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Abstract

This paper considers the exact approach of branch and bound
(B&B) and the metaheuristic known as simulated annealing (SA) for
processing integer programs (IP). We extend an existing SA imple-
mentation (GPSIMAN) for pure zero-one integer programs (PZIP) to
process a wider class of IP models, namely mixed zero-one integer pro-
grams (MZIP). The extensions are based on depth-first B&B searches
at different points within the SA framework. We refer to the resultant
SA implementation as MIPSA. Furthermore, we have exploited the
use of parallel computers by designing a co-operative parallel heuris-
tic whereby concurrent executions of B&B and MIPSA, linked through
a parallel computer, exchange information in order to influence their
searches. Results reported for a wide range of models taken from a
library of MIP benchmarks demonstrate the effectiveness of using a
parallel computing approach which combines B&B with SA.

Keywords: Branch and Bound, Integer Programming, Metaheuristics, Parallel
Computing, Simulated Annealing



1 Introduction

Branch and bound (B&B) remains the method of choice for processing Inte-
ger Programming (IP) and Mixed Integer Programming (MIP) models [10].
Although there have been major algorithmic advances within B&B as well
as considerable improvements in computing power, the overall usefulness of
B&B for processing IP models is sometimes limited by unsatisfactory solu-
tion times. In such cases, B&B is often used in a heuristic way whereby good
solutions are accepted in place of proven optimal ones.

General purpose heuristics or metaheuristics such as Simulated Annealing
(SA) are increasingly being applied to process IP and MIP models [4],[20].
Optimality is not a design goal of such approaches. Instead, they aim to find
good solutions quickly and at a reasonable computing cost.

A major difference between the B&B and SA approaches lies in the crite-
ria that control the sequence of feasible solutions obtained. B&B employs a
monotonic search process such that only solutions that improve on the incum-
bent one are accepted. SA, on the other hand, can consider solutions that are
inferior to the incumbent. This is an attempt to avoid convergence to a local
optimum. With both B&B and SA, very little is known about the structure
of the search space at the start of an execution run and information gained
during the solution process is used to give informed direction to the search.
In parallel executions of both approaches this information is shared between
the processors that investigate different regions of the search space. There
are several implementations of parallel B&B (PB&B) algorithms to solve IP
problems [2] [12] [14] [17]. An example of a parallel SA implementation for
solving IP problems is given in Lee and Stiles[13].

The main focus of this paper is the investigation of a hybrid approach
which shares information between concurrent executions of B&B and SA.
Hybrid approaches for solving optimisation problems have been proposed
in recent years. For example, Darby-Dowman and Little [5] identify three
hybridization structures for Constraint Logic Programming (CLP) and B&B,
using:

(i) a two stage process whereby one approach is applied and, at some
point, the partial results are passed to the other approach to complete
the solution process,

(ii) a CLP search whereby a good integer feasible solution is obtained,
which provides a good bound and possibly a good branching agenda



for B&B tree development, and

(iii) a CLP master system which generates sub-problems to be solved by
B&B.

There are several examples of hybrid algorithms that conform to one of these
three structures. Reeves and Hohn [21]| design a genetic algorithm (GA)
framework which can incorporate any local neighbourhood search technique.
This approach conforms to hybrid structure (i) above. French et al. [9]
describe a hybrid genetic-B&B for the Travelling Salesman Problem (TSP)
which conforms to both hybrid structures (i) and (ii) above. Moscato [18]
reports a successful hybridisation of properties of Tabu Search with those of
global optimisation. This is a case of hybrid strategy (ii) above. Teghem et
al. [22] also uses the second hybridisation strategy by embedding a linear
programming solver to deal with continuous variables within a simulated
annealing framework.

