A two-stage parallel branch and bound
algorithm for mixed integer programs

V. Nwana, K. Darby-Dowman and G. Mitra
Department of Mathematical Sciences

Brunel University, West London
UBS 3PH

United Kingdom

Abstract

Mixed integer programming (MIP) models are extensively used to
aid both in strategic and tactical decision making in many business
sectors. Solving MIP models is a computationally intensive process
and there is a need to develop solution approaches that enable larger
models to be solved within acceptable timeframes. In this paper, we
describe the implementation of a two-stage parallel branch and bound
(PB&B) algorithm for Mixed Integer Programming (MIP). In stage
1 of the algorithm, a multiple heuristic search (MHS) is implemented
in which a number of alternative search trees are investigated using a
forest search in the hope of finding a good solution quickly. In stage
2, the search is reorganised so that the branches of a chosen tree are
investigated in parallel. A new heuristic is introduced, based on a best
projection criterion, which evaluates alternative B&B trees in order to
choose one for investigation in stage 2 of the algorithm. The heuristic
also serves as a way of implementing a quality load balancing scheme
for stage 2 of the algorithm. The results of experimental investigations
are reported for a range of models taken from the MIPLIB library of
benchmark problems.



1 Introduction

Mixed integer programming (MIP) models are extensively used to aid both
strategic and tactical decision making in many business sectors. Successful
recent applications reported in recent issues of the journal Interfaces, pub-
lished by INFORMS include supply chain management in the motor indus-
try [9], production scheduling in the brewing industry [13], aircraft and crew
scheduling [5], asset liability management [20], energy management in the
utilities sector [23] and network design in the telecommunication sector [2].
MIP models are classified as NP-Hard and problems in this class are often
difficult to solve to proven optimality. Over the years, significant advances
in computer technology have resulted in faster solvers capable of processing
larger models. In addition, many improvements have resulted from refine-
ments of existing algorithms [15],[22]. In spite of these advances, there is a
need for even greater processing power. Parallel computers offer additional
resources over serial computers, especially in terms of memory and process-
ing speed and are an alternative platform for improved solver performance.
The well established approach for solving MIPs is branch and bound (B&B)
[12],[18] and several parallel implementations of B&B have been proposed
[1], [4], [16],[19], [6].

In this paper, we describe extensions to the design of the two-stage par-
allel branch and bound (PB&B) algorithm of Mitra [19] for processing MIP.
Central to the success of this implementation is a new heuristic based on a
best projection criterion which evaluates alternative B&B trees in order to
choose one for investigation. The heuristic also serves as a way of implement-
ing a quality load balancing scheme for PB&B.

In section 2, we provide a mathematical definition of MIP as well as a
description of a serial B&B algorithm for MIP. In section 3, we discuss the
parallel rationale as well as some implementation issues. In addition, we
present a new tree assessment heuristic that is used to find the “best” tree
from a number of different B&B trees. In section 4, we provide experimental
results for the entire two-stage algorithm before proceeding, in section 5, to
draw conclusions from the results.



2 Problem definition and the serial B&B al-
gorithm

The Mixed Integer Program (MIP) can be stated as follows:

Min Zyip = chxj + chxj + chfvj (1)

JjEB Jjel jeC

subject to

Zaijxj+2aijxj+2aijxj§bi izl,...,m (2)

jEB jEI jec
lj <aj <y jeN
z; € {0,1} jE€B
x; > 0 and integer jel
Z; >0 jeC,

where B is the index set of binary variables, I the index set of general integer
variables, C' the index set of continuous variables and N = BUITUC'. [; and
u; are the lower and upper bounds on the variables, ;.

The B&B algorithm adopts a tree search in which the tree development
process is characterised by two rules (operations) that perform branching and
bounding of the solution space. The root node, Py, of the tree represents the
entire state space S = Sy while subsequent nodes (sub-problems) P; represent
successively smaller partitions S; of S. The set of all feasible solutions is
represented by the set of feasible solutions of the sub-problems associated
with the uninvestigated or dangling nodes of the tree. At each node of
the tree, the linear programming relaxation (LPR) of the IP, in which the
integrality constraints are dropped, is solved. If there is no feasible solution
to the LPR at a node, then the node is terminated. Otherwise, if the solution
to the LPR of a subproblem is integer feasible and its objective function value
is less than the previous upper bound, then the objective function value of
this subproblem is set as an upper bound for the problem. The subproblem or
node for which the upper bound is obtained is called the incumbent node and
the bound is known as the incumbent value. In addition, the optimal solution
to the LPR provides a lower bound on the best integer feasible solution for



that subproblem. After each branching process, those subproblems with
an objective function lower bound that exceeds the incumbent value are
excluded from further branching. The branching continues until the best
integer feasible solution is found and its optimality is proven by examining
all the eligible nodes in the search tree.

Notable enhancements to B&B include the incorporation of constraint
classification, preprocessing, integer heuristics and cutting planes to the pro-
cedure [1],[14]. Constraint classification involves carrying out analyses on the
constraint set with a view to capturing well known constraint classes that
can be exploited by the B&B solution process. Preprocessing is applied prior
to, and during the execution of B&B by making inferences that may lead
to reduction or simplification of the search space. B&B also has the flex-
ibility to accommodate problem-specific and general heuristics that exploit
properties of the search space to generate integer feasible solutions and hence
upper bounds. Bixby et al. [1] refers to these heuristics as primal heuristics.
Cutting planes or valid inequalities that reduce the search space can be ap-
plied to the original MIP model as well as subproblems within the B&B tree.
Details of these enhancements and their effects on the performance of B&B
can be found in Kularajan [14] and Linderoth and Savelsbergh [18].

