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Abstract The differentiation in “core” and “peripheral” roles hasemeestablished
and largely accepted within the Free/Libre/Open Sourcéwsoé (FLOSS) devel-
opment approach, assigning to each role different resptiitiss and productivity
patterns. A further, cross-cutting characterization ofeflepers within the FLOSS
approach could be formulated clustering developers into€'tslots”, and different
patterns of activity and effort assigned to such slots. Sungtlysis, if replicated, could
be used not only to compare different FLOSS communitiesy evaluate their stabil-
ity and maturity, but also to determine how the effort iswistted in a given period,
and to estimate future needs in proximity of key points (er@jor releases).

This study analyses the activity patterns within the Linexrlel project, at first
focusing on the overall distribution of effort and activitythin weeks and days; then,
dividing each day into three 8-hour time slots, and aroungbnraleases. Such anal-
yses have the objective to evaluate effort, productivity sypes of activity globally
and around major releases, compare these patterns wiftianadl software prod-
ucts and processes, in turn identifying company-drivefegtse (i.e., working mainly
during office hours) among FLOSS endeavors.

The results of this research show that, overall, the effatinthe Linux kernel
community is constant (albeit at different levels) throaghthe week, signalling the
need of updated estimation models, different from thosd irsegaditional 9am-5pm,
Monday to Friday commercial companies. It becomes alsoeevithat the activity
beforea release is vastly different fromfter a release, and that the code quality
decreases in specific time slots (notably in late night Howich later will require
additional maintenance efforts.
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1 Introduction

Software development productivity measurement and cdisb&son has been a re-
search topic for more than 3 decades [1], [2], [3]. The vagporitg of empirical
studies has so far involved data from proprietary softwaogepts [4]: albeit an in-
creasing number of governments, non-governmental orghois and companies
seem interested in using, evaluating and contributing t®©&8, effort estimation
models or other measurement-based models are not in gersecwithin FLOSS
communities [4]. Indeed, such exploration and quantificatdf productivity, and
how a FLOSS community manages and allocates effort aroura@i@ melease, may
help in comparing FLOSS projects both with proprietary egst, and between large
FLOSS communities. Furthermore, such productivity medgtian also help to iden-
tify a baseline to measure the possible impact of changdsriexample, processes,
methods and tools used by FLOSS communities.

What has been generally accepted when dealing with FLOS Sigtieity is that
there is an increase in productivity as long as FLOSS deeedgprogress in their sta-
tuses within a project, along the clusters depicted in theafled “onion model” [5],
[6]: the external layer of this representation consistsisdrs strictly speaking not
representing developers, but nonetheless forming a vialwalbnmunity for both the
diffusion of a FLOSS product, and the testing of their fuoctlities. Thecontribu-
tors represent the next layer, producing source code and fixas, fpm providing
feedback and discussion; this layer is known as being momgenous than the one
with users. Finallycore developersrepresenting the centre of the onion, provide
most of the work needed both in the creation, and in the maamee, of new or
existing content, and their productivity is an order of miphe higher than the con-
tributors. It has been also argued that the core team must&é[3], in order to keep
a tight control over the core system. It has also been fouatdhle coordination issues
of traditional software systems (e.g., the Brooks’ law [&) apply within FLOSS
core teams, while such issues are rapidly decreasing ivarete when considering
the other layers of such model [9].

Based on such clustering, the objective of this researchdsvelop a framework
for FLOSS effort estimation, by grouping developers arodifférenttime slots and
by considering “days of the week” or “hours in a day” as crog#ing attributes for
effort and productivity models. The rationale for doing s¥ides from both a lack
of such differentiation in the current literature, and thsuits obtained in a previous
work [10], when analysing the effort produced by a UK Agilengzany. Among the
other results, it was found that the pattern of activity émts of its commits towards
the Software Configuration Management repository, SCM)ctbe described by a
traditional 9am-to-5pm commitment, and a propensity tedesome days of the week
where the coding activities are less sustained (typicBtiglays). The two graphs in
Figure 1 display the derived hourly and the weekly activigterns in this company.

Performing a similar analysis for FLOSS projects could helpetter under-
standing how the FLOSS development works, and whether iartegprom using
“traditional” effort estimation models. On the one handgauld highlight produc-
tivity patterns around specific dates (e.g., when a majeass is made public). On
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the other hand, it could determine whether specific timessksult more productive,
or are more prone to low quality contributions, than others.

In both cases, the wealth of data coming from FLOSS projemtidchelp pro-
ducing and replicating ad-hoc estimation models, evelytddferentiatingcompany-
drivenprojects froncommunity-driveendeavors. FLOSS projects backed from large
company organizations (i.e., company-driven) should cetlevelopers with a more
traditional, 9am-5pm activity patterns, commit policieslao forth. Theeommunity-
driven FLOSS projects should instead follow more continuous waykpatterns,
since developers are working in their spare time, and oaitsidmal “office hours”. If
identified and confirmed, such emerging patterns would ptesaw, specific issues:
first, it would emerge the need of differentiating the effestimation models based
on the periods of activity, by means of weights and triggéraadel-switching. Sec-
ond, it would emerge the need of monitoring tools in spedifietintervals, or parts
of the day, in order to properly monitor the diverse prodititstiat certain times of
the day, or in specific days of the week.

So far, this research has achieved three main contributions
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1. the first contribution is to demonstrate that the pattefmaork within the se-
lected case study (the Linux kernel) are different from éhmsind in a traditional
software development team (even in the case of using an egdamocess, as the
Agile methodology).