In the hybrid B&B and SA approach that we present in this paper, we
use the last two hybridization structures suggested by Darby-Dowman and
Little [5]. We begin in section 2 by defining the general MIP and highlight
special cases. We proceed in section 3 to investigate the components of an
implementation of SA, (GPSIMAN) [4], for pure zero-one IPs. In section
4, we discuss the first level of hybridization, which involves incorporating
depth-first B&B search at different points in an SA execution run. We call
the resultant procedure MIPSA. MIPSA extends GPSIMAN in that it can be
applied to a wider class of integer programs, namely, mixed zero-one integer
programs, MZIP. We proceed to describe a co-operative (parallel) framework
that exploits the use of information obtained by concurrent executions of
SA and B&B. We call this procedure PACO. Results are reported for a set
of computational experiments designed to assess the effectiveness of MIPSA
and PACO. Finally in section 5, we summarize our conclusions.

2 Mixed Integer Programming: Problem Def-
inition

The Mixed Integer Program (MIP) is defined using the following index sets
and model coefficients.



Index sets

B={1,---,|B|} Index set for binary variables
I={|B|+1,---,|B|+ |I|} Index set for integer variables
C={|B|+|I|+1,---,|B|+|I|+|C|} Index set for continuous variables
N=BUIUC Index set for all variables
M=1,---,|M| Index set for all constraints

Model coefficients
lj, u;,¢j,ai5,b;, (i € M, j € N) are known constants.

The general MIP is defined as

Min  Zyip = cha:j + ch:rj + chxj (1)

JjEB jel jec

subject to

Zaijxj-i-Za,—jxj—i-Zaijxj sz Z:1, ,|M| (2)

JjeEB jeI jEC
and

If B,] = then N = C. This problem is a linear program (LP).

If I,C = @ then N = B. This problem is called a Pure Zero-One Integer
Problem (PZIP).
If C = @ then N = BU I. This problem defines a Pure Integer Program
(PIP).
If I =@ then N = BUC. This problem is referred to as Mixed Zero-One
Integer Program (MZIP). PZIP and MZIP models constitute the majority
of IP models in practice. In fact, profiling the library of MIP benchmarks,
MIPLIB [1] shows only one IP model that does not belong to one of these
two classes.

In this paper, we concentrate on solution approaches for processing MZIP
models. Two such approaches that are widely used in practice are simulated
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annealing (SA) and branch and bound (B&B). It is assumed that the reader
is familiar with both these approaches. References for SA applied to integer
programs include: Collins et al. [3], Dowsland [6], Eglese [7], Kirkpatrick
et al. [11] and Lundy and Mees [15]. Reference material for B&B abound,
including: Johnson et al. [10], Linderoth and Savelsbergh [14] and Mitra
[16].

3 Connolly’s SA Heuristic for PZIPs

Connolly’s SA code (GPSIMAN) [4] accepts a model in the conventional
MPS format for PZIP. It generates an initial feasible solution using a pseudo-
random approach and proceeds to explore the search space by flipping vari-
ables (changing their values either from 0 to 1 or from 1 to 0) randomly
and measuring the change in the objective function (cost) value. A special
feature of the heuristic is that it implements a reheating schedule in which a
number of annealing runs are performed. The first of these runs calculates an
appropriate initial and final temperature for the next run. The temperature
T follows a scheme proposed by Lundy and Mees [15] whereby the recurrence
relation 15,1 := f;:‘Tn is used to obtain the temperature at which annealing
run n + 1 is performed based on the temperature 7;, of annealing run n. The
value of « is A%#m, where Tinitiar; Tfinai, and M represent the initial
temperature, final temperature and the maximum number of iterations and
are specified by the user. a therefore ensures that the temperature falls from
Tinitiar 10 Trina in exactly M iterations.

