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Mean-Risk Models Using Two Risk Measures. A
Multi-Objective Approach

Abstract

This paper proposesa model for portfolio optimisation, in which distributions ar e char acterised
and compared on the basis of three statistics: the expected value, the variance and the CVaR at a
specified confidence level. The problem is multi-objective and transfor med into a single objective
problem in which variance is minimised while constraints areimposed on the expected value and
CVaR. In the case of discreterandom variables, the problem isa quadratic program. The mean-
variance (mean-CVaR) efficient solutionsthat are not dominated with respect to CVaR
(variance) areparticular efficient solutions of the proposed model. In addition, the model has
efficient solutionsthat are discarded by both mean-variance and mean-CVaR models, although
they may improvethereturn distribution. The model istested on real data drawn from the FTSE
100 index. An analysis of thereturn distribution of the chosen portfoliosis presented.

| ntr oduction and motivation

Mean-risk models are still the most widely used approach in the practice of
portfolio selection. With mean-risk models, return distributions are characterized and
compared using two statistics. the expected value and the value of arisk measure.
Thus, mean-risk models have a ready interpretation of results and in most cases are
convenient from a computational point of view. Sceptics on the other hand may
guestion these advantages since the practice of describing a distribution by just two
parameters involves great |oss of information.

It is evident that the risk measure used plays an important role in making the
decisions. Variance was the first risk measure used in mean-risk models (Markowitz

Authors: D. Roman , G. Mitra and K. Darby-Dowman



Authors: D. Roman , G. Mitra and K. Darby-Dowman

1952) and, in spite of criticism and many proposals of new risk measures (see for
example Fishburn (1977), Yitzhaki (1982), Konno and Y amazaki (1991), Ogryczak
and Ruszczynski (1999, 2001), Rockafellar and Uryasev 2000, 2002), varianceis still
the most widely used measure of risk in the practice of portfolio selection. For
regulatory and reporting purposes, risk measures concerned with the | eft tails of
distributions (extremely unfavourable outcomes) are used. The most widely used risk
measure for such purposesis Vaue-at-Risk (VaR). However, it is known that VaR
has undesirable theoretical properties (it is not subadditive, as shown, for example, in
Tasche (2002) and thus fails to reward diversification). In addition, optimisation of
VaR leads to a non-convex NP-hard problem which is computationally intractable. In
spite of a considerable amount of research, optimising VaR is still an open problem
(seefor example Larsen et al. 2002, Leyffer et al. 2005 and references therein). For
these reasons, another risk measure concerned with the left tail, the Conditional
Value-at-Risk (CVaR), is gaining more popularity. CVaR has attractive theoretical
properties: it controls the magnitude of losses beyond VaR and it is coherent (see for
example Artzner et al. 1999, Acerbi and Tasche 2002, Tasche 2002, Pflug 2000,
Rockafellar and Uryasev 2002). In addition, CVaR is easy to optimise. Optimising
CVaR isaconvex programming problem. In the case when the random variables
under consideration are discrete, with afinite number of outcomes, represented by
various outcomes under different scenarios, optimising CVaR leadsto alinear
programming model of finite dimension (Rockafellar and Uryasev 2000, 2002).

Variance and CVaR quantify risk from different perspectives. Variance measures
the spread around the expected value of arandom variable, while CVaR measures the
expected loss corresponding to a number of worst cases, depending on the chosen
confidence level. Thus, the mean-variance and the mean-CVaR models may lead to
very different solutions. A portfolio obtained as a solution in the mean-variance
model may be considered unacceptable by aregulator, since it may have an
excessively large CVaR, leading to big losses under unfavourable scenarios. On the
other hand, traditional fund managers may consider a portfolio obtained with the
mean-CVaR model unacceptable since it may have an excessively large variance and
thus an excessively small Sharpe index (see Luenberger 1998)

In this paper, we seek to address the requirements of the traditional fund manager
and the regime imposed by the regulator. We propose a model for portfolio selection
that uses both variance and CVaR in order to make decisions. We call this model the
mean-variance-CVaR model. Random variables are described and compared using
three statistics: the expected value, variance and CVaR. Thus, the model may be
considered as belonging to the family of mean-risk models.

We formally define the preference relation for random variables in this model.
The efficient solutions with respect to this preference relation are such that, we cannot
improve on one statistic (of the three: expected value, variance and CVaR) without
worsening another. Mathematically, the problem is multi-objective (maximise
expected return, minimise variance, minimise CVaR) and the efficient solutions of the
mean-variance-CVaR model are the Pareto optimal solutions of the multi-objective
problem.

We prove that the efficient solutions of this model may be found by solving a
single objective optimisation problem in which variance is minimised while
constraints are imposed on the expected return and the CVaR level. The practical
importance of this approach is twofold. Firstly, a solution obtained in thisway has an
intuitive appeal. For example, if the CVaR of a mean-variance efficient portfoliois
considered as unacceptably large, a constraint could be imposed on the CVaR level
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and a new portfolio obtained, which has aminimal variance under these conditions.
Secondly, the problem is tractable from a computational point of view. In the case
where the random variables under consideration are discrete and described by their
realisations under various scenarios, the problem is one of quadratic programming.

Generally, the mean-variance and mean-CVaR efficient portfolios are particular
efficient solutions of the proposed model*. However, most of the efficient portfolios
in the mean-variance-CVaR model are dominated in both mean-variance and mean-
CVaR models, although they may represent improved distributions: a compromise
between the classical fund managers and the regulators’ points of view.

The rest of this paper is structured as follows. In section two the portfolio
selection problem is described. Section three is concerned with mean-risk models, in
particular with the mean-variance and the mean-CVaR models. In section four we
present the mean-variance-CVaR model. Firstly, the preference relation among
random variablesis defined. The efficient solutions of the proposed model are Pareto
non-dominated solutions of a multi-objective problem. Secondly, an optimisation
approach for solving the multi-objective problem is proposed. With this approach, the
efficient solutions of the proposed model are found by solving a single optimisation
problem, in which variance is minimised and constraints are imposed on the expected
value and the CVaR level. Thirdly, we describe how all the efficient solutions of the
model may be obtained. Finally, the algebraic form of the mean-variance-CVaR
model for the case of scenario modelsis presented. Section five presents the
computational results. A dataset, drawn from the FTSE 100 index is used to evaluate
the performance of the proposed model. For several fixed levels of expected return,
we consider the mean-variance and the mean-CVaR efficient portfolios together with
other portfolios, efficient only in the mean-variance-CVaR model. We evaluate their
performances using both in-sample and out-of-sample analysis. Section six presents
the conclusions.

The portfolio selection problem

The problem of portfolio selection with oneinvestment period isan
example of the general problem of deciding between random variables when
larger outcomes are preferred. Decisions arerequired on the amount
(proportion) of capital to be invested in each of a number of available assets such
that at the end of theinvestment period thereturn isashigh as possible.
Consider a set of n assets, with asset | in {1,...,n} giving areturn R; at the end of
theinvestment period. R; isarandom variable, since the future price of the asset
isnot known. Let x; be the proportion of capital invested in asset j (x;=w;/w
wherew; isthe capital invested in asset j and w isthetotal amount of capital to
beinvested), and let x=(x,...,Xn) represent the portfolio resulting from this
choice. Thisportfolio’sreturn istherandom variable: Ry=x1R1+...+X,Rp, with
distribution function F(r) = P(R, <r) that dependson the choice x=(x,...,Xn).

Torepresent a portfolio, the weights (xs,...,X,) must satisfy a set of
constraintsthat formsa feasible set A of decision vectors. The simplest way to

! There may be a situation when several mean-CVaR efficient portfolios have the same mean return

and the same (optimal) CVaR, but different variances. Only the portfolio with the minimal varianceis
efficient in the proposed model. The same discussion applies for mean-variance efficient portfolios. We
reconsider theissuein Section 4.4.

Authors: D. Roman , G. Mitra and K. Darby-Dowman 4



Authors: D. Roman , G. Mitra and K. Darby-Dowman

define a feasible set is by the requirement that the weights must sum to 1 and
short sellingisnot allowed. For thisbasic version of the problem, the set of
feasible decision vectorsis

A= (X X)) Zn:xj =1, X; 20,Vj €{L,...,n} }. (1)

Consider a different portfolio defined by the decision vector y=(yj,...,yn)€
A, wherey; isthe proportion of capital invested in asset j. Thereturn of this
portfolio is given by therandom variable Ry=y1R1+...+ynRn.

