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AABBSSTTRRAACCTT  

Food retail with large supermarkets consumes significant amounts of energy. The 
environmental impact is also significant because of the indirect effect from CO2 
emissions at the power stations and due to the direct effect arising from refrigerant 
leakage to the atmosphere. The application of trigeneration (local combined heat, power 
and refrigeration) can provide substantial improvements in the overall energy efficiency 
over the conventional supermarket energy approach of separate provision of electrical 
power and thermal energy. 

The use of natural refrigerants such as CO2 offers the opportunity to reduce the direct 
impacts of refrigeration compared to conventional systems employing HFC refrigerants 
that possess high global warming potential. One approach through which the overall 
energy efficiency can be increased and the environmental impacts reduced, is through 
the integration of trigeneration and CO2 refrigeration systems where the cooling 
generated by the trigeneration system is used to condense the CO2 refrigerant in a 
cascade arrangement. This research project investigates experimentally and 
theoretically, through mathematical modelling and simulation, such a system and its 
potential application to supermarkets.  

A small size CO2 refrigeration system for low and medium food temperature 
applications was designed and constructed to enable it to be integrated with an existing 
trigeneration system in the refrigeration laboratory at Brunel University to form an 
integrated trigeneration and CO2 refrigeration test facility. Prior to the construction, the 
design of the system was investigated using mathematical models developed for this 
purpose. The simulations included the CO2 refrigeration system, CO2 evaporator coils 
and the integration of the trigeneration and CO2 refrigeration systems. The physical size 
of the design and component arrangement was also optimised in a 3D AutoCAD model. 

A series of experimental tests were carried out and the results showed that the medium 
temperature system could achieve a very good COP, ranging from 32 to 60 due to the 
low pumping power requirement of the liquid refrigerant. The low temperature system 
performed with average steady state COP of 4, giving an overall refrigeration system 
COP in the range between 5.5 and 6.  

Mathematical models were also developed to investigate the application of the 
integrated trigeneration and CO2 refrigeration system in a case study supermarket. The 
models were validated against test results in the laboratory and manufacturers’ data. The 
fuel utilisation efficiency and environmental impacts of different trigeneration and CO2 
refrigeration arrangements were also evaluated. The results indicated that a system 
comprising of a sub-critical CO2 refrigeration system integrated with a trigeneration 
system consisting of a micro-turbine based Combined Heat and Power (CHP) unit and 
ammonia-water absorption refrigeration system could provide energy savings of the 
order of 15% and CO2 emission savings of the order of 30% compared to conventional 
supermarket energy systems. Employing a trigeneration system with a natural gas 
engine based CHP and Lithium Bromide-Water sorption refrigeration system, could 
offer energy savings of 30% and CO2 emission savings of 43% over a conventional 
energy system arrangement. Economic analysis of the system has shown a promising 
payback period of just over 3 years compared to conventional systems.  
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COP Coefficient of performance (-) 
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equation (4.33)  
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θ Dry angle (rad) 
  Fin efficiency parameter (-) defined by equation (4.34) 
ω Humidity ratio (kg/kgda) 
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add Additional load 
amb Ambient 
c Cooling, convective, circuit, cold 
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conv Conventional 
crit Critical point 
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d Diagonal 
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e Electrical 
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m Mean, momentum 
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md Maximum discharge 
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others Other than refrigeration and electric chiller 
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s Isentropic, surface 
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t Tube 
th Thermal 
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trigen integrated trigeneration and CO2 refrigeration energy system 
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AK-CC Adap-Kool cabinet controller: a cabinet controller manufactured 
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AKV Adap-Kool valve: an electrically operated expansion valve 
manufactured by Danfoss  

ARI Air conditioning and refrigeration institute 

ASHRAE American society of heating refrigerating and air-conditioning 
engineers 

BV Ball valve 

CCC Committee of the climate change  

CCHP  Combined cooling heating and power 

CFC Chloro-fluoro-carbon 

CHRP Combined heating refrigeration and power 

CHP Combined heat and power 

CIBSE Chartered Institution of building services engineers 

CO2 Carbon dioxide 

CO2e Carbon dioxide equivalent 

CP grade Chemically pure 

DEFRA Department for environment, food and rural affairs 

EES Engineering equation solver 

EC Evaporator coil 

EIA Energy information administration 

ETS Electrically operated expansion valve, manufactured by Danfoss 

EXV Electronic expansion valve 

DX Direct expansion 

FPI Number of fins per inch 

FPM Number of fins per metre 

Fossil fuel An energy source formed in the earths crust from decayed 
organic material. The common fossil fuels are petroleum, coal 
and natural gas. 

Food refrigeration Application of a refrigeration system on the prevention and 
retardation of microbial, physiological, and chemical changes in 
foods. It also plays a major role in maintaining a safe food 
supply, nutritional content and retaining characteristics such as 
flavour, colour and texture (ASHRAE, 2010) 

GHG Green House Gases: gaseous constituents of the atmosphere, 
both natural and anthropogenic, that absorb and emit radiation at 
specific wavelengths within the spectrum of infrared radiation 
emitted by the Earth's surface, the atmosphere, and clouds (PAS 
2050, 2008) 
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GAX Generator absorber heat exchange 

HC Hydrocarbon 

HCFC Hydro-chloro-fluoro-carbon 

HFC Hydro-fluoro-carbon 

HT High stage of a cascade system/High temperature 

HTF Heat transfer fluid 

HVAC Heating ventilation and air conditioning 

HX Heat exchanger 

ICM Industrial control motor valve 

ICMT High pressure expansion valve 

IHX Internal heat exchanger 

IEA International energy agency 

IPCC Intergovernmental panel on climate change 

Isenthalpic expansion Expansion which takes place without any change in enthalpy 

kW Kilowatt 

kWh Kilowatt hour 

LRLM Load ratio low to medium temperatures of a refrigeration plant 

LT Low temperature 

MO Mineral oil 

MOP Maximum operating pressure 

MOPD Maximum operating pressure difference 

MT Medium temperature 

MTP Market transformation programme 

MWh Megawatt hour = 1000 kilowatt hour 

N/A Not applicable 

NG Natural Gas (primarily methane)  

NRV Non-return valve 

O&M Operational and maintenance 

ODP  Ozone depleting potential 

PAO Poly-alpha olefin (oil) 

PAS Publicly available specification 

PHX Plate type heat exchanger 

POE Polyol ester (oil) 

Primary fuel All fuels consumed by end users, including the fuel consumed at 
electric utilities to generate electricity 

ppm Part per million 

PTC Positive temperature coefficient 

Refrigerated display cabinet: a cabinet cooled by a refrigerating system which enables 
chilled and frozen foodstuffs placed therein for display to be 
maintained within prescribed temperature limits (ISO 23953-1, 
2005) 
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RV Regulator valve 

SCA Solution cooled absorber 

SG Sight glass 

SRC Specific refrigerant charge defined as refrigerant mass per unit 
refrigerating capacity, or heating capacity for heat pumps (MTP, 
2008); Super radiator coils 

SV Solenoid valve 

Sustainability Sustainable development is development that meets the needs of 
the present without compromising the ability of future 
generations to meet their own needs (Evans, 2010) 

TOC Technical options Committee (UNEP) 

TXV Thermostatic expansion valve 

Uncertainty  A concept to describe the degree of goodness of a measurement, 
experimental result, or analytical result (Coleman and Steele, 
2009); lack of confidence  

UNEP United Nations Environment Programme 
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CChhaapptteerr  11  

IINNTTRROODDUUCCTTIIOONN  

Global energy demand has been increasing alongside the growth of world population 

and economy. The increase of energy demand, especially energy from fossil fuel, 

increases emissions to atmosphere which contributes to the deterioration of ambient air 

quality with serious public health and environmental effects. World energy demand 

related greenhouse gas emissions, on the basis of current policies, will be 40% higher in 

the year 2030 relative to 2007 (IEA, 2009). In order to deal with increases in fossil fuel 

use, industrialised countries such as the UK and the European Union have been 

developing an ambitious energy policy to tackle carbon dioxide emissions and climate 

change.  In  the UK, the targets are a 60% reduction in greenhouse gas emissions by 

2030 compared to 1990 levels and a reduction of at least 80% by 2050 (CCC, 2008 and 

CCC, 2010). 

In developed countries, there is also a trend of increasing consumption of food products 

which in them has an impact on greenhouse gas emissions. It is estimated that for 

Western Europe the food industry is responsible for between 20% and 30% of GHG 

emissions (Tassou and Suamir, 2010). A major source of emissions is energy use by 

manufacturing processes, food distribution and retail.  In the UK, food distribution and 

retail are responsible for approximately 7% of total GHG emissions (DEFRA, 2005). 

Refrigeration, which is increasingly important in the processing and preservation of 

food, is potentially responsible for significant GHG emissions. As described by 

Coulomb (2008), refrigeration technology is responsible for 15% of all electricity 

consumed worldwide. Approximately 72% of the global warming impact of 
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refrigeration plant is due to energy consumption (Cowan et al., 2010). Reducing the 

energy consumption of refrigeration plant has therefore become one of the key priorities 

in the reduction of GHG emissions of the food sector. 

Another important source of GHG emissions from refrigeration is refrigerant leakage 

from the refrigeration plant. Extensive pipe-work with associated pipe joints used in 

refrigeration plant increases the potential for refrigerant losses. HFC refrigerants, 

currently used in food refrigeration systems, have zero impact on ozone depletion 

(ODP) and provide comparable performance to CFC and HCFC refrigerants. Leakage of 

HFC refrigerants to the atmosphere, however, has significant impact on GHG emissions 

due to their high global warming potential (GWP). This has prompted the introduction 

of the F-gas regulations by the European Union which are designed to contain, prevent 

and thereby reduce emissions of fluorinated gases including all HFC refrigerants, such 

as R-134A, R-407C, R-410A, and R-404A. Replacement of F-gas based refrigerants 

with negligible or no GWP refrigerants (often called ‘natural refrigerants’) such as 

hydrocarbons, ammonia and CO2 can reduce direct impacts to the environment and 

present significant challenges to the food refrigeration industry. 

 

 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 1.1 Cold chain and refrigeration technology in the life cycle stages of food products 
(Source: Estrada-Flores, 2010 and PAS 2050, 2008) 

In order to asses GHG emissions in the food industry, it is necessary to consider all 

stages across the entire life cycle of a food product.  These stages are illustrated in 

Figure 1.1. Refrigeration is employed in almost all the stages of the life cycle to control 
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the temperature required to maintain food quality from harvest to consumption in the 

home. A study of the energy used by refrigeration systems across the cold chain has 

shown that the most significant energy usage for refrigeration in the UK is from the 

retail sector. This sector was responsible for energy use in the range between 35% and 

52% of the estimated energy usage of the top ten food refrigeration sectors (Swain, 

2006). A similar study in Australia revealed that the retail sector makes the most 

significant contributions to cold chain electricity consumption after domestic sector of 

about 44% (Estrada-Flores, 2010). 

11..11  EEnneerrggyy  ccoonnssuummppttiioonn  ooff  tthhee  ffoooodd  rreettaaiill  iinndduussttrryy  

In the UK, food retail consumes significant amounts of energy with large supermarkets 

accounting for between 3% and 5% of total electrical energy consumption (Tassou et 

al., 2007).  Electricity consumption of food retail varies from one store to another 

depending on the size and format of the store, equipment used, building fabric, sales 

activity, internal environment, energy and control systems deployed. The variation of 

electricity consumption per net sales area (also known as electricity intensity) of 

different types of stores is shown in Table 1.1. It can be seen that the electricity 

intensity of supermarkets can vary widely from around 500 kWh/m2 in hypermarkets to 

over 2900 kWh/m2 in convenience stores (Tassou et al., 2009). The baseline electricity 

intensity of the UK’s supermarkets was reported by CIBSE to be 915 kWh/m2 (CIBSE 

Guide F, 2004).  

Table 1.1 Electricity intensity of different size of the food retail stores 

Type of stores No. of stores Sales area Electrical energy intensity (kWh/m2)

  m2 Range* Average 

Convenience stores 640 80-280 2900-700 1540 

Mid-range stores 1360 280-1400 2600-500 1000 

Superstores 420 1400-5000 1500-500 920 

Hypermarket 150 5000-10000 1180-500 770 

*Electrical energy intensity reduces as the sales area increases 
 Source: Tassou et al. (2009) 

Segmentation of electricity usage in supermarkets also varies. Investigation of several 

medium size supermarkets in the UK found that the refrigeration systems consume most 

electricity in the range between 30% and 60%. Lighting accounts for between 15% and 

30% and the heating ventilating and air conditioning (HVAC) equipment accounts for 
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about 10%. Preparation food and services (PFS) and other store utilities account for the 

remainder. Investigation was based on the energy meter data from Tesco (2009). Similar 

breakdown of electricity consumption for supermarkets in the UK can also be found in 

Evans (2008) and Tassou et al. (2009). The breakdown of electricity consumption of a 

typical medium size retail store is shown in Figure1.2.   

 

 

 

 

 

 

 

Figure 1.2  Annual electricity consumption of typical 50,000 ft2 UK supermarket 
(Data source: Tesco, 2009) 

 

Electricity for refrigeration in retail food stores is normally distributed through two 

separate distribution circuit. One circuit is used to power the refrigeration packs which 

include compressors, pumps and condensers. The second circuit supplies the chilled and 

frozen food display cabinets for lights, fans, controls, etc. in the sales area. Comparative 

amounts of electricity consumed by refrigeration in some F-50 stores are shown in 

Figure 1.3. It can be seen that the electricity supplied to the medium temperature (MT), 

low temperature (LT) packs and display cabinets can vary from one store to another 

with average values around 42% for MT, 20% for LT and 38% for cabinets. These 

comparative figures are slightly different from those of Lawrence and Gibson (2010) for 

which display cabinets were reported to consume 42%, MT pack systems 35% and LT 

pack systems 23% of total refrigeration energy. The amount of electricity used by the 

packs depends on the type of the system used, refrigeration load, control strategy 

employed and ambient temperature. The electrical energy consumption of display 

cabinets is related to all electric components in the cabinet such as fans, lights, anti 

sweat heaters and defrost heaters. 
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Supermarkets also have a need for space heating and domestic hot water. These heating 

needs are normally satisfied by gas fired boilers. Gas consumption varies during the 

year; it is high in the winter and very low in the summer. The annual gas consumption 

of an F-50 store with a sales area of 4700 m2 was approximately 880 MWh, equivalent 

to 187 kWh/m2 (Tesco, 2009).  A wider range of gas consumption in different type of 

retail food stores is reported by Tassou et al. (2009). The baseline figure in CIBSE 

Guide F (2004) is 200 kWh/m2. 

 

 

 

 

 

 

   

Figure 1.3 Electricity consumption of refrigeration packs and display cabinets of some F-50 
supermarkets in the UK (Data source: Tesco, 2009) 

 

11..22  EEnnvviirroonnmmeennttaall  iimmppaaccttss  

As described in the preceding section food retail is one of the most energy intensive 

sectors of the food cold chain. Supermarkets, particularly, have significant 

environmental impacts due to indirect emissions of greenhouse gases (GHG) from 

electricity generation in power stations (Tassou et al., 2011). In the UK, the indirect 

CO2 emissions from the energy use account for 4.01 MtCO2e of which 88% is 

emissions from electrical energy consumption and the remainder is from natural gas 

(Tassou et al., 2009).  

Supermarkets are also responsible for direct greenhouse gas emissions from refrigerant 

leakage with high global warming potential (GWP) to the environment (Tassou et al., 

2011). Walravens et al. (2009) reported that supermarkets are the biggest source of HFC 

0

10

20

30

40

50

60

70

80

90

100

A B C D E F G H I J K L

R
at

io
 e

le
ct

ri
ci

ty
 (

%
)

MT Refrigeration LT Refrigeration Display cabinets

A, B, C, ... , L  represent F-50 stores



 

6 

emissions in the UK with their refrigeration and air conditioning equipment being 

responsible for 2 MtCO2e emissions per year.    

The environmental impact of refrigerant leakage depends on the type of refrigerant, 

amount of refrigerant charge and leak tightness of the refrigeration systems. Typical 

values for specific refrigerant charge (SRC) are provided in MTP (2008). For 

centralised supermarket systems charged with HFC/HCFC and R-744 refrigerants, the 

average SRCs are in the region of 3.5 and 1.8 kg per kW refrigerating capacity 

respectively. Estimates of refrigerant leakage from centralised supermarket refrigeration 

systems vary in the range between 10% and 25% of charge per annum (MTP, 2008). 

The author also summarised refrigerant leak rates from four different studies. Detailed 

specific refrigerant charge and refrigerant leakage for different types of refrigerants and 

equipment are also presented in Appendix K.  

Evans (2008) reported refrigerant leakage from supermarkets to be in the range between 

18% and 35% of refrigerant charge per year. It was also reported that leakage of HFC 

and HCFC refrigerants from Canadian supermarkets was in the range between 10% and 

30% of charge per year (CanmetENERGY, 2009). United Nations Environment 

Programme (UNEP) reported annual supermarket emission rates in the range 15 to 30% 

of their charge (TOC, 2006). Alongside the direct emissions, refrigerant leakage can 

also have a significant impact on the energy consumption of the refrigeration systems, 

since a low charge reduces sub-cooling and increases the superheat, resulting in lower 

system performance as noted in MTP (2008) and Cowan et al. (2010).  

11..33  AApppprrooaacchh  ttoowwaarrddss  ssuussttaaiinnaabbiilliittyy  

The energy plant in a supermarket generally comprises refrigeration systems, heating 

and cooling systems and electrical supply which is derived from the National Grid. The 

efficiency of the overall energy system is also low below 55%, because of seasonal 

variations in demand and the relatively low electricity generation efficiency in power 

stations as well as distribution losses in the grid (Tassou and Suamir, 2010).  

One option of increasing the energy utilisation efficiency of supermarket facilities is 

through local combined heat and power generation (CHP) also known as co-generation. 

CHP is a highly efficient method of simultaneously generating electricity and heat at or 
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near the point of use. CHP can achieve overall efficiencies of up to 85% (CIBSE CHP 

Group, 2005), which is significantly higher than the separate production of electricity 

and heat. CHP can offer reduced energy costs and can employ a wide range of fuels, 

including gas, oil, biogas, bio-fuel, biomass and waste. 

The efficiency of CHP varies depending on the type of system, fuel, electrical power 

output and most importantly the availability of sufficient demand for the generated 

electricity and thermal energy. Figure 1.4 shows the variation of fuel utilisation 

efficiency of gas engine based CHP for different size of power output and 100% 

utilisation (availability). It can be seen that the overall efficiency of CHP can exceed   

70% and can sometimes reach 90%, almost 50% higher than the electrical efficiency of 

electricity generated from the grid. 

 

 

 

 

 

 

 

Figure 1.4 Efficiency of different module types of gas engine based CHP 
 (Data source: Cogenco, 2008) 

 

In supermarket applications, steady demand for the generated electricity and thermal 

energy is not available throughout the year. The heat demand varies considerably 

between summer and winter. The efficiency of the CHP, therefore, drops significantly 

in the summer which also reduces the overall seasonal efficiency. During the summer 

time, consideration can be made to export thermal energy to neighbouring facilities, but 

this approach introduces complexities and costs. Where it is not feasible to export heat, 

a heat following strategy can be adopted in which the heat output is modulated to follow 
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the site heat demand. This strategy, however, results in fluctuations in the electrical 

power generation which results in the import of electricity from the National Grid. This 

strategy leads to a lower efficiency compared with full load operation (Sugiartha et al., 

2006). 

In order to achieve high efficiencies, CHP systems have to operate at maximum load for 

the vast majority of time and make maximum utilization of the generated electrical 

power and heat. One way of ensuring the high energy conversion efficiencies of CHP 

systems are maintained throughout the year is to use some of the excess heat available 

in periods of low heat demand to drive sorption refrigeration systems and provide 

cooling or refrigeration. The integration of CHP and sorption refrigeration or other 

technologies to provide simultaneously electrical power, heating and cooling or 

refrigeration is called trigeneration (Tassou et al., 2007). Trigeneration is also known as 

CCHP (Combined Cooling, Heating and Power) or CHRP (Combined Heating, 

Refrigeration and Power) as in Bassols et al. (2002) and Maidment and Prosser (2000). 

The term polygeneration is also sometimes used for the combined and simultaneous 

production of electricity, heat, cold and other useful forms of energy (PolySMART, 

2008). 

Trigeneration systems have been used in a number of applications including commercial 

buildings and industrial facilities. Most of these have been for space cooling 

applications with a smaller number for refrigeration applications in the food processing 

industry which requires temperatures below 0 oC. A number of investigations into the 

application of trigeneration in the food industry have been reported in the last 10 years. 

Bassols et al. (2002), illustrated examples of typical ammonia-water plant in the food 

industry. Theoretical evaluation of trigeneration for supermarket applications has shown 

that the system can provide 20% energy saving with attractive payback periods 

(Maidment et al., 1999; 2001; Maidment and Tozer, 2002). Tassou et al. (2007) and 

Sugiartha et al. (2008) showed that trigeneration technology based on a micro gas 

turbine integrated with an ammonia water absorption refrigeration system can provide 

promising economic and environmental benefits when used in supermarket applications. 

The authors indicated that payback periods of between 3 and 5 can be achieved. 

Arteconi et al. (2009) reported that trigeneration systems in supermarket applications 

can produce primary energy savings of 56% with payback period of less than 5 years.  
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The economic viability of trigeneration for supermarket applications is very sensitive to 

the price of grid electricity relative to the price of natural gas which is also known as 

spark ratio. A gas powered trigeneration system will be economically attractive when 

the spark ratio is greater than 3.3 (Tassou et al., 2007; Sugiartha et al., 2006; 2008). In 

the UK, the recent increases in electricity and fuel prices have increased the spark ratio 

and price gap between grid electricity and natural gas (spark gap) as shown in Figure 

1.5. The good trend of spark ratio and spark gap together with increased concerns about 

the environmental impacts of the retail food industry have increased interest in the 

application of trigeneration technology to supermarkets in the UK. 

As indicated earlier the main environmental impact of refrigeration systems are from 

energy use and from refrigerant leakage. Alternative solutions to reduce the emissions 

from refrigerant leakage are to use environmentally friendly refrigerants, such as natural 

refrigerants or secondary refrigerants. Melinder and Granryd (2010) showed that 

indirect refrigeration systems can reduce refrigerant charge drastically down to 5 - 15% 

of that of traditional DX-systems.  

 

  

 

 

 

 

 

Figure 1.5 Comparison of electricity and gas price in the UK 
 (Source: Moorjani, 2009) 

 

CO2 is natural refrigerant that has received considerable attention in the last 10 years. 

Research and development particularly in Scandinavia, USA and Japan is aimed at 

developing CO2 systems for a wide range of applications ranging from small 

commercial refrigeration and air conditioning systems to car air conditioners and larger 

commercial and industrial systems, including supermarkets. Most of the development 

work on CO2 systems for supermarkets has taken place in Scandinavia and Germany. 
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However significant interest in CO2 refrigeration has also been demonstrated in some 

supermarkets in the UK, Australia, Canada and the Latin America.  

In the UK, there is increasing interest by supermarket chains to move towards 

sustainable and environmentally friendly refrigeration technologies including CO2 

refrigeration.  In 2009 there were 46 stores across the UK using CO2 based technology, 

increasing from just 14 stores in 2008. Sainsbury’s is committed to phasing HCFCs and 

HFCs and plans to switch to CO2 in all of its stores by 2030 with the first 135 stores set 

to be converted by 2014. Tesco plans to introduce CO2 refrigeration in 150 stores by 

2012. M&S and Morrisons converted 34 stores to CO2 by 2009 and Waitrose is 

implementing an innovative system based on HC refrigerant (Walravens et al. 2009). 

Most of the early systems operate on the subcritical cycle where CO2 is used in a 

cascade arrangement with a conventional refrigeration system operating with ammonia, 

HCs or HFCs. Such arrangements keep the pressures in the CO2 system relatively low, 

but still suffer the disadvantage of using another refrigerant such as HFC with its 

associated global warming implications. 

Another way of improving the performance of CO2 refrigeration as well as totally 

avoiding the use of HFC refrigerants is by using cascade CO2 refrigeration with HC or 

ammonia refrigerant in the high stage system. Bellstedt (2008) indicated that CO2/NH3 

systems can achieve yearly energy savings of up to 35% over conventional R-404A 

systems. However, most retailers in the UK have been reluctant to use HC and ammonia 

in supermarkets due to their flammability and toxicity. Another option is to use 

absorption/adsorption refrigeration for the high stage in a cascade CO2 refrigeration 

arrangement. This solution can be particularly advantageous when the sorption 

refrigeration system is driven by waste heat or is integrated with a CHP system in a 

trigeneration system arrangement. 

11..44  RReesseeaarrcchh  pprroojjeecctt  ddeessccrriippttiioonn  

Trigeneration can provide substantial improvement in the overall energy efficiency over 

the conventional supermarket energy approach of separate provision of electrical power 

and heat energy. Trigeneration can also make significant contributions to the reduction 

of the environmental impacts of food factories and supermarkets. This research aims to 
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increase further the energy and CO2 emission savings potential of trigeneration through 

its integration with CO2 refrigeration systems.  

The experimental part of the research programme is based on a trigeneration system that 

incorporates three main modules; CHP module, sorption refrigeration system module, 

and a refrigeration load module. The approach employed is to use the exhaust gases of a 

microturbine CHP unit to drive an ammonia-water absorption refrigeration system, 

which cool a secondary fluid for refrigeration purposes. The heat transfer between the 

microturbine exhaust heat exchanger and the generator of the absorption system is 

performed by a heat transfer fluid in a closed heat transfer loop arrangement. A 

schematic diagram of the trigeneration arrangement test facility using thermal oil as the 

heat transfer medium between the microturbine and absorption refrigeration system is as 

shown in Figure A-1 (Appendix-A). It can also be found in Tassou et al. (2008). 

The CHP module is a Bowman 80 kWe recuperated microturbine generation package 

MTG80RC-G with in-built boiler heat exchanger (exhaust heat recovery heat 

exchanger). The microturbine consists of a single stage centrifugal compressor, single 

radial turbine within an annular combustor and a permanent magnet rotor (alternator) all 

on the same rotor shaft. Other systems in the engine bay include the fuel management 

system and the lubrication/cooling system. Heat recovery from the exhaust gases is 

performed in a stainless steel flue-gas/liquid heat exchanger. The heat recovery fluid is 

Diphyl-THT high performance synthetic heat transfer fluid that can operate at 

temperatures up to 340 oC. 

The sorption refrigeration system employed is a packaged gas fired ROBUR ACF-60LB 

chiller. The performance of the unit in its gas fired format was established from tests in 

the laboratory. For brine flow temperatures between -11 oC and +3 oC, the refrigeration 

capacity of the unit was found to vary from 8.5 kW to 15 kW and the COP from 0.32 to 

0.57 (Tassou et al., 2008). The modified unit performed as well if not better than the gas 

fired unit. At brine flow temperature of -8.0 oC both units had a refrigeration capacity of 

12 kW and a COP of around 0.53. The optimum COP of the absorption chiller was 

achieved at oil temperature of 195 oC (Suamir et al., 2009). 

The use of secondary fluid such as propylene glycol, potassium-formate and sodium 

chloride for supermarket applications is one disadvantage of the previous trigeneration 
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system. The high energy consumption of the secondary fluid pumps due to the high 

viscosity and poor thermodynamic performance of available secondary fluids was the 

main disadvantage of the previous trigeneration system. Another disadvantage of the 

system was the relatively low COP of sorption refrigeration systems particularly when 

they operate at low refrigeration temperatures. The system would be more applicable for 

chilled food refrigeration applications. Thus a separated system would be required to 

satisfy the frozen food refrigeration demand. The approach followed in this research to 

overcome the disadvantages of the secondary single phase fluid system is to integrate 

the trigeneration system with a CO2 refrigeration system. For medium temperature 

applications the CO2 can be used as a volatile secondary fluid with the cooling produced 

by the trigeneration system providing the heat rejection medium for the condensation of 

CO2. For low temperature frozen food applications cooling from the trigeneration 

system can be used for the condensation of CO2 which can be used as a primary 

refrigerant in a low temperature vapour compression system.  

The utilisation of CO2 as a secondary refrigerant can minimise the use of conventional 

secondary fluids and increase further the energy savings potential of trigeneration 

systems. The pressure drop and consequently the pump power required for the 

secondary fluid through the distribution pipe-work and cooling coils in the display 

cabinets is primarily a function of the viscosity of the secondary fluid. The viscosity of 

liquid CO2 is much less than the viscosity of common secondary fluids and thus the 

power that will be required to circulate CO2 from the trigeneration system to the display 

cabinets will be very small compared to the power required for conventional secondary 

refrigerants. It is therefore estimated that the energy savings for the integrated CO2 - 

trigeneration system will be higher than the trigeneration system with conventional 

secondary fluids. Other advantages of using CO2 as secondary refrigerant are excellent 

heat transfer properties, good material compatibility and smaller pipe size requirements.  

11..55  RReesseeaarrcchh  oobbjjeeccttiivveess  

The main objective of this research project is, to design, develop and evaluate proof of 

concept integrated trigeneration and CO2 refrigeration systems for food refrigeration 

applications. Such systems should combine the efficiency advantages of trigeneration 

with the advantages of CO2 as a primary refrigerant in low temperature systems and as 
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secondary refrigerant in medium temperature systems. The project will also investigate 

heat transfer phenomena of the evaporator coils to ensure maximum thermodynamic 

performance for the CO2 system.  

11..66  SSttrruuccttuurree  ooff  tthhee  tthheessiiss  

The thesis comprises of eight chapters. Chapter 1 provides an introduction of the work 

in the thesis. Following the introduction in Chapter 1, Chapter 2 presents an overview of 

CO2 as a refrigerant and describes the concept of subcritical and transcritical CO2 

refrigeration systems. The chapter also outlines recent development and applications of 

CO2 refrigeration system for food preservation in supermarkets. 

Chapter 3 discusses the design and construction of the test facility implemented for the 

experimental investigation of the integration of CO2 refrigeration and trigeneration 

systems. Chapter 4 presents modelling and performance analyses of CO2 evaporator 

coils which covers heat transfer, pressure drop as well as simulation of frost formation  

and its effect on the heat transfer performance of the coils. The chapter also describes 

the application of the models for design and simulation of finned tube flooded and 

direct expansion coils using CO2 and R-404A as refrigerants.   

Chapter 5 provides experimental test results for the medium and low temperature 

refrigeration systems as well as the performance of the overall CO2 refrigeration system 

as a whole. This chapter also describes temperature and frost performance of the CO2 

display cabinets as well as the validation of the numerical models. 

A case study approach of the integration of volatile-DX CO2 refrigeration and micro-

turbine based trigeneration systems in supermarket applications is discussed in Chapter 

6. The chapter describes briefly the case study supermarket in respect of its energy 

consumption and emphasises the energy as well as environmental performance of the 

supermarket energy system. Alternative solutions of integrated trigeneration and CO2 

refrigeration systems are presented in Chapter 7. Economic analyses of the energy 

system alternatives are also provided in this chapter. 

Finally, Chapter 8 concludes the research work and identifies further investigations and 

development required to improve system performance and optimisation.  
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CChhaapptteerr  22  

CCOO22  RREEFFRRIIGGEERRAATTIIOONN  IINN  SSUUPPEERRMMAARRKKEETTSS    

The choice of refrigerants in commercial refrigeration systems has been undergoing a 

rapid change. One approach gaining popularity is the use of natural refrigerants. Natural 

refrigerants such as ammonia, hydrocarbons (HC) and CO2 which were known earlier 

are now experiencing resurgence after the problems to the environment have been rising 

due to the use of the non-natural refrigerants. Natural refrigerants are environmentally 

benign. They have been demonstrated to be a complete solution to synthetic refrigerants 

such as CFC, HCFC and HFC (Lorentzen, 1995; Riffat et al., 1997). The interest to use 

natural refrigerants in commercial sector varies amongst countries. CO2 and HC are 

more attractive especially in Europe and Japan. In Northern European countries all of 

those natural refrigerants are used. Applications of natural refrigerants in commercial 

refrigeration are also widespread in Asia, USA, Australia, Canada and other countries 

can be expected to follow (TOC, 2006). 

The use of natural refrigerants has been resurfacing since about the last two decades, but 

to implement them in supermarket refrigeration systems is still facing some barriers. 

“Safety and technology” is considered as the most important barrier followed by 

regulation, training and availability of the components. Some countries are probably 

still facing a variety of challenges such as policy and situation as regards the phase out 

of ODP and GWP refrigerants (ATMOsphere, 2010). 

With respect to the local safety, CO2 is an excellent alternative among the natural 

refrigerants, especially in supermarket refrigeration applications. CO2 is in group A1 of 
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the safety classification which is neither flammable nor toxic (BS EN 378-1, 2008; 

ASHRAE Standard 34, 2007). On the other hand, ammonia carries a B2 safety 

classification which indicates that it has a high toxicity and also carries a medium 

flammability risk. Ammonia may be used in supermarket refrigeration systems with 

several challenges in order to achieve significant acceptance (Pearson, 2008). 

Combining ammonia with either a cascade CO2 or a secondary fluid CO2 is one 

opportunity to apply it in supermarket as highlighted by Hinde (2011). Such 

refrigeration system has been implemented in France (Rivet, 2002) and in Australia 

(Bellstedt, 2008). HC, which is in group A3 (high flammability), may also have some 

constrains. Possible leakage of HC refrigerant to the occupied area has to be restricted 

below its lower flammability limit. However, with currently available safety devices, 

better system tightness, and advanced design strategy in minimising refrigerant charge 

some supermarkets in the UK and Germany have also employed HC in their 

refrigeration systems (Gartshore and Benton, 2010; Lidl, 2011).  

22..11  CCOO22  aass  rreeffrriiggeerraanntt  

CO2 is a natural substance that has been used in the refrigeration industry since 1866. 

After reaching peak use for comfort cooling in the 1920s, its use declined to almost zero 

with the introduction of chlorofluorocarbon (CFC) refrigerants in the 1930s (Bellstedt et 

al., 2002; Bodinus, 1999). The rapid decline of CFC systems since last decade of the 

20th century has resulted in a remarkable increase in refrigeration research for new 

alternative refrigerants. The research includes the use of old natural refrigerants 

including CO2 and ammonia. Since that period, CO2 has returned as practicable options 

for various refrigeration applications (Pearson, 2005). 

CO2 (R-744) is an environmentally benign refrigerant. It has an ODP of zero and a very 

low global warming potential (GWP) of 1. The main advantages of CO2 compared to 

other natural refrigerants are that it is non-toxic and non-flammable, which often limits 

the application of other natural refrigerants such as hydrocarbons and ammonia. CO2 

also has attractive thermo-physical properties: low viscosity, high thermal conductivity, 

high specific heat capacity and high vapour density. These lead to good heat transfer in 

evaporators, condensers, and gas coolers, allowing selection of smaller equipment 

compared to HFC refrigerants. 
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One distinguishing characteristic of CO2 is its phase change properties; the triple point 

is relatively high at -56.6 oC (5.2 bara) and the critical temperature is 31 oC (73.8 bara) 

which is considered to be relatively low (ASHRAE, 2010). This may limit the 

application flexibility of CO2 refrigeration systems and the phase change properties 

from solid, liquid, and vapour as illustrated in Figure 2.1 should be thoroughly 

considered in any potential applications.  

 

 

 

 

 

 

 

Figure 2.1  CO2 expansion and phase change 
(Adapted from: ASHRAE, 2010) 

 

Comparative performance of CO2 and selected refrigerants for medium and low 

temperature refrigeration applications with the same operating conditions are shown in 

Table 2.1. The refrigeration effect of CO2 is higher than R-404A but lower than other 

natural refrigerants. This directly influences the amount of refrigerant that needs to be 

circulated in a refrigeration system. The table also shows that CO2 has the lowest 

pressure ratio among the selected refrigerants which is about 5 to 30% lower for MT 

system and 15 to 50% for LT system. Having a lower pressure ratio indicates that CO2 

can give greater volumetric and isentropic efficiencies. Another advantage of CO2 

refrigerant which can clearly be seen in the table is that it has a very small suction gas 

specific volume about 3 to 30 times lower than the other refrigerants for the MT system 

and even lower for the LT system. This means that a CO2 refrigeration system will need 

smaller size compressors and require smaller suction pipe diameters for the same 

operating conditions. 
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Table 2.1  Comparative refrigerant performance per kW for MT and LT refrigeration 

Refrigerant Pevap Pcond Pressure 
ratio 

Refrigeration 
effect 

Refrigerant 
mass flow rate 

Suction gas 
specific volume 

 (bara) (bara)  (kJ/kg) x 10-3 (kg/s) x 10-3 (m3/kg) 

MT refrigeration system application    

R-22 3.8 11.3 3.0 170.1 5.9 62.6 

R-404A 4.7 13.6 2.9 124.2 8.1 42.8 

R-290 3.7 10.3 2.9 300.5 3.3 126.1 

R-1270 4.6 12.5 2.7 306.4 3.3 105.4 

R-717 3.2 11.0 3.5 1134.1 0.9 396.8 

R-744 28.0 68.9 2.6 153.1 6.5 13.9 

LT refrigeration system application    

R-22 1.5 11.3 7.5 159.4 6.3 150.3 

R-404A 1.9 13.6 7.0 110.1 9.1 101.3 

R-290 1.5 10.3 6.6 271.7 3.7 285.4 

R-1270 2.0 12.5 6.3 281.3 3.6 234.4 

R-717 1.1 11.0 10.2 1100.1 0.9 1082.2 

R-744 13.3 68.9 5.2 153.3 6.5 29.9 

Operating conditions:  
Refrigeration capacity 1 kW, degree of superheat 5 K, no sub-cooling, evaporating temperatures of -8 and -32 
oC for MT and LT refrigeration systems respectively and condensing temperature of 28 oC for both systems.    
(Derived using EES, 2010) 

 

CO2 also shows a very favourable pressure drop performance compared to most other 

refrigerants. To demonstrate the advantage of CO2 refrigerant with regards to pressure 

drop, three different graphs has been plotted as shown in Figures 2.2 and 2.3. The 

pressure drops data of CO2 and other selected refrigerants were derived using EES 

programme for the same geometry, operating conditions and refrigeration load. 

Figure 2.2 (a) shows the comparisons of saturated liquid pressure drop of other 

refrigerants to the pressure drop of CO2. It can be seen that the liquid pressure drop of 

the CO2 refrigerant is significantly smaller than R-404A specifically at lower saturation 

temperatures but it is about 1.7 to 2.5 times higher than R-1270, R-290 and R-22. 

Ammonia (R-717) gives the lowest saturated liquid pressure drop for given evaporating 

temperature range. The acceptable saturated liquid pressure drop of the CO2 is, 

however, 5 to 9 times greater than the other refrigerants. This shows that CO2 can 

perform better compared to other selected refrigerants except ammonia in term of 

saturated liquid pressure drop which also make it suitable for use as a secondary fluid. 

The saturated vapour pressure drop ratios of other refrigerants to CO2 refrigerant are 

presented in Figure 2.2 (b). CO2 has considerably lower vapour pressure drop than the 

other refrigerants apart from ammonia. The figure also shows that the lower the 



 

18 

saturation temperature the more favourable the CO2 refrigerant compared to other 

selected refrigerants in respect of saturated vapour pressure drop.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.2  Liquid and gas pressure-drop ratio for selected refrigerants and CO2 at different 

saturated temperatures, investigated at the same operating conditions  
(Obtained using EES, 2010) 

 

Figure 2.3 describes the acceptable pressure drop of saturated liquid and gas line which 

is equivalent to 1 K saturated temperature drop. For the same saturation temperature, the 

acceptable pressure drop of CO2 is significantly higher than the other selected 

refrigerants. CO2 can tolerate pressure drop of approximately 45 kPa for LT systems 

and 80 kPa for MT applications. While the other refrigerants can accept pressure drop 

as high as 5 kPa and 15 kPa for respectively LT and MT applications. The fact that 
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higher pressure drop can be tolerated with CO2 in the evaporator and suction line before 

system performance is seriously affected, higher evaporating temperature can be 

achieved and smaller pipe diameter can be used compared to other refrigerants. 

 

 

 

 

 

 

 

 

Figure 2.3  Acceptable pressure drop for CO2 and selected refrigerants in gas and liquid lines of     
a refrigeration system (Obtained using EES, 2010) 

 

The smaller components and pipe diameter that can be employed with CO2 lead to a 

significant reduction in the refrigerant charge required for a given refrigeration load 

compared to HCFC and HFC refrigerants. For centralised supermarket refrigeration 

systems, refrigerant charge of CO2 is expected to be approximately 50% of that of 

HCFC and HFC refrigerants. The specific 

refrigerant charge of CO2 in supermarket 

applications is in the range 1 to 2.5 kg/kW 

as shown in Table K-1 (Appendix K). CO2 

is also a relatively cheap refrigerant. Its 

price is about 50% lower than that of 

ammonia and approximately 6 to 9 times 

lower compared to the price of HCFC, 

HFC and HC refrigerants as can be seen in 

Table 2.2.  

As with all other refrigerants, the choice of lubricant is very important with CO2 

refrigeration systems. The primary function of lubricants is to reduce friction and 

      

           Table 2.2  Price comparison of 
selected refrigerants 

Refrigerants Price (£/kg) Price ratio 

R-22 17.00 7.3 

R-404A 13.20 5.7 

R-290 19.25 8.3 

R-1270 22.10 9.5 

R-717 5.60 2.4 

R-744 2.31 1.0 

       (Source: Dean & Wood, 2011) 
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minimise wear in the compressor. A lubricant achieves this by interposing an oil film 

between sliding surfaces to reduce direct solid to solid contact and lower the coefficient 

of friction. A compatible lubricant will be able to continuously keep the lubrication film 

in the compressor. Lubricants being considered suitable for CO2 include mineral oils 

(MO), poly alpha olefin (PAO) and hydro treated mineral oil. Polyol ester (POE) oil 

which is commonly used for HFC refrigerants also has good miscibility with CO2 

(Lommers, 2003). 