Connolly’s heuristic for an n-variable PZIP is presented in Algorithm
1. The heuristic operates as follows. The model and SA parameters are
initialised; an initial solution is generated and the cost computed. Several
(user-specified) annealing runs are performed. During each run, variables
are chosen and assigned new values at random. Since the heuristic was
designed for PZIPs, assignment of a new value to a variable is tantamount
to flipping a variable to its lower or upper bound (0 or 1). The effect on the
change in the objective cost of flipping the randomly chosen variable is then
measured. However, since these changes do not guard against infeasibility,
feasibility may be lost by flipping a variable. The heuristic has a feasibility
restoration technique (RESTORE) whereby variables other than the most-
recently flipped variable (that caused infeasibility) are flipped in order to
obtain a new feasible solution. The steps of the RESTORE technique are




presented in Algorithm 2. Embedded in RESTORE is a variable calibration
technique called GETSWOP in which a 'help-score’ is computed for each
variable based on how helpful a change in its value would be for restoring
feasibility. The rationale of GETSWOP is to identify the variable which not
only helps to restore the feasibility of the row currently under consideration
but also establishes the ’criticality’ of that row within the context of the
feasibility of the whole problem. Further details of the GETSWOP procedure
are given in Connolly [4].

The most helpful variable is flipped and if feasibility is not restored, the
second most helpful variable is considered. This procedure continues in a
depth first manner with some backtracking capabilities. If the procedure
cannot restore feasibility after a pre-defined fixed number of flips, then the
original move is rejected. Otherwise, the change in the cost is calculated. If
the current solution is better than the incumbent solution then it is accepted
as the new imcumbent solution if the SA acceptance function is satisfied
(i.e. if e72/T< R) and rejected otherwise. If it is rejected and a number
of consecutive previous solutions have also been rejected, then annealing is
performed at the temperature at which the best solution in this trial was
found. When the annealing run has ended, the temperature is reheated
following a cooling schedule to a level slightly lower than in the previous run.
This process continues for a user-specified number of annealing trials.



Algorithm 1 SA Algorithm of Connolly For an N-Variable PZIP Minimisa-
tion Problem|[4]

Step 1: Initialisation

Get the SA parameters; Initial Temperature = Tinitia, Final Temperature = Tinar,
Number of iterations per trial = M, Maximum number of rejected moves = M R

Read problem in MPS format

Generate initial feasible solution x

Set Xinitial = x

Compute cost of initial solution ¢(x"itial)

Set Temperature T' := Tjpiziar, Iteration counter K := 0 and Temperature degradation

. Tinitiatl—Tfinal
constant o := MTinitiatTsinal

Step 2: Annealing Trials
while K < M do
while T' > Tinq do

K=K+1
i=K MOD N
x =x

X," =1- X;
Restore feasibility(x; )
Calculate Ac = ¢(x') — ¢(x)
R = unif_rand(0,1)
if Ac>0and e 2T < R then
Rejected_moves = Rejected_moves + 1
if Rejected_moves > M R then
a=0and T = Tpes
end if
else {Accept the move}
X = x’; Rejected_moves = 0
end if
if ¢(x) < cpest then
Chest = C(X) and Tyest =T
end if
T = ot
end while
end while




Algorithm 2 RESTORE routine
Step 1: Initialisation

Set the initial parameters: Most recently flipped variable Xqrig, Depth level = level,
Feasibility obtained = feas,r, Maximum number of iterations to suggest infeasibity
after move = M FI, Current solution = xcurrent
Set level = 1: feas,r = false; Xorig = Xi; MFI = M, M € Z; x°"rrent = x
Step 2: Feasibility check
if zewrrent ig feasible then

Step 2.1: Return - the current solution is feasible

else
Step 2.2 The current solution is not feasible
Call the GETSWOP routine to choose the most helpful column, Xggoa

if 24004 = {} then
Step 2.2.1 No column to swap
feasor, = false
Return
else
Step 2:2.2 Flip a column from 0 to 1 or vice versa
Set the column to be flipped: Xajp=Xgooa
Update x°"rre™* with the updated value of xg;p
Level = Level+1
Iteration count =0
while Iteration count< M do
ITteration count = Iteration count + 1
if xcurrent jg feagible then
Go to Step 2.1
else
Go to Step 2.2
end if
end while
end if
if MFI > M then
Step 2.2.2.1 Feasibility not established
if Level = 1 then
Return - Feasibility cannot be restored
else
Backtrack
Level = Level -1
Block the variable flip taken in Step 2.2.2 at this level
GOTO STEP 2
end if
end if
end if




4 Extending Simulated Annealing to Process
MZIP — MIPSA

4.1 Motivation

Connolly [4] applied GPSIMAN on a limited number of PZIP models. One of
the aims of MIPSA is to process a wider range of models than PZIPs. We have
therefore extended the GPSIMAN algorithm to solve MZIP models. These
extensions are based on the following observations of the original GPSIMAN
algorithm.