The problem of choosing between portfolio x=(xs,...,Xn) and portfolio
y=(Y1,...,yn) becomesthe problem of choosing between random variables Ry and
Ry. Thecriteria by which onerandom variableis considered “ better” than
another random variable need to be specified and models for choosing between
random variables (modelsfor preference) arerequired. The purpose of such
modelsisfirstly, to define a preference relation among random variables and
secondly, to identify random variablesthat are non-dominated with respect to
that preferencerelation.

The next issueisto consider a practical representation for therandom
variablesthat describe asset and portfolio returns. Wetreat theserandom
variables asdiscrete and described by realisationsunder T states of theworld,
generated using scenario generation or finite sampling of historical data. For any

.
ie{1,...,T}, let state w; occur with probability p;, Z p, =1. Thus, therandom
i=1

returns are defined on a discrete probability space {Q, F,P} with Q={w®;,..., o},
Fao-fidd and P(wi)= pi.

Let ri bethereturn of asset j under scenarioi, ie{l,...,T},je{l,...,n}.
Thus, therandom variable R; representing the return of asset j isfinitely
distributed over {ry,...,rrj} with probabilities ps,...pr. Therandom variable Ry
representing thereturn of portfolio x=(xs,...,Xn) isfinitely distributed over
{Rxl,..., RXT}; where Ryi=X1ri1t+...+Xnlin, VIG{l,T}

3 Mean-Risk Models
The general case

Mean-risk models were developed in early fiftiesfor the portfolio
selection problem. In his seminal work “Portfolio selection”, Markowitz (1952)
proposed variance asarisk measure. Since then, many alternative risk measur es
have been proposed. The question of which risk measureismost appropriateis
still the subject of much debate.

In mean- risk models, two scalars ar e attached to each random variable:
the expected value (mean) and the value of a risk measure. Preferenceisthen
defined using a trade-off between the mean where alarger valueisdesirable and
risk wherea smaller valueisdesirable:

In the mean-risk approach with the risk measure denoted by p, random variable Ry
dominates (is preferred to) random variable Ry if and only if: E(R«)>E(Ry) and
p(R)<p(Ry) with at least one strict inequality. Alternatively, we can say that portfolio
X dominates portfolio y.
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In this approach, the choice x (or the random variable Ry) is efficient
(non-dominated) if and only if thereisno other choicey such that Ry has higher
expected value and lessrisk than Ry. Thismeansthat, for a given level of
minimum expected return, Ry hasthe lowest possiblerisk, and, for a given level
of risk, it hasthe highest possible expected return. Plotting the efficient portfolios
in amean-risk space givesthe efficient frontier.

Thus, the efficient solutionsin a mean-risk model are Pareto efficient
solutions of a multi-objective problem, in which the expected return is
maximised and therisk is minimised:

Max {(E(Rx), -p(Rx)): xe A}

Generally, for a multi-objective problem:

Max {f(x)=(f1(x),...,fr(x)): xe A}, (2
the Pareto preferencerelation is defined asfollows:
A feasible solution x'e A Pareto dominates another feasible solution x°c A if
fi(x")=fi(x? for all i with at least one strict inequality.

Xo isa Pareto efficient (non-dominated) solution of (2) if and only if there
does not exist afeasible x such that x Pareto dominates xo. In other words, a
Par eto efficient solution is a feasible solution such that, in order toimprove upon
one objective function, at least one other objective function must assume a wor se
value.

In order to find an efficient portfolio, we solve an optimisation problem
with decision variables Xy,...Xn:

Minimise p(Ry)
Subject to: E(Ry)>d and (Xy,...Xn}€ A,

whered representsthe desired level of expected return for the portfolio.

Varying d and repeatedly solving the corresponding optimisation
problem identifies the minimum risk portfolio for each value of d. These arethe
efficient portfoliosthat compose the efficient set. By plotting the corresponding
values of the objective function and of the expected return respectively in a
return- risk space, wetrace out the efficient frontier.

An aternative formulation, which explicitly trades risk against return in the
objective function, is

Maximize E(Rx)- tp(Rx) (t=0)
Subject to: (Xa,...Xn} € A.

Varying the trade-off coefficient t and repeatedly solving the corresponding
optimisation problems traces out the efficient frontier.

The mean-variance model

Thevariance of arandom variable Ry is defined asits second centr al
moment:

o*(R) =E[(R—E(R))"].
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An important property isthat the variance of the portfolio return
Ry=X1R1+...+XnRp, resulting from choice (xs,...,X,), can be expressed as:

n n
c?(R) =YY xX,0,, where oy isthe covariance of R¢ and R},
k=1 j=1

and thusvarianceis expressed as a quadratic function of Xs,...,Xn.

The mean-variance model can be formulated for the portfolio selection problem
asfollows:

n n

Minimize ) > x.X 0y

k=1 j=1

Subject to

where y; = the expected rate of return of asset j, je{1,...,n};

okj = the covariance between returns of asset k and asset j, with k,
je{1,...,n};

d=the desired expected value of the portfolio return.

The mean-CVaR model

Let R be arandom variable representing the return of a portfolio x over agiven
holding period and A%=a.€(0,1) a percentage which represents a sample of “worst
cases’ for the outcomes of Ry (usually, a=0.01 or .=0.05).

The definition of CVaR at the specified level o isthe mathematical transcription
of the concept “average of losses in the worst A% of cases’? (Acerbi and Tasche
2002), where a“loss’ is a negative outcome of Ry (thus the loss associated with Ry is
described by the random variable —Ry).

Formally, the Conditional Value-at-Risk at level a of Ry is defined as minus
the mean of the a-tail distribution of Ry, where the a-tail distribution is obtained by
taking the lower o part of the distribution of Ry (corresponding to extreme
unfavourable outcomes) and rescaling its distribution function to span [0,1]:

CVaR, (R) =~ {E(RL, yn)) -0 (RIPR R -al} (3

where g” is an a-quantile of Ry, meaning that P(R«<r)<a<P(R«<r) (see Laurent 2003
for more details on a-quantiles),
and Lraaiony=1, if Relationistrue

0O, if Relation isfalse.

2 Thisis not necessarily the same as “the expected value of |osses exceeding VaR at confidence level
o, asitisdefined in earlier papers on CVaR. The two definitions lead to the same results when the
distribution of the random variable under consideration is continuous, but differences may appear when
the considered distribution has discontinuities —see Acerbi and Tasche 2002, Rockafellar and Uryasev
2002 for more details.
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(see Rockafellar and Uryasev 2000, 2002 for more details).

An important result, proved by Rockafellar and Uryasev (2000, 2002), and
independently by Ogryczak and Ruszczynski (2002), isthat the CVaR of arandom
variable Ry can be calculated by solving a convex optimisation problem. Moreover,
CVaR can be minimised over the set of feasible decision vectors. These results are
summarised below:

Proposition 3.1 (CVaR calculation and optimisation): Let R, be arandom variable
depending on adecision vector x that belongsto afeasible set A, and ae(0,1).
Consider the function:

F,(xV) == E{[-R, +v]'} ~v, where
(04

[u]” =u for u=0
[u]" =0 for u<O.
Then:
(&) Asafunction of v, F, isfiniteand continuous (hence convex) and

CVaR,(R)) = rple F,(XV).

In addition, the set consisting of the values of v for which the minimum is
attained, denoted by A,(X), isa non-empty, closed and bounded interval
(possibly formed by just one point).

(b) Minimising CVaR, with respect to xe A isequivalent to minimising F,
with respect to (x,v)e AxR:
mipCVaRa(Rx)z min_F_ (x,v).

(x,v)e AXR
In addition, a pair (x*,v*) minimisestheright hand sideif and only if x*
minimisestheleft hand side and v* e Aq(X*).

(c) CvaR, (R,) isconvex with respect tox and F_(X,V) isconvex with respect
to  (x,v).

Thus, if the set A of feasible decision vectorsis convex (which is the case for
the basic version of the portfolio selection problem), and even if weimpose a
further lower limit on the expected return, minimising CVaR is a convex
optimisation problem.