3 Two-stage B&B algorithm of Mitra et al.

3.1 Introduction and parallel rationale

The tree search of serial B&B has two distinct goals, namely
(i) to find a good and ultimately the best integer feasible solution, and
(ii) to prove optimality or infeasibility.

Hai [10] established that these two goals could be addressed in a two-stage
parallel B&B algorithm. We refer to the two stages of the PB&B algorithm
as stage 1 and stage 2.

Serial B&B algorithms possess a high degree of non-determinism in their
performance [19] such that different implementations of the same algorithm
may result in vastly different trees and execution times, depending on the
tree search heuristics (primarily node and variable choices). A study of the
variability in performance of several different implementations of B&B is



discussed in Nwana [21]. In general, it is usually impossible to determine a
priori the best B&B tree search strategy. In practice, dynamically estimated
quantities such as psuedocosts for variable selection, and best projection for
node choice are usually calculated in order to determine a search strategy for
B&B.

Gendron and Crainic [8] identify three design approaches to PB&B algo-
rithms. Parallelism of Type 1 is akin to low level parallelism in which the
innermost operations (such as node and variable choices) within B&B are
parallelised whilst maintaining the overall framework of the serial algorithm.
Parallelism of type 2 employs parallelism at a higher level such that indepen-
dent nodes within the B&B tree are investigated simultaneously. Parallelism
of type 3 is achieved when several distinct B&B trees are explored simulta-
neously.

In our two stage algorithm described below, we employ parallelism of type
3 in stage 1, and parallelism of type 2 in stage 2.

In serial B&B, once one or more integer feasible solutions are found, the
algorithm proceeds to prove optimality by eliminating nodes which, by virtue
of their bounds, cannot yield improved integer feasible solutions. Again, it is
impossible to predict the amount of work required in order to investigate and
potentially eliminate nodes of a serial B&B tree from being processed. Stage
2 of our PB&B implementation is akin to the more classical PB&B, whereby
the nodes of the B&B tree are distributed between different processors in
order to speed up the investigation of the unexplored nodes. This stage
employs high level parallelism or parallelism of type 2 [8].

3.2 Parallel Branch and Bound — Stage 1

By exploiting parallelism of type 3, we can investigate a number of alternative
trees, each following a unique search strategy. This approach is referred to
as Multiple Heuristic Search (MHS) — effectively a forest search. By running
several tree search strategies in parallel, we gain the advantages of the indi-
vidual tree searches within a single parallel heuristic. In effect, by employing
MHS, we increase the probability of finding better integer solutions early-on
as well as finding the ’best’ tree search strategy.

This stage of the PB&B algorithm involves the distribution of the nodes of
the tree throughout a network of processors (distributed MIMD architecture).
The underlying parallel software connecting the processors is PVM — software
that permits a network of heterogeneous computers to be used as a single



large parallel computer. Each processor starts a unique sequential B&B
search and improved bounds are shared between the processors in order to
help them prune their search trees - thereby improving their sequential search.

A key advantage of carrying out MHS is the investigation into the diffi-
culty of the underlying problem. If processing several alternative trees does
not yield an integer feasible solution until a considerable number of nodes
have been explored then the problem may be judged to be 'difficult’. Thus,
we attempt to evaluate the trees in order to select the one that is assessed
to be the best in terms of its ability to yield integer feasible solutions. The
tree assessment heuristic, which aims to find the ’best tree’ for investigation
in stage 2, is discussed in section 3.3.

MHS has a key advantage in that it can fully exploit a massively parallel
computer. Several permutations of node and variable choices in the B&B
algorithm may result in a large number of trees to be investigated. Using
a parallel architecture, these trees can be searched using an equally large
number of processors. The more trees that are investigated, the greater the
advantages of the MHS. Communication overheads are usually not a limiting
factor since only a minimal amount of information (bounds) is shared. On
the other hand, investigating a large number of trees may increase further
the likelihood of obtaining good integer feasible solutions.

By using the MHS approach in stage 1, we also mimimise the set-up time
that is usually incurred in PB&B algorithms. PB&B implementations usually
proceed by starting B&B in serial mode, generating a minimum number of
nodes, and finally kick-starting the parallel execution. Hai [10] refers to this
elapsed time as the rise time of the PB&B algorithm. In our two stage
implementation, the use of MHS, in which all processors investigate their
trees independently, mimimises the parallel set-up or rise time.