In spite of the above advantages, CO2 also has some disadvantages. One main drawback 

of CO2 as a refrigerant is its high working pressures compared to those of natural and 

synthetic refrigerants. This means that for CO2 systems, components must be designed 

to withstand the high pressures and to reduce the safety risk due to high pressure 

particularly for systems with high refrigerant charge such as supermarket systems (IIR, 

2000).  

Since CO2 offers a much higher volumetric capacity, the problem of the higher working 

pressure can be overcome by optimal design involving smaller and stronger 

components. Moreover, modern material development, design techniques and 

technology in manufacturing processes have dramatically reduced the risks associated 

with the high pressure (Proklima, 2008). However, to reduce costs some components in 

CO2 plant such as in indirect systems and low temperature of cascade systems are 

usually designed for maximum operating pressure (MOP) of 40 to 46 bars. In practice, 

the most common and easiest way to protect against high pressure is to release some of 

the CO2 charge from the plant through relief valves when the pressure reaches a certain 

set value. This temporarily reduces the pressure and temperature of CO2 in the system. 

If the system remains at standstill, then the relief valves will repeatedly open and close 

to keep the pressure low. In such cases, the plant can significantly lose the charge and 

need to be recharged to compensate for the lost CO2. For a CO2 refrigeration system 

which is designed for possibly long downtime, a small independent refrigeration unit 

can be fitted to cool down the CO2 liquid to levels where saturated pressure is less than 

the design pressure. Another technique is to employ a receiver which can withstand 

pressures higher than the saturated pressure of CO2 at high ambient temperatures. In the 

event of stoppage, the plant is pumped down and all CO2 charge is stored in the 
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receiver. For UK weather conditions (Met Office, 2009) a 75 bar design pressure for the 

receiver is considered safe.  

Another safety issue with CO2 refrigerant is the concentration level of CO2 gas in the 

occupied area in the event of leakage. CO2 is heavier than air and tends to displace the 

air from an occupied area close to the floor. CO2 is also odourless and cannot be 

smelled by people. Leakage from the CO2 system could make the level of CO2 

concentration too high which can risk health damage to the persons in the confined 

space such as in the plant room. A similar risk exists with CFC, HCFC and HFC 

refrigerants. In practice, this is considered to be a controlled risk which can be 

prevented with proper leak detection and space ventilation. A reliable CO2 detector is 

required to ensure the plant room is safe for people and to keep the concentration level 

of CO2 in the range of good indoor air quality (human comfort) which should not 

exceed 1000 ppm (ASHRAE Standard 62.1, 2007). 

22..22  DDiiffffeerreenntt  ttyyppeess  ooff  CCOO22  rreeffrriiggeerraattiioonn  ssyysstteemmss  

In supermarket applications three types of refrigeration systems are mainly employed 

which include stand-alone (integral), condensing units and centralised supermarket 

systems (IPCC, 2005).  In centralised systems, a number of different design approaches 

can be adopted that fall into two major categories: subcritical cascade systems and 

transcritical systems. Subcritical cascade systems operate at moderate pressures and 

employ two refrigerants one for refrigeration and another for heat rejection whereas 

transcritical systems operate at high pressures at high ambient temperatures but employ 

only CO2 as refrigerant. 

2.2.1 Subcritical CO2 refrigeration systems 

As discussed earlier, the CO2 refrigerant has a low critical point which limits the 

maximum condensing temperature to around 25 oC (Rhiemeier et al., 2009). In order to 

keep the cycle in the subcritical region all year round, it is necessary to use a cascade 

system to absorb the heat rejected in the condenser of the low pressure system. A 

schematic diagram of a simple cascade system using CO2 as the low stage cycle is 

shown in Figure 2.4.  The cascade system is constituted by two single stage systems 
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connected by a heat exchanger. The high pressure system which rejects heat to the 

ambient or cooling medium can employ a variety of refrigerants. 

 

 

 

 

 

 

 

Figure 2.4  Schematic diagram of a cascade arrangement using CO2 as the low stage cycle 

 

The performance of subcritical cascade systems in supermarket applications has been 

reported by a number of investigators (Campbell et al., 2006; Hinde et al., 2009). Other 

investigations have also been conducted on the use of all natural refrigerants in cascade 

arrangements. Fernandez-Seara et al. (2006) studied a compression–absorption cascade 

refrigeration system using CO2 and ammonia as the refrigerants at the lower stage. 

Sawalha et al. (2006) evaluated theoretically and experimentally the performance of an 

ammonia/CO2 cascade refrigeration system for a supermarket application. The authors 

have reported that the cascade arrangement could provide better COP compared to a 

conventional R-404A system. Similar cascade ammonia/CO2 systems have also been 

investigated by Lee et al. (2006); Getu and Bansal (2008); Bingming et al. (2009) and 

Dopazo et al. (2009). Bansal and Jain (2007) reviewed cascade refrigeration systems 

and analysed systems using CO2 in the low stage cycle, while the high stage employed a 

variety of refrigerants including propane, propylene, ammonia and R-404A.  

2.2.1.1 All-volatile systems 

Figure 2.5 shows a simplified all-volatile subcritical CO2 system arrangement. With this 

arrangement CO2 works as secondary fluid for both chilled and frozen food systems 
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which are arranged as parallel units. The CO2 circuits are connected to primary 

refrigeration systems which act as the high pressure stages of the arrangement. The 

evaporating temperature of the high stage system must be lower than the saturation 

temperature of the corresponding secondary loop system. The temperature difference 

depends on the effectiveness of the cascade condenser. At the same time, the saturation 

temperatures of the secondary loops should be low enough to keep the chilled food in 

the range between -1 oC to +4 oC and frozen food from between -15 oC and -18 oC. 

Supermarkets commonly use saturation temperatures in the range between -30 oC and -

35 oC for the LT loop and from -7 oC to -10 oC for the MT loop. With the pressures 

corresponding to these temperatures, it is possible to use conventional refrigeration 

pipes and components to handle CO2. 

 

 

 

 

 

 

Figure 2.5  Parallel MT and LT indirect system with CO2 as secondary fluid 

 

The CO2 circuit contains a receiver that the CO2 returning from the cascade condenser. 

The receiver also functions as a liquid reservoir for the CO2 pump. The level of liquid in 

the receiver can be connected to the pump controller to ensure the pump works at an 

acceptable net positive suction head (NPSH). The size of the receiver should, therefore, 

be carefully designed to be able to accommodate the fluctuations of the liquid CO2 

caused by variation in the load.  

The pump circulates the liquid CO2 in the secondary loop from the receiver to the 

evaporator and keeps the evaporator wet (flooded) for all load conditions. In the 

evaporator, liquid CO2 absorbs heat and some of it evaporates. The saturated mixture 

then flows to the cascade condenser where it rejects heat to the high stage system and 
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becomes liquid again. From the condenser the CO2 returns back to the receiver for the 

repetition of the cycle. 

 

 

 

 

 

 

 

Figure 2.6 All-volatile CO2 subcritical system with LT DX circuit; (a) cascade arrangement with 
vapour compression cycle on HT section, (b) alternative arrangement for HT system 
with sorption chiller, (c) Other arrangement for cascade joint 

 

Another arrangement for all-volatile subcritical CO2 system is shown in Figure 2.6. The 

system employs an LT DX circuit and LT secondary loop for the low temperature 

system. The arrangement uses only one high stage system which can minimise the 

refrigerant charge and safety risk if other natural refrigerants such as HC and ammonia 

are used. The liquid CO2 from the MT receiver is distributed to both the MT secondary 

loop and the LT system. For the LT system the liquid CO2 flows through a valve (ICM) 

where it is expanded to the low stage evaporating pressure.  The ICM valve is 

modulated to maintain the temperature and liquid level of the LT secondary loop 

relatively constant. From the ICM valve the two phase mixture enters the LT receiver 

where it is separated into two phases. The liquid phase flows through the LT secondary 

loop and the saturated gas enters the LT compressor and is compressed to the MT 

pressure level. The hot gas from the LT compressor then mixes with the two phase 

mixture. The mixture then enters the cascade condenser and returns back to the MT 

receiver to complete the cycle. An internal heat exchanger (IHX) might be required 

between the suction line of the LT compressor and the liquid line upstream of the ICM 

valve to ensure there is no liquid at suction line of the compressor. 
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The above arrangement can also employ a sorption chiller on the high stage as an 

alternative solution to a vapour compression system as shown in Figure 2.6 (b), 

particularly where there is waste heat available, as is the case with local power 

generation to drive the sorption chiller. Different arrangement for the CO2 cascade 

coupling can also be applied as can be seen in Figure 2.6 (c). 

The volatile subcritical CO2 solutions are relatively simple systems to implement and 

offer advantages over conventional water based brine systems. They require 

considerably smaller pipes and components, and installation cost savings can reach     

12% (Danfoss, 2010). With respect to energy consumption, the author stated that the 

secondary CO2 solutions can be more energy efficient by about 30% for the LT system 

and 20% for the MT system. Rogstam (2010) reported that the secondary CO2 could 

provide energy reduction for pumping of the order of 90% compared to fixed speed 

brine pumps and 50% reduction compared to variable speed brine pumps. Another 

possibility is to operate the CO2 system on gravity circulation. 

2.2.1.2 Volatile-DX system 

A volatile-DX system is a subcritical CO2 system with MT secondary loop cascaded 

with a LT DX circuit as shown in Figure 2.7. The advantage of this system is that it is a 

simple system without LT pump or LT receiver for the LT circuit.  

 

 

 

 

 

 

 

 

 

Figure 2.7 Cascade CO2 refrigeration with MT secondary loop and LT DX system; (b) Alternative 
cascade coupling arrangement for HT system, (c) Alternative LT evaporator 
arrangement. (Adapted from: Sawalha et al., 2006) 
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Subcritical CO2 system solutions in supermarket applications provide several 

advantages over conventional systems. The HFC refrigerant charge on the high stage 

system can be significantly reduced which reduces impact on the environment. The high 

stage system can be located in a secured machine room with no public access. This 

gives possibility to employ other natural refrigerants such as ammonia and 

hydrocarbons with minimum safety risk. It has also been reported that the energy 

consumption of subcritical CO2 supermarket solutions can be comparable to that of     

R-404A DX systems (Sawalha et al., 2006; Hinde et al., 2009; Rhiemeier et al., 2009). 

To date many subcritical CO2 systems have been implemented in EU countries such as 

Denmark, Germany, Norway, Sweden, Italy and the UK (Rhiemeier et al., 2009). Such 

systems have also been reported in supermarket applications in Australia, Canada and 

the Latin America as reported (Bellstedt, 2008; CanmetENERGY, 2009; Verdemar, 

2010). 

2.2.2 All-CO2 systems 

All-CO2 systems employ CO2 as the only working fluid without the need of a second 

refrigerant on the high pressure side of a cascade arrangement for heat rejection. This 

minimises the environmental impact from the refrigerant leakage but requires the 

system to operate above the critical temperature of CO2 (transcritically) at high ambient 

temperatures. At temperatures above the critical point, heat rejection occurs whilst CO2 

in the gaseous state and takes place in a gas cooler. This necessitates high pressures 

which can lead to high power consumption. Therefore, the pressure of the gas cooler 

becomes very important operating parameters which need to be controlled in order to 

obtain best performance.  

In transcritical stage the operating pressure of the gas cooler becomes independent of 

the gas cooler exit temperature. Figure 2.8 shows that different operating pressures can 

be selected at a particular gas cooler exit temperature. The figure also illustrates 

optimum operating pressures at different exit temperatures of the gas cooler.  

The temperature of CO2 exits the gas cooler depends on the ambient temperatures and 

the heat rejected from the gas cooler. The exit temperatures can be maintained close to 

the ambient temperatures by modulating the speed of the cooling fans. The pressure of 
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the gas cooler is regulated by a high pressure expansion device (ICMT valve) and the 

optimum operating pressure can be achieved by modulating the ICMT valve which 

incorporates a proportional integral differential (PID) controller. Control parameters of 

this controller include the exit temperature and the actual pressure of the gas cooler.  

 

 

 

 

 

 

 

 

Figure 2.8  COP of a CO2 transcritical cycle vs. pressures of the gas cooler at different 
exit gas temperatures (T1) (Source: Sawalha, 2008) 

 

2.2.2.1 Parallel CO2 system arrangement 

Figure 2.9 illustrates a parallel CO2 system which constitutes two separate DX circuits. 

One circuit is for chilled food (MT) display cabinets and another for frozen food (LT) 

cabinets. The MT system uses single stage compression whereas two-stage compression 

with intercooler is normally used for the LT system. In practice, both systems normally 

use multi-compressor packs. Internal heat exchangers (IHX) are also commonly 

employed to ensure the systems have superheated CO2 vapour at the suction line of the 

compressors.  

The use of two-stage compression with intercooler can reduce the pressure ratio and 

discharge temperature of the LT compressors. The intercooler de-superheats the CO2 

vapour before the second stage of compression. This can keep the discharge temperature 

of the LT CO2 system below 140 oC which is considered as an acceptable value for the 

CO2 compressors (Girotto et al., 2004). The two stage compression can also improve 

volumetric and isentropic efficiencies of the LT compressors.  
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Figure 2.9 Simplified parallel CO2 refrigeration systems  

 

2.2.2.2 Integrated CO2 system solutions 

In the integrated system solutions, both MT and LT circuits are connected to the same 

heat rejection circuit. The arrangement of the three circuits depends on the system 

solutions chosen. These are described in the following sections. 

 Transcritical CO2 booster system 

A simplified diagram of a transcritical CO2 booster system is shown in Figure 2.10. The 

system is divided into 4 pressure levels. The high pressure is in the range between 60 

and 90 bara. It incorporates the discharge of HT compressor, gas cooler and high 

pressure expansion device (ICMT). The intermediate pressure is from 30 to 40 bara. 

This section begins from downstream the ICMT valve incorporates the liquid receiver 

and the bypass valve (ETS) and ends at the expansion valves of the MT and LT circuits. 

The medium pressure level ranges from 26 to 29 bara and includes the discharge of the 

LT compressor, the MT evaporator and suction of the HT compressor. The low pressure 

section in the pressure range from 12 to 14 bara incorporates the LT evaporator and 

suction line to the LT compressor. 

The main function of the bypass valve (ETS) is to keep the pressure in the intermediate 

pressure section relatively constant by bypassing saturated gas from the receiver to the 

medium pressure section. The bypass valve also ensures a differential pressure exists 

LT display 
cabinet 

Liquid 
receiver 

IHX 

Gas 
cooler 

(b) LT system

Inter 
cooler 

ICMT

EXV 

MT display 
cabinet 

Gas cooler 

Liquid 
receiver 

(a) MT system

EXVICMT 

IHX 



 

29 

between the liquid line after the liquid receiver and the MT evaporator coils for the 

proper operation of the MT expansion valve. 

   

 

 

 

 
 
 
 
 
 

Figure 2.10  All-CO2 booster system with gas bypass  
(Adapted from: Danfoss, 2008a) 

 

In a CO2 booster system, the lower the intermediate pressure the better it is for system 

efficiency which can be explained as follows: The intermediate pressure does not 

influence the pressure ratio of the LT and HT compressors which means the power 

consumption of the compressors remains constant. The refrigeration effect of the MT 

and LT evaporators, however, will increase when the intermediate pressure reduces. 

This will improve the refrigeration capacity of the systems which leads to a higher 

system efficiency. 

 

 

 

 

 

 

 

 

Figure 2.11  All-CO2 booster system installed in the Refrigeration Laboratory, Brunel University 
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For the operation of the MT expansion valve, at least a 4 bar pressure difference is 

maintained over the MT evaporator pressure (Danfoss, 2008a). Other factors that 

influence the operation of the bypass valve and control of the intermediate pressure 

include the gas cooler exit pressure and temperature and the requirement to have 

superheated CO2 vapour at the entry to the HT compressor. 

Figure 2.11 shows a small size plant with integrated all-CO2 booster system. The CO2 

system employs an air cooled gas cooler, two parallel compressors for the high pressure 

system and a single compressor for the low pressure cycle. ICMT and ICM valves are 

utilised for the high pressure expansion device and the gas bypass valve respectively. 

The CO2 plant incorporates a Danfoss controller for the system control and monitoring.  

 Cascade CO2 system with flash gas bypass 

A cascade CO2 system with flash gas bypass is shown in Figure 2.12. The high stage or 

heat rejection section is similar to the booster system.  The difference is that the LT 

system is cascaded as an individual circuit with the HT system for heat rejection. The 

MT evaporators are divided into two groups: one provides refrigeration to the MT 

display cabinets and the other condenses the CO2 gas for the LT systems. 

 
 

 

 

 

 

 

 

 

 

 
Figure 2.12  Integrated cascade all-CO2 system with flash gas bypass 

 

This solution has been implemented in a number of UK supermarkets (Campbell, 2009). 

Performance investigations have shown its seasonal energy performance to be about the 
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same as that of conventional R-404A systems (Suamir and Tassou, 2010). In order to 

gain full advantage of subcritical operation when the ambient temperature is low a 

bypass valve is required in parallel with the ICMT valve (the bypass valve is not shown 

in the diagram). The bypass valve closes when the ambient temperature is above a 

certain value (the switching point between subcritical and transcritical operation) to 

allow the ICMT valve to regulate the flow of CO2 gas out from the gas cooler and opens 

below the switching point to allow the liquid CO2 to freely flow from the condenser 

(gas cooler) to the liquid receiver. 

 Cascade CO2 system with a suction receiver 

The cascade CO2 system with low pressure receiver is an improvement on the cascade 

system with flash gas bypass. As can be seen in Figure 2.13, a suction receiver is added 

on the high temperature side of the system. A back pressure valve is used instead of 

bypass valve to minimise the fluctuation in the intermediate pressure due to pressure 

and temperature variations at the outlet of the gas cooler.  

 

 

 

 

 

 

 

 

Figure 2.13  Integrated cascade all-CO2 system with suction receiver 

 

With this arrangement the MT evaporators can be set at zero superheat which can 

increase the refrigeration capacity and the COP of the system. To ensure no liquid 
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each HT compressor. According to Campbell (2009) this system is adaptable to variable 

load; is less sensitive to charge and is easy to service. 

Figure 2.14 presents an integrated cascade all-CO2 system with suction receiver 

implemented in a UK supermarket. The store has sales area of 2,300 m2. The CO2 

refrigeration plant of this store constitutes 4 HT packs and 2 LT packs. Every single HT 

pack comprises 3 compressors, an air cooled gas cooler and a suction receiver (0.26 m3 

volume). The LT pack incorporates 3 LT compressors, a liquid receiver (0.13 m3 

volume) and 3 condensers.  For reliability of the LT refrigeration system, each LT pack 

is cascaded to three different HT packs as shown in Figure 2.13. 

 

 

 

 

 

 

 

Figure 2.14  Integrated cascade all-CO2 plant in Tesco Ramsey, UK 

 

 

22..33  SSuummmmaarryy  

This chapter outlines advantages and disadvantages of the CO2 as a natural refrigerant. 

The CO2 refrigerant, with ODP of zero and GWP of one, has lower impact to the 

environment compared to HCFC and HFC refrigerants. Having attractive thermo-

physical properties, the CO2 refrigerant can provide good heat transfer in heat 

exchangers of a refrigeration system which allows selection of smaller equipment than 

HCFC and HFC refrigerants. The CO2 refrigerant is also non-toxic and non-flammable 

which make it more advantageous than other natural refrigerants such as ammonia and 

hydrocarbons. Moreover, the CO2 refrigerant is relatively cheap.  

LT-pack of 20 kW 
refrigeration duty 

HT pack of 40 kW 
refrigeration duty 



 

33 

The main downside of the CO2 refrigerant is its high working pressures. The problem of 

the higher working pressure, however, can be overcome by using smaller and stronger 

components. Some practical techniques to protect a CO2 refrigeration system against 

high pressure are also explained in this chapter. 

The chapter also describes different solutions and arrangements of the CO2 refrigeration 

systems for supermarket applications which fall into two major categories: subcritical 

cascade systems and transcritical systems. Subcritical cascade systems operate at 

moderate pressures and employ two refrigerants one for refrigeration and another for 

heat rejection whereas transcritical systems operate at high pressures at high ambient 

temperatures but employ only CO2 as refrigerant. Recent developments of the CO2 

refrigeration systems and their applications in supermarkets are also presented. 

The following chapter will explain the design and the construction of the test facility 

and will include the integration arrangement, system design and modelling, component 

calculations, the components used, refrigeration load system and the test chamber. 
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CChhaapptteerr  33  

DDEESSIIGGNN  AANNDD  CCOONNSSTTRRUUCCTTIIOONN  OOFF  TTHHEE  TTEESSTT  
FFAACCIILLIITTYY  

A small size CO2 refrigeration system for low and medium temperature applications 

was designed and constructed to enable it to be integrated with the existing trigeneration 

system to form an overall test facility. Instrumentation and monitoring systems were 

also fitted to comprehensively monitor the performance of the system for evaluation 

purposes.  

For design purposes, mathematical models were established in the Engineering 

Equation Solver (EES) platform which include pipe sizing, liquid receiver, evaporator-

coil models and system integration. The EES models were used to determine the 

dimensions and capacity of the components. The models were also used to estimate the 

performance of the integrated system at different operating conditions. Based on the 

dimensions of the components a 3D drawing of the system was drawn using AutoCAD.  

The CO2 refrigeration plant and the integration circuit were constructed in the 

Refrigeration Laboratory of Brunel University. Technical drawings were produced 

which include piping, instrumentation diagrams, liquid receiver, evaporator coils and 

electrical control systems. 

This chapter presents the mathematical models produced for the design of the CO2 

refrigeration system. The evaporator coil models will be presented separately in  

Chapter 4. This chapter also details the construction of the test facility which 
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incorporates mechanical, electrical, control and monitoring systems. The loading 

systems and the environmental test chamber are also briefly described.  

33..11  IInntteeggrraattiioonn  aarrrraannggeemmeenntt  

The test facility consists of three main modules; CHP module, absorption refrigeration 

system module, and a refrigeration load module as described in Section 1.4. The main 

construction is very similar to the previous trigeneration test facility (see Figure A-1 in 

the Appendix A). The difference is only on the refrigeration load module. A subcritical 

CO2 refrigeration system with chilled and frozen food display cabinets was used to 

replace the water based secondary loop medium temperature display cabinet.  

 

 

 

 

 

 

 

Figure 3.1  Integration arrangement of CO2 refrigeration and trigeneration systems 

 

Figure 3.1 shows a schematic diagram of the integration arrangement of the CO2 

refrigeration and trigeneration systems. The arrangement employs a water based 

secondary loop which bridges the CO2 refrigeration system to the absorption chiller of 

the trigeneration facility. Main components of the secondary loop include cascade 

condenser, brine pump and evaporator of the absorption chiller. The CO2 refrigeration 

system rejects heat to the secondary loop in the cascade condenser which is a brine/CO2 

heat exchanger. The rejected heat is then released to the atmosphere from the condenser 

of the absorption chiller which is driven by recovered heat from the CHP system.  
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33..22  MMaatthheemmaattiiccaall  mmooddeellss  

3.2.1 Integration model  

The integration model uses the ambient conditions and required product temperature as 

boundary conditions. The temperature for the products was assumed to be -1 oC to 5 oC 

for medium temperature (MT) system and -15 oC to -18 oC for the low temperature (LT) 

system. Evaporating temperatures for the medium and low temperature systems were 

assumed to be -8 oC and -32 oC respectively. London weather data was assumed for the 

purposes of heat rejection. 

The integration model involved all components which influenced the performance of 

the system and each component was treated as a single control volume. Mass and 

energy balance principles were applied to the control volumes which can be expressed 

as follows: 
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3.2.1.1 Trigeneration system model 

Figure 3.2 shows the schematic diagram of the CHP module. It can be seen that the fuel 

energy of the CHP is used to generate electrical power and to produce heat. Some of the 

heat is recovered in the gas/liquid heat exchanger (boiler HX) and the rest is released to 

the atmosphere as waste heat. The boiler HX is circuited to the heat transfer fluid (HTF) 

loop through which the useful heat is utilised to drive the absorption chiller. 

The energy balance of the CHP model consists of fuel energy, useful energy (electrical 

power and useful heat) and energy losses (waste heat and other losses). This energy 

balance equation using CHP efficiency (ηCHP) can be expressed as:  

CHPhCHPeCHPfCHP QWE ,,,          (3.3) 

The useful heat of the CHP can be determined from: 

abshhCHPh QQQ ,,             (3.4) 
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Equation (3.4) shows that the useful heat of the CHP system can be used to drive the 

absorption chiller (Qh,abs) and for central heating or domestic water supply (Qh). In this 

design, the heat for spare or domestic heating (Qh) was assumed to be zero. The 

temperature of the hot gas exiting the Boiler HX (To-gas) was obtained by assuming the 

temperature difference between the gas and the heat transfer fluid (HTF) at the outlet of 

the boiler HX to be 14.6 oC. This was obtained from experimental test results.    

 

 

 

 

 

 

 

Figure 3.2   Schematic diagram of the microturbine based CHP system 

 

Figure 3.3 shows the schematic diagram of the heat transfer fluid (HTF) driven 

ammonia-water absorption chiller. The absorption chiller employs a generator absorber 

heat exchange (GAX) system which comprises main components such as generator, 

condenser, expansion device, absorber, solution pump and evaporator. An HTF jacket 

was attached on the generator to enable the unit to be driven by the heat transfer fluid 

heated up in the exhaust gas HX of the CHP system. The evaporator is connected to a 

cascade condenser of the CO2 refrigeration system. 

In order to simplify the model, the performance parameters of the absorption system 

which include refrigeration capacity (Qr,abs) and coefficient of performance (COPabs) 

were determined from best fit equations of manufacturer and experimental data as a 
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function of delivery brine temperature and ambient temperature. The equations are 

given below: 

 Qr,abs =  A0 + A1To + A2To
2 + A3To

3 + A4To
4 + A5To

5 + A6To
6 + B1Tamb + B2Tamb

2 + 

B3Tamb
3 + B4Tamb

4 + B5Tamb
5 + B6Tamb

6      (3.6) 

COPabs = C0 + C1To + C2To
2 + C3To

3 + C4To
4 + C5To

5 + C6To
6 + D1Tamb + D2Tamb

2 + 

D3Tamb
3 + D4Tamb

4 + D5Tamb
5 + D6Tamb

6      (3.7) 

Qr,abs is the refrigeration capacity of the absorption system (kW); To and Tamb are 

delivery brine and ambient temperatures (oC) respectively. Constants of the equations 

are listed in Table 3.1.   

Table 3.1  Constants of the best fit equations  

 
Parameter order 

0 1 2 3 4 5 6 

A 0.4962 -0.175 -0.06885 -0.01365 -0.001457 -0.000078 -0.0000016 

B  0.00029 -0.00021 -2.492x10-8 1.337x10-6 -3.264x10-8 7.881x10-11 

C 3.429 -9.55 -4.022 -0.8278 -0.08856 -0.004712 -0.0000985 

D  0.008248 -0.004558 0.00000828 0.0000275 -7.190x10-7 2.076x10-9 

The coefficient of correlations for the refrigeration capacity RQ
2 = 0.9890 and the coefficient of performance 

RCOP
2 = 0.9974 

 

 

 

 

 

 

 

Figure 3.3   Schematic diagram of the ammonia-water absorption chiller 

 

In this model, Qr,abs was used as a boundary condition in simulating the integrated 

system. The heat rejected from cascade condenser of the CO2 refrigeration system 

(Qcond) should be smaller than Qr,abs. The results of the simulations are considered 

invalid if Qcond is higher than Qr,abs. 
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The heat required to drive the generator of the absorption system (Qh,abs) can be 

calculated from:  

absh

cond
abs Q

Q
COP

,

            (3.8) 

The mass flow rate of the heat transfer fluid and power consumption of the HTF pump 

can be determined from:  

)( ,,, htfihtfohtfhtfabsh TTCpmQ             (3.9) 

 
pumphtf

htfihtfohtfhtf
pumphtf

PPvm
W

,

,,
, 





         (3.10) 

Ti-htf is the temperature of the HTF entering the generator jacket which has been found 

from the experimental tests to be in the range between 190 and 200 oC. To,htf can be 

determined by assuming the temperature difference of HTF across the generator to be   

6 oC. (Po - Pi) and (ηhtf,pump) are the pressure losses in the HTF circuit and the total 

efficiency of the HTF-pump. These were determined from tests to be 400 kPa and 0.45 

respectively. The properties of the HTF can be determined from equations (B.1) to (B.4) 

in Appendix B. 

3.2.1.2 CO2 refrigeration model 

The CO2 refrigeration system of the test facility is a volatile-DX system. The basic 

principle of such system is explained in Section 2.2.1.2.  

A simplified diagram of the CO2 system is shown in Figure 3.4. The system comprises 

an LT CO2 compressor, LT and MT evaporators, a CO2 pump, expansion valve (EXV), 

regulator valve (RV), liquid receiver, internal heat exchanger (IHX) and a cascade 

condenser. The condenser is a CO2/brine HX. To provide flexibility to investigate 

different arrangements for the LT compressor, the discharge line is split into two 

branches. One branch is connected to the saturated gas line from the liquid receiver and 

the other feeds directly into the liquid receiver. The figure also shows a bypass circuit 

from the CO2 pump to the liquid receiver which allows the flow of CO2 refrigerant to 

the MT evaporator to be varied to enable investigation of the effect of circulation ratio 

(CR) on the performance of the MT evaporator.  
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Figure 3.4   Centralised volatile-DX CO2 section 

 

The refrigeration cycle of the system is shown in Figure 3.5. The cycle refers to the 

schematic diagram in Figure 3.4. It can be seen that the thermodynamic cycle of the 

system consists of compression of a low pressure, low temperature superheated CO2 

vapour to medium pressure level, followed by mixing of the superheated gas from the 

compression process with saturated CO2 gas from the liquid receiver. The CO2 gas is 

de-superheated and condensed in the cascade condenser and exits as saturated liquid. 

Some of the liquid is pumped to the MT evaporator where evaporation takes place by 

absorbing heat from air circulating in a refrigerated display cabinet. The CO2 exiting the 

MT evaporator is a mixture of vapour and liquid. Liquid from the receiver flows 

through an internal heat exchanger (IHX) before is expanded isenthalpically in the 

expansion device (EXV) which results in a low temperature vapour-liquid mixture 

entering the low temperature evaporator. The low temperature two phase mixture 

evaporates in the LT evaporator removing heat from the LT refrigerated cabinet. The 

vapour exiting the LT evaporator is superheated in the IHX and then compressed in the 

LT compressor to complete the cycle. 

To simulate the volatile-DX CO2 refrigeration system, some assumptions were made as 

follows: steady state flow conditions; negligible thermal losses to the environment; 

negligible refrigerant pressure drops in the pipes; degree of superheat of the LT 

evaporator 5 K; CO2 leaving the condenser in saturated liquid; vapour quality at the exit 

of MT evaporator to be 0.8 (it can be varied depending on the circulation ratio); 

isenthalpic expansion in the EXV; negligible refrigerant pressure drop across the 

MT 
Evaporator 

LT 
Evaporator 

IHXCO2 Compressor 

CO2 Pump

EXV

RV

  
Liquid receiver 

To the trigeneration 
system 

 1

 2

 3

 11

 10

 9

 5

 4

 6  7

 8

 12

Bypass circuit 

Cascade 
condenser 

 33 

 35 



 

41 

regulator valve (RV). The isentropic efficiency (ηs) of the CO2 pump was assumed to be 

0.5 and the overall efficiency (ηo) was predicted from manufacturer’s data to be 0.1. The 

compression process in the CO2 system was non-isentropic. The isentropic and 

volumetric efficiency of the compressor can be expressed as a function of pressure ratio 

(Rp) and can be determined from (Lee et al., 2006). 

.
2 89810.0.09238.0.00476.0  pps RR         (3.11) 

.
2 13413.1.15293.0.00816.0  ppv RR         (3.12) 

The electrical motor efficiency of the compressor (ηm) was assumed to be 0.86 (Navarro 

et al., 2007).  

 

 

 

 

 

 

 

 

 

Figure 3.5   P-h diagram of the subcritical CO2 refrigeration cycle 

 

Table 3.2 summarises the main mass and energy balance equations for each component 

of the CO2 refrigeration system. The properties of CO2 refrigerant were derived from 

the EES software.  

In the integrated system arrangement, the CO2 refrigeration system rejects heat to the 

secondary loop through the cascade condenser. The temperature of the secondary fluid 

(brine) should be lower than the temperature of the CO2 refrigerant. This temperature 

difference is a function of the effectiveness of the heat exchanger. The effectiveness of 

the cascade condenser and its temperature losses (ΔTcond) can be calculated from: 
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353

43

TT

TT
cond 


          (3.13) 

354 TTTcond           (3.14) 

The position of each measurement point is shown in Figure 3.4. T3 and T4 are 

temperatures of CO2 refrigerant entering and leaving the condenser respectively; T35 is 

the temperature of brine entering the condenser. 

Table 3.2  Equations for the CO2 refrigeration system 
(Numbers of the parameters refer to Figure 3.4) 

Components Mass balance Energy balance 

 
LT Compressor 21 mm    

 
 
 
 
 
 

22.11 HmWHm scomp    








 


s

s
scomp

HH
mW


12

1.   








 


mvs

s
comp

HH
mW

 ..
12

1  

 
Mixing point 1223 mmm    12122233 HmHmHm    

 
Condenser 43 mm    condQHmHm  4433   

 
Expansion valve (EXV) 

 

76 mm    
 

76 HH   

 
LT Evaporator 87 mm    8877 HmQHm LT    

 
Internal heat exchanger (IHX) 81 mm    

65 mm    
66118855 HmHmHmHm    

 655 HHmQIHX    

CO2 pump 
 

109 mm   * 
 

os
pumpCO

PPvm
W


91099

,2





 

MT evaporator 1110 mm    11111010 HmQHm MT    

* For simulation purposes mass flow rate of the bypass line was assumed to be 0 kg/s. 

 

The performance of the CO2 refrigeration system can be determined from: 

comp

LT
LT W

Q
COP           (3.15) 

pumpCO

MT
MT W

Q
COP

,2

          (3.16) 
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comppumpCO

LTMT
overallCO WW

QQ
COP





,2

,2        (3.17) 

The coefficient of performance (COP) of the integrated system can be calculated from: 

int,
int WQ

QQ
COP

absh

LTMT




          (3.18) 

Wint is the electrical power consumption of the various components of the integrated 

system which can be expressed as: 

pumpbrinepumphtfabspumpCOcomp WWWWWW ,,,2int       (3.19) 

Equation (3.19) shows that the integrated system consumes electricity for the LT CO2 

compressor (Wcomp), CO2 pump (WCO2,pump), absorption chiller (Wabs), heat transfer fluid 

pump (Whtf,pump) and brine pump (Wbrine,pump).  

The electrical power of the brine pump can be determined from: 

 
pumpbrine

brineibrineobrinebrine
pumpbrine

PPvm
W

,

,,
,

..







        (3.20) 

(Po,brine-Pi,brine) and (ηbrine,pump) are pressure head and total efficiency of the brine pump 

which were assumed to be 250 kPa and 0.5 respectively. The power consumption of the 

brine pump can be reduced by minimising the pressure drop of the secondary loop 

which subsequently reduces the pressure head. This can be achieved by installing the 

CO2 refrigeration system near the trigeneration plant. 

3.2.1.3 Integration capacity and performance simulations 

A simplified schematic diagram of the integrated system displayed in the model is 

shown in Figure 3.6. A medium temperature vertical multi deck cabinet with 

refrigeration capacity of 5 kW and a 3 kW low temperature vertical door type cabinet 

form the loading system of the integrated arrangement. The input parameters of the 

model include ambient temperature, refrigeration duties and evaporating temperatures 

of the MT and LT cabinets, circulation ratio, effectiveness of the IHX and delivery brine 

temperature.   
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The main output parameters include COP and power consumption of the individual 

components and systems, refrigeration capacity of the absorption chiller (Qr,abs), 

rejected heat from the cascade condenser (Qcond) and heat required to drive the 

absorption chiller (Qh,abs). 

Other parameters such as mass flow rate, degree of sub-cooling and superheating, 

thermal and flow properties of the CO2 refrigerant at every point in the cycle can also be 

obtained from the model. 

In order to determine the performance characteristics of the individual and the 

integrated systems at different operating conditions, the following investigations have 

been carried out using the model: 

 Variation of the system COP with ambient temperature  

 Effect of the condensing temperature on the system COP 

 Effect of the LT evaporating temperature on the system COP 

 Variation of the COP with load ratio of LT to MT systems 

 Influence of the use of internal heat exchanger (IHX). 

 Variation of the COP with circulation ratios 

 Variation of the system COP with ambient temperature 

Figure 3.7 presents the influence of the ambient temperature on the COP of the 

absorption chiller and the integrated system at different delivery brine temperatures. The 

minimum condensing temperature of the absorption system and the temperature 

difference between condensing and ambient temperatures were assumed to be 25 oC and 

5 oC respectively. The system was simulated with cascade condenser effectiveness 

(εcond) 0.88 and LT evaporating temperature (Tevap,LT) -32 oC. The LT and MT loads 

were maintained constant of 3 and 5.0 kW respectively.  Circulation ratio of the MT 

system was set at CR = 1.2. The condensing temperature of the CO2 refrigeration 

system varied from -6 oC to -8 oC when the delivery brine temperatures changed from -8 
oC to -10 oC.  

The COP of the absorption system (COPabs) decreased with increased ambient 

temperature but increased with brine temperature as can be seen in Figure 3.7. The 

results show a good agreement with test data Robur (2006) and Suamir et al. (2009).  
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The COPs of the absorption and integrated systems are stable at ambient temperature 

below 20 oC but they begin to reduce at ambient temperatures above 20 oC. This is 

mainly because the condensing temperature of the absorption system was kept constant 

at 25 oC at ambient temperatures below 20 oC. Figure 3.7 also shows that the COP of 

the integrated system (COPint) was determined to be 25% lower than COPabs due to the 

power consumption of the HTF pump as well as the refrigerant pump and compressor of 

the CO2 refrigeration system. As can be seen in Figure 3.6 the power consumption of 

HTF pump (oil pump) is nearly 2.5 times that of the CO2 refrigeration system. This 

indicates that optimisation of the HTF circuit can reduce the electrical energy 

consumption of the HTF pump which subsequently will improve the COP of the 

integrated system. 

 

 

 

 

 

 

 

Figure 3.7   Effect of the ambient temperature on the COP of the absorption and 
integrated systems 

 

 

 

 

 

 

 

 

Figure 3.8   Seasonal performance of the absorption and the integrated systems 
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The seasonal COPs of the absorption and integrated systems are shown in Figure 3.8. 

The simulation results were obtained using London weather data (Met Office, 2009) and 

MT and LT evaporating temperatures of -8 oC and -32 oC respectively. It can be seen 

that the COPs are steady in the winter because the minimum condensing temperature is 

fixed at 25 oC but reduce in the summer due to higher ambient and condensing 

temperatures. 

 Effect of the condensing temperature on the system COP 

The condensing temperature of the DX-volatile CO2 system is the same as the 

evaporating temperature of the MT system which can be varied by modulating the 

delivery brine temperature. The effect of the condensing temperature on the 

performance of the CO2 refrigeration and integrated systems is shown in Figure 3.9. The 

simulations were carried out at constant refrigerant mass flow rate for both LT and MT 

systems; εcond = 0.88; Tevap,LT = -32 oC; CR = 1.2 and Tamb = 25 oC. 

    

 

 

 

 

 

 

 

 

Figure 3.9   Variation of system COP with condensing temperature  
 

 

Figure 3.9a shows that increasing the condensing temperature from -10 oC to -1 oC 

reduced the COP of the MT refrigeration system (COPMT) by 14%. This is because the 

MT refrigeration capacity reduced from 5.2 to 4.7 kW (about 9.6% reduction) and 

increased the pump power by 5%. The increase of the condensing temperature also 

Tcond (oC)

0

5

10

15

20

25

30

35

40

45

50

-12 -10 -8 -6 -4 -2 0

Tevap_MT (oC)

C
O

P

COP_MTLT

COP_MT

COP_LT

COPCO2,overall 

COPMT 

COPLT 

(a) COP of the CO2 refrigeration 
system 

(b) COP of the absorption and integrated 
systems 

0.00

0.08

0.16

0.24

0.32

0.40

0.48

0.56

0.64

0.72

0.80

-12 -10 -8 -6 -4 -2 0

Tevap_MT (oC)

C
O

P

COP_int

COP_abs

Tcond (oC) 

COPint 

COPabs 

Tevap,MT (oC) Tcond = Tevap,MT



 

48 

significantly reduced the COP of the LT system (COPLT) and the overall COP 

(COPCO2,overall) by 47% and 46% respectively. This is mainly due to the increase in the 

compressor power consumption due to the higher discharge pressure and temperature.  

Figure 3.9b shows that increasing the condensing temperature, however, enables the 

absorption system to operate at higher delivery brine temperature which improves the 

COPabs and COPint by approximately 35% and 21% respectively. This shows that the 

integrated arrangement will be more efficient if a higher MT evaporating temperature is 

used to satisfy the refrigeration requirements.   

 Effect of the LT evaporating temperature on the system COP 

Figure 3.10 shows the effect of the LT evaporating temperature on the COP of the 

individual and the integrated systems. The simulation was carried out at Tevap,MT = -8 oC, 

CR = 1.2, Tamb = 25 oC and at constant refrigerant mass flow rate. Two interesting 

simulation results are noted. Firstly, increasing the LT evaporating temperature can 

considerably improve the COPLT and COPCO2-overall but it does not influence the COPMT. 

This indicates that operating at higher LT evaporating temperatures will improve the 

overall system efficiency.  

 

 

 

 

 

 

 

 

Figure 3.10   Variation of system COP with LT evaporating temperature  
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Secondly, the LT evaporating temperature has insignificant effect on the COPabs. It just 

slightly increases the COPint (Figure 3.10b) even though the increase of the 

COPCO2,overall  is significant (Figure 3.10a).  

