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Abstract 

In this review we describe recent developments in linear and integer (linear) programming.  

For over 50 years Operational Research practitioners have made use of linear optimization 

models to aid decision making and over this period the size of problems that can be solved 

has increased dramatically, the time required to solve problems has decreased substantially 

and the flexibility of modelling and solving systems has increased steadily.  Large models are 

no longer confined to large computers, and the flexibility of optimization systems embedded 

in other decision support tools has made on-line decision making using linear programming a 

reality (and using integer programming a possibility).  The review focuses on recent 

developments in algorithms, software and applications and investigates some connections 

between linear optimization and other technologies. 
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Introduction 

Since the 1950s the ability to solve sizeable linear programming models using the Simplex 

algorithm of Dantzig1 has stimulated developments in research on linear programming (LP) 

and integer programming (IP).  As a result, LP and IP models are increasingly used within 

decision making systems developed by Operational Research practitioners.  Efficient 

software with good model development capability has made the use of LP much more 

straightforward for practitioners.  In parallel with the developments in LP, IP has moved 

forward rapidly since the pioneering work of Land and Doig2.  IP models are generally harder 

to solve than LP models of the same size, but this has not prevented practitioners from 

developing large sized IP models.  From small beginnings, the rapid solving of large models 

is now commonplace.  A survey of recent issues of the journal Interfaces, published by 

INFORMS, shows widespread application of LP and IP in many different industries.  

Applications include supply chain management in the motor industry (Hahn et al.3), 

production scheduling in the brewing industry (Katok and Ott4), aircraft and crew scheduling 

(Desrosiers et al.5), asset and liability management (Mulvey et al.6), energy management in 

the utilities sector (Hobbs et al.7) and network design in the telecommunications sector 

(Shortle et al.8).                                         

 

In this review we will discuss developments in LP and IP in two separate main sections, 

although it should be noted that the two topics influence each other.  In a further section, 

extensions of LP and IP into mixed environments will be considered.  Later, software 

(modelling and solving systems) will be discussed and finally applications – in some senses 

the real OR perspective - will be considered with emphasis on recent or novel applications, 

especially those made possible given recent developments in solving technology.  It should 

be noted that in a review such as this, for reasons of brevity, only selected developments and 

applications will be considered and the choice made reflects, in part, the interests of the 

reviewers rather than a desire for completeness.  For details of further coverage we refer the 

reader to previous reviews and surveys in:  Bixby9, Bixby et al.10 and Todd11.  The emphasis 

of this review will be LP and IP but we will briefly discuss constraint programming and 

stochastic programming. 
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Developments in Linear Programming 

Since the developments by Dantzig mentioned in the previous section, there has been 

considerable impetus given to methods of solving LP problems by the breakthrough of 

Karmarkar12 with the development of the interior point algorithm.  Bixby9 gives an 

interesting account of developments in solving LPs with particular reference to progress 

during the last decade.  He emphatically demonstrates the substantial achievement by stating 

‘three orders of magnitude in machine speed and three orders of magnitude is solving power:  

A model that might have taken a year to solve 10 years ago can now solve in less than 30 

seconds’.  The result is that modern solvers can now routinely solve problems that were, even 

recently, intractable from a practical perspective.  In this section we will look at 

developments in the Simplex algorithm, interior point methods, criss-cross methods, and 

algorithmic choice. 

 

Developments in the Simplex Method 

Although developed in the 1950s, the Simplex Method has continued to receive the attention 

of researchers.  There have been drives to minimise the effort at each step of the algorithm 

and to minimise the number of repetitions of each step.  For particular problem instances, 

steepest edge Simplex Methods have been successful.  Such methods, discussed in Goldfarb 

and Reid13 and subsequently by Forrest and Goldfarb14, consider not just the marginal unit 

effect of introducing a particular variable into the basis but also look at the total effect and 

choose a variable which will allow more progress to optimality to be made.  Reviews of 

developments appear in Maros and Mitra15 and Bixby9.  