The obvious drawback of stage 1 is duplication of work. In investigating
different B&B trees, with minimum communication between the processors,
we are likely at some stage to have different processors investigating a com-
mon portion of the search space. This is especially true if the MHS is allowed
to run for long periods of time. However, during the initial search stages,
duplication is minimised since there is a large number of nodes and different
strategies are likely to choose different trees. MHS is therefore a good initial-
isation strategy for PB&B. However, it becomes wasteful [10] when pursued
for too long. Usually when B&B or PB&B algorithms are executed, the user
specifies the maximum time limit for the execution run. In our algorithm, we
heuristically set (based on emperical evidence) the amount of time for stage

6



1 to be one third of the preset maximum time limit. Alternative criteria may
also be used to terminate stage 1 such as:

(i) the threshold value for the number of waiting nodes on a processor is
attained,

(ii) the maximum number of integer feasible solutions has been reached,

(iii) a good integer solution has been found; that is, one which has a value
within a specified distance from the current lower bound.

Within the serial B&B code, a tree assessment heuristic is implemented such
that each tree that is being investigated in stage 1 is evaluated in terms of its
estimated potential for yielding integer feasible solutions at an early stage.
We choose the 'best’ tree for investigation in stage 2 based on this evaluation.
Three alternative B&B tree assessment heuristics are presented below and,
based on some empirical results, one is selected as our chosen tree assessment
heuristic.

3.3 Assessing Alternative Branch and Bound Trees in
Stage 1

The three tree assessment criteria considered in this investigation are based
on three basic observations on the computational behaviour of the B&B
algorithm:

(i) B&B trees which follow a depth-first search tend to find integer feasible
solutions early-on in the search, since most integer solutions are found
deep-down in the tree [17], [18]. Whilst the quality of the integer
solutions cannot be assessed in advance, finding such solutions guides

the search by providing upper bounds. Our first criterion therefore is
called Relative Depth (RDPTH) and is given by

IDPTH

BININT’

where IDPT H represents the depth of the deepest node in the serial
B&B tree, and BININT represents the number of binary and general
integer variables in the model . Since the rationale for this measure is

finding good solutions, the tree with the highest value of RDPTH is
chosen.

RDPTH =



(i)

(iii)

The trees resulting from breadth-first searches closely resemble a com-
plete enumeration — especially in the initial stages of the search. Such
trees therefore tend to take a longer time to reach integer solutions.
Our measure of breadth of a tree is Relative Breadth (RBDTH) and is
given by
RBDTIH — UNODES,
IDPTH

where UNODES represents the total number of uninvestigated nodes
in the B&B tree. Since the goal of finding integer solutions early in the
search is of overriding importance, we choose the tree with the lowest
value of RBDTH.

Best projection is often used as an intelligent node selection strategy
which attempts to find an estimate of the best integer feasible solution
attainable for a given node in a B&B tree. In best projection, an
estimate F; is calculated for node P; in the following way. Let s; =
> jepur min{xi — |2%], [2%] — 2%} where B and I are the index sets
of binary and general integer variables respectively and x; represents
a binary or general integer variable whose current value is fractional
in the optimal LP solution vector Xx*pg(;). s; therefore represents the
sum of the integer infeasibilities at node P;. Trivially, the optimal LP
solution for the root node, Py, is represented by X"LPR, and has an
objective function value, 27 pp(o). The best projection estimate, F; for
node P; is given by,

E; = 2} ppa) + (ZU’_S—iLPR(U)> 5. (3)

The term %ﬁ”‘(o) is an estimate of the change in the objective func-
tion value per unit decrease in infeasibility. F; is an estimate of the best
integer solution attainable for node P;,. The best projection rule selects
the node associated with the minimum value of F;. By definition, best
projection estimates can only be calculated if B&B has obtained an
integer feasible solution. The sum of E; over all uninvestigated or open
nodes may be viewed as an estimate of the “goodness” of the B&B

search tree. The summative best projection value BPROJr;) for a



given B&B tree T} is given by,

BPROJz,) = Z {EZPR@ + <M> sz}. (4)

S0
over all open nodes

Given t B&B trees, the final tree assessment criterion that we consider
is BPROJ, whose value is obtained by the following expression;

BPROJ = Min{BPRO Ju)}
J

When many alternative B&B trees are being evaluated, we choose the
tree whose summative best projection over all nodes (BPRO/J) is a
mimimum. The drawback of this criterion is the fact that BPRO.J
depends on the existence of an existing integer feasible solution. If no
such solution exists, then we use one of the other two criteria discussed
above.

3.3.1 Results of Tree Assessment Criteria

In order to investigate the usefulness of the three tree assessment criteria de-
scribed above, a computational experiment was carried out using five models
from MIPLIB [3]. The model characteristics are described in Table 1. Seven
different B&B trees were generated for each of the models. The trees were
generated by considering various tree search heuristics, defined by the com-
bination of node and variable choice techniques. Typical examples of node
choice techniques used are: last in first out, first in first out, minimum frac-
tionality and best projection. Variable choice criteria include: minimum or
maximum fractionality of variables and a minimum or maximum cost. The
solver used in this investigation is FortMP [7] and details of its variable and
nodes choices may be found in the FortMP user manual [7]. Seven of the
best tree search heuristics were chosen based on the results of previous studies
from Hajian [11] and Kularajan [14]. In this preliminary investigation, a set
of five models taken from the MIPLIB library [3] were considered. Summary
statistics for these five models are shown in Table 1 below.