 Variation of the COP with load ratio of LT to MT systems 

The load ratio of LT and MT refrigeration systems (LRLM) may vary in each 

supermarket. For medium size supermarkets the LRLM can range from 14% to 52% 

with the average for Tesco (Tesco, 2009) being 32% representing average electrical 

energy consumption ratio for the LT and MT systems to the overall refrigeration system 

including display cabinets of 20% and 42% respectively as described in Section 1.1 

(Chapter 1).  

 

 

 

 

 

 

 

 

Figure 3.11   Variation of COP with load ratio of LT and MT systems (LRLM) 
 (Investigated at: Tevap,MT = -8 oC, Tevap,LT = -32 oC, CR = 1.2, Tamb = 25 oC) 

 

Figure 3.11 illustrates the influence of LRLM on the COP of the CO2 system. The 

overall COP (COPCO2,overall) reduces when the LRLM increases even though the COPMT 

and COPLT are maintained constant. The overall COP of the CO2 system was found to 

be more sensitive to load ratio below LRLM of 80%. 
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model was used to simulate the effect of the suction superheating and liquid line 

subcooling on the COP of the LT DX system. The model was also used to determine a 

suitable effectiveness for the IHX to provide suction superheating below 20 K as 

recommended by Bock (2009). For design purposes, the suction superheating and liquid 

line subcooling were assumed to be in the range 8 to 12 K and 2 to 3 K respectively.  

 

 

 

 

 

 

 

Figure 3.12   Variation of superheating, subcooling and COPLT with different IHX effectiveness          
(Investigated at: LT refrigeration duty 3 kW, Tcond = -8 oC, Tevap,LT = -32 oC, Tamb = 25 oC) 

 

The simulation results are presented in Figure 3.12. It can be seen that the suction 
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line subcooling increase to 20 K and 8 K respectively. 

 Variation of the COP with circulation ratio 
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the effects of the circulation ratio on the system COP, a correlation between CR and 

refrigeration duty of the MT evaporator coil (Qevap,MT) was applied. The correlation, 

which is presented in Figure 4.7 (Chapter 4), was established using the CO2 evaporator 

model.  

 

 

 

 

 

 

 

 

 

 

Figure 3.13   Effect of circulation ratio (CR) on the COP, refrigeration duty and power consumption 
of the MT refrigeration system  

 

Figure 3.13 shows the influence of the circulation ratio on the COP, refrigeration duty 

and pump power of the MT CO2 system at Tevap,MT = -8 oC, Tevap,LT = -32 oC and Tamb = 

25 oC. The load ratio of LT to MT systems (LRLM) was in the range between 58% and 

61%.  It can be seen that the CO2 pump power (WCO2,pump) increases linearly with the 

circulation ratio. The MT refrigeration duty (Qevap,MT) increases slightly up to CR = 2.5 

but then remains relatively constant. The COPMT reduces sharply as the CR increases 

above 1.0.  

A circulation ratio was also found to influence the COPCO2,overall as shown in Figure 

3.14. Increasing the circulation ratio from 1.0 to 4.0 reduced the COPCO2,overall from 11.0 

to 8.0. The CR has only a very small effect on the COP of the integrated system.  

To enable investigation of the effect of the circulation ratio on the system performance, 

the test rig was designed to provide a circulation ratio of up to 2. Other design 

conditions for the system and estimated performance parameter are listed in Table 3.3. 
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A display of the EES model developed for the design is shown in Figure B-1 (Appendix 

B). 

 

 

 

 

 

 

 
 

 

 

Figure 3.14   Effect of the circulation ratio (CR) on the overall COPs of the CO2 system and the 
integrated arrangement 

 

Table 3.3  Design conditions and estimated performance parameters 

Design conditions Estimated performance parameters 

Parameters Value Parameters Value 

Ambient temperature (oC) 25 MT refrigeration capacity (kW) 5 

Delivery brine temperature (oC) -10 LT refrigeration capacity (kW) 3 

Condensing temperature (oC) -8 COP of MT CO2 system 28.6 

MT evaporating temperature (oC) -8 COP of LT CO2 system 4.3 

LT evaporating temperature (oC) -32 COP overall CO2 system  9.2 

Circulation ratio 2 COP of the absorption system 0.55 

Load ratio LT to MT (LRLM) (%) 60 COP of the integrated system  0.41 

LT evaporator superheat (K) 5 LT compressor power (kW) 0.70 

LT compressor suction superheat (K) 9.8 CO2 pump power (kW) 0.18 

LT liquid line subcooling (K) 2.4 Brine pump power (kW) 0.69 

Condenser effectiveness (%) 88  HTF pump power (kW) 1.93 

Max. capacity of the absorption chiller (kW) 10.95  Heat rejected in the condenser (kW) 8.56 

Mass flow rates     

Brine mass flow rate (kg/s)* 0.725  MT CO2 mass flow rate (kg/s) 0.040 

HTF mass flow rate (kg/s) 1.20  LT CO2 mass flow rate (kg/s) 0.011 

CHP exhaust gas mass flow rate (kg/s) 0.81    

       * Water-glycol mixture: propylene glycol with 40% mass fraction in water solution was considered. 
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3.2.2 Piping system design and pressure drop simulation   

A CO2 refrigerant piping system requires the same general design considerations as any 

refrigerant flow system. One factor that critically influences system design is the 

pressure drop since pressure losses decrease the thermal capacity and increase the power 

requirement in a refrigeration system. Pressure drop at suction line of the compressor 

causes suction pressure at the inlet of the compressor lower than evaporating pressure. 

As a result, density of refrigerant vapour reduces, pressure ratio and discharge 

temperature increases. This in turn reduces volumetric efficiency, refrigerant mass flow 

rate, refrigeration (thermal) capacity  and increases work of compression.  

The piping systems of the test rig have been designed to provide practical line sizes 

without excessive pressure drop. The pressure drop of the liquid and gas lines were 

designed to be well below 78 kPa and 55 kPa respectively which represent 1 K 

equivalent saturation temperature drop as recommended by ASHRAE (2010). To 

simulate the pressure drop in the piping system, a model was developed within EES. 

The maximum operating pressure was considered to be 35 bar. 

When the system is in operation, most of the refrigerant pipes contain single phase flow, 

either liquid or gas. One section with two phase flow is that downstream of the MT 

evaporator. The pressure drop (∆P) of single phase section was calculated from the 

equation below: 

2
4

2G

d

L
fP

i

          (3.21) 

where di = internal diameter of the pipe (m), L = pipe length (m), G = mass velocity 

(kg/s.m2), ρ = refrigerant density (kg/m3) and f = friction factor. For turbulent flow with 

Reynolds number (Re) up to 105, CO2 friction factor of the single phase section was 

calculated from the Blasius equation (Cheng et al., 2008a): 

25.0Re

079.0
f           (3.22) 

where Reynolds number was calculated from: 


idG

Re           (3.23) 
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For flow conditions where Re ≤ 2300 the CO2 friction factor was calculated from: 

Re

16
f           (3.24) 

The pressure drop of the refrigerant pipe downstream of the MT evaporator was 

determined using the procedure of two phase CO2 pressure drop described by Cheng et 

al. (2008a). A vapour quality x = 0.5 was used which results from a circulation ratio 

(CR) = 2. 

Table 3.4 presents the resulting nominal outside diameter of the pipe and the pressure 

drop determined from the simulation. It can be seen that the pressure losses in the 

suction and liquid lines of the LT compressor are low at 1.42 kPa (0.026 K) and 0.33 

kPa (0.004 K) respectively. The table also shows that the pipe section after the MT 

evaporator has the highest pressure drop of 24.7 kPa, equivalent to 0.32 K.  This 

pressure drop, however, is still within the acceptable range.  

Table 3.4  Specified pipe sizes of the CO2 refrigeration system 

Pipe 
number 

Position 
in the system 

do 
(mm) 

L 
(m) 

∆P 
(kPa) 

1,8 Suction LT compressor after and before IHX 15.87 15 1.42 

5,6 LT Liquid line before and after IHX 12.7 14 0.33 

2 Discharge LT compressor 12.7 7 1.77 

9,10 MT liquid line before and after the CO2 pump 12.7 16 3.30 

11 After MT evaporator 12.7 20 24.71 

12 Saturated gas line from liquid receiver 12.7 1 0.47 

3 Common line before condenser 12.7 1 1.19 

4 Liquid line after condenser 12.7 1 0.14 

Note: do is nominal outside diameter conforming to BS EN 12735-1 (2001). 

 

The calculation screen of the EES model is shown in Figure B-2 (Appendix B). The 

display also shows the internal volume and flow velocity in each section of the pipe 

circuit. The estimated total volumes of gas and liquid CO2 in the pipe circuit were also 

estimated to be 2.2 and 3.8 litres respectively.  

Besides pressure drop, the design also considered other refrigeration-piping basic 

principles such as protection of the pipes from excessive vibration of the compressor 

and to prevent liquid refrigerant or oil slugs from entering the compressor during 

operation and shutdown. Thus, the system was equipped with vibration eliminators, a 

suction line accumulator and a non-return valve on the discharge line of the compressor. 
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To minimise leakage, brazed joints were used. The pipes were also insulated with        

25 mm thick insulation to prevent sweating or frosting and minimise heat transfer with 

the surroundings which can be significant in CO2 systems and adversely affect 

performance (Bertelsen and Christensen, 2003). 

3.2.3 EES model to determine the optimum size of the liquid receiver  

The liquid receiver has been designed for three main purposes. One is to provide pump-

down storage capacity when other components of the system must be serviced or the 

system must be shut down due to the tests having been completed. The second is to 

accommodate a fluctuating refrigerant demand which varies with load conditions. The 

third is to provide adequate liquid flow at the suction line of the CO2 pump.  

 

 

 

 

 

 

 

 

 

 

Figure 3.15  Simulation results from liquid receiver model 

 

To determine the optimum size of the liquid receiver, two EES models were 

established: model of horizontal receiver and model of vertical receiver. By considering 

the volume of all components of the CO2 refrigeration system including piping, the 

dimensions of the liquid receiver and fluctuation of the liquid level in the vessel were 

investigated. Figure 3.15 shows dimensions of the horizontal liquid receiver. The 

optimum volume of the vessel was found to be 70 L with external surface area 1.12 m2 
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and total mass charge 37 kg. The simulation results for the vertical receiver are given in 

Figure B-3 (Appendix B). For the same volume, the horizontal liquid receiver requires 

slightly higher refrigerant charge but reduces the fluctuations in the liquid level 

compared to the vertical receiver.  

The horizontal liquid receiver was chosen for the test rig. A technical drawing was 

produced shown in Figure C-2 (Appendix C) and the receiver was manufactured by 

Klimal-Italia Srl. Figure 3.16 shows the liquid receiver placed on a steel frame. The 

receiver has several connections to the CO2 refrigeration circuit including down pipe to 

the CO2 pump and connections to a standstill condensing unit. It is also completed with 

a vertical small tube which houses a liquid level transmitter.  

 

 

 

 

 

 

 

Figure 3.16   The liquid receiver (manufactured by Klimal-Italia Srl.) 

 

The liquid receiver was tested at 71.5 bar. It was specified with maximum allowable 

pressure of 50 bar at temperature range from 50 oC to -10 oC.  

3.2.4 3D drawing of the CO2 refrigeration plant 

A 3D-AutoCAD drawing was prepared to facilitate dimensioning and construction of 

the CO2 refrigeration plant (Figure 3.17). Installation requirements of system 

components, positive gravity flow, available space in the plant room and accessibility to 

the components for operation and maintenance were also taken into considerations.  

For clarity, the components and piping are shown without insulation. It can be seen that 

the test rig consists of two main sections: the compressor-pump section and liquid 

Liquid receiver 

Housing of the liquid level 
transmitter 

Down-leg pipe connection

Connections 
to a standstill 
condensing 

unit 

7 connections to other 
components 
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receiver section. The compressor-pump section incorporates the LT CO2 compressor, 

CO2 pump, oil management system (oil separator, oil reservoir, oil filter and oil level 

controller), suction accumulator, filter drier, mass flow-meters and control panel. The 

liquid receiver section includes liquid receiver, CO2 condenser, CO2 liquid level 

controller and safety device. All system components are properly mounted on steel 

frames. 

.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.17   The subcritical CO2 refrigeration test plant in a 3D drawing 
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the roof of the plant 
room 

Compressor-pump 
section located in the 
plant room 

Cascade 
condenser 

Pressure switch 
for refrigerant 
cooler 

Liquid level 
transmitter

Down-leg pipe 

CO2 pump 

CO2 
compressor

Oil level 
controller

MT mass 
flow meter

LT mass 
flow meter 



 

58 

33..33  MMeecchhaanniiccaall  ssyysstteemm  ddeessiiggnn  aanndd  ccoommppoonneenntt  sseelleeccttiioonn  

A detailed schematic diagram of mechanical system design is shown in Figure 3.18. 

Components identification and numbering of the mechanical system especially the flow 

control valves can be found in Figure C-1 (Appendix C). 

The MT system has been designed so that the liquid CO2 for the medium temperature 

cabinet can be either pumped with a CO2 pump or gravity fed to the MT coil. The 

system is also designed to enable the coil to be fed with different mass flow rates or 

circulation ratios (CR). In order to facilitate the design requirements, as can be seen in 

Figure 3.18, a bypass valve is fitted parallel to the CO2 pump. The valve allows the 

liquid CO2 flowing to the MT coil by gravity. Another control valve is added to bypass 

some of the liquid CO2 from discharge line of the CO2 pump to the liquid receiver. This 

valve in combination with a regulator valve upstream of the MT coil can be used to vary 

the flow rate of liquid CO2. In order to determine a CO2 flow rate at a particular test 

condition which provides just enough refrigerant without superheat (CR = 1), the system 

is equipped with a sight glass at downstream of the MT coil and a mass flow meter at 

the liquid line. 

The LT system comprises three main components which include an expansion valve, an 

LT evaporator coil and a CO2 compressor as illustrated in Figure 3.18. The figure also 

shows that the LT system is equipped with some accessories as commonly found on a 

DX conventional refrigeration system such as an accumulator on the suction line of the 

LT compressor; a filter drier and a sight glass situated between the liquid receiver and 

expansion valve. Parallel to the IHX, a bypass valve was fitted to allow flexibility for 

testing with and without heat exchange between the liquid line and the outlet of the LT 

evaporator. The LT circuit is also equipped with an oil management system to maintain 

the oil level in the compressor relatively constant.   

One common component of the LT and MT systems is the cascade condenser where 

condensation of the CO2 from both systems takes place. The condensation of the CO2 

gas is provided by the absorption refrigeration system of the trigeneration facility 

through a secondary refrigerant circuit using a water-glycol mixture to transfer thermal 

energy between the CO2 system and the absorption refrigeration system.  
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Another common component is the liquid receiver where most of the CO2 refrigerant 

charge is stored. The receiver and associated piping provide free flow of liquid from the 

condenser. Pressures between the two are equalized so that the receiver cannot build up 

a higher pressure than the condenser. To facilitate the flow of liquid CO2 from the 

condenser by gravity, the condenser is placed just above the liquid receiver. A pipe from 

the bottom of the receiver feeds liquid CO2 to the pump and LT DX systems. The pipe 

has been sized to provide sufficient head for the CO2 pump and minimum pressure drop. 

The liquid receiver is also equipped with an evaporator coil connected to a small 

conventional condensing unit, as shown in Figure 3.18. The condensing unit is used to 

keep the pressure of the liquid CO2 refrigerant low during standstill. 

Figure 3.18 also shows pipe connections and flow control valves so that the loading 

system and flow meters can also be used by a transcritical CO2 system. For safety, the 

CO2 refrigeration system is equipped with safety relief valves. The location of the 

valves can also be seen in Figure 3.18. Detailed description of the safety relief valves is 

presented in Section 3.3.8. In addition, the piping system and components of the CO2 

refrigeration system are also selected to be compatible with the CO2 refrigerant and 

maximum pressure of at least 40 bar. 

3.3.1 CO2 compressor 

Selecting a CO2 compressor at the early stage of the development of the CO2 

refrigeration technology was challenging due to limited range of capacities available. 

Figure 3.19 shows the CO2 compressor selected for the test rig. It is a two-piston low 

temperature semi-hermetic reciprocating compressor. It can be seen that at designed 

conditions, Tevap = -32 oC and Tcond = -8 oC, the compressor has a refrigeration capacity 

more than three times the designed load of the LT cabinet. Consequently, an additional 

LT load was added to the test system to balance the load and to avoid the compressor 

cycling on and off frequently. The compressor was also equipped with a variable speed 

controller to enable some variation of capacity. Having a large capacity, the compressor 

significantly increased the LT and MT load ratio. This subsequently reduced the overall 

COP of the refrigeration system as previously demonstrated in Figure 3.11. 

To ensure safe operation, the compressor was equipped with several safety controls 

which included oil safety switch, low and high pressure switches, motor temperature 
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switch and a time delay relay. The oil safety switch protects the compressor from 

running without sufficient lubrication by switching it off if the oil level drops below a 

certain limit. The low and high pressure switches are used to stop the compressor when 

the suction pressure drops below 7 bar and the discharge pressure rises above 33 bar 

respectively. The motor temperature switch which is integrated with the motor 

compressor switches the compressor off, when the temperature in the motor windings 

becomes excessive. A time delay relay is used to prevent the starting of the compressor 

just after the compressor has been shut down due to action of LT cabinet controller or 

one of the safety controls. The relay used is an ‘on time delay’ which elapsed time is set 

for 3 minutes. 

 

 

 

 

 

 

 

 

 

 

Figure 3.19   CO2 compressor with specified performance data 
(Data source: Bock, 2009) 

 

3.3.2 CO2 pump 

A rotary vane type pump was selected for the test rig. The pump has a rated flow of 

0.44 m3/h (approximately 108 g/s) liquid CO2 at -8 oC which can provide a circulation 

ratio up to 4 for the MT secondary circuit. The pump requires a net positive suction 

head (NPSH) of 3.5 mLC (metre of liquid column). Figure 3.20 shows the selected CO2 

pump with and without insulation. Detailed specifications of the pump are given in 

Appendix C. 
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Cavitation in a CO2 refrigeration application is not a major problem due to energy 

released during cavitation is much smaller compared to other refrigerants (Heerup, 

2009). Cavitation, however, can reduce the specified flow capacity of a CO2 pump. In 

order to avoid cavitation and to achieve the rated flow, the installation of the pump was 

prepared to provide NPSH at least 3.7 mLC. In addition, heat transfer with the 

surroundings on the suction pipe and the pump itself was also minimised by insulating 

them with appropriate insulation as shown in Figure 3.20.  

 

 

 

 

 

 

Figure 3.20   CO2 pump (Hermetic HTP 1-400) 

 

The pump is also equipped with a safety control system which consists of a liquid level 

relay, high pressure switch which switches the pump off when the discharge pressure 

rises to 33 bar and a motor temperature switch. The liquid level relay is used to protect 

the pump from cavitation by stopping the pump motor when the liquid level in the 

liquid receiver drops to 35% of full liquid height. 

3.3.3 Condenser 

A plate type heat exchanger was selected as the condenser of the CO2 refrigeration 

system. This type of heat exchanger has high thermal efficiency and small foot print 

(Jokar et al., 2010). Figure 3.21 shows the condenser HX and its specifications. Detailed 

size of the condenser is given in Figure C-3 (Appendix C).  

The condenser is mounted in a counter flow configuration between the CO2 line and the 

water-glycol line. The CO2 enters the condenser as a superheated gas at 6.3 oC and exits 

Motor drive 

The pump without insulation The pump with insulation 
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as saturated liquid at -8 oC. The temperature difference between the exiting liquid CO2 

and returning water-glycol can be as low as 2 K (specified by the manufacturer).  

 

 
 
 
 
 
 
 
 
 
 
 

Figure 3.21   CO2 condenser (SWEP B120THx60/1P-SC-M2) 

 

3.3.4 Evaporators 

Evaporator coils used in the loading system are standard finned coils which have been 

designed to operate with CO2 refrigerant. The evaporator coil of the medium 

temperature cabinet is a flooded coil whereas the coil for the low temperature cabinet is 

a direct expansion coil. 

Figure 3.22 shows the MT flooded coil fitted at the bottom of the MT cabinet. The coil 

is made from copper tubes of 12.7 mm nominal outside diameter and corrugated 

aluminium fins of 0.22 mm thickness and fin spacing of 158 fins per metre (FPM).  The 

coil consists of 4 circuits in staggered arrangement with 4 rows high, 6 rows deep and 

total tube length of approximately 50 m. The MT coil can contain about 4.6 litres CO2 

refrigerant.  

Figure 3.22 also shows that the MT flooded evaporator coil is placed adjacent to the MT 

DX evaporator coil which is used for transcritical CO2 refrigeration tests.  The two 

evaporator coils which are not used simultaneously are separated by a 25 mm air gap.  

The size of the MT flooded coil is 152 x 198 x 2085 mm (height x depth x length). It is 

relatively compact compared with a HFC evaporator coil of the same capacity. As it can 

be seen from Figure 3.22, two CO2 MT evaporator coils could be fitted into the space 

originally utilised by a single R-404A evaporator coil.  

Parameters and
specifications 

CO2  
side 

Water 
glycol side 

Inlet temperature (oC) 6.3 -10 
Outlet temperature (oC) -8 -6.8 
Flow rate (kg/s) 0.040 0.725 
Heat load (kW) 12 
Heat transfer area (m2) 7.66 
Over surface (%) 40 
Number of channel 29 30 
Test pressure (bar) 75 75 
Max. working pressure (bar) 45 45 
Hold up volume (L) 6.99 7.23 

Without insulation With insulation 

Condenser 
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The LT DX evaporator coil is also made from copper tube of 12.7 mm nominal outer 

diameter with corrugated aluminium fins of 0.22 mm thickness. The fin spacing is 118 

fins per metre (FPM).  The coil comprises 3 circuits in staggered arrangement with 4 

rows high and 8 rows deep and its size is 152 x 264 x 2030 mm (height x depth x 

length). The total tube length is approximately 65 m which gives refrigerant volume of 

about 6.1 litres. The LT evaporator coil is also utilised by the loading system of the 

transcritical CO2 system. Both systems use a direct expansion coil for the low 

temperature system and thus, only one LT evaporator coil is used. However, separate 

evaporator controllers are employed for the two systems.  

 

 

 

 

 

 

 

 

 

 

Figure 3.22   MT CO2 evaporator coils fitted in the display cabinet 

 

The MT and LT evaporator coils were tested at 52 bar with specified maximum 

allowable working pressure of 40 bar. Detailed information of the coils is given in the 

technical drawings in Figures C-4 and C-5 (Appendix C). 

To reduce the effect of frost formation on the coils the free flow area of the front part of 

the coils was increased by reducing the fin density from 158 fins per metre to 79 fins 

per metre for the MT coil (Figures 3.22 and C-4) and from 118 fins per metre to 59 fins 

per metre for the LT coil (Figure C-5). The coils also utilise a hydrophilic coating on the 

fins to improve condensate drainage and ease of separation of frost from the coil during 

defrosting.  

MT flooded evaporator coil for 
subcritical CO2 system  

MT DX evaporator coil for 
transcritical CO2 test system 

A 

Details of A

158 FPM

79 FPM

158 FPM 

79 FPM

Distributor and 
leading pipes 

FPM = number of fins per metre; FPI = number of fins per inch; 158 FPM = 4 FPI; 79 FPM = 2 FPI 
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The main design parameters for the MT flooded coil are: CO2 saturated liquid enters the 

coil at 28 bara ( -8 oC); evaporation temperature in the coil at -8 oC; CO2 exits the coil as 

liquid and vapour mixture at vapour quality of 0.5 (at designed circulation ratio CR = 2). 

For the LT evaporator coil, CO2 enters the EXV as liquid with 2.4 K subcooling at 28 

bara. After expansion CO2 enters the LT coil as a liquid-vapour mixture at evaporation 

pressure of 13 bara (-32 oC) and exits with 5 K superheating. Detailed designs of the 

CO2 evaporator coils including simulation programmes which have been established to 

evaluate their performance are presented in Chapter 4.  

3.3.5 Expansion valve 

Parameters considered in selecting and sizing the expansion valve for the low 

temperature DX circuit were pressure drop across the valve of 15 bar, full load 

refrigeration capacity of 3 kW and part load of 2 kW.  

An electrically operated expansion valve 

has been chosen for the DX evaporator 

as shown in Figure 3.23. It has a wider 

range and flexibility for refrigerant flow 

control compared to the traditional 

thermostatic expansion valve (TXV). It 

also offers the possibility to integrate its 

control with the cabinet controller to 

make it easier to change the operational 

settings for system investigations.  

The valve is of the pulse-width-modulated type which is an on/off solenoid valve with 

special features that allow it to operate as a variable metering device by rapidly pulsing 

the valve open and closed. For example, if the evaporator needs 75% flow, the valve is 

open 75% and closed 25% of the time. The duration of each pulse is regulated by an 

electronic controller. Thus, the application of this valve requires a controller and control 

sensors which include a pressure transducer and a temperature sensor. The controller of 

the valve is integrated with the evaporator controller which is described in Sections 3.5 

and 3.6. 

Figure 3.23   Electronic expansion valve
(Source: Danfoss, 2008) 
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The expansion valve was specified to have a maximum operating pressure difference 

(MOPD) across it of 18 bar and maximum operating pressure (MOP) of 52 bar.  

 

 

 

 

 

 

 

Figure 3.24   Performance data of electronic expansion valves type AKV10 
(Data source: Danfoss, 2008b) 

 

Figure 3.24(a) shows the performance characteristics of the AKV10 range of valves. It 

can be seen that the AKV10-2 is the closest AKV valve to satisfy the design 

requirements. It can also be seen that the capacity of the AKV10 valve is much higher 

when used with CO2 refrigerant compared to R-404A. 

3.3.6 Internal heat exchanger 

The internal or suction line heat 

exchanger (IHX) is shown in Figure 3.25. 

It is a plate heat exchanger and was 

installed in counter flow configuration 

between the liquid supply line and 

suction line of the LT compressor. The 

IHX can increase the degree of superheat 

of the CO2 gas exiting the LT evaporator 

to achieve suction superheating in the 

range 8 to 12 K. It can also reduce the 

risk of liquid entering the LT compressor. In the liquid line, the IHX subcools CO2 

liquid entering the expansion valve and this can improve the COP of the LT system.  
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Figure 3.25   Internal heat exchanger   
(SWEP: B5Hx10/1P-SC-M4)            
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The IHX has a heat transfer capacity of 0.2 kW. The amount of subcooling can be 

varied by using a bypass valve to bypass some of the refrigerant round the heat 

exchanger.  

3.3.7 Refrigerant flow control devices 

Four types of flow control valves are used in the test system shown in Figure 3.26. They 

are Danfoss products which are compatible with CO2 refrigerant. The solenoid and ball 

valves are stop valves also commonly referred to as shutoff valves. The solenoid valve 

was used to automatically prevent liquid CO2 flowing to the MT flooded evaporator 

when no flow is required, such as during the defrost cycle and when the cabinet has 

reached the set point. The ball valves are manually operated and used to isolate the 

system components such as: compressor, pump, condenser, liquid receiver, IHX and 

evaporators for servicing and safety (ASHRAE Standard 15, 2007).  

 

 

 

 

 

Figure 3.26   Refrigerant flow control valves 
(Source: Danfoss, 2008b) 

 

Ball valves were also installed on long lengths of pipe to isolate the system in case of 

leaks and to facilitate pump down. The ball valves were also used to vary the flow 

through components such as: IHX, pump and flow meters, by bypassing some of the 

flow round the components. 

A regulator valve is used in the MT circuit to regulate liquid CO2 flow to the MT 

flooded evaporator. The valve is manually operated.  Non-return valves are used to 

prevent liquid from becoming trapped in pipe sections because when heated it can 

expand rapidly and can reach pipe rupture pressure. A non-return valve is also fitted 
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downstream of the MT evaporator to prevent liquid CO2 from flowing back to the 

evaporator when the system stops. 

3.3.8 Pressure relief valves 

The system is protected from high pressures with 3 pressure relief valves. Two are fitted 

on the LT and MT circuits respectively and another one on the liquid receiver. The 

valves discharge is open to the atmosphere apart from the valves in the MT circuit 

which is vented to the liquid receiver because the protected line mainly contains liquid 

CO2.  

The minimum required discharge capacity of the pressure relief valves especially the 

one for the liquid receiver can be determined by following BS EN 13136 (2001) as 

follows: 

 
vap

o
md H

A
Q

..3600 
          (3.25) 

Where Qmd = minimum required discharge capacity of the pressure relief valve (kg/h);  

φ = density of heat flow rate (kW/m2); for the standard vessel used this is 10 kW/m2;   

Ao = external surface area of the liquid receiver (m2) and Hvap = heat of vaporization 

(kJ/kg) at the set pressure.  

 

 

 

 

 

 

 

Figure 3.27   Pressure relief valve and its discharge capacity  
(Danfoss: SFA-15 T335)     
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The pressure relief valve was set at a pressure 25% higher than the operating pressure of 

the system giving a burst pressure of 35 bar. At this set pressure, the minimum 

discharge capacity was determined to be 177 kg/h. 

The characteristics of the pressure relief valve chosen for the application are shown in 

Figure 3.27. The valve has a factory setting of 35 bar. It can be seen that discharge 

capacity of the valve for CO2 application at this pressure is nearly 5000 kg/h which is 

considerably higher than the 177 kg/h required. 

3.3.9 Oil management system 

The LT compressor inevitably loses some lubricating oil from the oil sump during 

normal operation as some mixes and circulates with the refrigerant through the system. 

In order to ensure that the majority of oil returns back to the compressor and to ensure 

that the compressor is always properly lubricated; the CO2 refrigeration system is 

equipped with an oil management system.  

 

 

 

 

 

 

 

 

 

Figure 3.28   Schematic diagram and selected components of the oil management system  

 

Figure 3.28 shows a schematic diagram of the oil management system and pictures of 

the main components which include an oil separator, oil reservoir, oil strainer, oil level 

regulator and a pressure valve. These components were specified for subcritical CO2 
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refrigeration applications with a maximum operating pressure (MOP) 40 bar except 

from the oil separator which was specified for a MOP of 45 bar (ESK Schultze, 2008).  

The oil separator has a capacity of 2.3 L with a first oil charge 0.6 L. The oil separator 

removes some oil from the refrigerant and reduces the rate of oil circulation through the 

refrigeration system. It is equipped with a built-in float valve which opens when the oil 

level rises above the first charge level and the excess oil is drained back to the 

compressor trough the oil reservoir. 

The oil reservoir has a total volume of 3.8 L. It receives the returned oil from the oil 

separator and also provides a reserve supply of oil for the compressor. It incorporates a 

pressure valve (RV-10B/1.5) which maintains the pressure in the reservoir 1.5 bar 

above the suction pressure. If the pressure rises above this value, the valve opens and 

vents any refrigerant trapped with the oil back to the suction line of the compressor. The 

oil reservoir also incorporates two sight glasses and two service valves. The sight 

glasses are used to ensure that there is enough oil in the reservoir, while the service 

valves are used for charging/draining the oil to/from the reservoir. 

The oil supply to the compressor is regulated by the oil level regulator. The regulator 

comprises an oil level sensor and a solenoid valve. The solenoid valve allows the 

lubricating oil to flow to the compressor from the oil reservoir when the oil level 

reaches its lower limit and stops the oil supply when the oil level reaches the upper 

limit. The oil level regulator is also equipped with a relay which is integrated with the 

compressor controller. The relay switch stops the compressor when the oil level drops 

below the lower limit. The integration of the oil regulator relay with the compressor 

controller is described in Section 3.5. The oil regulator relay is also used to activate an 

alarm in the event the oil management system has failed to feed the lubrication oil into 

the compressor. 

3.3.10 Auxiliary components 

Several auxiliary components associated with the main mechanical components of the 

CO2 refrigeration system have been described previously. Other auxiliary components 

are shown in Figure 3.29. These include an accumulator, sight glass, filter drier and 

pressure gauges. 
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The suction line accumulator is an ESK product (FA-12-CD) specified for use with CO2 

refrigerant. It has a 0.8 litre and a MOP of 40 bar. The accumulator protects the 

compressor from damage by preventing liquid droplets from entering the compressor.  

The system is also equipped with two sight glasses. One was installed on the liquid line 

of the LT DX circuit to monitor the presence of flash gas upstream of the expansion 

valve. Another sight glass was fitted on the MT secondary circuit to monitor the 

refrigerant flow downstream of the MT flooded evaporator. Both sight glasses are 

Danfoss products (type SGN) which are compatible with the CO2 refrigerant.  

 

 

 

 

 

 

Figure 3.29   The auxiliary components  

 

The filter driers used in the system are also Danfoss products (DCB bi-flow type). They 

contain a mixture of silica gel and molecular sieves and are suitable for CO2 refrigerant 

applications. They were installed on the liquid line, one upstream of the expansion valve 

and another one upstream of the CO2 pump (Figure 3.18). The main purpose was to 

limit any debris within the system from reaching the expansion valve and the CO2 

pump. Using bi-flow type filter driers enables the liquid CO2 to flow in both directions 

which can reduce the possibility of liquid being trapped in the system during standstill 

conditions.  

In order to monitor the pressure fluctuations during charging and operation, the test 

system was also equipped with three pressure gauges. One was installed on the liquid 

receiver and the other two upstream and downstream of the CO2 pump. The gauges are 

Omega Engineering products (PG63-70S) compatible with CO2 refrigerant. They have a 

measurement range from 0 to 70 bar. The gauges are very useful particularly when 
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charging the CO2 system with refrigerant. The only way to immediately monitor the 

pressure of the system is from the pressure gauges.  

33..44  RReeffrriiggeerraattiioonn  llooaadd  ssyysstteemm  

The test rig was originally designed for a full load refrigeration capacity of 8 kW 

provided by two refrigerated display cabinets: a medium temperature cabinet of full 

load capacity of 5 kW and a low temperature cabinet of full load capacity of 3 kW. 

Because the lowest LT compressor capacity commercially available at the time the 

system was designed was far bigger than the capacity of the LT cabinet as well as the 

application of a variable speed controller could not reduce the compressor capacity as 

low as the designed LT load; a low temperature additional load was added to the 

loading system to balance the capacity of the compressor.   

The effect of the additional load on the pressure drop of the LT piping system has also 

been evaluated using the EES model. The pressure drops were still in the acceptable 

range with pressure losses in the suction and liquid lines equivalent to saturation 

temperatures 0.25 K and 0.04 K respectively.  

3.4.1 Display cabinets 

The refrigerated display cabinets used are a chilled open vertical multi-deck cabinet and 

a glass door frozen food cabinet. They were originally designed for R-404A refrigerant 

and were modified by replacing the evaporator coil and controls, to operate with CO2 

refrigerant. The evaporator coil of the low temperature cabinet is a direct expansion coil 

whereas the coil of the medium temperature cabinet is a flooded evaporator coil which 

was designed to operate with CO2 as a secondary (volatile) refrigerant. 

The chilled or MT cabinet is a Carter ELFM 2.54 m long cabinet with an open length 

2.47 m. The height of the cabinet is 2.05 m and the depth 1.13 m. The cabinet has a total 

display area (TDA) of 4.2 m2. The flooded evaporator coil and circulation fans are 

located below the base shelf. A schematic diagram of the MT cabinet is shown in Figure 

30 (a). It can be seen that the cabinet has two evaporator coils as previously explained in 

Section 3.3.4.  

Figure 3.30 (b) shows a schematic diagram of the glass door frozen food cabinet. It is a 

2.4 m long display cabinet with glazing height of 1.9 m and display area of 2.7 m2. The 
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three glass doors of the cabinet incorporate anti-sweat heaters to prevent condensation 

(sweating) on the glass surface. 

 

 

 

 

 

 

 

 

Figure 3.30  Refrigerated display cabinets  

 

The cabinets were loaded with test packages stacked on the shelves. The test packages 

of the MT cabinet were 0.8 litre plastic containers filled with water. For the LT cabinet, 

one litre plastic containers filled with 50% propylene glycol in water solution were 

used. The solution has a freezing temperature of -33 oC. At the positions where product 

temperatures were measured, M-packages were used according to ISO 23953-2 (2005). 

Each M-package had a calibrated T-type thermocouple inserted into the geometric 

centre of the package. 

3.4.2 Low temperature additional load 

The additional load comprises an evaporator heat exchanger, water-glycol circuit and 

auxiliary components. The loading system is also used for additional load of the 

transcritical CO2 system. A schematic diagram of the additional load, including the 

connections to the subcritical and transcritical CO2 test systems, is shown in          

Figure 3.31.  

The evaporator HX of the additional load system is a plate type heat exchanger (PHX) 

SWEP-B15Hx30/1P-SC-M of 8 kW refrigeration capacity at evaporating temperature    

-32 oC and 10 K superheat. The cold-stream of the heat exchanger functions as a CO2 
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LT DX evaporator which absorbs heat from water-glycol solution at the hot-stream of 

the heat exchanger. The evaporator HX incorporates a “Danfoss” cabinet controller  

AK-CC 550A, electronic expansion valve (AKV10-4), pressure transducer (AKS-32) 

and temperature sensors type PTC-1000 (AKS-11). Operational settings of the 

evaporator including the refrigerant superheat can be set in the AK-CC 550A controller. 

 

 

 

 

 

 

 

 

 

Figure 3.31  Schematic diagram of the LT additional load 

 

The refrigerant circuit of the additional load also incorporates auxiliary components 

such as sight glass, filter-drier and flow control valves (SV, NRV and BV) as shown in 

Figure 3.31. The solenoid valve (SV) is used to regulate the flow to the evaporator HX. 

This valve automatically closes when the temperature set point has been achieved. The 

non-return valve (NRV), also known as check valve, is fitted in parallel with the 

solenoid valve to allow the liquid CO2 to escape when the valve is closed. This protects 

the circuit from damage that may be caused by liquid CO2 trapped in the pipe. The ball 

valves (BV) are utilised to enable the additional load to be used by both the subcritical 

and transcritical CO2 test systems.  

The water-glycol circuit consists of a circulation pump and a water storage tank. The 

circuit was filled with propylene glycol of 55% mass fraction in water solution.         
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The solution has a freezing temperature of -38 oC. The purpose of using this high 

concentration solution is to prevent ice blockage in the channels of the evaporator plate 

heat exchanger due to low evaporating temperature.  

The circulation pump used in the water-glycol circuit is a Grundfos CH-2-30 specified 

for a flow capacity of 1.5 m3/h; total head 30 m and minimum operating temperature     

-20 oC. Water storage is provided by a 100 litre copper tank insulated with polyurethane 

foam of 50 mm thickness. The storage incorporates two immersion heaters of heating 

capacity 4 kW each and a temperature controller Danfoss EKC 101. The temperature of 

the water-glycol mixture at the outlet of the storage tank is maintained relatively 

constant by regulating the power supply to the immersion heaters. In addition, the 

circuit also incorporates a flow meter to measure the flow rate of the water-glycol 

mixture. This flow rate was used to determine the refrigeration duty of the additional 

load system.    

33..55  CCoonnttrrooll  ssyysstteemm  

Figure 3.32 shows a schematic diagram of the control system which consists of 

electrical and electronic control systems. The electrical control system comprises an LT 

control circuit (C-1), MT control circuit (C-2) and standstill control circuit (C-3). The 

main function of the electrical control system is to connect and to disconnect power 

supply to the electrical components as well as the electronic control system. The LT 

control circuit (C-1) automatically regulates the operation of the LT compressor based 

on inputs from the LT cabinet controller, high and low pressure switches and oil level 

regulator. The MT control circuit (C-2) drives the CO2 pump including the solenoid 

valve upstream of the MT evaporator. The control circuit receives input from the MT 

cabinet controller, discharge pressure switch and liquid level controller. The standstill 

control circuit (C-3) energises the standstill condensing unit based on the pressure of the 

liquid receiver during standby conditions. The following sections detail the electrical 

and electronic control systems including the control strategy applied to the test rig. 

3.5.1 The electrical control system 

Wiring diagrams of the electrical control system are given in Figures D-1 to D-5 

(Appendix D) which detail the electrical installation of the main control circuit followed 

by LT, MT, standstill and additional load control circuits respectively.   
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Figure D-1 (Appendix D) shows the wiring diagram of the power supply to the 

compressor, CO2 pump, LT, MT and standstill control circuits. Each circuit is protected 

against overload or short circuit conditions using a circuit breaker. The whole circuit is 

isolated by a main switch and an emergency switch. The electrical system also 

incorporates a residual current device (RCD) which is an electrical wiring device that 

disconnects the main power supply to the whole system whenever it detects current 

leakage through the human body that is grounded and accidentally touching the 

energised part of the circuits. 

The LT and MT control circuits are detailed in Figures D-2 and D-3 (Appendix D). It 

can be seen that the operation of the LT compressor and the CO2 pump are regulated 

through using contactor relays. The relay of the LT compressor is circuited in series 

with the control switches of the LT cabinet controller; high and low pressure switches 

and oil regulator (Figure D-2). The CO2 pump relay (Figure D-3) is energised by the 

contact switches of the MT cabinet controller, discharge pressure switch and liquid level 

regulator. Both contactor relays can also be manually overridden by on/off switches. 

The figures also show that the controls of the LT and MT cabinets have been modified 

to incorporate the installation of a selector switch in each display cabinet to switch over 

the connection of the cabinet controller either to the subcritical or transcritical CO2 

systems. The modified control also incorporates three switches to override the 

automatic on/off inputs from the cabinet controller to the fans, lights and defrost heater 

respectively. 

3.5.2 The electronic control system 

The system employed is a commercially available electronic control system 

manufactured by Danfoss. Figure 3.33 shows the electronic controllers used which 

consist of an LT cabinet controller (EKC-414A1), MT cabinet controller (EKC-204A1), 

water-glycol temperature controller (EKC-101) and liquid level controller (EKC-347). 

The system also uses an AK-CC 550 controller to control the additional load evaporator 

as explained in Section 3.4.2.  