 

Developments in Interior Point Algorithms 

In Karmarkar12 there was indication of two developments, namely that a workable (as 

opposed to pathological) polynomial algorithm for LP was possible and that algorithms 

differing completely from the Simplex Algorithm had practical value.  Many new algorithms 

followed, making use of the ideas of barrier or potential functions and the computation of an 

approximate analytic centre of a polytope specified by inequalities rather than the evaluation 

of the LP objective function at vertices of the feasible region.  Recent developments include 

the work of Tardos16 , Mizuno et al.17,Vavasis and Ye18, Ye et al.19, and Tütüncü20.  Many 
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aspects of interior point algorithms are described in the book by  

Ye21 in which he considers the issues surrounding the implementation of interior point 

algorithms.  There is also a large chapter by Roos and Vial22  in Beasley23 on general 

developments in interior point algorithms.  Commercially available LP solvers such as 

CPLEX and XPRESS-MP include versions of such algorithms as alternatives to the more 

usual Simplex algorithm. 

 

Criss-Cross Methods 

Following work by Zionts24 and Bland25 researchers have developed new methods for 

selecting pivots in LP solution algorithms.  Ultimately this has led to methods which solve 

LP problems without requiring feasibility of the basis.  The so-called criss-cross method has 

attracted some attention.  A finite criss-cross algorithm, combining aspects of the work of 

Zionts and Bland has been developed independently by Chang26 , Terlaky27 and Wang28.  

Because feasibility of the basis is not required, a criss-cross method can be regarded as 

different from Simplex type methods.  A survey on pivot algorithms in general can be found 

in Terlaky and Zhang29.  The criss-cross method selects a pivot element from a row and 

column without resorting to any type of ratio test.  Instead criteria such as smallest-subscript, 

first-in-last-out/last-out-first-in, or most-often-selected-variable are used.  The ideas used in 

criss-cross methods have been inspired by work on matroids and show promise. 

 

Choice of Algorithms 

It is still not ultimately clear which version of the Simplex Method should be used to solve a 

particular LP problem or whether an interior point approach would do better.  (See Gondzio 

and Terlaky30 for some views on this issue).  Fortunately software (see the later section 

Developments in Software) allows this kind of choice to be made and experimented upon.  It 

is rare that solving an LP problem is a one-off exercise.  Because models will usually be 

solved repeatedly, when data changes over time or scenarios have to be evaluated, it will be 

worth experimenting on sample problems using several different algorithms.  LP tends to be a 

fairly robust technique – if a model remains the same size, but some data values change then 

the time taken to solve a problem remains fairly constant.  LP algorithms are capable of 

solving very large problems.  Bixby9 observes that Interior Point or Primal-Dual Log Barrier 

algorithms ‘have emerged as overall the most powerful single algorithm for solving LPs’.  

However, a major advantage of the Simplex Method occurs when solving an LP from an 

advanced starting point.  Thus, for example, the Simplex Method has a significant role as the 
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LP solver during the branch and bound phase of IP, after the initial LP relaxation has been 

solved.  However, the position is not totally conclusive and the Simplex Method is still 

capable of outperforming Interior Point methods on many real life models of all sizes.  

 

 

Developments in IP 

Three common approaches to IP (assuming the problem is one of maximisation and is 

bounded) are the following: 

 

 Branch and Bound 

Branch and bound (B & B) adopts a tree search in which the tree development process 

is characterised by two operations that perform branching and bounding of the 

solution space.  The root node, 0P of the tree represents the entire state space 

0SS = while subsequent nodes (sub-problems) jP  represent successively smaller 

partitions jS of .S  The set of all feasible solutions is represented by the set of feasible 

solutions of the sub-problems associated with the uninvestigated or dangling nodes of 

the tree. 

 

Branching takes place by selecting a variable, x , with a fractional value k>( but 

))1( +< k and eliminating the solution space between the adjacent integer 

values ).1,( +kk  Thus two new sub-problems (nodes) are created - one (P1) with the 

additional constraint kx ≤  and the other (P2) with .1+≥ kx  

 

At a chosen node of the tree, the linear programming relaxation (LPR) of the IP, in 

which the integrality requirement is dropped, is solved.  If there is no feasible solution 

to the LPR at a node, then the node is terminated.  Otherwise, if the solution of the 

LPR of a sub-problem is integer feasible and its objective function value is greater 

than the previous lower bound, then the objective function value of this sub-problem 

is set as a new lower bound for the optimal objective function value of the problem.   
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After each branching process, those sub-problems with an objective function value 

smaller than the value of the best integer feasible solution found so far are excluded 

from further branching.  The branching continues until the best integer feasible 

solution is proven to be optimal. 

 

 Branch and Cut 

For branch and cut (B&C), see for instance Padberg and Rinaldi31, let S1 be the set of 

feasible (not necessarily integer) solutions to P1 and S2 for P2. 

