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Abstract The differentiation in “core” and “peripheral” roles has been established
and largely accepted within the Free/Libre/Open Source Software (FLOSS) devel-
opment approach, assigning to each role different responsibilities and productivity
patterns. A further, cross-cutting characterization of developers within the FLOSS
approach could be formulated clustering developers into “time slots”, and different
patterns of activity and effort assigned to such slots. Suchanalysis, if replicated, could
be used not only to compare different FLOSS communities, or to evaluate their stabil-
ity and maturity, but also to determine how the effort is distributed in a given period,
and to estimate future needs in proximity of key points (e.g., major releases).

This study analyses the activity patterns within the Linux kernel project, at first
focusing on the overall distribution of effort and activitywithin weeks and days; then,
dividing each day into three 8-hour time slots, and around major releases. Such anal-
yses have the objective to evaluate effort, productivity and types of activity globally
and around major releases, compare these patterns with traditional software prod-
ucts and processes, in turn identifying company-driven projects (i.e., working mainly
during office hours) among FLOSS endeavors.

The results of this research show that, overall, the effort within the Linux kernel
community is constant (albeit at different levels) throughout the week, signalling the
need of updated estimation models, different from those used in traditional 9am-5pm,
Monday to Friday commercial companies. It becomes also evident that the activity
beforea release is vastly different fromafter a release, and that the code quality
decreases in specific time slots (notably in late night hours), which later will require
additional maintenance efforts.
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1 Introduction

Software development productivity measurement and cost estimation has been a re-
search topic for more than 3 decades [1], [2], [3]. The vast majority of empirical
studies has so far involved data from proprietary software projects [4]: albeit an in-
creasing number of governments, non-governmental organizations and companies
seem interested in using, evaluating and contributing to FLOSS, effort estimation
models or other measurement-based models are not in generalused within FLOSS
communities [4]. Indeed, such exploration and quantification of productivity, and
how a FLOSS community manages and allocates effort around a major release, may
help in comparing FLOSS projects both with proprietary systems, and between large
FLOSS communities. Furthermore, such productivity modeling can also help to iden-
tify a baseline to measure the possible impact of changes in,for example, processes,
methods and tools used by FLOSS communities.

What has been generally accepted when dealing with FLOSS productivity is that
there is an increase in productivity as long as FLOSS developers progress in their sta-
tuses within a project, along the clusters depicted in the socalled “onion model” [5],
[6]: the external layer of this representation consists ofusers, strictly speaking not
representing developers, but nonetheless forming a valuable community for both the
diffusion of a FLOSS product, and the testing of their functionalities. Thecontribu-
tors represent the next layer, producing source code and fixes, apart from providing
feedback and discussion; this layer is known as being more numerous than the one
with users. Finally,core developers, representing the centre of the onion, provide
most of the work needed both in the creation, and in the maintenance, of new or
existing content, and their productivity is an order of magnitude higher than the con-
tributors. It has been also argued that the core team must be small [7], in order to keep
a tight control over the core system. It has also been found that the coordination issues
of traditional software systems (e.g., the Brooks’ law [8])still apply within FLOSS
core teams, while such issues are rapidly decreasing in relevance when considering
the other layers of such model [9].

Based on such clustering, the objective of this research is to develop a framework
for FLOSS effort estimation, by grouping developers arounddifferenttime slots, and
by considering “days of the week” or “hours in a day” as cross-cutting attributes for
effort and productivity models. The rationale for doing so derives from both a lack
of such differentiation in the current literature, and the results obtained in a previous
work [10], when analysing the effort produced by a UK Agile company. Among the
other results, it was found that the pattern of activity (in terms of its commits towards
the Software Configuration Management repository, SCM) could be described by a
traditional 9am-to-5pm commitment, and a propensity to leave some days of the week
where the coding activities are less sustained (typically,Fridays). The two graphs in
Figure 1 display the derived hourly and the weekly activity patterns in this company.

Performing a similar analysis for FLOSS projects could helpin better under-
standing how the FLOSS development works, and whether it departs from using
“traditional” effort estimation models. On the one hand, itcould highlight produc-
tivity patterns around specific dates (e.g., when a major release is made public). On
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Fig. 1 Aggregated commits divided by hour of the day)

the other hand, it could determine whether specific time slots result more productive,
or are more prone to low quality contributions, than others.

In both cases, the wealth of data coming from FLOSS projects could help pro-
ducing and replicating ad-hoc estimation models, eventually differentiatingcompany-
drivenprojects fromcommunity-drivenendeavors. FLOSS projects backed from large
company organizations (i.e., company-driven) should reflect developers with a more
traditional, 9am-5pm activity patterns, commit policies and so forth. Thecommunity-
driven FLOSS projects should instead follow more continuous working patterns,
since developers are working in their spare time, and outside normal “office hours”. If
identified and confirmed, such emerging patterns would present new, specific issues:
first, it would emerge the need of differentiating the effortestimation models based
on the periods of activity, by means of weights and triggers of model-switching. Sec-
ond, it would emerge the need of monitoring tools in specific time intervals, or parts
of the day, in order to properly monitor the diverse productivity at certain times of
the day, or in specific days of the week.

