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ABSTRACT 
This thesis presents the results of a three year investigation into 

machine vision techniques for in-process automated inspection of dry-fibre 

composite preforms. Efficient texture analysis based techniques have been 

developed, tested, and implemented in a prototype robotic assembly cell. 

Industrial constraints have been considered in the development of all the 

algorithms described. 

A single channel texture analysis model is described which can 

successfully segment images containing only a few textures. The model is 

based on convolution of the image with small kernels optimised for the task, 

and is elegant in the sense that it is computationally simple and easily 

realisable in low cost hardware. A new convolution kernel optimisation 

algorithm is described. It is demonstrated that convolution kernels can also be 

optimised to perform as edge operators in simple textured images. A novel 

boundary refinement algorithm is described which reduces the inspection 

errors inherent in texture based boundary estimates. The algorithm takes the 

form of a local search, using the texture estimate as a guiding template, and 

selects edge points by maximising a merit function. Optimum parameters for 

the merit function are obtained using multiple training images in conjunction 

with simple function optimisation algorithms. 
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Introduction 

1.1 Industrial Automation. 

Almost since the advent of the industrial revolution itself, industry il 

general and manufacturing in particular has been moving away from labou 

intensive methods and towards automation. Machines, as the factory owner: 

of the nineteenth century were quick to appreciate, can perform many routine: 

faster and more reliably than their human counterparts. Machines never ge 

tired or bored, lose concentration, make mistakes, go on strike, or ever 

demand a pay increase. Machines decrease overheads and production time 

increase productivity, competitiveness and profitability. As technology ha! 

improved, the number of processes which can be automated has increase( 

correspondingly, and in many industries automation has long since ceased t( 

be an option and become mandatory for economic survival. In other industrie~ 

however, many processes are still highly labour intensive. There are two mair 

reasons for this. 

Firstly, the batch sizes involved do not justify the expense required tc 

commission a dedicated machine. Such machines are generally characterisec 

not only by the efficiency with which they perform their appointed task , bu 
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also by the lack of flexibility inherent in their design. As a result they can 

produce only a narrow range of components, and the financial expenditure 

invested in mechanisation can only be recouped if the process in question 

produces components which are required in very high volumes. 

Secondly, there are still many things a human being can do better than 

any automaton. Manual dexterity, for example, has proven to be extremely 

difficult for robotic systems. Sensory feedback, especially visual, has 

demonstrated itself to be almost infinitely more complex than predicted by 

scientists at the dawn of the computer age. The human operator is still 

required in such numbers because of his sheer versatility. 

These obstacles to automation are, however, beginning to erode. The 

advent of computers and industrial robots has introduced greatly increased 

flexibility into assembly lines, reducing the need for expensive dedicated 

machinery. Robotic assembly cells can be reprogrammed to perform a much 

wider variety of tasks than any machine. The field of industrial machine vision 

is widening all the time. Applications are springing up in a variety of industries, 

ranging from dashboard assembly in cars to quality assurance of fibre optics 

for telecommunications. As the technology progresses, the result of combining 

robots, computers, and sensory feedback, will be manufacturing cells which 

might realistically be called flexible manufacturing systems. Such systems 

will be cost-effective for small batch sizes as well as mass production. They 

will be capable of handling a much wider variety of materials and components 

than is possible today. The advent of such systems will enable automation to 

become truly widespread. 

This thesis presents the results of a three year investigation into 

machine vision techniques for in-process automated inspection in a particular 

manufacturing process in the aerospace industry. The components being 

manufactured are usually described as advanced composite components. 

The manufacturing process is known as dry-fibre lay-up, and constitutes the 

initial and most crucial stage of composite component production. The 

investigation was carried out as part of a larger multi-disciplinary project aimed 

at developing enabling technologies for automation of the dry-fibre lay-up 
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process. The difficulties encountered in this project are indicative of the 

problems which will have to be overcome before truly flexible manufacturing 

systems can be produced. 

The remainder of this chapter will provide an introduction to the 

research area in more detail. Section 1.2 introduces composite components 

in the aerospace industry. Section 1.3 describes the current manufacturing 

process in some detail. Section 1.4 describes the automated lay-up process 

adopted for this work. Section 1.5 provides a brief introduction to machine 

vision. Section 1.6 outlines the particular problems faced in this machine 

vision application. Section 1.7 defines the criteria for the inspection process. 

Section 1.8 provides and overview of the thesis, and indicates how the 

inspection criteria have been met. Section 1.9 gives the conclusions of the 

chapter. 

1.2 Advanced Composites in the Aerospace Industry. 

The term composite refers to a material which consists of two or more 

distinct constituent materials. Such materials have a long history in aerospace 

manufacture. The very earliest aircraft embraced the idea, with structures 

composed largely of wood, wire and fabric. In the 1930's light aluminium alloys 

took over and have dominated the aircraft industry to the present day. Over 

the last 25 years or so however, a new class of composite material has 

emerged. These are known as fibre composite materials, and are becoming 

increasingly important. The emergence of fibre composite materials can be 

traced to two key technical developments. The first was the discovery of 

thermosetting resins, such as phenolics, polyesters, epoxies, etc. The second 

was the production of glass fibre. Thermosetting resins are useful in very 

many applications, but for structural use they are often either too brittle or too 

flexible. To overcome these difficulties filler materials such as wood fibres and 

asbestos were added. Although moderately successful, the real breakthrough 

came when polyester resins were combined with continuous glass fibres to 

produce laminates with attractive mechanical properties, such as high 

strength-to-weight and stiffness-to-weight ratios. This glass fibre reinforced 
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polyester laminate was the first advanced composite material. In recent years 

other fibre types have emerged, notably carbon fibre, as well as many other 

resin types. Of all current composites, carbon fibre reinforced epoxy resins are 

the most significant, accounting for more than 90% of all composites presently 

specified for aircraft construction [Middleton, 1990]. This is in fact the main 

composite material used by the company sponsoring the work presented in 

this thesis, Dowty Aerospace Ltd. 

1.3 The Manufacturing Process. 

There are several manufacturing techniques which may be used to 

produce composite components. The work presented in this thesis has been 

directed towards one particular approach which involves resin free lay-up of 

unidirectional and woven fabrics, known as dry fabrics, with subsequent 

injection of high performance resin under vacuum. Further processing of the 

resin injected structure is required to produce the required component. The 

work of the research group has been concerned only with the first stage of 

composite manufacture, namely the lay-up process. Resin injection and 

subsequent processing have not been investigated as part of this project. It 

should also be emphasized that only "dry" (resin free) fabrics have been 

considered in this work. A different manufacturing technique uses materials 

which are pre-impregnated with resin, called pre-preg materials. Lay-up of 

pre-preg materials has not been studied as part of this project. 

The manufacture of the moulded blade (lay-up and resin injection) is 

referred to by Dowty as resin transfer moulding [MCCarthy, 1981]. The existing 

lay-up process involves manual stacking of layers of pre-cut carbon fibre 

sheets, commonly known as plies. The warp fibres are oriented to exploit their 

considerable strength, producing a preform stack (see Figure (1.3.1 »). For 

more complex components, each layer can consist of between one and three 

individual plies, with warp fibre orientations at 0°, +/-45°, or 90° to the 

assembly axis, depending on the component design specifications. 
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NEWLY 
LAID 
PLY 

PLY 

MATERIAL 
ROLL 

• • 

UNIDIRECTIONAL 
AT +45° 

PREFORM 
STACK 

UNIDIRECTIONAL 
AT 0° 

CROSS-PLY 

UNIDIRECTIONAL 
AT +45° 

Figure (1.3.1). Each ply is cut from a roll of the appropriate material. The ply 
is then laid-up at the desired position on the previously laid plies, and forms 
part of the preform stack. Each ply is cut from a specified material type, with 

the fibre at a specified orientation. 
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Figure (1.3.2). A collection of carbon fibre materials. 

Essentially the 0° plies provide for the direct load in the principal direction, the 

+/- 45° plies for the torsional loads about this axis, and the 90° plies for the 

transverse loads. Figure (1.3.2) shows an image of a collection of different 

carbon fibre materials used in the aerospace industry. The background 

material is known as woven, and consist of two orthogonal weaves of carbon 

woven together. The other pieces have different weft materials, often glass 

fibre. For very large components such as an aircraft tailplane, ply size can be 

up to two metres by one metre, and the lay-up positional accuracy on the 

preform is nominally specified as being ±1 millimetre, although it is doubtful 

that this accuracy is achieved with current manual lay-up techniques. Correct 

positioning of a ply on a preform stack is a tedious manual operation involving 

frequent use of templates, and is further complicated by the requirement that 

no stack disturbance must occur. To this end, some materials have 

thermoplastic weft yarns embedded in the fabrics which enable each ply to be 

heat bonded into the stack prior to laying down the next ply. The existing 

production technique uses an electric iron for this application. A small amount 

of pressure is applied to the iron by the operator to cause fusion with the lower 

ply. The plastic cools after the iron is removed, resulting in a semi-bonded 

inter-ply adhesion. However, the impurities introduced by the thermoplastic are 

1-6 



unacceptable in some structurally critical component sections. The search for 

an alternative tacking method suitable for automation is therefore still a 

research area. 

Manual lay-up of preform stacks has been established as the main 

bottleneck in the composite manufacturing cycle, contributing to the slow turn 

around times which are currently characteristic of composite manufacture. The 

lay-up process is tedious, and this results in a relatively high number of 

wrongly assembled components which are only discovered at later test stages. 

Defective components of this type must be scrapped, and the expensive 

nature of composite materials makes this a particularly undesirable 

occurrence. By automating the lay-up of the pre-form stack, both turn around 

time and rejection rate can be reduced. 

1.4 The Automated Lay-Up Cycle. 

One of the first tasks carried out as part of this project concerned the 

redesign of the lay-up process for automation [Jarvis,1992]. This enabled the 

development of a "proof-of-concept" robotic cell as a framework for 

investigating the effectiveness of the various techniques under consideration. 

The cell has evolved over the period of the project, but Figure (1.4.1) 

represents the most recent configuration. The main components of this cell are 

as follows: ABB IRB3000 articulated robot and controller; FANUC 810 

articulated robot and controller; computer controlled cutting table and 

controller; electrostatic gripping device (EGO); vision system; stitching device; 

lay-up table. The cell is described in more detail in Chapter Nine. 

It should be noted that the cutting process has not been investigated 

until very recently. It had always been assumed that commercially available 

automated cutting machines could be used to cut dry carbon materials to the 

required accuracy. It was therefore envisaged that such a machine could be 

interfaced to the front-end of the process once the other automation problems 

had been addressed. In fact more recent work in this field has shown that this 

assumption was not really valid, and some further development work is under 

way within the research group. The effect of the cutting method on the task of 
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the vision system is considered briefly in Chapter Nine. The specification of 

the automated lay-up cycle, based on the cell hardware illustrated in Figure 

(1.4.1), is described as follows. 

The cutting process leaves the next ply cut at a known position and 

orientation. The robot moves the gripper to the required position and picks the 

ply up. It transports the ply to the correct position over the lay-up table and 

places it. The gripper then moves away to a parking position to await the start 

of the next cycle. At this stage the vision system should detect the 

position of the ply and compare this information to the position defined 

in the component design specification. The result of the inspection is 

related to the cell controller. If the ply has been laid-up to within the required 

specification, then it is tacked to the rest of the preform stack to prevent any 

subsequent undesirable movement. The next cycle can now begin. If, on the 

other hand, the ply is out-with the positional specification, then it must be re­

laid. The task of the vision system is to inspect each newly laid-up ply. This 

is easily decomposed into three stages: 

(1) Determine the position of the ply in the lay-up. 

(2) Measure deviation from the design specification. 

(3) Report pass or fail to the cell controller. 

Stage (3) is trivial. Stage (2) is not, as some method of obtaining the 

design specification in meaningful form must be identified. A simplified means 

of doing this, suitable for most applications, is demonstrated in Chapter Nine 

with an example component. Stage (1) presents by far the most difficult task. 

The requirement is to find the boundaries between different layers of the same 

black material. The material itself is lIunfriendlyll in the sense that its reflective 

properties make it very difficult to achieve the image quality required for the 

successful application of machine vision techniques. The accuracy required is 

high, and the area covered by the plies may be considerable (up to 2 metres 

by 1 metre). Potentially therefore, an enormous amount of data must therefore 

be processed for each lay-up, and so very efficient techniques must be 
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developed. 

1.5 Introduction to Machine Vision. 

Computer vision systems, as the name suggests, utilise computers to 

interpret visual imagery of the physical world. The images are generally 

captured using electronic cameras, and digitised to produce a representation 

which can be processed by digital computers. Each image is then made up of 

many thousands of picture elements, or pixels. The task of a computer vision 

system is often to discriminate the various objects in a scene (image 

segmentation) and then make some sense of this information (scene 

interpretation). Such systems are used for research purposes in artificial 

intelligence, for automatic guidance of vehicles, for target location in military 

systems, for analysis of satellite imagery, for screening of medical x-rays, and 

for many other tasks. One of the main fields for computer vision systems is 

that of industrial inspection. Vision systems for industrial applications differ 

from other systems in several ways. They tend to have very limited horizons, 

in that they might well be conceived to inspect only a single design of 

component. On the other hand, they are often required to accurately measure 

features of components, or at least to reliably recognise defective components 

according to some predefined criteria. Perhaps most significantly, they are 

usually required to process images very quickly, sometimes in fractions of a 

second. Such systems, perhaps due to their rather dedicated inflexible nature, 

are often termed machine vision systems. 

Perhaps the most reported machine vision system has been General 

Motor's Consight system which used vision to control a robot involved in 

removing components from a conveyor belt and transferring them to a pre­

determined location [Ward et al,1979]. Consight employed a linear array 

camera, binary images, structured lighting, and was only capable of dealing 

with non-overlapping components. A bright, narrow beam of light was 

projected across the conveyor belt, and the linear camera appropriately 

positioned to image the bright line thus created on the belt. When an object 

appeared on the belt, the line of light reflected on the object and not the belt 
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and so was not imaged by the camera. The result of this is that when the 

camera detected light it was viewing the conveyor belt, and when it detected 

dark there was an object on the belt. As the conveyor belt moved, the image 

built up line by line, and so did the shape of the object in the vision systems' 

memory. The position and orientation of the object could then be calculated 

and used to enable the robot to pick up the component. 

Consight is a typical example of machine vision in several ways. Rather 

than incorporating any high level intelligence regarding the scene, it employed 

dedicated techniques to enable high speed performance. It had no idea of 

colour, texture, or even 3-D shape of the object, it only formed a 2-D silhouette 

from above. It was designed to operate in a particular environment, and would 

be unable to operate in a different one. Within this environment however, it 

was very effective. 

