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Abstract This work investigates the frictional and heat transfer behaviour of laminar, fully-developed flow
in microchannels with trapezoidal and rectangular cross-section and rounded corners under H1 boundary
conditions. The equations of momentum and energy are solved numerically, and the results validated with
analytical data, when available. The runs have been carried out for different aspect ratios and
nondimensional radii of curvature R, with either all sides or three sides heated, one short side adiabatic for
rectangular geometries and three sides heated, the longest one adiabatic for trapezoidal geometries. The
Poiseuille and Nusselt numbers are reported and show, for the rectangular cross-section heated on all sides, a
maximum increase for the highest value of the aspect ratio (f=1) with increments in the Poiseuille and
Nusselt numbers of about 11% and 16% respectively for values of R, of 0.5, increasing as the geometry
approaches the circular duct (12.5% and 21%). The increase is less pronounced as [3 decreases and also when
only three sides are heated (maximum increase of Nu around 10%); in the case of the trapezoidal geometry

the effects of rounding the corners are almost negligible (a maximum increase in Nu of around 2%).
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1. Introduction

Microsystems have enjoyed an ever-increasing
development in the past two decades, which
has spurred research aimed at understanding
the basic phenomena that govern heat transfer
and fluid flow in microchannels, which
represent the building block of all micro-flow
devices (MFDs). The knowledge gained so far
has been summarized in several review works,
e.g. a general survey of experimental results
for convective flows in microchannels by
Morini, 2004, or a recent one on liquid flows
in microchannels by Collins et al., 2008. In
spite of intensive research and several
publications on the subject, some aspects
remain uninvestigated, among which is the
case of microchannels with rounded corners.
In the last years an effort has been made in
order to use standard semiconductor processes
for the realization of different kinds of
unconventional (channels of various shapes,
sharp convex and rounded concave corner
structures, etc) silicon structures for MEMS-
based devices as highlighted recently by Pal

and Sato, 2009. In micro-flow devices in
which convective heat transfer occurs the
analysis of the role of channel shape on the
operative performance of the devices can give
important feedback even on the optimization
of the micro-fabrication process. For example,
smoothing of corners and edges may result
from fabrication procedures, a low degree of
undercutting (i.e. high radii of curvature) are
regarded unfavorably from the mechanical
point of view, but they can have enhancing
effects in terms of heat transfer, as shall be
demonstrated in the following, with an
increase in the frictional characteristics less
pronounced: this makes rounding an
interesting option, if no mechanical constraints
bar it. This work aims at determining the
frictional and heat transfer characteristics of
laminar, fully-developed flows under H1
boundary conditions in microchannels of
rectangular and  trapezoidal  potassium
hydroxide(KOH)-etched cross-section with
rounded corners for different values of the
aspect ratio and of the radius of curvature.
Results are presented in non-dimensional form



and compared to those available in the
literature for the cases available (Shah and
London, 1978, Morini and Spiga, 2007), and
correlations are given expressing the values of
the Poiseuille and Nusselt numbers as a
function of the nondimensional radius of
curvature.

2. Geometries investigated

The base geometries to be tested are those
referring to microchannels of rectangular and

trapezoidal KOH-etched cross-section, as
depicted in Fig. 1.
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Figure 1 — Rectangular and trapezoidal cross-sections.

Starting from these configurations, progressive
rounding of the corners is introduced through
the increase of radius of curvature, R.. (Rc=0
corresponding to sharp corners) In the former
case, the aspect ratio is defined as
_2a 1
T (1)
thus, B<1, and the radius of curvature is
bounded by half the length of the shorter side
(in order to avoid sharp junctions with the
straight sides), R.<a, which also implies

. Re
Ri=1"<B @)
The maximum achievable radius of curvature,
in the case of a square duct (B=1), thus yields a
circular cross-section. The characteristic
dimension for the geometries investigated is
the hydraulic diameter, which, for the
rectangular cross-section with sharp corners
has the following expression:
2
Dy = 2a 1+p) 3)
and is modified suitably in the case of rounded
sections using the definition of Dy as 4A/P,
where A is the cross-sectional areca and P the
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corresponding wetted perimeter.