   

At each stage in the development of the above tree, using the LPR of P1 or P2 or their 

descendant nodes, we may adjoin a constraint(s), termed a cut(s), 

  ∑ ≤
j

jj bxa   (3) 

to augment the problem defined at a node such that S3 (set of solutions to the LP 

relaxation of IP with (3) (or P1 with (3) or P2 with (3)) has the property 

  SS ⊆3   

 and desirably SS ⊂3 but no integer solutions present in S are absent from S3. 

 Thus B&C can be seen as contributing cuts at the root node only or at both the root 

node and its descendants.  Clearly when B&C is applied at a descendant node the 

cut(s) adjoined at a descendant node must not exclude integer solutions at that node or 

its descendants but may exclude integer solutions valid at the predecessor nodes.  

Lucena and Beasley32 describe a B&C algorithm for the minimum spanning tree 

problem. 

 

 Branch and Price 

 With a Branch and Price (B&P) approach, an auxiliary problem is solved to identify 

columns to be added to the LPR of the IP.  This relaxation is then optimised and 

further sets of columns are identified and considered successively.  Thus B&P 

operates in the style of column generation.  Both B&P and B&C can be combined 

with B&B (and with each other) to provide a comprehensive framework for solving. 
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Mixed Environments 

In addition to standard IP there have been developments to link LP with discrete decision 

making.  This has led to a number of developments to be described in this section.   
 

Mixed logical/linear programming 

Mixed logical/linear programming (MLLP) introduced by Hooker and Osorio33 considers the 

problem of optimizing a linear function subject to constraints that are specified as logical 

conditions.  A formulation is: 

 min cx  

 subject to IihyqJjaxAhyp i
jj

j ∈≥→ ),,(|),(),( ε  

The logical part consists of formulae ),( hyp j and ),( hyq i  involving atomic propositions 

),..,( 1 nyyy = that can be either true or false.  A typical formula might be  

 ' 1y  or 2y  (or both) must be true'. 

In the formulation the constraint set has a logical part on the right-hand side of the vertical 

bar and a continuous part (on the left).  The continuous part involves linear inequalities based 

on A which are controlled by implication ( → ) from p. There may also be some variables (h) 

that can take several discrete values. 

 

An MLLP can be solved in a manner analgous to B&C algorithms used in IP.  However, 

scope exists for moving beyond the use of the linear relaxation to the problem, which is often 

a poor guide to the solution of the discrete part of the problem.  This becomes important for 

problems involving fixed charges (e.g. set up costs, warehousing costs). 

 

Other approaches to MLLP have been developed by McAloon and Tretkoff34 who supply 

easy to use software suitable for smaller problems. 

 

Hybrid Integer and Constraint Programming 

The Operational Research community has traditionally modelled discrete optimization 

problems as integer programs and used LP based technology to solve these problems.  

Constraint Programming (CP) emerged from the Artificial Intelligence community and 

addressed similar problems.  Darby-Dowman and Little35 examined the performance of each 

approach on a number of different combinatorial optimization problems and reported on 

problem characteristics that may lead to better performance of one technology over the other.  

CP differs from LP and IP in that it may be an LP or IP type model without an objective 
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function, where the emphasis is on satisfying constraints, for example scheduling subject to 

constraints.  CP also permits constraints to be specified in forms more general than linear 

inequalities, for example by using logical expressions.  CP also allows discrete variables 

within models.  CP problems are solved by algorithms that make use of logical inference to 

develop the search space.  The algorithms may also incorporate elements of LP-based and 

B&B-based techniques. 

 

During the last decade there has been considerable interest in harnessing the strengths of both 

approaches and developing some form of hybrid approach.  CP has powerful inferencing 

capabilities through constraint propagation whereas IP reduces the search space by repeated 

solving of LP relaxations. 

 

A major issue in developing a cooperative methodology is the communication between 

different models of the same problem during the solving process.  Ottosson36, in his PhD 

thesis, suggests that a modelling framework be adopted which is designed specifically for a 

hybrid solver.  He proposes the use of mixed constraints that enable inferencing and 

branching to be carried out.  Inferencing within LP comes via the use of cutting planes and, 

for CP, is achieved by domain reductions.  Branching takes place with CP but makes use of 

information produced by solving LP relaxations. 