Most of the early machine vIsion systems processed only binary 

images, and there are two main reasons for this. Firstly, hardware limitations 

made grey-scale processing impractical, and secondly algorithms to process 

binary images are simpler to develop and faster to process, and can therefore 

be more sophisticated than grey-scale algorithms. An example of this second 

point can be found in [Bolles,Cain,1982], where a method known as local 

feature focus is described. This involves the vision system being trained to 

recognise objects by the relative placement of features, such as holes and 

corners, in a thresholded image. The speed with which holes and corners can 

be detected in a binary image enable quite sophisticated feature matching 

algorithms to be applied to increase reliability. With grey-scale images it is 

both slower and more difficult to detect such features. 

Binary images are of course only appropriate In a relatively small 

number of potential machine vision applications. The majority require grey­

scale processing at least in the initial stages. One of the first examples of a 

grey-scale machine vision system in industry was Keysight [Rossol, 1981]. 

Keysight had a 64x64 resolution 4-bit framestore, and was designed to inspect 

valve spring assemblies. This involved quite complex processing, including the 

application of edge operators, a heuristic thinning algorithm, centroid 
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calculation and template matching. Several keysight systems were used in 

production. 

Grey-scale processing is more feasible today mainly thanks to the 

considerable advances in hardware in recent years. For example, the 

framegrabber used throughout this project has a resolution of 720x512 with 8-

bit grey-scale, and in fact 1 024x1 024 resolution framestores and higher are 

now commercially available. The processing power has also increased 

dramatically. Commercially available hardware can perform histogramming, 

thresholding, image convolution etc. in milliseconds, enabling real-time 

operation of certain machine vision tasks. The latest general purpose 

processors (e.g. Intel i860) provide processing power which would have been 

unthinkable twenty years ago. In common with other areas of computer 

science, the progress on the software side has been less dramatic. Complex 

pattern recognition problems, such as texture analysis, object recognition, 3D 

scene understanding etc. have proven extremely difficult to solve. Machine 

vision techniques are still far from universally applicable. Generic algorithms 

have yet to emerge, and the approach adopted to solve a particular problem 

depends heavily on the nature of that problem. 

1.6 Problems Specific to this Inspection Application. 

This section will outline the particular problems involved in inspection 

of dry carbon fibre workpieces, and explain why conventional techniques were 

not suitable for the application. 

The first stage required for in-process ply inspection is essentially that 

of boundary detection. Perhaps the two most common approaches to this 

problem are (a) application of a thresholding technique, followed by boundary 

extraction of the objects in the resultant binary image, (b) application of edge 

operator(s) followed by some form of post-processing to select the relevant 

edge segments and form them into object boundaries. 

For inspection of carbon fibre lay-ups, method (a) is not feasible. The 

plies are made of the same material, and so different plies exhibit an almost 

identical range of grey-levels. A histogram of an image of the lay-up is 
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essentially un i-modal. Method (b), application of edge operators, is a more 

generally applicable technique than thresholding, but the results of an 

investigation into this approach produced equally poor results [Mitchell, 1990]. 

The reason for this is described briefly below. 

A text book definition of an edge is "a small area in the image where 

the local grey-levels are changing rapidly". Similarly, an edge operator is "a 

mathematical operator (or its computational equivalent) with a small spatial 

extent designed to detect the presence of a local edge in an image function" 

[Ballard and Brown, 1982]. Edge operators are usually implemented as small 

two-dimensional convolution masks, like those displayed in Figure (1.6.1). 

These are referred to as 3x3 masks to indicate their spatial extent. 

[
-1 0 1 J [1 2 1 J Sx = -2 0 2 Sy = 0 0 0 

-1 0 1 -1 -2 -1 

Figure (1.6.1). Sobel 3x3 masks. 

Various edge operators were tested on images of carbon fibre lay-ups, 

but none were found which were able to provide any help in boundary 

detection. A typical example of the resulting image is shown in Figure (1.6.2). 

This example demonstrates the problem for inspection of carbon fabrics. 

Boundary information is effectively masked by the edge segments produced 

due to the woven nature of the cloth. The problem is that the image exhibits 

texture. 

Conventional edge operators, such as those in Figure (1.6.1), have 

been designed to strongly enhance edge elements in an image. This of course 

means that any edge elements present in a textured region will also be 

enhanced and so any boundary between textured regions will be somewhat 

"swamped" by all the edge information produced by the weave. 

The addition of an edge relaxation process provided no improvement 

in performance [Prager, 1980]. In an edge relaxation scheme the strength, or 

confidence, of an edge is adjusted based on the strengths (confidences) and 

position of neighbouring edges. 
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Figure (1.6.2). An image portion showing two pieces of carbon fibre 
with glass fibre weft, and the result of applying the 3x3 Sobel edge 

operators shown in Figure (1.6.1). 
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In essence the confidence of an edge depends not only on the output of an 

edge operator at that location, but also on the pattern of edges around it. For 

example, a weak vertical edge between two strong vertical edges would have 

its confidence increased. Experiments soon showed, however, that edge 

relaxation is not readily applicable to textured images. The effect is to increase 

the edge "swamping" effect mentioned above. The edge information generated 

by the weave is increased equally as much as the boundary information.This 

is to be expected, since they represent "genuine" edges, not noise. 

The conclusions of early work on inspection of carbon fibre workpieces 

therefore was that detecting the boundary between plies cannot readily be 

accomplished by the use of conventional edge operators. 

1.7 The Area of Research. 

The difficulty in finding boundaries between layers of carbon fibre is due 

to the fact that the images produced do not exhibit areas of (anything like) 

continuous grey-levels. Instead they show thousands of peaks and troughs 

corresponding to the weave, which result in a roughly periodic pattern. They 

are, in short, textured. Any boundary detection algorithm employed must 

therefore be designed to process textured images. Such algorithms are 

referred to in the computer vision literature as performing texture analysis. 

Texture analysis has been an active research area over the last 20 years or 

so. In this time many different approaches have been proposed. Since the 

plies to be inspected exhibit regular texture (the texture is provided by the 

weave of the cloth which is fairly uniform) and the textures for each 

component are known a-priori (material type and orientation is strictly specified 

for each layer of a component) then the actual pattern recognition task is 

greatly simplified, and it should be possible to adopt almost any approach 

recommended in the literature. For an industrial inspection application 

however, there are other criteria which must be considered. 

• In-process inspection is required, and so processing time must be of 

the order of a few seconds, using commercially available hardware. 
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• 

• 

• 

Longer processing time would mean the inspection stage would 

become the cycle bottle-neck. Specially constructed hardware is 

undesirable on the grounds of cost and maintainability. 

A high degree of accuracy is required i.e. good localisation of region 

boundaries. The aim is to find an inspection method which can provide 

sufficient accuracy of inspection so that ply placement of ±1 mm from 

datum positions can be confirmed. 

The method should be able to cope with a change in the component 

material easily and quickly. 

The method should be applicable to as many composite inspection 

tasks as possible. 

1.8 The Thesis. 

It is the task of finding a texture-based inspection method which 

satisfies the criteria of Section 1.7 which forms the bulk of this thesis. The 

various texture analysis methods developed over the last fifteen years or so 

have emerged from a wide range of background disciplines. Texture analysis 

has proven such a difficult pattern recognition problem that no universally 

satisfactory model has yet been developed (or discovered, depending on your 

point of view). Fourier analysis, digital filtering, statistical analysis, random field 

models, fractals, neural models, human based models, and numerous ad-hoc 

models, have all been proposed as techniques for texture analysis. These are 

fully discussed in Chapter Two, which provides an extensive review of the 

current texture analysis literature. One thing all these techniques have in 

common however, is that their feature vectors (explained in Chapter Two) are 

usually very large, which entails an enormous amount of processing and 

memory resources. Optimisation is not yet an issue in the field, since the 

problem has not yet been "solved". It is a novelty of the work described in this 

thesis therefore, that a texture analysis model optimised for a specific range 
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of applications has been developed. The model is described in Chapter 

Three, and is optimised in a dual sense. Firstly the processing and memory 

resources required are minimised. Secondly, the processing technique itself 

is optimal in the sense that it can be implemented in hardware on existing 

commercially available systems. The success of the model is dependant on 

a means of generating suitable convolution masks. Chapter Four describes 

an existing algorithm to optimise (or train) convolution masks for texture 

discrimination, and provides modifications to improve the performance for 

practical applications. From the experience gained in this work, a new 

algorithm to optimise convolution masks is proposed and studied in Chapter 

Five. The new algorithm is shown to significantly out-perform the previous 

algorithm. In Chapter Six, a novel idea is described using the new 

optimisation algorithm: optimisation of convolution masks for detection of 

boundaries in a textured image. The suitability of the new algorithm for the 

task is demonstrated, and the processing stages required for boundary 

detection in a textured image are described. All the processing is again 

convolution based, so that processing time can be kept to a minimum. This 

new technique of boundary detection can be used successfully in applications 

where conventional texture analysis cannot i.e. boundary detection between 

plies of the same material and orientation (and therefore textures). Chapters 

Three to Six, therefore, describe in detail the texture analysis models and 

tools developed to meet the inspection criteria of the application area. 

Chapters Seven and Eight go on to consider a requirement of the 

application which is in direct conflict with texture based inspection, and that is 

the requirement for accurate boundary estimation (i.e. detecting ply edges). 

Texture analysis techniques are based on the patterns produced by groups of 

pixels, and so determination of boundaries in textured images can only be 

accomplished with an error of several pixels [Du Buf et ai, 1990]. Three 

aspects of the inspection strategy described in this thesis address the 

problem. Firstly the texture analysis technique employed is convolution based, 

and such techniques are reported in [Du Buf et ai, 1990] as providing the 

most accurate estimates of texture boundaries. Secondly, analytical boundary 
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models (straight lines and arcs) are employed in an attempt to reduce the 

effect of errors. Chapter Seven describes the implementation of this 

approach, and details experimental attempts to determine inspection error for 

typical preform inspection tasks. Thirdly, and most importantly, a novel 

boundary refinement technique has been developed to improve upon the 

accuracy of the texture based boundary estimate. This is described in Chapter 

Eight, and takes the form of a localised search for "real" boundary points 

using the texture based boundary estimate as a guiding template. It is shown 

that this technique is capable of producing sufficiently accurate estimates of 

ply position to enable automated in-process inspection of dry-fibre lay-up. 

In Chapter Nine, the tools developed in the thesis are integrated into 

the robotic assembly cell. All aspects of integration are considered, and a 

sample preform design is used to demonstrate practical performance of the 

cell. The results of this chapter can be seen to justify the approaches adopted 

in this thesis (discussed more fully below). Finally, Chapter Ten provides the 

conclusions of the thesis, and makes suggestions for further work. 

An important aspect of the work presented in this thesis is that both 

stages of inspection (texture analysis and boundary refinement) have their key 

parameters optimised by training. It is in this way that the flexibility of the 

inspection system is ensured, enabling the last two criteria of Section 1.7 to 

be met. The optimisation criteria for the training stages are practical (empirical) 

measures of performance for a particular application, rather than theoretically 

derived measures. Indeed the models themselves (texture analysis and 

boundary refinement) have little theoretical basis. This differs from many 

inspection techniques which describe the inspection task in terms of a 

mathematically based model. Parameters of the model are then extracted 

analytically (if the equations are mathematically tractable) or set empirically. 

The success of such techniques depends on how well the adopted model fits 

the underlying task, and on the choice of parameters. Almost always, 

significant approximations must be made to derive the basic equations, 

resulting in loss of practical performance. The approach taken throughout is 

to develop pragmatic models for the inspection tasks taking into account the 
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requirements of the application and the limitations of processing resources, 

and to optimise each stage by training. For the case of in-process inspection 

of the dry-fibre lay up process, this approach has proven successful. 

1.9 Conclusions. 

This chapter has attempted to provide a background to the work 

presented in this thesis. Advanced composite components have been 

introduced, the current manufacturing process outlined, and the lay-up cycle 

adopted for automation described. The particular problems faced in the 

machine vision application have been defined, and an overview of the 

approach taken to solve these problems has been given. The state of the art 

in statistical texture analysis is considered in the next chapter. 
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TER 

Texture Analysis Literature Survey. 

2.1 Introduction. 

This chapter will present the findings of an extensive literature review 

into texture analysis methods. It is divided into six main sections. The aim of 

the first section is to explain some of the theory and practice common to many 

of the methods discussed. The next three sections detail the three most widely 

used texture analysis methods: co-occurrence matrices, random field models, 

and multi-channel filtering. The fifth section briefly describes a selection of the 

many other approaches produced over the years, and the sixth section 

summarises the main findings of the survey. 

2.1.1 Statistical versus Structural. 

A strict definition of texture is perhaps not possible, but in the context 

of image segmentation the following is appropriate: "A region in an image has 

a constant texture if a set of local statistics or other local properties of the 

picture are constant, slowly varying, or approximately periodic" 

[Sklansky,1978]. 

The perception of texture depends on image resolution, and this IS 
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related to the idea of a repeating texture primitive, sometimes called a 

texture element or textel. To demonstrate this concept, consider the texture 

exhibited by a brick wall. From a distance the predominant texture is that 

formed by the pattern of the bricks, and the obvious primitive would be the 

brick. Such a structured pattern is sometimes termed a macrotexture. From 

a much closer viewpoint the surface texture of each brick becomes apparent. 

This is an example of a microtexture and it is very much more difficult to find 

a repeating primitive for such a texture. This has given rise to two different 

classes of technique for texture analysis. The structural model regards the 

primitives as forming a repeating pattern and describes such patterns in terms 

of rules (grammar) for generating them. This model is most suitable for 

describing textures where there is much regularity in the placement of primitive 

elements and the texture is imaged at high resolution. The statistical model 

usually describes texture by statistical rules governing the distribution and 

relation of grey-levels. This works well for many natural textures which have 

barely discernable primitives. 

Structural techniques have several drawbacks which preclude use in 

machine vision applications. Automatic determination of the appropriate 

primitive is difficult. The processing time required to extract the primitives can 

be considerable. High resolution images are required where each textel can 

be represented by enough pixels to define a recognisable structure. This in 

turn increases the amount of data to be handled and so further increases the 

processing time required. For these reasons, attention has focused on 

statistical texture analysis, although some approaches which use a mixture of 

statistical and structural techniques are also considered. 

2.1.2 The Feature Vector. 

Statistical texture analysis IS closely tied to the idea of pattern 

recognition. The basic notion of pattern recognition is the feature vector. For 

a given texture, the feature vector V is a set of measurements {V1,V2,· .. vm} 

which attempts to condense the description of relevant characteristics of the 

texture into a small m-dimensional feature space. By selecting appropriate 
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characteristics, different texture classes should be mapped to different "zones" 

of feature space. To achieve image segmentation, a classification rule is 

applied. For successful segmentation it is essential to choose good features. 