2. The second contribution is to present the outcomes whelyisig the develop-
ment of the Linux kernel along specific periods of the day.(¢mge slot3, and in
specific periods (around major releases), with the aim @&fstigating the changes
in productivity and code quality during such periods.

3. Finally, the approach used in this paper has specificalhgidered a “Git” SCM
repository, which offers additional information, not cose in other such repos-
itories, and not used in previous studies on FLOSS systerifferéntly from
other configuration management systems (such as CVS or $\MBi} repository
retains the information about both the authors and thealleabmission dates,
rather than aggregating the latter into the central sestene [11]. With this in-
formation, it is possible to group the developers efforthie effective time of
the day when such actions were performed, which provideduabte informa-
tion when a distributed, trans-national development aggiids considered (as
the FLOSS model requires).

2 Vocabulary and Study Planning

This section introduces the definitions used in the follgvempirical study and
presents the general objective of this work, and it doesithtite formal way pro-
posed by thesoal-Question-MetriqGQM) framework [12]. The GQM approach
evaluates whether a goal has been reached, by associaingod with questions
that explain it from an operational point of view, and pramglthe basis for applying
metrics to answer these questions. This study follows gha@ach by developing,
from the wider goal of this research, the necessary questmaddress the goal and
then determining the metrics necessary for answering testipns.

Goal: the long term goal of this research is to define, validate quuhte produc-
tivity models for FLOSS projects, and to differentiate thigom existing proprietary
models.

Question: In this paper, and considering the Linux Kernel as a caseysthd
following research questions have been evaluated:

1. Do Linux developers work specifically during some dayshef week, or some
hours of the day?

2. Is there a statistically significant difference in thehatt during various parts of
the day?

3. Is there any part of the day that is more prone to issuesds qaality?

4. |s there a statistically significant difference in the\att before and after a major
release in the Linux kernel?

5. Are different estimation models needed for taking intocamt the activity in the
various timezones of the day?

Metrics: Two empirical studies have been carried out in this papes,refated
to the characterization of the overall activity of commits dommitters during the



Effort Estimation for FLOSS Projects: A Study of the Linux iKet 5

whole development log of the Linux kernel; the other focusetly on the major
releases between (and including) 2.6.12 and 2.6.34, arlgsamgthe development
activity both one week before, and one week after a majoaseleThe CVSAnalY
tool [13] was used in order to retrieve information from thg found in all the source
code management systems. Specifically, we are interestbd lblescmlogwhere
most of the log information is stored. This table containsmsaseful fields such as
date, authorid and committerid which help to calculate the data we need. In order
to test the various hypothesésp tail, heteroscedastittest will be used to compare
pairs of samples, testing whether the observations on anpleare not in any way
related to the observations in the other.

2.1 Definitions and Empirical Approach

The definitions of this study are:

— Commit (or revisiorn)change on the source code submitted to the source code
management system. This updates the current version ahelirectory with a
new set of changes. Those changes are generally summariagdtchwhich is
a set of lines with specific information about the affecteekfilbut also about the
affected lines.

— Committer this is the person who has rights to commit a change intodhecs
code.

— Major release this paper will focus on specific points when higher acyivg
detected, namely the releases of the Linux were made pylaicilable. The
releases studied in this paper are the ones contained (oatexl) within the Git
repository during the 2.6 branch of development, startinghfrelease 2.6.12 and
including release 2.6.34. In total, an overall of 23 relsasas analysed, spanning
some 5 years of development under the Git repository.

— Author. A commit could be committed by a given committer, but she matybe
the real author. Some SCMs offers this information, and th&GM provides a
specific field for this.

— Timezonesin this paper any day is divided in three 8-hours sections, \&e
define “office hours” (OH) the period from 9:00 to 17:00 betwééondays and
Fridays; we define “after office” (AO) the period from 17:001t®0, while “late
night” (LN) from 1:00 to 9:00.

— Complexity since the Linux kernel is developed mainly using the C paogr
ming language, the definition of complexity used in this papdéaken from the
McCabe cyclomatic index [14], [15].

2.2 Empirical Approach — Overall Activity

The first part of the paper is devoted to the characterizaifahe development ac-
tivity within the Linux kernel: the following empirical appach was followed in this
first part:
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. Git clone: at first, the Linux Git repositofywas cloned and stored locally. As
reported above, this repository spans the late life-cytleeLinux Kernel (since
April 2005), when the project was moved to the Git repository

. Data pre-parsing: the information contained in the log of such repository was
parsed into commonly used results: the CVSAnalY toolsetwgasl for this pur-
pose, saving each commit ID, and the relevant data alongtmamit, including
the time, the authors and the committer, and the rationalcf sommits.

. Time and full-path parsing: further to the pre-parsing by the CVSAnalY tool,
the time attribute of each commit was clustered in one of three slafffice
hours”, “after office” or “late hours”, depending on the hafisuch commit.

. Major release dates:from the overall activity log of the Linux kernel (obtained
by issuing the “git log” command), the dates of each of theafeentioned re-
leases was clearly identified by a “release announcemeat&raent, and cross-
validated, for each release, with the upload date to re#oligion websites (e.g.,
htt p: // ww. ker nel . or g/ pub/1i nux/ kernel /v2.6/).

. ldentify commits before and after a releasein order to identify the list of com-
mits performed during the seven days before a major reldageskcluding the
actual day of release), the database produced by CVSAnadjueried starting
from the midnight of the first day, till the 23:59 of the seveday?

