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Abstract Heat transfer in fluid flows traditionally is 

examined in terms of temperature field and heat-transfer 

coefficients. However, heat transfer may alternatively be 

considered as the transport of thermal energy by the total 

convective-conductive heat flux in a way analogous to the 

transport of fluid by the flow field. The paths followed by 

the total heat flux are the thermal counterpart to fluid 

trajectories and facilitate heat-transfer visualisation in a 

similar manner as flow visualisation. This has  great 

potential for applications in which insight into the heat 

fluxes throughout the entire configuration is essential 

(e.g. cooling systems, heat exchangers). To date this 

concept has been restricted to 2D steady flows. The 

present study proposes its generalisation to 3D unsteady 

flows by representing heat transfer as the 3D unsteady 

motion of a virtual fluid subject to continuity. The heat-

transfer visualisation is provided with a physical 

framework and demonstrated by way of representative 

examples. Furthermore, a fundamental analogy between 

fluid motion and heat transfer is addressed that may pave 

the way to future heat-transfer studies by well-established 

geometrical methods from laminar-mixing studies. 
 

Keywords: Heat-Transfer Visualisation, Laminar Flows, 

Micro-Fluidics 

 

 

1. Introduction 

 
Industrial heat transfer problems may roughly be 

classified into two kinds of configurations. First, 

configurations in which the goal is rapid achievement 

of a uniform temperature field from a non-uniform 

initial state (“thermal homogenisation”). Second, 

configurations in which the goal is accomplishment 

and maintenance of high heat-transfer rates in certain 

directions. Thermal homogenisation is relevant for e.g. 

attainment of uniform product properties and 

processing conditions (polymers, glass, steel) and its 

key determinant is the temporal evolution of the 

temperature field towards its desired uniform state (see  

e.g. Lester et al., 2009). Sustained high heat-transfer 

rates are relevant for e.g. heat exchangers, conjugate 

heat transfer, thermofluids mixers and cooling 

applications and the key determinants here are the 

direction and intensity of heat fluxes (see e.g. Shah 

and Sekulic (2003). The present study concentrates on 

the latter kind of heat-transfer problems and then 

specifically under laminar flow conditions. This is 

motivated by the persistent relevance of viscous 

thermofluids (polymers, glass, steel) and, in particular, 

by the growing importance of compact applications 

due to continuous miniaturisation of heat-transfer and 

thermal-processing equipment (Sundén and Shah, 

2007), the rapid development of micro-fluidics (Stone 

et al., 2004) and the rising thermal challenges in 

electronics cooling (Chu et al., 2004). 

     Heat transfer traditionally is examined in terms 

of convective heat-transfer coefficients at non-

adiabatic walls as a function of the flow conditions 

(Shah and Sekulic, 2003). However, heat transfer 

may alternatively be considered as the transport of 

thermal energy by the  total convective-conductive 

heat flux in a way analogous to the transport of fluid 

by the flow field. This concept has originally been 

introduced by Kimura and Bejan (1983) for 2D 

steady flows and has found application in a wide 

range of studies (a review is in Costa, 2006). Here 

the thermal trajectories are defined by a thermal 

streamfunction; a generalisation to generic 3D 

unsteady flows may lean on describing heat transfer 

as the “motion” of a “fluid” subject to continuity by 

the approach proposed in Speetjens (2008). This 

admits 3D heat-transfer visualisation by isolation of 

the thermal trajectories delineated by a “thermal 

velocity” in the same way as flow visualisation 

involves isolation of the fluid trajectories delineated 

by the fluid velocity. 

        The fluid-motion analogy is particularly suited 

for laminar  flows, where flow and thermal paths are 

well-defined, and affords insight into the thermal 
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transport beyond that of conventional methods by 

disclosing heat fluxes throughout the entire domain of 

interest, that is, in all flow regions and solid walls 

instead of just on solid-fluid interfaces. Thus this 

ansatz has great potential for the thermal analysis of 

the (compact) heat-transfer problems that motivate this 

study. Though beyond the present scope, the fluid-

motion analogy furthermore enables heat-transfer 

analysis by well-established geometrical methods from 

laminar-mixing studies (Speetjens et al., 2006, Ottino 

and Wiggins, 2004). Thus, apart from the “mere” 

visualisation of heat fluxes considered in the present 

study, heat-transfer visualisation offers promising new 

ways for analysis of laminar heat-transfer problems. 