(i) The mechanism for generating an initial integer feasible solution to the
PZIP is rudimentary. The initial solution is obtained by randomly enu-
merating the variables to their 0-1 states and testing for feasibility. The
problem of obtaining an initial feasible solution for a MZIP problem is
more challenging since continuous variables are present.

(ii) GPSIMAN can be viewed as a modular framework in which each pro-
cedure can be independently amended or replaced without destroying
the overall logic of the algorithm.

(iii) GPSIMAN employs a feasibility restoration routine (RESTORE) dur-
ing its neighbourhood transition process. Since SA is effectively a series
of local searches based on new starting solutions, we can by-pass fea-
sibility restoration by providing the search with an alternative feasible
starting solution obtained from some other process such as B&B.

4.2 Statement of MIPSA heuristic

Our implementation of SA for MZIP, MIPSA, involves a hybrid of local search
and a depth-first B&B approach. However, B&B is only used as a feasible
solution generator. The SA framework is maintained and B&B is called at
the beginning of the algorithm, as well as periodically during its execution to
provide integer solutions about which SA performs local search. The steps
of the resultant algorithm are described in algorithm 3 below.



Algorithm 3 Statement of the MIPSA heuristic
Step 1: Initialisation
Get the SA parameters; Initial Temperature = Tjpitiqi, Final Temperature = T'tipnqr,
Number of iterations per trial M, Maximum number of rejected moves = M R
Read problem in MPS format
Set Xinitial - x
Compute cost of initial solution ¢(x
Set Temperature T' := T;piziar, Iteration counter K := 0 and Temperature degradation
constant a := Wm
Generate initial feasible solution x by calling a directed depth first B&B
search

initial)

Step 2: Annealing Trials
while K < M do
while T" > Tfinal do

K:=K+1
i=K MOD N
XI:X

Xi’ =1- X;
Check Feasibility
if x is infeasible then
Call a directed depth-first B&B to generate a new feasible neighbour-
hood solution. The B&B tree is then abandoned,
Calculate Ac = ¢(x ) — ¢(x)
R = unif_rand(0,1)
if Ac> 0 and e"2°/T < R then
Rejected_moves = Rejected_moves + 1
if Rejected_moves > MR then
b=0and T = Tyest
end if
else {Accept the move}
X=X} Rejected_moves = 0
end if
if ¢(x) < Cpest then
Chest = ¢(x) and Tyesy =T
end if
T = ot
end if
end while
end while
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In summary, MIPSA maintains the GPSIMAN framework and replaces
the initialisation and feasibility restoration techniques in GPSIMAN by em-
ploying independent B&B tree searches. The MIPSA heuristic extends GP-
SIMAN to process MZIP problems since, in general, B&B solvers can deal
with more generic models than the PZIPs considered by GPSIMAN. It is
worth noting that MIPSA deals with continuous variables only within the
B&B implementation: the binary variables in the MZIP are fixed and the
corresponding values for the continuous variables are computed by calling a
linear programming routine. This approach is effective in practice since the
ratio of binary variables to continuous variables is generally very high for
most MZIP models in practice. A similar approach was used by Teghem et
al. [22].

4.3 A Parallel Co-operative MIPSA and B&B Approach

It is well known that MIP models are often difficult to solve. Parallel com-
puting provides a platform that may be used to improve the solution times
of difficult models. There are several implementations of parallel B&B al-
gorithms [2] [12] [14] [17]. An example of a parallel SA code for processing
MIP is given in [13]. Most of these implementations either partition the
search space of the problem for investigation by different processors (data
parallelism) or distribute different aspects of the approaches to be performed
by different processors (functional parallelism).