In the case of trapezoidal microchannels,
which are normally obtained through chemical
etching of <110> silicon wafers, the
expression for the hydraulic diameter is
slightly more involved. If ¢ is the angle

between sides a and b of Fig. 1, one gets
B

tang

148 (o + —
tang  sin@

for the case of sharp corners, which is again
modified when R#0 using the definition of
hydraulic diameter.
In the case of trapezoidal cross-sections, [ is
defined as (Morini and Spiga, 2007):

C

B=¢ 5)
It is to be remarked that, with this definition,
there is no upper bound to the value of 3, as
goes to infinity the cross-section degenerates
into a triangle.

Side a is the one from which etching starts,
and can be sealed with a different, insulating
material: a realization of a microchannel heat
sink under the aforementioned conditions is
shown in Fig. 2.

@
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Figure 2 — Heat sink with trapezoidal microchannels.

As a consequence of the manufacturing
process, it is the bottom side, b, whose corners
can be smoothed with a given radius of
curvature, R.. In the simulations the radius of
curvature has been constrained by the
dimensions of ¢ and b, in order to avoid cusps
at the connections with the sides. It is
expedient to define a non dimensional
parameter, y, such that



Y=—" (6)
when ¢<0.5b (smooth connection between
rounded corner and slanted side), and

2R,

Y= (7)
when ¢>0.5b (to avoid the two rounded
corners to intersect and crate a cusp at
midpoint of side b). The advantage of this
definition of y is that in both cases:

0<y<1 8)

2. Mathematical model

Let us consider the silicon microchannel heat
sink shown in Fig. 2; the microchannels
obtained by chemical etching on the silicon
wafer are in general closed by a Pyrex glass
cover bonded to the substrate or by means of a
silicon wafer. A liquid flows through the
channels; due to the small size of the
microchannels the flow is typically laminar.
The microchannels have an axially unchanging
cross-section with area equal to Q and a
wetted perimeter equal to I'. A Cartesian
system of coordinates &, n, C is assumed, with
its origin in the left bottom corner of the inlet
cross-section.

If a fixed linear power quwan is imposed on the
top of the silicon substrate while all the other
outer walls of the unit cell are adiabatic, it may
be reasonably assumed that the channels can
be studied as long ducts subject to HI
boundary conditions, either with all sides
heated or one side adiabatic (Morini and Spiga
2007); this analysis is far less cost-intensive in
terms of computational time as compared to a
full 3-D conjugate study without losing in
detail. Some simplifying assumptions can be
made before using the conventional Navier-
Stokes and energy equations to compute the
velocity and temperature distribution. The
major assumptions for this work can be
summarized as follows:

1. The fluid is Newtonian, incompressible, and
with a laminar fully developed profile of
velocity u(§m) and a uniform inlet
temperature 0;,.

2. The transport processes are considered to be
steady-state and bi-dimensional (through the
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microchannel the velocity and the temperature
profiles are considered as fully developed).

3. All the channel walls are rigid and
nonporous.

4. Thermal radiation is neglected.

5. Axial thermal conduction (Pe>>1), natural
convection (Gr/Re’<<l), and interior heat
sources are neglected.

6. Solid and fluid thermophysical properties
are assumed to be constant with temperature.
7. The influence of viscous dissipation can be
neglected.

