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Abstract

The objective of the present paper is to provide an analytic expression for the first- and second-order velocity
slip coefficients. Therefore, gas flow rates in microchannels have beenrigorously evaluated in the near-continuum
limit by means of a variational technique which applies to the integrodifferential form of the Boltzmann equation
based on the true linearized collision operator. The diffuse-specular reflection condition of Maxwell’s type has been
considered in order to take into account the influence of the accommodation coefficient on the slip parameters. The
polynomial form of Knudsen number obtained for the Poiseuille mass flow rate and the values of the second order
velocity slip coefficients found on the basis of our variational solution of the linearized Boltzmann equation for hard-
sphere molecules are analyzed in the frame of potential applications of classical continuum numerical tools (as lattice
Boltzmann methods) in simulations of microscale flows.
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1. Introduction

Since rarefied gas flows occur in many micro-electro-
mechanical systems (MEMS), a correct prediction of
these flows is important to design and develop MEMS.
In spite of their apparently complex structure, the basic
constituent of a real MEMS device is the microchannel,
the region between two parallel plates that can reveal
many specific features of the low speed internal flows
in microdevices. The pressure distribution along these
microchannels and the flow rates across them are found
to deviate from the linear distribution of the Poiseuille
flow. Therefore, an important aspect of the matter is to
have an approximate closed form solution for the flow
rate of plane Poiseuille flow in order to use it in appli-
cations when low working pressures impose corrections
due to gas rarefaction effects. In order to develop an
accurate formula directly from kinetic theory, there is
a particularly useful technique, the variational method
proposed in [4], which applies to the integrodifferential
form of the Boltzmann equation and can be used for
any linearized Boltzmann model. In the literature, the
variational formulation has been the most cited method
of analysis for the kind of approaches where corrected
parameters, employed in classical continuum numerical

tools, have been computed via kinetic theory.
In recent years, there has been considerable suc-

cess in the implementation of second-order slip bound-
ary conditions to extend the Navier-Stokes equations
(which are significantly more efficient compared to
molecular-based approaches) into the transition regime.
Unfortunately, no consensus has been reached yet on the
correct form of higher-order velocity slip coefficient.

In the current investigation, the variational technique
is used to compute the flow rate of plane Poiseuille flow,
by considering the true linearized Boltzmann collision
operator and general boundary conditions of Maxwell’s
type. The variational approach permits to write down
simple approximate equations to be used in classical hy-
drodynamic numerical tools in order to extend the con-
tinuum description even beyond the slip regime.

2. The variational approach to plane Poiseuille flow

Let us consider two plates separated by a distanced
and a gas flowing parallel to them, in thez direction,
due to a pressure gradient. Both boundaries are held at
a constant temperatureT0. If the pressure gradient is
small, it can be assumed that the velocity distribution of
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the flow is nearly the same as that occurring in an equi-
librium state. This means that the Boltzmann equation
can be linearized about a Maxwellianf0 by putting

f = f0(1+ h) (1)

where f (x, z, c) is the distribution function for the
molecular velocityc expressed in units of (2RT0)1/2 (R
being the gas constant),x is the coordinate normal to the
plates andh(x, c) is the small perturbation upon the ba-
sic equilibrium state. The above mentioned Maxwellian
is given by

f0(z, c) = (1+ kz)ρ0π
− 3

2 exp(−c2) (2)

whereρ0 is the density on the boundaries and

k =
1
p
∂p
∂z
=

1
ρ

∂ρ

∂z

with p andρ being the gas pressure and density, respec-
tively. Using Eq. (1), the steady linearized Boltzmann
equation reads as [3]

kcz + cx
∂h
∂x
= Lh (3)

whereLh is the true linearized collision operator. Once
the deviationh from the equilibrium distribution is
known, the bulk velocity of the gas can be written as
follows:

q(x) = π−
3
2

∫

+∞

−∞

∫

+∞

−∞

∫

+∞

−∞
e−c2

czh(x, c) dc (4)

and the flow rateF (per unit time through unit thickness)
as:

F = ρ
∫ d/2

−d/2
q(x)dx (5)

Equation (3) can be rewritten in symbolic form as fol-
lows:

(D − L)h = S (6)

whereDh = cx
∂h
∂x, S = −kcz. The boundary conditions

to be matched to Eq. (6) have the general expression
[6]:

h+ = Kh− (7)

where the explicit form of the operatorK depends on
the scattering kernel used. In the following, we will
focus upon Maxwell’s scattering kernel and specialize
the analysis to symmetric gas-wall interactions so that

an accommodation coefficientα can be defined. In this
case, the boundary conditions can be written as

h+(d/2sgncx, c) = (1− α) ·
h−(d/2sgncx,−cx, cy, cz) (8)

Hereh± are the restrictions of the functionh, defined on
the boundary, to positive, respectively negative, values
of cx.