There has been little focus, however, on employing alternative solution
methods which can exploit the parallel framework by exchanging information
to guide their search procedures. We have implemented a parallel heuris-
tic, referred to as PACO, which involves concurrent executions of B&B and
MIPSA, on different computers connected in a parallel framework using Par-
allel Virtual Machine (PVM). The two solution procedures exchange search-
related information, namely, bounds and wvariable choice information.

Upper bounds are exchanged between the B&B code and the SA code in
the following way. Upper bounds obtained from SA are immediately passed
onto the B&B code. If these bounds are better than B&B’s incumbent bound,
the B&B execution updates its “current best bound” value. Moreover, any
integer bound obtained by the B&B execution is passed on to the SA code
and used as an alternative ”reheated solution”. The bounds of B&B are
equivalent to the cost in the SA code. If the objective function value of
the new integer solution obtained by B&B is better than the incumbent
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SA objective cost, then the improved integer solution is accepted. SA then
effectively performs a local search around the new feasible solution. It then
passes on improved feasible solutions in the neighbourhood of the existing
feasible solution to the B&B code.

Secondly, variable choice information is exchanged between the two codes
as follows. MIPSA uses GPSIMAN’s variable calibration technique whereby
the different 0-1 variables are ranked according to their usefulness in restoring
feasibility. This bears similarities to the notion of pseudocosts when imple-
mented within B&B, since pseudocosts attempt to capture the most helpful
variable for branching. Once both SA and B&B have calculated their respec-
tive variable ranking and pseudocosts information, a single variable choice
list is constructed by averaging the ranking positions from both strategies.
This strategy represents the overall variable choice heuristic for the parallel
heuristic.

4.4 Experimental results and analyses

Computational experiments were carried out to investigate the performances
of GPSIMAN, MIPSA, B&B and the parallel co-operative approach, PACO,
for both PZIP and MZIP models. When run in serial mode, the machine
architecture was a Pentium IIT 500MHz computer with 128MB of RAM. The
parallel co-operative heuristic was run on two Pentium III 500MHz comput-
ers connected through a 100Mbit Ethernet network. The parallel architecture
is therefore a distributed memory model linked together through the parallel
virtual machine (PVM) message passing system. PVM is software that per-
mits a network of heterogeneous computers to be used as a single large paral-
lel computer. Our co-operative heuristic exploits this architecture as follows.
MIPSA is run on one machine and independently generates search informa-
tion (bounds and variable choice information) to guide its search. Similarly,
B&B is executed on the second machine in the parallel architecture. PVM
ensures that specific search information can be exchanged between the two
computers in order to influence their searches. A summary of the results is
presented next.

4.4.1 Summary of Results for PZIP Models

In order to study the performance of MIPSA and PACO, two sets of experi-
ments were conducted on some PZIP models taken from the library of MIP
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benchmarks, MIPLIB [1]. Summary statistics for the PZIP models consid-
ered are shown in Table 1 below.

Model name  No. of constraints No. of (binary) variables

air03 124 10757
air04 823 8904
air05 426 7195
cap6000 2176 6000
1152lav 97 1989
Iseu 28 89
mitre 2054 10724
mod008 6 315
mod010 146 2655
nw04 36 87482
p0033 16 33
p0201 133 201
p0282 241 282
p0548 176 548
P2756 755 2756
stein27 118 27
steind5 331 45

Table 1: Model statistics of MIPLIB PZIP models
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The results presented in Table 2 represent the two sets of experiments
designed to compare the performances of GPSIMAN and MIPSA on PZIP
models. The column IPOPT holds the optimal (or best available solution)
as reported in MIPLIB [1]. IPBEST represents the value of the best integer
solution found by each execution run. 7771 and T'TB represent the times to
first and best integer solutions, respectively. In performing the experiments,
both GPSIMAN and MIPSA were provided with the same initialisation pa-
rameters.