The execution time limit for processing each of the seven trees generated
per model was set at one hour. For each tree, numerical values for the three
tree assessment criteria (RDPTH, RBDTH and BPRO.J) were recorded at
the end of each run. We also recorded statistics for the number of integer



Model Name No. of No. of No. of Totalno. of No. of non
con- binary vari- continuous  variables ZEros
straints ables variables

DCMULTI 290 75 473 548 1833

NWO04 36 87482 0 87482 724148

LSEU 28 89 0 89 394

DANOINT 664 56 465 521 3233

CAP6000 2176 6000 0 6000 54238

Table 1: Model statistics for five MIPLIB models

solutions (NINT), the number of processed nodes (NODES), the iteration
count (ITER), the best integer solution (/PBST), the time taken to find
the first integer solution (7'7'1) and the time taken to find the best integer
solution (77 B), measured in seconds. LP(OPT) and IP(OPT) represent
the LP and IP optimum solution values respectively. Except where stated,
all problems were solved to proven optimality.

Table 2: Assessing alternative trees for model DCMULTI

Model: DCMULTI LP(OPT) = 183975.5397 IP(OPT) = 188182

Tree | RDPTH | RBDTH | BPROJ | NINT | NODES | ITER | IPBST | TT1 TTB
1 0.3567 4533.98 13200 1 15307 | 133045 189265 0.18 0.18
2 0.4000 0.5000 23.09 41 30337 86504 193276 0.28 | 120.03
3 0.1733 583.10 8756 16 15477 | 114528 196008 0.27 | 120.20
4 0.4267 0.0312 0.0304 16 10750 52794 | 188182* 0.24 | 119.34
5 0.3600 0.4815 21.09 39 30487 86901 193267 0.29 | 120.04
6 0.4000 0.4667 21.45 41 30444 86789 193276 0.29 | 120.03
7 0.4267 0.0200 0.0206 16 10750 52794 | 188182* 0.29 88.23

*: Optimal solution obtained but optimality not proved

10




Table 3: Assessing alternative trees for model NW04

Model: NWO04 LP(OPT) — 16310.70 IP(OPT) — 16862

Tree | RDPTH | RBDTH | BPROJ | NINT | NODES | ITER | IPBST TT1 TTB
1 0.854 0.3230 4.138 2 35 1316 16922 | 245.54 | 720.18
2 0.754 0.4000 4.424 1 29 1316 16956 | 342.42 | 342.42
3 0.899 0.1733 6.322 1 35 1360 16956 | 445.27 | 445.27
4 0.712 0.4267 4.138 2 35 1316 16922 | 67 .78 | 459.48
5 0.812 0.3600 3.667 2 31 1387 16922 40.57 | 245.54
6 0.751 0.4000 3.615 2 31 1387 16922 57.61 | 340.63
7 0.719 0.4267 6.322 1 35 1360 16956 | 234.29 | 234.29

Table 4: Assessing alternative trees for model LSEU

Model: LSEU LP(OPT) = 834.68 IP(OPT) = 1120

Tree | RDPTH | RBDTH | BPROJ | NINT | NODES | ITER | IPBST | TT1 TTB
1 0.545 60 1.638 16 81326 3357 1136 3.87 76.54
2 0.343 688 9200 7 55335 6523 1120 6.97 | 142.64
3 0.134 1140 9584 9 42607 4935 1128 4.65 | 341.47
4 0.000 0.00 2.865 16 96101 3563 1136 2.94 | 245.48
5 0.442 3.0 68.75 16 87269 4976 1120 | 16.51 | 145.88
6 0.471 2.0 78.22 14 87212 4312 1120 | 10.60 | 252.35
7 0.215 1128 9490 9 63653 5692 1128 | 23.99 | 133.25

Table 5: Assessing alternative trees for model DANOINT

Model: DANOINT LP(OPT) = 62.637280418 IP(OPT) = 65.67

Tree | RDPTH | RBDTH | BPROJ | NINT | NODES | ITER | IPBST TT1 TTB
1 0.2857 0.6875 3.154 3 6032 | 292469 66.2727 | 245.54 | 720.18
2 0.1607 227.90 1386 6 3330 | 229442 66.4545 | 342.42 | 342.42
3 0.2679 153.20 989.6 5 2894 | 225100 67.5000 | 445.27 | 445.27
4 0.2864 0.6250 2.318 3 5064 | 244311 66.2727 | 67 .78 | 459.48
5 0.2687 2.000 8.611 3 5506 | 244922 66.2727 40.57 | 245.54
6 0.2143 187.50 970.10 5 2834 | 220908 67.5000 57.61 | 340.63
7 0.3019 152.33 764 2 4353 | 221133 67.5000 | 234.29 | 234.29

11




Table 6: Assessing alternative trees for model CAP6000

Model: CAP6000 L.P(OPT) = —245154 TP(OPT) = —2451377

Tree | RDPTH | RBDTH | BPROJ | NINT | NODES | ITER IPBST | TT1 | TTB
1 0.5404 0.144 0.00 0 6014 8083 N/A | N/A | NJ/A
2 0.2625 0.2838 25.65 1 12244 | 15787 | -2446110.2 | 361.13 | 486.48
3 0.0933 0.8929 1.839 14 35707 | 46907 | -2450350 | 361.95 | 545.27
1 0.0173 0.9615 5.779 20 65245 | 92942 | -2451129.8 | 365.09 | 600.76
5 0.0025 0.400 0.9552 26 122075 | 181540 | -2451390 | 243.72 | 345.54
6 0.2254 0.3220 3.432 13 135334 | 150674 | -2451129.8 | 421.48 | 740.63
7 0.4213 0.243 1.344 7 85439 | 107371 | -2451129.8 | 234.29 | 764.29

12




Tables 2-6 show these statistics for each of the five models presented in
Table 1. As expected, the larger the observed values of RDPTH the smaller
the values of RBDTH tend to be. Thus, the use of either criterion would
tend to lead to similar results.

