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Abstract

The objective of the present paper is to provide an analyression for the first- and second-order velocity
slip codficients. Therefore, gas flow rates in microchannels have ligerously evaluated in the near-continuum
limit by means of a variational technique which applies te ihtegrodiferential form of the Boltzmann equation
based on the true linearized collision operator. THeude-specular reflection condition of Maxwell’'s type hasrbee
considered in order to take into account the influence of dto®mmodation cdécient on the slip parameters. The
polynomial form of Knudsen number obtained for the Poideuilass flow rate and the values of the second order
velocity slip codficients found on the basis of our variational solution of thearized Boltzmann equation for hard-
sphere molecules are analyzed in the frame of potentialagtjans of classical continuum numerical tools (as lattic
Boltzmann methods) in simulations of microscale flows.
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1. Introduction tools, have been computed via kinetic theory.

In recent years, there has been considerable suc-
cess in the implementation of second-order slip bound-
ary conditions to extend the Navier-Stokes equations
(which are significantly more fcient compared to

Since rarefied gas flows occur in many micro-electro-
mechanical systems (MEMS), a correct prediction of
these flows is important to design and develop MEMS.

In spite of their apparently complex structure, the basic molecular-based approaches) into the transition regime.

tcr:)nstltu_entt;)fta real ';AEMS del;”fe llstthetrr?lct:rochannel,l Unfortunately, no consensus has been reached yet on the
€ region between wo parallel piates that can reveal ., .o form of higher-order velocity slip céiient.

many specific features of the low speed internal flows In the current investigation, the variational technique

|n.m|crﬁdewc|es. -ghtﬁ pfrlessurtta d'smbu“ciﬂ along t?esedis used to compute the flow rate of plane Poiseuille flow,
ricrochannels and the Tlow rales across them are foun by considering the true linearized Boltzmann collision

;%de\_lllﬁfr;gg tgﬁ !ﬁeiagﬁ:gﬁutéﬁ? ;ft}]heeg:t'ts;g!lfo operator and general boundary conditions of Maxwell's
h W . tl pI df P lution for th ;l type. The variational approach permits to write down
ave an approximate closed form solution for the Tlow simple approximate equations to be used in classical hy-

ratt(ia ?]f ?/:/ini IID(\)/\I/SV(\E/UIrllL?nﬂOV\: n orrderi:rc]) use it Irr]raptﬁ)hh drodynamic numerical tools in order to extend the con-
cations when low working pressures Impose Corrections i,y description even beyond the slip regime.
due to gas rarefactionffiects. In order to develop an

accurate formula directly from kinetic theory, there is

a particularly useful technique, the variational method 2. The variational approach to plane Poiseuille flow

proposed in [4], which applies to the integrfidrential

form of the Boltzmann equation and can be used for  Let us consider two plates separated by a distahce

any linearized Boltzmann model. In the literature, the and a gas flowing parallel to them, in tzalirection,

variational formulation has been the most cited method due to a pressure gradient. Both boundaries are held at

of analysis for the kind of approaches where corrected a constant temperatuig. If the pressure gradient is

parameters, employed in classical continuum numerical small, it can be assumed that the velocity distribution of
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the flow is nearly the same as that occurring in an equi- an accommodation cfficienta can be defined. In this
librium state. This means that the Boltzmann equation case, the boundary conditions can be written as
can be linearized about a Maxwellidgnby putting

f = fo(1+ h) 1) h*(d/2sgre,¢) = (1 - a) -

where f(x,zc) is the distribution function for the h™(d/2sgre,, —Cx. 6. C2) 8)

molecular velocityc expressed in units of @Ty)Y? (R
being the gas constangis the coordinate normal to the
plates andh(x, ¢) is the small perturbation upon the ba-
sic equilibrium state. The above mentioned Maxwellian

Hereh* are the restrictions of the functidn defined on
the boundary, to positive, respectively negative, values