The cabinet controller EKC-414A1 automatically regulates the operation of the LT 

cabinet based on parameter settings and input signals from the sensors. The operational 

parameter settings, which can be set by using a panel mounted display EKA-162, 
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include temperature set point, temperature range, degree of superheat and defrost 

parameters (type, frequency, duration and temperature termination). The controller 

receives input signals from a suction line pressure transducer and temperature sensor 

fitted on the outlet of the evaporator. The controller also detects temperatures of the air 

in the LT cabinet from PTC-1000 type temperature sensors which were placed on the 

air-on, air-off and on the free surface of LT evaporator coil. The controller modulates 

the opening of the expansion valve to provide the specified degree of superheat at the 

outlet of the LT evaporator. To ensure the controller can provide an accurate modulation 

to the expansion valve, the refrigerant used in the system (R-744) and the pressure range 

of the pressure transducer must be specified correctly in the controller. The controller 

also provides an on/off signal to the LT control circuit to control the operation of the LT 

compressor. A wiring diagram showing the controller, location of the sensors and their 

connections is shown in Figure D-6 (Appendix D). 

 

 

 

 

 

Figure 3.33  Control components  
(Source: Danfoss, 2008b) 

 

The MT cabinet controller (EKC-204A1) is simpler compared to the DX evaporator 

controllers. The controller provides on/off signal to the fans, lights and defrost heater of 

the cabinet without controlling the degree of superheat of the refrigerant. Thus, it 

requires only input signals from temperature sensors which include air on, air off and 

MT evaporator coil surface. Together with the liquid level controller (EKC-347), the 

EKC-204A1 regulates the operation of the CO2 pump and the solenoid valve upstream 

of the MT evaporator coil.  

The electrical power of both LT and MT controllers (EKC-414A1 and EKC-204A1) is 

supplied from the electrical control system through selector switches. These switches 

EKC-347 EKC-414A1 EKC-101 

EKC-204A1 
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can be used to drive the controllers either manually or automatically. For the automatic 

control operation, the switches were fitted in series with contact switches of a 

temperature controller EKC-101. This temperature controller is used to prevent the CO2 

system from operating when the temperature of the water-glycol, which cools the CO2 

condenser, is still high, above -3 oC. This setting can, however, be varied to allow CO2 

system performance investigations at different condensing temperatures. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.34  Electrical control panel  

 

The electrical and electronic control systems were installed in an electrical control panel 

on the compressor-pump section of the test rig. A front view of the control panel 

showing controller displays, switches and indicator lights is shown in Figure 3.34 (a) 

and the arrangement of the components inside the panel can be seen in Figure 3.34 (b). 

3.5.3 Control strategy 

Figure 3.35 shows the control strategy applied to the test rig. The flow temperature 

delivery from the trigeneration system is maintained relatively constant by using the 
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temperature controller (thermostat) of the absorption system. In normal operation, the 

delivery water-glycol temperature was set at -10  oC with 0.5 K temperature differential.  

The MT system control strategy involves the control actions of the pump control circuit, 

EKC-347 and EKC-204A1. The EKC-347 modulates the pump control circuit to allow 

the pump to operate when the liquid level in the liquid receiver above 35% of full liquid 

height. The EKC-204A1 also provides signal to the pump control circuit to regulate the 

pump operation based on air temperatures in the MT cabinet which were set at -3 oC 

weighting 100% air-off temperature with 2 K differential. The pump control circuit 

switches the pump off when the air-off temperature reaches -3 oC and allows it to 

operate again when the air-off temperature rises to -1 oC. The MT system incorporates a 

solenoid valve upstream of the MT evaporator. The pump will operate after the solenoid 

valve to be energised with a time delay of 1 minute and the pump will turn off 1 minute 

before the valve is deenergised.   

Figure 3.35 also shows the control strategy for the LT system which comprises 

compressor and LT load control. The compressor control strategy is based on the 

suction pressure of the LT compressor. The main parameters that affect the suction 

pressure are the LT refrigeration load and the compressor flow capacity. At full load 

conditions, the flow capacity of the compressor can maintain the target pressure at 12.2 

bar. At part load conditions, however, the flow capacity of the compressor must be 

modulated by varying its speed using a frequency inverter.  

The LT load control strategy involves the control of the LT cabinet and LT evaporator 

for additional load involving controller EKC-414A1 and AK-CC 550 respectively.  The 

controllers modulate the opening of the respective expansion valves to maintain a 

degree of superheat in the range 5 K to 12 K. At full load conditions, the valve opening 

was set at 80% of maximum represented by the pulsing frequency of the valve solenoid. 

The EKC-414A1 also provides input signal to the compressor control circuit to regulate 

the speed of the compressor. The control regulation is based on average air on and air 

off temperature of the evaporator of -23 oC and a differential of 4 K. The AK-CC 550 

controls the solenoid valve upstream of the additional load evaporator. The valve is 

closed when the temperature of the water-glycol exiting the evaporator drops below       

-27 oC. 
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Figure 3.35  Operational control strategy 
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33..66  IInnssttrruummeennttaattiioonn  aanndd  ddaattaa  llooggggiinngg  ssyysstteemm  

The instrumentation is used for both control and performance monitoring. For control, 

the instrumentation is mainly used to provide signal inputs to the controllers. For 

monitoring, the instrumentation is used to establish the state and flow conditions of the 

CO2 refrigerant such as pressure, temperature and flow rate at different points in the 

system. The instrumentation is also used to monitor the liquid level in the liquid 

receiver, temperature and relative humidity of the loading system and test chamber as 

well as power consumption of the test rig. To enable the information to be read and 

recorded for system analyses and evaluation, the instrumentation is connected to a data 

logging system.   

3.6.1 Instrumentation devices 

The instrumentation devices used on the test rig are temperature and pressure 

measurements, liquid level transducer, relative humidity sensor, flow meter, and power 

meter. A velocity meter was also used to measure air velocity in the test chamber and 

MT display cabinet. The following sections provide a brief description of each device. 

3.6.1.1 Temperature and pressure measurements 

T-type thermocouples were used for most of the temperature measurements. The 

thermistors (thermally sensitive resistor) type PTC-1000 were used for the sensors of 

the control system and RTDs (resistance temperature detector) for the air temperature 

sensor of the test chamber. T-type thermocouples have a temperature measurement 

range -250 oC to 350 C with specific error (specified by manufacturer) of ± 0.5 oC. The 

thermocouples were calibrated using a calibration bath and precision thermometer (ASL 

type F250 MK II, probe J 100-250-10-NA) of uncertainty ± 0.04 oC. The temperature 

range of calibration was -30 oC to 100 oC. It was found that all thermocouples had 

calibration error within the specifications.  

Positions of the temperature measurements on the test rig are indicated in Figure E-1 

(Appendix E).  The number and explanation of each measurement point are listed in 

Table E-1 and the calibration equations of the thermocouples including their calibration 

errors are given in Table E-2 (Appendix E).  
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Ten pressure transducers (Danfoss products) were installed on the test rig. One type 

AKS 32 with output voltage 0-10 V d.c. is used for the control system. The others are 

used to measure the pressures in the suction and discharge lines of the compressor and 

CO2 pump, upstream and downstream of the LT and MT cabinets as well as the 

pressure in the liquid receiver. Measurement points of the pressure transducers are 

shown in Figure E-1 (Appendix E). 

The pressure transducers of the monitoring system have different measurement ranges 

with input voltage of 24 V d.c. and output current 4 mA to 20 mA. The output cables of 

the transducer have to be circuited with a resistor to change the output current to 

become an output voltage since the data logging system requires a voltage input.  The 

pressure range of the transducers and the resistors used are given in Table E-3 

(Appendix E).  Each pressure transducer of the monitoring system was calibrated using 

a deadweight pressure gauge calibrator. The voltage outputs were recorded for a series 

of known pressures. The graphs of the voltage against the pressure were drawn and the 

best-fit linear equations were derived and used in the data logging system to enable an 

automatic recording of the measured pressures. The coefficient of correlations of the 

pressure transducers were above 99.9% with manufacturer uncertainty of ± 0.3%.      

The graphs and calibration equations of the transducers are given in Figure E-3 

(Appendix E). 

3.6.1.2 Liquid level transducer 

The transducer used is AKS 41U-15.3 which is a Danfoss control component. It has an 

insertion rod length of 389 mm and was calibrated for water (R-718) with 4 to 20 mA 

output across the whole measuring range. Before installation, the transducer was 

recalibrated using water to set the minimum and maximum levels which provided a 

measurement range as high as the internal diameter of the liquid receiver (310 mm). The 

setting was then adjusted for CO2 (R-744). Figure 3.36 shows the transducer and its 

electrical connection to the liquid level controller EKC 347. The level of the liquid CO2 

in the receiver can be read on the display of the controller as a percentage of the total 

measurement range. The reading can also be recorded and displayed on the screen of the 

data logging system.   
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Figure 3.36  Liquid level transducer and the electrical connections to controller (EKC 347) 

 

3.6.1.3 Relative humidity measurements 

The relative humidity within the environmental test chamber was monitored by using a 

‘Rotronic’ humidity and temperature probe. The probe incorporates a humidity sensor 

(Hygrometer IN-1) and an RTD temperature sensor PT100 which have measurement 

range 0% to 100% and -40 oC to 60 oC for relative humidity and temperature 

respectively. The output voltage range is 0 to 1 V d.c. The relative humidity sensor has 

a measurement uncertainty of ± 1.5% and ± 0.5 oC for the temperature sensor. Similar 

probes were also installed in the LT and MT display cabinets to measure the relative 

humidity of air before and after the evaporator coils. 

3.6.1.4 Flow meter 

The refrigeration capacity of the MT and LT display cabinets is determined by 

calculating the amount of heat absorbed by the evaporator coils. The calculations 

involve the enthalpies of the refrigerant before and after the evaporators and mass 

flowrate of the refrigerant circulating through the evaporator coils. For the LT 

additional load where the load is provided by a water-glycol solution, the refrigeration 

capacity is determined by calculating the heat absorbed by the refrigerant from the 

water-glycol mixture assuming the heat transfer in the evaporator is an adiabatic 

process. This calculation requires mass flow rate, specific heat and temperature drop of 

the water-glycol mixture before and after the evaporator.  
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To ensure that the mass flow rates are measured with reasonable accuracy, a coriolis 

type flow meter was chosen for the CO2 refrigerant and an electromagnetic flow meter 

was used for the water-glycol mixture. Figure 3.37 shows the flow meters employed in 

the test rig. For the LT display cabinet which requires a CO2 mass flow rate of about 

0.011 kg/s, the Optimass-3050C-S03 (Figure 3.37a) is used which has a flow rate 

capacity up to 0.028 kg/s. The Optimass-MFM-4065 (Figure 3.37b) with a 

measurement range up to 0.342 kg/s is used for the MT display cabinet. Both flow 

meters were manufactured by Krohne-Germany and have a measurement uncertainty of 

± 0.035%. The flow meters, however, are also subject to inaccuracies arising from the 

presence of gas bubbles in the liquid line. To minimise the risk of this occurring, the 

liquid line was insulated with 25 mm of insulation (Armaflex class 0) and a liquid 

suction HX was installed in the LT system.  

 

 

 

 

 

 

 

Figure 3.37  Flow meter of the LT, MT and additional load systems 

 

The Aquaflux-2010-IFC-010D meter shown in Figure 3.37c, also from Krohne, is used 

to measure the volume flow rate of the water-glycol mixture. The volume flow rate was 

converted to mass flow rate by multiplying it with the density of the water-glycol 

mixture determined using the bulk mean temperature of the mixture in the evaporator. 

The flow meter has a capacity range 0.5 to 21 m3/h and uncertainty ± 0.3%.   

Each flow meter provides a current output 4-20 mA which is converted into a voltage 

input in the data logging system. In order to convert the voltage to a flow rate, a 

(b) Coriolis flow meter, 
Optimass-MFM-4065 

(a)  Coriolis flow meter, 
Optimass-3050C-S03 

(c)  Electromagnetic flow meter 
Aquaflux 2010-IFC 010D 
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calibration was carried out in the laboratory. Best-fit linear equations from the 

calibration were used in the logging programme to enable automatic recording of flow 

rate. 

3.6.1.5 Power meter 

The power consumption of the CO2 test 

rig includes the power of the LT 

compressor, CO2 pump, and the control 

system. In order to measure these, a 

power meter was installed in the electrical 

control panel. The power consumption of 

the control system was determined when 

both compressor and pump were in off-

cycles and the power consumption of the 

compressor and pump were determined when only one of them was in operation. The 

power meter used is a Voltech PM-300, shown in Figure 3.38. It is a three phase power 

analyser which has measurement uncertainty for voltage and current of ± 0.02% and     

± 0.03% respectively. The power meter has an LCD screen to display the measured 

voltage, current, power factor, and instant power. The measured parameters were also 

logged into the computer via RS232 port.  

3.6.1.6 Velocity meter 

The velocity meter was used to map the velocity profile of the air flow in the 

environmental test chamber to ensure that the air velocity was within the ISO 23953-2 

standard. The meter was also used to measure the air velocity at the back tunnel of the 

MT cabinet which is required for determination of the mass flow rate of the air flow 

across the MT evaporator coil. The air mass flow rate was used to verify the 

refrigeration capacity of the MT flooded evaporator coil when the circulation ratio of 

the MT circuit was equal to 1. The velocity meter is Velocicalc Plus 8386A-M-GB, a 

TSI product, with measurement range 0 m/s to 50 m/s and uncertainty ± 3%. The meter 

can also simultaneously measure the temperature and relative humidity of the air with 

measurement range -10 oC to 60 oC and 0% to 90% RH respectively. 

Figure 3.38 Power meter, Voltech PM-300
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3.6.2 Data logging system 

The output signals from the instrumentation devices are logged by a data logging 

system which comprises data acquisition modules and a recording and display system. 

The data acquisition modules utilise the Datascan 7000 series from MSL (Measurement 

System Ltd.) which include a Datascan measurement processor 7320 and expansion 

modules 7020. Each Datascan module contains 16 differential input channels, 

individually configurable for voltage and thermocouple measurements. To cover all the 

instrumentation devices used, 1 processor and 11 expansion modules were prepared as 

shown in Figure 3.39a. The configuration of each module and the channels are detailed 

in Table E-1 (Appendix E). 

 

 

 

 

 

 

 

 

 

Figure 3.39  Data logging system 

 

The recording and display system is a standard desk top computer. Communication 

between the Datascan modules and the computer is performed through an RS232 cable. 

The computer incorporates Labtech software which is fully compatible with the 

Datascan modules and allows a mix of more than 250 analogue and digital channels. 

The software also has a capability to manipulate a complex measurement system to be 

an attractive display so that it can be easier to monitor. The power consumption of the 

test rig was recorded and monitored separately using a second computer set. Both 
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computer sets are shown in Figure 3.39b. A monitoring display set up in the Labtech 

software is given in Figure E-2 (Appendix E). 

33..77  RReeffrriiggeerraanntt  cchhaarrggee  

The test rig is equipped with two charging connections, one is in the suction line of the 

LT compressor and the other is downstream of the MT evaporator just before the 

connection to the liquid receiver. This enables the system to be charged in gas or liquid 

phase. Figure 3.40 shows one of the charging connections and valve. The charging 

valve is used to isolate the system when the charging process has been completed. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.40  CO2 and charging connection  

 

Before charging, the system was pressure-tested and then evacuated. The system was 

charged during standstill conditions directly to the liquid receiver. Two methods of 

charging were used. Firstly, charging in gas when the system was in vacuum conditions 

until the pressure reached 7 bar (slightly above the triple point of CO2). This prevents 

the formation of dry ice which can block the charging line when charging in liquid. The 

outlet valves of the liquid receiver were open to allow the whole CO2 system to be 

pressurised. Secondly, charging in liquid. All outlet valves of the liquid receiver were 

closed. The standstill condensing unit was set in automatic operation. The condensing 

unit operates when the pressure in the liquid receiver increases to 30 bar. The level of 

liquid CO2 in the liquid receiver can be monitored from the display of the EKC-347. 
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The amount of refrigerant charge is 37 kg which fills 50% of the receiver volume with 

liquid CO2. This gives a specific refrigerant charge of 2.3 kg/kW which is in the range 

of the charge of a centralised supermarket CO2 system as reported in MTP (2008). 

The CO2 used in the system is of refrigerant grade. The cylinder of the refrigerant grade 

CO2 is shown in Figure 3.40.  Alternatively, a CP (Chemically Pure) grade CO2 with 

100% purity can also be used (Figure 3.40). Both have the same characteristics. The 

price of the CP grade CO2, however, is 16% lower than the refrigerant grade CO2. 

33..88  EEnnvviirroonnmmeennttaall  tteesstt  cchhaammbbeerr  

The display cabinets of the refrigeration load system were placed in an environmental 

test chamber which is a self contained unit located near the CO2 plant room. Figure 3.41 

shows a picture of the test chamber and the site where the test chamber is located. It can 

be seen that the test chamber is situated outside and the fluctuation of ambient 

conditions can directly affect its thermal load. In order to control the air temperature and 

relative humidity as well as the air velocity, the chamber incorporates an air handling 

unit (AHU) which was installed above its roof and supported by a purpose built steel 

structure. Figure 3.41 also shows other facilities surrounding the test chamber which 

include CO2 plant room and CHP chamber. 

 

 

 

 

 

 

 

 

 

Figure 3.41  CO2 test chamber and associated test facilities 
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The layout and detailed dimensions of the test chamber are given in Figure F-1 

(Appendix F). The external walls of the test chamber, also known as non-technical 

walls, are constructed from steel frames and covered with painted metal skins. The gap 

between the metal skins was filled with a rock-wool layer which provided a total wall 

thickness of 80 mm and a U-value (thermal transmittance) of 0.5 W/m2K. The roof and 

the suspended floor have a similar structure of 125 mm thickness with a U-value of 0.4 

W/m2K. The chamber also has a single glazed window of U-value 5.7 W/m2K and a 

swing door, 0.9 m wide and 2.5 m high. In order to provide access to bring the cabinets 

into the chamber, an extension door with screw joints was constructed adjacent to the 

swing door giving a total opening of 2.5 m wide and 2.5 m high. 

 

 
 

 

 
 

 

 

 

 

 

 

 

Figure 3.42  Technical walls of the CO2 test chamber 

 

Both ends of the chamber where the supply and return AHU ducts terminated were 

partitioned off with technical walls to form supply and return air plenums. This provides 

a maximum useful test area of 6.14 m long, 3.1 wide and 3.05 m high. The technical 

walls of the supply and return air plenums were constructed from perforated plate 

supported by a wooden frame. The walls are also covered with air filters to provide a 

pressure drop and uniform air velocity across the technical walls as well as within the 

test area. A polyester fibre air filter giving a pressure drop between 135 Pa and 250 Pa 

and a glass fibre panel air filter of 10 to 125 Pa pressure drop were used to cover the 

supply air and return air perforated plates respectively. Figure 3.42 shows the 

construction of the technical walls viewed from the test area. 
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3.8.1.1 Positioning the display cabinets in the test chamber 

Figure 3.43 shows the positions of the MT and LT cabinets inside the chamber. It can 

be seen that the MT cabinet is placed near to the return air technical wall and the LT 

cabinet 0.5 m away from the supply air technical wall. The location of the cabinets in 

the chamber is given in Figure F-2 (Appendix F).  

 

 

 

 

 

 

 

 

Figure 3.43  Position of the MT and LT cabinets in the test chamber 
 

3.8.1.2 Air handling unit 

Figure 3.44 shows a schematic diagram of the air handling unit (AHU). The AHU is a 

weatherproof model CAIRplus-128-096AVBV from GEA-Denco Ltd. specified for 

outdoor installation with a design duty of 1.9 m3/s and 400 Pa pressure drop. It 

comprises a mixing section, air filter, cooling coil, electric heater battery, heating coil, 

humidifier section and a centrifugal fan. The unit is connected to the return air and 

supply air plenums by return and supply air ducts respectively.    

The mixing section of the AHU constitutes a return air damper and a fresh air damper to 

facilitate control and regulations of the return and fresh air to the unit. The filter section 

contains cardboard-framed synthetic panel and plastic-framed synthetic bag filters. The 

section is also completed with two gauge manometers to measure the pressure 

difference before and after the filters. Start pressure drops of the panel and bag filters 
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are 58 Pa and 98 Pa respectively and the filters must be replaced when the pressure drop 

reaches 200 Pa for the panel filter and 300 Pa for the bag filter.  

The cooling coil is a DX evaporator coil manufactured from copper tubes and 

aluminium fins of 3.5 mm fin spacing. The evaporator coil has three circuits and two 

rows arrangement with refrigerant volume of 6 litres. The cooling capacity of the coil is 

32.3 kW specified for R-410A at evaporation temperature 6 oC. Air pressure drop of the 

coil is 24 Pa at surface air velocity 1.92 m/s.  

 

 

 

 

 

 

 

          

 

 

 

 

 

 

Figure 3.44  Schematic diagram of the air handling unit and font view of the test chamber 

 

The AHU incorporates an electric heater battery of rated power 20 kW. The heater 

battery has a multi-stage switching capability and a safety temperature limiter to limit 

the maximum surface temperature to 100 oC. The air pressure drop of the heater battery 

is 11 Pa specified at air velocity of 1.57 m/s. The unit also incorporates a low pressure 

hot water (LPHW) heat exchanger to enable the unit to utilise hot water for heating 

instead of electric heaters. The heat exchanger (HX) is a fin tube type made from copper 

tubes and aluminium fins of 2.5 mm fin spacing. The HX coil has two circuits and total 
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water volume of 4 litres. The coil is specified for 55 kW heating duty and pressure drop 

at air side of 11 Pa. 

The AHU is also completed with a self contained electric steam humidifier to provide 

humidification when the relative humidity of the air in the chamber is below the set 

point. The humidifier can produce 15 kg of steam per hour. However the steam 

production varies based on the humidification demand. The humidifier was 

manufactured by GEA-Denco Ltd.  

In order to circulate the specified air volume through the test area, the unit utilises a 

centrifugal fan. The fan has backward-curved blade impellers and has been statically 

and dynamically balanced by the manufacturer. The fan is ‘Comefri’ THLZ 400 FF 

with maximum air flow rate capacity of 4.2 m3/s at total pressure 818 Pa and fan speed 

2560 rpm. The flow capacity, however, can be modulated using the frequency inverter 

of the drive motor.  

The AHU was designed to be able to regulate and maintain the ambient conditions in 

the test chamber from 0 oC to 40 °C and 40% to 80% RH for both winter and summer 

weather conditions. Allowable temperature and RH deviations are within ± 1 oC and     

± 3% respectively. A display of the AHU design is given in Figure F-3 (Appendix F).  

3.8.1.3 Condensing unit 

The condensing unit is connected to the cooling coil of the air handling unit by an 

expansion valve kit to form a complete DX refrigeration system. The condensing unit is 

‘Daikin’ ERQ250AW1 which is an inverter driven condensing unit. It has two hermetic 

scroll compressors; one compressor is an inverter driven model of maximum speed 

6300 rpm and the other is an on-off type compressor with a fixed speed of 2900 rpm. 

The condensing unit has a nominal cooling capacity of 28 kW and an operating range 

from -5 oC to 43 oC. The unit uses refrigerant R-410A and has a refrigerant charge of 

8.4 kg.  

The condensing unit also incorporates a communication box and interface card to enable 

the unit to be controlled from a fully integrated ‘Trend IQ3’ control system. The control 

system automatically regulates the operation of the condensing unit either for cooling or 
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dehumidification based on the cooling and dehumidification demand from the test 

chamber. Capacity control is achieved by modulating the signal input (ranging from 0 to 

10 V d.c.) to the communication box. When the cooling demand or dehumidification 

demand is 100% (signal input 10 V d.c.), the unit operates at full capacity and both 

compressors run at full speed. The unit is on a standby mode when the signal input 

indicates no demand (0 V d.c.). 

3.8.1.4 Test chamber control system 

The air conditioning control system of the test chamber employs a ‘Trend’ IQ3 

controller which is a building management system (BMS) controller that uses Ethernet 

and networking technologies which enable a system to be monitored and adjusted from 

any internet access point in the world. For this test chamber application, the controller is 

used for local control purposes which incorporate a display panel (IQView4), input and 

output modules, heater controller (thyristor control module), on-off input components 

and sensors.  

Figure 3.45 shows a schematic diagram of the control system. It can be seen that the 

control receives signal inputs directly from the sensors and indirectly from the input 

components through the input modules. These signal inputs are compared to the desired 

control parameters (set points) and then the controller provides signal outputs which are 

used to modulate the controlled devices which include heater battery, inverter and fan, 

humidifier and the condensing unit.  

Three main parameters are controlled and maintained in a specified range and specified 

point of measurement. The parameters are temperature, relative humidity and velocity 

of the air in the test chamber. The air temperature and relative humidity are dependent 

on the climate class tests but the air velocity is independent and should be maintained in 

the range between 0.1 m/s to 0.2 m/s (ISO 23953-2, 2005). In order to control these 

parameters, the controller uses a proportional control algorithm (mode). The controller 

decreases the average signal outputs to the controlled devices as the controlled 

parameters approach the set points. These affect a slowing down of the modulations so 

that the controlled parameter does not overshoot or undershoot the set point. The 

proportional action occurs within a “proportional band” around the set point. Outside 
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the proportional band, the controller functions as an on-off controller. The set points and 

proportional bands can be set on the display panel (IQView4). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.45  Schematic diagram of the test chamber control system 

 

To control the air temperature of the chamber, the controller regulates either the heater 

battery or the condensing unit. The controller compares the set point with the measured 

temperature and modulates the heater battery when the temperature is below the set 

point or the condensing unit when cooling is required. The relative humidity (RH) is 

controlled by modulating the humidifier when the RH is below the set point and the 

condensing unit when the RH value is above the set point to affect dehumidification. 

The velocity of the air in the chamber can be varied by regulating the speed of the fan 

through modulation of the frequency inverter.  
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3.8.1.5 Test chamber commissioning 

After the construction of the air conditioning system, a series of tests were carried out to 

evaluate the test chamber performance and its compliance to the conditions and 

tolerances recommended in ISO 23953-2 (2005) standard. Three parameter sets were 

evaluated. One is the uniformity of the air velocity. Figure F-4 (Appendix F) shows the 

variation of air velocities inside the chamber. It can be seen that the air velocity is 

relatively uniform. A 3D measurement through the test area indicated 29 points out of 

30 measurement points to be within the standard range of between 0.1 m/s and 0.2 m/s. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.46  Variation of the test chamber conditions and ambient temperatures 
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Figure 3.46a shows the variation of air temperatures and relative humidity set up for 

climate class 3 conditions (25 oC, 60% RH) in the chamber over a period of 24 hours. 

They were measured at a point in the middle of the MT display cabinet 150 mm above 

and 300 mm in front of the top edge of the cabinet opening. Even though the ambient 

temperature varied significantly during the day (Figure 3.46b), the conditions within the 

chamber remained relatively stable. The temperature and relative humidity could be 

maintained within ± 1.0 oC and ± 3.0% respectively.  

Another important parameter is the positioning of a display cabinet in the chamber, i.e. 

the distance from the cabinet to the walls and ceiling. Figures F-5 and F-6 (Appendix F) 

show that the test chamber can comply with the ISO standard for vertical door type 

cabinets up to 3.75 m long but it cannot comply with the requirements for vertical open 

type cabinets. Horizontal open type cabinets up to 2.5 m long, however, can be tested in 

the chamber with compliance to the standard.  

In order to increase the capability of the test chamber, some improvements are required 

which include better insulation and extension of the width of the chamber. Figure F-7 

(Appendix F) shows proposed improvements to the test chamber. 

33..99  CCoommmmiissssiioonniinngg  tthhee  tteesstt  ffaacciilliittyy  

Prior to performing experimental tests, the test facility was commissioned in order to set 

and measure system performance against design parameters. The commissioning was 

performed after the test system was pressure and leak tested.  

Mechanical and electrical checks were carried out to ensure the system run in the safest 

possible manner during its initial start up. At this stage, the functionality of the 

mechanical and electrical components including the control system was appropriately 

tested. The operation and setting of the pressure relief valves and pressure switches 

were also adjusted and verified. The pressure relief settings were checked by 

pressurising the system with nitrogen. Electrical components such compressor, pump, 

solenoid valve and oil management system were checked by switching the control 

system to the manual mode. Most of the mechanical and electrical components could 

function as specified. Some components such as the liquid level switch and expansion 

valve were set and tested during system operation. 
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The initial set up was configured in the electronic control system in accordance with the 

designed control strategy described in Section 3.5.3. The initial set up was adjusted 

further for better system operation and performance. Explanation of the operational 

procedure of the test facility is detailed in Appendix G. 

During the initial operation it was found that at full load conditions the temperature of 

the water-glycol of the high stage circuit increased from -10 oC to -5 oC which indicated 

that the refrigeration capacity of the absorption unit of the trigeneration system was 

insufficient to maintain the set point of -10 oC.  

To enable the CO2 refrigeration system to operate at full load conditions, the high stage 

system was modified by installing a water chiller condensing unit in parallel with the 

absorption system. The water chiller is ‘Hitema’ ESE-045 specified for 18 kW 

refrigeration capacity at -12 oC delivery water-glycol temperature.  After installation of 

the chiller, the CO2 refrigeration system could steadily operate at designed and full load 

conditions.   

33..1100  SSuummmmaarryy  

This chapter has described the mathematical models developed to facilitate the design of 

the CO2 refrigeration system and integrated trigeneration facility. The chapter has also 

detailed the construction of the test facility which incorporates mechanical, electrical, 

control, instrumentation and data logging systems. The refrigeration loading system and 

the environmental test chamber have also been briefly described. 

Chapter 4 will present the evaporator coil models of the CO2 chilled and frozen food 

display cabinets. The chapter will also detail the validation of the models and 

performance analyses of the CO2 evaporator coils. 

 

 

 

 

 



 

99 

CChhaapptteerr  44  

MMOODDEELLLLIINNGG  AANNDD  PPEERRFFOORRMMAANNCCEE  AANNAALLYYSSEESS  
OOFF  CCOO22  EEVVAAPPOORRAATTOORR  CCOOIILLSS  

44..11  IInnttrroodduuccttiioonn  

An advantage of CO2 over HFC refrigerants is its better heat transfer properties that can 

lead to an increase in the evaporating temperature. A consequence of this is a potential 

increase in the refrigeration capacity of the coil and a reduction in the rate of frost 

formation on the coil surface.  

Refrigeration systems in supermarkets normally operate at two temperature levels, 

medium temperature (MT) and low temperature (LT). The evaporating temperature of 

MT refrigeration systems is around -8 oC and for LT refrigeration system -32 oC. The 

refrigeration systems employed can either be of the direct expansion or the secondary 

refrigeration loop type. In conventional supermarkets, the direct expansion refrigeration 

system is the most commonly used whereas the secondary loop type is a good option for 

CO2 refrigeration applications. As CO2 has low viscosity, its use as volatile secondary 

fluid can significantly improve the performance of the refrigeration system due to low 

pumping power. Analyses of secondary loop refrigeration systems using CO2 as 

secondary fluid have been reported by Inlow and Groll (1996) and Melinder and 

Granryd (2010). 

Finned tube heat exchangers are commonly used as forced air evaporator coils in 

refrigerated display cabinets in supermarkets. The performance of the evaporator coil 
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directly affects the temperature performance of the display cabinet and the overall 

performance of the supermarket refrigeration system. The influence of geometry and 

configuration on the performance of finned tube coils for synthetic refrigerants has been 

investigated by many researchers.  Romero-Mendez et al. (2000) examined the effects 

of fin spacing on the hydrodynamics and heat transfer of a plate fin and tube heat 

exchanger. Liang et al. (2001) and Jiang et al. (2006) investigated the impacts of circuit 

design on the performance of evaporator coils. Getu and Bansal (2007) developed a 

model of R-404A evaporator coil to analyse the performance of LT supermarket display 

cabinet coils. Chandrasekharan et al. (2006) developed a design tool for a finned tube 

display cabinet evaporator to predict the local and overall effects of frost accumulation.  

To date, there has not been much research into evaporator coil design specifically for 

CO2 refrigerant. Aidoun and Ouzzane (2009) established a numerical model to study the 

effects of circuitry of CO2 finned tube evaporators and found that it was possible to use 

longer circuit lengths, thus reducing the number of circuits for a given refrigeration 

capacity. Shilliday and Tassou (2010) investigated the impact of the geometry, tube 

circuitry and tube diameter on the performance of CO2 evaporators and showed that 

reducing the number of circuits could increase the velocity of refrigerant and reduce the 

total length of pipe.  

This chapter presents the performance of CO2 evaporator coils under different 

geometry, circuit arrangement and different operating conditions for chilled food and 

frozen food display cabinets for supermarket applications. The design and performance 

of the CO2 coils used in the display cabinets of the test rig cabinets are also discussed. 

Comparison with evaporator coils using R-404A refrigerant is also presented and 

discussed. 

44..22  EEvvaappoorraattoorr  mmooddeell  ddeessccrriippttiioonn  

Two main models were established to investigate the performance of CO2 evaporator 

coils. The first model was for the investigation of the performance of MT CO2 flooded 

evaporator coils. The second model was for the simulation of the performance of CO2 

DX evaporator coils for both chilled and frozen food temperature levels. The models 

can also be used to design the geometry and tube arrangement of evaporator coils for a 

given refrigeration capacity. The numerical models apply standard plate fin 



 

101 

specification from SRC (2010) to determine fin and tube pattern, height and width of 

the coil. The models were developed using the software EES. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4.1  Structure of the simulation models for flooded and DX evaporator coils 

 

Figure 4.1 shows a flowchart of the models for flooded and DX evaporator coils. The 

models consist of four loops. The first loop ensures that the energy balance in the 

evaporator coil can be satisfied. The loop determines the air mass flowrate at a given 

display cabinet refrigeration duty. The convergence of the loop is satisfied when the rate 

of heat transfer on the air side, on the refrigerant side and that determined from the 

overall heat transfer coefficient become equal. The other two loops verify the geometry 

and the number of circuits. Another loop determines the optimum defrost period of the 

coil for given operating conditions. Once the convergence of the first loop has been 

achieved and the refrigeration duty becomes equal to the design requirement, the 

geometry of the coil is determined. The key input parameters shown in Figure 4.1 such 
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as evaporating temperature, circulation ratio and air mass flowrate can also be varied to 

investigate the comparative heat transfer performance and pressure drop behaviour of 

different coil geometries and arrangements. 

The models make some assumptions as follows: steady state flow conditions; one 

dimensional flow for refrigerant inside tubes and air across the coil; negligible thermal 

losses to the environment; uniform temperature and air flow; constant air side 

convective heat transfer coefficient over the entire coil; intermediate pressure (Pint) to be 

considered as condensing pressure for CO2 DX evaporator coil; negligible refrigerant 

pressure drops of less than 2 K saturated temperature equivalent for DX coils (SRC, 

2001) and less than 1 K for flooded coils; the same number of tubes in each circuit with 

the same fraction of total mass flow rate; quasi steady frosting process; maximum 

pressure drop at air side of the coil to be lower than 0.175 kPa (Bell and Mueller, 2001). 

44..33  MMaatthheemmaattiiccaall  mmooddeell  aapppprrooaacchh  

Figure 4.2 shows the basic geometry of the finned tube evaporator considered in the 

models. The tubes are arranged in coordinates along width, depth and height axes (i, j, 

k) as can be seen in the figure. The number of rows and tube pattern can be used to 

determine the size of the coil and the tube interconnections within the coil circuits. If the 

coil has more than one circuit, the number of tubes in each circuit should be evenly 

balanced. 

 

 
 
 
 
 
 
 
 
 
 

Figure 4.2 Geometry of a finned tube evaporator model 
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staggered or in-line.  The staggered arrangements commonly used are the 30o, 45o and 

60o layouts, while the coil with inline arrangement is referred to as the 90o tube layout. 

The models have been developed to provide the possibility to determine the geometric 

parameters of a coil for different tube arrangements. 

The mathematical models use the lumped element technique by which the evaporator 

coil can be divided into the superheated and two phase regions. A DX coil has two 

lumped regions (single and two phase regions), while a flooded evaporator coil only has 

a one region, the two phase region as shown in Figure 4.3. Each region is considered as 

a single control volume.  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.3 Schematic of flooded and DX evaporator coils with single and two control volumes 
respectively 

 

The mass and energy balance principles are applied to each control volume, which are 

summarised in equations (4.1) to (4.3) for DX evaporator coil. For flooded evaporator 

coil, the equations are also applied but the heat transfer rate components for single 

phase region (Qevap,r,sp) equation (4.1),  )( ,,,, spirsporr HHm   equation (4.2) and  

( splmspaspa TAU ,,,  ) equation (4.3) are omitted due to single phase region does not exist.  
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splmspaspatplmtpatpaevap TAUTAUQ ,,,,,,                     (4.3) 

The air-side surface area of the coil (Aa) and other geometric parameters such as free 

flow area and free flow area with frost were calculated as in Shah and Seculic (2003). 

The fraction of the coil area in each control volume in a DX coil is calculated in 

proportion to the amount of heat transfer in each control volume. 
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The logarithmic mean temperature difference of each control volume (ΔTlm) is defined 

as: 
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where ocih TTT ,,1  and icoh TTT ,,2  ; 

Th,i ; Th,o and Tc,i ; Tc,o are inlet/outlet temperatures of hot and cold streams of the control 

volume respectively. The hot stream is air and the cold stream is the refrigerant. 

When 21 TT   < 0.05, to avoid errors of division by zero in the EES software the 

logarithmic mean temperature difference is calculated from (Mattsson, 1997): 
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The overall heat transfer coefficient (Ua) of the coil with frost can be determined from 

equation (4.7) which is based on the external and internal heat transfer coefficients and 

frost, wall and fouling resistances. For the frost free coil models the component of frost 

resistance is not included.  

rrflwallaflfrostatot
a

RRRRRRR
U

 ,,

1
                  (4.7) 

The thermal resistances are calculated from the equations in Table 4.1. For the DX coil 

the internal and external heat transfer areas (Ar , Aa) as well as the internal heat transfer 

coefficient (hr) depend on the mode of heat transfer, single or two phase. 
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Table 4.1  Equations for the thermal resistance of the coil 
Calculations refer to the air-side surface area, equation (4.3) 

Components 
Thermal resistance  

(m2K/kW) 
References 

 
Air-side (external) resistance 

ao
a h

R


1
  

 

 

 
Frost resistance 

frosto

frost
frostR




   

Air-side fouling resistance 

.
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000176.0

o
aflR


  

Kakac and Liu 
(2002) 

Tube wall resistance 
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Refrigerant-side fouling resistance 
r

a
rfl A

A
R

.

, 000352.0  Kakac and Liu 
(2002) 

 
Refrigerant-side (internal) resistance 

rr

a
r hA

A
R   

 

 

Where: A = heat transfer surface area (m2); d = diameter of tube (m); o = overall evaporator 

HX efficiency (Section 4.3.4); h = heat transfer coefficient (kW/m2 K); Lt = length of the 

coil tube (m); frost = frost thickness (Section 4.3.3);  = thermal conductivity 

(kW/m.K) for frost is presented in Section 4.3.3. 

 

4.3.1 Heat transfer coefficient and pressure drop at refrigerant side 

The local heat transfer coefficients and pressure drop correlations were selected for each 

flow regime as it changes with the flow and evaporation of refrigerant in the evaporator. 

Thus the correlations reliably capture the variation of two phase heat transfer coefficient 

and frictional pressure drops at different mass velocities and vapour qualities. Figure 4.4 

shows the flow regime of the CO2 refrigerant evaporating inside horizontal tubes.  

The approach used in the models to determine the overall two phase heat transfer 

coefficient and pressure drop of the evaporator coils from local heat transfer coefficient 

and pressure drop of CO2 evaporation was to divide the coil into 12 elements (Figure 

4.4) from x = xin to x = 1 for the DX evaporator and x = 0 to x = xout for the flooded 

evaporator and determine the average value. This approach provides acceptable results 

and is moderately easy to manage in the model. A larger number of elements did not 

provide any significant difference to the simulation accuracy.  
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Figure 4.4 A flow pattern map of CO2 evaporation inside DX and flooded evaporator coils 
(Source of the CO2 flow pattern map: Cheng et al., 2008a) 

 

Equations (4.8) to (4.10) show general equations for the local two phase heat transfer 

coefficient (htp) and pressure drop (∆Pr) on the refrigerant side of the evaporator. Key 

equations are presented in Table 4.2 and more detailed correlations for each flow regime 

including the transition boundary correlations can be found in Cheng et al. (2008a; 

2008b).  
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Where dry is the dry angle which defines the ratio of the tube perimeter in contact with 

liquid and vapour; hV and hwet are respectively heat transfer coefficients on the dry and 

wet perimeters (W/m2K); hnb, S and hcb are nucleate boiling heat transfer coefficient 

(W/m2K), nucleate boiling heat transfer suppression factor and convective boiling heat 

transfer coefficient (W/m2K) respectively.  
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The static pressure drop (∆Pstatic) of a horizontal tube is equal to zero; momentum 

pressure drop (∆Pm) and frictional pressure drop (∆Pfr) are calculated from: 

 inoutm ZZGP  2          (4.11) 
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 f is the friction factor which depends on the flow region; dh = hydraulic diameter of the 

tube (m); G = mass velocity (kg/s.m2); Lt = tube length (m); u = refrigerant velocity 

(m/s); x = vapour quality;  = cross sectional vapour void fraction; and  = density 

(kg/m3). 

Table 4.2  Key equations for two phase heat transfer coefficient and pressure drop for CO2 
inside a horizontal tube 

Parameters    Equations 

 
Vapour phase heat transfer 
coefficient (Dittus-Boelter equation) 
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        Source: Cheng et al, 2008b 
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Table 4.2  Key equations for two phase heat transfer coefficient and pressure drop for CO2 
inside a horizontal tube (Continued) 

Parameters    Equations 

 Homogenous Reynolds number: 

 







 )1Re xx
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Heat transfer coefficient of the dry 
out flow region 
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        Source: Cheng et al, 2008b 

A = area (m2); dh = diameter hydraulic of tube (m); h = heat transfer coefficient (W/m2 K); M = 

molecular weight (kg/mol); Pr = Prandtl number; q = heat flux (W/m2); ReH, ReV and Re are 

respectively homogeneous, vapour phase and liquid film Reynolds numbers; u = refrigerant velocity 
(m/s); x = vapour quality;   = liquid film thickness (m);   = thermal conductivity (W/m.K);  = 

density (kg/m3);  = dynamic viscosity (N/s.m2);   = dry angle (rad). Subscripts: crit = critical; cb = 

convective boiling; di = dry out inception; de = dry out completion; h = hydraulic; L = liquid phase; M = 
mist flow region; nb = nucleate boiling; V = vapour phase; tp = two phase. 