In the case when Ry is a discrete random variable (as described in Section
2), calculating and optimising CVaR arelinear programming problems.
Suppose that Ry has T possible outcomes Ry, ...,Rxr with probabilitiespy,...,
pr. Then:

19 N
F, (XV) :;Z plv-R] -v.
i=1
For the portfolio selection problem, as presented in Section 2, where Ry=

n
> x;r; with rj thereturn of asset j under scenarioi,
j=1
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1 T n .
F. (X,V) :_Z pi[V_ZXjrij] —V.
aia j=1

Thus, the mean-CVaR, model can be formulated for the portfolio selection
problem asfollows:

.
Minimise —v+lz Py,
a iz
Subject to
DX +V<y,Vi=1.T

U

=1

y. 20¥i=1.T
Z,uj X; >d
-1

Zn:xj =1

=1
>J<J. >0,vj=1..,n

4 The Mean-Variance-CVaR model
4.1 The theoretical background

In this section, amodel for portfolio selection isproposed, in which random
variables are described by three statistics: the expected value, the variance and
the CVaR at a specified confidence level ae(0,1). We claim that taking three
parametersinto consideration, instead of two, gives a better modelling power .
The proposed model may bring an improvement in the solution, in the case
wher e a mean-variance efficient portfolio has an excessively large CVaR, or a
mean-CVaR efficient portfolio has an excessively large variance.

Theidea of restricting therisk of adistribution from two different
per spectives has been used beforein various contexts.

Konno et al. (1993) proposed a “ mean- absolute deviation skewness portfolio
optimisation model”, in which the lower semi-third moment of the portfolio
return ismaximised subject to constraints on the mean and on the absolute
deviation of the portfolio return. A “mean- variance-skewness portfolio
optimisation model” was proposed by Konno et al. (1995): they maximised the
third moment of the portfolio return subject to constraints on the mean and on
the variance of the portfolio return. Optimisation approaches are provided, in
which the corresponding cubic and quadr atic functions ar e appr oximated by
linear functions.

Wang (2000) proposed a model in which the portfolio return has constraints
on both variance and Value-at-Risk (VaR), and a maximum expected return
under these conditions. However, no practical optimisation approach is
provided.

Harvey et al. (2003) proposed a model in which random variables ar e chosen
with respect to their expected value, variance and skewness. Thus, it may be
consider ed that they usetwo risk measuresin order to control the selection of a
solution: the variance and the negative of skewness. Their model has a
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distributional assumption for portfolio returnsand uses an expected utility
maximisation approach, with the utility function depending on the expected
value, variance and skewness.

Jorion (2003) proposed that a portfolio return distribution should have
constraints on both variance and “tracking error volatility”, which is“the
volatility of the deviation of the active portfolio from the benchmark”, with a
maximum expected return under these conditions. Thus, this approach may also
fall into the category of index-tracking models.

There have been various for mulations of portfolio selection problems as
multiple criteria models (see for example Ogryczak 2000, 2002). However, to the
best of our knowledge, the use of CVaR together with variance within a multi-
attribute model isnovel. A categorised bibliography on the applications of
multiple criteria decision-making techniquesin financeis provided in Steuer and
Na (2003).

The model proposed in this paper doesnot assume a particular distribution
for thereturnsand, in addition, is convenient from a computational point of
view. We define a preferencerelation for random variables and provide an
optimisation approach for finding the efficient solutionswith respect to this
preferencerelation.

Consider again the portfolio selection problem described in Section 2, with the
random variable R, and Ry describing the returns of portfolios x and y respectively,
with x,ye A.

We consider amodel for choice under risk that we refer to as the mean-variance-
CVaR model, in which the preference relation among random variablesis defined as
follows:

In the mean-variance-CVaR model, arandom variable Ry is preferred to arandom
variable Ry (or, similarly, the portfolio x is preferred to portfolio y) if and only if
E(RJ)ZE(R), o*(R) <o?(R,) and CVaR,(Ry)< CVaR,(Ry), with at least one strict
inequality.

Thus, the non-dominated (efficient) solutions in the mean-variance-CVaR model
are the Pareto efficient solutions of a multi-objective problem in which the expected
value is maximised while the variance and the CVaR are minimised:

(MVC): max (E(Ry), —*(R,), - CVaR,(Ry)
Subject to: xe A.

When plotting the efficient solutions in a mean-variance-CVaR space, a
surface is obtained; we refer to this surface as “the efficient frontier” of the mean-
variance-CVaR moddl.

42  Anoptimisation approach

The next issue to address is how to obtain the efficient solutions of the mean-
variance-CVaR model.

Firstly, the multi-objective problem (MVC) is transformed into asingle
objective problem in which one objective function is optimised while lower limits are
imposed on the remaining objective functions and transformed into constraints. This
method, known in multi-objective optimisation as the “¢-constraint method” (Haimes

Authors: D. Roman , G. Mitra and K. Darby-Dowman 10



Authors: D. Roman , G. Mitra and K. Darby-Dowman

et al. 1971, see also Steuer 1986) generally requires some regularization in order to
guarantee that an optimal solution of the single-objective problem obtained is a Pareto
optimal solution of the original multi-objective problem.

We choose to minimise variance for two reasons. Firstly, it ismore intuitively
appealing to impose limits on the expected value and CVaR, rather than on variance.
Secondly, we show that minimising variance is more convenient from a
computational point of view. In either case, a convex optimisation problem would be
obtained?, irrespective of which statistic we choose for the objective function, but,
when optimising variance, a quadratic programming problem is obtained, as shown
below.

In what follows, for arandom variable Ry that depends on the decision vector X,
the variance of Ry is denoted alternatively by o*(x) or o*(R,) . Similarly, the

Conditiona Value-at-Risk at level o of Ryis denoted by CVaR,(x) or CVaR,(Rx),
and the expected value of Ry by E(x) or E(Ry).

We consider the following optimisation problem:
(P1): min o*(X)
Subject to: CVaR,(X)<z
E(x)>d
xeA.
where z and d are real numbers.

It is easy to prove that: if x* isaPareto optimal solution of (MVC) then x* isalso an
optimal solution of (P1) with z=CVaR,(x*) and d=E(x*).

Indeed, assume that x* isnot an optimal solution of (P1). Obviously x* isafeasible
solution of (P1). Denote by x* an optimal solution of (P1). It follows that
o?(X)<6%(x*), CVaR, (X' )<CVaR,(x*) and E(X’)>E(x*), which means that X’ Pareto
dominates x* and we have a contradiction.

The converseis aso true, with the additional assumption of uniqueness of the optimal
solution:

If x* isthe unique optimal solution of (P1), then x* is aso a Pareto optimal
solution of (MVC).

Indeed, assume that x* is Pareto dominated in (MVC) and denote by X’ a point
that Pareto dominates x*. This means that 6(x’ )<c%(X*), CVaRy(X' )<CVaR,(x*)<z
and E(x")>E(x*)>d with at least one strict inequality. Thus X’ is another feasible
solution of (P1) such that 6(x’)<c?(x*), which is a contradiction.

Remark 4.1: If the covariance matrix of returnsis positive definite, then varianceis a
strictly convex function of x. In this case, minimising variance over a convex set has
at most one optimal solution; thus, the possibility of multiple optimal solutions for
(PL) iseliminated. Thisisusually the caseg; if there are no redundant assets (ones that
can be replicated by the remaining of the assets) or risk-free assets in the collection of
assets considered, then the covariance matrix is positive definite.

® As stated in Proposition 3.1, CVaR is a convex function of x. Variance is also convex of x, since the
variance-covariance matrix is positive semi-definite. The expected value is linear thus convex of x.
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We summarise these results bel ow:

Proposition 4.1: If the covariance matrix is positive definite, apoint x* is a Pareto
efficient solution of (MVC) if and only if x* isan optimal solution of (P1) with
z=CVaR,(x*) and d=E(x*).

Thus, in the case of a positive definite covariance matrix of returns, the Pareto
efficient solutions of (MV C) can be fully characterised as optimal solutionsin (P1)
with active constraints on mean and on CVaR.

In fact, the above statement is true for the general case of a (positive semi-
definite) covariance matrix - see Proposition A1 in Appendix A. Also, in Appendix A
we present a method for obtaining al the Pareto efficient solutions of (MVC) for the
general case when the covariance matrix of returnsis positive semi-definite.

The next issue that arisesis how to represent the CVaR constraint in (P1). As
presented in Proposition 3.1, the function F, (x,V) _1 E{[v-R.]"}-v may beused
(04

both for calculating the CVaR of a given random variable and for optimising CVaR
with respect to all feasible decisions vectors.

Furthermore, Krokhmal et al. (2002) proved that the same function F_ (X,V)
may be used for imposing an upper limit on the CVaR of arandom variable, while
maximising its expected value.