Under the aforementioned hypotheses the
conservation equations for momentum and
energy take the form:

14
vzuzad—‘g ©)
vzez—u(z’”)g—? (10)

With p and o the fluid dynamic viscosity and
thermal diffusivity and p the pressure. The
axial variation of the fluid temperature along
the channel can be deduced from an energy
balance
6_8:%: Qwall (11)
a7 d7  pc,WQ
where 0, is the fluid bulk temperature, p its
density, qwan the heat flux at the heated walls
and W the bulk fluid velocity.
Introducing the non-dimensional quantities:

D, D,*
¢ ._Dn'dp . A(0-0n)

u
Vxy)=—z=—p="r-—7
( Y) U Dh P UW d( Qwall

Equations (1) and (2) can be rearranged to
read:

V2y=-p" (12)
. V(x,
V?2T= (Q*Y) (13)

While boundary conditions for the cases
investigated become

\Y —OaT =0T =0 (14
I+ = dy ry, = -+, = 0(14)

The first equality expresses the no-slip



condition for velocity, whereas the second and
third represent the adiabatic condition at the
unheated perimeter (F*u) and the imposed
temperature at the heated length; depending on
the cases investigated the unheated perimeter’s
length may be zero.

From the solutions of (9) and (10), which yield
the velocity and temperature fields, the
Poiseuille and local Nusselt numbers can be
obtained. For the former

f v-(V'V)dQ' (15)
o

Po=fRe=——
o=fRe=—7

where f is the Fanning friction factor and Re
the Reynolds number. For the latter

1 *
Nu;=- T_b(nv leall) (16)

with n the unity vector normal to the wall and
T, the nondimensional bulk temperature,
defined as:

1 *
=g | venTeman @)

Integration of (16) yields the average Nusselt
number, Nu, for the cross-section.

For the rectangular geometry, the cases studied
are those of Hl boundary conditions, with
either all sides heated or one short side
adiabatic, the latter being the case for
microchannels covered by an adiabatic sealing
lid. In the former configuration, all corners are
rounded, whereas in the latter only the corners
of the heated short side are modified.

For the trapezoidal cross-section, the only case
studied was that with three sides heated
uniformly with imposed temperature and the
longest side adiabatic. Again, only the corners
of the shorter side were rounded.

The solutions have been computed through a
code written with the commercial solver
FlexPDE 5.0.19 using a normal desktop PC.
This package solves systems of partial
differential equations through a Rayleigh-Ritz-
Galerkin finite element method. The numerical
procedure evolves through an iterative
refinement of the grid until the prescribed
accuracy, related to the maximum local
residual value, Ry, is reached.

The iterative procedure is stopped when the
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velocity field V and the temperature field T
satisfy the inequality
max (Ry (V,N),R; (T,N))<e VKe[1,N] (18)

In order to obtain satisfactory accuracy while
keeping computational time to a minimum, the
average Nusselt numbers obtained by
computation, Nugy, have been compared to
those available for reference cases, Nugy,. Table
I reports the results for a square microchannel
under H1 boundary conditions and all sides
heated. The same procedure has been followed

for the friction factor.
Table I — Values of Nu as a function of &

€ NUca Nuin ANU,,
10" 3.619591 3.60795 0.322
10 3.619583 3.60795 0.322
10° 3.619594 3.60795 0.322
10 3.61399 3.60795 0.167
10° 3.611078 3.60795 0.086
10° 3.608405 3.60795 0.012
107 3.608042 3.60795 0.002

As a satisfactory compromise, the value of
e=10° has been chosen. For the case of
trapezoidal microchannels, the results for
sharp corners and different values of § were
compared to those available in the literature
(Shah and London, 1978, Morini and Spiga,
2007)‘,‘ with discrepancies at most of the order
of 10™.

2. Results and discussion

Simulations were run holding the aspect ratio
fixed and varying the radius of curvature. As
the non-dimensional form of the latter
parameter is bounded by the value of Bory,
the number of cases investigated varies with
the aspect ratio. The runs yield numerical
outputs and graphical plots of the quantities of
interest (velocity and temperature fields) and
of the ones which can be derived, e.g. the local
Nusselt number. The results for the latter are
also depicted for the same case in Fig. 3.