The observed values of BPRO.J show interesting results. Smaller values
of BPRO.J coincide with the “best trees” within the preset solution time.
The assessment of best tree is based on the quality of the final integer solu-
tion, the number of nodes investigated, the number of integer solutions found
and the number of iterations performed. The tree that is to be investigated
in stage 2 of our PB&B implementation is the one with the minimum value
for BPROJ. In cases where no integer solution is obtained during stage 1,
that is BPRO.J = 0 for the given time period, we choose the tree with the
largest value of RDPTH.

3.4 Parallel Branch and Bound — Stage 2

In Stage 2 of the algorithm, we examine in parallel the tree chosen at the
end of stage 1 for further investigation. This examination may result in an
improved integer solution or prove that the incumbent solution is optimal.

The rationale for applying parallelism in stage 2 is to speed up the node
investigation process. Parallelism of type 2 is employed whereby unexplored
nodes of the chosen tree are farmed out to other processors. The order in
which the nodes are investigated is not critical to the process. Consequently,
we have the flexibility to use a different search heuristic from the one that
generated the chosen tree. However, preliminary experiments showed that it
was better to carry on with the same search heuristic for the chosen tree as
in stage 1.

The nodes of the tree are distributed amongst all the processors. We
ensure that all the processors have roughly the same number of B&B nodes
at the start of Stage 2. This is achieved by distributing the waiting nodes,
one at a time to successive processors. If, in the course of stage 2, a pro-
cessor completes its search, more nodes are assigned to it from a loaded
processor. However, in the course of stage 2, the tree assessment criteria are
also computed. In effecting load balancing from a loaded to an idle slave
we choose nodes from a loaded processor with the current 'best’ tree defined
by the tree assessment criteria presented earlier. This is an effective way of
achieving quality load balancing.

13



The algorithm runs in stage 2 until one of the following termination cri-
teria is encountered:

(i) the list of waiting nodes is empty,
(ii) the preset limit of total number of nodes opened has been reached or,
(iii) the preset limit on elapsed time is reached.

These criteria are the same as those for terminating serial B&B. When any
of the termination criteria is encountered, the best integer solution found so
far is retrieved and the solution is reported. If Stage 2 terminates as a result
of condition (1) above, then the optimality of the current integer solution
(if any) is guaranteed whereas, for conditions (2) and (3), optimality is not
proven.

4 Experimental results of two-stage PB&B

4.1 Developing a Testing Strategy

We implemented the two-stage PB&B harness on a cluster of up to four
Pentium ITI 500MHz machines with 128MB of RAM. The four machines were
connected by a 100Mbit LAN (Ethernet) and the underlying communication
(message passing) system is the PVM library. The serial B&B algorithm
used as control is run using one of these processors. The main metric for
testing the algorithm is speed-up defined by

— the ratio of the times taken to execute B&B on one and n processors,
respectively.

The experiments are conducted on a set of MIPLIB [3] models for which
summary statistics are presented in Table 7 below.

14



Model name No. of | No of | Total No. of bi- | No. of | No. of non
con- variables | no. of | nary vari- | continuous | zeros
straints general ables variables

integer
variables
10TEAMS 230 2025 1800 1800 225 14175
AIRO5 426 7195 7195 7195 0 59316
BELL3A 123 133 71 39 62 441
BLEND2 274 353 264 231 89 1497
CAP6000 2176 6000 6000 6000 0 54238

DANO3MIP 3202 13873 552 552 13321 79656

DANOINT 664 521 56 56 465 3233

DCMULTI 290 548 75 75 473 1833

DSBMIP 1182 1886 192 160 1694 9768
FIBER 363 1298 1254 1254 44 4298
FIXNET®6 478 878 378 378 500 2550
GESA2 1392 1224 408 240 816 6000
GESA3 1368 1152 384 216 768 5736
L152LAV 97 1989 1989 1989 0 11911
LSEU 28 89 89 89 0 394

MARKSHAREL1 | 6 62 50 50 12 324
MISCO7 212 260 259 259 1 8620
MODO010 146 2655 2655 2655 0 13858
NwWo04 36 87482 87428 87482 0 724148
P0282 241 282 282 282 0 2248
P0548 176 548 548 548 0 2127
P2756 755 2756 2756 2756 0 11103
QIU 1192 840 48 48 792 3744
QNET1 503 1541 1417 1288 124 4746
ROUT 291 556 315 300 241 2432
SWATH 884 6805 6724 6724 81 34966
VPM1 234 378 168 168 210 917
Table 7: Model statistics for twenty seven MIPLIB models

15




The different trees investigated in stage 1 of the algorithm are based on
the harness for constructing alternative B&B trees, developed by Hajian [11]
and implemented in the solver FortMP [7]. The three parameters which,
when assigned different values, generate the alternative trees are VARCHO,
FNODCH and SNODCH. VARCHO determines the variable choice strategy;
FNODCH, the node choice strategy until the first integer solution is found
and SNODCH, the subsequent node choice strategy. In addition, preprocess-
ing and cuts were used where appropriate, following the investigations by
Kularajan [14].