Their result may be extended to a much more general case. In fact, the
constraint “ CVaR,(x)<z" can be replaced with the constraint “ F, (x,v) < z” in dl
optimisation problems, irrespective of the form of the objective function or the
feasible set.

Proposition 4.2: Consider two optimisation problems (P) and (P') with A cR"
afeasible set (of any form) of decision vectors and the objective function f: R"—>R of
any form:

(P): min f(x)

Subject to: CVaR, (x) < z

xe A

(P): min f(x)
Subject to: F, (x,v)<z
xe A, veR.

Then: (P) and (P’) achieve the same optimal value. Moreover, apoint x* ePis
an optimal solution for (P) iff there exists v* eR such that (x*,v*) isan optimal
solution for (P’). If, in addition, the constraint CVaR, (X) < z in (P) is active, then

V¥ e Ay (x*) (meaning that F(x*,v*) = miRn F,(x*,v)).

Proof: As stated in Proposition 3.1, CVaR, (x) = mi n F,(x,v) . Thus, the

problem (P) may be written as:
(P): minf(x)
Subject to: miFgl F,(x,v)<z
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xe A
Suppose now that x* isan optimal solution for (P). Obvioudly (x*,v*) isa
feasible solution for (P), where v* issuch that F(x*,v*) = min F,(x*,v). Assume

that there exists (x’,v’) another feasible solution for (P') such that f(x*)<f(x*). Since
F, (X,Vv) < z it followsthat min F, (X',V) < z; thus, X’ isafeasible solution of (P1)

which improves the objective function as compared to x*, which is a contradiction.
Similarly, in a straightforward way, the converse may be proven; the last part
of the proposition is obvious.

Thus, we consider another optimisation problem, with variables x=(xj,..,Xn)
andveR:

(P2): min o*(X)
Subject to: F,(x,v) <z
E(x)>d
xeA,veR

where A isthe (convex) set of feasible decision vectors, as given, for example, by

(1.
The result below follows from Propositions 4.1 and 4.2:
Proposition 4.3: If the covariance matrix of returnsis positive definite, the

Pareto efficient solutions of (MVC) are fully characterised as optimal solutions of
(P2) with active constraints on mean and on CVaR”.

In other words, x* is a Pareto efficient solution of (MVC) if and only if there
exists v* eR such that (x*,v*) isan optimal solution to (P2) with z=F_(X*,v*) and
d=E(x*).

Therefore, varying d and z in the problem (P2) such that the constraints on
CVaR and on the expected value are active produces al the efficient solutions of the
mean-variance-CVaR model. As shown in Section 4.4, this means varying d and z
between some finite limits that can be easily determined.

4.3  Alfernative optimisation approaches

The optimisation approach described in the previous subsection is not unique. A
commonly used method of obtaining a Pareto efficient solution of a multi-objective
optimisation problem is to use a scalarizing function, meaning a real-valued function
that is a composite of all objective functions. When optimised, the scalarizing
function produces a Pareto efficient solution of the multi-objective optimisation
problem. Thus, the problem is reduced to a single objective optimisation problem. We
give below two examples of scalarizing functions, leading to two alternative
optimisation approaches for the mean-variance-CVaR model.

* This statement holds even without the assumption of a positive definite covariance matrix — the proof
isgivenin Appendix A.
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The most common scalarizing function is a weighted sum of the objective
functionsin the original multi-objective optimisation problem. The general
requirement on weightsis that they should be strictly positive but usually they are
normalised such they sum to 1. In our case, the single objective optimisation problem
that resultsis:

Max w,E(X) —w,o*(X) — w,CVaR, (X) (P3)
Subject to: xe A
where w, Wy, ws are strictly positive®.

It isclear that every optimal solution of (P3) is a Pareto efficient solution of (MVC).

The converseis not always true, in the sense that there may be Pareto optimal
solutions of (MV C) that cannot be obtained as optimal solutions of a problem (P3)
with strictly positive wi, w, and ws (for example, the Pareto optimal solution of
(MVC) that globally minimises variance).

However, due to the convexity of all objective functions on (MVC), every Pareto
optimal solution of (MVC) can be obtained as an optimal solution of (P3) with non-
negative weights (see Jahn 1985). For example, the Pareto optimal solution of (MVC)
that globally minimises variance is obtained as an optimal solution of (P3) with w;=
W3:0, wo=1.

This approach has several disadvantages (see Das and Dennis 1997), one of
them being the fact that the weights wi, w,, ws are rather difficult to interpret. Itis
more meaningful to set desired levels of expected return and of CVaR and solve (P2).

Another example of a scalarizing function is obtained by considering target
values (called reference points or aspiration points) for the values of the objective
functions. This technique for multi-objective optimisation, named The Reference
Point Method is fully described in Wierzbicki 1998. Consider the general muilti-
objective problem
(MO’): Max(f1(x),f2(x),...,fr(x))

Subject to: xeX,
And let w* 1, w*,,..., w* be the user-defined aspiration points for the objective
functions. The simplest form of scalarizing functioniis:

7\/\/*()():E(Lg(fk(x)_W*k)"_gZ(fk(x)_W*k) (4)

whereg>0isan arbitrary small parameter.

Theterms f, (X) —w*in (4) areusually replaced by more complicated

functions of x and w*y, y,(x,w* ), which must satisfy certain properties (see for
example Wier zbicki 1998, M akowski and Wier zbicki 2003). These functionsare
called partial achievement functions since they measur e the actual achievement
of the k-th objective function with respect toits corresponding aspiration level
W* .

® |f additionally there is the assumption of unique optimal solutions of (P3) when some of the weights
are zero, then only the non-negativity condition is required for wy,w, and ws,
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Various functionsy,(x,w*,) provide a wide modelling environment for measuring
individual achievements. Other examples of such functions may be found in
Wierzbicki 1998, Makowski and Wierzbicki 2003.

Provided that all the reference points lie between the lower and the upper
bound of the corresponding objective function, the maximisation of (4) provides a
Pareto efficient solution of (MQO’). The converse istrue, in the sense that for every
Pareto efficient solution of (MO’), there exist aspiration levels such that this efficient
solution maximises the corresponding achievement function (see Wierzbicki 1998).

In our case, the scalarizing achievement function to maximiseis:

7 (X) = MIN{E(X) —wW* ,W*, —o*(X),w*, —-CVaR (X)} +

+ & E(X) —w*, +W*, —o*(X) + W*, —CVaR, (X)}]
where g>0isan arbitrary small parameter.

The Reference Point Method is primarily designed for obtaining a specific
solution of a multi-objective problem rather than the whole set of efficient solutions.
Although all the efficient solutions may obtained with this method by choosing
appropriate reference points, care must be taken in choosing the reference points
between the lower and upper bound of each objective function. The lower bounds for
the objective functions are difficult to find and often approximations are used.

In contrast, the optimisation method described in Section 4.2 produces the
entire set of efficient solutions of the mean-variance-CVaR model with no difficulty,
as described in the next section.

44 The efficient frontier of the mean-
variance-CVaR model

We consider the case when the covariance matrix of returnsis positive definite;
the general case of a positive semi-definite covariance matrix istreated in Appendix
A.

As presented in Section 4.2, varying the right hand sides d and z in (P2) such that
the corresponding constraints on mean and CVaR are active produces all the efficient
solutions of (MVC).

Thus, the level d for the expected value must lie in the interval [dimin,Omex]. We
define drin=max{ dminvar, Amincvar} » Where dminvar and dmincvar are the expected returns
of the minimum variance portfolio (mean-variance efficient) and minimum CVaR
portfolio (mean-CVaR efficient) respectively. dminva may be found as the optimal
value of thevariable dy in the problem:
min o*(X)

Subject to: E(x)>dp
xe A, dyeR.

dmincvar May be found as the optimal value of the variable d; in the problem:
min Fy(X,V)
Subject to: E(x)>d;
xe A, veR, dieR.
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To be more precise, dmincvar May be found as above only when the minimisation of
Fa(X,V) with respect to (x,v) over “AxR provides a unique optimal solution. In the case
of non-unique optimal solutions, we can obtain portfolios having the same minimal
CVaR but different expected returns; among these, we are interested in the portfolio
with the maximum expected return. To obtain this portfolio, we denote by CVaRin
the optimal value of the above problem and solve another optimisation problem:

max E(x)
Subject to: F,(X,v)<CVaRnmin
xe A, veR.