With well chosen features the simplest of classification rules will work, whilst 

no classification rule will work if the features chosen are inappropriate. Figure 

(2.1.2.1) illustrates these concepts. 

(a) (b) 
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Figure (2.1.2.1). (a) Well chosen features, (b) Choosing a 
classification rule, (c) Resultant classification paradigm, (d) Badly 

chosen features, no classification rule is appropriate. Adapted from 
[Ballard,Brown,1982]. 

2.1.3 Local Neighbourhoods and Feature Planes. 

Texture is a neighbourhood property, in that a single pixel gives no 

useful texture information. All the methods discussed in this chapter derive 

measures of texture from groups of pixels. The most common grouping is the 

3x3 local neighbourhood shown in Figure (2.1.3.1), although the ordering 

system used may vary from method to method. A typical texture analysis 

method would calculate a texture measure over the nine pixels in this 3x3 

neighbourhood. The resultant texture feature is considered to be attached to 

the central pixel X. 
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Figure (2.1.3.1). The 3x3 local neighbourhood associated with pixel X. 

The window is moved over the image in such a way that each pixel in 

the original image is given an associated texture feature. A feature plane or 

feature image is one where each pixel X is represented by it's corresponding 

texture feature. If, as is usually the case, more than one texture feature is 

measured, then there will be one feature plane for each measure. 

2.1.4 Second-Order Statistics. 

Almost all the methods described in this chapter involve computation 

based on the second-order statistics of the image. The first-order statistics 

of an image are derived from the intensity histogram e.g. mean, variance, 

skewness, etc. The second-order statistics describe the relationship between 

pairs of pixels, both in terms of grey-levels and relative position. The emphasis 

on second-order statistics is mainly due to a famous result by [Julesz,1962]. 

Julesz found that human subjects could not visually discriminate between 

textures which differed only in their third and higher-order statistics. This has 

since been disproved to an extent by [Caelli,Julesz,1978] who found some 

artificial texture pairs with identical first and second order statistics which could 

be visually discriminated. For the vast majority of workers using natural 

textures however, the reliance on second-order statistics is a valid one. 

A common practice among many workers is to histogram equalise the 

image of texture samples [Hall et ai, 1971]. The result of this is to produce 

intensity histograms which have the same mean, variance, etc, so that in 

effect the first-order statistics have been removed, and the texture samples 

can only be discriminated by second-order statistics. This is regarded as a 

proper test of the texture analysis method, since classification can then only 

proceed on the basis of pattern recognition. For a real-world application 
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however, histogram equalisation is often an unacceptable overhead, and so 

it is at least as important to measure the performance for ureal" images. 

2.1.5 Texture Samples. 

Most of the papers reviewed in this chapter demonstrate the 

performance of their proposed methodology on test images. Sometimes these 

images are artificially synthesized textures, sometimes aerial or satellite 

images, occasionally outdoor scenes, but mainly they are selected samples 

taken from [Brodatz, 1966]. This publication, "A Photographic Album for Artists 

and Designersll
, has found a niche in the market which its author never 

intended. 

Whilst the practice of using Brodatz textures as test imagery is useful 

in that it provides a form of benchmark for different texture analysis methods, 

it is also worrying in that it is very often the only testing ground accorded to 

a particular method or model. 

2.1.6 Classifiers. 

Most of the papers reviewed in this chapter will at least mention the 

classifier used. This might be maximum likelihood estimate (MLE), nearest 

neighbour (NN), maximum a-posteriori probability (MAP), a clustering 

algorithm, or some other method. In general however, the texture analysis 

method is independent of the classifier used. For this reason attention will 

focus on the texture analysis methods rather than the classifiers. In general 

however, the importance of classifier choice and performance in automated 

visual inspection is noted. The interested reader is referred to 

[Duda,Hart,1973]. 

The remainder of this chapter will address the various statistical texture 

analysis methods presented over recent years. 
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2.2 Grey Level Co-occurrence Matrices. 

2.2.1 Introduction. 

This approach, also known as spatial grey level dependence (SGLD), 

can be thought of as being based on the estimation of the second order joint 

conditional probability density functions. The first order statistics of an image 

are concerned with the frequency distribution of the grey levels in the picture 

i.e. the grey level histogram. The second order statistics can be expressed as: 

p (i , j, xl, yl, x2, y2) = P (i , j , dx, dy) = P ( i , j) ( 2 . 1 ) 

which is the probability that pixel(x1 ,y1) has grey-level i and pixel(x2,y2) 

has grey-level j. dx and dy give the relative displacement of the two pixels. 

From the above definition, it is clear that P does not depend on the absolute 

indices x1 ,y1, or x2,y2. For a subset of indices 0 specifying a texture region 

to be analyzed on an input image I, the co-occurrence matrix M is an estimate 

of (2.1), and is defined as 

M(dx,dy,i,j) = #{(k,l)E D, I(k,l)=i AND I(k+dx,l+dy)=j} (2.2) 

where #{x} denotes the number of occurrences of x. A point to note is that the 

grey-level intensity distribution (grey-level histogram) can be obtained from the 

co-occurrence matrix by summing the entries in the columns. This means that 

the first-order statistics are embedded in the second-order statistics, and so 

any two images which have identical second-order statistics also have identical 

first-order statistics. 

Several studies (e.g. [Weszka et ai, 1976], [Unser, 1983]) have shown 

that texture is best discriminated when small values of dx and dy are used, 

and MAX(dx)=MAX(dy)=1 is probably most common. Taking symmetry into 

account, the set of displacements would therefore be 

(dx,dy) = {(1,-l),(l,O),(l,l),(O,l)} (2.3) 

and so four matrices Mo(i,j) to M3(i,j) would be required. For 256 grey-levels 

then each Mk is a matrix of size 256x256. Matrices of such size are prohibitive 

both to store and to process, and so several methods have been suggested 

2-6 



to reduce the memory requirements of co-occurrence matrices. 

2.2.2 Reducing Memory Requirements 

Often the four matrices are added together to produce a single 

composite matrix. The result of this is a loss of directionality in that the matrix 

is then invariant under image rotation by 90°, 180°, or 270°, and obviously the 

suitability of such an operation would depend on the application. The co­

occurrence matrix is symmetric (i.e. P(i,j) = PU,i)), so memory requirements 

may also be reduced by storing only the upper diagonal part. Perhaps the 

most common and effective approach is to reduce the matrix size by reducing 

the number of grey-levels in the input image, typically from 256 grey-levels to 

8 grey-levels giving co-occurrence matrices of dimension 8x8 [Haralick et 

ai, 1973],[Weszka,Rosenfeld, 1975]. This is done using histogram equalization 

which transforms the original image histogram into one which is uniformly 

distributed with a reduced number of equiprobable grey levels [Hall et 

al,1972]. All first order statistics are therefore lost and the texture analysis 

takes place using only second order statistics. 

2.2.3 Features Extracted from Co-occurrence Matrices. 

Most frequently co-occurrence matrices are not used as features 

directly, but features based on them are computed. The aim of these features 

is to represent some inherent characteristic of the textures. These may be 

referred to using terms such as homogeneity, coarseness, periodicity, and 

others, many of which seem to have no precise visual meaning. [Haralick et 

ai, 1973] suggested fourteen textural features, commonly referred to as 

f f f which might be extracted from a co-occurrence matrix. Four of the l' 2"" 14' 

most commonly used features, f1' f2' f3' and f9' are given overleaf. 
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fl = L L {p (i, j)}2 Angular Second Moment (2.4) 
i j 

Correlation 

f9 = - L L p (i, j) log (p (i, j) ) Entropy 
i j 

where)lx' )ly' crx ' cry are the means and standard deviations 
of the rows (x) and columns (y) of p(i,j) 

2.2.4 Choice of Features. 

In general, most workers using co-occurrence matrices have employed 

a process of trial and error to chose the features for their particular application. 

[Gotlieb and Kreyszig,1990] presented a more systematic study of the 

discriminatory power achievable by using combinations of Haralick's features. 

Their experiments show that these features are useful for texture 

discrimination, and that combinations of features, or composite classifiers, 

are more powerful. Gotlieb and Kreyszig selected six of the features detailed 

by Haralick, chosen to be mathematically representative of all fourteen of his 

features. They examined the discriminatory power of all sixty-three 

combinations of these six features (the number of possible permutations of six 

features is 26-1) on thirteen samples of Brodatz textures. They conclude that 

there is no advantage to be gained by increasing the number of features 

beyond some small number, the optimal number found to be four in their 

experiments. This result is interesting, in that it is perhaps not what one might 

expect intuitively. One further observation was made, namely that it is possible 

to construct composite classifiers which are particularly good at recognising 

a specific texture class. 

[He, Wang and Guibert,1987] have presented an algorithm which 

automatically selects the best composite classifier for a given classification 

problem from a predetermined set of features. Their algorithm was 

demonstrated using thirty-six features based on co-occurrence matrices (six 
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features at six different values of dx and dy), eleven features based on 

spectral peaks in the power spectrum, and one hundred and twenty-six 

features based on angular distribution in the power spectrum. This gives a 

grand total of one hundred and seventy-three texture features for each sample 

image. The algorithm produced a ten-dimensional composite classifier with a 

mean recognition rate of 95% for ten Brodatz textures. Processing time is not 

reported, but with such a large initial feature set, this algorithm can only be 

useful in the set-up stage of a system, selecting the classifiers which will 

subsequently be used for texture classification. It is interesting to note that 

using the feature set of [He, Wang and Guibert, 1987], which includes features 

other than those based on co-occurrence matrices, no saturation point of the 

type discussed by [Gotlieb and Kreyszig,1990] is noticeable. The 

classification rate using only four features, as proposed by Gotlieb and 

Kreyszig, is about 85%. 

2.2.5 Methods Related to Co-occurrence Matrices 

[Chen and Pavlidis,1978] have presented a segmentation strategy 

which makes use of a co-occurrence matrix in conjunction with a split and 

merge algorithm [Horowitz and Pavlidis,1976]. In this scheme, a quad tree 

is used to represent the image [Samet,1980]. Starting at an intermediate level 

I in the tree, regions which have approximately uniform texture, as calculated 

from co-occurrence matrices, are merged to create larger regions at level 1-1. 

Regions which are non-uniform in texture are split into separate regions at 

level 1+1. This operation is applied recursively until the image is fully 

segmented. "Reasonable" results are claimed for segmentation. 

[Haddon and Boyce,1989] have used co-occurrence matrices in a 

novel way to detect edges in non-textured images. They note that when an 

image is non-textured, then the co-occurrence matrix exhibits a characteristic 

structure of peaks corresponding to the regions and boundaries in an image. 

The matrix itself is segmented, and an inverse mapping performed to enable 

each pixel in the original image to be classified as either edge or region. A 

relaxation algorithm is applied iteratively to improve the results. The authors 
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regard this approach as simultaneously combining segmentation with edge 

detection. 

[Davis,Johns and Aggarwal, 1979] have proposed an extension called 

Generalised Co-occurrence Matrices (GCM's) which incorporate more 

abstract features than grey-levels, such as edge segments. The features will 

normally require to be represented as vectors. Such a vector for edge 

segments might be {Iocation(x,y),orientation,magnitude}. The spatial 

relationship between such features is also modified from the basic dX,dy 

displacement, and may relate to angular segments relative to a centre pixel 

or edge. Features are again based on statistics of the matrices. Davis reports 

that GCM's are useful in discriminating between macrotextures that are not 

satisfactorily distinguishable using features derived from conventional co­

occurrence matrices. Classification accuracy for GCM's was reported as 

80+%, compared to 50-57% for conventional co-occurrence techniques, using 

a dataset of thirty texture samples from five different classes. In 

[Davis,Clearman and Aggarwal, 1981] a slightly different feature, called an 

extended edge was used, and compared to edge segment GCM's and grey­

level co-occurrence matrices, with variable results. 

GCM's represent one of the few attempts to provide some form of 

continuity between microtexture analysis and macrotexture analysis. Despite 

this they have attracted little subsequent attention, possibly due to the 

indifferent results detailed in [Davis,Clearman and Aggarwal, 1981]. 

[Unser,1986] presented a simplification of co-occurrence matrices, 

based on the associated sum and difference histograms. Characterising the 

grey-level of any pixel as a random variable, then the second order statistics 

of an image can be considered as the joint probability function of two random 

variables, as defined in equation (2.1). Unser shows that the sum and 

difference of two random variables define the principal axes of the second 

order probability function of a stationary process. He proposes that co­

occurrence matrices can therefore be replaced by their associated sum and 

difference histograms, which can be estimated directly from the imag~. For an 

input image I the sum and difference associated with the relative displacement 
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(dx,dy) are defined as 

s(k,l) = I(k,l) + I(k+dx,l+dy) (2.5) 

d(k,l) = I(k,l) - I(k+dx,I+dy) 

The sum and difference histograms with parameters (dx,dy) over the 

domain D are defined in a manner very similar to grey-level co-occurrence 

matrices. 

hs(i, dx, dy) = #{(k,l)E D, s(k,l)=i} (2.6) 

hd (j , dx, dy) = # { (k, 1) ED, s (k, 1) = j} 

where #{x} denotes the number of occurrences of x. Unser derives features 

for sum and difference histograms which correspond to the features Haralick 

derived for co-occurrence matrices. This method gives comparable results to 

those obtained using co-occurrence matrices, but reduces memory 

requirements and therefore processing time. 

2.2.6 Industrial Applications of Co-occurrence Matrices. 

Unlike most of the texture analysis methods described in this chapter, 

there have been some examples of co-occurrence matrices being used in 

industrial applications. [Kruger, Thompson and Turner,1974] presented the 

results of a feasibility study into automated mass diagnostic screening of 

pneumoconiosis radiographs. The input image was histogram equalised to 

eight grey-levels, and displacements of {1 ,3,5,11} for dx and dy were used. 

Four Haralick features were used (f3 correlation, f4 variance, f5 inverse 

difference moment, f9 entropy), and one ad hoc feature similar to variance. 

The classification accuracy for their dataset was 96.9% compared with a 

classification accuracy of 93.4% for radiologists over the same dataset. 

[Borghesi,Cantoni and Diani] details the results of a feasibility study 

which used a system based on co-occurrence matrices to recognise defects 

of pneumatic components. The textures in question were very regular, and 

defects restricted in their nature. As a result the only feature which had to be 

calculated from the matrix was an unusual measure relating to the grouping 
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of values around the main diagonal. This is reported as being livery effective II , 

but no results are given detailing performance, and no indication is given as 

to whether or not the system was to be implemented. 