        The present exposition elaborates the heat-

transfer visualisation and its application for thermal 

analyses by way of examples. Considered are a 2D 

steady, 3D steady and a 2D unsteady system. 

Furthermore, an first step towards generic 3D unsteady 

systems is made. The discussion ends with conclusions 

and an outlook to future investigations. 

 

 

2. Heat-transfer visualization: general 
 

For incompressible fluids, the non-dimensional energy 

equation collapses on the form 

    0=⋅∇+
∂

∂
Q

t

T r
,  T

Pe
uTQ ∇−=

1rr
,        (1) 

with Q
r

 the total physical heat flux due to combined 

convective and conductive heat transfer and Pe the 

well-known Péclet number, representing the ratio of 

convective to conductive heat transfer (Speetjens 

2008). The temperature is defined such that T=0 

corresponds with the minimum temperature in the 

domain of interest. The velocity field u
r

 is governed 

by the well-known continuity and momentum (Navier-

Stokes) equations. 

        Flux Q
r

in (1) delineates the thermal transport 

routes in an analogous way as the velocity u
r

 

delineates the transport routes of fluid parcels. The 

paths followed by the total heat flux (“thermal 

trajectories”) are the thermal counterpart to fluid 

trajectories and admit heat-transfer visualisation in a 

similar manner as flow visualisation. Furthermore, 

since Q
r

  is defined in flow and solid regions, heat-

transfer visualisation is possible in the entire 

configuration. This has great potential for studies on 

thermal fluid-solid interaction and conjugate heat 

transfer, both cases of evident practical relevance. The 

heat-transfer visualisation is elaborated in the 

following by way of examples. 

 

 

3. 2D Steady heat-transfer visualisation 
 

3.1 Introduction 

 

2D steady heat-transfer visualisation is demonstrated 

for a basic cooling problem. Considered is a square 

object (side length unity) with its bottom side 

maintained at a constant temperature T=1 and exposed 

to a steady incompressible fluid flow with uniform 

inlet velocity U=1 and at uniform inlet temperature 

T=0. Relevant parameters are Pe, as defined before, 

the fixed Reynolds number Re=10 and the fixed ratio 

of thermal conductivities 2/ ==Λ oλλ , with “o”' 

referring to the object. Only Pe is varied here. For the 

heat transfer in the object TPeQ ∇−= −1
r

 and Pe is 

substituted by Λ= /PePeo
 in (1). Numerical 

methods for resolution of the flow and temperature 

fields and the heat-transfer visualisation are furnished 

in Speetjens and van Steenhoven (2009). 

 

3.2 Flow visualisation: fluid streamlines  

 

2D steady flow via continuity implies a solenoidal 

mass flux uM
rr

ρ= ,  i.e. 0=⋅∇ M
r

, in turn, implying 

a stream function Ψ for the fluid motion, governed by  

    xx uM
y

ρ==
∂

Ψ∂
,  yy uM

x
ρ−=−=

∂

Ψ∂
    (2)          

holding for arbitrary (non-constant) fluid density ρ . 

(Here 1=ρ ; form (2) is retained to underscore the 

generality of the stream function.) The isopleths of Ψ  

coincide with the streamlines and thus visualise the 

flow field. Figure 1a gives the resulting streamline 

portrait, revealing the flow around the object and the 

formation of a recirculation zone in its wake. 
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a) Streamline portrait 

 

b) Temperature field 

Fig. 1.  2D case study: (panel b: blue: T=0; red: T=1). 

 

3.3 Heat-transfer visualisation: thermal streamlines   

 

The present steady conditions reduce the energy 

equation (1) to 0=⋅∇ Q
v

, exposing the total heat flux 

Q
r

 as solenoidal. Thus the energy equation takes the 

same form as the steady-state continuity equation 

underlying (2). This mathematical equivalence 

naturally leads to the concept of a “thermal stream 

function” TΨ , which is governed by 

     
x

T Q
y

=
∂

Ψ∂
,    y

T Q
x

−=
∂

Ψ∂
,,            (3) 

as the thermal analogy to the stream function Ψ . 

The isopleths of 
TΨ  delineate the sought-after 

thermal transport routes and are the thermal 

equivalent of the streamlines of the fluid flow (i.e. 

