion point A does a π phase advance through
a field with an equilibrium orbit at B taking it to a horizontal position C. Another π
phase advance through a field with an equilibrium orbit at D takes the particle to point

E.

Figure 5.44 shows the k values of all the working points with horizontal tunes close to

π
2
. In this case, the highest k possible with the correct phase advance is 4. This will

take the particles to the equilibrium orbits of a cell with k = 2. A k of 3 would then

be required to bring them to the equilibrium orbits of section 3 where k = 4. There are

working points with k = 3 and phase advance close to π
2
, so the next step will be to

create this lattice.

5.7.4 Joining Up the Whole Gantry

After designing sections 1 and 2 and fitting the multipoles as described in section 5.5,

sections 3 and 4 were tweaked so that all closed orbits were aligned and the dispersion

at the end was correct.
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Figure 5.44: A selection of tunes for the 8 cell solution to sections 1 and 2. The
numbers are the k value at each working point.
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Figure 5.45: Beta functions through the whole gantry. The price paid for varying the
multipole components of the different cells is wayward beta functions.

As figure 5.45 illustrates, the price paid for moving away from the scaling field is non-

uniform beta functions. Controlling the size of the beam will be a challenge for the

scanning system following the bending magnets, however, the task can be made easier

by adding a small defocusing quadrupole placed at the point of zero dispersion between

sections 1 and 2. This is a desirable place for it because it will not affect the closed orbit

positions of the particles, but will affect the beta functions.
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A parameter search was undertaken to find the optimal strength of the quadrupole to

create the smallest value of beta at the end of the bending magnets. The length was

chosen as 20cm, which raises the height by 7.6cm. Thich is only a few cm larger than

the amount the gantry height was rounded down by when at the start of the section 1

and 2 design. This makes the height of the gantry 557.6cm.

5.8 Characteristics of the Whole Gantry

The characteristics of the final gantry design are summarised in table 5.8 and table 5.9

shows the multipole coefficients for equation 2.30. Figure 5.46 shows the particle tracks

through the gantry. On this plot the three dispersion suppression points can clearly be

seen and the bulge in dispersion at the seventh cell from the left is where sections two

and three have been matched with an intermediate k value (section 5.7.3.2). Figure 5.47

shows the fields, which are kept within reasonable limits, and figure 5.48 shows the beta

functions. Table 5.10 shows the optimal initial beta values, which were used to create

5.48. As described in section 4.2.1.2, the horizontal and vertical Twiss values have to be

equal at the point where the gantry rotates. This ensures a circular beam which is the

same no matter the rotation of the gantry. After initial tests, it was decided to add the

extra constraint that the alpha values equal zero, because the downhill fitting function

tended towards unstable solutions, especially at high momenta, when allowed to vary.

The beta functions have been significantly reduced with the addition of the quadrupole

(SQ in table 5.8), but they still remain very high at the end. This will require further

work to correct.
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Table 5.8: Parameters of the flattened gantry design. SM stands for the small multi-
pole at the end of the gantry and SQ stands for the small quadrupole in the middle.

Parameter Section 1 SQ Section 2 Section 3 Section 4 SM Units

k 2.20 n/a 2.20,
1.47

4 6 n/a

D/F 1.58 n/a 1.58,
2.05

1 n/a n/a

Bend angle
per cell

7.46 0 7.46 50 40 0 degrees

Number of
Cells

4 1 4 1 1 1

Cell length 220 20 220 220 70 25 cm

Magnet
length

60 20 60 60 70 20 cm

Peak Fields
(D,F)

-1.102,
0.976

0.0011 -1.889,
1.320

-2.007,
3.016

2.742 -
0.643

T

Max aper-
ture

32.75 0.035 33.21 25.85 21.45 4.45 cm

Height 557.6 cm

Length 2346 cm

Table 5.9: Values of the bn constants to go into equation 2.30 for the final gantry
design. SQ and SM are the small multipoles. * denotes where the actual value is used

rather than that divided by the number at the top of the column.

Section b1 × 103 b2 × 106 b3 × 109 b4 × 1012 Bz0
(T)

y0
+100,000
(cm)

11 3.881 9.745 8.612 6.188 0.5493,
-0.8682

-33.29

12 4.400 9.678 14.19 15.59 0.5271,
-0.8332

-30.30

SQ -3.249* 0 0 0 0 0

21 3.881 9.745 8.612 6.188 0.5493,
-0.8682

-33.29

22 4.400 9.678 14.19 15.59 0.5271,
-0.8332

-30.30

23 2.720 4.347 3.983 1.592 0.8923,
-1.831

-29.66

24 2.937 4.590 4.169 -0.1278 0.8559,
-1.756

-28.90

3 4.302 11.39 12.10 7.268 1.166,
-1.165

-12.54

41 9.948 27.12 30.60 65.11 0.5565 -12.86

SM -24.45* -7.600* -52.97* 0 0 0
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Figure 5.46: Particle tracks through the whole gantry. The boxes indicate the posi-
tions of whole cells.
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Figure 5.47: Fields experienced by particles through the whole gantry. Note that
they do not exceed 3T.

Table 5.10: Optimal initial beta values for the gantry. This is only a small summary
of a larger table in appendix A.

Momentum (GeV/c) Beta (m)

0.369 4.92

0.459 5.47

0.549 5.90

0.639 9.58

0.729 14.22
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Figure 5.48: Beta functions through the whole gantry. These are the optimum func-
tions assuming that horizontal and vertical betas are equal at the start for each mo-

mentum.

5.9 Testing Rotation of the Gantry and Tolerance of Po-

sitional Errors at the Entrance

So far, it has been assumed that particles would enter the gantry exactly on axis and

with zero deflection, meaning the rotational position of the gantry was irrelevant. This

section aims to test what happens when particles are introduced off axis with non-zero

deflections over 360◦ of gantry rotation. This is important, because it will inform section

6.6 where matching to the treatment room from the transport line will be attempted.

The rotation of the gantry was simulated by entering particles with non-zero y and z

coordinates at the entrance. This was done for five displacements (0.001, 0.01, 0.1 and 1

cm), 180 ◦ rotation (as the error will be symmetrical at this point) and three momenta

(0.369, 0.549, 0.729 GeV/c).

Figures 5.49 → 5.51 show the resulting deflections for 0.369, 0.549 and 0.729 GeV/c

respectively and figures 5.52 → 5.54 show the positional errors for the same momenta.
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Figure 5.49: Gantry rotation deflection errors with 0.369 GeV/c particles. The key
refers to the particles’ initial distance from the gantry rotation axis and ‘deflection’
refers to the final angle the particle’s direction makes with ‘S’. A log scale is used
purely for clarity. Where the black line disappears indicates particles being lost before

reaching the end.
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Figure 5.50: Gantry rotation deflection errors with 0.549 GeV/c particles. The key
refers to the particles’ initial distance from the gantry rotation axis and ‘deflection’
refers to the final angle the particle’s direction makes with ‘S’. A log scale is used

purely for clarity.
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Figure 5.51: Gantry rotation deflection errors with 0.729 GeV/c particles. The key
refers to the particles’ initial distance from the gantry rotation axis and ‘deflection’
refers to the final angle the particle’s direction makes with ‘S’. A log scale is used

purely for clarity.

