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Electric fields as a means of controlling thin film flow over topography

Sergii VEREMIEIEV 1,*, Philip H. GASKELL 1 , Yeaw Chu LEE 1, Harvey M. THOMPSON 1

* Corresponding author: Tel.: +44 (0)113 3432200; Fax: +44 (0)113 2424611; Email:
s.veremieiev@leeds.ac.uk

1: School of Mechanical Engineering, University of Leeds, LS2 9JT, UK

Abstract Gravity-driven, steady-state flow of a thin liquid film over a substrate containing topography in the
presence of a normal electric field is investigated. The liquid is assumed to be a perfect conductor and the air
above it an ideal dielectric. The Navier-Stokes equations are solved using a new depth-averaged
approximation that is capable of analysing film flows with inertia, with the flow coupled to the electric field
via a Maxwell normal stress term that results from the solution of Laplace’s equation for the electric
potential above the film. The latter is solved analytically using separation of variables and Fourier series. The
coupled solver is used to analyse the interplay between inertia and electric field effects for flow over one-
dimensional step and trench topographies and to predict the effect of an electric field on three-dimensional
Stokes flow over a two-dimensional trench topography. Sample results are given which investigate the
magnitude of the electric fields needed to suppress free surface disturbances induced by topography in each
of the cases considered.
Keywords: Thin liquid films, free surface flow, electrohydrodynamics, numerical solutions, topography.

1. Introduction
This paper considers the flow of thin liquid
films over substrates containing topography.
Such free surface flows are an important
component of numerous manufacturing
processes for the production of displays,
printed circuits and sensors and, more
generally, play an important role in the rapidly
evolving area of microfluidics [1]. Several
experimental and, more commonly, theoretical
studies of the flow which arises have now
appeared in the literature, see for example [2-
4], and have demonstrated how topography
induces both local and non-local disturbances
to the film’s free surface profile. A key issue
within precision manufacturing processes is
that these disturbances can persist over length
scales far larger than the topographies
themselves. In the case of photolithographic
manufacture of display screens, for example,
this can seriously impair their optical
resolution [2].

Previous studies into the control of free
surface disturbances induced by topography
have focused on flows over one-dimensional
features using either: (i) local heating sources

to induce Marangoni surface tension gradients
[5]; (ii) modifications to the initially flat, non-
functional areas of the substrate to mitigate
free surface disturbances induced by the
functional topography [6]; (iii) visco-elasticity
to reduce the amplitude of free surface
disturbances [7].

In contrast to the above, the effect of a normal
electric field on such film flows is explored, an
issue that has been investigated in several
experimental and theoretical studies, see for
example [8-10]. Of particular relevance is the
recent work of Tseluiko and co-workers [11,
12] who solved the Stokes (flow) and Laplace
(electric potential) equations, coupled by
Maxwell normal stresses at the film’s free
surface, for flow over one-dimensional
topography. The present work incorporates the
additional, competing influence of inertia and
extends the analysis to three-dimensional flow
over two-dimensional topography.

The structure of the paper is as follows.
Section 2 presents the mathematical
formulation of the problem, while Section 3
outlines the method of solution. Section 4
describes new results for both two- and three-
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dimensional flows over topography.
Conclusions are drawn in Section 5.

2. Mathematical formulation
Consider the case, shown in Fig. 1, of steady,
gravity-driven thin film flow down a planar
substrate, containing topography, inclined at
an angle  to the horizontal.

Fig 1: Schematic of gravity-driven flow over a
trench topography in the presence of an electric

field.

The liquid is assumed to be incompressible
with constant density,  , viscosity,  , and

surface tension,  . The film is subjected to a
constant, normal electric field, of strength 0E ;

the air above it is assumed to be a perfect
dielectric with constant permittivity e . The

electric potential above the film,  , satisfies
the relation E where E is the

electric field. The liquid is assumed to be a
perfect conductor so that there is no potential
difference between the substrate and the free
surface and, hence, no electric field in the film.

The governing hydrodynamic equations are
the steady-state Navier-Stokes and continuity
equations:

  GTPUU  . , (1)

0 U , (2)

where  WVUU ,, and P are the fluid

velocity and pressure, respectively;

  T
UUT   is the viscous stress

tensor,   cos,0,sin0  gG is the

acceleration due to gravity and 0g is the

gravity constant. The  ZYX ,, Cartesian

coordinates are directed streamwise, spanwise
and normal to the substrate plane, respectively
and the film is bounded by the substrate

 YXSZ , , film free surface  YXFZ , ,

inflow plane 0X , outflow plane pLX 

and side planes at 0Y and pWY  . The

film thickness SFH  and the values pL

and pW are taken so as to be large enough to

ensure fully developed flow both upstream and
downstream.

