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Abstract This work investigates the frictional and heat transfer behaviour of laminar, fully-developed flow 
in microchannels with trapezoidal and rectangular cross-section and rounded corners under H1 boundary 
conditions. The equations of momentum and energy are solved numerically, and the results validated with 
analytical data, when available. The runs have been carried out for different aspect ratios and 
nondimensional radii of curvature Rc, with either all sides or three sides heated, one short side adiabatic for 
rectangular geometries and three sides heated, the longest one adiabatic for trapezoidal geometries. The 
Poiseuille and Nusselt numbers are reported and show, for the rectangular cross-section heated on all sides, a 
maximum increase for the highest value of the aspect ratio (β=1) with increments in the Poiseuille and 
Nusselt numbers of about 11% and 16% respectively for values of Rc

* of 0.5, increasing as the geometry 
approaches the circular duct (12.5% and 21%). The increase is less pronounced as β decreases and also when 
only three sides are heated (maximum increase of Nu around 10%); in the case of the trapezoidal geometry 
the effects of rounding the corners are almost negligible (a maximum increase in Nu of around 2%). 
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1. Introduction 
 
Microsystems have enjoyed an ever-increasing 
development in the past two decades, which 
has spurred research aimed at understanding 
the basic phenomena that govern heat transfer 
and fluid flow in microchannels, which 
represent the building block of all micro-flow 
devices (MFDs). The knowledge gained so far 
has been summarized in several review works, 
e.g. a general survey of experimental results 
for convective flows in microchannels by 
Morini, 2004, or a recent one on liquid flows 
in microchannels by Collins et al., 2008. In 
spite of intensive research and several 
publications on the subject, some aspects 
remain uninvestigated, among which is the 
case of microchannels with rounded corners. 
In the last years an effort has been made in 
order to use standard semiconductor processes  
for the realization of different kinds of 
unconventional (channels of various shapes, 
sharp convex and rounded concave corner 
structures, etc) silicon structures for MEMS-
based devices as highlighted recently by Pal 

and Sato, 2009. In micro-flow devices in 
which convective heat transfer occurs the 
analysis of the role of channel shape on the 
operative performance of the devices can give 
important feedback even on the optimization 
of the micro-fabrication process. For example, 
smoothing of corners and edges may result 
from fabrication procedures, a low degree of 
undercutting (i.e. high radii of curvature) are 
regarded unfavorably from the mechanical 
point of view, but they can have enhancing 
effects in terms of heat transfer, as shall be 
demonstrated in the following, with an 
increase in the frictional characteristics less 
pronounced: this makes rounding an 
interesting option, if no mechanical constraints 
bar it. This work aims at determining the 
frictional and heat transfer characteristics of 
laminar, fully-developed flows under H1 
boundary conditions in microchannels of 
rectangular and trapezoidal potassium 
hydroxide(KOH)-etched cross-section with 
rounded corners for different values of the 
aspect ratio and of the radius of curvature. 
Results are presented in non-dimensional form 
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and compared to those available in the 
literature for the cases available (Shah and 
London, 1978, Morini and Spiga, 2007), and 
correlations are given expressing the values of 
the Poiseuille and Nusselt numbers as a 
function of the nondimensional radius of 
curvature. 
 
2. Geometries investigated 
 
The base geometries to be tested are those 
referring to microchannels of rectangular and 
trapezoidal KOH-etched cross-section, as 
depicted in Fig. 1. 

 
Figure 1 – Rectangular and trapezoidal cross-sections. 