0 50 100 150

0.001

0.01

0.1

1

Gan try Rotat ion Hd egL

P
o

si
ti

o
n

al
E

rr
o

r
Hc

m
L

0.001 cm
0.01 cm
0.05 cm
0.1 cm
1 cm

Figure 5.52: Gantry position errors with 0.369 GeV/c particles. The key refers to
the particles’ initial distance from the gantry rotation axis and ‘position error’ refers
to a particle’s final distance from its equilibrium orbit. A log scale is used purely for
clarity. Where the black line disappears indicates particles being lost before reaching

the end.
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Figure 5.53: Gantry position errors with 0.549 GeV/c particles. The key refers to
the particles’ initial distance from the gantry rotation axis and ‘position error’ refers
to a particle’s final distance from its equilibrium orbit. A log scale is used purely for

clarity.
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Figure 5.54: Gantry position errors with 0.729 GeV/c particles. The key refers to
the particles’ initial distance from the gantry rotation axis and ‘position error’ refers
to a particle’s final distance from its equilibrium orbit. A log scale is used purely for

clarity.
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If you ignore the, almost certainly, unrealistic initial error of 1cm, the final positional

errors in the worst case 0.369 GeV/c tend to go about an order of magnitude higher

than the initial error. At 0.549 and 0.729 GeV/c, the errors tend to stay roughly the

same as the original error.

In terms of final deflection, the worst case (again 0.369 GeV/c) shows about 1◦ deflection

with a 0.1cm original error. Apart from the high and low limit, the final error seems

to approximately scale with initial error, so a 0.05cm original error gives ≈ 0.5◦ final

deflection.

The scanning system at the end of the gantry is required to produce an accuracy of

0.02cm [26, p.116]. This means that with no other error in the system and considering

only position, the positional error at the start of the gantry would have to be limited to ≈

0.002cm. Moreover, given that there is 3m between the end of the bending magnets and

the patient, the maximum angular error would have to be ≈ 0.004◦, which is too small to

be achieved with this lattice. This could be achieved, however, with an active scanning

system before the entrance to the gantry. That proposal is made in the PAMELA design

report [26] and will be discussed again in section 6.7.3.

5.10 Ideas for Further Study

At around 11m high and 25m long, the current gantry design is too large to be com-

petitive with existing gantries (although, obviously, the energy can be changed much

faster).

One possible solution to the height problem is to integrate the scanning magnets with

the final 90 degree bend. This would result in a complicated system where control of
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the beam size and horizontal position would be coupled, however it is an idea worth

pursuing because the beam behaviour, although complicated, would be predictable and

could be characterised and taken into account by the control systems. Assuming the

scanning section remains roughly the same height, the total height might then be around

3m, giving the gantry a height of about 6m.

This means that in figure 5.25, there would need to be zero dispersion at the exit from

section 2, avoiding any need for varying k in the way described in sec.5.7.3.2 and so

hopefully avoiding the problems with the Twiss functions. Figure 5.55 shows the tracks

through an initial design of sections 1 and 2 in such a layout and figure 5.56 shows

the beta functions with horizontal and vertical betas arbitrarily defined as 7m for all

momenta. The height of this design is 3m and the magnet lengths are around 55cm

each.
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Figure 5.55: Tracks through sections 1 and 2 if scanning is integrated into sections 3
and 4.

The problem of length still remains, however. With reasonable magnet lengths and four

cells per section, the length is roughly 20m. To be competitive, the gantry would need

to be closer to 10m which would not be possible even if 3 cells were used per section.
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Figure 5.56: Beta functions through sections 1 and 2 if scanning is integrated into
sections 3 and 4. All betas are assumed to be 7m at start and all alphas assumed to be
zero. The black lines represent the square root of the vertical beta functions and the

green the horizontal.

To achieve this, an alternative approach will be needed to the design of sections 1 and

2. The PAMELA project needs to switch energies very quickly, but perhaps it does not

need to do so over the entire energy range. A tumour of 15cm, for example, will not

need the entire energy range. A system could be envisioned, then, where the magnets

in the gantry have a number of strength settings which can be switched between in the

time it takes for the gantry to rotate to the next treatment position.

If this is possible, one idea is to abandon the PAMELA style triplet all together and

use just dipoles and quadrupoles over a limited energy range. A very straight forward

system is shown in figure 5.57. A zero dispersion beam is deflected upwards with a

dipole, exciting dispersion within the beam. A focusing magnet then makes the particle

beams parallel and a long drift takes the particles to the necessary height. The process is

reversed at the other end, with a focusing magnet and a dipole removing the dispersion.

The energy range is limited by the aperture in the focusing magnet and the following

study looks briefly at the feasibility of such an idea.
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It is assumed that the energy range required to be changed very rapidly (that is between

gantry rotations) at any time is plus or minus 45MeV (which is plus or minus 275MeV/c

in momentum), and that 3m of elevation is required in a length of 8m; giving a deflection

of ≈ 20◦ to the median energy particle. The largest positional spread will be at lower

momenta, so a range of momenta between 0.369GeV/c and 0.645GeV/c were considered

A simulation was carried out of the set-up described above, but over a shorter distance

than would be required in a gantry. The focusing magnets used quadrupole, sextapole

and decapole fields to achieve the desired bending. Figure 5.58 shows the particle tracks

through the proposed layout; there is very little dispersion at the end, so this shows,

the idea could work. The problem comes from the beta functions because there are only

focusing magnets in the lattice. Further study could look at adding defocusing magnets

to remedy this, which may also make it possible to extend the system to the required

length, but the length of the presented lattice could also be extended by placing sections

in series.

5.11 Chapter Summary

In this chapter a design for a gantry was developed (section 5.6) using the main PAMELA

ring as a starting point (sections 3.2.4 and 5.3). This involved a novel method of creating

near-perfect dispersion suppression using ns-FFAG magnets (5.5) which was the author’s

work. The final gantry design (section 5.7.4) and the intermediate designs (sections 5.4

and 5.6) are also novel and all the author’s work. The final section of this chapter

discusses ideas for further work.
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Figure 5.57: Initial schematic design for a lattice to create elevation in the gantry.
Further multipoles would be added in between the existing multipoles to control the

Twiss parameters.
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Figure 5.58: Tracks through initial design for a simple lattice to create elevation in
the gantry. This is a reduced energy range chosen to cover a 15cm tumour: 0.369

GeV/c (black) → 0.645GeV/c (yellow)



Chapter 6

Transport Line Design Studies

6.1 Introduction

This chapter deals with the design of the transport line which takes the beam from the

main accelerator to the treatment room. It starts with an optimisation of a straight

transport line design [82], then presents a design for a 45◦ bending section. A scheme

for extracting the beam from the main transport line to the treatment rooms is then

presented and discussed. Apart from the original straight transport line design, all of

this chapter is novel and the author’s own work. Some of the work on optimising the

transport line (section 6.3) was presented in [89] and has been used in the PAMELA

design report [26].