“thermal streamlines”). The thermal streamline 

portrait thus visualizes the heat transfer in essentially 

the same way as the streamline portrait visualises the 

fluid transport. This concept has originally been 

introduced by Kimura and Bejan (1983) and has 

found application in a wide range of studies (refer to 

Costa, 2006 for a review). 

        The equivalence between (2) and (3) implies 

a fundamental analogy between fluid and heat 

transport. First, it advances the total heat flux Q
r

 as 

the thermal counterpart to the mass flux M
v

. Second, 

it implies that (the isopleths of) Ψ and TΨ  are 

subject to the same geometrical restrictions: the 

(thermal) streamlines cannot suddenly emerge or 

terminate; they must either be closed or connect with 

a boundary. This has fundamental ramifications for 

the transport properties in the sense that the 

(thermal) streamlines are organised into coherent 

structures that geometrically determine the fluid 

motion and heat transfer. For the fluid motion this 

manifests itself in the formation of a throughflow 

region, consisting of “channels” that connect inlet 

and outlet of the domain, and a recirculation zone 

(Figure 1a).  For the heat transfer a similar 

organisation happens. This is demonstrated below. 

 

Fig. 2.  2D case study: thermal streamlines (Pe=50). 

        The temperature field is displayed in 

Figure 1b and its distribution clearly reflects the 

cooling of the object by the passing fluid. Figure 2 

gives the corresponding thermal streamline portrait 

TΨ . The thermal streamlines bound, similar to its 

counterpart in the streamline portrait (Figure 1a), 

adjacent channels. These channels transport thermal 

energy in the same manner as stream tubes transport 

fluid and are the thermal equivalent to stream tubes 

(“heat conduits”). The fact that thermal streamlines 

must either be closed or connect with a boundary 

implies two kinds of heat conduits: (i) open heat 

conduits connected with boundaries; (ii) closed heat 

conduits. Both types are present in Figure 2 and their 

role in the heat transfer is considered below. 

     The open heat conduits inside the object facilitate 

the heat transfer from its hot bottom side through its 

interior towards the fluid-solid interface. Here the 

open heat conduits continue into the flow region and 

collectively form a “plume” that emerges from the 

perimeter of the object and rapidly aligns itself with 

the flow in downstream direction. This plume 



2nd Micro and Nano Flows Conference 

West London, UK, 1-2 September 2009 

 

constitutes the “thermal path” by which heat is 

removed from the object by the passing fluid. The 

thermal path is bend around a family of concentric 

closed heat conduits that collectively form a thermal 

recirculation zone (“thermal island”). The thermal 

island entraps and circulates thermal energy and, 

consequently, forms a thermally-isolated region. The 

blank region upstream of the thermal path has 

negligible heat flux ( 0
rr

≈Q ) and, consequently, 

renders TΨ  undefined (“thermally-inactive region”). 

Thus heat-transfer visualisation exposes the several 

relevant regions of the heat-transfer problem and puts 

forth the thermal path as the only region actively 

involved in the cooling process of the object. 

 

3.4 Thermal path: the role of convection 

 

Heat transfer in the flow region has two asymptotic 

states: Pe=0 (purely-conductive heat transfer) and 

∞→Pe  (purely-convective heat transfer).  The 

actual state sits between both asymptotic states for 

finite Pe and progresses from its conductive to its 

convective limit with rising Pe. This is demonstrated 

in  Figure 3. For the conductive state (panel a)  the 

thermal path occupies the entire flow region, 

signifying heat release into the entire domain and has 

two sections, separated by a separatrix emanating 

from the top wall of the object (not shown), the left 

and right of which transport heat to inlet and outlet, 

respectively, of the flow region. The separatrix 

propagates towards the lower-left corner of the 

object (panel b) with rising Pe until one thermal path 

connecting object with outlet forms (panel c). 

Furthermore, the thermal island emerges in the wake 

of the object and the thermal path becomes spatially 

more confined (panel d). 

 

4. 3D Steady heat-transfer visualisation 
 

4.1 Introduction 

 

Here the 3D extension to the above cooling problem 

is considered. The configuration consists of a cubical 

object (side length unity) with its bottom side 

maintained at a constant temperature T=1 and expo-

sed to a steady incompressible fluid flow with uni-

form inlet velocity U=1 and at uniform inlet tem-

perature T=0. The system parameters are identical to 

those of the 2D counterpart. Numerical methods for 

resolution of the 3D flow and temperature fields and 

the 3D heat-transfer visualisation are furnished in 

Speetjens and van Steenhoven (2009).  

