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Abstract This article addresses the qualitative and quantitative properties of solute transport and dispersion

in microchannel of finite-length. As the Peclet number increases a transition from the Taylor-Aris to a new

regime referred as convection dominated dispersion occurs, which is controlled by the velocity profile near
the stagnation points at the solid walls. The properties characterizing dispersion dominated regime can be

used for analytical purposes as a chromatographic-based velocimetry and for determining the eventual

occurrence of slip at the solid walls of microchannels.
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1. Introduction

Dispersion phenomena in microchannels and
microflow devices control the performance of
many hydrodynamical and chemical processes in
micro-Total Analysis and Lab-on-Chip Systems
chemical reactions, microseparations,
microchromatographic measurements.

The recent Literature on fluid dispersion in
microchannels has been mainly focused on the
the

dispersion coefficient, and on the influence of

analysis and prediction of Taylor-Aris
geometric parameters and of cross-sectional flows
in the Taylor-Aris dispersion regime [1-4]. In point
of fact, Taylor-Aris theory applies to infinitely
extended channels, and is not suited for predicting
finite-size effects occurring in a microcapillary of
finite length.

While the theoretical analysis of dispersion has
been mainly focused on very long microchannels,
for which the Taylor-Aris dispersion theory applies
[1], in recent years wide-bore chromatography has
been proposed and succesfully applied for

resolving small molecules or for the determination

of particle size in the nanometer regime [5-7]. By
definition, wide-bore chromatography operates
and microchannels

with columns possessing

relatively small ratio
«x=L/R<300 , and for very high Peclet number

(which is the ratio of the characteristic time scales

length-to-radius aspect

for diffusion and advection). This is exactly the

range of operations for which Taylor-Aris
dispersion theory does not apply [8].

In point of fact, a theory for transport and
dispersion in wide-bore chromatography is still
lacking, and the working region of this analytical
technique falls in the no-man's land of dispersion
diagrams, where no theoretical results are
available. As a consequence the design of these
devices rests upon case-by-case numerical studies
(see e.g. figure 20.5.2 of a classical reference on
transport phenomena [9] based on a classical work
on dispersion [10]).

The aim of this article is to address the
transition from Taylor-Aris to this new regime,
referred to as convection dominated regime, and to

explore its applications, especially those
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Figure 1:Normalized outlet chromatogram
bout(t) vs t in a circular cross-section
Poiseuille channel at «=100 for different
Peclet values. The arrow indicates increasing
of  Peclet Pe=10" , 5x10*
2x10° | 5x10°

y )

values
10°

>

concerning chromatographic velocimetry analysis
of slip boundary velocity in microchannels.

2. From Taylor-Aris to convection-

dominated regime

Consider a cylindrical microcapillary of circular
cross-section and finite length [ and radius R
in which a Poiseuille flow v_(r) is driven by a
pressure drop imposed at the ends of the capillary.
The evolution of the concentration of a solute
injected into the column is described by the
advection-diffusion equation. If the inlet is radially
symmetric, the advection-diffusion equation in
dimensionless form simplifies as
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where ¢(7,C,p) is the dimensionless solute
concentration that depends on the radial coordinate

p=r/R , on the axial coordinate C=gz/L ,
and on the dimensionless time 7 which is the
physical

V?‘L’f
in such a way that the dimensionless velocity

rescaled with respect to L/ Vi >

is the characteristic axial velocity, defined
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u(p)=v_(Rp)l V., Dpossesses unit average. Two
dimensionless parameters enter eq. (1), namely the
Peclet number Pe=V L/D , where D is
solute diffusivity, and the channel aspect ratio
x=L/R . The initial and boundary conditions
for the evolution of the solute concentration are
$l,_y=0 , ¢|._,=5(r) , that corresponds to
an impulsive loading at the inlet section ( §(¢) is

the Dirac's delta function), 8¢/6p|p:0~120 ,

and 0¢/0CT|._ =0 | expressing the Danckwerts’

the
respectively. The normalized Poiseuille velocity

u(p)=2(1-p")
As in hydrodynamic chromatography, all the

boundary condition at outlet section,

profile is thus
information about solute transport and dispersion

within the microchannel can be obtained from the
analysis of the average outlet concentration