 
Starting from these configurations, progressive 
rounding of the corners is introduced through 
the increase of radius of curvature, Rc. (Rc=0 
corresponding to sharp corners) In the former 
case, the aspect ratio is defined as  

β=
2a
2b
                           ሺ1ሻ 

thus, β≤1, and the radius of curvature is 
bounded by half the length of the shorter side 
(in order to avoid sharp junctions with the 
straight sides), Rc≤a, which also implies 
 

Rc*ൌ
Rc
b ൑β                   (2)  

The maximum achievable radius of curvature, 
in the case of a square duct (β=1), thus yields a 
circular cross-section. The characteristic 
dimension for the geometries investigated is 
the hydraulic diameter, which, for the 
rectangular cross-section with sharp corners 
has the following expression: 

D୦ ൌ 2a ·  
2

ሺ1൅βሻ                  ሺ3ሻ 

and is modified suitably in the case of rounded 
sections using the definition of Dh as 4A/P, 
where A is the cross-sectional area and P the 

corresponding wetted perimeter. 
In the case of trapezoidal microchannels, 
which are normally obtained through chemical 
etching of <110> silicon wafers, the 
expression for the hydraulic diameter is 
slightly more involved. If ϕ is the angle 
between sides a and b of Fig. 1, one gets 

Dhൌb·2β 
1൅ β

tanφ

1൅β ቀ 1
tanφ

൅ 1
sinφ

ቁ
       ሺ4ሻ 

for the case of sharp corners, which is again 
modified when Rc≠0 using the definition of 
hydraulic diameter. 
In the case of trapezoidal cross-sections, β is 
defined as (Morini and Spiga, 2007): 

βൌ
c
b                             ሺ5ሻ 

It is to be remarked that, with this definition, 
there is no upper bound to the value of β, as β 
goes to infinity the cross-section degenerates 
into a triangle. 
Side a is the one from which etching starts, 
and can be sealed with a different, insulating 
material: a realization of a microchannel heat 
sink under the aforementioned conditions is 
shown in Fig. 2.  

 
Figure 2 – Heat sink with trapezoidal microchannels. 

 
As a consequence of the manufacturing 
process, it is the bottom side, b, whose corners 
can be smoothed with a given radius of 
curvature, Rc. In the simulations the radius of 
curvature has been constrained by the 
dimensions of c and b, in order to avoid cusps 
at the connections with the sides. It is 
expedient to define a non dimensional 
parameter, γ, such that 

a c 

b
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γൌ
Rc
c                          ሺ6ሻ 

when c<0.5b (smooth connection between 
rounded corner and slanted side), and  

γൌ
2Rc
b                         ሺ7ሻ 

when c≥0.5b (to avoid the two rounded 
corners to intersect and crate a cusp at 
midpoint of side b). The advantage of  this 
definition of γ is that in both cases: 

0൑γ൑1                            ሺ8ሻ 
 
2. Mathematical model 
 
Let us consider the silicon microchannel heat 
sink shown in Fig. 2; the microchannels 
obtained by chemical etching on the silicon 
wafer are in general closed by a Pyrex glass 
cover bonded to the substrate or by means of a 
silicon wafer. A liquid flows through the 
channels; due to the small size of the 
microchannels the flow is typically laminar. 
The microchannels have an axially unchanging 
cross-section with area equal to Ω and a 
wetted perimeter equal to Γ. A Cartesian 
system of coordinates ξ, η, ζ is assumed, with 
its origin in the left bottom corner of the inlet 
cross-section. 
If a fixed linear power qwall is imposed on the 
top of the silicon substrate while all the other 
outer walls of the unit cell are adiabatic, it may 
be reasonably assumed that the channels can 
be studied as long ducts subject to H1 
boundary conditions, either with all sides 
heated or one side adiabatic (Morini and Spiga 
2007); this analysis is far less cost-intensive in 
terms of computational time as compared to a 
full 3-D conjugate study without losing in 
detail. Some simplifying assumptions can be 
made before using the conventional Navier-
Stokes and energy equations to compute the 
velocity and temperature distribution. The 
major assumptions for this work can be 
summarized as follows: 
1. The fluid is Newtonian, incompressible, and 
with a laminar fully developed profile of 
velocity u(ξ,η) and a uniform inlet 
temperature θin. 
2. The transport processes are considered to be 
steady-state and bi-dimensional (through the 

microchannel the velocity and the temperature 
profiles are considered as fully developed). 
3. All the channel walls are rigid and 
nonporous. 
4. Thermal radiation is neglected. 
5. Axial thermal conduction (Pe>>1), natural 
convection (Gr/Re2<<1), and interior heat 
sources are neglected. 
6. Solid and fluid thermophysical properties 
are assumed to be constant with temperature. 
7. The influence of viscous dissipation can be 
neglected. 
Under the aforementioned hypotheses the 
conservation equations for momentum and 
energy take the form: 