Using the variational principle described in [4], we
introduce the following functionalJ of the test function
h̃:

J(h̃) = ((h̃,P(Dh̃− Lh̃))) − 2((PS, h̃)) +

(h̃+ − Kh̃−,Ph̃−)B (9)

whereP is the parity operator in velocity space and ((, )),
(, )B denote two scalar products defined in [6]. The func-
tional J(h̃) attains its minimum value wheñh = h(x, c)
solves Eq. (6) with appropriate boundary conditions. If
we leth̃ = h, equation (9) gives:

J(h) = −((PS, h)) (10)

Looking at the definitions (4) and (5), it can be easily
shown that the stationary value ofJ is related to a quan-
tity of physical interest, the flow rate of the gas, through
the relation:

F = −ρ
k

J(h) (11)

Since the purpose of the present paper is to provide
an analytic expression for the first and second order slip
coefficients, it is sufficient to consider asymptotic results
(near-continuum) for mass flow rates. Therefore, the
following simplified test function, rescaled by the rela-
tive gradient pressurek and the length-parameterθ, has
been used to evaluate Eq. (9)

h̃(x, c) = 2czA(x2 − 2xcx + 2cx
2) +

2cz(B− 1/2) (12)

which is the same trial function introduced for the
Bhatnagar-Gross-Krook (BGK) kinetic model [7] in the
near-continuum flow limit. In Eq. (12)A andB are ad-
justable constants to be varied in order to obtain the best
value ofJ(h̃).

Substitutingh̃, given by Eq. (12), in Eq. (9), we ob-
tain the following polynomial of the second order with
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respect to the constantsA and B, that are to be deter-
mined

J(h̃) = (
√
π)
−1 ×

{

c11
2 A2

+
c22
2 B2

+

c12AB− c1A− c2B+
1
2

(c2 − c22/4)

}

(13)

where the same symbolJ(h̃) has been used to denote
the dimensionless quantityJ(h̃)/(kθ)2. The coefficients
in nondimensional form are given by

c11 = −4
3
√
πδ3 − 8

3πδ
3Ĵ1 + 8δ2 − 32

π δĴ2 −

α

[

δ4

4 −
√
πδ3
+ 8δ2 − 12

√
πδ + 32

]

(14)

c12 = −α[δ2 − 2
√
πδ + 8] (15)

c1 =

√
π

6 δ3
+ 2
√
πδ − α

[

δ2

2 −
√
πδ +

4

]

(16)

c22 = −4α (17)

c2 = 2
√
πδ − 2α (18)

where δ = d/θ is the rarefaction parameter (inverse
Knudsen number) and the symbolJi stands for integral
expressions defined by using the brackets [φ, ψ]:

[φ, ψ] =
∫

+∞

−∞

∫

+∞

−∞

∫

+∞

−∞
dc e−c2

φ(c)Lψ (19)

with Lψ being the Boltzmann collision operator. For
hard spheres of diameterσ, the length-parameterθ is
given by: θ =

√
2/(π3/2σ2n) and the mean free path

λ reads: λ = 1/(
√

2πσ2n) (n is the number density).
Therefore,

Lψ = 1
4
√

2π5/2λ

∫ 2π

0
dǫ

∫ π

0
sinΘdΘ ·

∫

+∞

−∞
dc1e−c1

2
V(ψ′1 + ψ

′ − ψ1 − ψ) (20)

whereψ is a function ofc while ψ1 refers toc1. V is the
relative velocity: |c − c1|. ψ′ ≡ ψ(c′) andψ′1 ≡ ψ(c′1)
wherec′ andc′1 are the velocities after collision of two
molecules with velocitiesc andc1. The collision geom-
etry in conjunction with the conservation laws relates

the velocities after collision to the velocities before col-
lision. Thus:

c′x = cx + (c1x − cx) cos2(Θ/2)+ 1/2 ·
[V2 − (c1x − cx)2]1/2sinΘcosǫ

c′1x = c1x − (c1x − cx) cos2(Θ/2)− 1/2 ·
[V2 − (c1x − cx)2]1/2sinΘcosǫ

whereΘ is the angle through which the relative velocity
has turned, andǫ is the azimuthal angle the plane con-
taining the relative velocities before and after collision
makes with a fixed reference plane. Similar relations
exist for they andz components [2]. The integralsJ1

andJ2 are eight fold integrals:

J1 = [cxcz, cxcz]

J2 = −[cx
2cz, cx

2cz] (21)

whereĴi =
2λ√
π

Ji . The derivatives ofJ(h̃) with respect

to A andB vanish in correspondence of the optimal val-
ues of these constants. The resulting expression for the
minimum ofJ(h̃) is:

minJ(h̃) = (8
√
π)−1 · [c11c22 − c2

12]
−1 ·

[8c12c1c2 − 4c2
1c22+ c2

12 ·
(c22 − 4c2) − c11(c22− 2c2)2] (22)

Thus, the computation of the optimal value of the func-
tional J(h) (Eq. 22) will lead to an accurate estimate of
the flow rate of the gas, which in non-dimensional form
reads:

Q(δ) =
F

−ρ2kd2
=

2
δ2

J(h) (23)

3. Near continuum solution and slip coefficients

A notable advantage of the variational approach is
that it permits to write down simple approximate equa-
tions, computed via kinetic theory, to be used in clas-
sical hydrodynamic numerical tools in order to extend
the continuum description (that is significantly more ef-
ficient compared to molecular-based approaches) even
beyond the slip regime. In recent years, there has been
considerable success in the implementation of second-
order slip boundary conditions to extend the Navier-
Stokes equations into the transition regime. Assuming
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a second-order boundary condition at the wall, in the
isothermal case, the slip velocity reads:

qs = ±A1λ

(

∂q
∂x

)

w

− A2λ
2

(

∂2q
∂x2

)

w

(24)

where the gas-velocity gradients are evaluated at the
wall. Hereλ is the mean free path of the molecules
defined as:

λ =
µ

P

√

π

2
RT

whereµ is the gas viscosity,P is the pressure,T the ab-
solute temperature andR the universal gas constant. In
Eq. (24),A1 andA2 are the first and second order slip
coefficients, respectively. Recent experimental studies
[17], [11] have revealed large discrepancies between the
experimentally-determined values ofA2 and the theo-
retical values listed in [1]. The lack of a well-founded
value of the second-order slip coefficient makes it dif-
ficult to extend slip-flow predictions into the transition
regime.

The asymptotic near-continuum solution for the
Poiseuille mass flux obtained by means of our varia-
tional technique can be used to predict slip coefficients.
When the true linearized Boltzmann collision operator
is used, Eqs. (12), (22) and (23) give in the limitδ→ ∞:

Q =
δ

σ0
+ σ1 +

σ2

δ
+ · · · (25)

where:

σ0 = (4
√
π)−1 ·

[

96
π

Ĵ1 + 48
√
π

]

(26)

A = 32
3π

Ĵ1 +
16
3

√
π (27)

B = A−1 ·
[

128
π

Ĵ2 − 16
√
πα

]

(28)

C = A−1 · [−4πα + 16α − 32] (29)

D = 128
3

Ĵ1 −
32
3
π3/2α +

64
3
π3/2 (30)

E =
256
3
πα − 128π (31)

σ1 = [4
√
παA]−1 · [D− 16/9παC] (32)

σ2 = [4
√
παA]−1 · [E + 16/9παC2 −

16/9παB− CD] (33)

Table 1: First- and second-order slip coefficients obtained on the ba-
sis of our variational solution of the linearized Boltzmannequation
for hard-sphere molecules, for different values of the accommodation
coefficientα.

A1 A2

α = 1. 1.1209 0.2347
α = 0.5 3.1533 −0.0090
α = 0.1 18.9108 −0.1831

with Ĵ1 = −1.4180,Ĵ2 = 1.8909.σ1 andσ2 are related
to the first and second order slip coefficients, respec-
tively. Rewriting Eq. (25) in terms of deviations from
the continuum solution, one obtains:

S = Q/(δ/σ0) = 1+

[

2√
π
(σ0σ1)

]

Kn +

[

4
π
(σ0σ2)

]

Kn
2 (34)

where the Knudsen numberKn is given by Kn =√
π/(2δ).
A comparison with the solution of the Navier-Stokes

equations obtained by using the boundary condition
(24) [17]

S ≃ 1+ 6A1Kn + 12A2Kn
2 (35)

gives:

A1 =
σ0σ1

3
√
π

(36)

A2 =
σ0σ2

3π
(37)

The first-(A1) and second-order (A2) slip coefficients,
obtained on the basis of our variational solution of
the linearized Boltzmann equation for hard-sphere
molecules, are given in Table 1, for several values of
the accommodation coefficientα.