Any observed speed-up in the PB&B algorithm may be attributed to one
or a combination of the following three points:

(i) the attainment of different good feasible solutions in stage 1 which
impacts on the tree development of all strategies (see section 3.2),

(ii) the choice of the ’best’ tree for investigation in stage 2 (see section 3.3),
and

(iii) the rate of investigation of B&B nodes in the chosen tree (see section
3.4).

Points (i) and (ii) are implicitly investigated and presented in section 3.4.
The tree best projection criterion, BPRO.J, is adopted for choosing the best
tree to be investigated in stage 2. In the serial B&B executions reported in
section 3.3, the times taken to find the first integer solution vary from tree
to tree. However, in the parallel execution, the first integer solution to be
found over all trees is communicated to every other tree. Thus, ignoring the
time taken to communicate this information, all trees obtain a first integer
solution in the same time. In addition, the subsequent processing of a tree is
affected by the receipt of the initial bound with an expected beneficial effect.

The effectiveness of parallelism in stage 2 is investigated by comparing
the times taken by serial and parallel executions to investigate a given num-
ber of pre-generated nodes farmed out to the processors in the same sequence
for each execution. Whilst this comparison is not strictly accurate (because
of anomalies due to inter-processor communication), it provides a measure
of speed-up in proving optimality. At the end of stage 1 of PB&B, we im-
plemented special cases of the code which distributes the nodes to be inves-
tigated between two, three and four processors respectively. In the control
experiment, all the nodes were processed by a single processor. This ex-
perimental procedure was carried out for all twenty seven MIPLIB models

16



presented in Table 7. In Table 8, we present the results of the experiments

by illustrating the speed-up in proving optimality for each model, given by,
= %, where n is the number of processors and ¢(n) the time taken to

investigate all the nodes using n processors. The results show that, in most

Number of Processors
2 E E
Problem Name
10TEAMS 1.67 2.74 3.97
ATRO5 1.82 2.78 3.10
BELL3A 2.02 3.15 4.21
BLEND2 1.23 1.01 0.73
CAP6000 1.36 1.57 1.88
DANO3MIP 1.79 2.84 3.98
DANOINT 2.00 3.18 4.12
DCMULTI 0.93 0.71 0.70
DSBMIP 1.34 2.15 2.98
FIBER 2.00 3.19 4.24
FIXNET6 1.99 2.85 3.87
GESA2 1.27 2.35 3.65
GESA3 2.31 3.14 4.00
L152LAV 1.93 4.18 4.19
LSEU 0.98 0.77 0.61
MARKSHARE1 | 1.73 2.88 4.01
MISCO07 1.47 2.87 3.60
MODO010 1.21 3.00 3.88
NWo04 1.44 2.53 3.72
P0282 1.33 2.09 3.54
P0548 1.68 3.00 4.35
P2756 1.35 2.66 3.73
QIU 1.87 3.11 4.23
QNET1 1.78 2.57 3.70
ROUT 1.81 2.94 4.00
SWATH 1.71 2.98 3.33
VPM1 2.00 2.81 3.92

Table 8: Analysis of the speed-up (i) in investigating a fixed number of
nodes on 2, 3 and 4 processors respectively.

cases, there is at least a near-linear speed-up in the time to prove optimality

or alternatively, in the time to obtain the best integer solution to the mod-
els. However, some models do not benefit from parallelisation (BLEND2,

17



DCMULTI, LSEU). These models were easily solved in serial mode and the
overheads associated with a parallel execution dominated the small savings
gained by having additional processors. However, the results confirm the
overall benefits of parallelism in stage 2 of our PB&B algorithm.

4.2 Overall Results of Two-Stage B&B Algorithm

The results of the executions of our two stage PB&B algorithm presented
in this section are further divided into three cases. First, we investigate the
effect of our PB&B implementation on small problems which are easily solved
to optimality by our serial solver. These problems are classed as ESS(’Easy
— Solved in Serial’). Secondly, we test the PB&B code on problems for
which serial B&B required a large (prohibitive) amount of time to solve to
optimality. We refer to this class as DSS (’'Difficult — Solved in Serial’).
Finally, we test PB&B on larger problems that serial B&B could not solve to
optimality. We class these models as DNS (Difficult — Not Solved in Serial’).
The results are presented in Table 9. TT'1 represents the time taken to the
first solution, TT'B is the time taken to obtain the best integer solution and
TT is the total time taken to process the problem. I PBST refers to the best
integer solution and a '{” appended to an entry in this column indicates that
optimality is proved by the algorithm. If optimality could not be proved,
the optimal value obtained from MIPLIB [3] is shown in brackets. Finally,
Speed — up represents the speed-up of the PB&B code. The * symbol is
entered in the 'Speed — up’ column in cases where the PB&B code solves
a DNS class model to optimality. Finally, a ’{’ is appended to the model
name entry in the "Model’ column to indicate that the PB&B algorithm
terminated due to reaching a the specified limit on the number of nodes that
can be investigated or that the maximum time limit was reached. In cases
where the executions reached their time or node limit before obtaining the
optimal solution, we take ¢(n) to be the time taken by n processors to obtain
the best integer solution found to date. Since, in all cases reported here, the
best integer solution of PB&B is at least as good as that obtained by the
serial execution, the computational speed-up measure never over-estimates
the effectiveness of PB&B.