[Weszka and Rosenfeld,1976] tested a large set of features on 

samples of an unspecified "industrial material". The samples of material had 

previously been graded by human inspection. The material was being 

inspected at an early stage in the production process to try to determine 

whether it was likely to become of poor quality at a later stage. At the 

inspection stage this was not easily discernible to the human eye. Weszka and 

Rosenfeld found that some of the features defined by Haralick could achieve 

correlations of better than 0.9 between judgements at the inspection stage and 

defects at the later stage. Only single features were used, not combinations 

of features. It is interesting to note that this seems to indicate that the judged 

quality did not correspond to any obvious visual quality of the material. In other 

words, features measured on co-occurrence matrices do not necessarily relate 

to any feature detectable to the human vision system. Again, the paper gave 

no indication regarding the possible implementation of an automated 

inspection system. 

2.3 Random Field Models. 

2.3.1 Introduction. 

Considerable recent interest in texture has centred on statistical 

techniques for modelling and processing image data. The focus of much of 

this work has been the Markov Random Field (MRF) model. For this, and 

related models, texture is considered to be a stochastic, usually periodic, two­

dimensional field. Much of the fundamental work relating to MRF's was carried 

out by physicists investigating lattices, and the nomenclature reflects this. The 

basic definitions for a MRF are as follows. 

For an M x N rectangular lattice L defined as 

L={ (i I j) : l~i~M, l~j~.M (2. 7) 

let r = (i,j) index pixel location i,j. Let {xr} denote a random field, with xr the 
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field at pixel r. The term Markov is loosely applied to any model where the 

probability of a pixel xr having a particular grey-level does not depend on 

pixels beyond a small neighbourhood 0 surrounding pixel xr. This is more 

succinctly expressed as : 

p(xr=xl all other values) = p(xr=xl values of neighbours) (2.8) 

or p (xr =xl X(r)) = p (xr=xl X(D) ) 

where x is a grey level, X(r) is the random field over the whole lattice except 

at r, and X(D) is the field in a neighbourhood 0 of r. The term p(xr=xIX(D» 

denotes the conditional probability that xr will equal x, given X(D)' 

A Markov Random Field (MRF) must satisfy the above neighbourhood 

condition, as well as two further conditions. The first one is positivity. This 

simply means that the probability of any pixel having any grey level on the 

specified grey scale (i.e. 0 .. 255) is non-zero. The second is homogeneity. This 

says that the conditional probabilities are unaffected by the actual co-ordinates 

of the pixel, only the neighbourhood values matter. 

2.3.2 Binomial Model. 

The probability p(X=xlneighbours) is binomial with parameter SeT) and 

number of tries G-1, where G is the number of grey-levels [Cross,Jain,1983]. 

S is defined as 

e = exp ( T) (2 . 9 ) 
1 + exp (Tj 

For a first-order model, as shown in Figure (2.3.2.1), then T has the form 

T = a+b(O) (t+t') + b(l) (u+u') (2.10 ) 

u' 

t x t' 

u 

Figure (2.3.2.1). First order neighbours used in equation (2.10). 
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In general, T is given by: 

T=a+~bs 
~ v v 
1-€D 

(2.11 ) 

where D is the defined neighbourhood, by is the potential associated with the 

pixel pattern Sy, and v£D [Cohen, Cooper, 1987]. 

The binary case, where the lattice variables (or pixels) have range {0,1} 

is a special case of the binomial model, called the Binary Markov Random 

Field Model [Cross,1980]. For a first order binary model, the conditional 

probability of x is given by 

p(X=xl u, u l , t, t/) = EXP(xT) 
1 + EXP(T} 

(2.12 ) 

The number of parameters needed to describe a model depends on it's 

order. The model represented in (2.12) is specified by three parameters, a, 

b(O), and b(1). The parameter a relates to the ratio of "black" pixels to "white" 

pixels. (In general ak denotes the fraction of pixels in an image that assume 

the value k). The parameter b(O) controls clustering in the East-West direction, 

while the parameter b(1) controls the clustering in the North-South direction. 

2.3.3 Gibbs Random Fields. 

Much of the recent research in the field has made use of a Gibbs 

Distribution (GO) to characterise a Markov Random Field [Derin,Elliott, 

1987], [Daily,1989], [Chen,Dubes,1989]. This type of distribution was 

introduced by Ising to describe ferromagnetism (the Ising model) [lsing,1925]. 

It has traditionally been used for either Gaussian or binary variables on a 

lattice in such applications as idealised gas models and crystal lattice models. 

It finds favour in texture synthesis and segmentation since it allows 

development of tractable and robust algorithms. For the basic definitions 

necessary for a Gibbs Distribution on a random field we follow 

[Derin,Elliott,1987]. 
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Neighbourhood System. 

For a lattice L as defined in equation (2.7), n is a neighbourhood 

system on L iff n(i,j), the neighbourhood of pixel(i,j) is such that 

(i) (i,j) it n(i,j) (2.13) 

(ii) if (k,l) E n(i,j), 
then (i I j) E n (k, 1) 'if (i I j) E L 

Figure (2.3.3.1) shows a central pixel P and the neighbourhoods to order six. 

The numbers represent the order of the neighbourhood, so that a first order 

neighbourhood consists of only the pixels that are four-connected to pixel P, 

second order consists of eight-connected neighbours, and higher order 

neighbourhoods use surrounding pixels at increasing Euclidian distances. An 

Nth order neighbourhood incorporates neighbourhoods 1 .. (N-1). 

6 

5 4 3 4 5 

4 2 1 2 4 

I 6 3 1 P 
I 

1 3 6 I 
I 

4 2 1 ! 2 4 
I 

5 4 3 
I 

4 5 I 
I 

6 

Figure (2.3.3.1). Hierarchal neighbourhood ordering system. 

Clique 

A clique c is a subset of L such that: 

(i) a consists of a single pixel or (2.14) 

(ii) for (i,j) "# (k,l), (i,j) E a, (k,l) E a, 

then (i,j) E n(k,l) 
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In words, a clique is a set of pOints that consists of either a single point or has 

the property that each point in the set is a neighbour of every other point. The 

cliques associated with a neighbourhood of order two are shown in Figure 

2.3.3.2. 

D 

Eb 
El 
EP 

Figure 2.3.3.2. Cliques for neighbourhood of order two. 

Gibbs Distribution. 

Let n be a neighbourhood system defined over the finite lattice L. A 

random field {Xr} defined on L has Gibbs Distribution, or equivalently is a 

Gibbs Random Field, with respect to n if and only if its joint distribution is of 

the form 

P(xr = x) (2.15 ) 

where 

U(x) = L ~c (x) 

~c (x) = potential associ a ted wi th clique c 

Z = L e-U(x) parti tion function 

The partition function Z is merely a normalising constant. The only 

condition on the otherwise arbitrary clique potential is that it depend only on 

the pixel values in clique c. The Gibbs Distribution is basically an exponential 

distribution, but by careful selection of the clique potential function a wide 

variety of distributions can be formulated. In texture analysis terms it can be 

used to control, for example, the percentage of pixels in each region type, and 

the size and direction of pixel clustering. 
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2.3.4 Gaussian Markov Random Fields. 

Another common model is known as the Gaussian Markov Random 

Field [Kashyap et al,1982], [Cohen,Cooper,1987], [Jeng,Woods,1989], 

[Fan,1989], [Manjunath et ai, 1990]. The conditional probability distribution 

is Gaussian, so that 

p(Xr=X) = [21tcr2]-~IBlexp{-[(X - U)t B (X - U)]} (2.16) 
2cr2 

where U is the mean vector of xp and B is a symmetric MxM matrix whose 

diagonal elements are unity and whose off-diagonal elements are ~r-v 

[Cohen, 1986]. ~r-v indicate the clique potential at points rand v. ~r-v is zero 

if points r and v are not neighbours. The elements of the mean vector are 

defined as 

~r = ~ + L ~r-v(Xv-~) 
'"ED 

2.3.5 Estimation of Parameters. 

In order that MRF's might be useful in texture segmentation and not just 

texture modelling, some method of estimating MRF parameters from an 

observed texture is required. One such method is called Maximum Likelihood 

Estimation. 

For the Gibbs model a maximum likelihood estimate is complicated by 

the massive computation required to calculate the normalising constant Z in 

(2.15) [Cohen,1986]. One solution, due to [Besag,1972], involves partitioning 

the lattice (image) into disjoint sets of points called codings. Each coding is 

chosen so that it's points are independent. For MRF's, this means that no two 

points in a coding can belong to the same neighbourhood system, as defined 

in equation (2.13). The number of codings required therefore depends on the 

order of the neighbourhood of the MRF. For a first-order MRF at least two 

codings are required as shown in Figure (2.3.5.1). 

2-17 



* 
: I * * · . · I 

I 

* * * . . 
I I 

I I 

* 
I 

* * · · 
I 

* I * I 
I 

* . . . 
I 
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Figure (2.3.5.1). Coding pattern for first-order process showing two 
codings, * and. 

Following [Cross,1980], let I(i) be the log likelihood for the i
th 

coding 

obtained by extending the summation over only those points X' which are in 

coding i. 

l(i) = Lln(p(x=xINeighbours of X)) (2.17) 
X' 

An estimate of the parameter vector for the ith coding is obtained by 

maximising I(i). This is done by finding values of the parameters a and ~(j,k) 

so that 

dl (i) = 0 
(Ja 

AND dl(i) =0 
(Jbu,k) 

(2.18 ) 

for j=1 .. r and k=1,2 where r is the order of the process. The system of 

equations represented by (2.18) is non-linear and must be solved by an 

iterative approach, such as the Newton-Raphson method [Isaacson and 

Keller, 1966]. An estimate of the parameter vector is obtained for each coding, 

and the final estimate is the average value over all the codings. 

For the Gaussian MRF of (2.16) the normalising constant is more easily 

obtainable, and so a maximum likelihood estimate can be obtained by 

maximising (2.16) [Cohen,1986]. Again this is non-linear and an iterative 

solution is needed. 
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2.3.6 Applications of Random Field Models. 

[Cross,Jain,1983] used the binomial model to generate synthetic 

textures and estimate parameters for natural textures. Image examples are 

generated using the "Metropolis" algorithm, sometimes referred to as 

simulated annealing [Metropolis et al,1953], and show how the parameters 

of the binomial model can be controlled to produce textures which are blurry 

or sharp, blob-like or line-like. For texture characterisation, a maximum 

likelihood estimation process is used which requires image areas of at least 

64x64 pixels to achieve good parameter estimation. This is obviously 

inappropriate for accurate segmentation. The authors conclude that 

microtextures fit the binomial model well, but that regular or inhomogeneous 

textures do not. 

[Cohen,Cooper,1987] use a doubly stochastic approach to image 

modelling, which means that two levels of model are involved. A Gaussian 

MRF is used to model texture, while a Binary MRF is used to model a-priori 

information about local geometry of textured image regions. Such a-priori 

information might be that the image is expected to exhibit boundaries with low 

(or high) curvature. Two segmentation algorithms are presented. The first, for 

the case when no a-priori information about region geometry is available, is 

a hierarchical algorithm using maximum likelihood estimation for segmentation. 

The second is a recursive relaxation algorithm which searches for a maximum 

a-posteriori likelihood segmentation, using the a-priori information contained 

in the Binary MRF model. Such a scheme is sometimes called maximum a­

posteriori probability criteria (MAP). Generally the algorithms perform 

extremely well on artificially generated MRF's, but markedly less well on 

natural textures which tend to be non-stationary (non-homogenous). 

[Jeng,Woods,1989] also use a doubly stochastic approach and MAP 

segmentation. In their design both levels are Gaussian MRF models. Two 

MAP solutions are compared. One, using simulated annealing is very slow but 

highly parallel in nature, the other, referred to as the Highest Confidence 

First (HCF) algorithm is faster but inherently sequential. Images are presented 

to illustrate results, but no classification accuracies are reported. 
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[Fan,1989] presents a hierarchal edge based segmentation algorithm 

which uses a Gaussian MRF to model texture. The algorithm has two stages. 

In the first the image is divided into windows. "Mixed" windows, i.e. those 

containing texture boundaries, are located by application of a hypothesis test 

to the estimated Gaussian MRF parameters of the observed texture. In the 

second stage a maximum likelihood estimation is applied to the mixed 

windows to refine the boundary estimate. Both stages are applied 

hierarchically, from low resolution to high resolution. The results are illustrated 

with an example image, which shows impressive segmentation of an outdoor 

scene. 

[Manjunath et ai, 1990] compare several texture segmentation 

algorithms using different estimates of MAP, where the texture is modelled as 

a Gaussian MRF. A fast approximation to MAP is implemented on a neural 

network, and is compared to simulated annealing in obtaining the MAP 

estimate. A modification which introduces learning into the network model is 

also tested. A further algorithm is presented based on maximising the 

posterior marginal distribution (MPM algorithm). This relates to iteratively 

examining the classification of a pixel compared to the classification of it's 

neighbours. Examples showing segmentation of an image containing six 

Brodatz textures are presented to illustrate results. The segmentation attained 

by using the MAP estimate of simulated annealing and MPM are particularly 

impressive. 

[Derin,Elliott,1987] present a hierarchal multi-level Gibbsian model to 

segment noisy and textured images. The model uses second-order Gibbs 

Random Fields (GRF's) to model texture and region information. Areas of non­

texture are modelled as uniform intensity plus Gaussian noise. Segmentation 

is achieved using a dynamic programming algorithm with a MAP criterion 

[Bellman, Dreyfus,1962]. An alternative to coding is detailed, based on 

histogramming and linear least-squares estimation of the second order 

neighbourhood. The model presented here requires a-priori information 

regarding the GRF parameters in order to segment an image. All texture 

examples are of images generated synthetically by GRF's. Since no images 
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containing natural textures were tested it is difficult to assess the performance 

of this model. 

[Chen,Dubes,1989] examined MRF estimation procedures and 

goodness-of-fit of resultant parameters for binary single-texture images. Using 

the GRF model of [Derin,Elliot,1987] and the binomial model of 

[Cross,Jain, 1983], four methods were tested: Pseudo Maximum Likelihood 

Estimation (PMLE); Least Squares Error Method (LSQR); Logit Model Fit 

Method (Logit); Minimum Logit X2 Method (Min-X2). For estimation of 

parameters, PMLE and Min-X2 are generally better for both GRF and binomial 

model, with Min-X2 performing 10 to 20 times quicker than PMLE. To measure 

the correspondence between a given texture and the MRF model, a goodness­

of-fit statistic was applied. The Min-X2 method produced the best result for 

both GRF and binomial model. These results are not readily extendable to 

grey-scale images. 