[ GPSIMAN [ MIPSA

Name IPOPT | IPBEST __ TT1 TTB [ IPBEST __ TT1 TTB
air03___ 340160 340160 300.01 1489.48 340160 1874 900.85
air04 56137 56137 476.67 3589.63 56137 400.4 3452.89
air05___ 26374 26533 412.90 2534.77 26533 388.2 1000.62
cap6000 2451377 None N/A N/A 2446110 78.34 1542.26
152lav__ 4722 4935 411.09 2792.18 4935 188.2 1000.67
lseu 1120 1145 13.80 1865.8 1145 67.30 1123.34
mitre 115155 None N/A N/A 124065 360.17 874.3
mod008 307 307 13.4 50.12 307 34 437
mod010 6548 6665 954.34 954.34 6663 400.3 4872.3
nw04 16862 None N/A N/A 16922 63.5 987.4
p0033___ 3089 3089 46.88 46.88 3089 6.0 10.0
p0201 7615 7615 55.0 104.61 7615 22.0 22.0
p0282 258411 None N/A N/A 317275 342.0 1943.0
p0548 8691 9886 76.7 4612.8 9886 87.3 4332.6
p2756 3124 None N/A N/A 4083 343.7 5456.6
stein27 _ 28 28 38.1 54.50 28 8.6 16.7
steind5__ 30 30 21.89 46.72 30 10.2 295

TT1 represents the time (in seconds) to first integer solution
TTB represents the time (in seconds) to best integer solution
IPBEST is the best integer solution value found

IPOPT is the optimal integer solution value

Table 2: Results of the GPSIMAN and MIPSA codes on PZIP models
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Comparing the results presented in Table 2 shows that MIPSA out-
performed the original GPSIMAN code. Whilst MIPSA could find at least
one feasible solution in all the PZIP models, the original GPSIMAN code
fails to obtain a feasible solution in some of the models, namely: cap6000,
mitre, nw04, p0282 and p2756. In one further model, mod010, the best solu-
tion found by MIPSA had a value of 6663 and was found after 4872.3 seconds
whereas the best solution found by GPSIMAN had a value of 6665, found
after 954.34 seconds. However, since both approaches ran for the full time
limit of 6000 seconds, MIPSA may be considered to have outperformed GP-
SIMAN on this model by virtue of this better solution. Finally, it can be
seen that the 'time to first integer feasible solution’ for MIPSA is, in general,
better than in the original GPSIMAN code, justifying the use of the B&B
depth first approach for finding the intitial feasible solution.

Another set of experiments was set up with a view to comparing the
performance of PACO with the standard implementation of B&B in the
FortMP MIP [8] solver and the results are presented in Table 3.

[ B&B [PACO

Name IPOPT | IPBEST __ TTB [IPBEST __ T1B
air03___ 340160 340160 1000.2 340160 527.5
alr0d___ 56137 56137 14534 56137 798.8
alr05 26374 26374 360.74 26374 103.2
capb000 _ -2451377 -2423920 745.34 2451377 203.1
1152lav 4722 4742 360.74 4722 230.2
Iseu 1120 1120 71.2 1120 70.9
mitre 115155 125115 3843.3 124065 366.2
mod008__ 307 307 38.05 307 35.05
mod010 6548 6653 360.06 3600.65 1200.3
nw04 16862 16862 254.84 16862 156.8
p0033 3089 3089 3.08 3089 1.35
p0201 7615 7615 31.98 7615 31.95
p0282 258411 258411 1016.4 258411 818.6
p0548 8691 9682 19845 8691 897.6
p2756 3124 3870 4759.1 3721 30983
stein27 28 28 14.2 28 10.0
steind5__ 30 30 3135 30 134.2

TTB represents the time (in seconds) to Best integer solution
IPBEST is the best integer solution value found
IPOPT is the optimal integer solution value

Table 3: Comparison between B&B and PACO results on PZIP models
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We consider PACO to be a parallel heuristic, akin to stage 1 of the PB&B
algorithm described in [19] in which alternative B&B trees are run concur-
rently to process MIP models. One measure of the effectiveness of this par-
allel approach is relative speed-up with respect to the individual approaches
(B&B and SA).