6.2 Basic Cell Design

The basic design of the magnets is the same as in section 5.2 (meaning all k values

should be taken as multiplied by 1000), however, this section will consider an additional

149
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cell layout, the quadruplet, because of the need to transport the beam in a straight line

(see section 3.4.9). This is used for the straight lattice [82]. The structure can either be

FDDF or DFFD depending on the position of the long drift, as it is a straight lattice and

the total bending should be roughly equal in both transverse dimensions. The example

in figure 6.1 is the latter and both F magnets are offset in this case.

Figure 6.1: An example quadruplet cell (DFFD). The boxes give an indication of
where the magnets are.

6.3 Optimisation of Straight FFAG Beam Transport Line

This is a study to find the optimal DF ratio, k value and placing of the long drift

within the cell described in section 6.2 for the straight transport line described in [82]

and compare the results using scaling fields with the non-scaling fields found using a

truncated Taylor Expansion (section 2.5.4). The qualities considered were: acceptance,

aperture, field strengths and dispersion at the centre of the long drift where extraction

to the treatment rooms is likely to take place. The only measure which has an exact

figure attached is acceptance. The guidance from design of the RFQ at the start of the

PAMELA complex and the medical requirements at the end of the gantry, is that the
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emittance should be around 10πmm mrad; therefore, the acceptance of this transport

line should exceed that value. The other qualities are such that the lowest value is

desirable.

These studies will help our understanding of this novel transport line design as well as

serving as a starting point for the design for the PAMELA project.

6.3.1 Parameters of Study and Method of Optimisation

It was decided to test a transport line with a length of 30m because this is the proposed

length of the main straight section running from the first treatment room to the last (see

figure 4.3). In order to keep the transport as sparse as possible, the ideal would be to

have one cell per 10m, however, initial simulations showed that this was impossible with

the existing cell design. Instead, a set up with one cell per 5m was settled on, which

keeps the transport line fairly sparse, and maintains the 10m periodicity. The geometry

of this layout is summarised in table 6.1.

Table 6.1: Geometry of the transport line cell to be considered.

Magnets 4

Magnet length 20 cm

Short drift length 20 cm

Cell length 160 cm

Long drift length 340 cm

Periodicity 500 cm

Closed orbits were found for the highest, lowest and an intermediate momenta (0.369,

0.549 and 0.729 GeV/c respectively) and groups of particles were then tracked through

the lattice with larger and larger initial emittances until the smear exceeded the 0.1

limit. The acceptance was found for each momenta by approaching the limit in smaller

and smaller emittance steps until the smear = 0.1 to an adequate precision. The lowest
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acceptance was taken to be representative of the working point, however very little

variation with momentum was observed.

The aperture was taken as the largest y value within a magnet, minus the lowest. The

dispersion was found in the same way, but in the long drift sections and the field strengths

were simply the largest encountered by each particle through the lattice.
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Figure 6.2: The acceptances for 30m of transport line using cells with non-scaling
magnets in a DFFD configuration. The size of the dots are proportional to the square
root of the acceptance in units of πmm mrad. Green dots represent acceptances
> 10πmm mrad and grey dots represent lower acceptances. For scale: the largest
acceptance (at k = 5 and D/F= 1.15) is 101.75πmm mrad and the smallest (at k = 20

and D/F= 1.3) is 0.028πmm mrad.

6.3.2 Straight Transport Line Optimisation Results

As might be expected, the working points all have DF ratios close to 1, but perhaps

surprisingly, the k values reach as high as 260. Useful acceptances only cover a small

fraction of that however. The difference between using scaling and non-scaling fields was

marginal, so the non-scaling results are displayed (k refers to the scaling field the Taylor

expansion was taken from). Figures 6.2 and 6.3 show the acceptances of the working

points of the two cell configurations.
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Figure 6.3: The acceptances for 30m of transport line using cells with non-scaling
magnets in a FDDF configuration. See figure 6.2 for description of dot size and colour.
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Figure 6.4: The dispersion in the long drift of a transport cell. This only depends on
k.

Figures 6.4 shows how the dispersion at the centre of the long drift varies with k. The

dispersion was chosen for display instead of aperture because it is more useful to future

studies, where the beam will be extracted from the long drift. The DF ratio was set at 1

and left out of the plot because it has little effect. The peak fields of the working points

with acceptances and dispersions likely to be useful were not so large to present problems

for magnet designers, so will only be discussed for individual designs of interest.
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Figure 6.5: The acceptances for 30m of transport line using cells with non-scaling
magnets in a DFFD configuration, k close to 12 and D/F close to 1.15. For scale, the
largest dot at k = 7.5 and D/F= 1.17 represents an acceptance of 122.03πmm mrad.
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Figure 6.6: Tracks through cell with k = 11 and a DF ratio of 1.17.

There are working points available for use as an FFAG beam transport line in both DFFD

and FDDF cell configurations, however, the DFFD has more with higher acceptances.

There is a conflict between using higher k values to reduce the dispersion at the centre of

the long drift and using lower k values to increase the acceptance, but from inspection it

seems that there are good compromises available around k = 12 with a cell configuration

of DFFD. Figure 6.5 shows the acceptances and long drift dispersions close to k = 12
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Figure 6.7: Fields through cell with k = 11 and a DF ratio of 1.17.

0 100 200 300 400 500

2.0

2.2

2.4

2.6

SHcm L

,Βy Hm L

,Βz Hm L

Figure 6.8: Beta functions through cell with k = 11 and a DF ratio of 1.17.

and D/F = 1.15.

A good point to base further studies on is DF ratio of 1.17 and (the Taylor expansion

of) k = 11. Figures 6.6 → 6.8 show the tracks, fields and betas through one cell of that

design. Figure 6.9 shows the horizontal phase space of a group of particles with a 10π

mm mrad emittance before and after travelling through 30m of the transport line and

figure 6.10 shows the vertical phase space. Both ellipses rotate, however the smear is

a measure of the distortion of the shape, which does not change a great deal in either
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Figure 6.9: Horizontal phase space ellipses through 6 cells with k = 11 and a DF
ratio of 1.17. Circles show where the particles started and rectangles show where they

finished. Each particle is a different colour.

case. The largest smear is in the horizontal phase space and it is 0.064. Please note that

this is not the finalised design of the straight cells. This can be found at the end of the

next section, where a bending section is added, in table 6.5.