The values of the first-order slip coefficient A1 are
in very good agreement with the ones obtained in [19]
through a numerical solution of the linearized Boltz-
mann equation for hard sphere molecules. On the con-
trary, the estimate we obtain forA2 seems inconsistent
with available theoretical models listed in [1], while it is
very close to the values obtained in recent experimental
studies (see Table 2), where the slip coefficients were
computed starting from mass flow rate measurements.
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Table 2: Experimental and theoretical first- and second-order slip co-
efficients

A1 A2

Experiments with Nitrogen
Maurer et al. (2003) 1.30± 0.05 0.26± 0.1

Experiments with Helium
Maurer et al. (2003) 1.20± 0.05 0.23± 0.1

Ewart et al. (2007) 1.26± 0.02 0.17± 0.02

Present results (α = 1.) 1.1209 0.2347

Present results (α = 0.91) 1.3276 0.1887

Present results (α = 0.87) 1.4323 0.1685

In Table 2 we have reported our theoretical results con-
cerning the slip coefficients for three different values of
the accommodation coefficientα to be as close as pos-
sible to the experimental measurements.

It is worthwhile to mention that the second-order
slip coefficient we obtain forα = 1. (fully-diffusive
boundary) by using the linearized Boltzmann equation
for hard-sphere molecules is in fair agreement with the
value reported in [12] by Hadjiconstantinou who, on the
basis of Cercignani’s suggestion, modified the BGK-
value by an appropriate scaling, taking into account the
contributions of the Knudsen layer. A recent work by
Lockerby et al. [15] indicates values of the second-
order slip coefficient in the range 0.145-0.19, depend-
ing on the Prandtl number of the gas but irrespective
of the values of the accommodation coefficient. It is
worthwhile to underline that with decreasingα, A2 can
become negative, as assumed by some models proposed
in the literature [13]. This is a complete new feature
arising from our variational analysis of the linearized
Boltzmann equation for hard sphere molecules, which
has not be found in previous analytical studies of a hard
sphere gas [16] and can not be predicted by using kinetic
models as the BGK (see Table 3).

A brief remark is in order here concerning the range
of validity of Eq. (25). The truncation at the orderδ−1 in
Eq. (25) gives an accurate result forQ whenδ ≥ 10, for
each value of the accommodation coefficient. A com-

Table 3: First- and second-order slip coefficients obtained by means
of our variational solution of the linearized Boltzmann equation based
on the Bhatnagar, Gross and Krook (BGK) model, for different values
of the accommodation coefficientα.

A1 A2

α = 1. 1.1366 0.6926
α = 0.5 3.2049 0.4443
α = 0.1 19.2596 0.2658

parison with the highly accurate numerical results re-
ported by Siewert in [18] forδ = 10. andα = 1., 0.5, 0.1,
shows that the relative error is within 0.3%. This good
agreement makes us feel more confident of the relia-
bility of the values obtained for the second-order slip
coefficient.

To obtain a comparable accuracy with the same or-
der of approximation for smaller values ofδ, higher-
order terms in the expansion forQ should be retained
and used to modify theσ2 coefficient (or alternatively
the second-order slip coefficientA2). This is an advan-
tage offered by the variational approach since it permits
to write down analytical formulae which can be easily
manipulated.

Recently, the asymptotic solution of the BGK model
equation for the Poiseuille mass flux (δ → ∞) has been
used in [14], in order to enforce lattice Boltzmann (LB)
models to predict slip velocity up to second order in
the Knudsen number. Since the hard-sphere model is
more appropriate than the BGK equation for describing
isothermal flows of real gases, it could be more con-
venient to use the asymptotic formula (25) in order to
adjust free parameters appearing in LB methods in sim-
ulations of microscale flows.

4. Conclusions

In the present paper a variational approach has been
used to solve the plane Poiseuille problem between two
parallel plates in the near continuum flow limit, as an
issue of relevance for applications, by considering the
true linearized Boltzmann collision operator. According
to our variational analysis both the first (A1) and second
order (A2) slip coefficients depend on the accommoda-
tion coefficientα. The estimate we obtain forA2 seems
inconsistent with available theoretical models while it
is very close to the values obtained in recent experi-
ments. Moreover, it has been found that with decreasing
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α, A2 can become negative, as assumed by some heuris-
tic models proposed in the literature.
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