2uൌ׏
1
µ
dp
dζ                     ሺ9ሻ 

 

2Ԃൌ׏
uሺξ,ηሻ
α

∂Ԃ
∂ζ            ሺ10ሻ 

 
With μ and α the fluid dynamic viscosity and 
thermal diffusivity and p the pressure. The 
axial variation of the fluid temperature along 
the channel can be deduced from an energy 
balance 

∂Ԃ
∂ζ ൌ

∂Ԃb
∂ζ ൌ

qwall
ρcpWΩ

           ሺ11ሻ 

where θb is the fluid bulk temperature, ρ its 
density, qwall the heat flux at the heated walls 
and W the bulk fluid velocity. 
Introducing the non-dimensional quantities:  

xൌ
ξ
Dh

  yൌ
η
Dh

 zൌ
ζ
Dh

 Γ*ൌ
Γ
Dh

 Ω*ൌ
Ω
Dh2

  ׏ൌDh*׏

Vሺx,yሻൌ
u
W  zൌ

ζ
Dh

 p*ൌ
Dh2

µW
dp
dζ  Tൌ

λሺθ‐θinሻ
qwall

  

 
Equations (1) and (2) can be rearranged to 
read: 

 2Vൌ‐p*                    ሺ12ሻ*׏
 

2Tൌ*׏
Vሺx,yሻ
Ω*                ሺ13ሻ 

 
While boundary conditions for the cases 
investigated become 

V|୻כ ൌ 0 
∂T
∂y ല୻

כ
౫ ൌ 0 T|୻ିכ୻כ౫ ൌ 0 ሺ14ሻ 

The first equality expresses the no-slip 
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condition for velocity, whereas the second and 
third represent the adiabatic condition at the 
unheated perimeter (Γ*

u) and the imposed 
temperature at the heated length; depending on 
the cases investigated the unheated perimeter’s 
length may be zero. 
From the solutions of (9) and (10), which yield 
the velocity and temperature fields, the 
Poiseuille and local Nusselt numbers can be 
obtained. For the former 

PoൌfReൌ
1
2Ω* න *V൯dΩ*׏൫·*׏

Ω*
  ሺ15ሻ 

 
where f is the Fanning friction factor and Re 
the Reynolds number. For the latter 

Nu௟ൌ‐ 
1
Tb
൫n·׏*T|wall൯              ሺ16) 

 
with n the unity vector normal to the wall and 
Tb the nondimensional bulk temperature, 
defined as: 

Tbൌ
1
Ω* න Vሺx,yሻTሺx,yሻdΩ*

Ω*
      ሺ17ሻ 

 
Integration of (16) yields the average Nusselt 
number, Nu, for the cross-section. 
For the rectangular geometry, the cases studied 
are those of H1 boundary conditions, with 
either all sides heated or one short side 
adiabatic, the latter being the case for 
microchannels covered by an adiabatic sealing 
lid. In the former configuration, all corners are 
rounded, whereas in the latter only the corners 
of the heated short side are modified.  
For the trapezoidal cross-section, the only case 
studied was that with three sides heated 
uniformly with imposed temperature and the 
longest side adiabatic. Again, only the corners 
of the shorter side were rounded. 
The solutions have been computed through a 
code written with the commercial solver 
FlexPDE 5.0.19 using a normal desktop PC. 
This package solves systems of partial 
differential equations through a Rayleigh-Ritz- 
Galerkin finite element method. The numerical 
procedure evolves through an iterative 
refinement of the grid until the prescribed 
accuracy, related to the maximum local 
residual value, Rk, is reached. 
The iterative procedure is stopped when the 

velocity field V and the temperature field T 
satisfy the inequality 

max൫RkሺV,Nሻ,RkሺT,Nሻ൯<ε ׊kאሾ1,Nሿ  (18) 
 
In order to obtain satisfactory accuracy while 
keeping computational time to a minimum, the 
average Nusselt numbers obtained by 
computation, Nucal, have been compared to 
those available for reference cases, Nuth. Table 
I reports the results for a square microchannel 
under H1 boundary conditions and all sides 
heated. The same procedure has been followed 
for the friction factor. 