6.4 Transport Cell for Carbon

This is a study to see if the optimal straight transport design can be adapted for use

with the carbon beam that PAMELA will produce. The carbon beam will have a

momentum range of 0.729 → 1.909 GeV/c per nucleon, so either the field strength or

the magnet length would need to be increased. Although the fields strengths are low in

the transport line, a design was tried with 50% more magnet length and cell length (so



Chapter 6. Transport Line Design Studies 157

-0.5 0.0 0.5
-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

ZHcm L

P
Hm

ra
d
L

Figure 6.10: Vertical phase space ellipses through 6 cells with k = 11 and a DF
ratio of 1.17. Circles show where the particles started and rectangles show where they

finished. Each particle is a different colour.
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Figure 6.11: Tracks through a possible straight transport line for both protons and
carbon. The units for the key are GeV/c.
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Figure 6.12: Fields through a possible straight transport line for both protons and
carbon. Notice that by increasing the length of the magnets by a half, the required

fields have remained roughly the same as in the proton only cell.
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Figure 6.13: Beta functions through a possible straight transport line for both protons
and carbon 6+. The momentum range is from 0.369 to 1.909 GeV/c per nucleon.

the same packing factor). After a slight adjustment of the k value, a configuration was

found that not only takes the carbon momenta, but takes the proton momenta too: a

combined range of 0.369 GeV/c to 1.909 GeV/c. This raises the possibility of the same

transport line being used for both types of particle.

Figure 6.11 shows the tracks of five momenta over the full range. Although the aper-

ture has dramatically increased it is still within the bounds of possibility for a magnet
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aperture (the orbit excursion in the main PAMELA ring is 17cm [26, p.17]), especially

with these low fields. Figure 6.12 shows that the field strengths required are similar to

the proton only design and 6.13 shows that the periodic beta functions remain stable

across the whole energy range. Table 6.2 summarises the parameters of this design.

Table 6.2: Transport Line Straight Cell for Carbon and Protons Specifications.

Parameter Value Units

Momentum range 0.369 → 0.729 (GeV/c)/u

Magnets per cell 4

Magnet length 30 cm

Short drift length 30 cm

Cell length 240 cm

Long drift length 340 cm

DF ratio 1.17

k 12

Field strength (max,min) 0.702, -0.678 T

Aperture 14.39 cm

To get a full appreciation of the possibilities of this design a full parameter search similar

to the one in section 6.3 would have to be undertaken. However, that will be left for

further work as this thesis is concerned with creating a working proton design first to

show that it is possible, before a full carbon design is attempted.

6.5 Adding a Bending Section to the Transport Line

The next step is to add a 45◦ bend in between straight sections (see figure 4.3). The

basic requirements for this section are:

• To bend the beam through 45◦.

• To match equilibrium orbits to the straight lattice.

• To match beta functions to the straight lattice.

So, an ideal design for the bending section would be a single cell with a k of 11 to

match the optimal straight lattice design and a bend angle of 45◦ to keep the number
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of magnets used to a minimum. Triplet cells are more appropriate for bending sections

than quadruplet cells because a net bending needs to occur and an imbalance of focusing

to defocusing is desirable. For this reason, the basic cell geometry will be the same as

that used for the gantry (figure 5.2).

Unfortunately, there are no such ideal cell designs with stable orbits. Of course, the 45◦

can be made up of more than one magnet; and there are cell designs with stable orbits

that have bend angles of 22.5◦, 15◦ and 11.25◦. However, the configurations with the

same k as the optimal straight lattice are not close to matching its beta functions.

This means that the optimal straight lattice as defined in the previous section will have

to be abandoned and a new optimum found with the requirement that it matches to a

45◦ bending section. To do this, a new parameter search was undertaken involving both

the bending and straight sections.

To reduce the complexity, only the k value was changed in the straight section, with the

rest of the parameters being those of the optimal lattice found in the previous section.

This can be justified by considering figure 6.5. The acceptances of lattices with a DF

ratio close to 1.17 remain valid over a wide range of k values, so the optimal k for the

bending section will probably not have a k that makes the acceptance of the straight

section too low. This means that when attempting to match the straight and bending

sections, it is reasonable, in the first attempt at least, to only vary k.

6.5.1 Parameter Search for the Bending Section

The parameters changed in the bending section were: bend angle per cell, k, DF ratio,

long drift and packing factor. For each configuration, the closed orbit positions and beta
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functions were found and tested against those of the straight lattice with the same k.

This is summarised in table 6.3.

Table 6.3: Bending Section Parameter Search. Magnet length was kept constant at
60cm and the short drift 20cm.

Parameter Range

k 2 → 20

Packing factor 0.5 → 0.8

Long drift length 50 → 350 cm

Bend angle per cell 11.25◦ → 45◦

DF ratio 0.8 → 1.8

When the closest match was identified, a more precise match was found using a downhill

fitting function (see section 2.7). All parameters used in the parameter search were varied

for this, except for the bend angle. Also allowed to vary slightly, was the DF ratio and

long drift of the straight section.

After this fitting process was finished, the field profiles of both section were made non-

scaling by using the Taylor expansions and the coefficients of the curved section were

varied so that the equilibrium orbits matched perfectly.

6.5.2 Bending Section Result and Final Straight Cell Design

The specifications of the resulting bending cell are shown in table 6.4 and figures 6.14

and 6.15 show the tracks and beta functions through a 45◦ bend between two straight

cells.

6.5.3 Discussion of the Matched Bending Section

The ability to match a bending section to the straight transport line design is very useful

to this design for the PAMELA project. However, it could also be the start of a design

for a ‘race-track’ style FFAG ring, as is currently done with synchrotrons. This is a
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Table 6.4: Transport Line Bending Cell Specifications. The bn values are those in
equation 2.31

Magnets per cell 3

Magnet length 60 cm

Short drift length 10 cm

Cell length 200 cm

Long drift length 98.2 cm

Bend angle per cell 15◦

DF ratio 1.416

b1 4971.5

b2 12236891.7

b3 20438752621.9

b4 26368787187869.9

Table 6.5: Transport Line Straight Cell Specifications. The bn values are those in
equation 2.31

Magnets per cell 4

Magnet length 20 cm

Short drift length 20 cm

Cell length 160 cm

Long drift length 340 cm

Periodicity 500 cm

DF ratio 1.220

b1 5000.0

b2 12497500.0

b3 20820835000.0

b4 26010428123750.0

0 500 1000 1500

-10

-5

0

5

10

SHcm L

Y
Hc

m
L

Figure 6.14: Tracks through a 45◦ bending section between two straight transport
cells.
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Figure 6.15: Beta functions through a 45◦ bending section between two straight
transport cells.

ring with straight sections where space can be made for beam extraction, acceleration

or experiments that would not normally be possible in a circular ring. Designs for FFAG

racetracks have been proposed [90] [91] [92], but as yet, none have been built. Adapting

this particular design to make an FFAG racetrack may be an interesting idea for a future

study.

6.6 Extraction from the Transport Line

6.6.1 Purpose of Study

The purpose of this section is to find a way to switch the beam into the treatment room

out of the straight transport line using switchable magnets. It will be shown that this

is prohibitively complex to achieve using binary, on/off, magnets and a solution with

variable field dipoles will necessarily be introduced. This will be justified at the end of

the section not only due to the difficulties in doing it any other way but as a way of
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introducing energy selection into the design of the transport line, which is beneficial to

patient safety.

6.6.2 Ideas for Fixed Field Extraction from the Transport Line

The following sections go through all the possibilities that were considered that do

not use variable field magnets. They will each be briefly described and their suitability

discussed as a way of justifying the use of variable field dipoles in section 6.6.3. Although

none of them were successful in this particular context, they include some interesting

ideas for FFAG transport design.