[Daily,1989] discusses the use of MRF's in colour image segmentation 

of natural scenes. The most interesting part of this paper is the discussion on 

the relative merits of different pixel tessellations (rectangular, hexagonal, and 

triangular). 

2.4 Multi-Channel Filtering. 

2.4.1 Introduction. 

This approach is inspired by the multi-channel filtering theory proposed 

by cognitive scientists to model the processing of visual information in the 

early stages of the human visual system. The theory holds that the visual 

system decomposes the retinal image into a number of filtered images, each 

of which contains information over a narrow range of frequency and 

orientation. The theory was first proposed by [Campbell, Robson, 1968]. They 

conducted a series of psychophysical experiments to measure the 

discriminatory power of the human vision system when presented with 

sinusoidal grating patterns. They found that perception of the gratings was a 

function of spatial frequency, and concluded that their findings could be 
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explained by lithe existence within the nervous system of linearly operating 

independent mechanisms selectively sensitive to limited ranges of spatial 

frequencies". These mechanisms are commonly referred to as channels. 

Experiments by a range of other workers has tended to support the work of 

Campbell and Robson. [De Valois et al,1982] for example, recorded the 

response of simple cells in the visual cortex of the Macaque monkey to 

sinusoidal gratings with different frequencies and orientations. The cells were 

observed to respond only to a narrow range of frequency and orientation. 

[Marr,1982], as part of his "primal sketch II model, has suggested a 

similar multi-channel approach to edge detection. 

The multi-channel model is sometimes referred to in the image 

processing literature as the bank of filters, or linear transform method. It 

finds particular favour in digital image processing since each channel can be 

implemented as a filtering operation using fast convolution hardware. Even 

with a large number of channels this model is still very much faster than most 

other approaches to image analysis. 

2.4.2 Early Examples of MUlti-Channel Filtering for Texture Analysis. 

A very simple multi-channel approach was adopted for segmentation of 

aerial photographs by [Triendl,1972]. Two filters were applied in the spatial 

domain, a 3x3 moving average filter (low-pass), and a 3x3 Laplacian filter 

(high-pass). An 11x11 moving average filter was used to smooth the resulting 

feature images before segmentation by a nearest neighbour classifier. 

[Faugeras,1978] presented an implementation featuring frequency 

domain filtering. He used twenty-seven filters (three radial frequencies and 

nine angular frequencies), and implemented convolution using FFT techniques. 

[Granland,1980] presented a variation on the multi-channel filtering 

approach. He applies a series of edge detectors in a scheme very similar to 

template matching (see [Davies, 1990], or [Ballard,Brown, 1982]) to generate 

a feature image representing both magnitude and orientation. This feature 

image is then itself filtered in the same way as the first, with the result that 

boundaries between areas of different texture are detected. This approach 

2-22 



seems only applicable to regular, line-like textures. 

2.4.3 Laws Method. 

The multi-channel filtering approach for texture analysis really came to 

prominence with the work of Laws [Laws, 1980]. His model is the basis for 

many of the publications discussed in the remainder of this section, and so it 

is presented here in some detail. Figure (2.4.3.1) gives a diagrammatic 

representation of the model. 

F1 C 
MASK RECTIFY SMOOTH 

1 L 

F2 A 

MASK RECTIFY SMOOTH S S 
2 

'S' , , 
, , 

I : 
FN 

F 
MASK RECTIFY SMOOTH 

N Y 

Figure (2.4.3.1). Laws texture analysis model, with input image I, 
feature images F1 .. FN, and output segmented image S. 

Texture is measured by convolving the input image with small centre­

weighted filter masks, and then computing statistics within a window around 

each pixel of the filtered image. Laws developed sets of 3x3, 5x5 and 7x7 

masks, and compared results for each. The basic concept is that these masks 

respond to certain features (frequencies) inherent in the texture. This is 

reflected in the nomenclature for the masks, using mnemonics representing 

level, edge, spot, wave, ripple, undulation, and oscillation. His texture 

segmentation process is as follows. 
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(1) Each of N masks is convolved with the original image to produce N 

new images. Laws developed twenty-five 5x5 masks (N=25), but found that 

almost as good performance was achieved for his dataset using only four 

(N=4). 

(2) For each image, macrostatistics are computed around each pixel 

over a larger window size, typically 15x15. The most useful statistic was found 

to be the variance of pixel values in the transformed image. For zero-sum 

masks, which all but one of Laws masks are, the filtered images are also 

approximately zero-sum, and so a fast approximation to variance is the sum 

of the absolute values. This performs almost as well and has the advantage 

that it is computationally cheaper. To compute the sum of the absolute values 

over a 15x15 window for each point in an image is equivalent to convolving a 

rectified version of that image with a 15x15 mask which has each coefficient 

equal to one. This is indicated in Figure (2.4.3.1) by the two stages, Rectify 

and Smooth. The image resulting from rectification and smoothing, Laws calls 

a texture energy image. 

(3) The third stage is classification using a nearest neighbour classifier. 

Each point in the original image now has a feature vector of dimension N 

associated with it, one value for each pixel in the N texture energy images. 

Therefore each pixel now has a value for "edge", "spot", "ripple", etc. Each 

pixel in the original image is classified as belonging to the texture class which 

it's features most strongly match. This is supervised segmentation, in that a 

training stage is necessary to establish the feature space occupied by the 

various texture classes. If the goal is unsupervised segmentation (no a-priori 

knowledge about texture classes), then the classification stage could be 

changed to use a more sophisticated clustering algorithm (see, for example 

[Jain,1988]). The feature extraction stage of Laws method is equally suited to 

both approaches. 

Laws used what he describes as a "worst case" dataset of textured 

images taken from the ubiquitous Brodatz album [Brodatz, 1966], and 

compared his method to that of co-occurrence matrices [Haralick et al,1973]. 

His "texture energy" method showed a definite superiority ,with 94% 
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classification accuracy compared to 720/0 for co-occurrence matrices. It is this 

result which prompted the popularity of the approach. Until then, no method 

had been developed which could out-perform the co-occurrence method 

proposed by Haralick. 

Laws four most useful masks are shown (with their corresponding 

mnemonics) in Figure 2.4.3.2. 

-1 -4 -6 -4 -1 1 -4 6 -4 1 
-2 -8 -12 -8 -2 -4 16 -24 16 -4 
0 0 0 0 0 6 -24 36 -24 6 
2 8 12 8 2 -4 16 -24 16 -4 
1 4 6 4 1 1 -4 6 -4 1 

E5L5 R5R5 

-1 0 2 0 -1 -1 0 2 0 -1 
-2 0 4 0 -2 -4 0 8 0 -4 

0 0 0 0 0 -6 0 12 0 -6 
2 0 -4 0 2 -4 0 8 0 -4 
1 0 -2 0 1 -1 0 2 0 -1 

E5S5 L5S5 

Figure (2.4.3.2). Laws four most useful masks. 

[Pietikainen et ai, 1982] found that the power of the masks depends 

on their general form (edge-like, spot-like etc.) rather than on the specific 

numerical values used in the masks. 

Laws method is heuristic, owing little to theory, and several workers 

have attempted to study this approach more rigorously. [Cohen et ai, 1989] 

arrived at the four 2 x 2 Hadamard masks shown in Figure (2.4.3.3), which 

are derived from the covariance matrix associated with the four variables of 

a local 2 x 2 neighbourhood [Harmuth,1972]. 

1 

1 

1 1 1 1 -1 1 -1 

1 -1 -1 1 -1 -1 1 

Figure (2.4.3.3). 2x2 Hadamard masks used by some authors 
as filters in the multi-channel method. 

These transform the local neighbourhood into a set of four uncorrelated local 
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features which measure local average and local derivatives in the horizontal , 
vertical and diagonal directions. This approach is demonstrated to be superior 

to the sum and difference histogram method of [Unser,1986] discussed in 

Section 2.2.5, but unfortunately no comparison is made with Laws method. 

[Boubekraoui et ai, 1984] describe a system which uses the 

Hadamard masks of Figure (2.4.3.3), chosen for the relative ease with which 

they can be efficiently implemented in hardware. The classification procedure 

used and the results obtained are unclear not, as is sometimes the case, 

because of convoluted mathematics, but rather in this instance because of 

convoluted English. 

[Unser, 1986] and [Ade] compared Laws masks with various transforms 

which have sound theoretical foundations, such as the discrete sine, cosine, 

Karhunen-Loeve, or Hadamard transforms. Interestingly, a number of Laws 

masks are very similar to those which result from application of such 

transforms to textured images, which is surprising considering that Laws 

arrived at his filter set in a quite different manner. 

[Harwood et al,1983] present an alternative to the texture energy 

measure proposed by [Laws,1980]. Harwood uses ranked versions of both 

mask and neighbourhood. In such a scheme, it is the relative order of the 

pixel/mask element values which is important, not the actual values. This is 

best understood by reference to Figure (2.4.3.4) which shows Laws mask 

L3E3 and the corresponding ranked version. 

[=~ ~ ~J 
-1 a 1 ~

2'5 5.0 
1.0 5.0 

2.5 5.0 

7.5J 
9.0 
7.5 

L3E3 RANKED VERSION 

Figure (2.4.3.4). Example of ranking on a 3x3 mask. For a 3x3 
local neighbourhood the process is analogous. 

A measure of correlation between ranked masks and ranked neighbourhoods 

is given by Spearmans rank correlation coefficient [Udny et ai, 1968]. It 

seems logical to suppose that the process illustrated in Figure (2.4.3.4) will 

reduce the effects of noise in the image, and indeed Harwood reports 

improved classification results over the texture energy measure. His 
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implementation of texture classification is not, however, carried out as 

specified by Laws, and so this result should be treated with some care. More 

importantly it is not possible to implement this approach as a simple multi­

dimensional filtering operation, and so the processing time required would be 

vastly increased. 

[Hsiao,Sawchuk,1989] examine ways to improve the segmentation 

results obtained by a multi-channel filtering model. Rather than the simple 

moving window average approximation to variance used by Laws, the use of 

a quadrant filtering method is suggested. This, as the name suggests, implies 

dividing the moving window into four sub-windows, and calculating the 

variance of the window as a whole as being equal to the smallest variance of 

any constituent sub-window. This, it is proposed, reduces the misclassification 

error at region boundaries where the window will contain more than one 

texture class. The application of probabilistic relaxation algorithms to the 

segmented image is examined, and improvements in classification of the order 

of 1-2% are reported. These algorithms are iterative and computationally 

expensive, and so it is unlikely that many applications would find this process 

advantageous. 

[Unser,Eden,1988] also modify the moving average approximation 

used by Laws. They propose an iterative Gaussian smoothing algorithm, which 

they suggest is less sensitive to nearby edges since it gives greater weight to 

the central pixels in a window. A further processing stage is used to compress 

the resultant feature planes into fewer components while retaining the 

information for optimal discrimination. The individual stages and their effect in 

segmentation are evaluated in detail, but no comparison to other methods is 

provided. 

[Cano,Minh,1988] have investigated a more complex multi-channel 

model than that described by Laws. Their model incorporates multi-resolution 

multi-channel filtering. The features measured are first, second and third-order 

statistics of the filtered images at each resolution. The masks used may be 

Hadamard, Laws or others. Little mention is made of texture classification, but 

the model is demonstrated to be able to synthesize microtextures well and 
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structured textures less well. This is a similar result to that reported by 

[Cross,Jain,1983] in Section 2.3.6, which used Markov Random Fields for 

texture synthesis. 

[Michel et ai, 1989] present a texture segmentation system based upon 

multi-channel filtering in which they have attempted to make the segmentation 

algorithm independent of the masks used. This approach is very similar to the 

method described in [Chen,Pavlidis,1978] (see Section 2.2.5), which uses 

a split and merge algorithm in conjunction with a co-occurrence matrix to 

segment images. In this case the homogeneity of a region (whether it contains 

more than one texture class) is determined from the output of a bank of filters. 

For the composite texture images used as test data, the segmentation appears 

very good. 

[Benke,Skinner,1987] introduce the idea that in cases where only two 

textures appear in an image then a single channel can discriminate them. 

Such an approach is obviously only suitable for a limited number of 

applications. An algorithm to train convolution masks to discriminate between 

two textures is presented. The algorithm is iterative and uses a Monte-Carlo 

approach. A potential application is described in [Skinner et al,1990], where 

the algorithm is used to generate masks which will detect defects in 

radiograph images of ordinance fuses. The position and nature of each 

possible defect is known a-priori, and so this is an ideal application for 

automated visual inspection. In [Benke et al,1988] the algorithm is used to 

generate masks which are used in psychophysical experiments. Human 

subjects were asked to sort images of fourteen textures according to the order 

of features such as "blob-likeness", "Iinearity" and II regularity". Masks were 

generated so that the variances of the filtered images correlated with the 

human perception. The authors feel that, if the features used in the human 

vision system for texture discrimination can be determined, then convolution 

masks can be generated which strongly correlate with these features. It is, 

however, the first part of this process which is presenting all the problems. 
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2.4.4 Frequency Domain Methods. 

Some authors have chosen to implement the multi-channel filtering 

model in the frequency domain. One of the earliest examples, already 

mentioned in Section 2.4.2, is due to [Faugeras,1978]. In this implementation 

twenty-seven filters (three radial frequencies and nine angular frequencies) are 

used. Convolution is implemented using FFT techniques. 

[lkonomopoulos,Unser, 1984] demonstrates a similar approach, using 

bandpass filters selected to span the domain. A maximum likelihood procedure 

is used for classification. Using four Brodatz textures, the classification results 

obtained for window sizes of 7x7, 15x15, 31 x31, and 61 x61 were 76%, 88%, 

98%, and 99% respectively. 

[Coggins,Jain,1985] also applied filtering in the frequency domain. 

Rather than texture energy, they use a novel feature based on measurement 

of the grey-level histogram of each filtered image. Using eight Brodatz textures 

and a nearest neighbour classifier, results of 98% and 91 % classification 

accuracy were obtained using window sizes of 64x64 and 32x32 respectively. 

This feature was incorporated into a segmentation scheme which used a 

clustering algorithm to discriminate texture regions. From the accompanying 

images it is difficult to assess the performance. 

[Monte et al,1988] have developed method for isolation of a texture 

class in an image. This is similar in concept to the approach of [Benke, 

Skinner,1987] detailed in Section 2.4.3, but with the difference that the 

design of filter for texture discrimination is carried out in the frequency domain. 

The application here is analysis of aerial photographs, where it is useful to 

highlight a particular texture, i.e. forest areas. This paper describes a simple 

system using binary filters which provide only limited performance. An 

extension to grey-scale has not, as yet, been published. 