Table I – Values of Nu as a function of ε 
ε Nucal Nuth ΔNu% 

10-1 3.619591 3.60795 0.322 
10-2 3.619583 3.60795 0.322 
10-3 3.619594 3.60795 0.322 
10-4 3.61399 3.60795 0.167 
10-5 3.611078 3.60795 0.086 
10-6 3.608405 3.60795 0.012 
10-7 3.608042 3.60795 0.002 

 
As a satisfactory compromise, the value of 
ε=10-6 has been chosen. For the case of 
trapezoidal microchannels, the results for 
sharp corners and different values of β were 
compared to those available in the literature 
(Shah and London, 1978, Morini and Spiga, 
2007), with discrepancies at most of the order 
of 10-4. 
 
2. Results and discussion 
 
Simulations were run holding the aspect ratio 
fixed and varying the radius of curvature. As 
the non-dimensional form of the latter 
parameter is bounded by the value of β or γ , 
the number of cases investigated varies with 
the aspect ratio. The runs yield numerical 
outputs and graphical plots of the quantities of 
interest (velocity and temperature fields) and 
of the ones which can be derived, e.g. the local 
Nusselt number. The results for the latter are 
also depicted for the same case in Fig. 3.  
The variation of Nu along the length of the 
perimeter can readily be appreciated, as well 
as its symmetric distribution 
As a first step, cases analogous to those 
present in the literature have been computed 



2nd Micro and Nano Flows Conference 
West London, UK, 1-2 September 2009 

- 5 - 

for comparison purposes. 
 

 
Figure 3 – Nusselt number distribution for β=0.5, 

Rc
*=0.5 

Figure 4 shows the calculated results for the 
Poiseuille (circles) and Nusselt (squares) 
numbers and compares them to the 
correlations given by Ray, Misra and Laha, 
2002 for the case of a square cross-section 
(β=1), as the nondimensional radius of 
curvature varies, namely 

PoൌfReൌ14.226 ቎1൅෍BkRc*k
5

kൌ1

቏ ሺ19ሻ 

and 

ܰuൌ3.608 ቎1൅෍AkRc*k
5

kൌ1

቏ ሺ20ሻ 

 
whose coefficients are reported in Table II. 
 

Table II Coefficients for Eq. (19) and (20) 
Index i Ai Bi 
1 0.4316 0.4258 
2 -0.5549 -0.00903 
3 0.2067 -0.7139 
4 0.1451 0.7976 
5 -0.1040 -0.2909 

 
As can be seen the agreement is excellent, and 
the limiting values of Po and Nu for the cases 
of square and circular duct (the result for β=1 
and Rc

*=1). 
Some further data available in literature (Shah 
and London, 1978) for stadium-shaped ducts 
of nondimensional radius of curvature equal to 
the channel’s aspect ratio and H1 boundary 
conditions were also compared with the 
corresponding calculations and the agreement 
was more than satisfactory. For the case of 

three heated sides, the comparison was made 
with the results of Morini, 2007, for 
rectangular and trapezoidal ducts with sharp 
corners, with and without viscous dissipation. 
The agreement with data  used for reference 
was complete. 
 

 
Figure 4 – Poiseuille and Nusselt numbers for β=1 as a 

function of Rc
* and comparison with Eqs. (19), (20). 

 
2.1 Rectangular cross-section, four sides 
heated 
Five different aspect ratios were investigated: 
β=1, β=0.50, β=0.25,  β=0.10,  β=0.03 for 
different values of Rc

*. 
The Poiseuille number and average Nusselt 
number were calculated, and equations relating 
them to the nondimensional radius of 
curvature were obtained. The results for Po 
and Nu are shown in Tables III to VII. 
 