So far, this research has achieved three main contributions:
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1. the first contribution is to demonstrate that the patternsof work within the se-
lected case study (the Linux kernel) are different from those found in a traditional
software development team (even in the case of using an advanced process, as the
Agile methodology).

2. The second contribution is to present the outcomes when studying the develop-
ment of the Linux kernel along specific periods of the day (e.g., time slots), and in
specific periods (around major releases), with the aim of investigating the changes
in productivity and code quality during such periods.

3. Finally, the approach used in this paper has specifically considered a “Git” SCM
repository, which offers additional information, not covered in other such repos-
itories, and not used in previous studies on FLOSS systems. Differently from
other configuration management systems (such as CVS or SVN),a Git repository
retains the information about both the authors and their local submission dates,
rather than aggregating the latter into the central server’s time [11]. With this in-
formation, it is possible to group the developers effort in the effective time of
the day when such actions were performed, which provides a valuable informa-
tion when a distributed, trans-national development approach is considered (as
the FLOSS model requires).

2 Vocabulary and Study Planning

This section introduces the definitions used in the following empirical study and
presents the general objective of this work, and it does thatin the formal way pro-
posed by theGoal-Question-Metric(GQM) framework [12]. The GQM approach
evaluates whether a goal has been reached, by associating that goal with questions
that explain it from an operational point of view, and providing the basis for applying
metrics to answer these questions. This study follows this approach by developing,
from the wider goal of this research, the necessary questions to address the goal and
then determining the metrics necessary for answering the questions.

Goal: the long term goal of this research is to define, validate and update produc-
tivity models for FLOSS projects, and to differentiate themfrom existing proprietary
models.

Question: In this paper, and considering the Linux Kernel as a case study, the
following research questions have been evaluated:

1. Do Linux developers work specifically during some days of the week, or some
hours of the day?

2. Is there a statistically significant difference in the activity during various parts of
the day?

3. Is there any part of the day that is more prone to issues of code quality?
4. Is there a statistically significant difference in the activity before and after a major

release in the Linux kernel?
5. Are different estimation models needed for taking into account the activity in the

various timezones of the day?

Metrics: Two empirical studies have been carried out in this paper, one related
to the characterization of the overall activity of commits by committers during the
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whole development log of the Linux kernel; the other focusedonly on the major
releases between (and including) 2.6.12 and 2.6.34, and analysing the development
activity both one week before, and one week after a major release. The CVSAnalY
tool [13] was used in order to retrieve information from the log found in all the source
code management systems. Specifically, we are interested inthe tablescmlogwhere
most of the log information is stored. This table contains some useful fields such as
date, authorid and committerid which help to calculate the data we need. In order
to test the various hypotheses,two tail, heteroscedastict-test will be used to compare
pairs of samples, testing whether the observations on one sample are not in any way
related to the observations in the other.

2.1 Definitions and Empirical Approach

The definitions of this study are:

– Commit (or revision): change on the source code submitted to the source code
management system. This updates the current version of the tree directory with a
new set of changes. Those changes are generally summarized in apatchwhich is
a set of lines with specific information about the affected files, but also about the
affected lines.

– Committer: this is the person who has rights to commit a change into the source
code.

– Major release: this paper will focus on specific points when higher activity is
detected, namely the releases of the Linux were made publicly available. The
releases studied in this paper are the ones contained (or migrated) within the Git
repository during the 2.6 branch of development, starting from release 2.6.12 and
including release 2.6.34. In total, an overall of 23 releases was analysed, spanning
some 5 years of development under the Git repository.

– Author: A commit could be committed by a given committer, but she maynot be
the real author. Some SCMs offers this information, and the Git SCM provides a
specific field for this.

– Timezones: in this paper any day is divided in three 8-hours sections, and we
define “office hours” (OH) the period from 9:00 to 17:00 between Mondays and
Fridays; we define “after office” (AO) the period from 17:00 to1:00, while “late
night” (LN) from 1:00 to 9:00.

– Complexity: since the Linux kernel is developed mainly using the C program-
ming language, the definition of complexity used in this paper is taken from the
McCabe cyclomatic index [14], [15].

2.2 Empirical Approach – Overall Activity

The first part of the paper is devoted to the characterizationof the development ac-
tivity within the Linux kernel: the following empirical approach was followed in this
first part:
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1. Git clone: at first, the Linux Git repository1 was cloned and stored locally. As
reported above, this repository spans the late life-cycle of the Linux Kernel (since
April 2005), when the project was moved to the Git repository.

2. Data pre-parsing: the information contained in the log of such repository was
parsed into commonly used results: the CVSAnalY toolset wasused for this pur-
pose, saving each commit ID, and the relevant data along thatcommit, including
the time, the authors and the committer, and the rational of such commits.

3. Time and full-path parsing: further to the pre-parsing by the CVSAnalY tool,
the time attribute of each commit was clustered in one of three slots,“office
hours”, “after office” or “late hours”, depending on the hourof such commit.

4. Major release dates:from the overall activity log of the Linux kernel (obtained
by issuing the “git log” command), the dates of each of the aforementioned re-
leases was clearly identified by a “release announcement” statement, and cross-
validated, for each release, with the upload date to re-distribution websites (e.g.,
http://www.kernel.org/pub/linux/kernel/v2.6/).