The variation of Nu along the length of the
perimeter can readily be appreciated, as well
as its symmetric distribution

As a first step, cases analogous to those
present in the literature have been computed



for comparison purposes.
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Figure 3 — Nusselt numPer distribution for 3=0.5,
R, =0.5

Figure 4 shows the calculated results for the
Poiseuille (circles) and Nusselt (squares)
numbers and compares them to the
correlations given by Ray, Misra and Laha,
2002 for the case of a square cross-section
(B=1), as the nondimensional radius of
curvature varies, namely

5
Po=fRe=14.226 1+ZBkR*;k (19)
k=1
and

5
Nu=3.608 1+ZAkR’§< (20)
k=1

whose coefficients are reported in Table II.

Table II Coefficients for Eq. (19) and (20)

Index i A B;

1 0.4316 0.4258

2 -0.5549 -0.00903
3 0.2067 -0.7139
4 0.1451 0.7976

5 -0.1040 -0.2909

As can be seen the agreement is excellent, and
the limiting values of Po and Nu for the cases
of square and circular duct (the result for B=1
and RC*ZI).

Some further data available in literature (Shah
and London, 1978) for stadium-shaped ducts
of nondimensional radius of curvature equal to
the channel’s aspect ratio and H1 boundary
conditions were also compared with the
corresponding calculations and the agreement
was more than satisfactory. For the case of
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three heated sides, the comparison was made
with the results of Morini, 2007, for
rectangular and trapezoidal ducts with sharp
corners, with and without viscous dissipation.
The agreement with data wused for reference
was complete.

Hussek mumsber
* Potsese sumber

By (20)

ol o [ [T 0 [ or [ [
R

Figure 4 — Poiseuille and Nusselt numbers for f=1 as a
function of R, and comparison with Egs. (19), (20).

2.1 Rectangular cross-section, four sides
heated

Five different aspect ratios were investigated:
p=1, p=0.50, p=0.25, p=0.10, p=0.03 for
different values of R, .

The Poiseuille number and average Nusselt
number were calculated, and equations relating
them to the nondimensional radius of
curvature were obtained. The results for Po
and Nu are shown in Tables III to VII.

Table III — Values of Po and Nu for =1
R, Po Nu
0.0 14.226 3.609
0.1 14.765 3.759
0.2 15.167 3.898
0.3 15.452 4.017
0.4 15.646 4.115
0.5 15.775 4.193
0.6 15.858 4253
0.7 15.914 4.298
0.8 15.954 4332
0.9 15.985 4.355
1.0 15.999 4.366

Table IV — Values of Po and Nu for [3=0.50
R Po Nu

0.00 15.548 4.124
0.05 15.952 4.239
0.10 16.278 4.348
0.20 16.725 4.530
0.30 16.964 4.654
0.40 17.055 4714
0.50 17.027 4,709
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Table V — Values of Po and Nu for (=0.25 transfer and frictional resistance.
R Po Nu Table VIII- Values of coefficients for Eq. (21)
0 18.232 5331 B |G C, Gy Co
0.03 18.572 5.438 0.50 | 9.3319 16.303 8.7752 15.5506
0.05 18.759 5.505 0.25 | 35.2394 B9.2648 12.3279 18.2346
0.10 19.108 5.649 0.10 | 263.986 [120.85 | 162793 | 21.1691
0.15 19.317 5.749 0.03 |0 -307.5 17.415 23.0591
0.20 19.415 5.800
0.25 19.412 5.795 Table IX — Values of coefficients for Eq. (22)
B D3 D, D, Dy
Table VI — Values of Po and Nu for  $=0.10 050 | -12969 |1.9492 |2.4705 | 4.1225
R, Po Nu 0.25 | -11.342 }4.8322 3.774 5.3303
0.00 51163 Ty 0.10 | -72.067 }19.178 | 54948 | 6.7868
0.01 21321 6.840 0.03 |0 1125 | 6.945 7.7509
0.02 21.450 6.888
0.03 21.556 6.932 It is to be noticed that both parameters increase
0.04 21.643 6.971 with aspect ratio, but the enhancement due to
0.05 21.713 7.006 rounded corners is less and less pronounced as
0.06 21.767 7.032 .. .
0.07 21.807 7053 B decreases. The case giving the highest
0.08 21.834 7.066 increases is that of =1; it is evident from both
0.09 21.850 7.073 the values in Table III as well as the graphical
0.10 21.851 7.073 representation of Fig. 4 that the rate of
increase in Nu is higher at low values of R,
Table VII — Values of Po and Nu for B=0.03 and is comparatively small for R.>0.5. The
R. Po Nu maximum increase of Nu and Po are 21% and
O(()) 1 ;gggg ;;g; 12% respectively . for pB=1, R. =1
0.02 23981 7 845 (corresponding to a cucular*duct) and drops to
0.03 23.306 7.858 9% and 6% for =0.25, R, =0.25; this is also