 

Results for the prediction of two phase pressure drop of CO2 in evaporator coils have 

been verified using data from Cheng et al. (2008a) as shown in Figure 4.5a. The figure 

shows the variation of the pressure drop for a 7 mm internal diameter tube coil. Figure 

4.5b shows two phase pressure drop obtained from the CO2 evaporator models for the 

same internal tube diameter. It can be seen that the results from model are in a good 

agreement with the pressure drop prediction by Cheng et al. (2008a). Both pressure drop 

increase up to a vapour quality of approximately 0.8 and then drop sharply due to the 

start of the dry-out region.  

 

 

 

 

 

 

 

Figure 4.5  Variation of CO2 two phase pressure drop and heat transfer coefficient 
(Investigated at Tevap = -10 oC, Gr = 400 kg/s m2 and internal tube diameter 7 mm, q = 9 kW/m2) 

(a) Comparison of CO2 two phase pressure drop model 
results and experimental data (Cheng et al., 2008a) 

(b) Results from the CO2 evaporator models 
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Figure 4.5b also shows the variation of two phase heat transfer coefficient of CO2 

refrigerant at different vapour quality resulted from the evaporator model. It can be seen 

that two phase heat transfer coefficient also increases up to a vapour quality of 0.8 and 

then drop sharply in the dry-out region.  

For the R-404A evaporator model, the two phase heat transfer coefficient of R-404A 

was determined from the correlation by Wojtan et al. (2005b). The two phase pressure 

drop was calculated from Moreno-Quiben and Thome (2007a; 2007b). The heat transfer 

coefficient and pressure drop correlations were associated with the flow pattern map 

developed by Wojtan et al. (2005a). 

 

 

 

 

 

 

 

 

Figure 4.6  Comparison of two phase heat transfer coefficient and pressure drop 
between CO2 and R-404A  

 

Figure 4.6 presents the two phase heat transfer coefficient and pressure drop of R-404A 

in comparison with CO2 refrigerant. The results were obtained from direct expansion 

evaporator models at evaporating temperature Tevap = -10 oC, condensing temperature 

Tcond = 16.5 oC (without subcooling), mass velocity Gr = 400 kg/s.m2 and internal 

diameter of the coil tube di = 10.7 mm respectively. The figure shows that the two phase 

heat transfer coefficient and pressure drop of both refrigerants increase with vapour 

quality reaching their peak values at the end of the annular flow region (at vapour 

quality between 0.7 and 0.8) and then decrease sharply in the dry-out region.  
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From the figure, the advantage of CO2 over R-404A refrigerant can also be seen. The 

two phase heat transfer coefficient of CO2 is about 20% (on average) higher than R-

404A. This contributes to better heat transfer on the CO2 evaporator coil reducing the 

size of the coil for the same refrigeration duty. Figure 4.6b shows that the two phase 

pressure drop of CO2 is much lower, approximately one third, of the pressure drop of R-

404A. This offers a number of advantages for CO2 as a refrigerant which have been 

described in Section 2.1 (Chapter 2). 

4.3.2 Heat transfer coefficient and pressure drop on the air side 

The air side heat transfer coefficient (ha) consists of convective and latent heat transfer 

coefficients: hc,a and hlat,a respectively (Getu and Bansal, 2007).  

alataca hhh ,,                      (4.13) 

The convective heat transfer coefficient was calculated using the Colburn j-factor, Kim 

et al. (1999): 
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The Colburn j-factor for evaporator coil having three or more tube rows in the direction 

of the air flow (rows deep Nj ≥ 3) can be determined from (Kim et al., 1999): 
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For less than three rows deep (Nj < 3): 
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The air flow Reynolds number of the free flow area is given by: 

a

ha
Dh

DG


Re                     (4.17) 

The hydraulic diameter of the air side (Dh) can be calculated from: 
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where Aff,a is the free flow area at air side of the evaporator coil (m2); Cp,a is the specific 

heat of air (kJ/kg K); do = outside diameter of the evaporator tube (m); Ga is the air 

mass velocity through the free flow area (kg/s.m2); Sj, Sk and Sf  are tube and fin spacing 

(Figure 4.2).  

The latent heat transfer coefficient can be determined from (Threlkeld, 1970): 
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where the Lewis number (Le) is assumed to be 1 and the sublimation latent heat (Hsg) is 

estimated from the correlation proposed by Ismail and Salinas (1999):  

 1.1220)328.1(04667.02322 ,  mrsg TH                 (4.20) 

Tr,m is average temperature of the refrigerant. 

The air pressure drop over the evaporator is calculated from the pressure drop equation 

given by Kays and London (1998): 
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where Af  is fin surface area including leading and trailing edge area (m2); ia, , oa, , and 

ma, are inlet, outlet and average air density (kg/m3) respectively;   is the ratio of free 

flow to frontal area; ia, and oa,  are the humidity ratio of air-on and air-off the coil  

respectively. 

The total friction factor (fa) of the evaporator is calculated from (Kim et al., 1999): 
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where f  is the fin thickness (m); the friction factors due to fins (ff) and tube bank (ft) 

can be determined from: 
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4.3.3 Calculation of frost accumulation 

Frost accumulation on the evaporator surface is estimated using the method proposed by 

Getu and Bansal (2007). The rate of frost accumulation is determined from equation 

(4.25); the amount of frost accumulated on the surface of the evaporator ( frostm ) from 

equation (4.26) and the frost thickness ( frost ) from equation (4.27). 

)( ,, oaiaafrost mm            (4.25) 

frostfrostfrost tmm            (4.26) 
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          (4.27) 

 
where am  is the air mass flow rate; frostm is the frost accumulation rate; the parameter 

ia,  and oa, are the humidity ratio of air-on and air-off evaporator coil; and Δtfrost is the 

step time of frost accumulation. The frost density and thermal conductivity are 

calculated from empirical correlations as described in Getu and Bansal (2007): 
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where Ttrip,H2O and Ts are the water triple point and the coil surface temperature 

respectively. The coil surface temperature is assumed to be the average of the 

refrigerant temperature in the coil. The parameter ma,  is the average humidity ratio of 

the air across the coil. The properties of ice evaluated at the coil surface temperature 

were determined from the EES software.  
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The Fourier number is defined as: 

2
h
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         (4.30) 

a is the thermal diffusivity of air (m2/s). 

The air pressure drop over the coil was determined by using coil geometric parameters 

and air mass velocity with frost thickness ( frost ).   

4.3.4 Overall surface efficiency of the evaporator coil 

The overall surface efficiency of the evaporator coil ( o ) is a function of fin and total 

surface area ratio and fin efficiency which can be formulated as below (Wang et al., 

1996).  

 f
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f
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The estimation of fin efficiency ( f ) is calculated from the equation proposed by Hong 

and Webb (1996). The correlation is based on a simplified analytical solution for a 

circular fin by Schmidt (1945) approximation. For the case of rectangular and 

hexagonal fins, the fin efficiency could be treated as for a circular fin by considering an 

equivalent circular fin radius (Schmidt, 1949).  
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For inline tube arrangement (rectangular fins): 
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For staggered tube arrangement (hexagonal fins): 
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where rf,eq is the equivalent circular fin radius of rectangular and hexagonal fins; ro is 

the outside radius of the evaporator tube (m); Sd is the diagonal spacing between the 

tubes. 

44..44  DDeessiiggnnss  aanndd  ppeerrffoorrmmaannccee  ooff  tthhee  CCOO22  eevvaappoorraattoorr  ccooiillss  uuttiilliisseedd  iinn  tthhee  

MMTT  aanndd  LLTT  ccaabbiinneettss  ooff  tthhee  tteesstt  rriigg  

The models have been developed and used to design the evaporator coils of the MT and 

LT cabinets of the test facility. Three evaporator coils were designed: a flooded MT 

evaporator coil of 5 kW refrigeration capacity; two DX LT evaporator coils of 5 kW 

and 3 kW capacities respectively.  

Table 4.3  Design parameters of the evaporator coils 

Parameters 
MT flooded 

coil 
MT DX  

coil 
 LT DX  

coil 

Ambient temperature (oC) 25 25 25 

Ambient relative humidity (%) 60 60 60 

Condensing temperature (oC) - -3 -8 

Intermediate/condensing pressure (bara) - 32 28 

Evaporating temperature (oC) -8 -8 -32 

Circulation ratio 2 - - 

Degree of superheat (K) - 5 5 

Liquid line subcooling (K) - - 2.4 

Air volume flow rate (m3/s)* 0.275 0.275 0.193 

Air mass flow rate (kg/s) 0.35 0.35 0.27 

∆T between air-on and air-off (K) 10 9.2 10 

∆RH between air-off and air-on (%)   23 15 15 

Allowable maximum height (m) 0.15 to 0.16 0.15 to 0.16 0.15 to 0.16

Allowable maximum depth (m) 0.21 0.21 0.40 

* Estimated using measured air velocity at cross section of the rear air ducts of the MT and LT cabinets.  

 

The designs were based on the parameters detailed in Table 4.3. The main design 

parameters for the MT flooded coil were evaporation temperature in the coil of -8 oC 

and refrigerant mass flowrate equivalent to circulation ratio (CR) = 2. For the MT DX 
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coil, CO2 enters the expansion valve (EXV) as liquid without subcooling at intermediate 

pressure of 32 bara and saturation temperature of -3 oC. After expansion the CO2 enters 

the evaporator coil at a temperature of -8 oC and exits at -3 oC giving a superheat of 5 K.  

For the LT DX evaporator coil, CO2 enters the EXV as liquid with 2.4 K subcooling at 

28 bara. The evaporation temperature of this coil is at -32 oC (13 bara) and CO2 exits the 

coil with 5 K superheating. The coils were sized to fit within the available space in the 

cabinets which were originally built for R-404A coils. 

Table 4.4  Coil geometry and estimated performance parameters 

Coil Geometry/Parameters 
MT flooded 

coil 
MT DX  

coil 
 LT DX  

coil 

Coil geometry    
Copper tube diameter, do (m) 0.0127 0.0127 0.0127 
Tubes arrangement/layout staggered/30o staggered/30o staggered/30o 
Transversal tube spacing, Sk (m) 0.038 0.038 0.038 
Longitudinal tube spacing, Sj (m) 0.033 0.033 0.033 
Fin spacing, Sf (m) 0.0064 0.0064 0.0085 
Fin thickness, δf (m) 0.00022 0.00022 0.00022 
Number of circuits, Nc 4 4 3 
Number of rows deep, Nj 6 6 8 
Number of rows high, Nk 4 4 4 
Coil height, Lk (m) 0.152 0.152 0.152 
Coil depth, Lj (m) 0.198 0.198 0.264 
Coil width, Li (m)   2.085 2.085 2.030 
Total tube length, Lt (m) 50.0 50.0 65.0 
Performance parameters    
Refrigeration capacity (kW) 5.24 5.09 3.0 
Refrigerant mass flow rate (kg/s) 0.0410 0.0204 0.0113 
Refrigerant mass velocity, Gr (kg/s.m2) 114.9 56.7 41.7 
Refrigerant side pressure drop, ∆Pr (kPa) 9.41 4.81 7.78 
Frost free air side pressure drop, ∆Pa (kPa) 0.005 0.005 0.003 
Air side pressure drop with 4 (h) frost period, ∆Pa,frost (kPa) 0.011 0.017 0.007* 
Overall surface efficiency, ηo 0.87 0.85 0.92 
Fin efficiency, ηf 0.85 0.84 0.91 
External heat transfer coefficient, ha (kW/m2.K) 0.046 0.057 0.029 
Internal heat transfer coefficient, hr (kW/m2.K) 3.304 2.970 1.336 

* Estimated for frost period, ∆t = 48 (h) or 2 (days); Design parameters refer to Table 4.3   

 

The coil geometry and tube arrangement including estimated performance parameters 

are shown in Table 4.4. For the same evaporating temperature, the flooded coil can 

provide lower air-off temperature and lower air-side pressure drop with four hours 

between defrost periods. Moreover, the internal heat transfer coefficient of the MT DX 

coil is lower than for the MT flooded coil. This is because the DX coil has a lower mass 

flow rate of the same number of circuits which results in a smaller refrigerant mass 

velocity and does smaller heat transfer coefficient.  
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Figure 4.7  The influence of circulation ratio (CR) and evaporating temperatures on the 

flooded coil capacity and refrigerant mass flow rate  
      (Investigated at: (a) Tevap = -8 oC; (b) CR = 1.3) 

 

Simulating the MT DX coil using a single circuit tube arrangement showed the capacity 

of the coil to improve by 4.1%. The internal pressure drop also increased from 4.8 kPa 

to 30.8 kPa corresponding to 0.6 K saturation temperature difference. This pressure 

drop is still within the acceptable range for CO2 evaporator coils. Simulating the LT DX 

coil with a single circuit tube arrangement showed an increase the capacity of the coil 

by 10% and the pressure drop by 28.4 kPa giving a pressure drop of 36.2 kPa (0.96 K). 

Because the model at this point had not been validated, for safety in terms of pressure 

drop the MT coils were manufactured with four circuits. The LT DX coil was 

manufactured with a 3 circuit tube arrangement due to lower pressure drop in this coil. 

Detailed geometry and estimated performance parameters of the evaporator coils are 

given in Figures H-1 to H-4 (Appendix H). The construction of the coils has been 

described in Section 3.3.4 (Chapter 3). 
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Figure 4.7 shows the variation of refrigeration capacity and refrigerant mass flow rate of 

the flooded coil at different circulation ratios (Figure 4.7a) and at different evaporating 

temperatures (Figure 4.7b). It can be seen that the coil capacity increases with 

circulation ratio but requires significant increase of refrigerant mass flow rate. The 

refrigeration capacity of the coil slightly reduces when the evaporating temperatures 

increases with relatively constant mass flow rate. The figure also presents trend-line 

equations including correlation coefficients between refrigeration capacity, mass flow 

rate and circulation ratio. These correlations were used to model the influence of the 

circulation ratio on the performance of the integrated trigeneration and CO2 

refrigeration system as explained in Section 3.2.1.3 (Chapter 3).    

44..55  EExxppeerriimmeennttaall  aanndd  tthheeoorreettiiccaall  vvaalliiddaattiioonn  ooff  tthhee  mmooddeellss  

The models were validated using test results from the experimental test facility. The 

model of the conventional evaporator coil with R-404A refrigerant was validated 

against data provided by the manufacturer. Comparison between predicted and 

experimental data under design conditions was found to be satisfactory for the 

refrigeration capacity as shown in Table 4.5.  

Table 4.5  Model and experimental results 

Parameters 
a) MT CO2 Models b) DX LT 

CO2 model 

c) DX MT        
R-404A model Flooded DX 

Qevap (kW) full load at ∆Ta range 
between 9 and 10 K and Tevap = -8 
oC for MT, -32 oC for LT, CR = 1.3 

Model 5.19 5.09 3.00 - 

Experiment 5.10 4.93 2.89 - 

Qevap (kW) steady state load at 
∆Ta between 8 and 9 K for MT; 
between 7 and 8 K for LT 

Model 4.55 4.46 2.35 3.65 

Experiment 4.42 4.30 2.12 3.60* 

∆Pr (kPa) steady state; for flooded 
coil CR = 1.3 and ∆T superheat 
for DX coil between 5 and 12 K 

Model 7.91 4.81 7.78 40.92 

Experiment 21.15 16.87 23.32 148.28* 

a) Tube arrangement: staggered; do = 0.0127 (m); Nk = 4; Nj = 6; Nc = 4; fins pitch 158 fins/m (4 FPI) 
b) Tube arrangement: staggered; do = 0.0127 (m); Nk = 4; Nj = 8; Nc = 3; fins pitch 118 fins/m (3 FPI) 
c) Tube arrangement: inline; do = 0.01587 (m); Nk = 2; Nj = 16; Nc = 2; fins pitch 118 fins/m (3 FPI) 
*  Data from manufacturer 

 

The pressure drop estimates, however, were lower than the experimental results mainly 

because the pressure drops across the distributor and inlet and outlet effects were not 

included in the model. For synthetic refrigerants these pressure drops can be as high as 

89% of total pressure drop in the evaporator coil (SRC, 2001).  
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44..66  PPeerrffoorrmmaannccee  aannaallyysseess  ooff  CCOO22  eevvaappoorraattoorr  ccooiillss  

The validated models were used to design 8 evaporator coils with different geometry 

and circuitry. The evaporator coils were simulated at evaporating temperature of -8 oC 

for the MT coils and -30 oC for the LT coils. Tubes and fins were assumed to be made 

of copper and aluminium respectively. Equilateral fin and tube pattern in a staggered 

arrangement was assumed. 

Table 4.6  Geometry of the designed coils and their performance parameters 

Parameters MT evaporator coils  LT evaporator coils 

DX CO2 Flooded CO2 DX R-404A  DX CO2 DX R-404A

EC-1 EC-2 EC-3 EC-4 EC-5  EC-6 EC-7 EC-8 

do (mm) 9.52 12.70 9.52 12.70 15.87  9.52 12.70 15.87 

Nk 2 2 2 2 2  2 2 2 

Nj 21 17 13 10 20  12 10 12 

Nc 2 1 2 1 2  2 1 2 

Lt (m) 91.1 73.8 56.4 43.4 86.6  48.7 40.6 48.7 

Lk (m) 0.064 0.064 0.064 0.064 0.076  0.064 0.064 0.076 

Lj (m) 0.577 0.467 0.358 0.275 0.660  0.330 0.275 0.396 

Li (m)  2.170 2.170 2.170 2.170 2.170  2.030 2.030 2.030 

Vr (L) 4.14 6.78 2.56 3.99 13.47  2.22 3.74 7.57 

Gr (kg/s.m2) 171.0 168.7 199.8 198.1 109.0  100.4 99.0 72.2 

CR - - 1.2 1.2 -  - - - 

Qevap (kW) 3.75 3.75 3.75 3.76 3.76  2.25 2.25 2.25 

Qevap,frost 
(kW)* 

3.26 3.12 3.24 2.96 3.44  2.16 2.14 2.15 

ηf** 0.85 0.88 0.85 0.88 0.87  0.89 0.92 0.90 

hr (kW/m2.K) 2.899 3.107 3.206 3.473 0.482  2.521 2.802 0.337 

ha (kW/m2.K) 0.062 0.073 0.064 0.075 0.063  0.042 0.050 0.046 

∆Pr (kPa) 65.13 30.89 42.34 19.27 50.47  33.15 16.24 31.79 

∆Pa,frost (kPa)* 0.016 0.024 0.030 0.043 0.013  0.018 0.020 0.010 

* After frost accumulation of 4 (h) for MT coils and 48 (h) for LT coils;  

** Fin thickness: 0.22 (mm) and fin pitch: 118 (fins/m); Vr is the refrigerant volume of the coils (litre). 

 

Table 4.6 shows the geometry of the evaporator coils together with their performance 

parameters. It can be seen that the physical sizes of the CO2 evaporator coils are much 

smaller compared to the R-404A coils. 

For the given refrigeration duty, the flooded MT coil with tube diameter 9.52 mm (EC-

3) has the smallest size with refrigerant volume about 62% of the MT DX coil with the 

same tube diameter (EC-1) and about 19% of the refrigerant volume of the R-404A 

evaporator coil (EC-5). The CO2 coils also need less refrigerant charge as shown in 
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Figure 4.8, assuming 25% and 35% of the evaporator volume was filled with liquid for 

the DX and flooded evaporator coils respectively. 

 
 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 4.8  Refrigerant charge comparisons 

 

The CO2 evaporator coils with smaller tube diameter require more tube rows and longer 

tubes to meet the designed refrigeration duty. Using single circuit arrangement results in 

high pressure drop particularly for the DX type coils. As can be seen in Table 4.6 the 

pressure drops of the CO2 coils (EC-1, EC-3 and EC-6) are higher than the coils with 

larger tube diameter (EC-2, EC-4 and EC-7) even for the two circuit arrangement. 

Moreover, the physical size of the coils, except for in the case of the flooded coil EC-3, 

is larger which will increase their manufacturing cost. 

 

 

 

 

 

 

 

Figure 4.9  The influence of evaporating temperature on the performance of MT DX coils 
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Figure 4.9 shows the variation of the performance of CO2 MT DX coils with 

evaporating temperature. Increasing the evaporating temperature can slightly improve 

the refrigeration capacity and can reduce the pressure drop. This was also found to 

apply to LT DX evaporator coils.  

    

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.10  The influence of circulation ratio on the performance of the flooded coils 

 

Figure 4.10 shows the performance of the flooded CO2 evaporator coils at different 

circulation ratios (CR). As the CR increases, the refrigeration duty slightly improves due 

to the enhancement of the evaporation heat transfer coefficient. However, the increase 

of the CR considerably increases the pressure drop and refrigerant mass velocity which 

increases the power consumption of the CO2 pump and causes a reduction in the 

coefficient of performance of the refrigeration system. The CR, therefore, should be 

chosen to be as low as possible in the range of the designed refrigeration capacity. The 
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experimental tests showed the optimum CR to be in the range between 1.1 and 1.3 

(Chapter 5). 

44..77  SSuummmmaarryy  

This chapter has detailed numerical models developed for the design of CO2 evaporator 

coils. The models have been used to design the evaporator coils of the display cabinets 

of the test rig. This chapter has also described the validation of the models and their 

application for design and simulation of finned tube flooded and direct expansion coils 

with different geometry and circuit arrangements using CO2 and R-404A as refrigerants. 

The simulations showed that for a given refrigeration capacity, CO2 evaporator coils 

have smaller size and lower refrigerant charge compared to the coils using R-404A 

refrigerant.  

Chapter 5 will present experimental test results for the coils and the whole refrigeration 

system. 
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CChhaapptteerr  55  

EEXXPPEERRIIMMEENNTTAALL  TTEESSTT  RREESSUULLTTSS  AANNDD  MMOODDEELL  
VVAALLIIDDAATTIIOONN  

This chapter reviews the as-built test facility and reports experimental test results on the 

performance of volatile medium temperature (MT) CO2 refrigeration with different 

circulation ratios and different evaporating temperatures. The performance of low 

temperature (LT) direct expansion refrigeration as well as the combined MT and LT 

performance is also considered. This chapter also briefly describes the test conditions 

and procedure, parameter setting, data collection and processing which includes 

uncertainty analyses of the test results. Validation of the simulation models is also 

presented. 

55..11  OOvveerrvviieeww  ooff  tthhee  aass--bbuuiilltt  tteesstt  ffaacciilliittyy  

The test facility consists of three main modules: CHP module, absorption refrigeration 

module and retail refrigeration system module as shown in Figure 5.1. The CHP module 

is based on an 80 kWe recuperated micro gas turbine generation package with in-built 

boiler heat exchanger (exhaust heat recovery heat exchanger). The 3-phase electrical 

power output from the high speed alternator can be modulated in the range 30 kWe to 80 

kWe.  

The absorption refrigeration module currently employed is based on a packaged direct 

gas fired ROBUR chiller which has been re-engineered to operate with a heat transfer 

fluid heated by the exhaust gases of the microturbine in the CHP module. The 
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absorption module was integrated with the CHP module through the in-built boiler heat 

exchanger and heat transfer fluid (HTF) system (Figure 5.1) to form the trigeneration 

system.  

The capacity of the installed absorption module is about 30% of the possible optimum 

capacity of the trigeneration system. The refrigeration capacity of the trigeneration 

system is dependent on the type of thermally driven refrigeration system used. For 

ammonia-water refrigeration systems providing refrigeration to -10 oC, the trigeneration 

system can provide up to 30 kW of refrigeration which recovers approximately 50 kW 

wasted heat of the CHP module. To achieve this, a new indirectly heated generator was 

developed and implemented on the absorption chiller. Further performance 

improvement could be achieved through better integration of the CHP system and 

absorption chiller to reduce pumping power and pipe heat losses.  

  

 

 

 

 

 

 

 

 

 

 

Figure 5.1 Simplified diagram of the integrated volatile-DX CO2 refrigeration and trigeneration 
(Detailed diagram of the integrated system is shown in Figure I-1; Appendix I) 

 

The retail refrigeration system module as shown in Figure 5.2 consists of a cascade 

volatile MT and direct expansion LT CO2 refrigeration system and associated test 

facilities which include an environmental test chamber and chilled and frozen food 

Chilled fluid 
pump 

Absorption 
refrigeration 
module 

Exhaust 
gas

CHP module 

MT Display 
cabinet 

LT Display 
cabinet

CO2 Compressor
Bock HGX12P/60-4 CO2 CO2 Pump 

CO2 liquid 
receiver 

IHX

CO2 condenser 

Air

Fuel

Electricity 

Boiler HX 

Generator set 

Hot fluid 
pump 

RV 

B
yp

as
s 

va
lv

e 

PRV

Retail 
refrigeration 
system 
module 

Trigeneration system 

Robur ACF 
60-00 LB  



 

124 

display cabinets located in the chamber to provide controlled load to the refrigeration 

system. The refrigerated display cabinets, chilled open vertical multi-deck, and glass 

door frozen food which were originally designed with R-404A refrigerant were 

modified by replacing the evaporator coil and controls, to operate with CO2 refrigerant. 

The evaporator coil of the low temperature cabinet is a direct expansion coil whereas 

the coil of the medium temperature cabinet is a flooded evaporator coil which is 

designed to operate with CO2 as a secondary (volatile) refrigerant. Condensation of the 

CO2 from both the low and medium temperature sections of the system is provided by 

the absorption refrigeration system of the trigeneration facility through a CO2 condenser 

in the form of a plate heat exchanger. The CO2 condenser is installed just above the 

liquid receiver to facilitate the flow of liquid CO2 from the condenser by gravity. The 

system was designed so that the CO2 for the medium temperature cabinet could be 

either pumped with a centrifugal CO2 pump or gravity fed to the coil.   

 

 

 

 

 

 

 

Figure 5.2 Retail refrigeration system module with CO2 refrigeration system 

 

The test facility is equipped with Danfoss controllers and was comprehensively 

instrumented with power metres, pressure transducers, thermocouples, relative humidity 

sensors and coriolis refrigerant flow meters to enable detailed investigations of the 

transient and steady state performance of individual components and the overall system. 

Monitoring is performed through a data logging system which can scan and store the 

measured parameters at present time intervals. 

(a) CO2 pump and compressor 
section 

(b) CO2 condenser and liquid 
receiver section 

(c) MT and LT loading system 
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55..22  EExxppeerriimmeennttaall  tteesstt  ccoonnddiittiioonnss  aanndd  ddaattaa  pprroocceessssiinngg  

A series of tests was carried out to evaluate energy performance of the CO2 refrigeration 

system which comprised performance of the MT and LT system as well as that of the 

overall CO2 refrigeration system. Tests were performed with different circulation ratios 

(CR) and different evaporating temperatures for the MT CO2 refrigeration system. 

System performance parameters were recorded and used to determine the refrigeration 

capacity and coefficient of performance (COP) of the LT, MT and overall CO2 

refrigeration system. 

5.2.1 Test conditions 

The tests on the MT refrigeration system were carried out at three evaporating 

temperature levels: -6 oC, -8 oC and -10 oC. Each temperature level was tested at 

different refrigerant mass flow rates or circulation ratios. Tests on the LT circuit and 

overall system were carried out at circulation ratio CR = 1.3, condensing and 

evaporating temperatures at Tcond = -7 oC and Tevap,LT = -32 oC respectively.    

The chilled and frozen food display cabinets were placed in the test room as described 

in Section 3.8 (Chapter 3). The test chamber was conditioned at climate class 3 (25°C 

and 60% RH). These conditions were measured at a point in the middle of the MT 

display cabinet 150 mm above and 300 mm in front of the top edge of the cabinet 

opening. The display cabinets including the product packages and temperature 

measurement points have been explained in Section 3.4.1 (Chapter 3). On the air side of 

the MT display cabinet, besides temperatures, the relative humidity (RH) of the air-on 

and air-off the coil was also measured and recorded. The MT and LT cabinets were 

tested for M1 and L1 classification respectively. An M1 cabinet requires product 

temperatures ranging from -1 oC to +5 oC and a cabinet of L1 classification requires the 

highest temperature of the warmest product to be lower or equal to -15 oC and the 

lowest temperature of this warmest product to be lower or equal to -18 oC (ISO 23953-

2, 2005). 

5.2.2 Experimental test procedure 

The test facility was operated according to the mode of tests and following the 

operational procedure as detailed in Appendix G. In order to investigate the transient 

performance, the system was monitored from start up to the point it achieved steady 
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state conditions. Investigations on steady state performance were carried out after the 

test plant reached the specified steady state conditions. 

5.2.3 Operational setting 

The control strategy and parameter setting of the test system such as condensing 

temperature and target pressure (evaporating temperature) have been described in 

Section 3.5.3 (Chapter 3). For test purposes, steady state conditions and operational 

parameters of the tests were specified in the controllers as shown in Table 5.1. 

Table 5.1  Operational setting of the MT and LT cabinets and the additional load evaporator 

Parameters MT cabinet LT cabinet  LT additional load 

Cut off temperature -3 oC -23 oC -27 oC 

Temperature differential 2 K 4 K 4 K 

Air-on and air-off weight 100% air-off 50% 100%* 

Defrost type Off-cycle Electric N/A 

Number of defrost 4 per day 1 per 2 days N/A 

Defrost minimum time 30 minutes 30 minutes N/A 

Defrost termination 7 oC -4 oC N/A 

Degree of superheat N/A 5 to 12 K 5 to 12 K 

* Water-glycol temperature at the outlet of the evaporator; N/A means not applicable.  

 

5.2.4 Data collection 

Measured performance parameters from the instrumentation devices such as 

temperature, pressure, relative humidity and flow rate were logged by a data logging 

every 20 seconds. The power consumption of the compressor, pump and controller were 

measured and recorded every 1 minute. Detailed explanation of the instrumentation, 

data logging system and the measurement points are given in Section 3.6 (Chapter 3). 

5.2.5 Data processing 

Collected data were processed in a spread sheet programme. The properties of the 

refrigerant and humid air were derived from the EES software, while the properties of 

water-glycol mixture were determined by using the equations from M. Conde 

Engineering (2002) as described in Appendix B. The energy performance parameters of 

the refrigeration system were calculated which include refrigeration capacity, power 

consumption and coefficient of performance (COP). The calculations also involved 

determination of the circulation ratio and uncertainty analyses of the calculations. 
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5.2.5.1 Calculation of the refrigeration capacity 

The refrigeration capacity of the evaporators of the display cabinets was calculated 

using the enthalpy difference across the coil and the mass flow rate of refrigerant. For 

the LT DX evaporator the expansion of the refrigerant was assumed to be isenthalpic. 

The enthalpy of the refrigerant liquid entering the evaporator, Hr,i,LT , and the refrigerant 

vapour leaving the evaporator, Hr,o,LT , were determined from measurements of 

temperature and pressure of the refrigerant at inlet of the expansion valve and outlet of 

the evaporator respectively. For the MT flooded evaporator, the enthalpy of the 

refrigerant entering the evaporator, Hr,i,MT , was determined from the MT evaporating 

temperature and pressure, while  the enthalpy of the refrigerant leaving the evaporator, 

Hr,o,MT , was determined from the evaporating temperature and vapour quality of the 

refrigerant at the outlet of the evaporator (xo), where xo = 1/CR. The calculation of the 

circulation ratio (CR) is detailed in Section 5.2.5.4. For the LT DX additional load, the 

refrigeration capacity was calculated from the energy balance between the refrigerant 

and the water-glycol sides assuming adiabatic heat transfer. The refrigeration capacities 

of the MT and LT systems were calculated from: 

)( ,,,,, MTirMTorMTrMT HHmQ                       (5.1) 

addLTcabLTLT QQQ ,,                        (5.2) 

where: 

)( ,,,,,, LTirLTorLTrcabLT HHmQ                       (5.3) 

)( ,,,, owiwwpwaddLT TTCmQ                        (5.4) 

QLT,cab and QLT,add  are the refrigeration capacities of the evaporator of the frozen food 

display cabinet and additional load respectively; wm is the water-glycol mass flow rate. 

5.2.5.2 Power consumption 

The total power consumption of the system is the sum of the power consumption of the 

LT compressor and the power consumption of the CO2 pump. The power consumption 

of the LT compressor (Wcomp) was determined by recording the power when only the LT 

system was in operation, whereas the power consumption of the CO2 pump was 
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determined when only the MT system was in operation. Because the refrigerant flow 

rate from the pump was partially bypassed to the liquid receiver, the pumping power 

(WCO2,pump) used in the COP calculation was assumed to be proportional to the measured 

refrigerant mass flow rate through the MT evaporator coil.  

5.2.5.3 Calculation of the COP 

The coefficient of performance (COP) of the LT, MT and overall refrigeration system 

were calculated from the equations described in Chapter 3: (3.15), (3.16) and (3.17) 

respectively. The COP of the LT system was also compared to the reversed Carnot 

cycle calculated from: 

LTevapLTcond

LTevap
Carnot TT

T
COP

,,

,


             (5.5) 

where evaporating and condensing temperatures Tevap,LT and Tcond,LT respectively are in 

Kelvin (K).  

5.2.5.4 Circulation ratio 

The flow of CO2 refrigerant in the MT evaporator coil starts as liquid, gradually 

evaporates along the coil pipe and then exits the evaporator coil at certain quality (xo) 

which is the inverse value of the circulation ratio (CR). The circulation ratio, as defined 

in Section 3.2.1.3 (Chapter 3) can be determined from: 

vap

MTr

m

m
CR



 ,             (5.6) 

where MTrm , = total refrigerant mass flow rate in MT evaporator,  vapm = refrigerant 

vapour mass flow rate, and  CR = 1 occurs when vapMTr mm  , .  

In the test system, CR = 1 can be established by adjusting the regulator and bypass 

valves upstream of the MT evaporator coil while observing the quality of the liquid 

refrigerant flowing through a sight glass fitted at the outlet of the coil. In order to make 

the adjustment of the refrigerant flow rate easier, the regulator valve should be installed 

adjacent to the sight glass as shown in Figure 5.1 and the adjustment should be started 

from overfeed flow rate so that  the liquid refrigerant can be clearly seen in the sight 
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glass.  With the bypass valve slightly open, the regulator valve can be gradually closed 

until the liquid refrigerant just disappears from the sight glass. The supplied mass flow 

rate to the evaporator ( MTrm , ), can then be measured from the flow meter which is fitted 

on the liquid line upstream of the MT evaporator coil. The mass flow of refrigerant 

vapour ( vapm ) at a particular evaporating temperature (Tevap,MT) can be calculated from: 

fg

MT
vap H

Q
m              (5.7) 

where Hfg is the enthalpy of evaporation of the CO2 refrigerant at evaporating 

temperature (Tevap,MT). QMT is the refrigeration load of the MT cabinet which is 

equivalent to the heat absorbed from the air crossing the MT coil and can be determined 

from: 

)( ,, OFFaONaaMT HHmQ             (5.8) 

am  is the mass flow rate of the air flowing through the evaporator coil as a function of 

air velocity and cross sectional area of the air passage in the cabinet; Ha,ON and Ha,OFF 

are the enthalpies of the air entering and leaving the coil respectively.  

In a real supermarket application, the circulation ratio can be controlled by integrating 

the cabinet controller with a motorized valve installed upstream of the evaporator coil 

and with the speed controller of the CO2 pump. 

5.2.5.5 Uncertainty in the calculation of CR and COP 

Considering the uncertainty of the measured variables which include air mass flow rate, 

air temperature and relative humidity, refrigerant temperatures, pressures, power and 

refrigerant mass flowrate and assuming that the individual measurements are 

uncorrelated and random, the uncertainty in the calculation of CR was determined, using 

the Engineering Equation Solver (EES) software, to be ± 10.8%. The uncertainty in the 

calculations of the COPLT, COPMT, COPOverall and COPCarnot were found to be ± 0.2%   

± 10.8%, ± 3.6% and ± 0.6% respectively. The uncertainty of the COPMT is relatively 

high because its calculation involved the circulation ratio. Detailed explanation of the 

uncertainty analysis is given in Appendix J.   
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55..33  TTeesstt  rreessuullttss  

5.3.1 Thermodynamic cycle of the refrigeration system 

Figure 5.3 shows the thermodynamic cycle of the CO2 refrigeration system obtained 

from the test results. The cycle refers to the schematic diagram Figure 3.4 (Chapter 3). 

Pressure drop of MT circuit (9-10-11) was found to be 37.5 kPa which corresponds to 

0.5 K temperature drop. The pumping process (9-10) and heat extraction process in the 

MT cabinet (10-11) can be assumed to be at constant temperature and pressure.     

 

 

 

 

 

 

 

 

Figure 5.3  Pressure-enthalpy diagram of the CO2 refrigeration cycle based on the test results 

 

Figure 5.3 also shows the LT circuit (1-2-3-4-5-6-7-8) which was integrated with the 

heat rejection loop of the MT system (12-3-4). The circuit was equipped with an 

internal heat exchanger (IHX) which exchanged heat from cold stream (8-1) to the hot 

stream (5-6) of the circuit to provide sub-cooling of around 2.5 K on the CO2 liquid 

before being expanded into liquid-vapour mixture through the EXV. This exchanged 

heat increased the superheat of the CO2 gas from the LT evaporator (of 5 K 

superheating at point 8) to be around 10 K superheating (at point 1) before entering the 

LT compressor. The expansion process in the EXV (6-7) was assumed to be isenthalpic. 

The compression process (1-2) utilised a semi hermetic reciprocating compressor of 

isentropic efficiency of around 0.69. This efficiency is discussed further in Section 5.4. 

Pressure (kPa) is absolute pressure

Enthalpy (kJ/kg) 

-32oC

-7oC

8oC

P
re

s
su

re
 (

kP
a

) 

0.2 0.4 0.6 0.8 

6
4,5,9

10

11

12 3 2

1

8

7

  -500       -400      -300       -200      -100        0        100 
500 

1000 

10000 

20000 

42oC
R-744

2870

1350 

∆Tsc = 2.5 K

∆Tsh = 10 K 



 

131 

5.3.2 Medium temperature refrigeration system  

For the MT CO2 refrigeration system, investigations were carried out to establish the 

impact of the circulation ratio on the performance of the coil and the MT CO2 

refrigeration system at different evaporating temperatures. The results showed that the 

MT system can achieve very high COPs ranging from 32 to 60, due to the low power 

consumption of the CO2 pump.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4 Variation of MT refrigeration capacity and COP with circulation ratio for different 
evaporating temperatures 

 

The COP and refrigeration capacity of the MT refrigeration system vary with circulation 

ratio and the evaporating temperature as shown in Figure 5.4. Increasing the circulation 

ratio increases the refrigeration capacity, reaching a maximum at a circulation ratio of 

1.3.  Because of the increase in pumping power with increasing refrigerant flow rate, 
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however, the increase in the circulation ratio causes a reduction in the system COP. For 

the system tested, the optimum CR was found to be in the range between 1.1 and 1.3. 

Figure 5.4 also shows that at constant circulation ratio, the COP slightly increases as the 

evaporating temperature decreases. This is contrary to what is expected for a direct 

expansion refrigeration system and can be explained as follows: in a flooded evaporator, 

reducing the evaporation temperature can improve heat transfer due to the higher 

temperature difference between the refrigerant and the air. This will enhance the 

evaporation rate of the refrigerant in the coil which in turn will increase the vapour 

quality at the exit of the evaporator coil, causing a reduction in the circulation ratio. In 

order to maintain a constant CR, the mass flowrate of refrigerant will have to be 

increased. This will improve further the heat transfer of the CO2 refrigerant and will 

also increase the refrigeration capacity of the evaporator coil which leads to a higher 

COP. These results are in agreement with the results from the flooded evaporator model 

which have been explained in Section 4.4 (Figure 4.7). For a DX refrigeration system, 

on the other hand, the refrigeration capacity will decrease when the evaporating 

temperature reduces. This has been described in Section 4.6 (Chapter 4).  

 

 

 

 

 

 

 

 

 

Figure 5.5 Performance of the CO2 MT refrigeration system 
(Investigated at evaporating temperatures of -7 oC and CR = 1.3) 

 

The performance of the MT CO2 refrigeration system with time at circulation ratio CR = 

1.3 and evaporating temperature -7 oC is shown in Figure 5.5. From the figure it can be 

seen that the MT system consumes very low pump power of 0.110 kW in average. The 

COP of the MT system which was calculated as the ratio of the cooling done by the 
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evaporator coil to the pump power consumption was around 45.4. The MT system 

delivers an average refrigeration capacity of 4.9 kW.  

Figure 5.5 also shows the pump cycling off in response to: i) the cabinet coil air-off 

temperature which was set at -3 oC and; ii) during the defrost cycle. For the MT system, 

the off-cycle defrost control was set at 4 defrost cycles per 24 hour period.  Defrost 

termination was controlled on coil air-off temperature of 7 oC or elapsed time of 30 

minutes whichever was reached first. 

5.3.3 Low temperature refrigeration system 

Figure 5.6 shows performance of the LT CO2 refrigeration system with time at 

condensing temperature -7 oC and evaporating temperature -32 oC. It can be seen that 

the LT system can deliver a steady state COP of 4.0 with refrigeration capacity (QLT) of 

about 10 kW.  

Figure 5.6 also shows the compressor cycling off when the air temperature in the 

cabinet reaches the set point. Defrost cycle of the LT cabinet, however, could not be 

seen within this test period because the electric defrost of the cabinet was set for 30 

minutes every 48 hours. These defrost control settings were found to be satisfactory for 

the conditions tested. 

 

 

 

 

 

 

Figure 5.6 Performance of the CO2 LT refrigeration system 
(Investigated at condensing and evaporating temperatures of -7 oC and -32 oC) 

 

The variation of evaporating and condensing temperatures of the LT system is shown in 

Figure 5.7. The evaporating temperature was measured at inlet to the LT evaporator just 

after the expansion valve, while the condensing temperature was measured at the outlet 
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of the condenser.  The average evaporating and condensing temperatures were -32 oC 

and -7 oC respectively with average measured pressures of 12.5 bar and 27.7 bar.  