We define dmax as the maximum possible expected return®: the optimal value of the
objective function in the problem:

max E(x)
Subject to: xe A.

Furthermore, for a specific d* €[dmin,dmax], the level z of CVaR, must liein the
interval [Zg min,Zd* max], Where zg min 1S the best (minimum) CVaR,, level for the
expected return d* and z4 max iSthe CVaR,, level of the (unique) portfolio that
minimises variance for the expected return d*.

Zg+ min 1S the optimal value of the objective function in the problem:

Min F(X,v)
Subject to: E(x)>d*
xe A, veR.

Z¢ max May be found as the optimal value of the objective function in the problem:

Min F,(x*,v)
Subject to: veR,

where x*=(x*1,...,X*) is the (unique) portfolio that minimises variance for the mean
return d*.

The fact that the imposed limit z on CVaR,, is greater than or equal to Zg min
ensures that the problem (P2) is not infeasible, while z being less than or equal to
Zg¢* max €NSUres that the constraint on CVaR in (P2) is active. When solving problem
(P2) for alevel of expected return equal to d* and aCVaR level equal to zg min, we
obtain amean-CVaR efficient portfolio; more precisely, the mean-CVaR efficient
portfolio with the lowest variance for expected return d*.

When solving problem (P2) for alevel of expected return equal to d* and aCVaR
level equal to z¢ max, We Obtain the mean-variance efficient portfolio with expected
return d*.

For afixed level of expected return, the efficient solutions in the mean-
variance-CVaR model form a curve when plotted in a variance-CVaR space, where

® O iS AlSO equal to the highest expected return of the component assets in the portfolio selection
problem.
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the lower end of this curveis represented by the mean- CVaR efficient solution (with
the lowest variance) and the upper end is represented by the mean- variance efficient
solution. The other points of this curve are not efficient in either the mean- variance or
the mean-CVaR model.

CvaR

variance

Fig. 4.1: Theefficient solutions of the mean-variance-CVaR model, for a fixed level of
expected value, plotted in a variance-CVaR space.

For the maximum level of expected return dma, this curve degeneratesinto just one
point, with the coordinates equal to the variance and CVaR of the (only) efficient
portfolio obtained for dma, consisting of the asset with the highest expected return.

45 The formulation of the mean-variance-
CVaR model for scenario models

For the portfolio selection problem, as presented in Section 2, consider T
scenarios and n assetswith

ri;=thereturn of asset j under scenarioi, for i=1...T and j=1...n;

pi= the probability of scenarioi occurring, for i=1...T;

; = the expected return of asset j, j=1...n;

ojk = the covariance between thereturns of assetsj and k, for j,k=1...n.
Aspresented in Section 3.3, the function F, can bewritten as:

1 T n .
F, (%) :_Z pi[V_ZXjrij] —-V.
ain =1

Thus, wewritethe mean-variance-CVaR model as:

Min > X X0
i k=1

Subject to:
ij,uj >d
j=1
1 T
=2 Py, -V<zZ

i=1

y, 2v-Y xr;, Vie{l,....T}
-1
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y, 20, Vie{l,... T}
PRI
j=1

X; 20 Vje{l,...,n}
The minimisation isover v, Xi,...,Xn, Y1,..-,YT-

5 Computational results
5.1 The data set and methodology

The purpose of this section isto investigate the practical performance of the
mean-variance-CVaR model as compared to that of the mean-variance or mean-
CVaR model. Precisely, for several levels of expected return, we select portfolios
that are efficient in the mean-variance-CVaR model, but dominated in the mean-
variance or mean-CVaR model, and we also consider the cor responding mean-
variance efficient portfolio and the mean-CVaR efficient portfolio. We compare
their in-sample and out-of-sample per for mances.

Weuse CVaR at 0.01 confidence level.

A dataset, drawn from the FTSE 100 index, was used for this analysis. The returns
of the 76 stocks that belonged to the index throughout the period January 1993-
December 2003 were considered (for each of the remaining 24 stocks data are missing
in the specified period). The dataset consists of monthly returns and has 132 time
periods, considered as equally probable scenarios (n=76, T=132). For the out-of
sample analysis, the behaviour of the portfolios obtained was examined over the
eighteen months following the date of selection (January 2004- June 2005). The
models were written in the MPL modelling language (Maximal Software Inc. 2000)
and processed using CPLEX 9.0 optimisation solver (ILOG 2003). The matrix of
covariances of the returns is computed from historical data.

5.2 In-sample analysis

We consider six levels of expected return, which divide theinterval [dmin,dmax]
(see Section 4.4) into 5 equal parts: di=dmin =0.009268, d,= 0.014034, d3=
0.018801, d4= 0.023567, ds= 0.028334, ds= dmax=0.0331. For each level of expected
return d;, with i=1...5, we deter mine zgi min: the minimum level of CvVaR
(corresponding to the mean-CVaR efficient portfolio) and zgi max: the maximum
level of CVaR (the lowest CVaR of a mean-variance efficient portfolio with
expected return d;) and, between them, another 3 equally spaced levels of CVaR.
Thus, theinterval [Z4i min, Zaimax] fOr CVaR isdivided into 4 equal parts. For a
specific level of expected return, when solving the mean-variance-CVaR model
with these CVaR levels, we obtain 5 portfolios, denoted by: Pcvar, Pracvar,
P1ocvar, Paiacvar and Pygr respectively. Thus, Peyar isthe mean-CVaR efficient
portfolio (with the lowest variance, for the specified expected return) and Py iS
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the (unique) mean-variance efficient portfolio for the specified expected return
(seefig. 5.1)".

Wefirst investigate the composition of the considered portfolios. For all levels
of expected return, the mean-variance efficient portfolios have consider ably
mor e assetsin their composition than the mean-CVaR efficient portfolios. This
was expected, since the “diversification effect” isthe basis of the mean-variance
theory.

CvaR

P\/Rr

PR/A(‘\/ aR

P’I 12C\/aR

\e%

I:)CVaR

variance

Fig. 5.1: The efficient frontier for afixed level of expected return, in avariance-CVaR space. The
interval for CVaR isdivided into 4 equal parts.

The other three portfolios Pyacvar, Pi2cvar, Paacvar have usually a number of
assetsin composition significantly higher than mean-CVaR efficient portfolios,
but usually smaller than mean-variance efficient portfolios. There are casesin
which these portfolios are aswell asor even more diversified than the mean-
variance efficient portfolios (see Table 5.1 below); we notice that this happens
when the expected return of the portfolio ishigh, thus, at high levels of risk.
However, in most cases, the number of assetsin the composition increases while
thelevel of variance decreases (and the level of CVaR increases). Generally, the
assetstherearein the composition of mean-CVaR efficient portfoliosarealsoin
the composition of portfolioswith a higher CVaR level. However, there are assets
in the composition of the mean-CVaR portfolios but not in the composition of
portfolioswith a higher CVaR level. This aspect happensfor small portfolio
expected returns, thus, at low levelsof risk. It may be noticed that, whilethe
expected portfolio return (and thustherisk) increases, those assets are no longer
in the composition of any efficient portfolio.

The portfolio weights of the efficient portfolios considered are presented in
Appendix B.

Pcvar Pyacvar |Pincvar| Paacvar Puar
d,=0.00927 10 17 20 22 23
d,=0.01403 12 16 20 21 21
d;=0.01880 8 11 13 12 13
d,=0.02357 5 7 8 8 7

"The CVaR level of Py,cvar is the arithmetic mean of the CVaR levels of Pey.rand Pyy. Similarly, the
CVaR level of Pyacvar isthe arithmetic mean of the CVaR levels of Poyar and Piyocyar.
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Table5.1: The number of assetsin the composition of mean-variance-CVaR efficient portfolios.