. Added, Deleted and Modified lines:each commit is parsed with the ‘diffs-
tat’ utility, which uses the more common ‘diff’ program to folee summaries
of added, deleted and modified lines within a large, compét»of changes. In
particular, for each commit, the switch “-m” is used to sumaea large chunk
of modifications in a readable format.

2.3 Empirical Approach — Complexity

The second part of this research is devoted to studying whette of the time zones
used in this paper is more prone to unprofessional code ttiean parts of the day.
Differently from the first part of the paper, this second gsil has not produced an
overall view of how the complexity is characterized in theokehlife-cycle, but it
only focuses on the seven days before and the seven afteamlgase, as defined
above.

The following steps were followed to determine how the caxijty was intro-

duced, increased or reduced along various commits or oBgsi

1. Identify files affected in a commit: based on the list of commits executed either

before (pre-) or after (post-) a major release, a Git reposgives the opportunity
to display all such changes through the “git show” commaitek dutput of such
command to display a summary of files affected by a revisiay, (£°), as in
“git show c | diffstat -ni.As a cross-validation of such results, we
used the information stored by CVSAnalY in the table “acsibn

1 As found in git://git.kernel.org/pub/scnlinux/kernel/git/torvalds/

linux-2.6.git

2 |n a SQL statementyhere date> '2005-06-09 00:00:00’ and date '2005-06-24 23:59:59’
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2. Extracting the full path of files: Since the basic CVSAnalY only extracts file
names, the full path of the files affected in a specific comnais wxtracted, in
order to properly track moved and renamed files. The commssukd for ex-
tracting the full paths of the files affected in a commit ‘cs,“git show ¢
| diffstat -pl -wr0"

3. Evaluating the previous revision of a file:any file in the Git repository, after
being added, will go through a series of revisions, ordesetthé date when each
was performed. If, say, the three files A, B and C were modifie@visionrev(t)
(Figure 2), each will have a previous revision where theyaweodified or firstly
added (in the example, B irev(t-1), C in rev(t-2) and A inrev(t-3). Given a
revision ‘r’ of the file 'f’, the Git repository will show howtte file ‘f’ was com-
posed in that specific revision ‘r’, by issuing the commamnd show r: f.In
this way, it is possible to compare two revisions of the sahee dind to check
whether the changes inputed by a developer affected itststeu

4. Evaluation of the change in complexity:having the two subsequent revisions
of the same file, it is possible to evaluate both the complendtits functions
(since the vast majority of the Linux kernel is implementethie C programming
language), and the overall complexity of the same file, intthe subsequent
revisions. By cross-cutting this analysis with the infotioa on the time of each
revision, it is possible to conclude whether in any of theetistots developers
added or removed complexity, or whether the change left éineescomplexity
unmodified.

* ¢ A
rev(t-3)
— ¢ B
rev(t-1)
* o C
rev(t-2) rev(t)

Fig. 2 Evaluating previous revisions of files

3 Results — Development Activity

As mentioned above, the case study is the Linux Kernel whashbdeen previously
studied several times and from several points of view ( [B1], [18], [19]). Two
aspects are presented below: the first considers the whaoligtien log of the Linux
Kernel (since April 2005, when the overall data has been mhtw¢he Git repository)
and it displays the patterns of activity in terms of weekslagd hours worked on by
the Linux developers (irrespective of them being “core” petipheral” developers).
The second focuses on specific weeks of the Linux kernel desent, justifying
this choice with the observed bias in the distribution obsgffand attributed to the
presence of major releases.



8 Andrea Capiluppi, Daniel Izquierdo-Céagtar

3.1 Results — Weekly and Hourly Activity

In order to compare and contrast the findings of the activtiygons during working
hours and throughout a week of traditionally developedwsanie (Figure 1), the fol-
lowing section presents the analysis of the Linux kerneetgyment under a similar
perspective.

Figure 3 (left) shows the analysis of the overall activitythinn the Linux Ker-
nel during the day, as recorded within the Git log. The firsdeglation is that the
work/no-work distinction, found within the commercial edarpart [10] (and de-
picted in Figure 1 left), is not easily applicable to the birkernel development. The
activity performed between 9am and 5pm (correspondinged'dffice hours™) ac-
counts for somé&5% of the overall amount of commits; son3¢% of the overall
activity is produced during the “after work” interval, ortheeen 5pm and lam; fi-
nally, somel4% of the activity is performed during the “late hours”, or beem 1am
and 9am. The second and third slots of activity thereforeesgmt a consistent depar-
ture from the commercial counterpart studied in [10], reftera traditional pattern
of activity since most of the commits appear during the “effiours” (Figure 3, left).
On the contrary, in the Linux kernel, the most active timez@nfound between 2pm
and 4pm. Specifically at 3 pm we can see a peak of activity winiaually decreases
during the after-office hours.

Figure 3 (right) shows a complementary picture. The blepbgtween a company-
driven community (which tends to work iaffice timg, and a community-driven
project (where developers tend to work mostly on their sfiare) is evident in the
distribution of activity throughout the week. In this figumee divide the week in the
weekdays and calculate the aggregated number of commitsdawhole life of the
project. This figure shows how people in the Linux Kernel témdvork during the
weekdays: the first, clearly defined period is the intervabtiday - Friday”, where
the number of commits is daily more than 30,000. The secoridgef activity ap-
pears specifically during the Saturdays and Sundays, whereumber of commits
jointly reaches some 30,000 commits (i.e., the same amducwramits achieved
in any other day of the week). In summary, the comparison wittaditional com-
mercial system shows that the Linux Kernel benefits overaihfone “extra” day of
development per week (6 days with similar productivity ofti*yy whereas the ob-
served Agile system benefits from 5 (unequally productiag)sdper week (Figure 1
right).