1
¢, =2 pt.c=1p)pdp ()
and of its moments m'" defined as
m(n’;)t:f() tn(br)Ltl(t)dt (3)

the
chromatogram for «=100 at increasing values

Figure 1 shows shape of the outlet
of the Peclet number. These simulations have been
obtained by applying both a finite volume and a
finite element code. At Pe=10" , one recovers
the classical, almost Gaussian-shaped profile,
possessing a mode located close to dimensionless
=1
chromatogram in the Taylor-Aris regime. As Pe

flow residence time, i.e. . This is the typical

increases further, the modal abscissa 7 (i.e.

mode
the peak location) of the chromatogram shifts
progressively towards the minimum residence time

r . =1/2

min

and attains a highly asymmetric
shape. This qualitative change in the shape of the
outlet chromatograms is the fingerprint of a
transition in the transport regime occurring within
the cylindrical capillary, which can be further
quantified by considering the first moment and the

outlet variance .
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Figure 2(A): m(ol:, vs Pe, . Symbols O
and @ refer to «=20 and «=100 ,
respectively. Line (a) represents scaling

m'"'~Alog(Pe ) with A=0.162

Figure 2 panels (A) and (B) depict the behaviour of

mY and oF =m?—m1?

out a—mo—m " asa function of the
effective Peclet number Peeﬁ
Pe
Pe == 4)
x

which corresponds to the prefactor weighting the
contribution of the transverse diffusion in the
balance eq. (1).

. . 2
Consider the variance O For

Pe SPe:ﬂZS , dispersion can be described by

€

mean of the Taylor-Aris theory, and the outlet

variance can be expressed as

2r
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where I',, is the Taylor-Aris coefficient, that in
cylindrical capillaries equals I',,=1/48 . Lines
(a) in figure 2(B) corresponds to the Taylor-Aris
variance eq. (5). For Pee_ff>Pe:ﬁ , Taylor-Aris
predictions fail and a new transport regime sets in

in which dispersion phenomena are completely
controlled by axial convection. The properties of
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Figure 2(B): Uiu, Vs
and @

Pe,. . Symbols
x=20 and «=100 ,

respectively. Line (a) represents the Taylor-

O

refer to

Aris prediction eq. (5), line (b) is the scaling

2 1/3
o~ ~Pe

out

the convection dominated regime are addressed in
the next paragraph.

A further result that emerges from the data of
figure 2(A)-(B) is that for Pe,> Pe:ﬁ the
contribution of axial dispersion is completely
negligible. This means that, in the analysis of
regime, the term
1/Ped*$p/dC* ineq. (1) can be dropped out.

convection dominated

3. Properties of  convection-
dominated regime

In the Taylor-Aris regime, the nonuniform
character of velocity profile contributes to

dispersion (second term at the rhs of eq. (5)). This
convection-enhanced dispersion is homogeneous in
the meaning that each fluid particle explores all the
cross section. As a consequence, the resulting
concentration profiles in the Taylor-Aris regime
approach a Gaussian shape, and the Taylor
contribution (second term at the rhs of eq. (5)) is a
kind of average of the interplay between axial
convection and transverse diffusion over all the
channel cross section.

Conversely, convection-enhanced dispersion,

occurring for higher Peclet numbers, is a localized



phenomenon. In this regime, solute particles do not
visit the entire cross section while moving
downstream. This phenomenon is depicted in
figure 3 (A)-(C), that shows some solute
trajectories, obtained by solving the Langevin
equations in a 2d channel flow. In figure 3,
0<n<l is the
coordinate, while 0<r<1 is the normalized

normalized transverse
axial coordinate.
Two implications can be derived from the
above observation:
-1
e=Pe —0
e for off ,
chromatogram approaches the kinematic

the outlet

residence time, that can be obtained by
analyzing the statistics of the time of flight

t=1/u(p) , with respect to a uniform
initial location of solute particles at the

inlet section;

(A)

(B)
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Figure 3: Trajectories of biased Brownian

particles within finite length 2d column at
«=100 . (A) Pe‘)ff:O.S .(B) PeEﬁ,ZIO ,

(C) Pey,=10 (line a) and Pe,=10" (line
b) starting from n=0 .
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e the scaling properties of convection-
dominated dispersion are controlled by the
dispersion boundary layer, localized close
to the velocity stagnation points.