5. Identify commits before and after a release:in order to identify the list of com-
mits performed during the seven days before a major release (but excluding the
actual day of release), the database produced by CVSAnalY was queried starting
from the midnight of the first day, till the 23:59 of the seventh day2

6. Added, Deleted and Modified lines:each commit is parsed with the ‘diffs-
tat’ utility, which uses the more common ‘diff’ program to define summaries
of added, deleted and modified lines within a large, complex set of changes. In
particular, for each commit, the switch “-m” is used to summarize a large chunk
of modifications in a readable format.

2.3 Empirical Approach – Complexity

The second part of this research is devoted to studying whether one of the time zones
used in this paper is more prone to unprofessional code than other parts of the day.
Differently from the first part of the paper, this second analysis has not produced an
overall view of how the complexity is characterized in the whole life-cycle, but it
only focuses on the seven days before and the seven after a major release, as defined
above.

The following steps were followed to determine how the complexity was intro-
duced, increased or reduced along various commits or revisions:

1. Identify files affected in a commit: based on the list of commits executed either
before (pre-) or after (post-) a major release, a Git repository gives the opportunity
to display all such changes through the “git show” command. The output of such
command to display a summary of files affected by a revision (say, ’c‘), as in
“git show c | diffstat -m”. As a cross-validation of such results, we
used the information stored by CVSAnalY in the table “actions”.

1 As found in git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/
linux-2.6.git

2 In a SQL statement,where date≥ ’2005-06-09 00:00:00’ and date≤ ’2005-06-24 23:59:59’
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2. Extracting the full path of files: Since the basic CVSAnalY only extracts file
names, the full path of the files affected in a specific commit was extracted, in
order to properly track moved and renamed files. The command issued for ex-
tracting the full paths of the files affected in a commit ‘c’, is “git show c
| diffstat -p1 -w70”.

3. Evaluating the previous revision of a file:any file in the Git repository, after
being added, will go through a series of revisions, ordered by the date when each
was performed. If, say, the three files A, B and C were modified in revisionrev(t)
(Figure 2), each will have a previous revision where they were modified or firstly
added (in the example, B inrev(t-1), C in rev(t-2) and A in rev(t-3)). Given a
revision ‘r’ of the file ‘f’, the Git repository will show how the file ‘f’ was com-
posed in that specific revision ‘r’, by issuing the commandgit show r:f. In
this way, it is possible to compare two revisions of the same file, and to check
whether the changes inputed by a developer affected its structure.

4. Evaluation of the change in complexity:having the two subsequent revisions
of the same file, it is possible to evaluate both the complexity of its functions
(since the vast majority of the Linux kernel is implemented in the C programming
language), and the overall complexity of the same file, in thetwo subsequent
revisions. By cross-cutting this analysis with the information on the time of each
revision, it is possible to conclude whether in any of the time slots developers
added or removed complexity, or whether the change left the same complexity
unmodified.

Fig. 2 Evaluating previous revisions of files

3 Results – Development Activity

As mentioned above, the case study is the Linux Kernel which has been previously
studied several times and from several points of view ( [16],[17], [18], [19]). Two
aspects are presented below: the first considers the whole evolution log of the Linux
Kernel (since April 2005, when the overall data has been moved to the Git repository)
and it displays the patterns of activity in terms of week-days and hours worked on by
the Linux developers (irrespective of them being “core” or “peripheral” developers).
The second focuses on specific weeks of the Linux kernel development, justifying
this choice with the observed bias in the distribution of effort, and attributed to the
presence of major releases.
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3.1 Results – Weekly and Hourly Activity

In order to compare and contrast the findings of the activity patterns during working
hours and throughout a week of traditionally developed software (Figure 1), the fol-
lowing section presents the analysis of the Linux kernel development under a similar
perspective.

Figure 3 (left) shows the analysis of the overall activity within the Linux Ker-
nel during the day, as recorded within the Git log. The first observation is that the
work/no-work distinction, found within the commercial counterpart [10] (and de-
picted in Figure 1 left), is not easily applicable to the Linux kernel development. The
activity performed between 9am and 5pm (corresponding to the “office hours”) ac-
counts for some55% of the overall amount of commits; some31% of the overall
activity is produced during the “after work” interval, or between 5pm and 1am; fi-
nally, some14% of the activity is performed during the “late hours”, or between 1am
and 9am. The second and third slots of activity therefore represent a consistent depar-
ture from the commercial counterpart studied in [10], reflecting a traditional pattern
of activity since most of the commits appear during the “office hours” (Figure 3, left).
On the contrary, in the Linux kernel, the most active timezone is found between 2pm
and 4pm. Specifically at 3 pm we can see a peak of activity whichgradually decreases
during the after-office hours.