18



Model Class | TT1 TTB TT IPBST Speed-
up
10TEAMS DNS | 142.69 | 634.08 2761.23 9247 3.91
ATRO05 DSS | 5.12 146.98 994.35 263747 4.29
BELL3AT DNS | 223.69 | 542.11 687.02 1449323.1 3.08
(878430.32)
BLEND2 ESS | 7.14 12.67 17.13 7.598985F 1.02
CAP6000 ESS | 23.60 51.41 67.02 -24513771 1.32
DANO3MIP DNS | 762.70 | 4313.11 6721.98 7281117 *
DANOINT DNS | 651.20 | 724.99 6600.50 65.67F *
DCMULTI ESS | 1.12 13.47 43.45 188182f 0.98
DSBMIP ESS | 2.39 62.71 65.32 -305.207 3.58
FIBER DNS | 634.10 | 2434.76 5989.90 405935.18F *
FIXNET6! DNS | 1087.4 | 1087.4 2142.67 5444.00 (3983) 4.01
GESA2 DNS | 13.74 67.23 4926.63 25779856.37F *
GESA3! DNS | 0.75 687.34 2549.75 28230469 3.92
(27991042.65)
L152LAV DSS | 133.03 | 556.37 625.08 47221 2.69
LSEU ESS | 4.47 51.76 61.90 11207 1.08
MARKSHARE? | DNS | 11.70 98.23 136.63 17.0 (1.0) 2.61
MISCO07 DSS | 13.74 65.89 319.55 2810F *
MODO010 DNS | 653.61 | 2683.25 6016.35 65487 *
NWO04 ESS | 21.57 27.46 141.63 168627 2.14
P0282 DSS | 2.75 27.23 46.63 2584117 1.00
P0548F DNS | 7.12 342.78 1211.00 9886 (8691) 3.38
P2756¢ DNS | 34.78 232.35 1354.00 3721(3124) 3.12
QIU DSS | 5.87 20.45 200.10 -132.871 5.12
QNET1 DNS | 1.43 71.43 5321 16029.697 *
ROUTH DNS | 78.34 623.95 3543.32 1129.55(1077.56) | 2.95
SWATH? DNS | 1084.31| 1084.21 7200 560.948(497.60) | 3.82
VPM1 DNS | 12.32 45.87 354.89 207 *

i: Proven optimal value obtained
*. Solved to proven optimality by the parallel code but not by the serial code
i: PB&B code terminated due to reaching a preset node limit or time limit

Table 9: Results of two-stage PB&B algorithm executions on a cluster of 4
Pentium IIT 500MHz processors

19



4.3 Summary of Results

The results of the PB&B algorithm execution show that the proposed two-
stage algorithm is effective, especially for models that were difficult to solve
in serial mode (DNS models). In the ESS class of models, limited speed-ups,
if any, are achieved. This is the case with all the ESS models reported here:
BLEND?2, CAP6000, DCMULTI, LSEU, NWO04 and P0282. The use of
several different tree search strategies in stage 1 resulted in all six models
solving to proven optimality in stage 1.

By exploiting a parallel architecture to investigate different tree strate-
gies, that is performing a forest search, we are guaranteed that the results
obtained by employing stage 1 of our PB&B algorithm are at least as good
as the results from the best tree. The ability to process more than one tree
simultaneously will result in a solution being obtained in either the same
time as would be the case if only one tree was processed, or in a quicker
time.

At the other extreme, one or more processors may pursue a good tree
search strategy which may not have been considered during a serial execu-
tion run of B&B. If such a scenario is encountered in stage 1 of the PB&B
algorithm, then we are likely to experience superlinear speed-ups which is a
desirable speed-up anomaly. This was the case with the models AT R05 and
QIU.

Of the twenty seven problems investigated, nineteen runs terminated as
a result of proven optimality and eight runs terminated on reaching the limit
on the number of nodes investigated or the preset execution time limit.

In line with the theory of parallel algorithms, most of the models in-
vestigated with our two-stage PB&B algorithm show at least a near-linear
speed-up or improved integer solution. In addition to these, some scale-up
advantages were recorded as eight of the models that could not be solved
using the serial algorithm were solved to optimality using the parallel al-
gorithm (DANOSMIP, DANOINT, FIBER, GESA2, MISC07, MODO010,
QNETI1 and VPM1).