To simplify the analysis consider the case of a
2d Poiseuille flow. Neglecting axial diffusion, the
balance equation for nondimensional solute
concentration reads

2
0P ()2t a—ds (6)
ot ocC Peeﬁ.an

where u(n)=6n(1—n) for a Poiseuille flow.
The local

introduced,

moments m'""(Z,n) can  be

m"(C)=[ b C)d ()

1
so that mi)’jlizfo m" (¢=1,n)dn

Figure 4 depicts the structure of the dispersion
boundary layers in the case of the 2d Poiseuille
flow. From the localization properties of the
dispersion boundary layers it is possible to derive a
scaling theory for convection dominated dispersion
[11]. Beyond the technical details, essentially the
theory predicts in a cylindrical Poiseuille flow that:

e the

logarithmically with the effective Peclet

first-order = moment  diverges

number
(n _
m, Alog Peeff (8)

where A 1is a constant.

. 2
e the outlet variance 0, scales as
2 1/3
Uout Peeff (9)

These results are confirmed in the numerical
simulations depicted in figure 2 (A)-(B).

Let us briefly discuss the shape of the outlet
chromatogram ¢ (f) depicted in figure 5. Up

to r<t the outlet chromatograms follows the

kinematic limit ¢ (t) which corresponds to the

out

probability density function for the time of flight of
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Figure 4:Representation of the dispersion
boundary layers for the first (line a) and the
second order (line b) moments in a 2d

Poiseuille channel at  Pe,,= 10°

solute particle in the absence of diffusion

. 0 t<1/2
kin ¢ :{ (10)
o) 1/(2t%) t>1/2

The value of ¢

max

can be predicted from scaling

analysis and equals

Pel/3
_ eff
tmax(Peeﬁ‘)_222/3 (11)
For t>t , the behaviour of ¢ ~ can be

max out

approximated by a Gaussian, centered at f

max
2/3

with a terminal variance proportional to Pe’ -

4. Identification of slip effects and

chromatographic velocimetry

Since the convection-dominated regime is strongly
sensitive to the shape of the axial velocity field,
transport experiments in finite-length channels for
high Pe . (which

implies the use of
nanoparticles) can be used to infer properties of the
velocity field from the analysis of outlet
chromatograms. A first application is the
possibility of detecting the occurrence of a slip
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Figure 5:Behaviour of $,,(t) vs t for a

3d Poiseuille flow in a cylindrical channel.

Symbols O correspond to points at
coordinates (T,,mx(Peeﬂ.),¢:::(I,W(P€eﬂ)))

Dashed lines (a-d) depict the outlet
chromatograms at Peef]-zlol . 2x10'
5x10" |, 10® | respectively. Solid line (e)
represents the kinematic limit

" (1)=1/(2t%)

out

velocity at the microchannels walls. For a slip
Poiseuille flow, the normalized velocity field is
given by

[1+y—p?] (12)

u(p)=
1+2y

where y =27 /R is the normalized slip length
(the physical slip length is €, ). A qualitative

transition occurs in the behaviour of the outlet

variance for slip and no-slip flows.

2
out

For a no-slip flow, © diverges to infinity

as Pe, increases, while in the presence of slip

saturates towards a constant value that

out

depends on the slip length (see figure 6), which
can be predicted from the kinematic limit

d)kin (f)

out

lim (rzmzfo (t—m(k'ii) " (1)dr (13)

Pe —o o out
eff
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Figure 6: Uim vs Pe, . Symbols O refer
to x=20 , ® to x=100 in the presence
of no slip-velocity profile. Symbols O and

W refer to «=100 and y=0.02 and

y=0.1 |, respectively. Line (a) is the Taylor-
Aris scaling Uz(Peeﬁ->:2PCeﬂ-/48 , line (b) is
the scaling Uz(Peeﬂ.)Npele;; . Lines (c) and
(d) show the saturation values predicted by
kinematic limit.