We define

_ TTB(B&B)
HBYE = TTB(PACO)’

and

_ TTB(MIPSA)
HMIPSA = P B(PACO)

to be the two speed-up measures, where TTB(MIPSA) and TTB(B&B)
represent the time taken for the independent MIPSA and B&B procedures
to find the best integer feasible solutions. 7T B(PACO) is the corresponding
time for the parallel co-operative algorithm. In computing the speed-up mea-
sures, we assume that the best objective function value of the co-operative
algorithm is at least as good as the best objective function value obtained
using MIPSA and/or B&B independently. In Table 4 we present the values
of upnrpsa and ppgp for the models considered.

Since TTB(PACO) is common, it can be seen that pyrpsa < ppes
represents cases in which the serial MIPSA procedure performs better than
the serial B&B algorithm. Similarly, uggp < parpsa represents the oppo-
site scenario. Since two processors are involved in the co-operative parallel
heuristic, a value of uggp > 2 or pupyrpsa > 2 indicates a super-linear speed-
up with respect to the B&B or MIPSA execution.

In these experiments, the co-operative approach did not produce a worse
solution than produced by either of the two independent approaches. On
four models (cap6000, mitre, mod010 and p2756), the co-operative approach
produced an improved solution compared to that produced by both the in-
dependent approaches. The values of upgp and parpsa presented in Table
4 show considerable variation. With the exception of air04 when processed
by MIPSA, all speed-up measures have a value of at least 1, with most oc-
curences having a value greater than 2. This empirical evidence on both so-
lution quality and execution time indicates a generally superior performance
for the co-operative heuristic compared to the two independent approaches.
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MODEL NAME  umipsa UB&B

air03 1.31 1.90
air04 0.94 3.43
air05 3.76 3.50
*cap6000 7.66 3.67
1152lav 3.33 1.57
Iseu 12.44 1.00
*mitre 2.39 10.50
mod008 1.15 1.00
*mod010 4.06 3.00
nw04 6.30 1.57
p0033 4.39 2.28
p0201 1.57 1.00
p0282 2.37 1.24
p0548 4.83 2.21
*p2756 1.76 1.54
stein27 1.67 1.42
steindb 1.12 2.56

* indicates models where the co-operative approach found
better solutions than either of the independent approaches

Table 4: Relative Speed-up values of the parallel co-operative heuristic
(PACO) on PZIP models

A conclusion drawn from these investigations is that there is a symbiotic
relationship between MIPSA and B&B which is exploited through exchanging
bounds via PVM. B&B provides good starting points for local searches to
be carried out by MIPSA while MIPSA in turn can provide better bounds
to guide the B&B search.

4.4.2 Summary of Results for MZIP Models

A similar set of experiments to those carried out for PZIP models was per-
formed on a set of MZIP models described in Table 5, from the library of
MIP benchmarks [1]. These results in Tables 6-8, are shown in the same
order and format as Tables 2-4 for the PZIP models.
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Model Name No. of con- No. of No. of Total No. of non
straints binary contin- no. of zeros
variables uous variables
variables
10Teams 230 1800 225 2025 14175
Bell3A 123 39 94 133 441
Blend2 274 231 122 353 1497
DanO3MIP 3202 552 13321 13873 79656
DCMulti 290 75 473 548 1833
EGOUT 98 55 86 141 392
FIBER 363 1254 44 1298 4298
GESA2 1392 240 984 1224 6000
Marksharel 6 50 12 62 324
MISCO07 212 259 1 260 8620
QNET1 503 1288 253 1541 4746
Rentacar 6803 55 9502 9557 42019
Swath 884 6724 81 6805 34966

Table 5: Model statistics of MIPLIB MZIP models

Name IPOPT IPBEST TT1 TTB
10Teams 924 924 342.78 761.35
Bell3A 878430.32 N/A N/A N/A
Blend2 7.598985 7.598985 42.43 49.31
Dan03MIP 728.17 N/A N/A