The observed patterns, in the Linux kernel and the Agile aomgppose an issue
of how to quantitatively describe the observed effort, aod ko formulate an effort
estimation model. Since the distribution of effort is prigaed throughout the office
hours in a commercial environment, the effort is only appliethat slot: therefore,
when expressing the effort as a function of the performenlic{e.g., amount of
commits, lines added, modified or deleted; files added, neatldi deleted; etc.) the
modeled Agile commercial system would need to be modeledlggaation such as

E(t) = f(activity(t)on) (1)
where Ecommercial(t) 1S the effort by developers during the period t (daily,
weekly, monthly, etc), whilgf (Commits(t)o is a function of the amount of com-
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Fig. 3 Aggregated commits divided by hour of the day (left), and byatigvity during the week (right)

mits, during the same period, but only within the office hdoosindaries (i.e., 9am
to 5pm).

On the other hand, when modeling the overall activity seethénLinux kernel
(and most likely other FLOSS systems), and taking into actthe three timezones
(Office Hours, OH; After Office, AO; Late Hours, LH), one shdudlso take into
account the other timezones, and weigh them appropriately:

E(t) = womg*f(activityom (t))+waoxf(activityao (t))+wrn* f (activityp g (1))

2

wherewo g is the weight given to the activity observed within the Offtdeur
slot; w4 the weight to the After Office slot; and;, y the weight to the Late Night
slot. In the case of the reported Linux kernel, the overdiiviig observed in this

project produce the following weightsio g = 0.55, w0 = 0.31 andwyy = 0.14.

3.2 Results — Types of Activity
The overall activity shown above has the advantage of pingdble global picture

of the development within the Linux kernel, without revegliwhether some parts of
the day were more prone to additions, deletions or modi€inatiln order to perform
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a more focused analysis of tltygpe of activity occurring in the various parts of the
day, a number of “random” weeks were selected to analysehghde division of
a day in three parts can shed further insights on how work iopeed within the
Linux kernel.

The analysis reported below refers to the week between 2208 (Monday)
and 19/04/2009 (Sunday), where all the 838 performed cosrmaite been analysed
for the purpose. Figure 4 reports how the changes evolvaglstich week. These
changes are divided in six different groups: the three madugs are given by the
three defined timezones and for each of them, we have caddutae number of
added and removed lines. In general, this distribution efutierk follows the initial
distribution shown in the previous figures, except for thedWéesday. This seems to
be an outlier that does not follow the general tendency inuarhof work.

For the mentioned figure, we can observe how the number &flinadled during
the weekend (even when we select the whole day and not diagdéiinezones) is
really low, being developed the main activity in this specifieek during the week
days.

12,000

[ Added (OH)
[l Deleted (OH)
[J Modified (OH)
[] Added (AO)
W Deleted (AO)
[ Modified (AO)
[l Added(LN)

[] Deleted (LN)
Il Modified (LN)

10,000 -
3

c 8,000 —
p
Y

© 6,000
[}
Qo

g 4,000 +
=2

2,000

0 - ﬂ ; :.77
Monday Tuesday Wednesday Thursday Friday Saturday Sunday
Days of the Week
Fig. 4 Size of Changes for the week 13th-19th of April, 2009)

The figure 5 shows a bit more of information for each day. Inghecific case of
the week days, we observe how the quantity of lines (addedrooved) in a given
day is really high compared to the rest of the day, reachimyesdays almost the
100% of the total modifications. On the other hand, we can sediinthe weekends,
the activity developed by the people (even out of the offioeetf) is really low,
but developed out of the office time. In this case, the agtig#veloped during the
weekend reaches up to an 80% on Saturday, and a 40% on Sunday.

Table 1 finally displays, for the aforementioned week, thengfes observed, and
divides them in three categories: added, deleted and cHdimgs. As also observed

3 We provide the results for the office time during the weekendstp observe if there is a continuous
activity during the mornings. However, it has not happenadesmost of the activity, for instance, during
the Saturday, is developed during the afternoon and in tienimg.




Effort Estimation for FLOSS Projects: A Study of the Linux iKet 11

100.00%

80.00%

60.00% —

40.00% —

20.00% +

Percentage out of the Total Lines

0.00% T T

l Modified (LN)
[] Deleted (LN)
[l Added(LN)

[ Modified (AO)
Il Deleted (AO)
[] Added (AO)
[J Modified (OH)
[l Deleted (OH)
[ Added (OH)

T
Monday Tuesday Wednesday Thursday Friday
Days of the Week

Saturday Sunday

Fi

g. 5 Percentage of Changes for the week 13th-19th of April, 2009)

in Figures 4 and 5, most of the activity is achieved duringdhg, in the timezone

9am-5pm, with an overall count of 555 commits (so66& in the week). What is

interesting to note is that, albeit a lower activity is netible during the late hours,
the average number of added and deleted lines is vastlyeatifférom the other two

periods of the day, the average number of added lines being tinan double than the
rest of the day, and the average number of deleted lines Ipeimg than four-some
with respect to the rest of the day.