Figure 5.7 also shows the average reversed Carnot COP of the LT system to be around 

9.6. The actual COP is less than half of the Carnot COP due to irreversibilities of 

expansion and compression processes in the actual cycle as well as electrical, 

mechanical and volume losses from the compressor. 

 

 

 

 

 

 

Figure 5.7  Evaporation and condensing temperatures including theoretical COP of 
the LT system 

 

5.3.4 Overall refrigeration system 

Figure 5.8 shows the performance of the MT and LT refrigeration systems and the 

combined performance of the MT and LT circuits at an evaporating temperature of -7 
oC for the MT system and -32 oC for the LT system and a circulation ratio for the 

refrigerant in the MT evaporator coil of 1.3.  

From Figure 5.8 it can also be seen that the average overall COP of the CO2 

refrigeration system, MT and LT, varied in the range between 5.5 and 6. The total 

refrigeration load for the system was 15 kW of which 5 kW was for the MT system and 

10 kW for the LT system. In supermarkets the LT load is normally between 20% and 

30% of the MT load but in the experimental facility the balance of load for the MT and 

LT systems was decided by the availability of compressors at the time the facility was 

constructed.  A change in the load balance between the LT and MT to better reflect the 

actual load balance in a supermarket would have resulted in an even higher overall COP 

for the system. 
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Figure 5.8  Performance of the CO2 MT and LT refrigeration systems  

 

5.3.5 Product and air temperatures  

Product and air temperatures of the MT and LT cabinets were used as a measure of 

establishing whether the CO2 refrigeration system had reached steady state condition. 

When the product temperatures of the MT and LT cabinet were relatively stable in the 

range M1 and L1 temperature classifications (as specified in Section 5.2.1) respectively, 

the MT and LT systems were considered to have reached steady state conditions. These 

conditions were used for the analysis of the CO2 refrigeration cycle performance as 

described in the previous sections. 

 

 

 

 

 

 

 

 

Figure 5.9  Variation of the MT product temperatures with time 
(Investigated at circulation ratio of 1.3 and evaporating temperatures of -7 oC) 

Investigated at circulation ratio of 1.3, condensing and evaporating temperatures of 
-7 oC and -32 oC; df = defrost 
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Figure 5.9 shows product temperature variation of the MT cabinet which includes 

cooling down and steady state period. These results were obtained with a circulation 

ratio CR = 1.3 and evaporating temperature Tevap,MT = -7 oC. From the figure, it can be 

seen that the product temperatures can reach the M1 temperature range in 15 hours. The 

figure also shows that the product temperatures increase during the defrost cycle and 

when the cabinet reaches the set point. 

 

 

 

 

 

 

 

 

 

Figure 5.10  Positions of the product temperature measurements for the MT cabinet 

 

The positions of product (M-package) temperature measurements for the MT cabinet 

are given in Figure 5.10. Mean, maximum and minimum temperatures of the M-

packages at all measured positions during the steady state period of 12 hours are 

presented in Table 5.2. The product temperatures are grouped according to their 

positions on the shelves: top, middle and bottom. It can be seen that all measured 

product temperatures are within M1 classification ranging from +5 oC to -1 oC. The 

products on the middle shelf have the lowest arithmetic mean temperature (AMT) and 

the bottom shelf has the highest AMT. The maximum MT product temperature was 

found to be 5.3°C. This product is located on the bottom shelf at position Bot-10 (Figure 

5.10). The overall AMT of the MT products was found to be 1.9 oC (Table 5.2). 
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Table 5.2  Mean, maximum and minimum temperatures of the MT products  

Measured 
positions 

Max. Min. Mean 
Measured 
positions 

Max. Min. Mean 
Measured 
positions 

Max. Min. Mean 

Top-01 3.8 1.8 2.9 Mid-01 2.1 0.5 1.2 Bot-01 2.1 1.0 1.6 

Top-02 3.7 1.8 2.8 Mid-02 2.3 0.8 1.5 Bot-02 2.8 1.8 2.3 

Top-03 0.1 -1.4 -0.5 Mid-03 -0.4 -1.3 -0.9 Bot-03 -0.2 -1.2 -0.7 

Top-04 1.0 -1.2 -0.1 Mid-04 0.0 -1.2 -0.5 Bot-04 2.0 0.6 1.3 

Top-05 4.7 2.7 3.9 Mid-05 4.1 2.7 3.5 Bot-05 2.9 1.6 2.3 

Top-06 4.4 2.8 3.6 Mid-06 3.4 2.1 2.8 Bot-06 4.8 3.4 4.2 

Top-07 0.3 -0.8 0.1 Mid-07 0.5 -1.1 -0.2 Bot-07 1.8 0.7 1.3 

Top-08 0.8 -0.8 0.0 Mid-08 0.6 -0.8 -0.1 Bot-08 4.0 2.7 3.4 

Top-09 5.1 3.6 4.5 Mid-09 4.1 2.9 3.6 Bot-09 4.5 3.4 4.0 

Top-10 4.4 3.1 3.8 Mid-10 2.8 1.6 2.2 Bot-10 5.3 4.0 4.7 

Top-11 5.0 0.4 2.4 Mid-11 1.6 0.1 0.8 Bot-11 2.5 1.2 1.9 

Top-12 1.4 0.5 1.0 Mid-12 1.0 -0.2 0.4 Bot-12 4.0 2.8 3.3 

AMT of the top shelf 2.0 AMT of the middle shelf 1.2 AMT of the bottom shelf 2.5 

AMT overall of the MT products 1.9 

AMT = average mean temperature; Bot = bottom shelf;  Mid = middle shelf;  Top = top shelf; Max. = maximum 
temperature; Min. = minimum temperature. Measured positions of the MT products refer to Figure 5.10  

 

 

 

 

 

 

 

 

 

Figure 5.11  Variation of air temperatures and RHs of the MT cabinet  

 

Variations for air temperature entering the MT evaporator coil (air-on) and leaving the 

coil (air-off) are shown in Figure 5.11. The temperatures are average of three point 

measurements measured at the right, centre and left hand side of the air passage of the 

MT cabinet before and after the evaporator coil. It can be seen that the air temperatures 

vary periodically during the test due to the defrost cycle. The temperature difference 

Frost accumulation showed effect to the ∆Tair

in the last 2 hours of defrost cycles 
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between the air-on and air-off is approximately 10 oC after start up and just after defrost. 

The temperature difference starts to increase after 4 hours from defrost and reaches 

more than 12 oC just before the next defrost cycle. 

Figure 5.11 also shows the variation of relative humidity (RH) at evaporator coil air-on 

and air-off measured at the centre section of the MT cabinet. It can be seen that the 

relative humidity of the air-on and off tends to equalise during the defrost cycle when 

refrigerant is not flowing through the coil. During the cooling cycle the difference 

between the RH value on and off the coil tends to increase with frost accumulation on 

the coil and reaches maximum just before defrost. 

 

 

 

 

 

 

 

 

Figure 5.12  Variation of the LT product temperatures with time 
(Investigated at condensing and evaporating temperatures of -7 oC and -32 oC respectively) 

 

Figure 5.12 shows the variation of the product temperatures of the LT cabinet. The 

results were obtained at evaporating and condensing temperatures -32 oC and -7 oC 

respectively and with the doors of the cabinet closed. The temperatures reached the L1 

temperature classification (below -15 oC) in 15 hours. At a stable condition, the 

difference between the maximum and minimum product temperatures was about 5 oC. 

Figure 5.12 also shows the super-cooling behaviour of the M-packages when their 

temperatures first dropped below their freezing point of -1 oC. 

Positions of the measured product (M-packages) for the LT cabinet are shown in Figure 

5.13. Detailed results of the LT product temperature measurements which include 
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Super-cooling 
temperature of the 

M-packages 

 AMT overall = -20.7 oC 
 Highest temperature of the 

warmest M-package = -15.7 oC
 Lowest temperature of the 

warmest M-package = -20.1 oC
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maximum, minimum and mean temperatures are presented in Table 5.3. It can be seen 

that all of the measured temperatures were in the range of L1 classification. The highest 

product temperature was on the top shelf at position Top-11. 

 

 

 

 

 

 

 

 

 

Figure 5.13  Positions of the product temperature measurements for the LT cabinet 

 

Table 5.3  Mean, maximum and minimum temperatures of the LT products  

Measured 
positions 

Max. Min. Mean 
Measured 
positions 

Max. Min. Mean 
Measured 
positions 

Max. Min. Mean 

Top-01 -20.3 -22.6 -21.6 Mid-01 -19.2 -22.9 -20.9 Bot-01 -18.8 -22.0 -20.8 

Top-02 -19.4 -21.5 -20.4 Mid-02 -19.9 -23.1 -21.2 Bot-02 -19.3 -22.0 -20.7 

Top-03 -20.7 -22.8 -21.9 Mid-03 -18.4 -22.1 -20.3 Bot-03 -20.5 -23.3 -22.1 

Top-04 -20.3 -22.3 -21.4 Mid-04 -18.4 -22.6 -20.6 Bot-04 -19.8 -22.9 -21.6 

Top-05 -21.5 -24.9 -23.4 Mid-05 -18.4 -23.2 -20.9 Bot-05 -19.2 -23.4 -21.5 

Top-06 -19.8 -23.6 -21.8 Mid-06 -20.4 -23.2 -21.8 Bot-06 -19.6 -23.0 -21.5 

Top-07 -20.7 -24.6 -22.9 Mid-07 -18.7 -23.6 -21.1 Bot-07 -18.8 -22.6 -20.6 

Top-08 -21.3 -24.6 -23.0 Mid-08 -17.1 -22.8 -20.2 Bot-08 -19.2 -23.7 -21.5 

Top-09 -19.0 -22.1 -20.6 Mid-09 -17.3 -20.4 -19.0 Bot-09 -17.9 -21.5 -19.3 

Top-10 -16.4 -20.0 -18.5 Mid-10 -16.5 -20.3 -18.4 Bot-10 -18.6 -21.4 -20.2 

Top-11 -15.7 -20.1 -18.2 Mid-11 -16.1 -20.2 -18.6 Bot-11 -18.4 -21.2 -19.9 

Top-12 -16.0 -19.8 -18.2 Mid-12 -16.8 -20.1 -18.6 Bot-12 -19.5 -22.4 -21.1 

  AMT of the top shelf -21.0 AMT of the middle shelf -20.1 AMT of the bottom shelf -20.9 

AMT overall of the LT products -20.7 

AMT = average mean temperature; Bot = bottom shelf;  Mid = middle shelf;  Top = top shelf; Max. = maximum 
temperature; Min. = minimum temperature.  
Measured positions of the LT products refer to Figure 5.13. 

(a) Left section 

 

1

2

3 

4 

5 
04

Top-03 

04

Mid-03 

04

Bot-03 

 = Bottom shelf1 

 = Middle-bottom shelf2 

= Middle shelf3

= Middle-top shelf4

= Top shelf 5

Cross flow in the test chamber was from right to left direction 

(b) Centre section 

 

08

Top-07

08

Mid-07

08

Bot-07

(c) Right section 

 

12

Top-11

12

Mid-11

12

Bot-11 05 

06

 06 

 05 

 06 

05 

1

2

3

4

5

1 

2 

3 

4

5

 09 

10

 10 

 09 

 10 

 09 

 01 

 02 

 02 

 01 

 02 

01 



 

140 

Figure 5.14 shows the temperature variation of the air-on and air-off the LT evaporator 

coil. These temperatures were the averages of three measurements on the right, centre 

and left sections of the LT cabinet before and after the evaporator coil. The fluctuations 

in the temperatures that can be observed are due to the closure of the expansion valve 

which switched the flow of refrigerant off when the cabinet set point temperature was 

reached. At steady state conditions the difference in temperature between air-on and air-

off the coil was around 8 oC. The figure also presents the variation of the relative 

humidity on and off the coil measured at the centre section of the LT cabinet. During 

steady state conditions, the difference between the air-on and air-off relative humidity 

was approximately 25%. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.14  Variation of air temperatures and RHs of the LT cabinet  

 

5.3.6 Frost performance of the CO2 display cabinets 

Excessive frost on the surface of the evaporator coil will reduce the air circulation in the 

cabinet and cause an increase in the product temperature especially in the case of the 

MT cabinet as previously described. Figure 5.15 shows the accumulation of frost on the 

surface of the MT evaporator coil after 4 hours from defrost. It can be seen that frost 

accumulation was fairly uniform across the coil surface. 

The amount of frost accumulated on the surface of the MT evaporator coil was 

measured by collecting the drained water from the cabinet during the defrost cycle. The 

results are shown in Figure 5.16a. These measurements were taken at different 

Steady state conditions 
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evaporating temperatures and refrigerant circulation ratios. For these tests, the defrost 

cycle of the MT cabinet was set at 6 cycles per day (24 hours period). It can be seen that 

the frost accumulation increases when the evaporating temperature decreases. At 

evaporating temperature -6 oC, the frost accumulation was about 4.3 kg and increased to 

5.1 kg when the evaporating temperature was reduced to -10 oC. The circulation ratio, 

however, did not have a significant effect on the frost behaviour of the cabinet. The 

amount of frost accumulated on the surface of the MT coil remained relatively constant 

when the circulation ratio increased from 1.2 to 1.9. 

 

 

 

 

 
Figure 5.15  MT evaporator coil with frost accumulations and without frost 

(Taken 4 hours after defrost at evaporating temperature -7 oC)  

 

 

 

 

 

 

 

 

 

Figure 5.16  Predicted and experimental frost accumulation on the flooded MT evaporator 
coil for 4 hours defrost cycles  
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Figure 5.16a also shows the predicted frost accumulation determined from the 

evaporator model. It can be seen that the predictions from the model are slightly lower 

than the experimental test results and lie in the range between 0% and -25% (Figure 

5.16b). The difference may be due to measurement of the relative humidity at only a 

single point whereas in practice the RH value may vary along the face of the coil and 

uncertainties in other measurements such as the amount of condensate after defrost. 

55..44  VVaalliiddaattiioonn  ooff  tthhee  aannaallyyttiiccaall  rreessuullttss  

The experimental test results were used to validate the numerical model. The validation 

includes comparison between predicted parameters and the experimental results. The 

performance parameters used for the validation were isentropic efficiency of the LT 

compressor and COP of the CO2 refrigeration system which comprises COPMT, COPLT 

and COPoverall. 

Figure 5.17 shows the variation of experimental isentropic efficiency of the LT 

compressor together with the results from the model at an evaporating temperature of    

-32 oC and condensing temperature of -7 oC. The average isentropic efficiency of the LT 

compressor determined from the test was to be around 0.69. This was slightly lower 

than the average isentropic efficiency predicted by the model which was around 0.72. 

 

 

 

 

 

 

Figure 5.17 Isentropic efficiency of the LT compressor  
(Evaporating temperature -32 oC and condensing temperature of -7 oC) 

 

Comparisons of the predicted and experimental coefficient of performance of the CO2 

refrigeration system are shown in Figures 5.18, 5.19 and 5.20. Figure 5.18 shows the 

 Experimental  Predicted 

Is
en

tr
o

p
ic

 e
ff

ic
ie

n
cy

 

Time (minutes) 



 

143 

comparison for the COPMT at evaporating temperature -7 oC and circulation ratio CR = 

1.3. The number of data points used for the comparison was 2160. All of the data points 

fall within ± 25% and 85.5% within ± 20%.  

 

 
 

 

 
 
 
 

 

 

Figure 5.18  Comparison between the predicted and actual COP of the MT system 
 (Evaporating temperature, Tevap,MT = -7 oC and CR = 1.3) 

 

Figure 5.19 presents comparison of the experimental and predicted COPLT at 

evaporating temperature -32 oC and condensing temperature -7 oC. It can be seen that 

100% of the predicted COPLT data points fall within ± 20% of the experimental values.  

 

 

 

 

 

 

 

Figure 5.19  Comparison between the predicted and actual COP of the LT system 
 (Evaporating and condensing temperatures, Tevap,LT = -32 oC and Tcond = -7 oC) 
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Figure 5.20 shows comparison of the actual and predicted overall COP of the CO2 

refrigeration system. It can be seen that the predicted overall COP values are within      

± 20% of the experimental data.  

 

 

 

 

 

 

 

Figure 5.20  Comparison between the predicted and actual overall COP of the CO2 system  
(Tevap,MT = -7 oC; CR = 1.3; Tevap,LT = -32 oC and Tcond = -7 oC) 

 

The predicted COPMT, COPLT and COPoverall have mean error value of 3.25%, 3.53% 

and 6.18% respectively. This indicates that the numerical model can predict the 

performance of the refrigeration system quite accurately. Statistical analysis of the 

predicted COPMT, COPLT and COPoverall is given in Table 5.4. 

Table 5.4  Statistical analysis of the predicted COP of the CO2 refrigeration system  

Parameters Number of data 
points 

Percentage of 
predicted points 

within ± 20% 

Mean error 
(%) 

Standard deviation 
of the error (%) 

COPMT 2160 85.5 3.25 3.76 

COPLT 2160 100 3.53 2.61 

COPoverall 2160 100 6.18 3.89 

    %100x
measured

measuredpredicted
Error


   

 

55..55  SSuummmmaarryy  

This chapter has briefly reviewed the test facility of the integrated trigeneration and CO2 

refrigeration system and has reported the experimental test results which include the 
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performance of volatile medium temperature (MT) CO2 refrigeration, low temperature 

(LT) direct expansion refrigeration and the overall CO2 refrigeration system. This 

chapter has also described temperature and frost performance of the CO2 display 

cabinets and validation of the numerical models including statistical analysis of the 

predicted performance parameters.   

Chapter 6 will present a case study of the application of the integrated trigeneration and 

CO2 refrigeration system in a supermarket. The approach covers simulation studies that 

investigate the seasonal energy and environmental performance of the integrated 

trigeneration and CO2 refrigeration system arrangement.  
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CChhaapptteerr  66  

AANNAALLYYSSIISS  OOFF  TTHHEE  IINNTTEEGGRRAATTEEDD  SSYYSSTTEEMM  IINN  AA  
SSUUPPEERRMMAARRKKEETT  AAPPPPLLIICCAATTIIOONN::  AA  CCAASSEE  SSTTUUDDYY  
AAPPPPRROOAACCHH  

This chapter presents results of simulation studies that investigate the seasonal energy 

and environmental performance of integrated trigeneration and CO2 refrigeration system 

in a case study supermarket. The trigeneration system considered is as described in 

Chapter 3. For comparison purposes, the energy and environmental performance of the 

case study supermarket with a conventional energy and refrigeration systems using     

R-404A refrigerant is also presented. 

6.1 TThhee  ccaassee  ssttuuddyy  ssuuppeerrmmaarrkkeett 

The supermarket considered in the study is a medium size store with a net sales area of 

4,700 m2 and a gross area of 7,290 m2. The store is located at Cheetham Hill in 

Manchester. It was developed as an 

environmental format store to reduce the 

carbon footprint by integrating energy 

efficiency initiatives such as: mixed mode 

ventilation with roof mounted wind-

catchers, building fabric improvement and 

lighting scheme incorporating day-

lighting. The store also uses a cascade 

transcritical CO2 refrigeration plant and 

 

Figure 6.1 The case study supermarket   
(Source: Besant-Roberts, 2009) 
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bio-fuel engine based CHP. All refrigerated display cabinets in the store, both chilled 

and frozen food employ glass doors (Campbell and Riley, 2009). A photograph of the 

store is shown in Figure 6.1.  

From half hourly monitoring data in 2009, the annual electricity consumption of the 

store was 2,731 MWh with peak and average demand of 463 kWe and 312 kWe 

respectively, while gas consumption was 874 MWh with peak demand during the winter 

time of 492 kW. Annual average gas consumption was 100 kW. There was also a 

significant variation between daytime and night time electrical and gas energy 

consumption. Figure 6.2 shows the daily variation of the electricity and gas 

consumptions rate of the store.  

 

 

 

 

 

 

 

Figure 6.2  Daily average of the energy consumption rate of the case study supermarket 
(Data source: Tesco, 2009) 

 

Figure 6.3 shows the daily variation of energy rate demand of the case study 

supermarket during a whole year. The cooling energy demand is for air conditioning in 

the summer and was found to be 202 MWh with peak cooling demand of 210 kWth. 

Heating is mainly used for space heating with only a very small proportion for domestic 

hot water. The annual heat energy demand was found to be 706 MWh with peak and 

average demand of 398 kWth and 81 kWth respectively. It can be seen from Figure 6.3 

that there is a large variation of heat demand during the year with maximum in the 

winter months and minimum, of the order of 50 kWth, in the summer months. The 
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heating demand was calculated from the gas consumption assuming thermal efficiency 

for the gas boilers of 80.8% (Tesco, 2009).  

Refrigeration demand is fairly constant all year round, as the sales area is air 

conditioned and the store uses glass door chilled and frozen food display cabinets. 

Annual refrigeration demand was 1,761 MWh, 25% of which was for LT refrigeration 

and the reminder for MT refrigeration. Hourly MT and LT refrigeration load was 152 

kWth and 49 kWth respectively.  

 

 

 

 

 

 

 

 
 

Figure 6.3  Daily average energy rate demand of the case study supermarket 

 

Electrical energy demand (electricity others) is all the electricity consumed by the store 

excluding that used to drive food refrigeration equipment and the refrigeration system 

for the HVAC plant. Annual electrical energy demand for this was 1,923 MWh which 

accounted for 70.4% of total electricity of the store.  

Electrical energy rate demand is higher in the winter months. This is because the 

electrical energy consumption for lighting is high in the winter and lower in the summer 

because the store utilises day-lighting which reduces the use of electrical energy for this 

service. The electricity consumption rate for the other services such as: preparation, 

food and services (PFS); HVAC equipment excluding electric chiller; display cabinets; 

and miscellaneous equipment is relatively constant over the year. Daily average of the 

electrical energy consumption rate of all services is shown in Figure 6.4.  

Electricity others = electrical energy rate demand excluding electricity 
consumed by food refrigeration equipment and refrigeration system for the 
HVAC plant 
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Figure 6.4  Daily average electrical-energy rate demand of all services apart from refrigeration 
systems (Data source: Tesco, 2009) 

 

66..22  SSuuppeerrmmaarrkkeett  eenneerrggyy  ssyysstteemm  aanndd  ssiimmuullaattiioonn  mmooddeellss  

Energy systems in supermarkets are considered to comprise heating for HVAC (heating, 

ventilation and air conditioning) and domestic hot water and electrical power for 

refrigeration, cooling, lighting, food preparation and HVAC systems. In the UK, the 

heat demand is normally satisfied by gas boilers and the electrical demand by power 

‘imported’ from the national grid. Most supermarkets utilise R-404A as refrigerant in 

multi-compressor ‘remote’ type refrigeration systems with separate parallel systems 

employed for the MT and LT refrigeration loads.   

The models developed to simulate refrigeration system in supermarkets are based on the 

Engineering Equation Solver (EES) software and a spread sheet programme. The 

models consider a conventional energy system using refrigeration systems with R-404A 

refrigerant and a new energy system using CO2 refrigeration in a trigeneration 

arrangement (trigeneration-CO2 energy system). Energy demands of the conventional 

energy system are satisfied from a gas boiler, conventional refrigeration with R-404A 

refrigerant, an electric chiller and national grid as shown in Figure 6.5. The system is 

also backed up by a standby generator to supply electricity in the event electricity 

supply from the grid is disrupted.  
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Figure 6.5  Energy flow diagram of the case study supermarket with a conventional energy system 

 

The conventional refrigeration system with R-404A is a parallel system comprising two 

circuits: one serving the MT cabinets and the other serving the LT cabinets, as shown in 

Figure 6.6. Direct expansion evaporator coils using electronic expansion valves and 

single stage compression are used for both MT and LT circuits. An internal heat 

exchanger is used for the LT circuit only (Figure 6.6b).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.6  Simplified schematic diagram of a parallel conventional refrigeration system 
with R-404A refrigerant 
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absorption refrigeration system driven by the heat generated by a microturbine based 

CHP system. A schematic diagram of the arrangement is shown in Figure 3.6 (Chapter 

3). The absorption chiller of the arrangement can provide delivery water-glycol 

temperature at -10 oC with heat input to the generator at 120 oC. This arrangement can 

achieve evaporating temperature at MT cabinet coils in the range -5.5 to -8 oC which is 

low enough for the MT cabinets.  

 

 

 

 

 

 

 

 

 

Figure 6.7  Energy flow diagram of the case study supermarket with energy system applying 
a volatile-DX CO2 refrigeration in trigeneration arrangement 

 

Figure 6.7 shows the energy flow diagram for the trigeneration-CO2 supermarket energy 

system. It comprises subcritical MT volatile secondary and LT DX CO2 refrigeration 

systems, trigeneration arrangement with ammonia-water absorption chiller, electric 

chiller and auxiliary boiler. Two gas-liquid heat exchangers are required on the exhaust 

gas of the microturbine. The first heat exchanger recovers heat from the exhaust gases 

to drive the absorption refrigeration system and the second one, installed in series 

downstream of the first heat exchanger, recovers heat for heating. The exhaust gas 

temperature leaving the first heat exchanger and the stack temperature from the second 

heat exchanger were assumed to be 130 oC and 95 oC respectively. An auxiliary boiler 

supplies heat only for domestic hot water and space heating. The auxiliary boiler will 
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run when the heat recovered in the heat exchanger cannot satisfy the total heat demand. 

The electric chiller with R-407C refrigerant is needed to satisfy the supermarket cooling 

demand. The plant comprises several systems arranged in parallel. Each system 

comprises one integrated trigeneration and CO2 refrigeration system. The number of 

systems in operation can be modulated based on heat required for the refrigeration 

demand. 

To simulate the energy consumption of the two energy systems, some assumptions were 

made as follows: refrigeration capacity of LT system is 32.5% of that of MT system; 

evaporating temperatures of -8 oC and -32 oC for the MT and LT cabinets respectively; 

temperature difference between ambient and condensing temperatures for the 

conventional R-404A refrigeration system of 9.5 K with minimum condensing 

temperature for a floating head pressure control of 25 oC for the MT system and 20 oC 

for the LT system. Weather data for the Manchester area of the United Kingdom (Met 

Office, 2009) were used for the simulations. 

The main equations used in the simulations for the trigeneration-CO2 energy system are 

described in Section 3.2 (Chapter 3). For the conventional system, the efficiency of     

R-404A semi-hermetic reciprocating compressor was calculated using a curve fit 

equation from experimental and modelling results by Navarro et al. (2007).  

5262.0.048.0.0072.0 2  pps RR           (6.1) 

9741.0.0735.0  pv R             (6.2) 

The overall COP of the conventional refrigeration system is determined from: 

compLTcompMT

LTrMTr
conv WW

QQ
COP








          (6.3) 

In this analysis, primary fuel energy utilisation ratio (FEUR) is used to express the 

useful energy efficiency of the energy systems. The overall primary fuel energy 

utilisation ratio (FEUR) is the ratio of the summation of the useful energy used in the 

store to primary fuel energy consumed. The FEUR of the conventional energy system 

can be calculated from:  
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The FEUR of the integrated trigeneration and CO2 refrigeration system was calculated 

from: 

%100
2

exp
2 x

E

EEEEE
FEUR

COtrigenf

orteothersecrh
COtrigen







       (6.5) 

where Eh, Er, Ec, Ee-others, Ee-export are energy useful for heating, refrigeration, cooling, 

electricity others and electricity exported respectively; Ef-conv and Ef-trigen-CO2  are primary 

fuel energy used for conventional and integrated trigeneration-CO2 refrigeration energy 

system respectively. 

The primary energy consumption of the conventional and trigeneration-CO2 energy 

systems was determined from: 

boilerfSGe
SGe

gride
gride

convf EEEE 





  .
1

.
1


       (6.6) 
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The fuel energy saving ratio (FESR) was calculated from: 
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        (6.8) 

The electrical efficiency of the UK national grid was assumed to be 33% (Sugiartha et 

al., 2006) and the efficiency of commercial gas boilers, 80.8% (Tesco, 2009). Electrical 

efficiency of the microturbine based CHP was determined to be 28.7% from test data in 

the laboratory.  

The total impact of the conventional and trigeneration-CO2 systems on the environment 

was calculated over the life time of the systems and was assumed to be equally 

distributed over their life time. The calculation was based on the direct effect of the 

refrigerant leakage and recovery losses as well as indirect effect of the energy consumed 

by the systems. These effects are combined and expressed as a total equivalent warming 

impact (TEWI) as defined by British Standard BS EN 378-1 (2008).  

   ..1.... covarg annualeryreechannual EnmGWPnLGWPTEWI       (6.9) 
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where: 

GWP is the global warming potential of the refrigerant (kgCO2/kg); Lannual = the annual 

refrigerant leakage (kg/year); mcharge = mass of the refrigerant charge (kg);  = life time 

refrigerant recovery factor; n = system operating time (years); Eannual = annual energy 

consumption (kWh/year); and  = CO2 emission factor (kgCO2/kWh). 

To calculate the environmental impact of the supermarket some assumptions were 

made. These are detailed in Table 6.1.   

Table 6.1 Assumptions for TEWI calculation of the case study supermarket 

Parameters Assumptions
References

Range Source
Annual refrigerant leakage for centralised refrigeration 
system (% of charge) 

15 15 - 30 TOC, 2006 

Refrigerant charge for DX centralised refrigeration system:    
 - Charged with HFC or HCFC (kg/kW refrigeration 
         capacity) 

3.5 2 - 5 MTP, 2008 

 - Charged with CO2 (kg/kW refrigeration capacity) 1.75 1 – 2.5 MTP, 2008 
CO2 emissions factor:    
 - Grid electricity (kgCO2/kWh)   0.547  DEFRA, 2009 
 - Natural gas (kgCO2/kWh)   0.184  DEFRA, 2009 
Global warming Potential (100 years interval time 
horizon): 

   

 - R-404A (kgCO2/kg)   3900  TOC, 2006 
 - R-407C (kgCO2/kg)   1800  TOC, 2006 
 - R-744 (kgCO2/kg)   1  TOC, 2006 
Refrigerant recovery factor (%) 70   
Useful life of conventional and trigen-CO2 system (years)* 15   

*Trigen-CO2 = integrated trigeneration and CO2 refrigeration system  

 

66..33  EEnneerrggyy  ppeerrffoorrmmaannccee  ooff  tthhee  ccoonnvveennttiioonnaall  ssyysstteemm  

Simulation results of the conventional R-404A refrigeration system show an average 

seasonal COP for the MT refrigeration of 2.51. The COP of the LT refrigeration system 

was found to vary between 1.14 in the summer to 1.62 in winter, giving an average 

seasonal value of 1.53. The combined seasonal COP of the LT and MT plant was 

determined to be 2.17. A display of the conventional refrigeration model is given in 

Figure L-1 (Appendix L).  

Figure 6.8 shows the average daily fuel energy utilisation ratio (FEUR) of the 

conventional supermarket energy system. It can be seen that the overall FEUR in winter 

can reach 58% and then drops to about 44% in the summer due to lower heating 

demand and higher electrical power consumption of the refrigeration systems, giving an 
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overall seasonal FEUR of 49.6%. The lower heating demand reduces the contribution of 

the high efficiency gas boiler to the FEUR of the store. The higher electricity 

consumption of the refrigeration systems counterbalances the reduction of the primary 

fuel of the gas boiler which makes the primary fuel energy of the store relatively 

constant all year round. The effect can also be seen from the FEURs for refrigeration 

and electricity-others, which are quite stable throughout the year with annual averages 

of 19% and 21.2% respectively.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 6.8  Daily average fuel utilisation ratio of the conventional energy system 

 

Annual average FEUR of space cooling is only 2.1% and heating 7.3% because of the 

relatively low average demand for space cooling and heating respectively. The total 

primary fuel energy required by the conventional system is 9,411 MWh per year,     

90.7% arising from electricity use (Table 6.2). 

66..44  EEnneerrggyy  aanndd  eennvviirroonnmmeennttaall  ppeerrffoorrmmaannccee  ooff  tthhee  ttrriiggeenneerraattiioonn--CCOO22  

rreeffrriiggeerraattiioonn  ssyysstteemm  

The integrated trigeneration and CO2 refrigeration system employs 5 systems operating 

in parallel each generating 80 kW of electrical power. This arrangement provides 

optimum fuel utilisation ratio with average load factor 85% (calculated from useful heat 

and total heat demand). The system can satisfy all refrigeration demand and 90% of the 

heating demand. The remainder of the heat requirement is provided by an auxiliary gas 

boiler system.  
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The daily variation of the FEUR of the system over a whole year is shown in Figure 6.9. 

The annual average FEUR was found to be 55.7%, made up of 21.1% for refrigeration, 

2.5% for space cooling, 7.9% for heating, 24.2% for electricity (electricity others = 

21.5% and electricity export = 2.7%). The total fuel demand of the system was found to 

be 8,081 MWh, providing savings of 1,331 MWh (14.14%) over the conventional 

system (Table 6.2). The total electricity consumption of the store reduces by 17.7% 

compared to the conventional system and most of the electricity consumption can be 

satisfied by the local power generation system. Only 8% of the electricity is required to 

be purchased from the national grid system. Because the control of the plant is based on 

meeting the refrigeration demand, the system also generates excess electricity giving a 

total electricity export to the grid of 261,221 kWh. 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.9  Daily average fuel energy utilisation ratio of the trigeneration-CO2 energy system 

 

Table 6.2 summarises the energy performance of the conventional and trigeneration-

CO2 energy systems. It can be seen that the latter provides significant energy savings 

over the conventional system. A detailed energy performance analysis of both energy 

systems is given in Appendix M. 

Table 6.3 shows a comparison between the CO2 emissions of the conventional and 

trigeneration-CO2 systems for a 15% annual refrigerant leakage rate. It can be seen that 

the trigeneration-CO2 energy system will result in annual emissions savings of 659 tCO2 
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representing a reduction of 30.2% compared to the conventional system. Detailed CO2 

emissions analysis of both energy systems is given in Appendix M. 

 
Table 6.2  Fuel saving analysis of conventional and trigeneration-CO2 energy systems 

Fuel utilization components 
Supermarket energy systems 

Unit 
Conventional Trigen-CO2 

Trigeneration fuel - 8,340,339 kWh 

Boiler fuel 874,068 91,090 kWh 

Imported electricity 2,817,321 184,408 kWh 

Fuel of imported electricity 8,537,338 558,811 kWh 

Exported electricity - 261,221 kWh 

Fuel saving to grid supply - 909,465 kWh 

Total fuel required 9,411,406 8,080,776 kWh 

Fuel energy savings - 1,330,630 kWh/year 

Fuel energy saving ratio (FESR) - 14.14 % 

Trigen-CO2 = integrated trigeneration and CO2 refrigeration system  

 

 
Table 6.3  CO2e emissions of conventional and trigeneration-CO2 energy systems 

CO2 emissions Conventional Trigen-CO2  Units 
Indirect CO2 emissions  1,702 1,509  tCO2/year 

Direct CO2 emissions:     

• Refrigerant leakage 428 17  tCO2/year 

• Refrigerant recovery losses 55 0  tCO2/year 

Total annual emissions 2,185 1,526  tCO2/year 

Net emission savings  659  tCO2/year 

CO2 emissions reduction  30.2 % 

Trigen-CO2 = integrated trigeneration and CO2 refrigeration system  

 

66..55  SSuummmmaarryy  

This chapter described the models which have been developed and used to investigate 

primary fuel utilisation of a conventional energy system with HFC based refrigeration 

and an integrated trigeneration and CO2 refrigeration system. The chapter also evaluated 

the environmental impact of both energy systems. 

Chapter 7 will investigate further integrated trigeneration and CO2 refrigeration systems 

of different configurations. The evaluation will include energy and environmental 

performance as well as economic viability of the energy system alternatives. 
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CChhaapptteerr  77  

EENNEERRGGYY  SSYYSSTTEEMM  AALLTTEERRNNAATTIIVVEESS  WWIITTHH  
IINNTTEEGGRRAATTEEDD  TTRRIIGGEENNEERRAATTIIOONN  AANNDD  CCOO22  
RREEFFRRIIGGEERRAATTIIOONN    

This chapter investigates energy and environmental performance of integrated 

trigeneration and CO2 refrigeration system alternatives for supermarket applications. 

Different system arrangements are simulated and evaluated based on the energy demand 

of the case study supermarket described in Chapter 6. The analysis compares the 

performance of a conventional energy system using R-404A as the refrigerant, the 

existing energy system in the store which utilises CO2 as refrigerant and alternative 

trigeneration and CO2 refrigeration solutions. 

77..11  SSuuppeerrmmaarrkkeett  eenneerrggyy  ssyysstteemm  aalltteerrnnaattiivveess  

Three schemes are considered which utilise different CO2 refrigeration and trigeneration 

system arrangements. Scheme-1 is the system currently employed in the case study 

supermarket and consists of:  bio-fuel engine based CHP, sorption refrigeration system 

and electric chiller for air conditioning, cascade transcritical CO2 refrigeration, and gas 

boiler. Heat released by the CHP system drives the sorption chiller in a trigeneration 

arrangement to generate cooling for the HVAC system. If cooling generated by the 

trigeneration system is not enough to satisfy the space cooling needs, the balance is 

provided by the electric vapour compression chiller with R-407C refrigerant. The 

cascade transcritical CO2 refrigeration system is utilised to satisfy the MT and LT 

refrigeration demands. The schematic diagram of the CO2 refrigeration system is as 
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shown in Figure 2.12 (Chapter 2). In this scheme, heat from the CO2 refrigeration 

system is directly rejected to the atmosphere through an air cooled gas cooler. The heat 

demand is satisfied by heat from the CHP system, when it is not used for cooling, and 

the balance by the gas fired boiler. The electrical demand is satisfied by a combination 

of local power generated by the CHP system and power imported from the grid. The 

energy flow diagram of the energy system of Scheme-1 is shown in Figure 7.1.  

 

 

 

 

 

 

 

 

 

 

Figure 7.1 Energy flow diagram of existing energy system (Scheme-1) 

 

Scheme-2 is a supermarket energy system which integrates cascade transcritical CO2 

refrigeration and trigeneration systems. The energy released by the gas engine CHP 

system is used to drive a sorption chiller which is cascaded to a CO2 condenser to cool 

and condense the CO2 refrigerant of the cascade transcritical CO2 refrigeration system. 

Chilled water temperature from the sorption chiller of the trigeneration system is 

considered to be at 7 oC. This integration arrangement is shown in Figure 7.2. It ensures 

operation of the CO2 refrigeration system in the subcritical region but the system can 

revert to transcritical operation in the event of trigeneration system failure. 
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From Figure 7.2, it can be seen that the integration mode of Scheme-2 can be set by 

opening valves SV1 and SV3; closing valve SV2; and switching off the ICMT valve. 

This allows cooling from the trigeneration system to condense the CO2 gas in the HT 

condenser.  The liquid CO2 then flows from the condenser to the liquid receiver through 

valve SV3 without expansion. When the ambient temperature is below 7 oC, valve SV1 

can be closed and valve SV2 opened to allow the CO2 gas to be cooled by ambient air in 

the air-cooled condenser. In order to switch the system to the transcritical operation 

mode, valves SV1 and SV3 must be closed, valve SV2 opened; and the ICMT valve 

energised.  

 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 7.2  Simplified schematic diagram of a cascade transcritical CO2 refrigeration integrated 
with trigeneration system (Scheme-2) 

 

Scheme-3 is an improvement on the energy system considered in Chapter 6. It utilises 

integrated CO2 refrigeration and trigeneration employing a high temperature sorption 

chiller.  A schematic diagram of scheme-3 is shown in Figure 7.3. The trigeneration 

system consists of a natural gas engine based CHP system and a sorption refrigeration 

system. The heat rejected by the CHP system is used to drive the sorption chiller, with 

the cooling energy produced employed to condense the CO2 refrigerant of the 

SV1 = solenoid valve of the HT condenser;  SV2 = solenoid valve of the air cooled gas 
cooler/condenser;  SV3 = bypass solenoid valve 
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subcritical CO2 refrigeration system. This ensures operation of the CO2 refrigeration 

system in the subcritical region all the time and at a constant condensing temperature 

which ensures high energy efficiency throughout the year. The sorption refrigeration 

system considered in this study is a single effect lithium bromide-water system which 

can deliver chilled water at 7oC. The system can equally use an adsorption refrigeration 

system but the absorption system was chosen in this case due to its lower capital cost.  

 

 

 

 

 

 

 

 

 

 

 

Figure 7.3  Simplified schematic diagram of integrated trigeneration and CO2 
refrigeration systems (Scheme-3) 

 

The CO2 refrigeration system employs a pumped CO2 arrangement for the MT cabinets 

and direct expansion for the LT cabinets. This maximises the system efficiency as the 

compressor power for MT refrigeration, which is the predominant load in a 

supermarket, is replaced by a much lower pump power to circulate the liquid refrigerant 

to the refrigerated cabinets. The cooling energy for condensation of the CO2 refrigerant 

is provided by the sorption chiller.  A medium temperature CO2 circuit (MT pack) is 

used to bridge the difference in temperature between that provided by the sorption 

chiller (7 oC)  and the temperature required to condense the CO2 refrigerant of the LT 

ChW = chilled water  CW = cold water     HW = hot water 
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and MT circuits (-8 oC). To ensure operation of the refrigeration system in the event of 

trigeneration system failure, the system design also employs a gas cooler which can be 

brought into operation to take over from the sorption refrigeration system. The 

arrangement can also provide an advantage of free cooling when the ambient 

temperature is below 7 oC. 

  

 

 

 

 

 

 

 

 

 

Figure 7.4 Energy flow diagram of energy system alternatives 
(Scheme-2 and Scheme-3) 

 

Figure 7.4 shows the energy flow diagram of Schemes-2 and 3. In order to satisfy all 

refrigeration demand of the store, the trigeneration system is modulated based on the 

heat required by the sorption chiller to cool the CO2 refrigeration system. This also 

means that the HVAC cooling demand is satisfied by an electric chiller with R-407C 

refrigerant. A gas boiler is used to supply heat for the HVAC system and domestic hot 

water system, if the heat from the trigeneration arrangement is not enough particularly 

in the winter. The electrical demand is satisfied by a combination of local power 

generated by the CHP system and power imported from the grid. In periods of excess 

local power generation, the extra power is exported to the national grid. 