2.4.5 Eigenfilters. 

[Ade,1983a] introduces the idea of actually deriving the filter masks 

from the texture being analyzed. From a homogenously textured region he 

calculates the eigenvectors of the corresponding covariance matrix and uses 
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these as the coefficients for his masks, which he calls eigenfilters. This 

process is sometimes referred to as the Karhunen-Loeve transform 

[Unser,1986]. 

For a 3x3 neighbourhood, the covariance matrix C is defined as 

c = ri=r L (b(i,j) -m) (b(i,j) -m)T 
(i, j)eI 

(2.19 ) 

where m = ~ L b(i, j) 
(i,j)eI 

where (i,j) is the coordinate pair of the central pixel, N is the number of pixels 

in the area r, and b(i,j) indexes the nine components of the local 3x3 

neighbourhood (see Figure (2.1.3.1 »). The covariance matrix fully determines 

the joint second order distribution of grey-levels in a Gaussian process 

[Ade,1983a]. For a 3x3 neighbourhood the covariance matrix C has size 9x9. 

For matrix C, the eigenvalue problem is posed as 

(C - AI) e = 0 (2.20 ) 

where I is the 9x9 identity matrix, A is an eigenvalue, and e is an eigenvector 

(for an introduction to eigensystems, see [Kreysig,1983, p.345]). Equation 

(2.19) has solutions ej with eigenvalues A1>0 (i=1 ,2, ... 9). Since covariance 

matrices are symmetric, these solutions are easily obtainable by numerical 

methods such as the householder reduction [Press et al,1990], and so the 

eigenvalues and, more importantly, eigenvectors can be extracted. 

These eigenfilters have some appealing properties. They are derived 

without loss of information from the covariance matrix, which as mentioned 

above fully describes the second order statistics generally thought to represent 

essential texture information. The eigenfilters themselves are orthogonal, and 

therefore completely span the feature space. Laws filters are not orthogonal. 

Eigenfilters are, therefore, theoretically attractive. Unfortunately this does not 

readily translate to practical applications. 

In explaining this, it is important to realise the difference between this 

approach and that of Laws. The multi-channel filtering method, as realised by 

Laws, uses an empirical set of filters to extract features from textures which 

are subsequently used for classification purposes. The filter set might be 

considered a common metric by which all textures can be measured. 
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Eigenfilters on the other hand, are themselves extracted from the texture, so 

that each texture will produce a different set of eigenfilters. This method, 

therefore, does not produce any common metric with which to classify, and 

therefore segment, texture. What it does do is produce some means with 

which to characterise a texture class. It has therefore found application only 

in areas relating to defect detection, and not texture segmentation. 

[Ade,1983b] details some experiments involving defect detection of textile 

web. The process is as follows. In the training stage the 3x3 eigenfilters are 

derived from a IIgood" sample of web. For defect detection, each input image 

is filtered by each of the nine eigenfilters producing nine feature images. 

These feature images are used as input to a classifier. Pixels which are not 

sufficiently close to the feature space defined by the "good" sample of web are 

classified as defect. Ade reports some problems and limitations of his 

procedure. 

[Dewaele et al,1990] present a similar system, but introduce the idea 

of using convolution masks which are referred to as sparse matrices. A 

sparse matrix is a matrix with relatively few non-zero elements, compared to 

the more common contiguous form of convolution matrix (mask) in which 

(generally) all elements are non-zero. The position of the non-zero elements 

within the sparse matrix are determined by estimation of the period of the 

texture being processed. A sparse texture (texture elements relatively few and 

far apart) will result in a "long" period and therefore a sparse convolution 

mask. A high frequency texture on the other hand will result in a "short" period 

and therefore a contiguous mask. Two methods are suggested for estimation 

of the period, one using measurement of the co-occurrence matrix, the other 

an iterative comparison between different autocorrelation window sizes. The 

non-zero elements are ascertained by the eigenfilter technique, but with the 

difference that the covariance matrix, as defined in equation (2.19), now has 

b(i,j) indexing the pixel pattern determined by the period. Improved 

performance is reported over contiguous convolution masks. This approach is 

only useful for regular textures, since random textures do not exhibit 

periodicity. 
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2.4.6 Models Based on Features of the Human Visual System. 

[Laws,1980] set out the results of an empirical study into a multi­

channel filtering model for texture analysis. Another approach is to use models 

more directly related to the human visual system, and test their suitability for 

texture analysis. 

[Wermser,Liedtke,1982] presented a model strongly influenced by 

theories regarding the human visual cortex. A novel method of determining the 

resolution of the features detected is employed. The input image is processed 

by three median filters of size 5x5, 9x9, and 19x19. The output of each 

median filter is processed by four 5x5 masks corresponding to IIlinell edges at 

orientations of 0°, 45°, 90°' and 135°. In total, twelve filtering operations are 

performed for each input image. This approach is similar to that suggested by 

[Marr,HHdreth,1980], except that Marr and Hildreth used different resolution 

Gaussian masks to blur features, and Laplacian masks to detect edges. 

[Bergen,Adelson,1988] have demonstrated that simple low-level 

mechanisms based on multi-channel filtering can successfully explain many 

aspects of human texture discrimination. This is a controversial area at the 

moment, as it contradicts the theory related by [Julesz,Bergen, 1983], which 

introduced an entity called a texton which they claim to be the IIfundamental 

elements in pre-attentive vision and perception of texturesll
• Textons are 

somewhat loosely defined as lIelongated blobs (e.g. rectangles, ellipses, or line 

segments) with specific properties, including colour, angular orientation, width, 

length etc ll
• The theory is that the human vision system pre-attentively (without 

effort) discriminates textures based on the variation of texton features 

extracted from those textures. The work of [Bergen,Adelson,1988] casts 

some doubt on this assumption. 

There have been a profusion of papers in recent years relating to the 

use of Gabor functions in image processing [Gabor,1946]. The response of 

an even-symmetric Gabor filter in the spatial domain is given by 

h(x,y) = expH{:.~ + ~, ros (2"u,x) (2.21 ) 

and in the frequency domain by 

2-32 



H(u, v) = A~exp{- 1 [( U-UO) 2 + V2] + exp {- 1 [( U+UO) 2 + V2]J 
"2" 0' 2 ~ "2" 0' 2 -::;"'7 

u v u O'v 
(2.22 ) 

where 

0' = 1 
U "'2"'ffiJ 

x 

0' = 1 
v "'2"'ffiJ 

y 

A = 21[0' 0' x y 

The interest is generated by the suggestion that Gabor signals can be used 

to represent the response profiles of receptive fields found in the mammalian 

visual cortex [Pollen,Ronner,1983], [Oaugman, 1980]. [Caelli,Moraglia,1985] 

have carried out psychophysical experiments to determine the discriminability 

of textures composed of Gabor signals over a range of frequencies. 

[Perry,Lowe,1989] have used Gabor-like filters in a multi-channel model to 

segment images. The results, using some rather ad hoc features, were 

reasonable. [Jain,Farrokhnia, 1991] presented a multi-channel model using 

up to twenty-eight Gabor filters. A post-processing stage is used to reduce the 

number of feature planes used in classification. In this system it seems that 

the filters are not approximated by convolution masks, but rather the equation 

of (2.21) is applied to the image data with the appropriate parameters to give 

different frequency and orientation responses. Whilst this will provide a more 

accurate transformation, the processing advantage of hardware convolution is 

sacrificed. [lwama,Maida, 1989] present a texture segmentation algorithm that 

looks for textons in the feature plane images produced by a bank of Gabor 

filters. This combines the two viewpoints of [Bergen,Adelson, 1988] and 

[Julesz, Bergen, 1981]. [Gopal et ai, 1990] use the feature images produced 

by a bank of Gabor filters to calculate the texture gradient of the input image. 

Variations on the theme are presented by [Malik,Perona, 1989] who use 

difference of Gaussian (DOG) and difference of offset of Gaussian (OOOG) 

filters, and by [Caelli,1988] who presents a model where the response profile 

of the filters is allowed to adapt to the incoming image signal. The approach 

of Caelli is suitable for neural network implementation. [Stone,1990] also 

present an adaptive filtering method using DOG filters as the initial response 

profiles. The objective in this case is to derive the shape of textured objects 

by estimating the texture gradient of planar surfaces. 
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2.5 Other Texture Analysis Methods. 

2.5.1 Introduction. 

This section will give a brief summary of the many other methods which 

have been applied to the subject of texture analysis. For a more complete 

review, the reader is referred to [Haralick, 1979] or [Gool et ai, 1985], although 

these are now relatively old. Perhaps the sheer volume of literature on texture 

analysis over the last decade is the reason that no more recent survey has 

been forthcoming. 

Some of the papers mentioned here are representative of areas of 

research which are substantial in their own right. Methods based on fractals, 

for example, have received considerable treatment in recent years. Neural 

networks is another obvious example. In general however, the approaches 

discussed here have not as yet received the attention accorded the three 

methods discussed in Sections (2.3)-(2.2), and as a result have yet to reach 

a stage where proper comparison can take place. 

2.5.2 Mathematical Morphology. 

Mathematical morphology (MM) is the study of shape, and a 

morphological transformation transforms the given input image into another 

form which is more expressive in certain respects. The definitive text on MM 

is [Serra,1982], and an introduction can be found in [Haralick et al,1987]. For 

binary texture analysis, MM involves the erosion of the image by structuring 

elements, sometimes called partition filters. This process can be regarded 

as a kind of structural filtering. The texture features are extracted from the 

eroded image by counting the number of pixels set to 1 after filtering with a 

particular element i.e. the number of matches with the structuring element. For 

grey-scale images, the features are based on matrices relating to the grey­

level after partition filters operations, such as dilation, erosion, closing, and 

opening [Serra,1982]. For an example of this type of operation on Brodatz 

textures refer to [Fouques,Cohen,1989]. They present a class of partition 

filters which are controllable with respect to both orientation and spatial 

frequency. Examples show how they can be used to homogenise regions 
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whose structure corresponds to their characteristics, while leaving others 

untouched. 

2.5.3 Fractals. 

The major text on fractals is [Mandelbrot, 1983]. The definition of a 

fractal is generally taken as "a set with its Hausdorff dimension strictly greater 

than its topological dimension". In essence this means moving beyond the 

conventional notion of dimensions such as 1,2,3 .... to the rather less tangible 

concept of fractional dimensions. Fractals have recently been used in a variety 

of image processing applications, and a survey of these can be found in [Ait­

Kheddache,1988]. In particular fractals have been used to characterise 

textures [Pentland,1984], [Kaneko,1989], [Pelag et al,1983], [Jardine, 

Whitworth,1990]. The fractal dimension of a texture can be estimated from 

an image in several ways. [Pentland,1984] presents a method of estimating 

it from the Fourier power spectrum using linear regression. A test for the 

suitability of a texture to be modelled as a fractal is described in 

[Jardine,Whitworth,1990]. This is as follows: if a logarithmic plot of standard 

deviations of intensity differences for pixel pairs versus their Euclidean 

separation in the image is linear, then the texture is considered to be fractal. 

Such a relationship indicates self-similarity at all scales. The authors found 

that natural textures in general did not accurately fit the fractal model, but that 

the approximation still produced reasonable results. [Pelag et al,1983] have 

used a model based on more geometric considerations to determine the fractal 

nature of textures. It has been shown however that the fractal dimension itself 

is not sufficient to fully describe a texture [Ait-Kheddache,1988]. 

At present the use of fractals in image processing, as in many other 

fields, is still in it's infancy. 

2.5.4 Multi-Dimensional Edge Detection. 

This approach attempts to segment an image by finding the boundaries 

between textured regions rather than classifying the regions themselves. The 

theory is that texture features change abruptly near boundaries between 
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different textures. The approach is intuitively simple, and consists of applying 

(possibly multidimensional) edge operators to the feature space created by 

whichever method is employed for measurement of texture features. 

An example of such an operation is detailed in [Xiaohan et ai, 1991]. 

Eight directional measures are computed for each pixel in the original image, 

and so the feature space is eight dimensional. These measures bear some 

resemblance to the way in which co-occurrence matrices are constructed. 

Edge detection is performed as non-Iocal-maximum-suppression over each 

feature image. This is basically an adaptive thresholding procedure. The image 

is IIcleaned
ll 

by the removal of small edge segments in a process that requires 

a-priori knowledge of expected boundary lengths. The remaining edge 

segments mapped back to the original image as boundaries. 

The features used by [Khotanzad,Chen,1989] are based on a random 

field model. The parameters of the random field are estimated for six different 

local pixel patterns (the cliques discussed in Section 2.3.3), and so the 

feature space is six dimensional. Edge detection is achieved by extending the 

Sobel operator to operate in windows defined over different dimensions. 

2.5.5 Neural Networks. 

Currently one of the most active research areas is the study of neural 

networks. Any conference on computer applications now has numerous papers 

on the topic, if not a separate neural network session. Texture analysis, since 

it can be considered a branch of pattern recognition, would seem an obvious 

target for such research, and indeed many workers are now investigating this 

approach. A description of the various neural models and learning algorithms 

proposed is beyond the scope of this thesis, and so the interested reader is 

referred to [Lippman,1987] or [Aleksander,Morton,1990]. The discussion 

here is limited to an indication of how neural network models are being applied 

in texture analysis. 

The approach taken by most workers is to use a conventional technique 

to extract texture features (co-occurrence, Laws, MRF, etc.), but to use a 

neural network to learn the optimal classification of these features. Such an 
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approach is detailed in [Patel,Stonham, 1991]. The original images are 

thresholded, and then features extracted based on the co-occurrence matrix 

for four-connected neighbours. A single layer neural network is used to 

classify textures based on these features. A supervised training stage is 

required to "teachU the various texture classes to the network. Using eight 

Brodatz textures, a classification rate of 95% IS achieved. 

[Patel,Stonham,1992] extend this model to grey-scale images. Again the 

features extracted are co-occurrence measures for four-connected neighbours, 

but in this case the four co-occurrence values Uattached" to each pixel are 

sorted into descending order, or ranked. This is an application of the method 

suggested by [Harwood et ai, 1983] discussed in Section 2.4.3. These 

features are classified by a multi-layer perceptron neural network model, 

which is trained using a back-propagation algorithm. The performance of the 

model is demonstrated by segmentation of images taken from a potash mine 

face. 

[Visa,1990] presents a model which uses a self-organising neural 

network to classify textures based on measurement of co-occurrence features. 

A self-organising network performs in an analogous way to a clustering 

algorithm, and so unsupervised segmentation is possible. The performance 

and the dataset are unclear. 

[Kasparis et al,1990] use texture features which are based on Hough 

Transform descriptors [Hough, 1962]. A back-propagation network is again 

used for classification, and the performance of the system tested using 

different noise levels. The conclusion of this paper is that neural networks 

perform classification better than a previously published linear associative 

memory classifier [Eichmann,Kasparis,1989]. 