[ Hours [ 9am — d5pm [ 5pm — lam [ lam — 9am ]
Nr of commits 555 187 96
Avg nr of added lines 41 515 117
Avg nr of deleted lines 20 26 112
Avg nr of changed lines| 1.6 0.6 0.47

Table 1 Average size of changes, differentiated by timezones areldjphange

The initial results were tested and compared with otheraantd selected weeks,
but the findings reported above were not thoroughly confirmebe other sampled
weeks. Investigating further, it was found that the seqaesfanajor and minor re-
leases within the development plays a distorting role inyapg effort by committers
towards a specific deadline. Figure 6 shows how the amoundrofrits vary when
considering seven days before and seven days after the™pkagtivity represented
by the actual day when the 2.6.14 release was made publicefbine it was de-
cided that a study for characterizing the types of activitgerved in the Linux kernel
should take into account such sequence of releases: theewtidn details and anal-
yses the activity observed seven days before and seven fiaeytha date of a major
release (while excluding the peak of the same day), for thrpgae of producing
estimation models based on the types of actions observieé idevelopment.
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3.3 Results — Before and After a Major Release

When considering the available development history of tinek kernel hosted within
the Git repository, 23 major releases were studied in thisiemge from 2.6.12 to
2.6.34. Each was analysed with respect to the amouemimits authorsandcom-
mitters added deletedand modifiedlines as recorded both seven days before, and
seven days after the date of each public release.

The results of such analysis are reported, as longitudieads in the amount of
commits per release in Figure 7, and in the tabular form ofelapdetailing for each
studied characteristic, its mean and variance value, bethek before and a week
after a major release.

The following findings have been observed:

— Throughout all the 23 studied releases, the average ambcmronits-per-release
is somewhat similar during the OH and AO slots, and both pne-@ost- major
releases;

— The average amount of commits-per-release during the Blai¢arly lower than
the OH and AO, both pre- and post- major releases, signallagyer activity in
such slot;

— The similarity between the OH and AO slots is consistent fidha studied met-
rics (authors; added, deleted and modified lines). The LNmsstead consistently
presents a lower level of activity;

— Despite the lower amount of activity, the Linux kernel hadrmareasing number
of people working during the LN slot, in both the pre- and pastk periods. The
pre-2.6.12 week only had 2 authors active during the LN sgibile the pre-2.6.34
week had some 311 authors in charge of commits; the postZAéek benefited
from 84 authors, and the post-2.6.34 week from 640 authagsiré& 8 describes
the intersections, for all the releases of the set of auttiedscommitters working
on the OH, AO and LN slots.
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— The distributions of all the measured characteristics i@rad to be statistically
different, when considering the pre- and post-weeks: fangxe, the distribution
of commits in the OH slot before releases (51, 94, 121, 24, 141103, 88, 152,
191,94, 149, 196, 179, 682, 399, 435, 417, 530, 403, 462 988 s statistically
different from the distribution of commits after releasgsg, 269, 824, 797, 739,
484, 963, 722, 766, 631, 884, 1891, 2571, 1018, 739, 1062, BA%/, 1498,
1288, 1048, 1272, 1361) when applying the t-test.

Based on such findings, the effort estimation equation ing@y the terrmac-
tivity(t) should be tailored to reflect such differentiation in bota time slots, and
depending on whether the activity is monitored and estichit¢he weeks before or
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Attribute Mean Mean Variance (pre-)| Variance (post-| ¢t — test (pre-
(pre-) (post-) ) vspost-)
Commits 271 964 50,954.8 264,659 8.73e-07
Authors 541 1,954 1.89e+05 1.34e+06 3.77e-06
Office Hours | Added lines 17,715 98,608 3.29e+08 6.86e+09 6e-05
Deleted lines | 8,845 44,856 9.08e+07 3.37e+09 0.00368
Modified lines | 4,704 14,857 2.73e+07 9.25e+07 4.4e-05
Commits 200 786 2.53E+004 1.33E+005 3.57E-08
Authors 391 1,621 9.41E+004 5.90E+005 3.88E-08
After Office | Added lines 10,621 65,393 1.30E+008 2.19E+009 6.03E-06
Deleted lines | 6,931 36,519 1.33E+008 1.35E+009 0.00052
Modified lines | 2,822 13,147 1.09E+007 5.63E+007 6.04E-07
Commits 59 295 2.90E+003 4,08E+004 6.25E-006
Authors 122 699 1.41E+004 3.71E+005 8.30E-005
Late Hours | Added lines 3,433 18,500 2.10E+007 2.42E+008 7.22E-005
Deleted lines | 1408 9,936 5.46E+006 7.84E+007 7.41E-005
Modified lines | 704 4,766 5.92E+005 1.57E+007 3.36E-005

Table 2 Activity one week before and one week after major releasesteled by time-slots

after a major release. A list of equations for the activityldde obtained as follows,
and based on the assumption that the actions of “addingletidg” and “modifying”
lines (or files) are exhaustive of the type of actions perforiog developers during

the period t (say, hourly, daily, weekly, etc):

activityé(t) = w; * f(Add;(t), Del; (1), Modé(t))

where: the index indicates whether the activity is observed eithefore” or
“after” a release; thg index instead can be used to differentiate between theitgctiv
as seen in the OH, AO and LN slots. Thx;i\ terms then become the weights of the
actions performed in a specific week and during a given timoe sl

4 Results — Complexity in Time Slots

©)

The second part of this research has been focused on thenpeest complexity
(measured by the McCabe cyclomatic index), and its chamg#sn the source files
of the Linux kernel. As reported above, this second studypesformed focusing on

the activity:

— of the 23 releases found between April 2005 and June 2010, and
— differentiating the results in “one week before” a releasen those “one week

after”, and finally
— clustering each day of activity in the three time-zones: @8,and LN.