20



5

5.1

Summary and conclusions

Summary

In this paper, we tested a two-stage PB&B algorithm for MIP based on the
initial implementation of Mitra et al. [19]. The parallel algorithm exploits
parallelism and B&B solution information in the following ways:

()

(iii)

stage 1 of the two-stage algorithm exploits the fact that different B&B
tree implementations can yield different results. By using a parallel
enviroment to investigate a number of different B&B trees concurrently,
we stand a better chance of obtaining a better solution to the problem
than if we had one dedicated tree search strategy.

we have developed a B&B tree assessment heuristic which gives insight
into the likelihood of a B&B tree obtaining good integer feasible solu-
tions. By using such a heuristic in stage 1 of our algorithm, we ensure
that we are investigating the “best” tree while attempting to prove
optimality in stage 2 of the algorithm.

in the same vein as (ii) above, the tree assessment heuristic, when used
in stage 2, provides a way of implementing quality load balancing,
whereby the best regions of a tree are transferred from a loaded slave
to an idle slave. This further improves the efficiency of the overall
algorithm

The computational experiments reported here demonstrate the effectiveness
of the two-stage PBB algorithm. The effect is most pronounced when applied
to problems that were difficult to solve in serial mode.

The two-stage procedure described in this paper is one of several possible
hybrid approaches. A potentially productive future research area is to explore
the use of different search strategies such as Simulated Annealing and Tabu
Search in stage 1 of the algorithm.

21



References

1]

2]

3]

(6]

[10]

[11]

R. Bixby, W. Cook, A. Cox, and Lee E. Parallel mixed integer pro-
gramming. Technical Report CRPC-TR95554, Rice University, Center
for Parallel Computation, 1995.

R. E. Bixby. Solving real-world linear programs: a decade and more of
progress. Operations Research, 50:3-15, 2000.

R. E. Bixby, S. Ceria, C. M. McZeal, and M.W.P. Savelsbergh. An
updated mixed integer programming library: MIPLIB 3.0. Optima,
58:12-15, 1998.

Q. Chen and M. Ferris. A fault tolerant condor-pvm mixed integer pro-
gram solver. Technical report, University of Wisconsin-Madison, De-
partment of Computer Sciences, Madison, WI 53706, 1999.

J. Desrosiers, A. Lasry, D. McInnis, M. M. Solomon, and F Soumis. Air
transat uses ALTITUDE to magage its aircraft routing, crew pairing
and work assignment. Interfaces, 30(2):41-53, 2000.

J. Eckstein, C.A. Phillips, and W. Hart. PICO: An object-oriented
framework for parallel branch and bound. Technical Report RRR 40-
2000, Rutgers University, New Jersey, August 2000.

E.F.D. Ellison, N. Hajian, [. Maros, G. Mitra, and D. Sayers. A For-
tran Based Mathematical Programming System: FORTMP User Manual
Release 2, version 2.04. Brunel University and NAG Ltd, 1997.

B. Gendron and T. G. Crainic. Parallel branch-and-bound algorithms:
Survey and synthesis. Operations Research, 42(6):1042-1066, 1994.

C. K. Hahn, Duplaga E. A., and Hartley J. L. Supply-chain synchro-
nization: lessons from hyundai motor company. Interfaces, 30(4):32-45,
2000.

[. Hai. Integer programming on parallel computers. Master’s thesis,
Brunel University, 1994.

M. T. Hajian. Computational Methods for Discrete Programming Mod-
els. PhD thesis, Brunel, The University of West London, 1992.

22



[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

E.L. Johnson, G.L. Nemhauser, and M.W.P. Savelsbergh. Progress
in linear programming-based algorithms for integer programming. IN-
FORMS Journal on Computing, 12(1):2-23, 2000.

E. Katok and D. Ott. Using mixed-integer programming to reduce label
changes in the coors aluminium can plant. Interfaces, 30(2):1-12, 2000.

K Kularajan. Analysis of Integer Programming Problems and Develop-
ment of Solution Algorithms. PhD thesis, Brunel University, Department
of Mathematical Sciences, Uxbridge, Middlesex, UB8 3PH, March 2000.

K. Kularajan, G. Mitra, F. Ellison, and B. Nygreen. Constraint classifi-
cation, preprocessing and a branch and relax approach to solving mixed
integer programming models. International Journal of Mathematical
Algorithms, 2:1-45, 2000.

R. S. Laundy. Implementation of branch and bound algorithms in
XPRESS-MP. In T. Ciriani, S Gliozzi, E.L. Johnson, and R. Tadei,
editors, Operational Research in Industry. Macmillan Press Ltd, 1999.

J.T. Linderoth. Topics in Parallel Integer Optimization. PhD thesis,
Georgia Institute of Technology, 1998.

J.T. Linderoth and M.W.P Savelsbergh. A computational study of
search strategies in mixed integer programming. INFORMS Journal
on Computing, 11(2):173-187, 1999.

G. Mitra, I Hai, and M.T. Hajian. A distributed processing algorithm
for solving integer programs using a cluster of workstations. Parallel
Computing, 23:733-753, 1997.

J. M. Mulvey, Gould G., and Morgan C. An asset and liability man-
agement system for Towers Perrin—Tillinghast. Interfaces, 30(1):96-114,
2000.

V. L. Nwana. Parallel Algorithms for Solving Mized Integer Linear Pro-
grams. PhD thesis, Brunel University, Uxbridge, Middlesex, UB8 3PH,
United Kingdom, May 2001.

M. W. P. Savelsbergh. Preprocessing and probing techniques for mixed
integer programming models. ORSA Journal on Computing, 6:445-454,
1994.

23



[23] R. F. Shortle, D. Dietz, P. Katz, C. Williamson, J. Koehler, and A. El-
can. Optimal design of a data-ofload network. Interfaces, 31(5):4-12,
2001.

24