Table III – Values of Po and Nu for  β=1 
Rc

* Po Nu 
0.0 14.226 3.609 
0.1 14.765 3.759 
0.2 15.167 3.898 
0.3 15.452 4.017 
0.4 15.646 4.115 
0.5 15.775 4.193 
0.6 15.858 4.253 
0.7 15.914 4.298 
0.8 15.954 4.332 
0.9 15.985 4.355 
1.0 15.999 4.366 

 
Table IV – Values of Po and Nu for  β=0.50 
Rc

* Po Nu 
0.00 15.548 4.124 
0.05 15.952 4.239 
0.10 16.278 4.348 
0.20 16.725 4.530 
0.30 16.964 4.654 
0.40 17.055 4.714 
0.50 17.027 4,709 
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Table V – Values of Po and Nu for  β=0.25 
Rc

* Po Nu 
0 18.232 5.331 

0.03 18.572 5.438 
0.05 18.759 5.505 
0.10 19.108 5.649 
0.15 19.317 5.749 
0.20 19.415 5.800 
0.25 19.412 5.795 

 
Table VI – Values of Po and Nu for  β=0.10 
Rc

* Po Nu 
0.00 21.168 6.787 
0.01 21.321 6.840 
0.02 21.450 6.888 
0.03 21.556 6.932 
0.04 21.643 6.971 
0.05 21.713 7.006 
0.06 21.767 7.032 
0.07 21.807 7.053 
0.08 21.834 7.066 
0.09 21.850 7.073 
0.10 21.851 7.073 

 
Table VII – Values of Po and Nu for  β=0.03 
Rc

* Po Nu 
0 23.058 7.751 

0.01 23.206 7.809 
0.02 23.281 7.845 
0.03 23.306 7.858 

 
For each aspect ratio, correlations were given 
that fit the Nusselt and Poiseuille numbers as 
functions of the nondimensional radius of 
curvature. The correlations have the form 

Poൌ෍CkRc*k
4

kൌ0

 ሺ21ሻ 

and 

Nuൌ෍DkRc*k
3

kൌ0

 ሺ22ሻ 

with the corresponding coefficients reported in 
Table VIII and IX. As can be clearly seen from 
the tabular results, the Nusselt number 
increases with the value of the nondimensional 
radius of curvature, as does the Poiseuille 
number. This is easily explained if one 
considers that at the corners the fluid stagnates 
when they are sharp, and thus the frictional 
resistance drops, while convective heat 
transfer is modest, whereas smoothing the 
corners increases the local flow velocity and 
engenders an increase in convective heat 

transfer and frictional resistance. 
Table VIII– Values of coefficients for Eq. (21) 

 β C3 C2 C1 C0 
0.50 9.3319 -16.303 8.7752 15.5506 
0.25 35.2394 39.2648 12.3279 18.2346 
0.10 263.986 -120.85 16.2793 21.1691 
0.03 0 -307.5 17.415 23.0591 

 
Table IX – Values of coefficients for Eq. (22) 

 β D3 D2 D1 D0 
0.50 -1.2969 -1.9492 2.4705 4.1225 
0.25 -11.342 -4.8322 3.774 5.3303 
0.10 -72.067 -19.178 5.4948 6.7868 
0.03 0 -112.5 6.945 7.7509 

 
It is to be noticed that both parameters increase 
with aspect ratio, but the enhancement due to 
rounded corners is less and less pronounced as 
β decreases. The case giving the highest 
increases is that of β=1; it is evident from both 
the values in Table III as well as the graphical 
representation of Fig. 4 that the rate of 
increase in Nu is higher at low values of Rc

* 
and is comparatively small for Rc

*>0.5. The 
maximum increase of Nu and Po are 21% and 
12% respectively for β=1, Rc

*=1 
(corresponding to a circular duct) and drops to 
9% and 6% for β=0.25, Rc

*=0.25; this is also 
readily explained considering that as the aspect 
ratio decreases the role of the rounded corners 
loses in influence on the global behaviour of 
the channel. 
 