The analysis was performed only on the “.c” source files ahtitieaderé that
underwent changes during the pre- and post-release wemksa€h of the commits

4 This was done to properly evaluate the McCabe cyclomatic cexitglfor source files developed in
the C “procedural” language
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725

LATE HOURS
307

OFFICE HOURS
2,117

AFTER OFFICE
HOURS
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685

Fig. 8 Intersections, all releases, committers (left) and authaght]

performed in such weeks, it was studied whether the changgsepd by committers
did alter the overall complexity of the affected files. Orthe t‘modified” files were
considered in such evaluation, therefore leaving asidedht#ion of new files (which
adds new source code, let aside new complexity). To the bestr&knowledge, this
is the first time that an analysis of how single source filesiglkd within subsequent
commits is performed in a large case study.

The results are reported in Table 3: they are clustered drthenthree time slots
(OH, AO and LN) and summarized in relative terms. Each tino¢ gtesents two
series of data, the first (2nd, 4th and 6th columns) depittiagamount of files which
underwent an increase of complexity, the second series $8ndand 7th columns)
the amount of files which had a decrease of their overall MeQaislomatic number
instead: both series are relative numbers, and divideddgttount of files handled
in the same week. The following observations were made:

1. During the pre-release weeks, the activity during laththhours has been, so
far, the most likely to increase the complexity when modifythe source files. In
other words, in 16 releases out of ZB%), during the LN slot the committers and
authors have been responsible of changes that have indithasdes’ complexity
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more often than in the Office Hour time slots. This is a somewidirect proof

that some time slots are more prone to “unprofessional” tanance to existing
source files than other slots (say, the Office Hours) Thisge ahown in the
distribution of such ratios in Figure 9.

2. On the contrary, during theost-releasaveeks, the Office hour slot initially has
consistently seeded more complexity into the source filesidre recent releases,
instead both the After Office and the Late Night slots haveexao insert more
complexity into files, as compared to the office Hour slothaigng again the
importance of such slots in seeding more complexity withodified files.

3. The distributions of source files undergoing increasesoiplexity is statistically
different in each time slot, when performing a t-test congmar: for instance, the
global amount of files undergoing increases of complexith@OH slot presents
statistically relevant differences when comparing thekaeefore and the week
aftef® a release, when applying the two-tail t-test (1.174E-007).

4. The patterns in thdecreaseof complexity show instead a different perspective:
during the weeks before releases, no major differentidbietiveen the various
time slots is visible, each presenting a fluctuating andnsitent behavior. On
the other hand, in the weeks after the releases the slotseoted to either overall
increases of complexity, or decreases, but not both (aziprigrweeks).

Considering the relation for effort estimation in Equati@), it is possible to
discriminate, within the “activity” term, the portion of sh activity devoted to the
increase of complexity, the portion that increases the d¢exity, and the portion that
does not affect the complexity. Each of the temm&vityom (t), activityao(t) and
activityr, g (t) can be further expanded in the following:

activityor (t) = wGy xalCop (t) +w8S xaDCop (t) +wl§hC «aW ChCop (t)

4

activity ao (t) = wG xalC a0 (t) +whS *aDCao (1) +wh S xaW ChC a0 (t)

©)

activitypn (t) = wiS *alCpn (t) +wP$ xaDCn (1) + WM « aW ChCrn (t)
(6)
wherew!¢, wP¢ andw!” ¢ are the weights of the activities for increasing (IC),
decreasing (DC) or without changes (WChC) in the complexitthe source files
during time sloti. The termsi./Cn (t), alCpn (t) andalCpy (t) represent instead
the actual activities of increasing, reducing or not affegcthe overall complexity of
files at time t, respectively.

5 Number of source files where complexity increases, during tseklefore a release: 13, 33, 28, 1,
48, 33, 30, 48, 54, 87, 36, 37, 72, 56, 190, 149, 129, 128, 2%, 177, 146, 314

6 Number of source files where complexity increases, during tekafter a release: 100, 102, 256,
343, 245,172, 409, 255, 254, 273, 346, 712, 771, 360, 271,340 428, 523, 349, 471, 399, 493
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OH AO LN
INCR [ DECR || INCR [ DECR || INCR | DECR

2.6.12-pre 0.24 0.15 0.11 | 0.30 0.00 0.00
2.6.13-pre 0.21 | 0.13 0.16 0.05 0.23 0.12
2.6.14-pre 0.16 | 0.22 0.22 0.09 0.18 | 0.21
2.6.15-pre 0.07 | 0.20 0.21 0.12 0.40 0.13
2.6.16-pre 0.28 0.11 0.16 0.08 0.13 | 0.13
2.6.17-pre 0.21 | 0.16 0.17 0.03 0.38 0.00
2.6.18-pre 0.10 0.03 0.16 | 0.13 0.20 | 0.16
2.6.19-pre 0.13 0.12 0.17 0.03 0.22 | 0.22
2.6.20-pre 0.26 0.13 0.15 0.15 0.42 | 0.16
2.6.21-pre 0.38 | 0.13 0.28 0.10 0.13 0.04
2.6.22-pre 0.39 0.07 0.08 | 0.10 0.15 | 0.07
2.6.23-pre 0.27 0.14 0.37 | 0.19 0.38 | 0.15
2.6.24-pre 0.26 0.14 0.27 0.08 0.27 | 0.20
2.6.25-pre 0.17 0.08 0.18 | 0.10 0.22 | 0.10
2.6.26-pre 0.28 | 0.13 0.26 0.11 0.40 0.07
2.6.27-pre 0.17 | 0.09 0.26 0.07 0.24 0.08
2.6.28-pre 0.28 0.11 0.18 | 0.12 0.29 0.06
2.6.29-pre 0.30 0.13 0.21 0.13 0.38 | 0.14
2.6.30-pre 0.33 0.13 0.30 | 0.15 0.16 0.05
2.6.31-pre 0.39 | 0.16 0.34 0.08 0.15 0.14
2.6.32-pre 025 | 0.11 0.19 0.08 0.29 0.10
2.6.33-pre 0.25 0.19 0.22 | 0.23 0.27 | 0.21
2.6.34-pre 0.24 | 0.11 0.15 0.09 0.12 0.06