 
 

 

a) Pe=0 

 

 

b) Pe=1 

 

 

c) Pe=10 

 

 

d) Pe=200 

 Fig. 3.  Progression of the thermal streamline portrait with 

increasing Pe. 
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4.2 Flow visualisation: 3D streamlines 

 

Essential difference with the 2D case is that in the 

3D case streamfunctions no longer exists. Here the 

fluid streamlines )(tx  are governed by 

   ,u
M

dt

xd
==

ρ
     0=⋅∇ M

r
,            (4) 

with uM
rr

ρ=  the solenoidal mass flux as introduced 

before. Hence, the fluid streamlines coincide with 

the field lines of both u
r

 and M
r

. Note that (4) is a 

generalisation of the streamfunction relation (2). 

         Continuity imposes the same geometrical 

restrictions upon the 3D streamlines )(tx  as found 

before for the 2D case: the streamlines cannot 

suddenly emerge or terminate; they must either be 

closed or connect with a boundary. This manifests 

itself, essentially similar to the 2D steady case, in the 

fact that continuity organises the streamlines into 

coherent structures, albeit of a greater variety and 

complexity due to the larger geometric freedom 

afforded by 3D conditions. These structures 

determine the topological make-up (“flow 

topology”) of the web of fluid trajectories 

(Speetjensd at al., 2006, Malyuga et al., 2002). This 

flow topology is the generalisation of the 2D 

streamline portrait. 

 

4.3 Heat-transfer visualisation: 3D thermal 

streamlines  

 

The analogy between (thermal) stream functions 

Ψ and 
TΨ  and mass and heat flux M

r
 and Q  

established before naturally leads to 

     ,T
T

u
T

Q

dt

xd
==     0=⋅∇ Q ,          (5) 

as thermal counterpart to (4) (Speetjens and van 

Steenhoven, 2009). The mathematical equivalence 

between (4) and (5) implies that heat transfer in 

essence is the “motion” of a “fluid” with “density” T 

propagating along thermal trajectories Tx  

delineated by a “thermal velocity” Tu  subject to 

continuity. This, in turn, implies a “thermal 

topology” as thermal counterpart to the flow 

topology that is organised into the same kinds of 

coherent structures as the latter. The concept of a 3D 

thermal topology is exemplified below by the 3D 

thermal path originating from the 3D object. 

 

4.4 Thermal path revisited  

 

Figure 4 shows 3D thermal streamlines according to 

(5) emanating from the leading and trailing faces of 

the 3D object at Pe=10. These thermal streamlines, 

as in the 2D case (Figure 3), delineate the route 

along which heat is removed from the object by the 

passing flow and outline the 3D thermal path. 

Stronger convective heat transfer (increasing Pe) 

manifests itself similarly as before. First, increasing 

Pe causes the section of the thermal path connected 

with the inlet to vanish, meaning that beyond a 

certain Pe only heat exchange between object and 

outlet occurs. Second, increasing Pe leads to 

contraction of the thermal path around the object as 

well as contraction of its “tail,” thus spatially 

confining the effective heat-transfer zone. This 

behaviour is in line with that of the 2D thermal path 

(Figure 3). The 3D thermal path -- and 3D thermal 

topology as a whole -- may exhibit greater 

topological complexity and in principle admits 

chaotic heat transfer, though. Further pursuit of this 

matter is beyond the present scope, however. Chaotic 

heat transfer is considered in the following section 

for 2D unsteady conditions, which in general is 

dynamically equivalent to that occurring in 3D 

steady systems (Speetjens, 2008). 

 

 
Fig. 4. 3D thermal path emanating from the hot object, visualised 

by 3D thermal streamlines originating from the leading and 

trailing faces of the object (Pe=10). 
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5. 2D Unsteady heat-transfer visualisation 
 

5.1 Unsteady flow and heat-transfer visualisation   

 