For each aspect ratio, correlations were given
that fit the Nusselt and Poiseuille numbers as
functions of the nondimensional radius of
curvature. The correlations have the form

4
Po= Z CRX (21)
k=0

and

3
Nu= z DR (22)
k=0

with the corresponding coefficients reported in
Table VIII and IX. As can be clearly seen from
the tabular results, the Nusselt number
increases with the value of the nondimensional
radius of curvature, as does the Poiseuille
number. This is easily explained if one
considers that at the corners the fluid stagnates
when they are sharp, and thus the frictional
resistance drops, while convective heat
transfer is modest, whereas smoothing the
corners increases the local flow velocity and
engenders an increase in convective heat

readily explained considering that as the aspect
ratio decreases the role of the rounded corners
loses in influence on the global behaviour of
the channel.

2.2 Rectangular cross-section, three sides
heated

When only three sides are heated (the fourth
being adiabatic, 3L,S), the temperature profile
modifies as in Fig. 5.

Figure 5 — Temperature profile, case =1, 3L,S

Runs were carried out for the same values of 3
as before and the results are reported in Table
X to XIV. Again, the rounding of the corners



brings an increase in both Nusselt and
Poiseuille numbers, but it is far more moderate
that for the case of four sides heated, and
ranges from 10% and 5% respectively at =1
to less than 1% for f=0.03.

Table X — Values of Po and Nu for =1, 3L,S
R, Po Nu
0.0 14.223 3.572
0.1 14.489 3.657
0.2 14.682 3.735
0.3 14.811 3.802
0.4 14.895 3.857
0.5 14.946 3.898
0.6 14.976 3.926
0.7 14.996 3.943
0.8 15.010 3.950
0.9 15.023 3.949
1.0 15.036 3.938

Table XI — Values of Po and Nu for [3=0.5 3L,S
R. Po Nu

0.00 15.548 4.539
0.05 15.748 4.609
0.10 15.905 4.674
0.20 16.113 4.781
0.30 16.216 4.851
0.40 16.247 4.884
0.50 16.223 4.876

Table XII — Values of Po and Nu for p=0.25 3L,S
R. Po Nu
0.0 18.232 5.760

0.05 18.492 5.860
0.10 18.660 5.939
0.15 18.756 5.995
0.20 18.798 6.023
0.25 18.791 6.022

Table XIII — Values of Po and Nu for [=0.1 3L,S
R, Po Nu

0.00 21.168 7.048
0.01 21.244 7.075
0.02 21.308 7.101
0.03 21.360 7.124
0.04 21.403 7.145
0.05 21.436 7.163
0.06 21.463 7.177
0.07 21.482 7.187
0.08 21.494 7.195
0.09 21.501 7.198
0.10 21.501 7.198

The coefficients to be introduced in Eq. (21)
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and (22) are reported in Tables XV and XVI.