X
Using the variational principle described in [4], we

's given by introduce the following functional of the test function
fo(z.¢) = (L + kapor ? exp(-) @ "
wherepyg is the density on the boundaries and IF) = (. PR — L)) — 2(PS.F) +
_1op_1dp (h* — Kh-, Ph)g 9)

p 0z pﬁz

with p andp being the gas pressure and density, respec- whereP is the parity operator in velocity space ang)(
tively. Using Eq. (1), the steady linearized Boltzmann (-)e denote two scalar products defined in [6]. The func-
equation reads as [3] tional J(h) attains its minimum value whelm = h(x, c)

solves Eq. (6) with appropriate boundary conditions. If

ke, + ng_:w( _Lh (3) we leth = h, equation (9) gives:

J(h) = —((PS,h 10
whereLh is the true linearized collision operator. Once ") ( ) (10)

the deviationh from the equilibrium distributign is Looking at the definitions (4) and (5), it can be easily
known, the bulk velocity of the gas can be written as shown that the stationary value dfs related to a quan-

follows: tity of physical interest, the flow rate of the gas, through
. [ e the relation:
q(x) =n"2 f f f e czh(x cdc (4)
F= —'ik’J(h) (11)
and the flow raté& (per unittime through unit thickness)
as: Since the purpose of the present paper is to provide
g an analytic expression for the first and second order slip
/2 i o ) . !
F=p q(x)dx (5) codficients, it is stficient to consider asymptotic results
-d/2 (near-continuum) for mass flow rates. Therefore, the

following simplified test function, rescaled by the rela-
tive gradient pressureand the length-parameterhas
been used to evaluate Eq. (9)

Equation (3) can be rewritten in symbolic form as fol-
lows:

(D-Lh=S (6)
I — 2 _ 2
whereDh = ng—?(, S = —kc,. The boundary conditions h(x.c) = 2C,A(X" — 2xCx + 26,°) +
to be matched to Eg. (6) have the general expression 2c,(B-1/2) (12)

[6]:

which is the same trial function introduced for the
h* = Kh™ (7) Bhatnagar-Gross-Krook (BGK) kinetic model [7] in the
near-continuum flow limit. In Eqg. (12 andB are ad-
where the explicit form of the operatét depends on  justable constants to be varied in order to obtain the best
the scattering kernel used. In the following, we will value ofJ(h).
focus upon Maxwell's scattering kernel and specialize ~ Substitutingh, given by Eq. (12), in Eq. (9), we ob-
the analysis to symmetric gas-wall interactions so that tain the following polynomial of the second order with
2



respect to the constangsand B, that are to be deter-
mined

IF) = (v x {%AZ + e
1
C12AB— 1A — B + 5(02 - C22/4)} (13)

where the same symbd(ﬁ)~has been used to denote
the dimensionless quantitih)/(k8)?. The codficients
in nondimensional form are given by

Ci1= —%’ Vro® - %6331 +852 — 37253”2 _

a[6—4 _ Rt 482 —12vms+32]  (14)
Y}
C12 = —a[6% — 276 + 8] (15)
2
C = %53+2ﬁ5—a[% — RS+

4] (16)
Cp = —4da (17)
C = 26 — 2a (18)

wheres = d/@ is the rarefaction parameter (inverse
Knudsen number) and the symhblstands for integral
expressions defined by using the brackets/]:

won= [ [T [ Teetsow a9

with Ly being the Boltzmann collision operator. For
hard spheres of diameter, the length-parametet is
given by: 8 = V2/(7%?0?n) and the mean free path
Areads: A = 1/(V2ro?n) (nis the number density).
Therefore,

21 T
1 .
Ly=—-A def SiNOdO -
v 4\/§7r5/2/ljc: 0

+00
dere V(Y + ¢ - y1 - ) (20)
wherey is a function ofc while y; refers toc;. V is the
relative velocity:|c — ci|. ¢’ = ¥(c’) andy) = y(c))
wherec’ andc] are the velocities after collision of two
molecules with velocities andc;. The collision geom-

the velocities after collision to the velocities before-col
lision. Thus:

C = Cx + (C1x — Cx) COF(O©/2) + 1/2-
[V2 - (c1x — cx)?]Y?sin®cose

Ciy = C1x — (C1x — Cx) COS(0/2) - 1/2-
[V2 - (c1x — €)?]Y?sin@cose

where@ is the angle through which the relative velocity
has turned, and is the azimuthal angle the plane con-
taining the relative velocities before and after collision
makes with a fixed reference plane. Similar relations
exist for they andz components [2]. The integraly
andJ; are eight fold integrals:

J1 = [CxCz, CxCA
Jo = —[Cx%Cy, 4G (21)

whereJ; = ﬁJi. The derivatives of(h) with respect
v/

to A andB vanish in correspondence of the optimal val-
ues of these constants. The resulting expression for the
minimum of J(h) is:

minJ(F) = (8 vm) ™ - [Cricor — €2, -
[8C12C1C2 - 4CiC22 + Ciz .
(C22 — 4¢2) — C1a(Caz — 2¢2)%] (22)

Thus, the computation of the optimal value of the func-
tional J(h) (Eq. 22) will lead to an accurate estimate of
the flow rate of the gas, which in non-dimensional form
reads:

Q) = —-

2
—?W =5 J(h) (23)

3. Near continuum solution and slip coéficients

A notable advantage of the variational approach is
that it permits to write down simple approximate equa-
tions, computed via kinetic theory, to be used in clas-
sical hydrodynamic numerical tools in order to extend
the continuum description (that is significantly more ef-
ficient compared to molecular-based approaches) even
beyond the slip regime. In recent years, there has been
considerable success in the implementation of second-
order slip boundary conditions to extend the Navier-

etry in conjunction with the conservation laws relates Stokes equations into the transition regime. Assuming

3



a second-order boundary condition at the wall, in the
isothermal case, the slip velocity reads:

dq 9°q

s = tAl/l(—) - Az/lz(—) (24)
° ox),, ),

where the gas-velocity gradients are evaluated at the

wall. Here A is the mean free path of the molecules
1=£

defined as:
T
\J5RT
PY2

whereu is the gas viscosity? is the pressurel the ab-
solute temperature ariflithe universal gas constant. In
Eqg. (24),A; andA; are the first and second order slip

codficients, respectively. Recent experimental studies
[17], [11] have revealed large discrepancies between the

experimentally-determined values 8% and the theo-
retical values listed in [1]. The lack of a well-founded
value of the second-order slip dfieient makes it dif-
ficult to extend slip-flow predictions into the transition
regime.

The asymptotic near-continuum solution for the
Poiseuille mass flux obtained by means of our varia-
tional technigue can be used to predict slipféoe&nts.
When the true linearized Boltzmann collision operator
isused, Egs. (12), (22) and (23) give in the lidit oo:

Q=2 v+ 24 (25)
go 0
where:
., [96-
32. 16
A= §J1 + 3 \r (27)
128.
5t [ 1285, 16%[} (28)
C=A"1 [-4na + 160 - 32] (29)
_ 128 a 32 3/2 64 3/2
D= 3.]1 37 a+37r (30)
E= 2?5671'& - 1287 (31)
o1 = [ Vra AL - [D - 16/9maC] (32)
o2 =[4vraA] L [E +16/9maC? -
16/97aB — CD)] (33)

Table 1: First- and second-order slip @@gents obtained on the ba-
sis of our variational solution of the linearized Boltzmaaquation
for hard-sphere molecules, forftiirent values of the accommodation
codficienta.

Aq Ay
a=1 11209 02347
a=05 31533 -0.0090
a=01 189108 -0.1831

with J; = —1.4180,J, = 1.8909.0; ando-, are related

to the first and second order slip ¢heients, respec-
tively. Rewriting Eq. (25) in terms of deviations from
the continuum solution, one obtains:

S= Q/(6/oo)=1+ Kn +

%(0001)

[,i‘,(crocrz)} Kn? (34)

where the Knudsen numbeéf, is given by K, =
Vi /(29).
A comparison with the solution of the Navier-Stokes

equations obtained by using the boundary condition
(24) [17]

S = 1+ 6AK, + 12A:K,? (35)
gives:
o001
A= 36
W= (36)
Ap = 1072 (37)
3r

The first-(A1) and second-orderA}) slip codficients,
obtained on the basis of our variational solution of
the linearized Boltzmann equation for hard-sphere
molecules, are given in Table 1, for several values of
the accommodation cfiicienta.