A different approach to the use of neural networks in texture analysis 

is taken by [Zhang,Sarhadi,1992]. In this model the neural network is actively 

involved in the feature extraction stage, rather than just acting as a classifier. 

2.5.6 The Texture Spectrum. 

[He,Wang,1990], [He,Wang,1991] have proposed a texture spectrum 
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approach to texture analysis based on the statistics of the local 3x3 

neighbourhood. Fundamental to this is the idea of the texture unit. Let the 

local 3x3 neighbourhood be represented by a nine-dimensional vector 

V={Va,V1,···,Vs} where Va represents the intensity of the central pixel and Vj is 

the intensity of the neighbourhood pixel i. The corresponding texture unit is an 

eight-dimensional vectorTU={E1,E2 , .•• ,Es}. The values for Ej are determined by 

the formula 

{ 

0 if Vi < Va 

E i:: 1 i f Vi :: Va 

2 if Vi > Va 

where the element Ei occupies the same position as the pixel i. An example 

of the transformation from image values Vi to texture unit values Ej is given in 

Figure (2.5.6.1). 

Neighbourhood V Texture Unit TU 

63 28 45 2 o I 2 

88 40 35 -> -> -> -> -> 2 0 I 

67 40
1 

21 2 1 0 

Figure (2.5.6.1). Example illustrating how a texture unit is derived. 

As each element of TU has one of three possible values, the 

combination of all eight elements results in 38 = 6561 possible texture units in 

total. The frequency histogram of these texture units is termed the texture 

spectrum. Texture classification and segmentation is not carried out on this 

spectrum directly, but on features derived from the spectrum, such as 

symmetry of the peaks, symmetry of the spectrum as a whole, etc. In this way 

it is rather reminiscent of co-occurrence matrices, and indeed the texture 

spectrum might be considered as an approximation to a co-occurrence matrix. 
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2.5.7 Methods Based on Pyramidal Structures. 

[Brzakovic et al,1990] describe TEXIS, which is a TEXture Inspection 

System. The function of the system is defect detection and classification, and 

it uses a series of ad hoc procedures towards this end. One of the constituent 

parts of the system is a pyramid linking scheme ([Tanimoto,Pavlidis,1975]) 

which segments the image into defects and generic texture. The bottom level 

of the pyramid is the input image of size 2nx2n
, each subsequent level is a 

square array which has half the dimension of it's predecessor, and so the top 

layer is a 1 x1 array. Each intermediate layer is derived from the layer below 

by averaging over a 2x2 area. In such a scheme, texture homogeneity is 

examined at different image resolutions, in a manner similar to the split and 

merge algorithm of [Chen,Pavlidis,1978] discussed in Section 2.2.5. This 

system uses a different approach, in that the strengths of the links between 

the layers of the pyramid are updated iteratively, and it is the strengths of 

these links which determine the homogeneity of a texture area. These links 

represent the degree of match between "father" and "son" nodes. The 

performance of the system is discussed in relation to the inspection of wood 

samples, but it is not possible to determine the performance of the texture 

analysis stage, due to the uncertain effects of the many other stages. 

[Spann,Wilson,1985] use a segmentation scheme based on 

homogeneity estimation at different levels of a quad-tree [Samet, 1980]. A 

quad-tree is similar to a pyramid, but differs in that not all levels are fully 

realised [Ballard,Brown,1982]. The segmentation method proceeds in the 

following top-down fashion. At a level k, boundary pixels are determined as 

being those different from any of their neighbours (remembering that at level 

k the averaging effects of the quad-tree will have removed any texture or 

noise information and left only areas of approximately constant grey-level). A 

smoothing process is then carried out and isolated pixels removed. This 

process is then repeated at level k-1. The classification introduced at level k 

is valid at level k-1. Pixels in level k-1 are classified as non-boundary if their 

father in level k was non-boundary. The boundary regions of level k-1 are 

classified in such a way that the width of a boundary is reduced by a factor of 
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two in each step down the quad-tree. The result is a one pixel wide boundary 

at the image level. The images accompanying this paper show impressive 

segmentation results. It does seem however that there must exist a difference 

in first-order statistics between the respective areas for this method to work. 

It is therefore not really appropriate for textured images, but rather for non­

textured images where the noise level might render other methods ineffective. 

2.5.8 Miscellaneous Methods. 

This section will describe some of the more idiosyncratic approaches 

to texture analysis. This is not to diminish the possible importance of such 

methods either past or future, merely to indicate that they do not easily fit into 

any of the previous categories. In many cases these approaches have been 

developed to cope with only certain classes of texture analysis problem. 

Fourier analysis of textured images is one of the oldest approaches. 

This technique is intuitively attractive, and has the added advantage of being 

well understood, due to extensive previous work carried out by workers in 

other fields. The specific case of using Fourier analysis to implement the 

multichannel model has already been discussed in Section 2.4.4, but many 

more add-hoc approaches have been published. A typical early example of 

this is given in [8ajcsy,1973]. The frequency domain representation of an 

image, or image region, is partitioned into bins. Measurements are made 

using two types of bin, radial and angular. The radial bins form concentric 

circles around the frequency origin, whilst the angular bins dissect the domain 

into regular segments, similar to a pie chart representation. Features can be 

defined using either or both of these representations. Methods such as these 

produced only limited success, and as a result largely fell out of favour as 

more powerful methods, such as co-occurrence matrices, were developed. 

[Tan,Constantinides, 1989] present a method that might be considered 

as a hybrid of structural and statistical texture analysis, and which certainly 

bears some resemblance to the ideas of textons [Julesz,8ergen,1981]. In 

conventional structural texture analysis, primitives and their placement rules 

are determined for a texture. The problem arises that even quite regular 
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textures, once they have been corrupted by noise, sampling non-linearities, 

and various other natural phenomenon, often do not strictly follow the 

placement rules. This paper presents an approach in which the placement 

rules are not represented as a grammar, as is more normal, but rather are 

represented statistically. Thus both structural and statistical information is 

used. The primitives are extracted by various thresholding techniques, and are 

represented by a set of measures relating to area, perimeter, compactness, 

eccentricity, orientation, colour, and contrast. The placement of these 

primitives is described by first order statistical measures, namely the mean 

and variance of their frequency histogram. The performance is demonstrated 

on fourteen 8rodatz textures. Generally the results are somewhat less than 

might be expected from one of the principal statistical techniques, such as 

Markov Random Fields or MUlti-Channel Filtering. 

[Mitchell et al,1977] introduced the idea of using the relative frequency 

of local extremities in grey-level as texture features. Such maxima and 

minima of the image were extracted in one dimension in the direction of the 

scan. The number of maxima and minima were measured over a range of 

threshold levels, and this data was used to characterise texture. The results 

obtained were reported to be lIalmost as good" as co-occurrence matrices. 

[Ramponi,Sicuranza,1989] differ from the vast majority of workers, in 

that they attempt to discriminate different textures on the basis of fourth-order 

statistics rather than second-order statistics. The fourth-order statistics they 

use are arrived at heuristically, and it is not clear why they are chosen. Only 

four texture classes are used for testing, and the results are not presented in 

a clear manner, so that it is difficult to assess the performance. Nevertheless, 

it is an interesting result that at least some natural textures can be 

discriminated by higher-order statistics. 

[Kadar,Liebman,1988] suggest an approach to segmentation rooted 

in statistical measures of variance. The main measure tested is the two-way­

ANOVA (ANalysis Of VAriance), which is commonly used in statistical 

packages such as SPSS. In the words of the authors, 1180th global and local 

robust statistical mask texture extractor/operators/object-detectors are 
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developed ... ". Despite this tantalising promise, no evidence of any results for 

texture analysis are to be found. Application of the ANOVA does, however, 

seem to perform a degree of edge detection. 

[Dinstein et al] have developed a fast algorithm to discriminate 

between regions which are textured, and regions which are not. This algorithm 

works by calculating the range of grey-levels in a small (3x3,5x5,etc) moving 

window. For textured regions this is generally much higher than for regions of 

approximately uniform grey-level. 

2.6 Conclusions. 

This chapter has presented the results of a comprehensive survey of 

current statistical texture analysis methods. Broadly speaking, the methods 

described split into two main categories. On the one hand there are methods 

which attempt to model the underlying texture process, and describe textures 

on the basis of extracted model parameters e.g. random field or fractal 

models. On the other hand there are methods which do not explicitly model 

the texture, but rather attempt a description based on measurements of certain 

pertinent features e.g. co-occurrence methods, multi-channel filtering, 

mathematical morphology, texture unit etc. It is not possible at this stage to 

determine which of these quite different approaches will in the end prove 

superior. Comparison of results for different methods is difficult, mainly due to 

the fact that a precise definition of texture has so far proved illusive. Certainly 

a detailed and comprehensive comparative study of the (apparently) most 

promising methods would help to illuminate the situation. Such speculation is 

however, superfluous to this thesis. The interest here does not lie in producing 

the ultimate texture analysis system, but rather in developing an appropriate 

approach for the task in hand. The knowledge gained in this literature survey 

in conjunction with the application criteria outlined in Chapter One have 

enabled the development of the techniques described in the following chapter. 
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TER 

The Single Channel Model 
for Texture Analysis 

3.1 Introduction. 

The aim of this chapter is to introduce and explain the texture analysis 

model developed for this work. The approach adopted is based on grey-scale 

convolution, and is a variation on the multi-channel filtering paradigm 

described in Section 2.4. The model was not however derived directly from 

the multi-channel filtering approach, but rather evolved from experiments 

aimed at determination of carbon fibre weave pattern and orientation . A 

prototype system based on binary filtering was initially developed and tested, 

and is explained in the early sections of the chapter. The progression from this 

work to the final texture segmentation model is detailed, and the influence of 

hardware considerations on the design is indicated. The suitability of the 

model for the application is demonstrated, and the effect of various parameters 

on segmentation considered. 

3.2 A Binary Filtering Approach to Texture Analysis. 

Images of carbon fibre plies exhibit texture due to the woven nature of 
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the material. Plies cut from different material types have a different weave and 

therefore a different texture. Plies of the same material type but at different 

orientations can also be differentiated on the basis of texture, if texture 

descriptors which are not rotationally invariant are used. For these reasons, 

the preliminary investigation into texture based segmentation of images of 

carbon fibre focused on determination of weave pattern and orientation. Initial 

work was directed towards developing a means of enhancing the weave 

structure in images of carbon fibre, so that subsequent processing stages 

could perform segmentation based on this weave information. The first method 

developed for this purpose was based on a hill-climbing operator, called the 

MAX-MIN operator. Although this operator produced some visually interesting 

results, it was not efficient enough at enhancing the weave information. It is, 

however, described in Appendix A for the sake of completeness. 

A better means of enhancing the weave information is provided by the 

Laplacian operator. The Laplacian is a second order derivative of the image 

function. Equation (3.1) gives the formal definition where f is the image 

function, and also shows a convolution mask commonly used as a discrete 

approximation. 

[

0 -1 0 J 
-1 4 -1 

o -1 0 

(3.1 ) 

This discrete Laplacian is a very effective line and spot enhancer. This 

is easily demonstrated by reference to Figure (3.2.1), where application of the 

Laplacian to an input image of different orientations of unidirectional material 

can be seen to have extracted much of the weave information. Image (b) has 

been thresholded to produce a binary representation of the weave structure 

inherent in the respective cloths. 
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(a) Input image with two different (b) Image after application of Laplacian 
orientations of unidirectional carbon. operator and threshold. 

Figure (3.2.1). Extracting the weave information from carbon fibre 
using the Laplacian operator. 

To segment the binary image into regions corresponding to different weave 

types/orientations, binary filtering was employed. This might be considered 

either as an adaptation of thinning [Rosenfeld, Kak, 1982] or as a binary 

morphological operation [Serra, 1982]. In essence, a filter is applied which will 

delete (erode) all pixel groups which do not conform to a particular pattern 

(weave structure). For example, by filtering image (b) of Figure (3.2.1) with the 

binary filter shown in Figure (3.2.2a) the weave information of the 0° material 

is retained but the weave information of the -45° material is eroded, as shown 

in Figure (3.2.2b). For the unidirectional cloth shown in Figure (3.2.1), the 

binary filter is simply a binary line at an orientation which matches the texture 

to be retained. Other textures in the image, which do not exhibit weave 

structure at the appropriate orientation, are substantially eroded. The 

remaining stage, segmentation of the image into distinct regions, can be 

accomplished by counting the number of white pixels in the local vicinity of 

each pixel. In this example, a high number of white pixels means the pixel 

probably corresponds to an area of the 0° material, a low number of white 

pixels means the pixel probably corresponds to an area of the -45° material. 
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0 0 0 0 0 

0 0 0 0 0 

1 1 1 1 1 

0 0 0 0 0 

0 0 0 0 0 

(a) Binary filter. (b) The filtered image. 

Figure (3.2.2). The binary structure image shown in Figure(3.2.1) is 
filtered with the binary filter shown in (a) to produce the image 

shown in (b). 

This process of counting white pixels in a binary image can be implemented 

as a moving average filter followed by an appropriately set threshold. A 

moving average filter is efficiently implemented in image processing by 

convolving an image with a filter which has each coefficient equal to 1, and 

normalising the result according to the size of the filter. This process is 

analogous to the smoothing operation described in Section 2.4.3 as part of 

Laws texture analysis model. Laws and other workers used a 15x15 

smoothing filter, and after some experimentation a 15x15 filter size was also 

adopted in this work. The decision as to whether a pixel corresponds to one 

material type or another can now be implemented by thresholding the 

smoothed image. The result of smoothing and thresholding the image of 

Figure (3.2.2b) is shown in Figure (3.2.3a). The boundary between the 

segmented regions can be extracted and overlaid on the original image to 

illustrate the segmentation achieved. This is shown in Figure (3.2.3b). A block 

diagram of the processing stages which have produced the segmented image 

shown in Figure (3.2.3a) is shown in Figure (3.2.4). 
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(a). (b). 
Figure (3.2.3). (a) is the result of smoothing and thresholding the image 

shown in Figure (3.2.2b). (b) shows the boundary extracted 
from (a) overlaid on the original image. 

Input (1) 
In1age r--

Laplacian 
and 

Threshold 

(2) 

Binary 
Filter 

(3) 

15x15 
Smoothing 

(4) Segmented 
r-_Image 

Threshold 

Figure (3.2.4). Block diagram of the binary filter texture analysis 
method. 

Each stage is briefly described below. 

(1) Input image is convolved with Laplacian operator, and the output 

thresholded to produce a binary structure image. 

(2) Binary filter is applied to remove unwanted weave information. 

(3) 15x15 moving average filter is applied to smooth features. 

(4) Threshold applied to segment image into foreground and 

background. 