Table XIV — Values of Po and Nu for =0.03 3L,S

R, Po Nu
0 23.058 7.845
0.01 23.132 7.876
0.02 23.169 7.894
0.03 23.181 7.900

Table XV— Values of coefficients for Eq. (21), 3L,S

B | C, Cs C, C. |G
1.00 |-0.9237 |3.5142 |-4.9225 | 3.146 | 14222
0.50 |-5.4108 | 10.670 | 10.273 | 4.496 | 15.548
0.25 19.926 | -20.608 |6.143 | 18.2325
0.10 137.918 | -61.515 |8.104 | 21.1686
0.03 ~155.00 | 8.710 | 23.0586

Table XVI- Values of coefficients for Eq. (22), 3L,S

B D, D, D, Do

1.00 0.05614 -0.6548 0.96583 3.5697
0.50 | -0.63204 -1.334 1.4999 4.5383
0.25 -4.0741 -3.5365 2.1865 5.76
0.10 -39.4328 -9.9592 2.8909 7.0476
0.03 - -62.50 3.705 7.845

2.3 Trapezoidal cross-section, three sides
heated

For the trapezoidal cross-section, the only case
investigated was that of three sides heated. The
aspect ratio has no wupper limit (B=c
corresponds to a triangular shape), and thus
simulations have been run for 20 different
values of . An example of temperature
profile in the cross-section is shown in Fig. 6.
For the trapezoidal cross-section, the
parameter y, defined in section 2, substitutes
the nondimensional radius of curvature.

Figure 6 — Temperature profile, case B=1, 3L,S

For this kind of geometry, where only the
corners on the shortest side are rounded, there
is very little increase in the values of the
Poiseuille and Nusselt numbers.



This is readily explained considering the
geometries in Fig. 7: for values of B below
unity, the sides where heat transfer takes place
are mainly the two bases, and the smoothing of
the corners only affects a negligibly small
length compared to the heated perimeter,
whereas when B becomes greater than unity,
the geometry tends toward a triangular shape,
where the rounding of only one vertex again
little influences the heat transfer and frictional
characteristics of the duct.

: T ——\,
- p=03 ' =01 p=005
Figure 7 — Aspect ratios for trapezoidal cross-sections.

o T

The maximum increase should then be thought
to take place around =1, which is in fact
confirmed by the data reported in Table XVII.
The maximum increase occurs for the upper
middle values of y (0.7-0.8), but is very
moderate (2.4 % and 1.5% for the Nusselt and
Poiseuile numbers respectively), so under the
aforementioned conditions the results for sharp
edges (Morini and Spiga, 2007) can still be
used. For the same reason, no polynomial
correlation in the form of Eq. (21), (22) are
given for the trapezoidal geometry.

Table XVII- Values of Po and Nu for B=1

Y Po Nu
0.00 14.063 2.884
0.10 14.125 2.904
0.20 14.162 2.920
0.30 14.188 2.932
0.40 14.208 2.940
0.50 14.225 2.946
0.60 14.244 2.950
0.70 14.266 2.952
0.80 14.293 2.952
0.90 14.325 2.951
0.95 14.342 2.951

1.0 14.110 2.852

As a last remark, it is to be noticed that the
values of Nu and Po drop although the
absolute value of the decrease is moderate. A
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possible explanation for this is the
disappearance of the straight portion of the
shortest side.

3. Conclusions

Fully-developed laminar flow in
microchannels under H1 boundary conditions
has been investigated for rectangular and
trapezoidal  cross-sections with  rounded
corners, when all or three sides heated. The
Poiseuille and Nusselt numbers have been
calculated and correlations given to link them
to the nondimensional radius of curvature.
Smoothing of the corners invariably results in
an improvement, which is more marked for the
rectangular sections, with a maximum for p=1
when all sides are heated. The enhancement
decreases with the aspect ratio, and also for the
case when only three sides are heated. For the
trapezoidal  cross  sections, = maximum
enhancement is at about =1, but is around 2%
at best, so edges can be treated as sharp.
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