[ INCR | DECR [[ INCR | DECR || INCR | DECR |

2.6.12-post| 0.25 | 0.13 0.24 0.13 0.05 0.04
2.6.13-post| 0.25 0.06 0.16 | 0.13 0.22 0.05
2.6.14-post| 0.16 | 0.14 0.13 0.09 0.27 0.05
2.6.15-post| 0.17 0.08 0.18 | 0.26 0.20 0.14
2.6.16-post| 0.21 0.12 0.24 | 0.17 0.16 | 0.14
2.6.17-post| 0.24 0.09 0.25 | 0.14 0.17 | 0.13
2.6.18-post| 0.28 | 0.14 0.29 0.12 0.22 0.12
2.6.19-post| 0.22 0.14 0.17 0.14 0.10 | 0.18
2.6.20-post| 0.20 0.12 0.14 0.09 0.13 | 0.15
2.6.21-post| 0.26 0.14 0.24 | 0.18 0.16 0.13
2.6.22-post| 0.24 0.12 0.20 0.12 0.23 | 0.13
2.6.23-post| 0.21 0.15 0.16 | 0.22 0.16 | 0.20
2.6.24-post| 0.27 0.13 0.19 | 0.13 0.24 0.09
2.6.25-post| 0.25 0.12 0.19 0.10 0.18 | 0.12
2.6.26-post| 0.25 0.15 0.20 0.12 0.20 | 0.22
2.6.27-post| 0.27 0.15 0.21 | 0.15 0.25 0.06
2.6.28-post| 0.29 0.13 0.22 | 0.15 0.18 0.10
2.6.29-post| 0.22 0.14 0.28 | 0.14 0.24 0.10
2.6.30-post| 0.28 | 0.14 0.33 0.12 0.20 0.12
2.6.31-post| 0.18 | 0.16 0.16 0.15 0.23 0.09
2.6.32-post| 0.29 0.13 0.31 | 0.19 0.29 0.10
2.6.33-post| 0.23 | 0.12 0.22 0.11 0.30 0.10
2.6.34-post| 0.27 0.10 0.22 | 0.14 0.27 | 0.12

Table 3 Percentages of files increasing (i.e., “INCR”) or decregdire., “DECR”) their complexity,
clustered in time slots
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Fig. 9 Portion of files increasing their overall complexity durinffi€e Time (OT) and at Late Night (LN)
divided by time slots

Any FLOSS system will need to be studied to extrapolate tipeapiate weights
to evaluate the above activities. In the study of the Linurmnké the extrapolated
weights are available in Table 4.

OH | 0.24 | 0.13 | 0.63
Pre-week activity | AO | 0.21 | 0.11 | 0.68
LN | 0.24 | 0.11 | 0.64
OH | 0.24 | 0.13 | 0.64
Post-week activity| AO | 0.21 | 0.14 | 0.64
LN | 0.20 | 0.12 | 0.68

Table 4 Weights to complexity
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5 Threats to Validity

This paper has analyzed the Git repository offered by thentikernel community.
One of the main reasons for doing so is because this soureancadagement system
offers extra information about the date when the actualauttand the committer
submitted the changes. Like any other empirical study, #iity of ours is subject
to several threats. In the following, threats to interndidiey (whether confounding
factors can influence your findings), external validity (tfes results can be gen-
eralized), and construct validity (relationship betwekeaadry and observation) are
illustrated.

1. Internal Validity — the following threats have been détec

— In a common working day, there are main differences amongldpers.
Some of them could work in office, but some others could workedime
during the mornings, and some more time during the evenings.

— Our methodology can not be applied in SCM such as CVS or Ssioresince
they store the time when the commit was submitted, but notwtte change
in the source code was done by the author (even by the committe

— We still need to check how different commands from the Gibs#ory work.
In a common way of working,pull, merge or pushthere should not appear
any problem related to the real authorship and date of a ehddmvever, we
still need to study the behavior of commands suclgiagherry-pickor git
rebase

— In other occasions we could find people traveling around ancthanging
their timezone in their computers what could add some noigked data. In
other words: some people could work on a different timezbagethey really
are.

2. External Validity — we have focused our analysis in theukiiKernel community
and also in the Git SCM. Some other FLOSS communities argyugimer SCM
systems which do not store information related to the timemthe change was
done (in terms of real authorship).