Relation (4) under unsteady conditions becomes  

     ,u
M

dt

xd
==

ρ
    0=⋅∇+

∂

∂
M

t

rρ
,       (6) 

and, via (1), naturally leads to 

    ,T
T

u
T

Q

dt

xd
==    0=⋅∇+

∂

∂
Q

t

T
,        (7) 

as its thermal equivalent, meaning the physical 

analogy between fluid motion and heat transfer – and 

flow and thermal topologies – established above is 

upheld. The unsteady flow and thermal topologies, 

governed by (6) and (7), respectively, are illustrated 

hereafter for the heat transfer in a time-periodic flow 

(period time 1=τ ) set up by a horizontally-

oscillating vortex pair inside a non-dimensional 

periodic channel (width W=1; height H=1/2) with 

hot bottom and cold top wall. The velocity field is 

given by the analytical expressions 

   ))(())(()1,(),( txutxutxutxu −+ +=+= ,    (8) 

with )4/1),(()( /

0/ txxtx ∆−= −+
−+  the positions of 

the two adjacent vortices ( 4/10 =−x and 4/30 =+x ) 

and πε 2sin)( =∆ tx t  the oscillation at amplitude  

ε .The basic velocity reads yxxu x ππ 2cos2sin)( =  

and yxxu y ππ 2sin2cos)( −= . System parameters are 

the Péclet number Pe (here fixed at Pe=10) and the 

amplitude ε . The employed numerical methods are 

detailed in Speetjens and van Steenhoven (2009). 

 

5.2 Steady baseline  

 

First the steady baseline ( 0=ε ) is considered for 

reference, shown in Figure 5. Panel a gives the 

streamline portrait, which consists entirely of islands 

that isolate and circulate fluid. The thermal 

streamline portrait (panel b) consists of a thermal 

path, connecting the channel walls and enabling 

fluid-wall heat exchange, and two adjacent thermal 

islands. This is, in addition to the cooling problem 

considered before, a further demonstration of the 

essential role of the thermal path in thermal fluid-

structure interaction and, consequently, of its great 

practical importance. 

 

 
a) Flow topology 

 
b) Thermal topology 

 

Fig. 5.  Flow and thermal topologies of a steady-vortex flow 

inside a periodic channel with hot bottom and cold top wall. 

Red/blue indicate highest/lowest temperature. 

 

5.3 Flow visualisation: chaotic advection  

The complexity of flow and thermal topologies 

expands under unsteady conditions. Here these 

conditions are attained by introduction of time-

periodic horizontal oscillation of the vortex pair 

( 1.0=ε ). The flow topology of time-periodic flows 

can be visualised by so-called Poincaré-sections, i.e. 

the subsequent positions of fluid parcels at the time 

levels ,...]2,,0[ ττ∈t  following from stroboscopic 

“illumination” of the flow. The Poincaré-sections of 

fluid parcels released at “strategic” locations visuali-

se the flow topology in a manner akin to the stream-

line portraits in steady flows. Figure 6a shows the 

Poincaré-sections (black dots) of fluid parcels relea-

sed on the line 4/1=y , disclosing two kinds of 

coherent structures: (i) chaotic sea; (ii) islands em-

bedded in the chaotic sea. The islands, similar to the 

steady case, isolate and circulate fluid; the chaotic 

sea is an essentially unsteady phenomenon. The red 
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and blue curves within the sea delineate the principal 

transport directions upon progression and regression 

in time, respectively, and are its underly-ing coherent 

structures. These curves (termed “manifolds”) effec-

uate chaotic advection (i.e. the complex motion of 

fluid parcels) and are key to the accomplishment of 

“efficient mixing” (Wiggins and Ottino, 2004). Vi-

sualisation of the flow topology thus directly exposes 

the practically relevant poor and good mixing zones. 

 

5.4 Heat-transfer visualisation: chaotic heat 

transfer  

 

The thermal topology also admits chaotic seas, as 

visualised in Figure 6b by their corresponding 

manifolds ( 1.0=ε ). These manifolds, entirely 

analogous to their counterparts in the flow topology, 

effectuate chaotic heat transfer (efficient “mixing” of 

heat). Their attachment to the channel walls implies 

the formation of a chaotic thermal path in addition to 

the non-chaotic thermal path (of similar shape as 

shown in Figure 2b) occupying the region indicated 

by the stars. Thus unsteady effects result in the 

“chaotisation” of both internal heat transfer and 

thermal fluid-structure interaction. Thermal islands 

are absent here. The present approach pinpoints 

zones with chaotic advection and chaotic heat 

transfer and thus facilitates direct investigation of the 

connection between both transport phenomena. This 

is a topic of great practical relevance that remains ill-

understood to date (Lester et al., 2009, Chang and 

Sen 1994, Mokrani et al., 1997). The present 

analysis, for instance, reveals that the chaotic regions 

in flow and thermal topologies do not coincide, 

implying that, contrary to common belief, chaotic 

heat transfer is not automatic with chaotic advection. 