The values of the first-order slip cfiient A; are
in very good agreement with the ones obtained in [19]
through a numerical solution of the linearized Boltz-
mann equation for hard sphere molecules. On the con-
trary, the estimate we obtain fé, seems inconsistent
with available theoretical models listed in [1], while it is
very close to the values obtained in recent experimental
studies (see Table 2), where the slip §méents were
computed starting from mass flow rate measurements.



Table 2: Experimental and theoretical first- and seconeostip co-
efficients

A Ay
Experiments with Nitrogen
Maurer et al (2003) 130+ 0.05 026+0.1
Experiments with Helium
Maurer et al (2003) 120+ 0.05 023+0.1
Ewart et al (2007) 126+ 0.02 017+0.02
Present resultsy= 1) 1.1209 02347
Present resultsy(= 0.91) 13276 01887
Present resultsy= 0.87) 14323 01685

In Table 2 we have reported our theoretical results con-
cerning the slip cocients for three dferent values of
the accommodation céicienta to be as close as pos-
sible to the experimental measurements.

It is worthwhile to mention that the second-order
slip codficient we obtain fora 1. (fully-diffusive
boundary) by using the linearized Boltzmann equation
for hard-sphere molecules is in fair agreement with the
value reported in [12] by Hadjiconstantinou who, on the
basis of Cercignani’s suggestion, modified the BGK-
value by an appropriate scaling, taking into account the
contributions of the Knudsen layer. A recent work by
Lockerby et al. [15] indicates values of the second-
order slip codficient in the range 045-019, depend-
ing on the Prandtl number of the gas but irrespective
of the values of the accommodation fiog@ent. It is
worthwhile to underline that with decreasing A, can

Table 3: First- and second-order slip @da@ents obtained by means
of our variational solution of the linearized Boltzmann atian based
on the Bhatnagar, Gross and Krook (BGK) model, féfastient values
of the accommodation céicienta.

Aq Ay
a=1 11366 06926
a=05 32049 04443

a=01 192596 02658

parison with the highly accurate numerical results re-
ported by Siewertin [18] fof = 10.anda = 1.,0.5,0.1,
shows that the relative error is within3%. This good
agreement makes us feel more confident of the relia-
bility of the values obtained for the second-order slip
codficient.

To obtain a comparable accuracy with the same or-
der of approximation for smaller values 6f higher-
order terms in the expansion f@ should be retained
and used to modify the, codficient (or alternatively
the second-order slip céiicientAy). This is an advan-
tage dfered by the variational approach since it permits
to write down analytical formulae which can be easily
manipulated.

Recently, the asymptotic solution of the BGK model
equation for the Poiseuille mass flux{£ o) has been
used in [14], in order to enforce lattice Boltzmann (LB)
models to predict slip velocity up to second order in
the Knudsen number. Since the hard-sphere model is
more appropriate than the BGK equation for describing
isothermal flows of real gases, it could be more con-
venient to use the asymptotic formula (25) in order to
adjust free parameters appearing in LB methods in sim-
ulations of microscale flows.

4. Conclusions

become negative, as assumed by some models proposed In the present paper a variational approach has been

in the literature [13]. This is a complete new feature
arising from our variational analysis of the linearized
Boltzmann equation for hard sphere molecules, which
has not be found in previous analytical studies of a hard

used to solve the plane Poiseuille problem between two
parallel plates in the near continuum flow limit, as an
issue of relevance for applications, by considering the
true linearized Boltzmann collision operator. According

sphere gas [16] and can not be predicted by using kinetic to our variational analysis both the firgk() and second

models as the BGK (see Table 3).
A brief remark is in order here concerning the range
of validity of Eq. (25). The truncation at the ord&t in
Eqg. (25) gives an accurate result f@whené > 10, for
each value of the accommodation flog@ent. A com-
5

order (Ay) slip codficients depend on the accommoda-
tion codficienta. The estimate we obtain féx, seems
inconsistent with available theoretical models while it
is very close to the values obtained in recent experi-
ments. Moreover, it has been found that with decreasing



a, A; can become negative, as assumed by some heuris-
tic models proposed in the literature.
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