We next investigate the in-sample perfor mances of Pyacvar, Pi2cvar, Paacvar, @s
compared with those of Pcyar and Py, We analyse their return distributions
using common in sample parameters. Obvioudy, the CVaR levels of Pyscvar,
P12cvar, Paiacvar are better than the CVaR of Pyy . On the other hand, their
varianceis generally significantly smaller than that of Pcyar. All the other in-
sample parameter s are between those of Pcyar and Pygr. IN Most cases, Pcyar has
thereturn distribution with the best skewness, kurtosis and minimum of returns
but also with thewor st variance. In contrast, Py hasthereturn distribution
with the best variance but usually the wor st skewness, kurtosis and minimum of
returns. Thisisin linewith the modelling paradigm since minimisation of CVaR
leads to reduction in the (weighted) tail of the resulting portfolio return
distribution. The other portfolios Pyacvar, Puzcvar, Psacvar Fepresent a
compromisein between these two “ extremes’. Their return distribution
improvesin theleft tail, as compared with Py, and also has a significantly
smaller spread around the mean, as compared with Pcyar, In particular, Pyacvar
hasreturn distributions with the variance significantly smaller than that of Pcyar
at the expense of arelatively small increasein CVaR. Thisaspect can be seen
from Tables 5- 10 (with the best valuesin italic bold and the wor st values
enclosed by rectangles) in Appendix C and isalsoillustrated in Fig. 5.1.

In Fig. 5.2 below the histogram of thereturn distribution of Pcyar for
expected return d;=0.00927 is presented. Thisdistribution is positively skewed,
with a short Ieft tail, along right tail and a large probability of outcomes below
the expected value. Therefore, the probability of large lossesisvery small, but
thereisalarge probability of small losses. In addition, thisdistribution is
particularly “flat”, that is, not concentrated around the expected value.

70
60 |
50 |
40 +
30 |
20
10 +

0

Frequency

-0.069 -0.05 -0.01 0.02 0.05 0.1 More
Outcome

Fig. 5.2: The histogram of the return distribution of Pcyar for expected return d;=0.00927.

In Fig. 5.3 below the histogram of thereturn distribution of Py, for the same
expected return d;=0.00927 is presented. Thisdistribution is negatively skewed,
with along left tail, a short right tail and also a large probability of outcomes
above the expected value; thus, thereisalarge probability of small gains. This
distribution isconcentrated around the expected value.
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Fig. 5.3: The histogram of the return distribution of P, for expected return d;=0.00927.

In Fig. 5.4 below the histogram of thereturn distribution of Pyscvar for the same
expected return d;=0.00927 is presented. Thisdistribution has approximately the
same shape asthereturn distribution of Py : concentrated around the expected
value and with alarge probability of outcomesjust above the expected value.
However, itsleft tail isshorter, dueto the constraint imposed on the CVaR level,
and thusthe probability of large lossesisreduced.
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Fig. 5.4: The histogram of the return distribution of Pyscvar for expected return d;=0.00927.

5.3  Out-of-sample analysis

We analyse the performance of the portfolios described in the previous
section over the next 18 time periods following the date of selection (January
2004-June 2005).

The portfoliosthat are non-efficient in either the mean-variance or the
mean-CVaR model, denoted by Pyacvar, Przcvar @and Paucvar, have an out-of-
sample performance compar able to that of the mean-variance and the mean-
CVaR efficient portfolios. It may be noted the generally good out-of-sample
per formance of the mean-CVaR portfolios and the somewhat poorer
per formance of the mean-variance portfolios, although the differ ences wer e not
significant.

In general, the best out-of-sample parameters correspond to mean-CVaR
portfolios, but for some levels of expected return, Pyacvar had equally good or
even better out-of-sample parameters (see Tables 5.2 and 5.3 below, with the best
valuesin italic bold and the wor se values enclosed by rectangles).

| Pcvar Puacvar  Pipcvar — Paucvar Puar
Mean 0.016294 0.01472 0.013835 0.013556| 0.01345
Median 0.013106 0.015918 0.01456 0.012515 0.011549
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Standard Deviation| 0.029173] 0.026514 0.025082 0.023893 0.022882
Minimum -0.03494] -0.03156 -0.03316 -0.02945 -0.02491
Maximum 0.052624{ 0.07282 0.071134 0.068515 0.066001

Table 5.2; Ex-post parameters of the mean-variance-CVaR efficient portfolios with in-sample mean
return d,;= 0.009268.

PCVaR P1/4CVaR PlIZCVaR P3/4CVaR I:JVélI’
Mean 0.01133] 0.012532 0.012342 0.012352 0.012342
Median 0.010171] 0.013783 0.013118 0.012365_0.01231
Standard Deviation 0.028682 0.031943 0.03221 0.032159] 0.032581
Minimum [ -0.04247] -0.03263 -0.03614 -0.03817_-0.04004
Maximum 0.081765 _0.08752 0.082737 0.078024] 0.072908

Table 5.3; Ex-post parameters of the mean-variance-CVaR efficient portfolios with in-sample mean
return ds= 0.01880.

Figure5.5 presents the compound out-of-sample retur ns of the mean-variance-
CVaR efficient portfolios with in-sample mean return d;= 0.009268. Pycvar had
a better out-of-sample performance than Pcyar in thefirst eight out-of-sample
periods (January - August 2004) (moreover, Pcyar had a compound return less
than onein February 2004, which meansthat its value fell below the amount
invested). At the sametime, Pyscvar had a better out-of-sample performance
than Py in thelast ten out-of-sample periods (September 2004 - June 2005).

——P _CvaR —m—P_1/4CVaR ——P_1/2CVaR
—@—P_3/4CVaR —x—P_var

compound return

1 3 5 7 9 11 13 15 17
time period

Fig. 5.5: Ex-post compounded returns of the mean-variance-CVaR efficient portfolios with in-sample
mean return d;= 0.009268.

Figure 5.6 presents the compounded out-of-sample retur ns of the mean-variance-
CVaR efficient portfolios with in-sample mean return ds= 0.01880. Py4cvar had a
better out-of-sample performance than both Pcyar and Py, although the
differencesare small.
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Fig. 5.6: Ex-post compounded returns of the mean-variance-CVaR efficient portfolios with in-sample
mean return d;= 0.01880.

6 Summary and Conclusions

In this paper, we presented a model for portfolio selection, which selects a
solution (distribution) on the basis of thr ee parameters: the expected value, the
variance and the CVaR at a specified confidence level. We called this model the
mean-variance-CVaR model. The problem of selecting an efficient solution of
thismodel is multi-objective: the expected value is maximised, while the variance
and CVaR areminimised. We chose variance and CVaR mainly becausethey are
well established risk measuresthat quantify risk from different per spectives:
variance measur es the deviation around the expected value while CVaR
measur es the aver age loss over a specified number of wor st cases.

Computationally, the problem reduces to solving a single objective problem
in which variance isminimised, while constraints areimposed on the expected
valueand CVaR. In the practice of portfolio selection, the random variables
under consideration are usually represented as discrete and described by
realisations under various scenarios. I n this case, the problem is one of quadratic
programming, thusroutinely solved by standard available software. Having a
constraint on CVaR rather than on the variance has advantages not only from a
computational point of view. It ismore natural to impose a maximum CVaR
level than a maximum variance level, since CVaR representsthe mean of the
wor st outcomes of a distribution.

Varying theright hand side of the constraints on the expected value and on
CVaR such that these constraints are active produces all the efficient solutions of
the mean-variance-CVaR model.

When solving the model for afixed level of expected return, there is arange of
efficient solutions. Plotted in avariance-CVaR space, they form a curve, with one end
represented by the minimum variance portfolio (with the lowest CVaR), the other
represented by the minimum CVaR portfolio (with the lowest variance).

Themodel wastested on a dataset drawn from the FT SE 100 index.
Several levels of expected return were considered, and, for each level of expected
return, five portfolios that wer e efficient in the mean-variance-CVaR model,
wer e analysed: the minimum variance portfolio, the minimum CVaR portfolio
and other three portfolios that were dominated in both mean-variance and
mean-CVaR models. As expected, the best in-sample parameter s concer ning the
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left tail of distributions corresponded to mean-CVaR efficient portfolios. highest
skewness, lowest kurtosis and highest maximum. However, thereturn
distributions of mean-CVaR efficient portfolios have also the highest variances.
In contrast, the mean-variance efficient portfolios have thereturn distributions
with the lowest variance, but also with the “worst” left tail (as described by
skewness, kurtosis, minimum and CVaR). The other portfolios, efficient only in
the mean-variance-CVaR model, improve on theleft tail of the mean-variance
efficient distributions. they have higher skewness, lower kurtosis higher
maximum and higher CVaR. In some cases, thisimprovement comes at the
expense of only a marginal increasein variance. The out-of-sample per for mances
of these portfolios are compar able to those of the mean-variance and mean-
CVaR efficient portfolios. In two out of five cases, such a portfolio achieved the
highest mean of out-of-samplereturnsand in almost all cases led to the highest
maximum of out-of-samplereturns.