Figure 3 (right) shows a complementary picture. The blending between a company-
driven community (which tends to work inoffice time), and a community-driven
project (where developers tend to work mostly on their sparetime) is evident in the
distribution of activity throughout the week. In this figure, we divide the week in the
weekdays and calculate the aggregated number of commits forthe whole life of the
project. This figure shows how people in the Linux Kernel tendto work during the
weekdays: the first, clearly defined period is the interval “Monday - Friday”, where
the number of commits is daily more than 30,000. The second period of activity ap-
pears specifically during the Saturdays and Sundays, where the number of commits
jointly reaches some 30,000 commits (i.e., the same amount of commits achieved
in any other day of the week). In summary, the comparison witha traditional com-
mercial system shows that the Linux Kernel benefits overall from one “extra” day of
development per week (6 days with similar productivity out of 7), whereas the ob-
served Agile system benefits from 5 (unequally productive) days per week (Figure 1
right).

The observed patterns, in the Linux kernel and the Agile company, pose an issue
of how to quantitatively describe the observed effort, and how to formulate an effort
estimation model. Since the distribution of effort is predefined throughout the office
hours in a commercial environment, the effort is only applied in that slot: therefore,
when expressing the effort as a function of the performed activity (e.g., amount of
commits, lines added, modified or deleted; files added, modified or deleted; etc.) the
modeled Agile commercial system would need to be modeled by an equation such as

E(t) = f(activity(t)OH) (1)

whereECommercial(t) is the effort by developers during the period t (daily,
weekly, monthly, etc), whilef(Commits(t)OH is a function of the amount of com-
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Fig. 3 Aggregated commits divided by hour of the day (left), and by theactivity during the week (right)

mits, during the same period, but only within the office hoursboundaries (i.e., 9am
to 5pm).

On the other hand, when modeling the overall activity seen inthe Linux kernel
(and most likely other FLOSS systems), and taking into account the three timezones
(Office Hours, OH; After Office, AO; Late Hours, LH), one should also take into
account the other timezones, and weigh them appropriately:

E(t) = wOH∗f(activityOH(t))+wAO∗f(activityAO(t))+wLN∗f(activityLH(t))
(2)

wherewOH is the weight given to the activity observed within the OfficeHour
slot;wAO the weight to the After Office slot; andwLN the weight to the Late Night
slot. In the case of the reported Linux kernel, the overall activity observed in this
project produce the following weights:wOH = 0.55, wAO = 0.31 andwLN = 0.14.

3.2 Results – Types of Activity

The overall activity shown above has the advantage of proposing the global picture
of the development within the Linux kernel, without revealing whether some parts of
the day were more prone to additions, deletions or modifications. In order to perform
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a more focused analysis of thetypeof activity occurring in the various parts of the
day, a number of “random” weeks were selected to analyse whether the division of
a day in three parts can shed further insights on how work is performed within the
Linux kernel.

The analysis reported below refers to the week between 13/04/2009 (Monday)
and 19/04/2009 (Sunday), where all the 838 performed commits have been analysed
for the purpose. Figure 4 reports how the changes evolve during such week. These
changes are divided in six different groups: the three main groups are given by the
three defined timezones and for each of them, we have calculated the number of
added and removed lines. In general, this distribution of the work follows the initial
distribution shown in the previous figures, except for the Wednesday. This seems to
be an outlier that does not follow the general tendency in amount of work.

For the mentioned figure, we can observe how the number of lines handled during
the weekend (even when we select the whole day and not dividedby timezones) is
really low, being developed the main activity in this specific week during the week
days.
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Fig. 4 Size of Changes for the week 13th-19th of April, 2009)

The figure 5 shows a bit more of information for each day. In thespecific case of
the week days, we observe how the quantity of lines (added or removed) in a given
day is really high compared to the rest of the day, reaching some days almost the
100% of the total modifications. On the other hand, we can see how in the weekends,
the activity developed by the people (even out of the office time 3) is really low,
but developed out of the office time. In this case, the activity developed during the
weekend reaches up to an 80% on Saturday, and a 40% on Sunday.

Table 1 finally displays, for the aforementioned week, the changes observed, and
divides them in three categories: added, deleted and changed lines. As also observed

3 We provide the results for the office time during the weekends just to observe if there is a continuous
activity during the mornings. However, it has not happened since most of the activity, for instance, during
the Saturday, is developed during the afternoon and in the following.
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in Figures 4 and 5, most of the activity is achieved during theday, in the timezone
9am-5pm, with an overall count of 555 commits (some66% in the week). What is
interesting to note is that, albeit a lower activity is noticeable during the late hours,
the average number of added and deleted lines is vastly different from the other two
periods of the day, the average number of added lines being more than double than the
rest of the day, and the average number of deleted lines beingmore than four-some
with respect to the rest of the day.

Hours 9am− 5pm 5pm− 1am 1am− 9am

Nr of commits 555 187 96
Avg nr of added lines 41 51.5 117
Avg nr of deleted lines 20 26 112
Avg nr of changed lines 1.6 0.6 0.47

Table 1 Average size of changes, differentiated by timezones and type of change

The initial results were tested and compared with other randomly selected weeks,
but the findings reported above were not thoroughly confirmedin the other sampled
weeks. Investigating further, it was found that the sequence of major and minor re-
leases within the development plays a distorting role in applying effort by committers
towards a specific deadline. Figure 6 shows how the amount of commits vary when
considering seven days before and seven days after the “peak” of activity represented
by the actual day when the 2.6.14 release was made public. Therefore it was de-
cided that a study for characterizing the types of activity observed in the Linux kernel
should take into account such sequence of releases: the nextsection details and anal-
yses the activity observed seven days before and seven days after the date of a major
release (while excluding the peak of the same day), for the purpose of producing
estimation models based on the types of actions observed in the development.
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Fig. 6 Activity one week before and one week after the 2.6.14 release

3.3 Results – Before and After a Major Release

When considering the available development history of the Linux kernel hosted within
the Git repository, 23 major releases were studied in this section, from 2.6.12 to
2.6.34. Each was analysed with respect to the amount ofcommits; authorsandcom-
mitters; added, deletedandmodifiedlines as recorded both seven days before, and
seven days after the date of each public release.