 

ILOG (www.ilog.com) have produced OPL Studio which provides users with a single 

modelling language for LP, IP and CP together with the solving technology to customise 

search strategies and develop alternative and hybrid approaches. 

 

Other Models 

There is much connection between IP and the Constraint Satisfaction Problem (CSP).  In 

some senses CSP could be regarded as IP (or LP, in certain cases) without an objective 

function.  A useful review appears in Brailsford et al.37. 

 

 

Developments in Software 

The 1990s saw consolidation in the number of “big employers” in the business of providing 

LP and IP optimization systems, together with takeovers or alliances.  Dominant software 

systems such as CPLEX (www.ilog.com) and XPRESS-MP (www.dash.co.uk), operate in an 

http://www.ilog.com
http://www.ilog.com
http://www.dash.co.uk
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environment that is vibrant and growing but in which there are fewer large competitors than 

before.  CPLEX is now part of the software products company ILOG which has an 

established presence in the constraint programming market.  ILOG recognised the need to 

augment and enhance their solving technology by having a powerful LP based solver.  

XPRESS-MP is a product developed and marketed by Dash Optimization.  Many LP end-

users solve their problems using the Solver feature of the EXCEL spreadsheet if their models 

are small, and well established systems such as LINDO (www.lindo.com) are still popular.  

However, CPLEX and XPRESS-MP are the leading systems that offer a fully comprehensive 

modelling and solving tool available on many different platforms and both are widely used. 

 

Because the solving feature of the LP and IP systems has become much more routine in 

recent years there is much emphasis on the modelling capabilities of systems.  Elsewhere in 

this issue, Mitra et al.38  provide a comprehensive review of developments in modelling 

systems, so we will not dwell further on this matter.  Returning to the solver side, it is 

important to stress that systems are becoming much more flexible in offering the end-user the 

ability to choose algorithms or to build a personal version of a system to allow switching 

between algorithms, using an algorithmic tools approach.  Some recent discussion of 

comparison between LP solvers appears in Dolan and Moré39. 

 

In the remainder of this section we will consider some non-standard systems that offer 

potential for the future and may produce developments that become standard commercial 

practice. 

 

Condor and Neos 

The Condor project (www.cs.wisc.edu/condor) aims to solve large-scale IP test problems that 

have so far defeated researchers.  The approach uses a set of remote computers 

simultaneously and splits the problem into separate sections in a form of parallelisation to 

make use of idle time on these computers.  Researchers offer time on ‘their’ machines by 

agreement.  The project has been successful in solving extremely large problems, including 

the Seymour problem from MIPLIB (www.caam.rice.edu/~bixby/miplib/miplib.html).  While 

the work described is by nature experimental, there is likely application for the solution of 

large industrial problems using an in-company network of computers.  Associated with 

Condor, the NEOS project (www.mcs.anlgov./metaneos and http://neos.mcs.anl.gov) 

provides a computational grid, or metacomputer, for the optimization community.  A large 

http://www.lindo.com
http://www.cs.wisc.edu/condor
http://www.caam.rice.edu/~bixby/miplib/miplib.html
http://www.mcs.anlgov./metaneos
http://neos.mcs.anl.gov
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number of commercial and research solver systems are made available to researchers for 

experimental purposes.  The work is described in Czyzyk et al.40 and Cropps and  Moré41.  

This team effort should help push back the barriers of computational optimization. 

 

Travelling Salesman Problem Code 

The travelling salesman problem (TSP) is one of the most familiar combinatorial OR 

problems and is the subject of much research (see for instance Junger et al.42).  A recent 

development has been to make available to the research community a TSP research code 

known as CONCORDE (http://www.keck.caam.nce.edu/concorde.html).  Thus a cutting-edge 

code is readily available from a website.  This spirit of co-operation is comparatively new and 

generally encouraging.  The authors of the code, Applegate, Bixby, Chvatal and Cook43, have 

had success in solving a 15112-city instance of the TSP (details are to be found at 

http//:www.math.princeton.edu/tsp/index.html).  This remarkable achievement indicates the 

power of new developments in IP – parallel computing, use of advanced data structures, 

incorporation of heuristics and a branch-and-cut algorithm – in enabling massively 

combinatorial problems to be solved. 

 

 

Applications of LP and IP 

It would be impossible in this review to provide comprehensive detail on all the many 

applications of LP and IP that have been published over the years.  Instead we will be 

selective and consider just two areas where there is particularly active use or potential. 