6.6.2.1 Switching One Magnet Off

Deflection of the beam out of the straight quadruplet transport cells could be achieved,

in principle, by switching off one of the constituent magnets. The design of the straight

transport line includes an overall balance in bending strength between the F and the D

magnets, so when one is switched off, overall bending will occur. Figures 6.16, 6.17, 6.18

and 6.19 show the effects of switching off each of the four magnets individually. Switching

off the F magnets is most interesting to us because it creates the reverse bending this

design requires; and from comparing figs 6.18 and 6.17, it appears that switching the

second focusing magnet off is the most desirable as it keeps the required aperture to a

minimum. Figure 6.20 shows that while this obviously disrupts the periodicity of the

beta functions, they are not disastrously affected and there may be some way to correct

them.

This particular configuration would probably produce enough of a kick to give all of the

energies enough elevation before the next cell. In the current design, the drifts between
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Figure 6.16: Tracks through a straight transport cell with the second D magnet
switched off. This creates approximately 8◦ positive deflection in all momenta. The
boxes show where the switched on magnets are and their height gives an approximation

of the aperture required.
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Figure 6.17: Tracks through a straight transport cell with the second F magnet
switched off. This creates approximately 10◦ negative deflection in all momenta. The
boxes show where the switched on magnets are and their height gives an approximation

of the aperture required.
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Figure 6.18: Tracks through a straight transport cell with the first F magnet switched
off. This creates approximately 10◦ negative deflection in all momenta. The boxes show
where the switched on magnets are and height length gives an approximation of the

aperture required.
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Figure 6.19: Tracks through a straight transport cell with the first D magnet switched
off. This creates small negative deflections in all momenta. The boxes show where
the switched on magnets are and their height gives an approximation of the aperture

required.
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Figure 6.20: Beta functions through a straight transport cell with the second F
magnet switched off. The boxes show where the switched on magnets are. The green
line is the horizontal (y) beta functions for all momenta in the range 0.365GeV →

0.729GeV and the black line shows the vertical (z) beta functions.

cells is 340 cm and the deflection produced by turning F2 off is around 10◦; so by the

end of the drift, when the particles reach the start of the next cell, each particle will

have shifted about 60cm in the Y direction. This means that the lowest energy, which

starts at around -10cm will be ∼ 40cm above the top of the aperture (+10cm) in the

transport cell below. This is probably enough space for the magnets and casing of the

transport cell. If it is not enough for both the transport cell casing and whatever magnet

is required to take the ejected beam, then the ejected beam could be allowed to drift

until there is.

This is an elegant solution as it does not require any extra magnets to produce the

extraction kick, however it will not be considered further for this design. There may be

some practical problems in turning off one of the magnets in a cell, but there is also the

problem that the beam will have to be bent by a further 35◦ with the lowest energy on

the outside of the bend and the highest energy on the inside. As discussed in the gantry

design chapter, this is not feasible and it is better to look for a design which switches
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the positions of the particles as well as ejects them.

6.6.2.2 Switchable Dipoles

This is an obvious idea, using the most basic magnets available. At each ejection point, a

switchable dipole would be placed deflecting the beam out of the transport line. Another

dipole, with the exact opposite field strength would then cancel out the bend - and,

importantly, the dispersion - before an FFAG bending section would take the beam to

the treatment room. The distance the beam is taken away from the main transport line

is controlled by the strength of the dipoles. An example of tracks through the dipoles

in this scheme is shown in figure 6.21. One advantage of this idea is that dipoles appear

as drifts to the beta functions because there is no field gradient.
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Figure 6.21: Example of ejection system using two dipoles of opposite strength. The
discontinuities in the lines are due to glitches in display, rather than any real effect.

While this is appealing in its simplicity, it would be impossible to match to the beam

after the second dipole to the field profile in an FFAG. Figure 6.22 shows how the

difference in relative position vs momentum is quite large for most of the momentum

range. This is too big a difference for the type of ns-FFAGs that this thesis deals with
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Figure 6.22: Comparison of particle positions at the exit of the fixed dipole ejection
system and the equilibrium positions in a scaling FFAG cell.

to cope with, and would only get worse, if beam were deflected to a greater distance

from the transport line.

6.6.2.3 Dispersion Suppression

After designing the matched bending section for the transport line, an obvious thought

would be to extract using a bending FFAG cell which could be switched on and off.

However, such a bend would have to have negative dispersion - with the lowest energy on

the outside of the bend and the highest on the inside - and as in the gantry, dispersion

suppression would be required to achieve it. This would mean that in the proposed

layout described in figure 4.3, a 2π phase advance would have to occur in the 10 meters

between every switching point, which would require at least three cells to do so stably.

This would defeat the object of having a sparse transport line somewhat but a test of the

principle was carried out. It was found difficult to achieve perfect dispersion suppression

with the straight cells however and the attempt abandoned. It is not obvious why this
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would be the case, because in theory, all that is required is a π phase advance, but in

practice, so far, it could not be done.

6.6.2.4 Curved Transport Line

This is a much more radical idea than the others as it requires an entirely new transport

layout which would use triplet cells in a curved transport line. The idea of this is to

have sections of 2π phase advances, with dispersion suppression points every three cells.

Depending on whether a switching cell is turned on or off, the beam will go one of two

ways (figure 6.23). The layout can either be circular (perhaps with PAMELA at the

centre) or in a ‘snake’ type layout with treatment rooms on either side (figure 6.24).

This idea is fairly appealing as it could make extraction easier and the requirement for

the transport line to bend through 45◦ one way, then the other, would be met as a part

of the design, rather than as additions to it.

Tests were done and various possible lattices found using parameter searches and the

dispersion suppression design process. These resulted in some promising lattices. Figure

6.25 shows the tracks through a design similar to the ‘snake’ layout in figure 6.24, except

there are four cells between each dispersion suppression point, rather than three. In this

case the beam will have gone all the way to the end, switching curvature at every

dispersion suppression point; three times in total. It seems promising and the beta

functions in figure 6.26 are not as smooth as they could be, but remain low enough over

this distance to avoid dismissing the idea completely.

However, this idea was not pursued any further because the idea of switching on and

off a whole cell would not be practical. Also, lattices with low beta functions tend

to have more cells between dispersion suppression points, which means this type of
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Figure 6.23: How a curved transport line might switch into treatment rooms. Every
three cells would have a 2π phase advance. At the dispersion suppression points, the
darker cells would switch on to take the beam to a treatment room, or off to let the

beam continue.

Figure 6.24: Two possible new layouts for curved BTL using triplet cells. This
attempts to solve the problems of bending out from a straight transport line, by having
curves as part of the main section. The layout on the left is a circular design and the

one on the right a ‘snake’ type.
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Figure 6.25: Tracks through a ‘snake’ type curved transport line. There are four cells
between each dispersion suppression point and it switches curvature three times.
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Figure 6.26: Beta functions through the curved transport line. The initial beta values
to make this plot were chosen arbitrarily, but within reason.

transport requires many more magnets than the straight design discussed previously.