The results of such analysis are reported, as longitudinal trends in the amount of
commits per release in Figure 7, and in the tabular form of Table 2, detailing for each
studied characteristic, its mean and variance value, both aweek before and a week
after a major release.

The following findings have been observed:

– Throughout all the 23 studied releases, the average amount of commits-per-release
is somewhat similar during the OH and AO slots, and both pre- and post- major
releases;

– The average amount of commits-per-release during the slot LN clearly lower than
the OH and AO, both pre- and post- major releases, signaling alower activity in
such slot;

– The similarity between the OH and AO slots is consistent for all the studied met-
rics (authors; added, deleted and modified lines). The LN slot instead consistently
presents a lower level of activity;

– Despite the lower amount of activity, the Linux kernel had anincreasing number
of people working during the LN slot, in both the pre- and post-week periods. The
pre-2.6.12 week only had 2 authors active during the LN slot,while the pre-2.6.34
week had some 311 authors in charge of commits; the post-2.6.12 week benefited
from 84 authors, and the post-2.6.34 week from 640 authors. Figure 8 describes
the intersections, for all the releases of the set of authorsand committers working
on the OH, AO and LN slots.
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Fig. 7 Aggregated commits divided by hour of the day)

– The distributions of all the measured characteristics werefound to be statistically
different, when considering the pre- and post-weeks: for example, the distribution
of commits in the OH slot before releases (51, 94, 121, 24, 141, 74, 103, 88, 152,
191, 94, 149, 196, 179, 682, 399, 435, 417, 530, 403, 462, 425,959) is statistically
different from the distribution of commits after releases (258, 269, 824, 797, 739,
484, 963, 722, 766, 631, 884, 1891, 2571, 1018, 739, 1062, 845, 1287, 1498,
1288, 1048, 1272, 1361) when applying the t-test.

Based on such findings, the effort estimation equation in (2), and the termac-
tivity(t) should be tailored to reflect such differentiation in both the time slots, and
depending on whether the activity is monitored and estimated in the weeks before or
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Attribute Mean
(pre-)

Mean
(post-)

Variance (pre-) Variance (post-
)

t − test (pre-
vspost-)

Office Hours

Commits 271 964 50,954.8 264,659 8.73e-07
Authors 541 1,954 1.89e+05 1.34e+06 3.77e-06
Added lines 17,715 98,608 3.29e+08 6.86e+09 6e-05
Deleted lines 8,845 44,856 9.08e+07 3.37e+09 0.00368
Modified lines 4,704 14,857 2.73e+07 9.25e+07 4.4e-05

After Office

Commits 200 786 2.53E+004 1.33E+005 3.57E-08
Authors 391 1,621 9.41E+004 5.90E+005 3.88E-08
Added lines 10,621 65,393 1.30E+008 2.19E+009 6.03E-06
Deleted lines 6,931 36,519 1.33E+008 1.35E+009 0.00052
Modified lines 2,822 13,147 1.09E+007 5.63E+007 6.04E-07

Late Hours

Commits 59 295 2.90E+003 4.08E+004 6.25E-006
Authors 122 699 1.41E+004 3.71E+005 8.30E-005
Added lines 3,433 18,500 2.10E+007 2.42E+008 7.22E-005
Deleted lines 1408 9,936 5.46E+006 7.84E+007 7.41E-005
Modified lines 704 4,766 5.92E+005 1.57E+007 3.36E-005

Table 2 Activity one week before and one week after major releases, clustered by time-slots

after a major release. A list of equations for the activity could be obtained as follows,
and based on the assumption that the actions of “adding”, “deleting” and “modifying”
lines (or files) are exhaustive of the type of actions perfomed by developers during
the period t (say, hourly, daily, weekly, etc):

activityij(t) = wi
j ∗ f(Add

i
j(t), Delij(t),Modij(t)) (3)

wherei the index indicates whether the activity is observed either“before” or
“after” a release; thej index instead can be used to differentiate between the activity
as seen in the OH, AO and LN slots. Thewi

j terms then become the weights of the
actions performed in a specific week and during a given time slot.

4 Results – Complexity in Time Slots

The second part of this research has been focused on the presence of complexity
(measured by the McCabe cyclomatic index), and its changes,within the source files
of the Linux kernel. As reported above, this second study wasperformed focusing on
the activity:

– of the 23 releases found between April 2005 and June 2010, and
– differentiating the results in “one week before” a release from those “one week

after”, and finally
– clustering each day of activity in the three time-zones: OH,AO and LN.