CO2 refrigeration: Scheme-2 is a modified cascade transcritical CO2 refrigeration system;  
Scheme-3 is a modified volatile-DX CO2 refrigeration system 
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77..22  SSiimmuullaattiioonn  mmooddeellss  

Simulation models based on the Engineering Equation Solver (EES) software and a 

spread sheet programme were established to determine the performance of the 

alternative energy systems for the case study supermarket in terms of primary fuel 

energy utilisation, GHG emissions and economic viability. Pressure - enthalpy diagrams 

of the refrigeration systems applied in the schemes are shown in Figure 7.5. The 

primary fuel energy utilisation ratio (FEUR) of the energy system alternatives can be 

calculated from:  

%100exp x
E

EEEEE
FEUR

ealternativf

orteothersecrh
ealternativ



 
       (7.1) 

The primary energy was determined from: 

boilerftrifgride
gride

ealternativf EEEE 


  .
1


        (7.2) 

The fuel energy saving ratio (FESR) was calculated from: 

%100x
E

EE
FESR

convf

ealternativfconvf
ealternativ



 
         (7.3) 

The payback period (years) is determined from: 

savingnetAnnual

ealternativsystemenergyofinvestmentExtra
Payback        (7.4) 

The electrical efficiency of the bio-fuel engine based CHP was assumed to be 35.1% 

(Tesco, 2009) and the gas fuel engine based CHP to be 36.6% (Cogenco, 2008). Other 

assumptions for the energy and environmental performance analysis are given in 

Appendix N. 
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Figure 7.5  Thermodynamic models of the refrigeration system of Schemes 1 to 3 at 
ambient temperature of 27 oC 
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77..33  MMooddeell  rreessuullttss  aanndd  ddiissccuussssiioonn  

Scheme-1 is the current system in the supermarket which employs: i) a trigeneration 

arrangement with bio-fuel engine based CHP of 200 kWe capacity; ii) a sorption chiller 

with a cooling capacity 250 kWth; iii) 2 cascade transcritical CO2 refrigeration systems; 

each system comprises of two HT circuits with MT load @ 38 kWth cascaded with an 

LT circuit of  capacity 25 kWth; iv) a 200 kWth R-407C electric chiller for air 

conditioning and; v) 2 gas boilers of 200 kWth capacity each.  

The COP of the cascade transcritical CO2 refrigeration system calculated using data 

from the store was found to vary between 1.1 and 5.1 for MT system giving a seasonal 

average COP of 2.4. The COP of the LT CO2 refrigeration system was in the range 

between 2.5 and 4.9 with seasonal average COP of 3.5. The overall seasonal COP of the 

cascade CO2 transcritical system was determined to be 2.5.  

 

 

 

 

 

 

 

 
Figure 7.6  Daily average fuel energy utilisation ratio of scheme-1 

 

Daily average fuel energy utilisation ratio (FEUR) of scheme-1 is shown in Figure 7.6. 

It can be seen that the FEUR of refrigeration and electricity are quite stable throughout 

the year with annual averages of 23% and 24% respectively, but the FEUR of heating 

varies from 0% in the summer to 47% in winter giving a seasonal FEUR of 9.4%. The 

figure also shows that the FEUR of cooling is relatively low with a seasonal average of 

only 2.4%. Most of the cooling demand can be satisfied by the trigeneration 
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arrangement and only 1% is provided by the electric chiller. The arrangement has 

average overall FEUR of 58.7%.  

The energy analysis has also shown that with scheme-1, the trigeneration system can 

satisfy 97.5% of the heat demand with only 2.5% provided by the gas boilers. The 

electricity generated by the trigeneration arrangement in this scheme is 1,555 MWh 

which is 57.3% of the total electricity requirement of the store. The annual primary fuel 

requirement of scheme-1 is 7,967 MWh. Compared to the conventional energy system, 

scheme-1 can provide primary fuel energy saving of 1,445 MWh with FESR of 15.3% 

(Table 7.1). 

Scheme-2 is a modification to the existing scheme of the case study supermarket. It 

utilises a trigeneration arrangement with a 342 kWe gas engine based CHP and a 

sorption chiller of 310 kWth integrated with a CO2 refrigeration plant similar to that of 

Scheme-1. Scheme-2 also employs a 200 kWth R-407C refrigeration system for space 

cooling and 2 x 200 kWth gas boilers for space and domestic hot water heating.  

 

 

 

 

 

 

 

 

 

 

Figure 7.7  Daily average fuel energy utilisation ratio of scheme-2 
 

Simulation results show a stable performance for both MT and LT refrigeration systems 

all year round with COP of 5.4 and 4.1 respectively. This can provide an overall 

seasonal COP of 5.0. With this arrangement, the CO2 refrigeration system can operate 

subcritically at condensing temperature of 10 oC (assumed ΔT between chilled water 
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from the trigeneration and the liquid CO2 to be 3 K). A display of the EES simulation of 

the CO2 refrigeration system is given in Figure L-2 (Appendix L).   

Figure 7.7 shows the variation of the daily average FEUR of scheme-2. Overall FEUR 

varies in the range 48.6% in the summer and 90% in winter with the average being 

60.7%. Seasonal FEUR of electricity others, refrigeration, heating, cooling and export 

electricity are 23.3%, 21.5%, 8.7%, 2.4% and 4.8% respectively. Total electricity 

consumption of the store is 2,560 MWh which is 9.1% lower than the conventional 

energy system. Scheme-2 will import 44 MWh and will export 378 MWh to the grid in 

a year. The trigeneration arrangement generates electricity of 2,894 MWh. This scheme 

was found to have a fuel energy saving ratio (FESR) of 24.7% compared to the 

conventional system. 

Preliminary sizing for an optimised trigeneration-CO2 refrigeration arrangement 

(scheme-3) has shown the following system sizes to provide best results: trigeneration 

arrangement with a 342 kWe gas engine based CHP and an absorption chiller with a 

design cooling capacity of 310 kWth. Refrigeration capacity of 152 kWth for the MT 

volatile CO2 refrigeration packs and 50 kWth refrigeration capacity for the LT packs. 

The scheme is backed up by an electric 200 kWth capacity R-407C chiller for space 

cooling and 2 x 200 kWth capacity gas boilers for heating. 

Simulation on the modified volatile-DX CO2 refrigeration system integrated with the 

trigeneration system also shows a stable performance for both MT and LT systems. The 

COPs of the MT and LT systems are 5.0 and 5.6 respectively, giving an annual overall 

COP of 5.1. Detailed simulation is given in Figure L-3 (Appendix L). 

The daily variation of the FEUR of Scheme-3 over a whole year is shown in Figure 7.8. 

The annual average FEUR of the scheme was found to be 64.4% comprising FEUR of 

the electricity (for other services), refrigeration, heating and cooling of 25.1%, 23.1%, 

9.2% and 2.6% respectively and FEUR of the export electricity of 4.4%. The scheme 

has total fuel consumption 6,655 MWh, providing savings of 2,757 MWh (29.3%) over 

the conventional system (Table 7.1). With Scheme-3, 96.8% of the electricity demand 

of the supermarket can be satisfied by the local power generation system. The 

trigeneration system can also satisfy 97% of the store’s heat demand with the remainder 

supplied by the gas boiler system. 
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Figure 7.8  Daily average fuel energy utilisation ratio of scheme-3 
 

Table 7.1 summarises the energy performance of the 3 alternative schemes. It can be 

seen that all schemes provide significant energy savings over the conventional system 

with scheme-3 resulting in the highest fuel savings and FESR. 

Table 7.1  Results of fuel energy saving analysis 

 Fuel utilization components 
Supermarket energy systems 

Unit 
Conventional Scheme-1 Scheme-2 Scheme-3 

Trigeneration fuel - 4,431 7,907 7,450 MWh 

Boiler fuel 874 21 194 25 MWh 

Imported electricity 2,817 1,160 44 62 MWh 

Fuel of imported electricity 8,537 3,515 135 189 MWh 

Exported electricity - 0.12 379 333 MWh 

Fuel saving to grid supply - 0.36 1,148 1,009 MWh 

Total fuel required 9,411 7,967 7,088 6,655 MWh 

Fuel energy savings - 1,444 2,323 2,756 MWh/year 

Fuel energy saving ratio (FESR) - 15.3 24.7 29.3 % 

(Detailed analysis is given in Appendix N) 

 

Table 7.2 shows a comparison between CO2e emissions of the conventional and the 

three energy system alternatives. The analysis assumed annual refrigerant leakage rate 

of 15% of system charge. It can be seen that scheme-3 will lead to CO2e emissions 

savings of 941 tCO2e which represents 43% savings over the conventional system. 
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Scheme-1 will result in savings of 1530 tCO2e mainly because of the use of bio-fuel and 

the assumption that the emissions factor of bio-fuel is zero. 

Table 7.2  CO2e emissions of investigated energy systems 

CO2 emissions 
  

Annual leakage 15% of charge 
Units 

Conventional Scheme-1 Scheme-2 Scheme-3 

Indirect CO2 emissions  1,702 638 1,308 1,227 tCO2/year 

Direct CO2 emissions:      

Refrigerant leakage 428 17 17 17 tCO2/year 

Refrigerant recovery losses 55 - - - tCO2/year 

Total annual emissions 2,185 655 1,325 1,244 tCO2/year 

Net CO2 emissions saving  1,530 860 941 tCO2/year 

  70.0 39.4 43.1 % 

(Detailed analysis is given in Appendix N) 

 

77..44  EEccoonnoommiicc  aannaallyyssiiss  

To establish the economic viability of the energy system alternatives, prices of fuel 

energy and the capital cost of the equipment were based on UK prices obtained from 

equipment suppliers and end users. The results of the economic analysis are shown in 

Table 7.3 for the installed cost and Table 7.4 for the annual energy and operational costs 

of the conventional and alternative energy systems. Assumptions and data used in the 

calculations are shown in Appendix O.  

Table 7.3  Results of economic analysis: investment comparison 

Cost components 
Supermarket energy system 

Conventional Scheme-1 Scheme-2 Scheme-3 

Installed cost (include VAT)     

HT R-404A refrigeration packs £62,342.21    

LT R-404A refrigeration packs £34,796.69    

HT transcritical CO2 refrigeration packs  £111,325.38 £111,325.38  

MT Volatile-DX CO2 refrigeration packs    £111,325.38 

LT CO2 refrigeration packs  £73,459.67 £73,459.67 £73,459.67 

Electric chiller R-407C for air conditioning £29,375.00 £29,375.00 £29,375.00 £29,375.00 

Gas boilers £47,000.00 £47,000.00 £47,000.00 £47,000.00 

Gas engine based generator £67,812.19    

Bio-fuel engine based CHP  £158,625.00   

Gas engine based CHP   £271,248.75 £271,248.75 

Water-LiBr absorption chiller  £73,437.50 £91,091.68 £91,091.68 

Total installed cost £241,326.08 £493,222.54 £623,471.29 £623,500.48 

Extra investment  £280,052.40 £382,145.21 £382,174.40 

Calculation based on trigeneration capacity:  
Scheme-1 (current system): CHP = 200 kWe and sorption chiller = 250 kWth 
Schemes 2 and 3 (optimised capacity): CHP = 342 kWe and sorption chiller = 310 kWth 
(Assumptions used for investment cost analysis are shown in Table O-1, Appendix O) 
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Table 7.4  Results of economic analysis: annual energy and operational cost 

Energy and operational cost 
components 

Supermarket energy system 

Conventional Scheme-1 Scheme-2 Scheme-3 

Energy and operational cost (Incl. VAT)   

Electricity cost/supplemental electricity cost £329,909.74 £135,828.75 £5,203.93 £7,300.44

Electricity sold back -£11.61 -£36,605.51 -£32,166.76

Fuel cost for operating boilers £28,431.62 £686.11 £6,321.38 £802.47

Bio-fuel cost for bio-fuel engine based CHP £216,163.36  

Gas fuel cost for gas engine based CHP  £257,181.29 £242,333.51

Standing charge £1,253.94 £1,253.94 £1,253.94 £1,253.94
Availability charge (700 kVA of supply 
capacity) 

£9,080.40 £9,080.40 £9,080.40 £9,080.40

Operation and maintenance cost £12,066.30 £32,592.38 £31,175.02 £31,175.02

Total energy and operational cost  £380,742.01 £395,593.33 £273,610.99 £259,779.03

Annual net savings - £107,127.59 £120,962.98

Payback period (years)  - 3.6 3.2 

(Assumptions used for energy and operational cost analysis are given in Tables O-2 and O-3, Appendix O) 

 

For the data used, it can be seen that scheme-3 will need additional investment of 

£382,000 compared to the conventional energy system but will produce running cost 

savings of the order of £121,000 per year, giving a payback period of 3.2 years. 

Scheme-1 will require approximately the same annual energy and operational cost as the 

conventional system due to the high cost of bio-fuel. The payback period of this scheme 

will be very long.  Scheme-2 provides annual running cost savings of the order of 

£107,000. The payback period of Scheme-2 will be 3.6 years. The payback period is 

strongly influenced by the ratio of electricity to gas prices known as the `spark ratio’. 

 

 

 

 

 

 

 

Figure 7.9  Variation of payback period with spark ratio 

3.2 years

        Electricity price 
 Spark ratio =  
             Gas price 
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Figure 7.9 shows the variation of the payback period of scheme-3 with spark ratio. It 

can be seen that the payback period drops sharply as the spark ratio increases with the 

payback period reducing from 8 years at a spark ratio of 2.7 to 2.5 years at a spark ratio 

of 4.0. The spark ratio in the UK varied between 2.7 and 4.6 in the period 2007-2009 

(Moorjani, 2009). The spark ratio used in the analysis was 3.6 for natural gas and 2.4 

for bio-fuel. 

77..55  SSuummmmaarryy  

This chapter has used modelling to investigate the energy and environmental 

performance as well as economic viability of three supermarket energy system 

alternatives. The energy system alternatives considered the application of trigeneration 

and CO2 refrigeration systems of different arrangements including the integrated 

trigeneration and CO2 refrigeration system proposed in this study. These investigations 

have shown that the proposed energy system can provide substantial carbon savings and 

a good payback period to HFC systems. 

Chapter 8 will summarise the results and findings of the investigations in this study and 

will provide some recommendations for future work. 
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CChhaapptteerr  88  

CCOONNCCLLUUSSIIOONNSS  AANNDD  RREECCOOMMMMEENNDDAATTIIOONNSS  FFOORR  
FFUUTTUURREE  WWOORRKK  

The environmental impact of the food retail industry, particularly supermarkets, is high 

due to their high electrical energy consumption and indirect CO2 emissions from the 

power stations and the direct emissions arising from refrigerant leakage to the 

atmosphere. The use of CO2 as refrigerant offers the opportunity to reduce the direct 

emissions.  

The application of trigeneration can reduce the environmental impacts through a 

substantial improvement in the overall energy efficiency over the conventional overall 

supermarket energy approach. One solution through which the overall energy efficiency 

of supermarkets can be increased and the environmental impacts reduced is through the 

integration of trigeneration and CO2 refrigeration systems. 

This thesis investigated experimentally and theoretically proof of concept of the 

integration of trigeneration and CO2 refrigeration systems to maximise the reduction of 

the environmental impacts of supermarkets. The concept combines the advantages of 

CO2 refrigeration in reducing direct environmental impacts and trigeneration in 

reducing indirect impacts through optimisation of fuel energy utilisation.  

The research work involved the investigation and development of CO2 refrigeration 

technologies for food retail refrigeration applications as well as the integration of CO2 

refrigeration with trigeneration systems to eliminate the use of HFC refrigerants and 
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produce both energy savings and significant reductions in CO2 emissions. The work can 

be detailed as follows: 

 Investigation of the advantages of CO2 as a refrigerant over HFC (hydro-

fluorocarbon) refrigerants including the investigation of design approaches for  

CO2 refrigeration solutions for supermarket applications. 

 Analytical investigations to determine the refrigeration capacity for a test CO2 

refrigeration system and its components and to evaluate the performance of the 

CO2 refrigeration system and its integration with the trigeneration system. 

 Modelling and design of direct expansion and secondary CO2 coils for display 

cabinet applications. 

 Design and construction of a primary low temperature and secondary medium 

temperature CO2 refrigeration facility for frozen and chilled food refrigeration 

applications including the integration of the facility with the trigeneration system. 

 Experimental investigation to establish the performance of the CO2 refrigeration 

system and the performance of the integrated trigeneration and CO2 refrigeration 

system.   

 Evaluation of the energy performance, environmental impacts and economic 

viability of the integrated trigeneration and CO2 refrigeration systems in a case 

study supermarket application. 

This chapter summarises the findings arising from the research work and provides 

recommendations for future work.  

88..11  CCoonncclluussiioonnss  

CO2 (R-744) is an environmentally benign refrigerant. It has an ODP of zero 

and a very low global warming potential (GWP) of 1 which is much lower 

than the GWP values of HCFC and HFC refrigerants. The CO2 refrigerant is non-toxic 

and non-flammable which make it advantageous over other natural refrigerants such as 

ammonia and hydrocarbons. Based on thermo-physical properties, theoretical 

investigation of the comparative performance of CO2 and other refrigerants for 

supermarket refrigeration applications showed that:  

i)  the CO2 refrigerant to provide good heat transfer in heat exchangers which 

allows selection of smaller equipment than HCFC and HFC refrigerants;  

11  
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ii)  CO2 refrigeration systems to operate with low pressure ratio and operate with a 

very small suction-gas specific volume and low pressure drop leading to 

smaller size compressors and smaller suction pipe diameters for the same 

operating conditions;  

iii) the smaller components and pipe diameter that can be employed with CO2 lead 

to a significant reduction in the refrigerant charge required for a given 

refrigeration load compared to HCFC and HFC refrigerants;  

iv)  the main disadvantage of  CO2 refrigerant to be its high working pressures. 

This can be overcome by using smaller and stronger components.  

CO2 refrigeration system solutions for supermarket applications fall into two 

major categories: subcritical cascade systems and transcritical systems. 

Subcritical cascade systems operate at moderate pressures and employ two refrigerants 

one for refrigeration and another for heat rejection. Transcritical systems operate at high 

pressures and high ambient temperatures but employ only CO2 as refrigerant. A 

subcritical CO2 refrigeration system comprising a primary low temperature circuit for 

frozen food refrigeration and a secondary medium temperature circuit for chilled food 

refrigeration was identified to offer distinct advantages for an integrated trigeneration 

and CO2 refrigeration system. With this arrangement, the trigeneration system is used to 

condense the CO2 refrigerant vapour from both the LT and MT circuits and ensure 

subcritical operation at all times. 

Prior the construction of the CO2 refrigeration system and its integration with 

the existing trigeneration system, an analytical investigation was performed to 

determine the capacity of the CO2 refrigeration system and components. For this 

purpose, mathematical models were developed for all components which influenced the 

performance of the integrated system.  The models were also used to investigate the 

performance characteristics of the individual components and integrated system and 

have led to the following results and conclusions: 

1. The refrigeration capacity of the CO2 refrigeration system that matched with 

the capacity of the existing trigeneration plant was determined to be 5 kW MT 

refrigeration and 3 kW LT refrigeration.  

22  
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2. The investigation of  the performance of the CO2 refrigeration and integrated 

systems at different condensing temperature showed that: i) increasing the 

condensing temperature reduced the MT refrigeration capacity and increased 

the pump power which subsequently reduced the COP of the MT refrigeration 

system; ii) the increase of the condensing temperature also significantly 

reduced the COP of the LT system and the overall COP of the refrigeration 

system (combined LT and MT); iii) increasing the condensing temperature 

enabled the absorption system to operate at higher delivery brine temperature 

which improved the COP of the absorption and integrated systems.  

3. The LT evaporating temperature was also found to affect the performance of 

the CO2 refrigeration system. Increasing the LT evaporating temperature 

improved the COP of the LT system but did not have any effect on the COP of 

the MT system. The overall COP of the system increased slightly due to the 

impact of the increase in the LT system COP. The load ratio of LT to MT 

refrigeration in a system (LRLM) was also found to influence the overall COP 

of the CO2 system. The overall COP increases with reducing LRLM. 

4. The circulation ratio (CR) of the volatile MT system was found to influence the 

COP of the MT and overall CO2 system. Increasing the circulation ratio above 

the optimum of between 1.1 and 1.3 reduced the COP of the MT and the 

overall CO2 system due to the power of the pump.  

5. The COP of the integrated trigeneration-CO2 refrigeration system was found to 

be highly depended on the COP of the sorption chiller. 

Investigation of  MT CO2 flooded evaporator coils and CO2 DX (direct-

expansion) evaporator coils for the MT and LT temperature levels was carried 

out with simulation models developed using EES (Engineering Equation Solver) 

software. The models were also used to design the geometry and tube arrangement of 

evaporator coils for the test facility and were validated using data obtained from the 

experimental investigations. The results showed: 

i)  for the same refrigeration duty the physical size of the flooded CO2 evaporator 

coil was smaller compared to the direct expansion CO2 evaporator coil;   

ii)  increasing the evaporating temperature of the CO2 DX coil increased its  

refrigeration capacity and reduced the pressure drop; 

44  
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iii)  increasing the circulation ratio of the flooded CO2 evaporator coil was found to 

slightly improve the refrigeration duty of the coil but increased the refrigerant 

mass velocity and pressure drop. 

Investigation of the comparative performance of CO2 DX evaporator coils and 

conventional coils using R-404A showed that for the same capacity and operating 

conditions, the CO2 evaporator coils require smaller size and lower refrigerant charge 

compared to coils using R-404A refrigerant. 

Based on the simulation model results, the CO2 refrigeration system was 

designed and integrated with the existing trigeneration system to form a 

complete test facility. The test facility consists of three main modules: CHP module, 

absorption refrigeration module and retail refrigeration system module. The CHP 

module is based on an 80 kWe recuperated micro gas turbine generation package with 

in-built boiler heat exchanger. The absorption refrigeration module is based on a 

packaged direct gas fired ROBUR chiller which was re-engineered to operate with a 

heat transfer fluid heated by the exhaust gases of the microturbine in the CHP module. 

The retail refrigeration system module consists of a cascade volatile MT and direct 

expansion LT CO2 refrigeration system and associated test facilities which include an 

environmental test chamber and chilled and frozen food display cabinets located in the 

chamber to provide controlled load to the refrigeration system. The test facility is 

equipped with Danfoss controllers and was comprehensively instrumented for 

monitoring and evaluation. 

The test facility was used to investigate and evaluate the energy performance 

of the CO2 refrigeration system as well as that of the overall trigeneration-CO2 

refrigeration system. Tests were performed with different circulation ratios (CR) and 

different evaporating temperatures for the MT CO2 refrigeration system. The 

experimental test results demonstrated the following: i) the MT CO2 refrigeration 

system was found to be able to achieve very high COPs ranging from 32 to 60, due to 

the low power consumption of the CO2 pump; ii) the increase in the circulation ratio 

caused an increase in the power consumption of the pump and influenced the COP of 

the MT system which was found to be in good agreement with the simulation results. 

The optimum circulation ratio was found to be in the range between 1.1 and 1.3; iii) the 
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LT CO2 refrigeration system was found to deliver a steady state COP of 4.0; iv) the 

average overall COP of the CO2 refrigeration system, MT and LT was found to vary in 

the range between 5.5 and 6. 

A simulation study was carried out to investigate the seasonal energy and 

environmental performance of a supermarket energy system using an 

integrated trigeneration-CO2 refrigeration based on similar equipment and arrangement 

as the one used for the laboratory tests and consisting of: i) CO2 refrigeration system 

with a DX refrigeration circuit for LT and a pumped CO2 circuit for MT; ii) a 

trigeneration system with a microturbine based CHP and ammonia-water absorption 

refrigeration system. The performance of the energy system was compared with the for 

a conventional energy system with R-404A parallel refrigerant circuits for MT and LT. 

The integrated trigneration-CO2 refrigeration system was found to provide energy 

savings of the order of 15 % and CO2 emission savings of the order of 30% compared to 

the conventional energy system. 

Further investigations were carried out to optimise the configuration of 

trigeneration and CO2 refrigeration systems for supermarkets. Three 

supermarket energy system alternatives to a conventional system were investigated 

using experimental data from the test facilities and simulation studies. The results 

indicated that:  

1. Integration of CO2 refrigeration with trigeneration systems can produce 

significant energy and GHG emission savings over conventional systems that 

utilise electricity from the national grid and thermal energy from gas fired 

boilers. 

2. From the 3 alternative systems investigated, the most energy efficient 

configuration was found to be the one that utilises a trigeneration system based 

on a natural gas engine based CHP system and a single effect lithium bromide 

water sorption system which can deliver chilled water at 7 oC. The cooling 

produced by the sorption system of the trigeneration plant is used to condense 

the CO2 refrigerant of the MT and LT refrigeration systems. The MT system is 

a secondary ‘volatile’ pumped system whereas the LT system is a direct 

expansion system. To bridge the difference in temperature provided by the 

sorption system and that required to condense the CO2 refrigerant of the LT 
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and MT circuits, an MT CO2 compressor pack is used to operate between the 

two temperature levels of  7 oC delivered by the sorption system and the -8 oC 

condensing temperature required by the CO2 system. This system was shown to 

provide fuel energy savings of the order of 30% and CO2 emission savings of 

43% compared to the conventional system.  The payback period of the system 

was found to be of the order of 3.2 years.  

3. The use of bio-fuels to drive the trigeneration plant can be attractive in terms of 

the overall reduction in GHG emissions. However, the cost of bio-fuels can be 

higher than that of conventional fuels which would have a negative impact on 

the economic attractiveness of the system. 

The research work carried out during the course of this project makes a 

contribution to the overall effort to reduce the energy consumption and 

environmental impact of the food retail industry, particularly supermarkets, in the UK. 

The work also delivered specific contributions as follows: 

1. The individual test results in the laboratory on the performance of cascade 

volatile - DX CO2 refrigeration and trigeneration systems improve confidence 

in the performance of the individual technologies and integrated systems.  

2. The design approach proposed, where CO2 refrigeration can operate 

independently of tri-generation when needed, should improve confidence in the 

reliability of practical application of the concept in supermarkets.  

3. The models developed and knowledge gained enable the design and sizing of 

systems for given applications to ensure maximum performance and utilisation 

efficiency. 

4. Very high performance of CO2 when used as a secondary fluid in flooded 

evaporator systems can lead to significant energy savings for high frozen food 

loads. The optimum circulation ratio was determined to be in the range 1.1 to 

1.3. 

5. The unique test facility developed enables the in-depth investigation and 

optimisation of component and system designs and controls. Significant 

knowledge has been gained from the difficulties encountered in the 

commissioning of the facility and matching of the capacities of the various 
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components which is much more critical in CO2 refrigeration systems 

compared to conventional R-404A systems.  

6. Technical knowledge gained and already disseminated or to be disseminated 

with further publications includes better understanding of the behaviour of CO2 

as a heat transfer fluid in flooded and direct expansion evaporator coils in 

display cabinets, component operational characteristics and efficiencies as well 

as oil management system requirements for the high pressure compressors. 

These provide significant contributions to the development of more efficient 

and reliable CO2 refrigeration technologies. 

88..22  RReeccoommmmeennddaattiioonnss  ffoorr  ffuuttuurree  wwoorrkk  

The experimental investigations carried out as part of this project were mainly 

concentrated on obtaining test results for the validation of the component and system 

models developed. The unique test facilities developed enable the detailed investigation 

and optimisation of the performance of individual components in the system, 

optimisation of the matching of the capacities of these components as well as 

optimisation of the controls.  

The evaporator coil models developed enable the prediction of frost accumulation on 

the coils during operation of the refrigeration system. The predictions of the rate of frost 

accumulation, however, were found to be lower than the actual test results and the 

differences which can be due to a variety of reasons such as measurement inaccuracies, 

and inaccuracies in the frost accumulation algorithms used from the literature need to be 

investigated further. It will be more appropriate to develop frost formation and 

accumulation algorithms based on controlled tests in the laboratory for both flooded and 

DX CO2 evaporator coils and use these to optimise the defrost cycle. 

The Circulation Ratio was found to be a key parameter of the performance of a 

secondary CO2 refrigeration system because of its influence on the heat transfer of the 

coil and the pump power. An optimum circulation ratio enables the secondary 

refrigeration system to achieve very high two phase heat transfer coefficients. 

Continuous automatic adjustment of the circulation ratio for each display cabinet and 

the MT refrigeration system as a whole could lead to higher overall system COP and 
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further work should be carried out to investigate efficient and economical ways to 

continuously control the circulation ratio in commercial applications.    

CO2 refrigeration and trigeneration technologies are in their early stages of development 

and many years of research and development work are still required both at component 

and system level for these technologies to reach the state of development of 

conventional systems. The facilities at Brunel and the design and simulation tools 

developed will play a key role in these developments over the next few years. 
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AAPPPPEENNDDIIXX  AA::  

TTrriiggeenneerraattiioonn  ppllaanntt  

 

This appendix presents the schematic diagram of the trigeneration plant prior integration 

with CO2 refrigeration. The plant employs oil Diphyl-THT as heat transfer medium to 

transfer the recovered heat from the CHP unit to the absorption chiller as described in 

Chapter 1, Section 1.4.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A-1   The trigeneration plant prior integration with CO2 refrigeration 
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AAPPPPEENNDDIIXX  BB::  

MMaatthheemmaattiiccaall  mmooddeell  ooff  iinntteeggrraatteedd  ttrriiggeenneerraattiioonn  aanndd  CCOO22  rreeffrriiggeerraattiioonn  

 

This appendix provides supporting equations used in the mathematical models. Key 

equations of the model are presented in Chapter 3. The appendix also presents the 

displays of the EES models of the integration arrangements, pipe sizing and the liquid 

receiver.   

HTF properties: 

Best fit equations of the properties of oil Diphyl-THT (Bayer, 2007) used for heat 

transfer fluid (HTF) of the trigeneration system: 

1. Density (kg/m3) at temperature range 0 – 340 oC: 

 526696.1017.652245603.0  T       (B.1) 

 Coefficient of correlation R2 = 1.0000 

2. Specific heat transfer coefficient (kJ/kg.oC) at temperature range 0 – 340 oC: 

 465115098.1.003462118.0  TCp        (B.2) 

 Coefficient of correlation R2 = 1.0000 

3. Thermal conductivity (W/m.oC) at temperature range 0 – 340 oC: 

 109809175.0.10.5315.2 5   Tk       (B.3) 

 Coefficient of correlation R2 = 0.9914 

4. Dynamic viscosity (Pa.s) at temperature range 20 – 340 oC: 

 18701616277.1.0708312959.20  T        (B.4) 

 Coefficient of correlation R2 = 0.9865 

Temperature is in oC. 

The equations of aqueous solution of the propylene glycol: 

Density and specific heat of the propylene glycol can be determined from the equations 

described in M. Conde Engineering (2002) as below: 

2
15.273

2.472
15.273

3.280
15.273

8.9654.1824.508 



























brinebrinebrine
brine TTT

  (B.5) 
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2
15.273

4787.0
15.273

939.1
15.273

715.06086.0476.4 



























brinebrinebrine
brine TTT

Cp  (B.6) 

Where: 

ρbrine in kg/m3; Cpbrine in kJ/kg K; 
2

oi
brine

TT
T


  in K 

ξ = mass fraction of propylene glycol in water (used ξ = 40%). 
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Figure B-3   Vertical liquid receiver model 
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AAPPPPEENNDDIIXX  CC::  

MMeecchhaanniiccaall  ccoommppoonneennttss 

 

This appendix provides drawing of the identification and numbering of the mechanical 

control of the CO2 refrigeration system. The design drawings of the liquid receiver, MT 

and LT evaporator coils are also presented.  

Legend for the symbol used in the mechanical control drawing: 

 V = flow control valve 

 PS = pressure transducer 

 SV = Solenoid valve 

 AKV = Danfoss electronic expansion valve 
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Technical data of the CO2 compressor: 
 

 

 

 

 

 

 

 
(Source: Bock, 2009) 
 
 
 
 
CO2 pump specification: 
 
Manufacturer:  HERMETIC-Pumpen GmbH 
Pump type  Rotary vanes 
Model   HTP 1-400 
Rated flow  0.44 m3/h (approx. 108 gram/s at -8 oC) 
NPSH required 3.5 mLC 
Speed of pump 1450 rpm 
Test pressure  37.5 bar 
Suction port  3/8” (flange or weld connection) 
Discharge port  3/8” (flange or weld connection) 
Motor type  3 ph induction motor 
Power output  0.37 kW 
Voltage  230/400 Volt 
Frequency  50 Hz 
Motor speed  1450 rpm 
Frequency converter 1450-750 rpm approx. flow 0.44-0.22 m3/h  
 
Manufacturer details: 
 Hermetic-Pumpen GmbH,  
 Gewerbestrrasse 51 
 79194 Gundelfingen, Deutschland 

Phone +49-761-5830-0; Fax: +49-761-5830-180 
lederle@lederle-hermetic.com; http://www.lederle-hermetic.com 
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AAPPPPEENNDDIIXX  DD::  

EElleeccttrriiccaall  cciirrccuuiitt  ddiiaaggrraammss  ooff  tthhee  CCOO22  tteesstt  ssyysstteemm 

 

This appendix presents wiring diagrams of the electrical installation circuit and cabinet 

controllers including electrical installation system of the additional load for the LT 

refrigeration system.  The wiring diagrams include: 

 Main electrical installation circuit 

 LT control circuit 

 MT control circuit 

 Standstill control circuit 

 Additional load control circuit 

 LT cabinet controller (EKC-414A1) 

 MT cabinet controller (EKC-204A1) 

 LT additional load evaporator controller (AK-CC-550) 

 

 

 

 

 

 

 

 

 

 

 

 



 

203 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

F
ig

u
re

 D
-1

 W
ir

in
g

 d
ia

g
ra

m
 o

f 
th

e 
m

ai
n

 e
le

ct
ri

c
al

 in
st

al
la

ti
o

n
 c

ir
cu

it
 



 

204 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

F
ig

u
re

 D
-2

  
W

ir
in

g
 d

ia
g

ra
m

 o
f 

th
e 

L
T

 c
o

n
tr

o
l 

ci
rc

u
it

 



 

205 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

F
ig

u
re

 D
-3

  
W

ir
in

g
 d

ia
g

ra
m

 o
f 

th
e 

M
T

 c
o

n
tr

o
l c

ir
cu

it
 



 

206 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

F
ig

u
re

 D
-4

  
W

ir
in

g
 d

ia
g

ra
m

 o
f 

th
e 

st
an

d
st

ill
 c

o
n

tr
o

l 
ci

rc
u

it
 



 

207 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

F
ig

u
re

 D
-5

  
W

ir
in

g
 d

ia
g

ra
m

 o
f 

th
e 

L
T

 a
d

d
it

io
n

al
 lo

ad
 c

o
n

tr
o

l 
ci

rc
u

it
 



 

208 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

F
ig

u
re

 D
-6

  
E

K
C

 4
1

4A
1 

co
n

tr
o

lle
r 

w
ir

in
g

 d
ia

g
ra

m
 



 

209 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

F
ig

u
re

 D
-7

  
E

K
C

 2
0

4A
1 

co
n

tr
o

lle
r 

w
ir

in
g

 d
ia

g
ra

m
 



 

210 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

F
ig

u
re

 D
-8

  
A

K
-C

C
-5

50
 c

o
n

tr
o

lle
r 

w
ir

in
g

 d
ia

g
ra

m
 



 

211 

AAPPPPEENNDDIIXX  EE::  

IInnssttrruummeennttaattiioonn  aanndd  ddaattaa  llooggggiinngg  ssyysstteemmss 

 

This appendix provides the positions of the measurement points in the test rig, a display 

of the monitoring system, identification of the measurement points and calibration 

equations of the measurement devices. 

Identification of the measurement points on the Datascan logger, which include the 

measurement system of the subcritical and transcritical CO2 test rigs, is presented in 

Table E-1.  

Legend for Table E-1: 

 L = left 

 LT = low temperature 

 M = middle 

 MT = medium temperature 

 PS = pressure transducer for the subcritical test system 

 PT = pressure transducer for the transcritical test system 

 R = right 

 RH = relative humidity 

 SC = subcritical test system 

 T = temperature 

 TC = transcritical test system 

The calibration equations of the thermocouples are presented in Table E-2 and the 

graphs together with the calibration equations of the pressure transducers are shown in 

Figure E-3. 
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Table E-1  Channel identification on the DataScan logger 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Channel 

No.

Sensor 

No.

Description Channel 

No.

Sensor 

No.

Description

1 T27 SC Comp. IN 49 PT1 TC/SC Press. LT Evap. OUT

2 T28 SC Comp. OUT 50 PT2 TC Press. LT Comp. OUT

3 T29 Downleg pipe 51 PT3 TC Press. HT Comp.1a IN

4 T30 SC IHX‐hot OUT 52 PT4 TC Press. HT Comp.1b IN

5 T31 SC EXV IN 53 PT5 TC Press. HT Comp. OUT

6 T32 SC IHX‐cold IN 54 PT6 TC Press. GasCooler OUT

7 T33 SC IHX‐cold OUT 55 PT7 TC Press. ICMT IN

8 T34 SC Out regulator valve 56 PT8 TC Press. ICMT OUT

9 T35 SC Pump IN 57 PT9 TC Press. MT Evap. OUT

10 T36 SC Pump OUT 58 PT10 TC Press. MT Evap. IN

11 T37 SC MT Evap. IN 59 PT11 TC/SC Press. LT Evap. IN

12 T38 SC MT Evap. OUT‐1 60

13 T39 SC MT Evap. OUT‐2 61 MMT MT Flowmeter

14 T40 Ambient M. Room 62 LLV CO2 liquid level

15 T41 Brine evaporator chiller IN 63 MAL Add. Load Flowmeter

16 T42 Brine evaporator chiller OUT 64 MLT LT Flowmeter

17 T1 LT Evap. OUT 65 T43 Brine Condenser IN

18 T2 LT Evap. IN or EXV OUT 66 T44 SC Vessel IN from comp.

19 T2' LT EXV IN 67 T45 Brine Condenser OUT

20 T3 MT Air ON ‐ L 68 T46 SC Vessel‐Mid

21 T4 MT air OFF ‐ L 69 T47 SC Vessel‐Top

22 T5 TC Gas cooler IN 70 T48 SC Condenser IN

23 T6 TC Gas cooler OUT‐1 71 T49 SC Condenser OUT

24 T7 Ambient ‐ Roof 72 T50 Standstill TXV IN

25 T8 LT air ON ‐ L 73 T51 Standstill Evap. OUT

26 T9 LT air OFF ‐ L 74 T52 MT Air MID‐L

27 T10 TC LT‐Comp. IN 75 T53 MT Air ON‐M

28 T11 TC LT‐Comp. OUT 76 T54 MT Air ON‐R

29 T12 TC HT‐Comp.1a IN 77 T55 MT Air MID‐M

30 T13 TC HT‐Comp.1b IN 78 T56 MT Air MID‐R

31 T14 TC HT‐Comp. OUT 79 T57 MT Air OFF‐M

32 T15 TC ICMT IN 80 T58 MT Air OFF‐R

33 T16 TC Receiver OUT 81 T59 MT Bot‐Shelf‐Frnt‐L Up

34 T17 TC MT‐EXV IN 82 T60 MT Bot‐Shelf‐Frnt‐L Low

35 T18 TC MT‐EXV OUT or Evap IN 83 T61 MT Bot‐Shelf‐Rear‐L Up

36 T19 TC MT Evap. OUT‐1 84 T62 MT Bot‐Shelf‐Rear‐L Low

37 T136 T. Chamber‐1 85 T63 MT Bot‐Shelf‐Frnt‐M Up

38 T20 TC IHX2‐hot OUT 86 T64 MT Bot‐Shelf‐Frnt‐M Low

39 T21 TC MT Evap. OUT‐2 87 T65 MT Bot‐Shelf‐Rear‐M Up

40 T22 TC IHX3‐cold IN 88 T66 MT Bot‐Shelf‐Rear‐M Low

41 T23 TC Oil separator OUT 89 T67 MT Bot‐Shelf‐Frnt‐R Up

42 T24 TC GasCooler  OUT‐2 90 T68 MT Bot‐Shelf‐Frnt‐R Low

43 T25 TC Receiver‐Top or ICM IN 91 T69 MT Bot‐Shelf‐Rear‐R Up

44 T26 TC ICM OUT 92 T70 MT Bot‐Shelf‐Rear‐R Low

45 T137 TC ICMT OUT 93 T71 MT Mid‐Shelf‐Frnt‐L Up

46 T138 Add. Load IN 94 T72 MT Mid‐Shelf‐Frnt‐L Low

47 T139 Add. Load OUT 95 T73 MT Mid‐Shelf‐Rear‐L Up

48 T140 Brine add. Load IN 96 T74 MT Mid‐Shelf‐Rear‐L Low
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Table E-1  Channel identification on the DataScan logger (Continued) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Channel 

No.

Sensor 

No.

Description Channel 

No.

Sensor 

No.