For example, in the design discussed in section 6.3 has two cells and eight magnets

between each extraction point, whereas the curved design shown in figure 6.25 would

have four cells and 12 magnets.
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6.6.3 Justification for a Variable Field Switching Dipole

Rather than switching a whole cell off and on, it would be much more practical to use

an arrangement with a simple dipole. As shown in section 6.6.2.2, a dipole arrangement

with fixed fields is very difficult to achieve as matching between the dispersion caused by

the dipole and the field profile of an FFAG magnet is prohibitively problematic. Partly

for this reason it is worth considering moving away from an entirely fixed field design

and use a variable strength dipole to extract the beam at this point.

There is an obvious objection to doing so: why spend all the effort designing the rest of

the PAMELA complex using ns-FFAG magnets only to slow the whole thing down with

a variable magnet? The answer comes in two parts:

Firstly; sweeping this one small dipole should be a more trivial and much faster operation

than sweeping the many magnets used in conventional gantry and transport lines. This

means that there is still a clear speed advantage to making the complex predominantly

fixed field. It does prevent PAMELA from switching between two arbitrarily chosen

energies instantaneously, as would be possible in a totally fixed field machine, but there

is no clinical reason that a treatment volume must be filled in this ‘random access’ way

as normally the treatment volume would be filled in a series of small steps.

The second reason a variable dipole would be useful at this point, is to do with the safety

of the machine. In variable field machines, a particle with an incorrect energy would

be kicked off orbit by any of the dipoles it passes through and be lost before getting

anywhere near the patient. In a totally fixed field machine, however, there is nothing

to stop a particle with an erroneous energy travelling right from start to finish. This is

clearly a safety risk because it could cause dose to be delivered to places outside of the

treatment area.
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Figure 6.27: Schematic of an energy selecting ejection system for the transport line,
using variable field dipoles and movable collimator. The continuous black line is the
track of the desired momentum, whereas the dotted lines are the tracks of particles

with erroneous momentum.

Using a variable field dipole for the switching mechanism gives us the opportunity to

block any particles which do not have the correct energy. A system of a dipole and

a collimator will deflect the beam away from the transport line as well as block any

particle with the wrong energy; a second dipole will cancel any dispersion caused by the

first and FFAG bending magnets can then take the beam to the treatment room (figure

6.27). This, along with the complications in designing a fixed field solution described

in section 6.6.2, is the best justification for introducing variable dipole fields into the

design.

The design of these two dipoles will be relatively straightforward. A fitting algorithm can

be used to match the particle positions at the end of the transport line to the bending

FFAG magnets using the field strength of the dipoles. However, the exact design for

the variable field switching dipoles can only really be made once the matching into the
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treatment room has been considered, since the design for the 45◦ bend and dispersion

suppressor required to prepare the beam for the rotator is more complicated and less

flexible than the design of the dipoles.

6.7 Design for 45◦ bend and Matching into Treatment Room

This section deals with the design of the 45◦ bend away from the straight transport line

and matching both equilibrium orbits and beta functions into the gantry. The problem

here is similar to some of those faced in the gantry design: a section of lattice must

bend the beam through 45◦ and simultaneously suppress the dispersion to zero. It is

perhaps more flexible than anything in the gantry because there is no restriction on k

and bend angle per cell can be any factor of 45 (although, of course it should be as high

as possible).

There is the added challenge here, though, that was not faced in the gantry: the beta

functions at the point of entry to the treatment room, where the gantry rotates, must

match the specific values for the optimal beta functions found in the design of the gantry

(see figure 5.48), shown in appendix A and summarised in table 5.10. The horizontal

and vertical beta functions must be equal to each other to create a completely circular

beam which is invariant during the rotation of the gantry.

To summarise, in addition to the usual constrictions on maximum field, aperture and

drift spaces, the specifications of this section are:

• Must bend the beam through 45◦.

• Must have a zero dispersion point at the end.

• Horizontal and vertical beta functions must be equal to each other for each energy
and match those in appendix A.
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These three requirements can almost be split up into different sections of lattice: a

section of lattice that will do most of the bending; a section that does the dispersion

suppression (and the rest of the bending); a section that matches the beta functions to

the gantry. However, the first two sections have to be designed together because they

have to match beta functions, equilibrium orbit positions and their bend angles have to

add up to 45◦.

The matching of the beta functions will be done in section 6.7.3. Because of the dis-

ruption to the beta functions caused by the dispersion suppression magnets, it will be

impossible to exactly match them to the start of the gantry only using fixed fields. But,

since time varying dipoles have been introduced into the design, it will also be possible

to introduce time varying quadrupoles here to control the beta functions.

6.7.1 Dispersion Suppression and bending

The dispersion suppression and bending sections were attempted with only two magnets

doing both functions at the same time. However, it proved to be impossible to achieve

with sensible field strengths and beta functions, so a parameter search was undertaken

for each section, then possible matches were found and the best refined into a design.

The parameters varied are summarised in table 6.6 and the criteria considered when

finding matches were:

• The sum of the bend angles must be 45◦.

• The k of the dispersion suppressor magnets must be twice the k of the bending
magnets.

• The beta functions need to match roughly with each other and with the straight
transport line so that they will not be unreasonable at the end.

• Also, the phase advance in the dispersion suppression cells had to add up to π.
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Table 6.6: Parameter Search for 45◦ Bend and Dispersion Suppression into Treatment
Room. The magnet length was held at 60cm throughout.

Parameter Range

Dispersion Suppression Bend

k 4 → 11 2 → 5.5

Packing factor 0.5 → 0.9 0.5 → 0.9

Long drift length 50 → 300 cm 50 → 300 cm

Number of Cells 2 → 3 1 → 2

Bend angle total 0◦ → 10◦ 45◦ → 35◦

DF ratio 1.6 → 2.1 0.8 → 1.5

6.7.1.1 Results

This parameter search only turned up a small number of candidates that matched all

of the criteria; all of these had k values of 4.5 for the bend and 9 for the dispersion

suppression cells. The match with the total bend angle closest to 45◦ had a total bend

of only 41◦, but it was found that the bending section could easily be adjusted to make

up the difference. These lattices were refined using the dispersion suppression process

and adjustments made to reduce the size of the resulting beta functions. The resulting

designs are summarised in table 6.7 and the tracks (figure 6.28) and final positions

(figures 6.30 and 6.31) show that near perfect dispersion suppression matched to a 45◦

bend has been achieved. A big achievement is that the beta functions (figure 6.29)

are relatively controlled given the inherent non-linearities of the dispersion suppressor.

However, the exact Twiss parameters of the beam at the start of this plot were taken

from the end of a cell of the straight transport line, so the exact beta functions will not

be known until the extracting dipoles are designed and the beta functions of the whole

transport line simulated.
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Table 6.7: Designs of 45◦ Bend and Dispersion Suppression into Treatment Room.
*Only the dispersion suppression cell 1 (i.e. the one nearest the the dispersion sup-
pression point) has a k value, because all other cells were adjusted using the Taylor

Expansion.