The length scale is taken as the fully
developed asymptotic film thickness, 0H , and

velocities and pressure/stresses are scaled with
respect to the free surface velocity

 2/sin2
000 HgU  and average pressure

000 / HUP  , respectively [13]. This enables

equations (1) and (2) to be rewritten as:
  gpuu St.Re   , (3)

0 u , (4)

in terms of equivalent non-dimensional (lower
case) variables, where the Reynolds number

 /Re 00HU and the Stokes number

sin/2St . The problem is closed by
imposing appropriate no-slip, inflow, outflow,
kinematic and free surface tangential and
normal stress boundary conditions, namely:

0szu , (5)

  0,0,2,0;,0 zzu
pp wylx  , (6)

0  fzyfzxfz wfvfu , (7)

  0.  tn ffz , (8)

  nnp fzfz .  

  fzWe
Ca


2




. (9)

In equations (5)-(9) the dimensionless electric
potential 00EH , the unit free surface

normal vector pointing towards the air is
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   2/122 11,,


 yxyx ffffn , t is the unit

vector tangential to the free surface and
n is the free surface curvature. In the

normal stress boundary condition (9), the
capillary number  /0UCa  and

0
2
00 2/ UEHWe e  is the Weber number that

measures the relative importance of electric
and viscous free surface stresses. The
appearance of the additional Maxwell stress
term for non-zero We leads to coupling
between the fluid flow and electric field.

2.1 Depth-averaged form (DAF)
The flow is analysed using a new depth-
averaged form (DAF) of the Navier-Stokes
equations that embodies inertial effects
directly. Since a detailed description is given
elsewhere [14], only a brief outline is provided
below. Equations (3)-(9) are simplified using
the long wavelength approximation for

1/ 00  LH , where 0L is an appropriate

in-plane capillary length scale, which is
expressed by a transformed set of non-
dimensional variables,

    pyxpyx ,,,,  , ww  , (10)

and is formulated in terms of the averaged

velocities   
f

s

udz
h

yxu
1

, ,   
f

s

vdz
h

yxv
1

,

and film thickness  yxh , . This enables

equations (3) and (4) to be rewritten as

     
x

yx shsh
Ca

uvuu 







 


 cot2Re

5

6 2
3

  2
3

2

2 
h

u
We

xfz , (11)

     
y

yx shsh
Ca

vvvu 







 


 cot2Re

5

6 2
3

 
2

2 3

h

v
We

yfz   , (12)

    0 yx vhuh , (13)

where the electric stresses at the free surface
are obtained by solving Laplace’s equation for
the electric potential  (discussed

subsequently).
Note that although the DAF equations are
valid for non-zero Re , they share the

limitation of all long wavelength analyses that
they are valid only for small capillary

numbers, 16/3  Ca .

2.2 Determination of the Maxwell Normal
Stress Term
The electric field is obtained by solving

02   between the inflow and outflow

planes 0x and plx  , respectively, the

side planes at 0y and pwy  and the

semi-infinite region above the film’s free
surface. This is achieved subject to the
conditions that 0 at the free surface and

uniformity of the electric field at the inflow,
outflow and side boundaries and as z .
Following [11], the capillary length 0L is

taken as the length scale in all directions,
including normal to the substrate, and the
problem is analysed more conveniently using a
‘shifted’ electric field potential z 1~ 

which measures the deviation from a uniform
electric field. This satisfies

0~2   , (14)

subject to the conditions:

1~  ffz  and (15)

0~
;,0;,0   zwylx pp

 . (16)

The assumption that 1 is used to
approximate the free surface boundary
condition (16) as:

1~
0  fz . (17)

The boundary value problem (14), (16) and
(17) is solved using the method of separation
of variables with ~ expressed as the following

Fourier series:

       





0,0 0

~cos~~1
1

,,~

nm
m

l w

pp

xxydxdf
wl

zyx
p p



    zyy nmn
22exp~cos   (18)

with eigenvalues pm lm /  and

pn wn /  . This enables the Maxwell

normal stress term to be approximated by:

 162 3/22  fFeWWeWe fz  , (19)

where  gF is the electric field operator:
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      





p pl w

nm
nm

pp

ydxdyxg
wl

yxgF
0 0 0,

22~~~,~1
, 

     yyxx nm
~cos~cos   (20)

and WeCaeW 3/2 is the modified Weber

number. Specifying the values of Re and
eW  in the above leads to the following

asymptotic film thickness, capillary number
and electric field strength, respectively:

3/1

3/1

0
2

2

0 Re
sin

2














g
H , (21)

3/2

3

4
0 Re
2

sin












g
Ca , (22)

18/1

2/1
18/1

92

44
0

56

0
Re

sin32 eWg
E

e















. (23)

2.3 Topography Definition
Attention is restricted to flow over simple one-
dimensional trench, step-up and step-down
topography and in two-dimensions a localized
rectangular trench. Following previous studies
[15], topography is specified using arctangent
functions. For one-dimensional trench
topography this takes the form:












 
 

 

2/
tan

)2/(tan
)(

*
1

1
0* t

t

lx

l

s
xs












 
 



2/
tan

*
1 tlx

, (24)

where 0s , tl and  are the dimensionless

depth, width and steepness of the topography.
For both one- and two-dimensional
topography the in-plane coordinates

   tt yyxxyx  ,, ** are shifted to the

center of the topography,  tt yx , . More

complex topography can be defined similarly
[4].

3. Method of solution
The depth-averaged equations (11) - (13) are
solved on a uniform, rectangular
computational domain,      pp wlyx ,0,0, 

subdivided using a staggered mesh
arrangement with a total of yx nn  cells, each

of length xp nlx / and width yp nwy / .

The unknown variables, h , and velocity
components u and v are located at cell
centres  ji, and cell faces  ji ,2/1 and

 2/1, ji , respectively. The momentum

equations (11), (12) are solved at cell faces
and the continuity equation (13) at cell centres
using a second order accurate finite difference
scheme [14].
Following [11] the discretisation involves the
use of ghost nodes, where the solution is found
by the assumption of its periodicity in both the
x and y directions:

    xlx hvuhvu
p

,,,,  , (25)

    ywy hvuhvu
p

,,,,  , (26)

and for the unique determination of the
solution the film thickness is fixed at the
inflow:

10 xh . (27)

The topography function has to satisfy the
periodicity conditions stated above as well,
therefore a wide trench is used to investigate
free surface disturbance over step-up and step-
down features.

Discretization of the electric field operator is
implemented by defining the tensor:

   







fN

nm yx

nm

yx

lkji
n

ljn

n

kim

nn
F

0,

22
,,, coscos

1 
 ,

which accounts for the action of the operator
  lklkjiji gFgF ,,,,,  . Here the associated

integrals are evaluated numerically using the
trapezoidal quadrature rule and the number of

Fourier terms fN is chosen to be sufficiently
large to ensure convergence. Note that the
symmetry of the operator is exploited to store
only   11  yx nn elements of the operator

that correspond to all possible magnitudes of

differences ki  and lj  . These are

created once, at the beginning of the
calculation, and used for all iterations
thereafter.

The yx nn  mesh cells lead to a total of

  113  yx nn discretised equations. These
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are linearised by the Newton-Raphson method
and solved directly by LU decomposition with
partial pivoting utilising the associated
subroutine in the freely available LAPACK
library [16]. The latter reduced residuals below
10-6, typically within 4-5 iterations.

4. Results
Following previous studies [2, 4, 11], attention
is restricted to flow over simple step and
trench topographies for gravity-driven flow of
thin water films in air, with  = 1000 kg∙m-3,

 = 10-3 Pa∙s,  = 0.07 N∙m-1, e = 8.85·10-12

F∙m-1 and  = 30º. Topography is specified
with  = 0.001, a value small enough to
ensure that solutions are independent of

steepness; fN = 200 Fourier terms are found
to be sufficient in all cases. The topography
and free surface coordinates are presented in
terms of the depth of the topography:

0
* / sss  ,   0

* /1 sff  .

Fig. 2 shows the effect of an electric field on
the free surface profiles of flows over the one-
dimensional step topographies considered
experimentally by [2] that are approximated by
a wide trench with tl = 80, 0s = 0.2, Re =

2.45, 0H = 100µm, tx = 120 and pl = 200. In

order to resolve small oscillations on the free
surface upstream of the steps [11] the
domain is meshed finely with xn = 4096 cells.

Fig 2: Effect of We' on free surface profiles for
flow over (a) step-down, (b) step-up with |s0|= 0.2,

Re=2.45 and θ= 30o.