() _
kin

fo 1™ (¢)dt . This provides a fully

transport-based approach to predict the occurrence

being m
of slip flow in microchannels. A second
application, strongly related to the first, is the
possibility of using wide-bore chromatography for
high  values of Pe, to obtain  more
comprehensive information on the velocity profile
within a channel. This technique, that can be
referred to as chromatographic velocimetry, is
briefly outlined in this section.

Consider first the kinematic residence time
distribution ¢ (¢) , and let p,(u) be the
probability density function for the velocity:

p,(u)du is the fraction of fluid particle having
velocity in the interval (u,u+du) . From the
relation between the kinematic residence time ¢
and the velocity u , t=1/u , and from an
elementary probability balance it follows that

p (w)=¢" ()] _ (14)

u out
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Figure 7:Probability density function p,(u) vs
u for the velocity. Dots are the results of the
analysis of the outlet chromatogram for
Pe = 10° | x=10* , the solid horizontal line

represents the exact result pu(u)z 1/2

In the case of the no-slip Poiseuille flow in a
cylindrical capillary of circular cross-section, eq.
(14) reduces to

pu(u):{ll2 O<u<? (15)

0  otherwise

Eq. (14) can be generalized to the analysis of
chromatographic experiments. Indeed, in the time

interval 1, <t<t  (Pe,) ., which corresponds
to the velocity interval l;ﬂix@ e eﬁ)< u< t;;dg , the
probability  density function p (#) can be
estimated (approximately) from the outlet

concentration profile ¢, (1) as

pu(u):¢ot¢t(t>t2|t:1/u (16)

Figure 7 shows the application of eq. (16) for
1”€£,ff:102 , compared with the analytical result
Eq. (15). The velocimetric analysis can be further
generalized in the case the axial velocity is a
monotonic function of the radial abscissa. Under
this hypothesis, it is possible to estimate the
velocity profile u(p) froma chromatographic



1.5 ¢

u(p)

05 ¢

0

0 02 04 06 08 1
P
Figure 8:Velocity profile u(p) vs p (symbols
O ) estimated from the outlet chromatogram at
PeeﬁZIOG . =107 . The solid line is the

Poiseuille profile u(p)=2(1—p?)

experiments. To show this, let u=f(p) be the
monotonic velocity profile, and let

p=f "(u) (17)

be its inverse function. From a probability balance
in a cylindrical capillary with circular cross-
section, one obtains

[ipwdu=2f" pdp=1-[f"w] 08

and therefore

p’=1—[ p,w)du'=1=f ¢ (t")dt' (19)
This result can be extended to the analysis of
chromatographic data, namely

p=[1=[7 0, a0

which applies in the interval

—1 —1 .
tmax(Peeﬂ)< u<t . and represents the equation

for  extracting  velocimetry  data  from
chromatographic experiments. Figure 8 depicts the

application of eq. (20) for ~ Pe ,=10°
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5. Concluding Remark

Whenever finite length microchannels are
considered o~10+300 , transport of slowly
diffusing solute particles is characterized by a new
regime (referred to as convection-dominated
regime) which is completely different from Taylor-
Aris dispersion. We have shown numerical results
for 2d straight, and 3d cylindrical channels for
a
of the cross section it is possible to obtain in the

which o ZWNPe . By changing the geometry
Stokes regime other scaling behaviours. For
instance, in microchannels

2 1/2
o ~Pe

out

rectangular

The  phenomenology  associated  with
convection-dominated dispersion depends heavily
on the structure of boundary layers that become
localized close to the stagnation points of the
velocity field.
We have

chromatography can be used for assessing the

shown that wide-bore
occurrence of slip flows in microchannels and for
deriving information on the velocity profile
starting from the behaviour of the outlet
chromatogram.
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