Parameter Dispersion
Suppression

Bend Units

Bend angle per cell 3 19.5 degrees

Packing factor 0.9 0.8

Cell length 200 225 cm

Magnet length 60 60 cm

Long drift length 50 300 cm

Number of Cells 2 2 cells

DF ratio 1.93 1.47

k* 8.94 n/a

b1 9065.763 3538.359

b2 39271200 6538764

b3 11549640000 20563200000

b4 9087254000000 24700290000000

Max aperture 16.55 21.24 cm

Field strength (max, min) 0.595, -0.758 1.514, -1.549 T
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Figure 6.28: Tracks through best design of 45◦ extraction bend and dispersion sup-
pressor of particles with five different momenta.
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Figure 6.29: Beta functions through best design of 45◦ extraction bend and dispersion
suppressor for momenta from 0.369GeV → 0.729GeV.

Figure 6.30: Final positions of particles through the 45◦ extraction bend and disper-
sion suppressor with ideal initial positions.

6.7.1.2 Discussion of The 45◦ Bend and Matched Dispersion Suppressor

These are the best possible final positions as they do not take into account any of the

transport line before the 45◦ bend, let alone positional and field gradient errors. From

inspection of the plots in section 5.9 it looks like just these final positions alone would

produce a 0.5◦ deflection error and around a 0.05cm position error at the end of the

gantry with the lowest (worst case) momentum. This further strengthens the case made
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Figure 6.31: Final angles of particles through the 45◦ extraction bend and dispersion
suppressor with ideal initial positions.

in [26] for having an active scanning system at the entrance to the gantry as well as at

the end of the gantry. In fact, it may be worth investigating the value of a scanning

system at the dispersion suppression point a third of the way through the gantry (at

point B in figure 5.25) as well, since magnet positioning and field gradient errors can

only add to these errors and real-time correction may be essential.

6.7.2 Design for a Variable Field Switching Dipole

With the 45◦ bend designed, the switching dipoles can now be designed. This is a straight

forward procedure: a reasonable, but arbitrary magnet length was chosen (30cm) and

a field strength found for each energy to take the beam from the equilibrium orbit in

the straight transport line to the correct position in the 45◦ bending magnets. It was

decided to take the beam 1m away from the orbit of the central momentum particle

in the straight transport, to give ample room for the magnets and casing of both the

straight transport cells and the 45◦ bend cells.
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Figure 6.32: Tracks through the variable field transport extraction dipoles, with a
straight cell downstream and a curved cell upstream.

Table 6.8 shows a selection of the field strengths required over the energy range (a more

complete version can be found in appendix A). The field strength is the opposite in

each magnet, so only the strength of the first dipole is shown. Figure 6.32 shows tracks

through the dipoles and that they match the equilibrium orbits of the two sections of

transport line.

Table 6.8: Field strengths for variable field switching dipole. This is only a small
summary of a larger table in appendix A.

Momentum (GeV/c) Field Strength (T)

0.369 -1.6870

0.459 -1.9413

0.549 -2.1727

0.639 -2.3813

0.729 -2.5704

6.7.3 Matching of Beta Functions

Since there are variable field dipoles in use, and the beta functions at the end of the

dispersion suppressor are irregular, an unavoidable consequence of FFAG dispersion

suppressors, it is probably justified to propose a series of variable field quadrupoles to
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match the beta functions into the gantry. Also, as discussed in [26] and mentioned in

the previous section of this thesis, an active system may be required to match the beam

positions into the gantry, so variable field quadrupoles could be a part of that.

To show that it is possible to match the beta functions, the following study was carried

out using a number of quadrupoles between the end of the transport line and the be-

ginning of the gantry. For each energy, four values have to be matched: the horizontal

and vertical beta functions have to equal the optimal values at the start of the gantry

(table 5.10) and the alpha functions have to equal zero. This means there has to be

at least four degrees of freedom for a solution to be possible. The only freedoms there

are between energy changes are the strengths of each dipole, so an initial layout of four

quadrupoles of length 20cm and with 20cm between them was decided on.
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Figure 6.33: Beta functions through the five matching quadrupoles at the end of the
transport line with boxes show their position. All beta final functions match to the

optimal values at the start of the gantry.

After a parameter search, it was found difficult to complete the task with four quadrupoles,

especially at the lowest energy, so an extra magnet was added to the design. The values

in table 6.9 are results of parameter searches and a down-hill fitting procedure for five

momenta. They match to the optimal beta values to within 0.1m and all the alpha
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values match to zero to within 0.01 except for the problematic lowest momentum, which

could only be matched to within 0.5. Figure 6.33 shows the beta functions through the

five quadrupoles.

Table 6.9: Quadrupole strengths for matching Twiss functions from the transport
line to the gantry.

Quadrupole k vales (m−2)

Momentum (GeV/c) Q1 Q2 Q3 Q4 Q5

0.369 -4.73 5.54 -0.437 -9.34 0.319

0.459 4.41 1.78 0.855 -1.43 8.99

0.549 4.50 1.31 -2.95 -5.58 7.41

0.639 4.87 2.04 -1.00 -7.57 7.40

0.729 5.98 3.38 0.63 -9.19 7.56

The effective gradients of the quadrupoles are all well within the range of the other

PAMELA quadrupoles. However, in every case there is a large jump between 0.459

GeV/c and 0.369 GeV/c, so further investigation would have to be done to see if this is

possible in a reasonable time.

6.7.4 The Whole Transport Line

The plots in this section show all of the different parts of the transport line together.

The tracks are shown in 6.34 and the final positions and angles are shown in 6.36 and

6.37 respectively. The beta functions are shown in figure 6.35. This shows that it is, in

principle, possible to take particles over such a large distance of straight FFAG transport

line, bend it positively, extract it, bend it negatively and create a zero dispersion point at

the end. Although the accuracy in the final positions is not sufficient to match straight

into the gantry, it is still a design which could be improved into a fully working design.
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Figure 6.34: Tracks through the entire transport line. The order of cells is: two
straight transport cells (table 6.5), three bending cells with a total bend of 45◦ (ta-
ble 6.4), four more straight cells, the variable field dipoles (table 6.8), two negatively
bending cells and two dispersion suppression cells, all with a total bend of −45◦ (table

6.7).
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Figure 6.35: Beta functions through the whole transport line.



Chapter 6. Transport Line Design Studies 185

Figure 6.36: Final positions at the end of the transport line.

Figure 6.37: Final deflections at the end of the transport line.

6.8 Conclusion

This chapter showed the design of an ns-FFAG transport line. To do this, it was neces-

sary to optimise an existing design for straight transport cells (section 6.3) and match

bending cells to it (section 6.5). (This match may be an interesting result because it

could form the basis of a race track style accelerator, currently only seen with syn-

chrotrons). The design also required a section of lattice to bend the beam 45◦ away

from the transport line and use a dispersion suppressor to match as best as possible into
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the gantry (section 6.7). In order to extract from the straight transport line, it was nec-

essary (section 6.6.3) to move away from a completely fixed field design and introduce

variable field dipoles (section 6.7.2). Variable fields were also used to match the beta

functions into the gantry (section 6.7.3).