Further analyses with the present approach revealed 

that, in the presence of chaotic advection, the 

chaotic-heat-transfer zones diminish (and eventually 

vanish) with increasing heat conduction (decreasing 

Pe) in favour of a non-chaotic thermal path 

(Speetjens, 2008, Speetjens and van Steenhoven, 

2009). Such analyses are beyond the reach of 

conventional methods and reflect the great potential 

of the current ansatz for heat-transfer visualisation.  

 
a) Flow topology 

 
b) Thermal topology 

 

Fig. 6.  Flow and thermal topologies under time-periodic 

conditions shown in terms of Poincaré-sections. Blue and red 

curves indicate the principal transport directions in the chaotic 

zones; dots in panel a demonstrate chaotic advection; stars in 

panel b indicate region of regular thermal path. 

 

6. Towards 3D unsteady heat-transfer 

visualisation 

 

Heat-transfer visualisation in generic 3D unsteady 

systems is in essence similar to that demonstrated 

above for 2D time-periodic systems, since the 

thermal trajectories Tx  remain governed by relations 

(7). However, 3D heat-transfer visualisation, despite 

resting on essentially the same concepts and 

methods, is complicated significantly on grounds of 

the far greater topological complexity 3D transport 

topologies may exhibit relative to those of 2D 

systems (Speetjens et al., 2006, Wiggins and Ottino, 

2004, Malyuga et al., 2002) and, intimately related to 

that, the absence of a fully-developed theoretical 

framework. Moreover, the scenarios and 

mechanisms underlying the onset to 3D chaotic 

advection – and, inherently, chaotic heat transfer - 

are largely unexplored to date. 
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7. Conclusions 
 

The study proposes an approach by which to visualise 

heat transfer in 3D unsteady laminar flows. This 

approach hinges on considering heat transfer as the 

transport of thermal energy by the total convective-

conductive heat flux in a way analogous to fluid 

transport by the flow field. The paths followed by the 

total heat flux are the thermal counterpart to fluid 

trajectories and facilitate heat-transfer visualisation in 

a similar manner as flow visualisation. This has great 

potential for applications in which insight into the heat 

fluxes throughout the entire configuration is essential. 

To date this concept has been restricted to 2D steady 

flows. The present study proposes its generalisation to 

3D unsteady flows by representing heat transfer as the 

3D unsteady “motion” of a “fluid” subject to 

continuity. This affords insight into the thermal 

transport beyond that of conventional methods. 

        2D steady heat-transfer visualization centres 

on a “thermal stream function” that, analogous to the 

fluid stream function delineating the fluid 

streamlines, delineates the thermal transport routes 

(“thermal streamlines”). The thermal streamline 

portraits are, by virtue of continuity, organised into 

two kinds of coherent structures: thermal islands and 

thermal paths. Thermal islands consist of closed 

thermal streamlines and entrap and circulate heat. 

Thermal paths consist of open thermal streamlines 

attached to non-adiabatic walls and facilitate net heat 

exchange between these walls and the flow. Thermal 

paths thus are key to many practical heat-transfer 

problems.  

        The thermal topology in 3D steady systems is 

organised into similar coherent structures as in 2D 

systems, the most important of which again is the 

thermal path emanating from non-adiabatic walls. 

However, 3D systems may exhibit greater topological 

complexity and in principle admit chaotic advection 

and chaotic heat transfer.  2D unsteady systems are 

dynamically similar to 3D steady systems and  also 

admit chaotic transport. The connection between 

chaotic advection and chaotic heat transfer is highly 

non-trivial, though. Thermal topologies in 3D 

unsteady systems, though admitting visualisation by  

essentially the same methods as their 2D counterparts, 

may exhibit an even greater topological complexity. 

Hence, their properties remain largely unexplored to 

date and are the subject of ongoing investigations. 

        The analogy between heat transfer and fluid 

motion facilitates analysis of heat-transfer problems 

by well-established geometrical methods from 

laminar mixing. This offers promising new ways for 

analysis of laminar heat-transfer problems. Studies to 

address these issues are in progress. 
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