2.2 Rectangular cross-section, three sides 
heated 
When only three sides are heated (the fourth 
being adiabatic, 3L,S), the temperature profile 
modifies as in Fig. 5.  

Figure 5 – Temperature profile, case β=1, 3L,S 
 

Runs were carried out for the same values of β 
as before and the results are reported in Table 
X to XIV. Again, the rounding of the corners 
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brings an increase in both Nusselt and 
Poiseuille numbers, but it is far more moderate 
that for the case of four sides heated, and 
ranges from 10% and 5% respectively at β=1 
to less than 1% for β=0.03. 
 

Table X – Values of Po and Nu for  β=1, 3L,S 
Rc

* Po Nu 
0.0 14.223 3.572 
0.1 14.489 3.657 
0.2 14.682 3.735 
0.3 14.811 3.802 
0.4 14.895 3.857 
0.5 14.946 3.898 
0.6 14.976 3.926 
0.7 14.996 3.943 
0.8 15.010 3.950 
0.9 15.023 3.949 
1.0 15.036 3.938 

 
Table XI – Values of Po and Nu for  β=0.5 3L,S 

Rc
* Po Nu 

0.00 15.548 4.539 
0.05 15.748 4.609 
0.10 15.905 4.674 
0.20 16.113 4.781 
0.30 16.216 4.851 
0.40 16.247 4.884 
0.50 16.223 4.876 

 
Table XII – Values of Po and Nu for  β=0.25 3L,S 

Rc
* Po Nu 

0.0 18.232 5.760 
0.05 18.492 5.860 
0.10 18.660 5.939 
0.15 18.756 5.995 
0.20 18.798 6.023 
0.25 18.791 6.022 

 
Table XIII – Values of Po and Nu for  β=0.1 3L,S 

Rc
* Po Nu 

0.00 21.168 7.048 
0.01 21.244 7.075 
0.02 21.308 7.101 
0.03 21.360 7.124 
0.04 21.403 7.145 
0.05 21.436 7.163 
0.06 21.463 7.177 
0.07 21.482 7.187 
0.08 21.494 7.195 
0.09 21.501 7.198 
0.10 21.501 7.198 

 
The coefficients to be introduced in Eq. (21) 

and (22) are reported in Tables XV and XVI. 
 

Table XIV – Values of Po and Nu for  β=0.03 3L,S 
Rc

* Po Nu 
0 23.058 7.845 

0.01 23.132 7.876 
0.02 23.169 7.894 
0.03 23.181 7.900 

 
Table XV– Values of coefficients for Eq. (21), 3L,S 

 β C4 C3 C2 C1 C0 
1.00 -0.9237 3.5142 -4.9225 3.146 14.222 
0.50 - 5.4108 10.670 10.273 4.496 15.548 
0.25  19.926 -20.608 6.143 18.2325 
0.10  137.918 -61.515 8.104 21.1686 
0.03   -155.00 8.710 23.0586 

 
Table XVI– Values of coefficients for Eq. (22), 3L,S 
 β D3 D2 D1 D0 
1.00 0.05614 -0.6548 0.96583 3.5697 
0.50 -0.63204 - 1.334 1.4999 4.5383 
0.25 -4.0741 -3.5365 2.1865 5.76 
0.10 -39.4328 -9.9592 2.8909 7.0476 
0.03 - -62.50 3.705 7.845 

 
2.3 Trapezoidal cross-section, three sides 
heated 
For the trapezoidal cross-section, the only case 
investigated was that of three sides heated. The 
aspect ratio has no upper limit (β=∞ 
corresponds to a triangular shape), and thus 
simulations have been run for 20 different 
values of β.  An example of temperature 
profile in the cross-section is shown in Fig. 6.  
For the trapezoidal cross-section, the 
parameter γ, defined in section 2, substitutes 
the nondimensional radius of curvature.  

Figure 6 – Temperature profile, case β=1, 3L,S 
 
For this kind of geometry, where only the 
corners on the shortest side are rounded, there 
is very little increase in the values of the 
Poiseuille and Nusselt numbers.  
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