The analysis was performed only on the “.c” source files and “.h” headers4 that
underwent changes during the pre- and post-release weeks. For each of the commits

4 This was done to properly evaluate the McCabe cyclomatic complexity for source files developed in
the C “procedural” language
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Fig. 8 Intersections, all releases, committers (left) and authors (right)

performed in such weeks, it was studied whether the changes pushed by committers
did alter the overall complexity of the affected files. Only the “modified” files were
considered in such evaluation, therefore leaving aside theaddition of new files (which
adds new source code, let aside new complexity). To the best of our knowledge, this
is the first time that an analysis of how single source files changed within subsequent
commits is performed in a large case study.

The results are reported in Table 3: they are clustered around the three time slots
(OH, AO and LN) and summarized in relative terms. Each time slot presents two
series of data, the first (2nd, 4th and 6th columns) depictingthe amount of files which
underwent an increase of complexity, the second series (3rd, 5th and 7th columns)
the amount of files which had a decrease of their overall McCabe cyclomatic number
instead: both series are relative numbers, and divided by the amount of files handled
in the same week. The following observations were made:

1. During the pre-release weeks, the activity during late night hours has been, so
far, the most likely to increase the complexity when modifying the source files. In
other words, in 16 releases out of 23 (70%), during the LN slot the committers and
authors have been responsible of changes that have increased the files’ complexity
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more often than in the Office Hour time slots. This is a somewhat indirect proof
that some time slots are more prone to “unprofessional” maintenance to existing
source files than other slots (say, the Office Hours) This is also shown in the
distribution of such ratios in Figure 9.

2. On the contrary, during thepost-releaseweeks, the Office hour slot initially has
consistently seeded more complexity into the source files. In more recent releases,
instead both the After Office and the Late Night slots have started to insert more
complexity into files, as compared to the office Hour slot, signaling again the
importance of such slots in seeding more complexity within modified files.

3. The distributions of source files undergoing increases ofcomplexity is statistically
different in each time slot, when performing a t-test comparison: for instance, the
global amount of files undergoing increases of complexity inthe OH slot presents
statistically relevant differences when comparing the week before5 and the week
after6 a release, when applying the two-tail t-test (1.174E-007).

4. The patterns in thedecreaseof complexity show instead a different perspective:
during the weeks before releases, no major differentiationbetween the various
time slots is visible, each presenting a fluctuating and inconsistent behavior. On
the other hand, in the weeks after the releases the slots are devoted to either overall
increases of complexity, or decreases, but not both (as in the pre-weeks).

Considering the relation for effort estimation in Equation(2), it is possible to
discriminate, within the “activity” term, the portion of such activity devoted to the
increase of complexity, the portion that increases the complexity, and the portion that
does not affect the complexity. Each of the termsactivityOH(t), activityAO(t) and
activityLH(t) can be further expanded in the following:

activityOH(t) = wIC
OH ∗aICOH(t)+wDC

OH ∗aDCOH(t)+wWChC
OH ∗aWChCOH(t)

(4)

activityAO(t) = wIC
AO ∗aICAO(t)+wDC

AO ∗aDCAO(t))+wWChC
AO ∗aWChCAO(t)

(5)

activityLN (t) = wIC
LN ∗aICLN (t)+wDC

LN ∗aDCLN (t)+wWChC
LN ∗aWChCLN (t)

(6)
wherewIC

i ,wDC
i andwWChC

i are the weights of the activities for increasing (IC),
decreasing (DC) or without changes (WChC) in the complexity of the source files
during time sloti. The termsaICLN (t), aICLN (t) andaICLN (t) represent instead
the actual activities of increasing, reducing or not affecting the overall complexity of
files at time t, respectively.

5 Number of source files where complexity increases, during the weekbefore a release: 13, 33, 28, 1,
48, 33, 30, 48, 54, 87, 36, 37, 72, 56, 190, 149, 129, 128, 237, 216, 177, 146, 314

6 Number of source files where complexity increases, during the weekafter a release: 100, 102, 256,
343, 245, 172, 409, 255, 254, 273, 346, 712, 771, 360, 271, 349, 324, 428, 523, 349, 471, 399, 493
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OH AO LN
INCR DECR INCR DECR INCR DECR