 

Data Envelopment Analysis 

Developed from work in economics by Farrell44, DEA was made workable in an OR context 

by Charnes et al.45. This form of DEA allows the computation of the relative efficiencies of 

decision-making units (DMUs). DEA models can be built to incorporate different 

assumptions about returns to scale: constant (CRS), variable (VRS), non-increasing (NIRS) 

and non-decreasing (NDRS).  For further discussion see Appa and Yue46.  The use of DEA 

has grown to such an extent that there is a dedicated website www.deazone.  At the heart of 

DEA is the tool of LP to solve the problems required in the analysis.   

 

@ rhl okd BQR CD@ l ncdk b`m ad enql t k̀ sdc ` r9,  
 
 

http://www.keck.caam.nce.edu/concorde.html
http://www.math.princeton.edu/tsp/index.html
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   m  CL Tr 
   r  nt sot sr 
   l   hmot sr 
 
 `mc 
   d  hr `  rl `kk bnmrs̀ ms- 
 
In this model a typical DMU, indexed by k, endeavours to maximise its efficiency, measured 

as a ratio of weighted outputs to inputs, by choosing the set of weights to attach to its inputs 

and outputs.  The model is then subjected to constraints ensuring that no other DMU will 

have a relative efficiency greater than 1.0 if it chose the same weights as unit k.  The model 

must then be run for each value of k to determine the efficiency of each such unit.  An 

efficiency value of less than 1.0 for a particular DMU indicates scope for improvement in that 

at least one DMU or a combination of other DMUs produces a greater weighted output for 

the same weighted input. 

 

DEA has been used to analyse efficiency in such sectors as: insurance, retailing, banking, 

education, and transport.  Several papers on the topic appear in the March 2002 (53:3) issue 

of this journal, devoted to Performance Management.  Examples of DEA applications 

discussed in that issue include applications in sewerage (Thanassoulis47) and insurance 

(Meimand et al.48). 
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Finance 

 There are significant applications of mathematical programming in finance, particularly in 

the area of portfolio selection.  Much of this activity stems from the pioneering work of 

Markowitz49 who considered the mean and variance of a portfolio’s return as representations 

of the benefit and risk associated with an investment.  He proposed a quadratic programming 

model in which a portfolio is selected whereby a specified expected rate of return is achieved 

at minimum risk. 

 

Let N { }n,,2,1 K=  be a set of  n  assets in which one can invest;  Niri ∈, , be the expected 

return from asset ,,,; Njii ji ∈σ be the covariance between the returns from assets i  and 

;j  and R be the desired expected return from the portfolio.  Consider the decision variable 

,ix  ,Ni ∈  as the proportion of the total investment allocated to asset .i   The Markowitz 

model is given as: 

      ∑
∈Nji

jiji xxMin
,

σ   

subject to 

     ∑
∈

=
Ni

ii Rxr  

 

     ∑
∈

=
Ni

ix 1  

 

     Nixi ∈≥ ,0  

 

A set of efficient portfolios can be obtained by parameterising the desired expected rate of 

return and solving the model for different values of R.  Practical issues and computational 

aspects of the use of such models in portfolio selection is presented in Jobst et al.50. 

 

During the past ten years, there have been many developments in the use of stochastic 

programming as a tool to support asset and liability management (ALM).  Stochastic 

programming deals with uncertainty in mathematical programming models by allowing 

model coefficients to be defined probabilistically instead of by estimated constant values. 

These ALM models are multi-stage models and the uncertainty associated with future returns 
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is modelled using a probabilistic generation of event trees to produce a large number of 

possible outcomes or scenarios.  In practice, the stochastic programming models generated 

tend to lead to very large formulations with hundreds of thousands of variables and 

constraints.  Special purpose solution algorithms that exploit the structure of the models have 

been developed to good effect.  (Kouwenberg51, Mulvey and Vladimirou52, Nielsen and 

Zenios53). Kouwenberg and Zenios54 give a comprehensive discussion on the issues 

associated with the use of stochastic programming models in asset liability management. 

 

 

Conclusions  

 

It is clear that LP and IP, although established techniques with a half-century of history, are 

still active fields for research and important methods for modelling and solving problems.  

Both techniques continue to be used in traditional applications such as scheduling and 

allocation but are also providing a solver capability for new application areas.  It seems 

reasonable to conclude that this buoyant field will continue to develop in the 21st century.
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