Asafinal remark, it may be noted that the proposed model does not
dismiss mean-variance or mean-CVaR models, but on the contrary, it “embeds’
them. Most of the mean-variance and the mean-CVaR efficient solutionsare
particular solutions of the proposed model. For example, a mean-variance
efficient solution isnot a solution of the proposed model only if thereisanother
mean-var iance efficient solution with the same mean and variance but with
lower CVaR. Likewise, from the set of mean-CVaR efficient solutionswith a
specified mean return, only the one(s) with the lowest varianceis solution of the
proposed model. Thus, the proposed model makes a “ positive” discrimination
between mean-variance and mean-CVaR efficient solutions. In addition, the
mean-variance-CVaR model has a range of solutionsthat are normally
discarded by both mean-variance and mean-CVaR model. These solutions may
bring an improvement in the distribution, in the case when the CVaR of a mean-
variance efficient portfolio is considered to be unacceptably large. They
represent a compromise between regulators' requirementsfor short tailsand
classical fund managers requirementsfor small variance. In making thefinal
choice, the per sonal preference of the decision-maker playsa key role.
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Appendix A. The general case of a positive semi-
definite covariance matrix

Here we describe a method of producing the entire efficient frontier of the mean-
variance-CVaR model for the general case when the covariance matrix of returnsis
positive semi-definite. In this case, the minimisation of variance over a convex set
may not have a unique optimal solution. Thus, when using the optimisation problem
(P2) as described in Section 4.4, we may obtain solutions that are Pareto dominated in
(MVC)®. However, we can still use (P2) to produce the entire set of Pareto non-
dominated solutions of (MVC), provided the right hand sides d and z for the mean and
CVaR constraints are chosen as described below.

The level d for the expected value must lie in the interval [d' min,dmax] Where dmax is
the maximum possible expected return (as presented in Section 4.4). We define
d’ min=maxX{ d’ minvar, dmincvar}, Where d’ minvar aNd dmincvar are the expected returns of
the minimum variance portfolio (mean-variance efficient) and minimum CVaR
portfolio (mean-CVaR efficient) respectively. dmincvar may be found as described in
Section 4.4. The expected return of the minimum variance portfolio d' yinvar CaNNGt be
determined so straightforward as for the case of a positive definite covariance matrix.
We cannot just minimise variance over the whole feasible set “A (with no constraints
on the mean) since there may be different optimal solutions to this problem, with the
same (optimal) variance but with different expected returns. Among these solutions

8 For example, multiple optimal solutions of (P2) may have the same variance, the same expected
return but different CVaRs; only the one with the lowest CVaR is Pareto efficient in (MVC).
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that globally minimise variance, we consider only the one with the maximum
expected return. To obtain this solution, we first solve the problem:

min o%(X)
Subject to: xe A.

Denote the optimum value of this problem by cmip.
In order to find the specific optimal solution of this problem with the maximum
possible expected return, we propose a convex program with quadratic constraint:

max E(X)
Subject to: o*(X) <o,
xe A.
The optimal value of the above optimisation problem is d’ minvar.

Furthermore, for a specific de[d' min,dmax], the right hand side for the CVaR constraint
zmust liein theinterval [ZgminZ dmax]; Zdmin IS the best (minimum) CVaR,, level for
the expected return d and may be found as described in Section 4.4. Z' 4 max iSthe
ngi nimum CVaR,, level of the mean-variance efficient portfolios with expected return
d’.

In order to determine z' 4 max, ONE May solve two optimisation problems.
Firstly, the optimal variance for the expected return d (denoted by c?g) may be found
as the optimal value of the objective function in the problem:

min o?(X)
Subject to: E(x)>d
xe A.

Secondly, 7' 4 mex May be found as the optimal value of the objective function in the
problem:

Min F(X,V)

Subject to: E(x)>d
GZ(X)SGZd
xe A, veR.

Proposition A.1: Consider the optimisation problem
(P1): min o*(X)
Subject to: CVaR, (X) <z
E(x)>d
xeA.

® In case there are several mean-variance efficient portfolios with expected return d, with different
CVaR levels, only the portfolio with the lowest CVaR is efficient in the (MVC) model; its CVaR level
is denoted by 7y max-
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If x* isan optimal solution of (P1) for de[d’ min,dmax] and z€[Zgmin,Z' dmax] (&S
described above), then x* is Pareto efficient in (MVC).

Proof: Assume that x* is not Pareto efficient in (MVC). Denote by x’ afeasible
solution of (MVC) that Pareto dominates x*. This means that 6%(x’ )<o*(x*),
CVaR, (X" )<CVaR,(x*)<z and E(x’)>E(x*)>d with at |east one strict inequality. Thus,
X' isafeasible solution of (P1). The case 6%(x’ )<c?(x*) is excluded since this
contradicts the fact that x* is an optimal solution of (P1). It only remains the
possibility that x’ and x* are both optimal solutions of (P1) and
CVaR,(X)<CVaR,(x*)<z or E(X’)>E(x*)>d.
Consider first the case CVaR,(x’)<CVaR,(x*)<z; thus, x’ is an optimal solution of
(P1) and the constraint CVaR, (X) <z is not binding. Since (P1) is a convex
optimisation problem, it follows that x’ is an optimal solution of the “reduced”
problem, obtained from (P1) by removing the constraint on CVaR:
(PLie): min o%(X)

Subject to: E(x)>d

xeA.

This means that both x’ and x* are mean-variance efficient portfolios with expected
return de[d’ min,dmax] . Thus, we have two mean-variance efficient solutions with the
same variance, the same expected return d but different CVaRs.
CVaR,(X")<CVaR,(X*)<z<Z g max. HOWeVEr, Z' g max IS, Dy construction, the lowest
possible CVaR of a mean-variance efficient portfolio with mean return d and we have
acontradiction.
Obvioudly the constraint E(x)>d in (P1) isbinding for de[d’ min,dmax]; thus, the case
E(X")>E(x*)>d is al'so impossible and this ends the proof.

Thus, when the right hand sides d and v are chosen as above, the constraints
on CVaR and on mean are active.

It was shown in Section 4.2 that the constraint CVaR, (X) <z can be replaced

with the constraint F,(X,v)<z, veR and thus the problem (P2), equivalent to (P1), is
obtained:

(P2): min o*(X)
Subject to: F,(x,v) <z
E(x)=d
xeA,veR

Solving problem (P2) with d varying between d' in and dmax and z varying

between zy min and Z’ 4 max as described above produces all the efficient solutions of the
mean-variance-CVaR model.

Appendix B. The composition of efficient portfolios

asset index| Pcvar | Piacvar | Puzcvar | Paiscvar | Puar

4 0.028| 0.074 | 0.059 | 0.049 |0.047
5 0.194| 0.050 | 0.034 | 0.027 |0.024
11 0 0.055 | 0.068 | 0.065 |0.052

Authors: D. Roman , G. Mitra and K. Darby-Dowman 29



Authors: D. Roman , G. Mitra and K. Darby-Dowman

13 0 0.059 | 0.070 | 0.075 |0.072
16 0 0.013 | 0.029 | 0.025 |0.018
17 0 0.005 | 0.026 | 0.046 |0.048
21 0 0 0.008 | 0.009 |0.007
24 0 0 0 0.008 |0.023
25 0 0.018 | 0.026 | 0.037 |0.045

27 0.004| 0.049 | 0.076 | 0.076 |0.071
40 0.208| 0.093 | 0.081 | 0.064 |0.067
42 0 0.017 | 0.044 | 0.056 |0.051
43 0.061| 0.086 | 0.067 | 0.061 |0.056
44 0.026| 0.075 | 0.059 | 0.046 |0.052
45 0.073] 0.078 | 0.066 | 0.052 |0.042

48 0 0 0 0 0.007
63 0 0 0 0 0.015
64 0 0 0 0.002 [0.005
65 0.025| 0.100 | 0.066 | 0.057 |0.039
66 0 0 0.006 | 0.045 |0.064
69 0.171] 0.0v3 | 0.035 | 0.010 0

70 0 0 0.033 | 0.056 |0.064
72 0 0.026 | 0.051 | 0.059 |0.069

73 0.211| 0.129 | 0.094 | 0.077 |0.063
Table 1: The portfolio weights of the efficient portfolios for d,= 0.009268.

asset index| Pevar | Puacvar | Puzcvar | Paiacvar | Puar
4 0.095| 0.106 | 0.099 | 0.087 |0.082