2.6.12-pre 0.24 0.15 0.11 0.30 0.00 0.00
2.6.13-pre 0.21 0.13 0.16 0.05 0.23 0.12
2.6.14-pre 0.16 0.22 0.22 0.09 0.18 0.21
2.6.15-pre 0.07 0.20 0.21 0.12 0.40 0.13
2.6.16-pre 0.28 0.11 0.16 0.08 0.13 0.13
2.6.17-pre 0.21 0.16 0.17 0.03 0.38 0.00
2.6.18-pre 0.10 0.03 0.16 0.13 0.20 0.16
2.6.19-pre 0.13 0.12 0.17 0.03 0.22 0.22
2.6.20-pre 0.26 0.13 0.15 0.15 0.42 0.16
2.6.21-pre 0.38 0.13 0.28 0.10 0.13 0.04
2.6.22-pre 0.39 0.07 0.08 0.10 0.15 0.07
2.6.23-pre 0.27 0.14 0.37 0.19 0.38 0.15
2.6.24-pre 0.26 0.14 0.27 0.08 0.27 0.20
2.6.25-pre 0.17 0.08 0.18 0.10 0.22 0.10
2.6.26-pre 0.28 0.13 0.26 0.11 0.40 0.07
2.6.27-pre 0.17 0.09 0.26 0.07 0.24 0.08
2.6.28-pre 0.28 0.11 0.18 0.12 0.29 0.06
2.6.29-pre 0.30 0.13 0.21 0.13 0.38 0.14
2.6.30-pre 0.33 0.13 0.30 0.15 0.16 0.05
2.6.31-pre 0.39 0.16 0.34 0.08 0.15 0.14
2.6.32-pre 0.25 0.11 0.19 0.08 0.29 0.10
2.6.33-pre 0.25 0.19 0.22 0.23 0.27 0.21
2.6.34-pre 0.24 0.11 0.15 0.09 0.12 0.06

INCR DECR INCR DECR INCR DECR

2.6.12-post 0.25 0.13 0.24 0.13 0.05 0.04
2.6.13-post 0.25 0.06 0.16 0.13 0.22 0.05
2.6.14-post 0.16 0.14 0.13 0.09 0.27 0.05
2.6.15-post 0.17 0.08 0.18 0.26 0.20 0.14
2.6.16-post 0.21 0.12 0.24 0.17 0.16 0.14
2.6.17-post 0.24 0.09 0.25 0.14 0.17 0.13
2.6.18-post 0.28 0.14 0.29 0.12 0.22 0.12
2.6.19-post 0.22 0.14 0.17 0.14 0.10 0.18
2.6.20-post 0.20 0.12 0.14 0.09 0.13 0.15
2.6.21-post 0.26 0.14 0.24 0.18 0.16 0.13
2.6.22-post 0.24 0.12 0.20 0.12 0.23 0.13
2.6.23-post 0.21 0.15 0.16 0.22 0.16 0.20
2.6.24-post 0.27 0.13 0.19 0.13 0.24 0.09
2.6.25-post 0.25 0.12 0.19 0.10 0.18 0.12
2.6.26-post 0.25 0.15 0.20 0.12 0.20 0.22
2.6.27-post 0.27 0.15 0.21 0.15 0.25 0.06
2.6.28-post 0.29 0.13 0.22 0.15 0.18 0.10
2.6.29-post 0.22 0.14 0.28 0.14 0.24 0.10
2.6.30-post 0.28 0.14 0.33 0.12 0.20 0.12
2.6.31-post 0.18 0.16 0.16 0.15 0.23 0.09
2.6.32-post 0.29 0.13 0.31 0.19 0.29 0.10
2.6.33-post 0.23 0.12 0.22 0.11 0.30 0.10
2.6.34-post 0.27 0.10 0.22 0.14 0.27 0.12

Table 3 Percentages of files increasing (i.e., “INCR”) or decreasing (i.e., “DECR”) their complexity,
clustered in time slots
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Fig. 9 Portion of files increasing their overall complexity during Office Time (OT) and at Late Night (LN)
divided by time slots

Any FLOSS system will need to be studied to extrapolate the appropriate weights
to evaluate the above activities. In the study of the Linux kernel, the extrapolated
weights are available in Table 4.

Pre-week activity
OH 0.24 0.13 0.63
AO 0.21 0.11 0.68
LN 0.24 0.11 0.64

Post-week activity
OH 0.24 0.13 0.64
AO 0.21 0.14 0.64
LN 0.20 0.12 0.68

Table 4 Weights to complexity
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5 Threats to Validity

This paper has analyzed the Git repository offered by the Linux Kernel community.
One of the main reasons for doing so is because this source code management system
offers extra information about the date when the actual author 7 and the committer
submitted the changes. Like any other empirical study, the validity of ours is subject
to several threats. In the following, threats to internal validity (whether confounding
factors can influence your findings), external validity (whether results can be gen-
eralized), and construct validity (relationship between theory and observation) are
illustrated.

1. Internal Validity – the following threats have been detected:

– In a common working day, there are main differences among developers.
Some of them could work in office, but some others could work some time
during the mornings, and some more time during the evenings.

– Our methodology can not be applied in SCM such as CVS or Subversion since
they store the time when the commit was submitted, but not when the change
in the source code was done by the author (even by the committer).

– We still need to check how different commands from the Git repository work.
In a common way of working, (pull, merge or push) there should not appear
any problem related to the real authorship and date of a change. However, we
still need to study the behavior of commands such asgit cherry-pickor git
rebase.

– In other occasions we could find people traveling around and not changing
their timezone in their computers what could add some noise to the data. In
other words: some people could work on a different timezone that they really
are.

2. External Validity – we have focused our analysis in the Linux Kernel community
and also in the Git SCM. Some other FLOSS communities are using other SCM
systems which do not store information related to the time when the change was
done (in terms of real authorship).

3. Construct Validity – the following threats have been detected:

– the results of this paper assume that people in different countries work in the
same way: of course this should be discounted in several ways, for instance
considering that the holiday systems in different Europeancountries and in
North America are vastly different, and both are culturallyvery different from
the holiday schemes in other countries in Asia or Africa. This could, in some-
how, distort the results, albeit in the case of the Linux Kernel community,
they seem to show a commonofficepatterns, which facilitate the analysis of
the data.