3. Construct Validity — the following threats have been degé:

— the results of this paper assume that people in differemtci@s work in the
same way: of course this should be discounted in several, aymstance
considering that the holiday systems in different Europsamtries and in
North America are vastly different, and both are culturablyy different from
the holiday schemes in other countries in Asia or AfricasTdould, in some-
how, distort the results, albeit in the case of the Linux Kérrommunity,
they seem to show a commaiffice patterns, which facilitate the analysis of
the data.

— Also, We have not taken into account if the changes were made the
source code or were not. A more deeper analysis could show ammurate
results with this respect. Since we are measuring actimithé source code,
we have studied the SCM system used by the Linux Kernel coritypbat it

7 Using the option-pretty=fuller
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could contain specific files such as text files which are matiifiat not being
source code.

6 Barriers of Repeatability

Mining software repositories is a task complex in time, baban tools and datasets
used for retrieving information. Some autho® have addressed the necessity of
specify three main questions, which are depicted next fierdtudy (availability of
raw data, processed dataset and tools or scripts). Thefrds process have been
explained in detail in section 2.2 and 2.3. Thus, this sacéimns to fill the gaps
among the different steps of the method followed to achikeedifferent developed
metrics.

— Raw Data. The raw data used for this paper is the publiclyiaia data sources
found for the Linux Kernel community. And more specificalhetsource code
management system that can be found at the Git repositoeydates used for
this data are those commits available between the @8@5-04-16 15:20:3@nd
2010-06-29 10:42:52This can be easily downloaded by means ofdheclone
command liné

— Processes data. All the processed data can be found in a Mg&@base and
publicly available aht t p: / / al cachof o. | i bresoft. es/jsne2010-effort-1i nux/
cvsanal y_kernel 26_gi t. mysql . zi p. This dataset has been obtained us-
ing the tools and scripts described in next bullets. All Higés were retrieved by
the CVSAnalY tool excepteleasecommitsreleasedates compareandchanges
With respect to the tables releadates and releassommits they were both man-
ually introduced to make easier the analysis of the data laggwere based on
data obtained from the distribution websiterdtt p: / / www. ker nel . or g/
pub/1inux/kernel /v2. 6/ . While the other two tables contains informa-
tion automatically retrieved by the use of some scripts ifipatly created for
this purpose.

— Tools and scripts.

— CVSAnalY: This tool can be found ajit. i bresoft.es and down-
loaded using thegit clone command. The specific version comes from the
current version at the master branch found at the da2®b®-08-27

— Scripts: Several scripts have been used to retrieved spéeifa for each of
the questions and charts provided in this paper.

7 Conclusions and Further Work

Recently a well-known and accepted model has been proposktharoughly dis-
cussed in order to cluster FLOSS developers into the sadcal@on model”, where

8 git clone git://git.kernel.org/pub/scmlinux/kernel/git/torvalds/
linux-2.6.git
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different layers correspond to an increasing productamiitgt responsibilities. Transver-
sal to such clustering, this paper has approached the ishamcterizing the FLOSS
development from the point of view of the time slots of cdmitions. FLOSS devel-
opers are known to be active in various parts of the day andkwedike a tradi-
tional 9am-5pm model of in-house software development. Gt&CM technology
provides an advance to such requests, since it allows teegdyogetermine when a
developer issued a commit command at her timezone, rataerddlsing such infor-
mation by using the SCM server local timezone. Taking intooaat these results,
they could be useful in the field of software estimation casts effort. SCMs such
as Git offer nowadays extra information from the people imed in the FLOSS com-
munities. This helps to calculate the real time when a charageactually submitted.
So far, most of the best known SCMs just store the informatiben a change was
submitted to the server, what implies that the real date ssedl.

The study on the activity detected in the Linux kernel wemmpared with what
found in the previous analysis of an Agile commercial systand it became clear
that the traditional 9am-5pm development time only accetdiot some 55% of the
overall activity within Linux: other two time slots were uséo characterize the
FLOSS development, the period between 5pm and lam (Afteceslot), respon-
sible for some 31% of activity and the period between 1am amd @Late Night
slot), responsible for some 14% of overall activity. An effestimation model would
therefore to take into account such distribution of agtitdtproperly model a FLOSS
development, by firstly estimating the weights of the vasitime slots.

The study of productivity within the Linux kernel showed tlaapositive bias is
imposed when a major release is due: the analysis of addeddedeand modified
lines shows regularities when considering only the weellsrbeand after a major
release. An increased productivity is always detectedlithalmeasured attributes
after a major release, which calls for an updated model afrieéind productivity
estimation both before and after a major release.

Finally the study of code quality has shown that time slowusth also be con-
sidered as differently contributing to the overall comjitiexvithin a project: it was
indeed found that the Late Night and After Office slots shcagdcarefully moni-
tored since they more often introduce additional compyaxitth in the weeks before
and in the weeks after a major release. An effort estimatiodehwas developed
to take into account such time slots and the presence of a medgase, that can be
generalised to any FLOSS, round-the-clock project.

With respect to further work, this work could be useful in fledd of cost and ef-
fort estimation in FLOSS projects. A better characteraatf the commit patterns,
such as studying each of the developers by their blocks ofitgctould improve
estimation models, as well as dividing the effort in the @as parts of the day. For
instance, if a committer is usually working during tb#fice timeand she usually
submits a change every two hours, we could suppose that shigelea working for
the whole day around eight hours. Some other patterns ctal activity during
the weekends. For example, some developers could submét slsamges just during
specific days. We suspect that this kind of patterns is jothfferent from the afore-
mentioned one. In fact, in this case, we should measure #heffert in other terms
and only taking into account that day.
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