Chapter 7

Conclusion

There are three main novel pieces work in this thesis: the discovery and development of

the near perfect FFAG dispersion suppression design process in section 5.5, the gantry

design in chapter 5 and the transport line design in chapter 6. Within this thesis,

the author has also demonstrated an understanding of its context in the wider history

of particle accelerator design (section 1.1); while in section 3.4 an understanding of

its context in both the history and contemporary literature of FFAG accelerators was

shown. The underlying physical principles required for the design of FFAG latices were

discussed in chapter 2; as were the relative benefits and ideas behind charged particle

therapy in section 1.2.

In this chapter, I will assess how well the challenges set out in chapter 4 were met, as

well as summarise the areas that require further work.

7.1 Assessment of Final Designs

The challenges to be met were set out in section 4.1.1 and are reproduced here.

187
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Beam Specifications:

• Momentum range = 0.369 GeV to 0.729 GeV

• Switching between momentum at a rate of ≈ 1kHz

• Positional dispersion limited to 5cm at end of gantry.

• Angular dispersion limited to within around half an mrad at the end of the gantry.

• No distortion of the beam due to rotation of gantry.

• 0.4cm <
√
εβ < 1.0cm

Magnet specifications:

• Fixed Fields

• Rectangular in the horizontal plane

• Magnets parallel with in cells

• Aperture around half the size as the length

• Fields no higher than 3T

• As few magnets as possible to be used

Space Specifications:

• 3m from bending magnets to patient

• Total height less than 10m

• Height more important than length

Largely the beam specifications have been met, however, none can be said to have done

so without qualification. The transport line and the gantry have both been designed for

the full momentum range and both dispersions are as required (section 5.8). However,

to meet the last two items, an active scanning system will have to be introduced at the

entrance to the gantry, which may make switching between energies slower than 1kHz,

especially at low energies, and further work will have to be done to reduce the beta

values at the end of the gantry.
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The magnet specifications were all met except for the desire to use only fixed fields.

However, using a small number of variable fields has been justified in sections 6.6.3 and

6.7.3. This is justified not only as a way to avoid apparently intractable complications

in extracting the beam from the transport line and matching to the gantry, but also for

safety reasons because erroneous energies can be prevented from reaching the patient.

Of the space specifications, only the first was met. This was the most important, because

the scanning system has to fit in this space, however, it made it very problematic to

keep the height below 10m with a full 360◦ rotation. It is not clear how this can be

overcome using these types of magnets with the clearance restriction of 3m after the

bending magnets. Due to this, and the problems with the beam, ideas for avenues of

further study into a more compact design were discussed in section 5.10.

Although these challenges were not completely met, this thesis has presented the first

design for a near perfect FFAG dispersion suppressor (section 5.5) and assessed its

susceptibility to positional errors (section 5.5.5). It has also optimised the first design

for a straight transport line (section 6.3), shown that it can take the the full proton and

carbon energy ranges required for CPT (section 6.4) and matched a bending section to

it (section 6.5). Showing that PAMELA type magnets may not be the best starting

point for a gantry is also a worthwhile achievement.

7.2 Further Study

The most further study is required in the gantry design: The main concern is that the

dimensions need to be reduced in order to be competitive with existing conventional

gantries. So both a length and full height of < 10m should be the goal.
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If this design were to be taken any further, however, the horizontal and vertical betatron

functions at the end of the gantry should be reduced in order to be compatible with

scanning magnet requirements.

In the current study there was no time to create field maps for any of the FFAG magnets.

This would need to be done to check the fields can be generated with existing magnet

technology. Also, the possibility of mounting them on a moving gantry would have to be

explored as this could cause problems with positional errors caused by magnet movement

and, as superconducting technology is likely to be needed, with the cryogenic system.

The scanning system at the start of the gantry needs to be designed. This would involve

variable field dipoles for position and quadrupoles for the beta functions, both linked to

upstream diagnostics to eliminate errors.

A full error study of the dispersion suppressor is required which would involve all three

positional dimensions, all three rotational dimensions and errors in the field gradients.

This study then would need to be extended to the whole gantry and transport line.

A scheme needs to be developed to match from the main PAMELA ring to the start of

the transport line. One idea for this is to use a dispersion suppression point straight after

extraction probably with some variable field quadrupoles to match the beta functions.

Since the aim of the PAMELA project is to design a complex for both protons and

carbon ions, a design for a carbon transport line and gantry should be attempted. An

initial step was taken in section 6.4, with a design for a straight carbon transport line,

but the bending sections would most likely prove more problematic. Carbon ions at

therapeutic energies have a higher magnetic rigidity than protons, so any design would

either require higher fields, longer magnets, a greater radius or a combination of the

three.
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One possible area of study that might follow from this thesis is the design of an FFAG

racetrack. The bending section matched to the straight transport line in section 6.5 could

form the basis of such a design. However, another idea would be to use the bend into

the gantry and the dispersion suppression cells in section 6.6. This would be interesting

to pursue, because RF cavities could be placed at the dispersion suppression points,

reducing the problems for RF designers caused by the large dispersion in conventional

FFAGs.
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Miscellaneous Tables

Table A.1: Optimal initial betas values for the gantry: long version. See section 5.8

Momentum (GeV/c) Beta (m) Momentum (GeV/c) Beta (m)

0.369 4.92431641 0.5562 6.27687836

0.3765 5.03625488 0.5634 6.65138245

0.384 5.20043945 0.5706 7.01745605

0.3915 4.33807373 0.5778 7.371521

0.399 4.28771973 0.585 7.70999908

0.4065 4.22601318 0.5922 8.02990723

0.414 4.56195068 0.5994 8.3289032

0.4215 5.33868408 0.6066 8.60540771

0.429 5.36376953 0.6138 8.85888672

0.4365 5.39074707 0.621 9.0899353

0.444 5.41619873 0.6282 9.30013275

0.4515 5.44195557 0.6354 9.49232483

0.459 5.46807861 0.6426 9.67042542

0.4665 5.49456787 0.6498 9.8394165

0.474 5.52166748 0.657 10.00665283

0.4815 5.54931641 0.6642 10.17883301

0.489 5.57769775 0.6714 10.36463928

0.4965 5.60687256 0.6786 10.57542419

0.504 5.52392578 0.6858 10.82572937

0.5115 5.29577637 0.693 11.13540649

0.519 5.0916748 0.7002 11.53314209

0.5265 4.9083252 0.7074 12.06355286

0.534 5.10915375 0.7146 12.80221558

0.5415 5.50180054 0.7218 13.89251709

0.549 5.89772034 0.729 14.21984863
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Table A.2: Field strengths for the dipole transport line extraction scheme. See section
6.7.2

Momentum (GeV/c) Field Strength (T)

0.369 -1.687

0.389 -1.745

0.409 -1.803

0.429 -1.859

0.449 -1.914

0.469 -1.968

0.489 -2.021

0.509 -2.073

0.529 -2.123

0.549 -2.173

0.567 -2.216

0.585 -2.259

0.603 -2.300

0.621 -2.341

0.639 -2.381

0.657 -2.421

0.675 -2.459

0.693 -2.497

0.711 -2.534

0.729 -2.570
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