5 0.140] 0.075 | 0.059 | 0.058 |0.059
10 0.044 0 0 0 0

13 0 0.067 | 0.071 | 0.080 |0.084
16 0.032] 0.036 | 0.031 | 0.015 |0.011
17 0 0.043 | 0.064 | 0.073 |0.075
21 0.011] 0.042 | 0.043 | 0.046 |0.050
24 0 0 0 0.001 |0.014
25 0.019| 0.007 | 0.021 | 0.025 |0.020
27 0 0.045 | 0.039 | 0.028 |0.020
28 0.074| 0.031 0 0 0

40 0 0.060 | 0.064 | 0.047 |0.033
42 0 0 0.000 | 0.005 |0.006
43 0 0.031 | 0.006 0 0

44 0.056| 0.111 | 0.100 | 0.080 |0.082
45 0.179] 0.165 | 0.133 | 0.116 |0.103

48 0 0 0 0.015 |0.020
56 0 0 0.013 | 0.029 [0.039
58 0.024| 0.009 | 0.017 | 0.027 |0.032
63 0 0.005 | 0.034 | 0.043 |0.048
65 0 0 0.003 | 0.019 |0.025
66 0 0 0.028 | 0.042 [0.050
69 0.079 0 0 0 0
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70 0 0 0.036 | 0.054 |0.061

73 0.246| 0.164 | 0.140 | 0.110 |0.085
Table 2: The portfolio weights of the efficient portfolios for d,= 0.01403.

asset index| Pcvar | Piacvar | Pizcvar | Paacvar | Puar

4 0.143| 0.128 | 0.124 | 0.123 |0.119
5 0.091| 0.024 | 0.043 | 0.056 |0.064
13 0 0 0 0 0.024
16 0 0 0.002 | 0.022 |0.036
17 0 0.028 | 0.056 | 0.062 |0.061

21 0.038| 0.094 | 0.107 | 0.119 |0.130
44 0.062| 0.161 | 0.135 | 0.130 |0.124
45 0.298| 0.228 | 0.215 | 0.187 |0.165
48 0 0 0.000 0 0

56 0.045| 0.066 | 0.085 | 0.103 |0.118
58 0.084| 0.080 | 0.075 | 0.073 |0.070

63 0 0.023 | 0.024 | 0.016 |0.004
73 0.239| 0.164 | 0.125 | 0.093 |0.065
76 0 0.004 | 0.010 | 0.016 |0.020

Table 3: The portfolio weights of the efficient portfolios for d;= 0.0188.

asset index| Pcvar | Piacvar | Puzcvar | Paiscvar | Puar

4 0.044| 0.154 | 0.147 | 0.135 |0.134
21 0.262| 0.175 | 0.190 | 0.203 |0.218
44 0 0 0.017 | 0.032 |0.045
45 0.381| 0.276 | 0.256 | 0.246 |0.218
56 0 0.103 | 0.138 | 0.174 |0.204

58 0.171] 0.181 | 0.168 | 0.154 |0.145
73 0.141| 0.090 | 0.056 | 0.021 0
76 0 0.021 | 0.027 | 0.035 |0.036

Table 4: The portfolio weights of the efficient portfolios for d,= 0.02357.

asset index| Pcvar | Puacvar | Puocvar | Paacvar | Pvar
4 0 0 0 0.013 |0.015
21 0.298| 0.331 | 0.335 | 0.323 |0.327
45 0.234| 0.158 | 0.097 | 0.056 |0.016

56 0 0.071 | 0.136 | 0.159 |0.195
58 0.469| 0.441 | 0.429 | 0.418 |0.405
76 0 0 0.003 | 0.032 |0.042

Table 5: The portfolio weights of the efficient portfolios for ds= 0.02833.

For the highest level of expected return dg= dnax=0.0331, the efficient portfolio
consists of the asset no 58.
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Appendix C. Thein-sample parametersfor thereturn

distributions of efficient portfolios

| Pcvar Puacvar _ Pipcvar — Pauacvar Puar
Median 0.010905 0.009989| 0.010678 0.011774 0.011348
Standard Deviationl 0.039557| 0.032288 0.030899 0.030186 0.030006
Skewness 0.175763 -0.43318 -0.59261 -0.75996| -0.89894
Kurtosis -0.16328 0.214433 0.763715 1.35481| 1.964419
Minimum -0.05813 -0.06857 -0.08198 -0.09601f -0.10946
Maximum 0.128209 0.085995 0.084375 0.081927) 0.077194

Table 6: In-sample parameters for the return distributions of efficient portfolios in the mean-variance-

0.01CVaR model with expected return d;= 0.009268.

Pcvar Puacvar  Pincvar  Paacvar Puar
Median 0.009982| 0.016801 0.016398 0.017359 0.0176
Standard Deviation| 0.043277[ 0.035516 0.034453 0.03398 0.033852
Skewness 0.238317 -0.5367 -0.64824 -0.75897| -0.87193
Kurtosis 0.100689 0.329636 0.799505 1.213484] 1.633637|
Minimum -0.07056 -0.07906 -0.08756 -0.09606| -0.10498
Maximum 0.149618 0.095584 0.093019 0.090123| 0.087926

Table 7: In-sample parameters for the return distributions of efficient portfolios in the mean-variance-

0.01CVaR model with expected return d,= 0.014034.

Pcvar Puacvar  Pincvar  Paacvar Puar
Median 0.019982| 0.021909 0.021945 0.022453 0.02225
Standard Deviation| 0.051467[ 0.045116 0.043917 0.043138 0.042869
Skewness 0.105138 -0.27928 -0.35782 -0.44374] -0.50531]
Kurtosis 0.816632 0.588582 0.748811 1.016336) 1.309189
Minimum -0.09186 -0.10046 -0.11094 -0.12183] -0.13216
Maximum 0.188287 0.139995 0.132851 0.127387| 0.12672

Table 8: In-sample parameters for the return distributions of efficient portfolios in the mean-variance-

0.01CVaR model with expected return ds;= 0.018801
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Median

Skewness
Kurtosis
Minimum
Maximum

| PCVaR P1/4CVaR P 1/2CVvaR

I:)3/4CVaR Pvar

0.026665 0.02185| 0.023582

Standard Deviationl 0.071333| 0.061135 0.059382

0595438 -0.12047 -0.23122
[ 3.354617] 0.816052 0.797705
1012247 -0.13142 -0.14231
0.367729 0.204922 0.181086

0.022484 0.023786
0.058374 0.058031
-0.30692| -0.36555
0.808283 0.834841
-0.1528( -0.16327
0.162425| 0.159635

Table 9: In-sample parameters for the return distributions of efficient portfolios in the mean-variance-

0.01CVaR model with the expected return d,= 0.023567.

Median

Kurtosis
Minimum
Maximum

| PCVaR P1/4CVaR P 1/2CVaR

I:)3/4CVaR Pvar

0.035256 0.032523 0.027021

Standard Deviation| 0.091039| 0.088892 0.087699

Skewness

0.319572 0.215952 0.112308
1.470049 1.069079 0.885207
-0.19129 -0.19541 -0.19749

0.023606| 0.022036
0.087357 _0.087337
0.050204| 0.041352
0.817357 0.841093
-0.19974] -0.20228

0.358639 0.308329 0.26884

0.266499| 0.267819

Table 10: In-sample parameters for the return distributions of efficient portfoliosin the mean-variance-
0.01CVaR model with expected return ds= 0.028334.

Authors: D. Roman , G. Mitra and K. Darby-Dowman

33



	 
	Mean-Risk Models Using Two Risk Measures: A Multi-Objective Approach 
	Abstract 
	Introduction and motivation 
	The portfolio selection problem 
	3 Mean-Risk Models 
	The general case 
	The mean-variance model 
	The mean-CVaR model 
	4 The Mean-Variance-CVaR model 
	4.1 The theoretical background 
	4.2 An optimisation approach 
	4.3 Alternative optimisation approaches 
	4.4 The efficient frontier of the mean-variance-CVaR model 
	4.5 The formulation of the mean-variance-CVaR model for scenario models 

	5 Computational results 
	5.1 The data set and methodology 
	5.2  In-sample analysis 
	5.3 Out-of-sample analysis 

	6 Summary and Conclusions 
	Appendix A. The general case of a positive semi-definite covariance matrix 
	Appendix B. The composition of efficient portfolios 
	Appendix C. The in-sample parameters for the return distributions of efficient portfolios 