– Also, We have not taken into account if the changes were made over the
source code or were not. A more deeper analysis could show more accurate
results with this respect. Since we are measuring activity in the source code,
we have studied the SCM system used by the Linux Kernel community, but it

7 Using the option–pretty=fuller
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could contain specific files such as text files which are modified, but not being
source code.

6 Barriers of Repeatability

Mining software repositories is a task complex in time, but also in tools and datasets
used for retrieving information. Some authors [?] have addressed the necessity of
specify three main questions, which are depicted next for this study (availability of
raw data, processed dataset and tools or scripts). The rest of the process have been
explained in detail in section 2.2 and 2.3. Thus, this section aims to fill the gaps
among the different steps of the method followed to achieve the different developed
metrics.

– Raw Data. The raw data used for this paper is the publicly available data sources
found for the Linux Kernel community. And more specifically the source code
management system that can be found at the Git repository. The dates used for
this data are those commits available between the dates2005-04-16 15:20:36and
2010-06-29 10:42:52. This can be easily downloaded by means of thegit clone
command line8

– Processes data. All the processed data can be found in a MySQLdatabase and
publicly available athttp://alcachofo.libresoft.es/jsme2010-effort-linux/
cvsanaly_kernel26_git.mysql.zip. This dataset has been obtained us-
ing the tools and scripts described in next bullets. All the tables were retrieved by
the CVSAnalY tool except:releasecommits, releasedates, compareandchanges.
With respect to the tables releasedates and releasecommits they were both man-
ually introduced to make easier the analysis of the data and they were based on
data obtained from the distribution website athttp://www.kernel.org/
pub/linux/kernel/v2.6/. While the other two tables contains informa-
tion automatically retrieved by the use of some scripts specifically created for
this purpose.

– Tools and scripts.

– CVSAnalY: This tool can be found atgit.libresoft.es and down-
loaded using thegit clone command. The specific version comes from the
current version at the master branch found at the date of2010-08-27.

– Scripts: Several scripts have been used to retrieved specific data for each of
the questions and charts provided in this paper.

7 Conclusions and Further Work

Recently a well-known and accepted model has been proposed and thoroughly dis-
cussed in order to cluster FLOSS developers into the so called “onion model”, where

8 git clone git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/
linux-2.6.git
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different layers correspond to an increasing productivityand responsibilities. Transver-
sal to such clustering, this paper has approached the issue of characterizing the FLOSS
development from the point of view of the time slots of contributions. FLOSS devel-
opers are known to be active in various parts of the day and week, unlike a tradi-
tional 9am-5pm model of in-house software development. TheGit SCM technology
provides an advance to such requests, since it allows to properly determine when a
developer issued a commit command at her timezone, rather than losing such infor-
mation by using the SCM server local timezone. Taking into account these results,
they could be useful in the field of software estimation costsand effort. SCMs such
as Git offer nowadays extra information from the people involved in the FLOSS com-
munities. This helps to calculate the real time when a changewas actually submitted.
So far, most of the best known SCMs just store the informationwhen a change was
submitted to the server, what implies that the real date is missed.

The study on the activity detected in the Linux kernel were compared with what
found in the previous analysis of an Agile commercial system, and it became clear
that the traditional 9am-5pm development time only accounts for some 55% of the
overall activity within Linux: other two time slots were used to characterize the
FLOSS development, the period between 5pm and 1am (After Office slot), respon-
sible for some 31% of activity and the period between 1am and 9am (Late Night
slot), responsible for some 14% of overall activity. An effort estimation model would
therefore to take into account such distribution of activity to properly model a FLOSS
development, by firstly estimating the weights of the various time slots.

The study of productivity within the Linux kernel showed that a positive bias is
imposed when a major release is due: the analysis of added, deleted and modified
lines shows regularities when considering only the weeks before and after a major
release. An increased productivity is always detected in all the measured attributes
after a major release, which calls for an updated model of effort and productivity
estimation both before and after a major release.

Finally the study of code quality has shown that time slots should also be con-
sidered as differently contributing to the overall complexity within a project: it was
indeed found that the Late Night and After Office slots shouldbe carefully moni-
tored since they more often introduce additional complexity both in the weeks before
and in the weeks after a major release. An effort estimation model was developed
to take into account such time slots and the presence of a major release, that can be
generalised to any FLOSS, round-the-clock project.

With respect to further work, this work could be useful in thefield of cost and ef-
fort estimation in FLOSS projects. A better characterization of the commit patterns,
such as studying each of the developers by their blocks of activity could improve
estimation models, as well as dividing the effort in the various parts of the day. For
instance, if a committer is usually working during theoffice timeand she usually
submits a change every two hours, we could suppose that she has been working for
the whole day around eight hours. Some other patterns could show activity during
the weekends. For example, some developers could submit some changes just during
specific days. We suspect that this kind of patterns is totally different from the afore-
mentioned one. In fact, in this case, we should measure the real effort in other terms
and only taking into account that day.
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