DCMulti 188182 188122 50.92 106.23
EGOUT 568.101 568.101 10.34 47.98
FIBRE 405935.18 414548.63 2838.40 6540.11
GESA2 25821263 25785278.0 100.23 5698.34
Marksharel 1 8 202.39 6923.40
MISCO07 2810 2810 56.34 80.76
QNET1 16029.6927 17576.181 39.87 648.49
Rentacar 30356761 30356761 12.40 17.28
Swath 497.603 588.77401 1501.67 3289.51

TT1 represents the time (in seconds) to first integer solution
TTB represents the time (in seconds) to best integer solution

T means “Not proven as optimal”

Table 6: Results of MIPSA code on MZIP models

18



B&B [ PACO
Name _ IPOPT IPBEST TTB [ TPBEST TTB
10Teams 924 924 335.52 924 245.64
Bell3BA___ 878430.32 1481630.5 64.23 878430.32 64.33
Blend2 7.598985 7.598985 165.43 7.598985 53.41
Dan03MIP 728.17 755.701 5241.74 755.701 3232.11
DCMulti 188182 188122 40.24 188122 32.28
EGOUT __ 568.101 568.101 5.11 568.101 5.10
FIBRE _ 405935.18 41454863 1337.91 105935.18 897.94
GESA2 25779856.4 25785278.0 698.34 25779856.4 126.66
Marksharel 8 1 203.85 1 203.83
MISCO07 2810 2810 24.71 2810 24.73
QNETI __ 16029.6927 | 17576.181 71.69 17576.181 53.74
Rentacar 30356761 30356761 11.47 30356761 10.44
Swath __ 497.603 560.94781 1421.79 560.94781

TTB represents the time (in seconds) to best integer solution

IPBEST is the best integer solution value found

IPOPT is the optimal (or best known) integer solution value

T means “ Not proven as optimal”

Table 7: Comparison between B&B and PACO on MZIP models
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The extensions we have made to GPSIMAN have enabled MIPSA to
successfully process MZIP models. In general, the MIPSA code performed
better on models in which the ratio of binary variables to continuous variables
is high. Moreover, the effectiveness of the algorithm depends to a large extent
on how quickly the depth-first B&B provides integer solutions about which
a local search is performed. This feature becomes even more evident in cases
where the SA code frequently encounters infeasibilities late-on in the run.
In such cases, the time taken by successive B&B invocations dominates the
time of the other operations within the SA framework.

MODEL NAME  upyrpsa UB&B
10Teams 3.10 1.37
Bell3A N/A 1.00
Blend2 0.92 3.10
Dan03MIP N/A 1.62
DCMulti 3.29 1.25
EGOUT 9.41 1.00
*FIBRE 7.28 1.49
*GESA2 44.99 5.51
Marksharel 1.00 1.00
MISCO07 2.28 1.00
QNET 0.74 1.33
Rentacar 1.66 1.10
Swath 2.31 1.10

* indicates models where the co-operative approach found
better solutions than either of the independent approaches

Table 8: Relative Speed-up values of the parallel co-operative heuristic
(PACO) on MZIP models

As in the case with PZIP models, the values of puprpsa and ppgp are
generally greater than one thereby emphasizing the usefulness of the co-
operative approach. The results of the parallel heuristic on MZIP models are
less impressive than those on PZIP models. In two of the models (FIBRE
and GESAZ2), the parallel heuristic found better solutions than either of the
two independent approaches. In both cases, the solutions found were proven
optimal solutions.

5 Summary and conclusions

In this paper, we have investigated the use of the simulated annealing meta-
heuristic for solving integer programming models. Our implementation is
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based on the GPSIMAN [4] heuristic of Connolly. However, the enhance-
ments that we have incorporated within GPSIMAN makes our implementa-
tion more versatile as it can process a wider class of problems, namely MZIP.
In addition, our implementation, based on a feasibility restoration scheme,
outperforms GPSIMAN on the test problems considered. We also describe
a co-operative algorithm which provides a novel way of combining increas-
ingly popular heuristics and metaheuristics with the exact B&B algorithm.
The co-operative algorithm is implemented on a parallel platform and our
experimental results indicate the superior performance of this scheme.
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