Fig 2(a) shows how increasing eW  (and
hence the Maxwell normal stress) causes a
downstream displacement of the free surface
disturbance, resulting in a thickening of the
film over the step-down and reducing the
magnitude of the capillary ridge. For the step-
up case, Fig 2(b), a downstream displacement
with increasing eW  is also observed, causing
the disappearance, of the upstream depression
and the formation of a capillary ridge
downstream of the step-up. In both cases,
increasing eW  leads to the creation of an
oscillatory free surface upstream of the
topography, as observed in the recent studies
of [11, 12]. These are created by the additional
Maxwell stresses which are balanced by
increased capillarity/curvature.

Figure 3 shows the effect of eW  on flow
over the topographies considered in Fig. 2
when Re is increased to 30 ( 0H = 231µm).

Fig 3: Effect of We' on free surface profiles for
flow over (a) step-down, (b) step-up with |s0|=0.2,

Re=30 and θ=30o.

These shows how inertia generally amplifies
the free surface disturbances [14] and that
larger electric fields are needed to suppress the
associated free surface disturbances. For
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example, for flow over the step-down,
increasing eW  to 3 leads to complete
suppression of the capillary ridge for Re =
2.45, whereas for Re = 30 a small free surface
overshoot remains.

The effect of an electric field on the free
surface profile for flow over the one-
dimensional trench considered experimentally
by [2], with width tl = 1.51, depth 0s = 0.19,

Re = 2.84, 0H = 105µm, tx = 50, pl = 100

and xn = 2048, is shown in Fig. 4.

Fig 4: Effect of We' on free surface profiles for
flow over trench with lt=1.51, s0=0.19, Re=2.84

and θ=30o.

The effect of eW  is very different in this
case since increasing eW  to 1.5 leads to a
significant amplification of the capillary ridge
upstream of the trench and a corresponding
increase in the free surface depression over the
trench, while increasing eW  further to 3.0
leads to a gradual suppression of the free
surface disturbances. This behaviour may be
due to the interaction between waves
associated with the step-down/-up components
of the trench.

The final example extends the analysis to
consider the effect of an electric field on flow
over the two-dimensional square trench
topography used by [2] with width and length

tt wl  = 1.54, depth 0s = 0.25, Re = 2.45,

0H = 100µm, tt yx  = 50, and pp wl  = 100.

Due to the excessive computational cost of
solving electrified three-dimensional flow for
Re >0, solutions are given for the Stokes flow
case only, solved using a lubrication approach,
as described by [4], for which yx nn  = 256

cells yield grid-independent solutions.

Fig. 5: Three-dimensional free surface profiles for
Stokes flow over a two-dimensional rectangular
trench with lt=wt=1.54, s0=0.25, Re= 2.45 and
θ=30o. The arrow shows the direction of flow.

As for the one-dimensional trench, free surface
disturbances are amplified for 'We =1.5 and
suppressed for 'We =3.0. This is seen more
clearly in Fig. 6, which shows plots of
streamwise and spanwise free surface profiles
through the centre of the topography.

Fig 6: Effect of We' on (a) streamwise and (b)
spanwise free surface profiles for Stokes flow over

a two-dimensional rectangular trench.
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5. Conclusions
Inertial thin film flow over various one- and
two-dimensional topography in the presence of
an electric field normal to the free surface has
been investigated by means of a novel
approach comprised of utilising and solving a
depth averaged form of the governing
hydrodynamic equations, with the coupled
electric potential above the film determined
analytically using separation of variables and a
Fourier series representation. The generation
of accurate, steady-state, mesh independent
solutions to the coupled equation set is
realised by employing a staggered grid
arrangement for the dependent hydrodynamic
variables together with proper treatment of the
nonlinear convective terms present.

The results obtained show that for inertial flow
over one-dimensional simple step topography,
the size of capillary ridges and depressions
decrease with increasing electric field strength,
while stronger fields are needed to suppress
the larger free surface disturbances that occur
as a consequence of increasing inertia. In the
case of flow over a one-dimensional trench
topography, the behaviour is more complex
since increasing the strength of the electric
field initially amplifies disturbances, which is
followed by their suppression at higher field
strengths. The subtle interplay that occurs
between electric field strength, inertia and
topography geometry suggests the problem is
worthy of a subsequent more detailed
parametric study.

In the case of flow over two-dimensional
topography the results obtained were restricted
to the special case of Stokes flow since the
computational memory required to accurately
resolve three-dimensional flows in the
presence of an electric field when the
Reynolds number is non-zero is currently too
prohibitive – the principal reason being the
need to solve a dense matrix system of integro-
differential equations. Measures to overcome
these restrictions, such as using a parallel
computing framework, are currently being
persued.
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