Description

97 PS‐1 SC Press. Compressor IN 145 T111 LT Mid‐Shelf‐Frnt‐L Up

98 PS‐2 SC Press. Compressor OUT 146 T112 LT Mid‐Shelf‐Frnt‐L Low

99 PS‐3 SC Press. Vessel 147 T113 LT Mid‐Shelf‐Rear‐L Up

100 PS‐6 SC Press. CO2 pump IN 148 T114 LT Mid‐Shelf‐Rear‐L Low

101 PS‐7 SC Press. CO2 pump OUT 149 T115 LT Mid‐Shelf‐Frnt‐M Up

102 PS‐8 SC Press. MT evap. IN 150 T116 LT Mid‐Shelf‐Frnt‐M Low

103 PS‐9 SC Press. MT evap. OUT 151 T117 LT Mid‐Shelf‐Rear‐M Up

104 152 T118 LT Mid‐Shelf‐Rear‐M Low

105 T75 MT Mid‐Shelf‐Frnt‐M Up 153 T119 LT Mid‐Shelf‐Frnt‐R Up

106 T76 MT Mid‐Shelf‐Frnt‐M Low 154 T120 LT Mid‐Shelf‐Frnt‐R Low

107 T77 MT Mid‐Shelf‐Rear‐M Up 155 T121 LT Mid‐Shelf‐Rear‐R Up

108 T78 MT Mid‐Shelf‐Rear‐M Low 156 T122 LT Mid‐Shelf‐Rear‐R Low

109 T79 MT Mid‐Shelf‐Frnt‐R Up 157 T123 LT Top‐Shelf‐Frnt‐L Up

110 T80 MT Mid‐Shelf‐Frnt‐R Low 158 T124 LT Top‐Shelf‐Frnt‐L Low

111 T81 MT Mid‐Shelf‐Rear‐R Up 159 T125 LT Top‐Shelf‐Rear‐L Up

112 T82 MT Mid‐Shelf‐Rear‐R Low 160 T126 LT Top‐Shelf‐Rear‐L Low

113 T83 MT Top‐Shelf‐Frnt‐L Up 161 T127 LT Top‐Shelf‐Frnt‐M Up

114 T84 MT Top‐Shelf‐Frnt‐L Low 162 T128 LT Top‐Shelf‐Frnt‐M Low

115 T85 MT Top‐Shelf‐Rear‐L Up 163 T129 LT Top‐Shelf‐Rear‐M Up

116 T86 MT Top‐Shelf‐Rear‐L Low 164 T130 LT Top‐Shelf‐Rear‐M Low

117 T141 Brine add. Load OUT 165 T131 LT Top‐Shelf‐Frnt‐R Up

118 T135 T. Chamber‐2 166 T132 LT Top‐Shelf‐Frnt‐R Low

119 RH‐LT OFF RH Air OFF LT 167 T133 LT Top‐Shelf‐Rear‐R Up

120 T‐LT OFF T Air OFF LT 168 T134 LT Top‐Shelf‐Rear‐R Low

121 T87 MT Top‐Shelf‐Frnt‐M Up 169 RH‐LT ON RH Air ON LT

122 T88 MT Top‐Shelf‐Frnt‐M Low 170 T‐LT ON T Air ON LT

123 T89 MT Top‐Shelf‐Rear‐M Up 171 RH‐1 RH Chamber pos. MT cab.

124 T90 MT Top‐Shelf‐Rear‐M Low 172 T‐142 T‐Chamber pos. MT cab.

125 T91 MT Top‐Shelf‐Frnt‐R Up 173 RH‐2 RH air OFF MT

126 T92 MT Top‐Shelf‐Frnt‐R Low 174 T‐143 T‐air OFF MT

127 T93 MT Top‐Shelf‐Rear‐R Up 175 RH‐3 RH air ON MT

128 T94 MT Top‐Shelf‐Rear‐R Low 176 T‐144 T‐air ON MT

129 T95 LT Air ON‐M 177

130 T96 LT Air ON‐R 178

131 T97 LT Air OFF‐M 179

132 T98 LT Air OFF‐R 180

133 T99 LT Bot‐Shelf‐Frnt‐L Up 181

134 T100 LT Bot‐Shelf‐Frnt‐L Low 182

135 T101 LT Bot‐Shelf‐Rear‐L Up 183

136 T102 LT Bot‐Shelf‐Rear‐L Low 184

137 T103 LT Bot‐Shelf‐Frnt‐M Up 185

138 T104 LT Bot‐Shelf‐Frnt‐M Low 186

139 T105 LT Bot‐Shelf‐Rear‐M Up 187

140 T106 LT Bot‐Shelf‐Rear‐M Low 188

141 T107 LT Bot‐Shelf‐Frnt‐R Up 189

142 T108 LT Bot‐Shelf‐Frnt‐R Low 190

143 T109 LT Bot‐Shelf‐Rear‐R Up 191

144 T110 LT Bot‐Shelf‐Rear‐R Low 192
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Table E-2  Calibration equations of the thermocouples 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

General Equation:

Y = mX + b
Legend:

Y = estimated actual value of temperature oC m = slope of Y and X corelation (linear regression)
X = measured temperature by thermocouple b = constant or Y intercept

SE-m = Standard error of m R2 = coefficient of correlation
SE-b = standard error of b SE-Y = standard error of estimated Y

Thermocouples m b R2 SE-m SE-b SE-Y

T27 0.996288 0.838253 0.998507 0.014559 0.241621 0.493266
T28 0.996873 0.917977 0.998537 0.014424 0.238908 0.486442
T29 0.997392 0.926840 0.998534 0.014443 0.239068 0.487008
T30 0.996485 1.007307 0.998551 0.014348 0.237383 0.483115
T31 0.996903 1.020488 0.998573 0.014244 0.235510 0.477880
T32 0.998242 1.051715 0.998577 0.014242 0.235041 0.476889
T33 1.000665 1.096362 0.998594 0.014190 0.233437 0.472780
T34 1.001412 1.146833 0.998559 0.014377 0.236130 0.481116
T35 0.996806 0.994470 0.998630 0.013952 0.230813 0.464066
T36 0.995816 1.066011 0.998665 0.013760 0.227594 0.455604
T37 0.998530 1.070330 0.998637 0.013943 0.229967 0.462488
T38 0.998970 1.058034 0.998639 0.013941 0.229874 0.462081
T39 0.998481 0.793385 0.998651 0.013870 0.229875 0.459045
T40 0.998982 0.803464 0.998676 0.013749 0.227727 0.453003
T41 1.011096 0.691332 0.998721 0.013674 0.224221 0.441661
T42 1.011714 0.764923 0.998719 0.013693 0.224102 0.442168
T5 1.003983 0.047941 0.998522 0.014597 0.244007 0.489775
T6 1.005148 0.043130 0.998563 0.014411 0.240632 0.480171
T7 1.005325 0.050396 0.998555 0.014455 0.241296 0.482145
T20 1.006869 -0.227677 0.998509 0.014706 0.246498 0.492923
T21 1.006422 -0.224810 0.998533 0.014578 0.244443 0.487189
T22 1.006125 -0.244091 0.998509 0.014693 0.246538 0.492799
T23 1.006597 -0.297907 0.998624 0.014124 0.237160 0.465705
T24 1.006529 -0.313855 0.998572 0.014387 0.241658 0.478105
T25 1.006209 -0.357100 0.998654 0.013964 0.234862 0.458439
T26 1.007656 -0.377674 0.998653 0.013988 0.235025 0.458610

T137 1.005084 -0.366662 0.998594 0.014254 0.240039 0.472816
T138 1.005240 -0.378429 0.998573 0.014363 0.241901 0.477865
T139 1.005009 -0.385253 0.998653 0.013950 0.235045 0.458561
T140 1.004826 -0.384303 0.998636 0.014034 0.236493 0.462631
T141 1.002380 -0.259961 0.998428 0.015033 0.253269 0.511478
T43 1.016260 -0.804837 0.998531 0.014733 0.247707 0.487759
T44 1.009519 -0.678186 0.998561 0.014482 0.244441 0.480586
T45 1.016917 -0.800334 0.998578 0.014503 0.243673 0.476630
T46 1.008868 -0.656974 0.998564 0.014461 0.244128 0.480032
T47 1.009174 -0.691975 0.998577 0.014400 0.243218 0.476978
T48 1.009247 -0.663899 0.998545 0.014559 0.245720 0.484362
T49 1.009185 -0.643462 0.998554 0.014515 0.244884 0.482338
T50 1.008918 -0.643991 0.998617 0.014192 0.239512 0.467365
T51 1.009197 -0.652264 0.998629 0.014132 0.238470 0.464343
T52 1.009030 -0.610201 0.998620 0.014176 0.239044 0.466548
T53 1.009542 -0.631277 0.998627 0.014149 0.238568 0.464918
T54 1.008963 -0.642083 0.998610 0.014229 0.240122 0.469091
T55 1.008861 -0.640687 0.998629 0.014129 0.238445 0.464440
T56 1.008694 -0.644177 0.998636 0.014089 0.237835 0.462691
T57 1.008963 -0.638842 0.998629 0.014128 0.238392 0.464319
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Table E-2  Calibration equations of the thermocouples (Continued) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Thermocouples m b R2 SE-m SE-b SE-Y

T58 1.008353 -0.632173 0.998618 0.014180 0.239376 0.467158
T59 1.010924 -0.713968 0.998634 0.014130 0.238358 0.463136
T60 1.010447 -0.683936 0.998622 0.014188 0.239287 0.466155
T61 1.010024 -0.676273 0.998612 0.014234 0.240130 0.468616
T62 1.010466 -0.684766 0.998635 0.014122 0.238186 0.463080
T63 1.010357 -0.663061 0.998589 0.014354 0.241993 0.473996
T64 1.010359 -0.650000 0.998618 0.014204 0.239401 0.466969
T65 1.010123 -0.649104 0.998658 0.013995 0.235931 0.457316
T66 1.010484 -0.652083 0.998605 0.014277 0.240613 0.470312
T67 1.009404 -0.710182 0.998674 0.013899 0.234807 0.453313
T68 1.009879 -0.670779 0.998684 0.013857 0.233774 0.451000
T69 1.010261 -0.669156 0.998646 0.014061 0.237126 0.460356
T70 1.010034 -0.687574 0.998665 0.013955 0.235487 0.455528
T71 1.007995 -0.665754 0.998666 0.013925 0.235336 0.455418
T72 1.010419 -0.690479 0.998620 0.014197 0.239491 0.466630
T73 1.008126 -0.638037 0.998600 0.014266 0.240923 0.471383
T74 1.007786 -0.641638 0.998579 0.014370 0.242775 0.476490
T75 1.005102 -0.607275 0.998627 0.014087 0.238461 0.464966
T76 1.004906 -0.612683 0.998626 0.014087 0.238533 0.465089
T77 1.004027 -0.614769 0.998643 0.013988 0.237078 0.461002
T78 1.007630 -0.666963 0.998704 0.013719 0.231954 0.445984
T79 1.004642 -0.728074 0.998748 0.013445 0.228298 0.434954
T80 1.004826 -0.757554 0.998711 0.013645 0.231810 0.444304
T81 1.006584 -0.752051 0.998690 0.013781 0.233677 0.449569
T82 1.004779 -0.744378 0.998634 0.014044 0.238513 0.463123
T83 1.006029 -0.584418 0.998579 0.014345 0.242465 0.476465
T84 1.005678 -0.581317 0.998583 0.014319 0.242109 0.475517
T85 1.005771 -0.596321 0.998569 0.014390 0.243355 0.478771
T86 1.006373 -0.637317 0.998611 0.014187 0.239997 0.468812
T87 1.008531 -0.728030 0.998594 0.014303 0.241921 0.472836
T88 1.008854 -0.713885 0.998664 0.013946 0.235745 0.455869
T89 1.007804 -0.727061 0.998614 0.014192 0.240217 0.468114
T90 1.008799 -0.759998 0.998592 0.014320 0.242311 0.473447
T91 1.007704 -0.766771 0.998573 0.014398 0.243926 0.477834
T92 1.008302 -0.779651 0.998646 0.014031 0.237646 0.460198
T93 1.008223 -0.777688 0.998601 0.014262 0.241564 0.471109
T94 1.008354 -0.810320 0.998634 0.014096 0.238903 0.463240
T95 1.008650 -0.554843 0.998736 0.013564 0.228542 0.438034
T96 1.008062 -0.561418 0.998667 0.013918 0.234670 0.455046
T97 1.008530 -0.568245 0.998700 0.013755 0.231847 0.447072
T98 1.008026 -0.590051 0.998669 0.013907 0.234634 0.454541
T99 1.008064 -0.597276 0.998625 0.014139 0.238586 0.465459

T100 1.007922 -0.627917 0.998693 0.013781 0.232735 0.448710
T101 1.009413 -0.642028 0.998750 0.013499 0.227711 0.434516
T102 1.008360 -0.648860 0.998661 0.013956 0.235698 0.456670
T103 1.008867 -0.689146 0.998582 0.014370 0.242761 0.475750
T104 1.008742 -0.708548 0.998650 0.014017 0.236935 0.459254
T105 1.008667 -0.709277 0.998639 0.014076 0.237959 0.462092
T106 1.008591 -0.734869 0.998597 0.014288 0.241689 0.472092
T107 1.009206 -0.781258 0.998592 0.014325 0.242408 0.473401
T108 1.009734 -0.805710 0.998640 0.014082 0.238312 0.461665
T109 1.009126 -0.817441 0.998570 0.014431 0.244426 0.478462
T110 1.008841 -0.837981 0.998583 0.014364 0.243462 0.475477
T111 1.002716 1.175075 0.998613 0.014123 0.231555 0.468236
T112 1.001583 1.203327 0.998668 0.013827 0.226858 0.454989
T113 1.004092 1.157879 0.998680 0.013795 0.225936 0.451834
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Table E-2  Calibration equations of the thermocouples (Continued) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Thermocouples m b R2 SE-m SE-b SE-Y

T114 1.000264 1.185578 0.998659 0.013853 0.227646 0.457071
T115 1.003079 1.124538 0.998731 0.013516 0.221725 0.439331
T116 1.000417 1.157030 0.998611 0.014103 0.231826 0.468816
T117 1.003063 1.100321 0.998672 0.013825 0.226879 0.453925
T118 1.003502 1.098576 0.998709 0.013638 0.223719 0.444799
T119 1.005694 0.500755 0.998716 0.013632 0.225517 0.443111
T120 1.005713 0.485195 0.998663 0.013908 0.230151 0.456134
T121 1.005153 0.483058 0.998643 0.014006 0.231904 0.461107
T122 1.002501 0.483082 0.998628 0.014044 0.233150 0.464658
T123 1.005028 0.411832 0.998645 0.013995 0.232054 0.460646
T124 1.002706 0.420698 0.998646 0.013953 0.231861 0.460208
T125 1.003458 0.416978 0.998634 0.014027 0.232922 0.463183
T126 1.002815 0.399485 0.998623 0.014077 0.233980 0.465973
T127 1.001188 3.770771 0.998599 0.014174 0.225485 0.471645
T128 1.000440 3.783498 0.998582 0.014250 0.226847 0.475766
T129 1.001976 3.762256 0.998602 0.014171 0.225283 0.471002
T130 1.002695 3.747141 0.998590 0.014242 0.226262 0.473842
T131 1.002419 3.738011 0.998533 0.014522 0.230789 0.487273
T132 1.002008 3.737103 0.998622 0.014069 0.223691 0.466133
T133 1.002238 3.720344 0.998631 0.014025 0.222967 0.463892
T134 1.002734 3.721418 0.998591 0.014235 0.226194 0.473507
T135 1.001583 -0.195296 0.998405 0.015132 0.254790 0.516708
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Table E-3  Pressure range of the pressure transducers and  
resistors used for data logging  

 

 

 

 

 

 

General form of the best fit equations between the measured pressure and the output 
voltage of the pressure transducers is as follows: 

y = mx + b 

where y is the measured pressure (bar), x is the output voltage (V), b and m are a 
constant and rate of the pressure change with voltage respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure E-3  Calibration graph and equation of the pressure transducers 
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Figure E-3  Calibration graph and equation of the pressure transducers (Continued) 
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AAPPPPEENNDDIIXX  FF::  

CCOO22  tteesstt  cchhaammbbeerr  

 

This appendix presents the layout of the CO2 test chamber including the position of the 

LT and MT display cabinets.  A display of the design of the air handling unit (AHU) 

and a map of air velocity within the test area of the test chamber are also presented. The 

following drawings are also included: 

 Layout of the CO2 test chamber with a 3.75 m long vertical door type cabinet   

 Layout of the CO2 test chamber with a 2.5 m long MT vertical open type cabinet  

 Layout of a possible extension of the test chamber  
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AAPPPPEENNDDIIXX  GG::  

OOppeerraattiioonnaall  mmooddeess  aanndd  pprroocceedduurreess  

 

This appendix describes four modes of system operation. The valve arrangement for 

each mode, operational procedures and some precautions are also presented.  

The explanations in this appendix refer to Figure C-1 (Appendix C).  

G.1 Operational modes 

The operational arrangements refer only to the CO2 refrigeration system. The high stage 

system is operating at steady state conditions at the designed delivery water glycol 

temperature.  

The four modes of the system operations can be described as below. 

Normal operation mode: 

The refrigerant circulates in both the LT and MT refrigeration systems. For the LT 

circuit the refrigerant flows from the liquid receiver through the internal HX, LT flow 

meter, LT evaporators (LT display cabinet and additional load), suction accumulator, 

LT compressor, oil separator, condenser and returns back to the receiver as liquid.  

For the MT circuit the liquid refrigerant circulates from the receiver to the CO2 pump 

through the suction filter/drier. At discharge of the pump, the flow is divided into two 

branches, one directly returns the liquid refrigerant back to the liquid receiver through 

the bypass valve (V-33) and the other circulates the liquid through the MT flow meter, 

regulator valve (V-38), MT evaporator and returns back to the receiver as a mixture of 

liquid and vapour. The saturated vapour in the receiver circulates to the condenser 

through a thermosiphon loop (valve V-07, condenser, and valve V-06). In this operation 

the saturated vapour from the receiver is mixed with the hot gas from the LT circuit just 

before entering the cascade condenser.  The liquid from the condenser flows back into 

the receiver by forced flow and gravity. 
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Valve arrangement for normal operation mode  
(Valve numbers refer to Figure C-1, Appendix C): 

Valve no. V-01 V-02 V-03 V-04 V-05 V-06 V-07 V-08 V-09 V-10 V-11 V-12
Position O O C O O O O C O O O O 

Valve no. V-13 V-14 V-15 V-16 V-17 V-18 V-19 V-20 V-21 V-22 V-23 V-24
Position C O O C O C O C C O C C 

Valve no. V-25 V-26 V-27 V-28 V-29 V-30 V-31 V-32 V-33 V-34 V-35 V-36
Position O O C C O C O C OR C O C 

Valve no. V-37 V-38 V-39 V-40 V-41 V-42 V-43 V-44 V-45  V-47  
Position O OR C C C O C C C  O  

C = closed; O = fully open; OR = open with manual regulation 

Operation with thermosiphon condensation  

In this operation, the hot gas from the discharge of the LT compressor passes through 

the liquid receiver allowing the hot gas to be desuperheated by boiling some of the 

liquid. The two-phase refrigerant from the MT circuit also terminates in the receiver. 

The valve arrangement of the MT circuit is the same as in the normal operation mode. 

The flow of the saturated vapour refrigerant from the receiver to the condenser occurs 

solely due to the thermosiphon effect. The refrigerant vapour condenses in the 

condenser and returns back to the receiver as a saturated liquid by gravity. 

Valve arrangement: 

Most of the valves are arranged as for normal operation mode except valve V-02 is 

closed and valve V-08 is open. 

Operation with forced condensation  

The condensation of the CO2 refrigerant in the condenser occurs in forced flow 

conditions. The condensation process is quite similar with the normal operation 

arrangement but the flow rate of the refrigerant in this operation is higher. The hot gas 

from the discharge of the LT compressor is connected in the same way as for normal 

operation. The saturated liquid-vapour mixture from the MT circuit, however, is directly 

circulated to the condenser after mixing with the hot gas from the LT circuit. 

Valve arrangement: 

The valves are arranged as those for normal operation except valve V-05 is closed and 

valve V-03 is open. 
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Operation with gravity mode 

The aim of the gravity mode is to investigate the performance of the MT system in 

utilising the gravity force to circulate the liquid refrigerant and to provide refrigeration 

effect to the MT display cabinet.  In this operation, the MT evaporator is fed with liquid 

refrigerant by gravity force. The pump is switched off. The bypass valve V-27 is open; 

valves V-33 and V-31 are closed. The solenoid valve (SV) upstream of the MT 

evaporator is in normal operation to enable the liquid refrigerant to flow through the 

evaporator. The other valve arrangements remain the same for the normal operation 

mode. 

G.2 Operational procedures 

The procedures consist of three stages which include starting up, testing and shutting 

down. The test system is assumed to be fully charged; in standby conditions; the 

standstill condensing unit is in operation to keep the CO2 refrigerant in the system; and 

the test chamber is conditioned at 25 oC and 60% RH.  

Starting up procedure 

1. The procedure starts from the preparation of the high stage system (trigeneration 

system or water chiller) and visual check of the whole integrated system. 

2. Prepare the high stage system and check the setting point of the water-glycol 

thermostat. 

3. Position the control valves as set in the normal operation mode, except valves V-

14 and V-31 are closed. 

4. Ensure the oil level of the LT compressor in the range and there is sufficient oil in 

the oil reservoir. 

5. Recheck the parameter settings of the display cabinets and the additional load. 

6. Energise the flow meters and start up the monitoring and the data logging system. 

7. Start up the high stage system and ensure the pump system and flow meter are in 

good working order. When the high stage system has been steady at the set point, 

the stand still condensing unit is automatically switched off (in standby 

conditions). 
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8. Switch on the display cabinets and the additional load system and ensure fans, 

lights, water-glycol pump, flow meter and expansion valve are in good working 

order. 

9. Open valve V-31 to allow the liquid refrigerant to fill up the suction line of the 

CO2 pump. 

10. Start up the CO2 pump and ensure the solenoid valve upstream of the MT 

evaporator has also been energised.  

11. Monitor the refrigerant flow through the sight glass and the evaporator coil 

temperature of the MT cabinet. Adjust the regulator valve (V-38) and bypass 

valve (V-33) if required. 

12. Monitor also the temperature and pressure of the whole system including the 

liquid level in the receiver to ensure the system is working in stable conditions.  

13. The LT refrigeration system is now ready to start up. 

14. Open the valve V-14 to allow the liquid refrigerant to fill up the liquid line of the 

LT circuit.  

15. Switch on the LT compressor and observe the operation. The speed of the 

compressor can be adjusted to balance the capacity of the compressor and the LT 

refrigeration load.  

16. Monitor the pressures of the CO2 refrigeration system and the condensing 

temperature to ensure the high stage system can maintain the set point. 

17. Monitor also the liquid level in the receiver after both LT and MT systems are in 

operation. 

18. Regularly observe the oil level of the compressor to ensure the oil management 

system can work properly. 

19. Monitor the LT and MT product temperatures and the defrost cycle. When the 

product temperatures have reached the M1 and L1 range for MT and LT cabinets 

respectively, the experimental tests can be arranged. 

Experimental test procedure 

1. Prior performing the experimental tests the starting up procedure needs to be 

completed and the system is kept running.  

2. Rearrange the test rig according to the operation mode the test is performed. 
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3. Readjust the parameter set up according to the test requirements such as 

evaporating and condensing temperatures, defrost cycle, defrost termination 

temperature, temperature set point, degree of super heat for the LT evaporator and 

circulation ratio for the MT flooded system. 

4. Monitor and record the performance parameters by restarting the data logging 

system.  

5. Operate the system in a steady state conditions for 24 hours. 

6. The test procedure can be repeated if other tests are performed. 

7. When the tests have been completed the test rig must be shut down. 

Shutting down procedure 

1. Before shutting down, the CO2 refrigeration system must be pumped down in 

order to store the liquid CO2 back to the receiver.  

2. Switch off the CO2 pump if the pump is in operation. While the LT compressor is 

kept running. 

3. Close all valves (V-14, V-27 and V-31) which supply the liquid CO2 to the MT 

and LT circuits.  

4. Open valve V-43 to allow the liquid refrigerant in the MT circuit to flow to the 

liquid line of the LT circuit. 

5. Keep the LT compressor in operation until all liquid CO2 is pump out from the 

liquid line. The compressor is automatically switched off when the system has 

been pumped down. 

6. The compressor controller is safe to switch off. 

7. Turn off the display cabinets and the additional load system. 

8. Switch off the high stage system to complete the shutting down procedure. The 

liquid CO2 is then kept in the system by the standstill condensing unit. 

G.3 Precautions 

For safety purposes, the test rig was designed to enable the CO2 refrigerant to be 

released to the atmosphere when the pressure in the system is above 35 bar. During the 

operation, there is always a possibility that the CO2 refrigerant escapes from the system 

due to system pressure rising above pressure limit. This may occur when the high stage 

system suddenly fails and the system is under full load conditions. The pressure in the 
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system can rise quickly and the standstill condensing unit cannot prevent the sudden 

increase of the system pressure. The pressure very quickly reaches the burst pressure of 

the safety valves which then open to allow the refrigerant to escape to the atmosphere. If 

this occurs, in order to avoid risks of injury the following precautions need to be taken: 

 The machine room must be adequately ventilated by keeping the door open. 

 Assess the situation carefully, especially the suction line pressure relief valve 

which releases the CO2 to the machine room.  

 Switch off the CO2 pump and close all valves which supply the liquid CO2 to the 

MT and LT systems.  

 Don’t stop the compressor before the LT system is pumped down.  

 Turn off the display cabinets and the additional load system.  

 By keeping the compressor running, the suction pressure can be maintained 

below the bursting pressure of the safety valve. The CO2 refrigerant escape to 

the atmosphere from the pressure relief valve installed on the liquid receiver. 

This is safe because it is far from occupied areas. 

 The compressor is automatically switched off by the low pressure switch. After 

that, switch off manually the compressor controller. The condensing unit is then 

gradually able to decrease the pressure of the system. 

The CO2 refrigerant will also escape from the system during standby conditions if the 

standstill condensing unit fails. In this case, the CO2 refrigerant is released gradually 

from the pressure relief valve of the receiver. This is a normal safety action and is 

considered safe.    
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AAPPPPEENNDDIIXX  HH::  

MMaatthheemmaattiiccaall  mmooddeell  ooff  CCOO22  eevvaappoorraattoorr  ccooiillss  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

F
ig

u
re

 H
-1

  
 E

E
S

 m
o

d
el

 o
f 

th
e 

M
T

 f
lo

o
d

ed
 e

va
p

o
ra

to
r 

co
il 



 

236 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

F
ig

u
re

 H
-2

  
 G

eo
m

et
ry

 a
n

d
 e

st
im

at
ed

 p
er

fo
rm

an
ce

 p
ar

a
m

et
e

rs
 o

f 
th

e 
M

T
 e

va
p

o
ra

to
r 

co
il 

 



 

237 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

F
ig

u
re

 H
-3

  
 E

E
S

 m
o

d
el

 o
f 

th
e 

L
T

 D
X

 e
va

p
o

ra
to

r 
co

il 



 

238 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

F
ig

u
re

 H
-4

  
 G

eo
m

et
ry

 a
n

d
 e

st
im

at
ed

 p
er

fo
rm

an
ce

 p
ar

am
et

er
s 

o
f 

th
e 

L
T

 D
X

 e
va

p
o

ra
to

r 
co

il 



 

239 

AAPPPPEENNDDIIXX  II::  

AAss  bbuuiilltt  iinntteeggrraatteedd  ttrriiggeenneerraattiioonn  aanndd  CCOO22  rreeffrriiggeerraattiioonn  
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AAPPPPEENNDDIIXX  JJ::  

UUnncceerrttaaiinnttyy  aannaallyyssiiss  

 

In the analysis of test results, key parameters such as: circulation ratio CR = 1 and 

coefficient of performance (COP) are not directly measured. They are calculated as a 

function of one or more variables that are directly measured. Each measured variable 

has a random variability which is referred to as its “uncertainty”. This appendix 

describes the calculations of uncertainty propagation of measured variables into the 

calculated parameters which include: circulation ratio of 1, COP of the MT, LT and 

COP of the overall CO2 refrigeration system. The uncertainty of reversed Carnot COP 

calculation is also presented.  

The uncertainty propagation was determined using the EES software with an 

assumption that individual measurements are uncorrelated and random. In general, 

uncertainty of the calculated parameters can be determined from (EES, 2010): 
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Y i
U
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U 2

2

          (J.1) 

Where: 

Y = calculated parameter; Xi = measured variables; UY = uncertainty of calculated 

parameter; UXi = uncertainty of measured variables 

J.1 Uncertainty of the calculation of the circulation ratio CR = 1 

Circulation ratio is a function of measured variables as below: 

CR = f ( MTrm , , TevapMT, RHa.ON, RHa.OFF, Ta.ON, Ta.OFF, L, w, va)      (J.2) 

Refers to equations (5.6), (5.7) and (5.8) in Chapter 5. 

Where: MTrm , = MT refrigerant mass flow rate (kg/s); TevapMT = MT evaporating 

temperature (oC); RHa.ON and RHa.OFF are relative humidity of air-on and air-off;  Ta.ON  

and  Ta.OFF  are  temperature of air-on and off respectively (oC); L and w are sectional 

dimensions of the air duct after the MT coil (m); va is air velocity at the measured 

sectional area of the air duct (m/s). 
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Uncertainties of the measured variables for calculation uncertainty of the circulation 

ratio CR = 1 are shown in Table J-1. 

Table J-1  Uncertainties of the measured variables for calculation 
uncertainty of the circulation ratio CR = 1 

Measured 
variable 

Value  
at CR = 1 

Unit 
Absolute 

uncertainty 
Relative 

uncertainty 

MTrm ,  0.019 kg/s  0.00035 

TevapMT -7 oC 0.5  

RHa.ON 0.76 - 0.015  

RHa.OFF 0.91 - 0.015  

Ta.ON 5 
oC 0.5  

Ta.OFF -3 
oC 0.5  

L 2.1 m 0.0005  

w 0.04 m 0.0005  

va 3.68 m/s  0.03 

   Uncertainty of L and w were assumed to be 0.5 mm 
   The uncertainties of the measured variables refer to Section 3.6.1 (Chapter 3) 

 

Results of the uncertainty analysis for the CR obtained from EES: 

 

 

 

 

   

Uncertainty of the circulation ratio was determined to be 

 Absolute uncertainty: ± 0.111 

 Relative uncertainty: ± 10.8% 

 

J.2 Uncertainty of the COP calculation 

Coefficient of performance (COP) of the refrigeration system is a function of the 

following measured variables: 

COP = f ( MTrm , , LTrm , , PMT, PLT, Tevap.out.LT, Wcomp, WCO2pump)      (J.2) 
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Uncertainties of the measured variables for the calculation of uncertainty of the COPs 

are shown in Table J-2 

Table J-2  Uncertainties of the measured variables for uncertainty 
of the COP calculations 

Measured 
variable 

Value  
 

Unit 
Absolute 

uncertainty 
Relative 

uncertainty 

CR 1.3 -  0.108 

MTrm ,  0.026 kg/s  0.00035 

LTrm ,  0.032 kg/s  0.00035 

PLT 12.3 bar  0.03 

PMT 27.8 bar  0.03 

Tevap.out.LT -17 
oC 0.5  

Wcomp 2.55 kW  0.00036 

WCO2pump 0.11 kW  0.00036 

           The uncertainties of the measured variables refer to Section 3.6.1 (Chapter 3) 

 

Results of the uncertainty analysis for COP obtained using EES: 

 The uncertainty of the reversed Carnot COP  

o Absolute uncertainty: ± 0.0526  

o Relative uncertainty: ± 0.6%  

Detailed results: 

 

 

 

 

 

 The uncertainty of the COPMT   

o Absolute uncertainty: ± 4.921  

o Relative uncertainty: ± 10.8%  
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Detailed results of uncertainty of the COPMT: 

 

 

 

 

 

 The uncertainty of the COPLT   

o Absolute uncertainty: ± 0.007  

o Relative uncertainty: ± 0.2%  

Detailed results of uncertainty of the COPLT: 

 

 

 

 

 

 The uncertainty of the COPoverall   

o Absolute uncertainty: ± 0.204  

o Relative uncertainty: ± 3.6%  

Detailed results of uncertainty of the COPoverall: 
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AAPPPPEENNDDIIXX  KK::  

RReeffrriiggeerraanntt  cchhaarrggee  aanndd  lleeaakk  rraattee  

 

This appendix presents a typical refrigerant charge for different sector of applications 

and reported annual leak rate of different refrigeration equipment for the UK. This 

appendix is related to Section 1.2 (Chapter 1) and Section 2.1 (Chapter 2). 

Table K-1  Specific refrigerant charge for particular refrigeration system applications 

 

 

 

 

 

 

 Source: MTP, 2008 

 

Table K-2  Reported annual leakage rates for particular refrigeration system applications in the UK 

 

 

 

 

 

 

 Source: MTP, 2008 
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AAPPPPEENNDDIIXX  LL::  

EEEESS  MMooddeellss  ooff  tthhee  rreeffrriiggeerraattiioonn  ssyysstteemmss  ffoorr  tthhee  ccoonnvveennttiioonnaall  aanndd  

ttrriiggeenneerraattiioonn  ––  CCOO22  rreeffrriiggeerraattiioonn  eenneerrggyy  ssyysstteemmss  
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AAPPPPEENNDDIIXX  MM::  

DDeettaaiilleedd  aannaallyyssiiss  ooff  eenneerrggyy  aanndd  eennvviirroonnmmeenntt  ppeerrffoorrmmaannccee  ooff  tthhee  

ccoonnvveennttiioonnaall  aanndd  ttrriiggeenneerraattiioonn  ––  CCOO22  rreeffrriiggeerraattiioonn  eenneerrggyy  ssyysstteemmss  

 

This appendix presents detailed analysis of the energy and environmental performance 

of the conventional energy system and the integrated CO2 refrigeration and 

microturbine based trigeneration energy system of the case study supermarket described 

in Chapter 6. 

Fuel energy saving analysis: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Grid electricity supply 2,817,321 kWh

Electricity of R-404A refrigeration 816,636 kWh

Electricity of Air conditioning 77,467 kWh

Electricity of other than refrigeration and AC system s 1,923,219 kWh

Fuel  required for grid supply (a) 8,537,338 kWh

Fuel for boiler (b) 874,068 kWh

Total (a + b) 9,411,406 kWh

CHP fuel (Natural gas) (c) 8,340,324 kWh

Auxiliary boiler fuel (d) 91,090 kWh

Imported electricity 184,408 kWh

Fuel required for grid supply (e) 558,811 kWh

Exported electricity 261,191 kWh

Fuel saving to grid supply (f) 909,370 kWh

Total (c + d + e - f) 8,080,855 kWh

Fuel energy savings 1,330,551 kWh/year

152 kWh/hr

Fuel energy saving ratio 14.14%

Ratio of electricity of CHP to total consumption 103.3%

Assumptions:
Grid electricity efficiency 33.0%

Self generated electricity efficiency 28.7%

Boiler efficiency annual 80.8%

Energy system with integrated trigeneration and volatile-DX CO2 

refrigeration system, gas boiler and electric chiller

Conventional energy system with R-404A refrigerations, gas boilers and 
electric chiller
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CO2 emission analysis for Chapter 6: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Indirect CO2 emissions kWh kgCO2

Grid electricity consumption (A) 2,817,321 1,541,075

Natural gas consumption (B) 874,068 160,829

Direct CO2 emissions kg kgCO2

Annual R-404A refrigerant leakage ( C1) 105 411,443

Annual R-404A refrigerant recovery losses (D) 14 54,859

Annual R-407C refrigerant leakage (C2) 9 16,740

2,184,946

Indirect CO2 emissions kWh kgCO2

CHP fuel (F) 8,340,324 1,534,620

Boiler fuel (G) 91,090 16,761

Imported electricity (H) 184,408 100,871

Saving from exported electricity (I) 261,191 142,871

Total (K) = (F)+(G)+(H)-(I) 1,509,380

Direct CO2 emissions kg kgCO2

Annual refrigerant leakage of R-744 system (L) 53 53

Annual refrigerant leakage of the electric chiller R-407C (M) 9 16,740

Total (P) = (L)+(M) 16,793

1,526,173

658,773

30.15%

Net emission saving = (E)-(Q)

Percentage of the CO2 emission savings

Conventional energy system with R-404A refrigerations, gas boilers and electric 
chiller

Total  (E) = (A)+(B)+(C1)+(D)+(C2)

Energy system with integrated trigeneration and volatile-DX CO2 refrigeration 

system, gas boiler and electric chiller

Total  (Q) = (K)+(P)
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AAPPPPEENNDDIIXX  NN::  

DDeettaaiilleedd  aannaallyyssiiss  ooff  eenneerrggyy  aanndd  eennvviirroonnmmeenntt  ppeerrffoorrmmaannccee  ooff  tthhee  eenneerrggyy  

ssyysstteemm  aalltteerrnnaattiivveess  

 

This appendix details the energy and environment performance analysis of the energy 

system alternatives of the case study supermarket. The analysis compares the 

performance of the energy system alternatives to the conventional energy system with 

R-404A refrigerant. 

Fuel energy saving analysis of Scheme-1: 

CHP fuel (Biodiesel) 4,430,848 kWh

Auxiliary boiler fuel 21,096 kWh

Imported electricity 1,159,933 kWh

Fuel required for grid supply 3,514,949 kWh

Exported electricity 120 kWh

Fuel saving to grid supply 364 kWh

Total 7,966,529 kWh

Fuel savings 1,444,877 kWh/year

165 kWh/hr

Fuel saving ratio 15.35%

Ratio of electricity of CHP to total consumption 57.3%

Assumptions:
Grid electricity efficiency 33.0%

Self generated electricity efficiency 35.1%

Boiler efficiency annual 80.8%

Scheme-1
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Fuel energy saving analysis of Scheme-2: 

 

 

 

 

 

 

 

 

 

 

Fuel energy saving analysis of Scheme-3: 

 

 

 

 

 

 

 

 

 

 

CHP fuel (Natural gas) 7,907,431 kWh

Auxiliary boiler fuel 194,360 kWh

Imported electricity 44,440 kWh

Fuel required for grid supply 134,666 kWh

Exported electricity 378,908 kWh

Fuel saving to grid supply 1,148,206 kWh

Total 7,088,252 kWh

Fuel savings 2,323,154 kWh/year

265 kWh/hr

Fuel saving ratio 24.68%

Ratio of electricity of CHP to total consumption 113.1%

Assumptions:
Grid electricity efficiency 33.0%

Self generated electricity efficiency 36.6%

Boiler efficiency annual 80.8%

Scheme-2

CHP fuel (Natural gas) 7,450,016 kWh

Auxiliary boiler fuel 24,670 kWh

Imported electricity 62,343 kWh

Fuel required for grid supply 188,919 kWh

Exported electricity 332,962 kWh

Fuel saving to grid supply 1,008,975 kWh

Total 6,654,630 kWh

Fuel savings 2,756,776 kWh/year

315 kWh/hr

Fuel saving ratio 29.29%

Ratio of electricity of CHP to total consumption 111.0%

Assumptions:
Grid electricity efficiency 33.0%

Self generated electricity efficiency 36.6%

Boiler efficiency annual 80.8%

Scheme-3
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CO2 emission analysis of the energy system alternatives: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Indirect CO2 emissions kWh kgCO2

CHP fuel (F) 4,430,848 0

Boiler fuel (G) 21,096 3,882

Imported electricity (H) 1,159,933 634,483

Saving from exported electricity (I) 120 66

Total (K) = (F)+(G)+(H)-(I) 638,299

Direct CO2 emissions kg kgCO2

Annual refrigerant leakage of R-744 system (L) 53 53

Annual refrigerant leakage of electric chiller R-407C (M) 9 16,740

Total (P) = (L)+(M) 16,793

655,092

1,529,854

70.02%

Net emission savings = (E)-(Q)

Percentage of the CO2 emission savings

Scheme-1

Total  (Q) = (K)+(P)

Indirect CO2 emissions kWh kgCO2

CHP fuel (F) 7,907,431 1,454,967

Boiler fuel (G) 194,360 35,762

Imported electricity (H) 44,440 24,309

Saving from exported electricity (I) 378,908 207,263

Total (K) = (F)+(G)+(H)-(I) 1,307,776

Direct CO2 emissions kg kgCO2

Annual refrigerant leakage of R-744 system (L) 53 53

Annual refrigerant leakage of electric chiller R-407C (M) 9 16,740

Total (P) = (L)+(M) 16,793

1,324,568

860,377

39.38%

Net emission savings = (E)-(Q)

Percentage of the CO2 emission savings

Scheme-2

Total  (Q) = (K)+(P)

Indirect CO2 emissions kWh kgCO2

CHP fuel (F) 7,450,016 1,370,803

Boiler fuel (G) 24,670 4,539

Imported electricity (H) 62,343 34,102

Saving from exported electricity (I) 332,962 182,130

Total (K) = (F)+(G)+(H)-(I) 1,227,314

Direct CO2 emissions kg kgCO2

Annual refrigerant leakage of R-744 system (L) 53 53

Annual refrigerant leakage of electric chiller R-407C (M) 9 16,740

Total (P) = (L)+(M) 16,793

1,244,107

940,839

43.06%

Net emission savings = (E)-(Q)

Percentage of the CO2 emission savings

Scheme-3

Total  (Q) = (K)+(P)
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AAPPPPEENNDDIIXX  OO::  

AAssssuummppttiioonnss  ffoorr  tthhee  eeccoonnoommiicc  aannaallyyssiiss  

 

This appendix presents key assumptions used for the economic viability analysis of the 

energy system alternatives. The assumptions include investment, energy and operational 

costs of the system components for the energy system alternatives and the conventional 

energy system. 

Table O-1  Assumptions for investment cost analysis 

Equipment 
Unit cost (£/kW capacity) 

Conventional Scheme-1 Scheme-2 Scheme-3 

Installed cost      

HT R-404A refrigeration packs 350    

LT R-404A refrigeration packs 600    

HT transcritical CO2 refrigeration packs  625 625  

Modified MT volatile-DX CO2 packs    625 

LT CO2 refrigeration packs  1267 1267 1267 

Electric chiller R-407C for air conditioning 125 125 125 125 

Gas boilers 100 100 100 100 

Gas engine based generator 169    

Bio-fuel engine based CHP  675   

Gas engine based CHP   675 675 

Water-LiBr absorption chiller  250 250 250 
 

Table O-2  Assumptions for energy rates 

Electricity rate of National Grid 0.09966 £/kWh 

Electricity sold back rate to National Grid 0.08222 £/kWh 

Natural gas  0.02768 £/kWh 

Bio-fuel 0.04152 £/kWh 

   

Table O-3  Assumptions for other charges 

Standing charge  88.9 £/month 

Availability charge of electricity supply from grid 0.92 £/kWe-month 

VAT for energy rate and equipment 17.5 % 

Percentage of annual O&M cost from the installed cost 5.0 % 

Percentage of annual O&M cost for bio-fuel CHP 10.0 % 

O&M = operational and maintenance 

 