When dealing with materials exhibiting more complex spatial patterns , such as 

woven material or unidirectional material with glass fibre weft , the problem of 

finding the appropriate binary mask to separate textures must be addressed . 
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This question is particularly relevant for an industrial inspection system, where 

the product material may well change from time to time. It is obviously 

desirable to find appropriate masks without painstakingly testing ad-hoc 

guesses, and so a more formal method was developed. 

3.3 Supervised Training of Binary Filters. 

The objective is to produce a mask which will discriminate between the 

weave structures of two plies. Given an image displaying areas of both, the 

first operation is to apply the Laplacian operator and threshold at an 

appropriate level (chosen to retain weave structure and minimise noise). Two 

regions in the binary image are selected, A and B, as training regions, one 

from each of the relevant texture areas. The criterion for the filter to be 

generated is that it should have minimal effect on region A, but will maximally 

erode the edge information in region B. The task is therefore to establish the 

most commonly occurring pattern in A which does not commonly occur in B. 

By filtering with a mask representing this pattern, separation of the two texture 

areas can be achieved. The determination of the most commonly occurring 

pattern is achieved as follows. 

For every pixel p which is set in the training region A, examine the 

surrounding neighbourhood Np (a 5x5 matrix centred on p). For every pixel set 

in Np ' the corresponding entry in a 5x5 accumulator array Acc is incremented. 

That is, 
i=2 j=2 

L L L Acc ( i I j) = Acc (i I j) + Np (i I j) ( 3 . 2 ) 
'VpEA i=-2 j=-2 

where 

. . _ { 1 for pixel p on 
Np(~/J) - 0 for pixel p off 

The accumulator array, once it has been normalised, is a measure of the 

relative frequency at which binary patterns occur within region A. This array 

is thresholded in such a way as to remove all but the M most frequently 

occurring pixels. M is typically chosen as 5, but may be increased if the weave 

structure image is particularly "busy". Figure (3.3.1) shows the normalised 

accumulator array Acc constructed from a sample of woven material, and the 
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corresponding thresholded version, AccT' 

36 15 0 0 1 1 0 0 0 I 0 
l 

11 9 0 2 1 0 0 I 0 0 i 0 I 
I 
I 
, 

34 62 100 62 34 0 1 1 I 
I 

1 0 I 
, 

2 2 0 10 11 0 0 0 0 0 

1 0 0 15 38 0 0 0 0 1 

Acc 

Figure (3.3.1). The normalised accumulator array extracted from a training 
region of woven, and the thresholded version. 

The thresholded accumulator array shown in Figure (3.3.1) is not 

necessarily a representation of the best mask for separation of the two training 

regions A and B. It represents the M most frequently occurring pixels of region 

A within a 5x5 neighbourhood, but it is by no means guaranteed that they all 

occur at the same time in anyone neighbourhood with any great frequency. 

Usually the most common pattern (which is what the algorithm is trying to find) 

will be a subset of AccT' To find the best mask for region separation all the 

possible subsets from the thresholded accumulator array AccT must be 

generated. One constraint is that the centre pixel must always be set, and so 

the total number of possible mask permutations is 2(M-1). With M set to 5, this 

means that 16 different masks will be generated. 

The algorithm therefore generates each mask, applies it to the two 

training regions A and B, and measures the separation achieved. The mask 

giving the best result is chosen. Separation is measured as 

R t
· pixels set in A 

a ~o = ....:...p-~-xe-l...-s----s e-..,t......--:-~n~B 
( 3 . 3 ) 

Figure (3.3.2) shows a screen-dump taken whilst generation and testing 

of the masks is taking place. 
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Initial mask derived from texture one is 
00000 
00010 
o 1 1 1 0 
o 1 000 
00000 

There are 16 possible masks 

Testing mask 5 Best mask so far 

00000 00000 
00010 00010 
001 1 0 o 1 1 00 
00000 00000 
00000 00000 

Current ratio: 1.5 Best ratio: 5.0 

Figure (3.3.2). Screen dump taken whilst generating a binary filter. 

3.4 Assessment of Binary Filtering Method. 

Whilst the binary filtering method is capable of segmenting images of 

carbon fibre, the limitations are considerable. The segmentation achieved is 

poorer than would be required. The method is highly susceptible to lighting 

variations. The method is inherently very sensitive to noise, since it involves 

thresholding at various points. It is not generally applicable to all material 

types, in that textures where the Laplacian operator does not produce 

significant pattern differences cannot be segmented. 

Figure (3.3.3) demonstrates the results achievable using this method 

to IItrainll binary filters. The training image contains two orientations of 

unidirectional material with glass fibre weft. This material is currently very 

heavily used in the manufacture of various composite aerospace components. 

The dominant texture from this material arises from the contrast between the 

white glass fibre and the black carbon fibre. 
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(a) Input image of two different 
orientations of material. 

(c) Image after filtering with binary 
mask shown in (e) below. 

0 0 

0 0 

0 1 

0 1 

0 0 

..... '....... B ._..- ,.. 

(b) Image after application of Laplacian 

0 

0 

1 

0 

0 

operator and thresholding. 

(d) Result after smoothing and 
thresholding . 

0 0 

1 0 

1 0 

0 0 

0 0 

(e) Binary mask used to filter image (b) . 

Figure (3.3.3). An image sequence demonstrating the binary filter texture 
analysis method. The material in (a) is carbon fibre with glass fibre weft . 

The binary filter used is shown in (e) . 
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Such limitations, it was hypothesised, could be overcome if the filtering 

stage could be extended to grey-scale rather than binary. The main problem 

with binary methods, is that the thresholding operation drastically reduces the 

information content of the image. Often this is an advantage, but in this 

particular case a great deal of useful information is also lost. Grey-scale filter 

masks could utilise this information to improve the feature plane separation of 

different textures. 

3.5 Hardware Considerations. 

The extension to grey-scale should also be related to hardware 

considerations. It was recognised at an early stage in the project that to 

achieve the desired response time, any computationally intensive algorithms 

which are required will have to be readily implementable in hardware. Any 

algorithm can be implemented in hardware given adequate time and 

resources. For a project such as this however, time and resources are limited, 

and so it is desirable to avoid dedicated hard-wired hardware solutions. One 

of the main criterion for system design therefore, was that the algorithms 

developed should be implementable in hardware using only readily available 

commercial hardware, and should not require any special circuitry. The 

elegance of the proposed design lies in the fact that it is wholly implementable 

using only convolution, and hardware convolution is standard in most image 

processing boards available today. 

Based on the idea that all texture analysis will be convolution-based, a 

pipeline processing board has been developed which can perform fast 

convolution, and which can interface to the framegrabber. The details of the 

design and construction of this board can be found in [King,1994]. A salient 

feature of the board is its ability to perform convolution up to kernel sizes of 

9x7. For texture analysis, a symmetric neighbourhood attached to the central 

pixel is desirable. The investigation is therefore restricted to square, odd­

ordered neighbourhoods, namely 3x3, 5x5, and 7x7. This is a reasonable 

range of mask size to investigate, since few image processing boards allow 
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for convolution kernels other than at these dimensions. The 15x15 moving 

average filter is implemented as a two pass 15x1 and 1 x15 operation. This is 

only possible for a limited class of filter, such as low-pass or Gaussian. 

Fortunately these are sufficient for the requirements of this application. 

This auxiliary processing board greatly facilitated the development of 

the filtering model from binary to grey-scale. One 3x3 image convolution on 

the framegrabber board takes about 12 seconds, whereas on the pipeline card 

it takes 30 milliseconds. More dramatically, to carry out a 15x15 moving 

average filtering operation takes about four minutes on the framegrabber, but 

only 60 milliseconds on the pipeline card. 

3.6 Binary Filtering and Grey-Scale Filtering. 

To test the hypothesis that grey-scale filtering provides an improvement 

over binary filtering, the binary filters generated by the process detailed in 

Section 3.3 were translated into grey-scale representation. That is, rather than 

produce a binary image which is processed with binary masks, grey-scale 

masks are applied to a grey-scale image. Note that since it is no longer 

required to produce a binary image, then the Laplacian filtering and 

thresholding operations are no longer required. The texture segmentation 

method is therefore as illustrated in Figure (3.6.1). An example of how a 

binary filter is represented as a grey-scale mask is illustrated in Figure (3.6.2). 

INPUT 
IMAGE (1) 

GREY-SCALE 
FILTERING 

(2) 

15x15 
SMOOTHING 

(3) SEGMENTED 
IMAGE 

THRESHOLD f-----1 

Figure (3.6.1). Texture Segmentation using a grey-scale mask. 
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0 

0 

1 

0 

0 

0 0 0 0 
, 

0 0 0 0 0 

0 0 0 0 -2 -2 ·-2 -2 j -2 

1 1 1 1 4 4 4 4 4 
, 

0 0 0 0 -2 
, 

-2 1-2 -2 ·-2 

0 0 0 0 !! I 
o I 0 : 0 i 0 I 0 

Figure (3.6.2). A binary filter and one possible grey-scale 
interpretation. 

Note that the mask shown is only one of a number of possible grey-scale 

interpretations for the binary mask. 

Figure (3.6.1) can be considered a streamlined version of the multi­

channel model depicted in Figure (2.4.3.1), and is referred to in this thesis as 

the Single Channel Model for texture analysis. The individual stages of the 

process represented in Figure (3.6.1) are illustrated by the image sequence 

of Figure (3.6.3) which uses the same input image as Figure (3.2.2), and so 

allows easy comparison. This image sequence is representative of 

experiments which demonstrated that a single convolution mask can be used 

for texture segmentation of carbon fibre images. In fact the texture 

segmentation shown in Figure (3.6.3) is surprisingly good, considering the 

way the mask was derived. A heuristic derivation from a binary mask 

generated for a subtly different purpose, that of binary pattern erosion, would 

be thought unlikely to produce an optimal grey-scale texture filter. The reason 

the mask is successful is that the material in question exhibits a very simple 

linear primitive. The linearity of the material means that near optimum 

segmentation results can be achieved by application of a simple edge operator 

matched to the orientation of the material to be discriminated. Essentially the 

mask shown in Figure (3.6.2) is a horizontal line detector, and so the 

response from the weave at 0° is stronger than the response from the weave 

at 45°. For materials which exhibit more complex spatial patterns, finding an 

appropriate mask would obviously be much more difficult. 
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(a) (b) 

(c) (d) 

Figure (3.6.3). Image sequence demonstrating grey-scale filtering using the 
mask shown in Figure (3.6.2) . The individual images are as follows . 

(a) Input image showing a circular piece of unidirectional cloth at 0° 

lying on a background of unidirectional cloth at -45°. 

(b) Image after filtering with grey-scale filter shown in Figure (3.6.2). 

(c) The result after smoothing and thresholding . 

(d) The extracted boundary from (c) overlaid on the original image (a) . 
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What is required is a mask generation algorithm for grey-scale masks 

analogous to that described in Section 3.3 for binary masks. As mentioned in 

Section 2.4.3, such an algorithm has already been developed 

[Benke,Skinner,1987]. This algorithm will be studied in some detail in 

Chapter Four. Improvements will be demonstrated and a new algorithm, 

called the basis algorithm, will be detailed in Chapter Five and shown to 

perform more efficiently. For the purposes of this chapter however, the 

mechanics of mask generation are not of paramount importance. It is sufficient 

for the presentation of the single channel model that a mask optimisation 

method exists. This widens the scope of the method to include textures where 

the choice of filter for discrimination cannot be derived by an ad-hoc heuristic. 

The image sequence of Figure (3.6.4) demonstrates the segmentation 

achieved using a mask trained to discriminate unidirectional at 0° from 

unidirectional at -45°. The mask is shown in (e), and was produced using the 

basis algorithm. It is constrained to be zero-sum, and have the maximum 

value of anyone element equal to +/-100. As can be seen from inspection it 

has a strong horizontal structure. 

The image sequence of Figure (3.6.4) shows little improvement in 

segmentation over that achieved in Figure (3.6.2), and so for this specific 

image, little has been gained by using an optimised grey-scale mask. This 

suggests that the mask used previously was near optimal for the task of 

discriminating between the two textures. This result only occurred because the 

structure of the texture in the image is very simple i.e straight line primitives 

at different angles. For more complex textures however, mask training 

provides the only way of finding suitable masks for texture discrimination. The 

examples presented in the following section illustrate this point. 
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(a) (b) 

(c) (d) 

-16 -27 - 8 2 -56 -24 

44 100 99 99 42 

48 31 37 -30 -34 

-42 -99 -99 -99 -44 

14 50 63 20 5 

(e) 

Figure (3.6.4). Image sequence demonstrating grey-scale filtering using the 
mask shown in (e). The mask was produced using the basis algorithm 

detailed in Chapter Five. 
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3.7 Texture Segmentation Using the Single Channel Model. 

This section will present some examples of texture segmentation using 

the single channel model. The examples chosen demonstrate the suitability of 

this method for visual inspection of carbon fibre materials, as well as the 

applicability to other materials. The relevance of appropriate mask size for a 

particular texture set is addressed. 

Example (1). Image (a) in Figure (3.7.1) shows three pieces of 

carbon fibre. The image resolution is 400x300 pixels. The background cloth 

is unidirectional at -45°, the circular piece is unidirectional cloth at 0°, and the 

rectangular piece is woven material. This image is chosen to be representative 

of a lay-up situation where it might be required to check the position of the 

woven piece. Such a task requires a mask which can discriminate woven 

texture from the two other textures in the image. The mask used is shown in 

(e), and was produced by the basis algorithm. It seems to be a bar detector 

oriented at about 60° from the horizontal. 

As can be seen from the image sequence of Figure (3.7.1), the woven 

is successfully detected using this mask. Some points to note are: 

• The segmentation is substantially better than that achievable 

using the binary filter method (not illustrated here). 

• It would be difficult to heuristically derive a grey-scale mask 

which could produce this segmentation. 

• The segmentation result, whilst not perfect, would be sufficient 

for many applications. 

As regards the loose fibres evident at the boundary of the woven material, 

such defects are not evident in a real application where the cutting process is 

much more reliable, and the material in much better condition than in this 

example. 
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(a) 

(b) 

(c) 
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(d) 

-50 -41 2 2 4 2 20 1 

-55 10 77 1 3 -3 3
1 

-65 15 100 6 -63 

-29 7 69 3 -59 

23 50 26 -39 -49 

(e) 

Figure (3.7.1) continued from previous page. Image sequence 
demonstrating discrimination of cross-ply carbon material from two 

orientations of unidirectional. The mask used is shown in (e), and was 
produced using the basis algorithm detailed in Chapter Five. 
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Example (2). Image (a) in Figure (3.7.2) shows four pieces of carbon 

fibre with a glass fibre weft. The image resolution is 250x300 pixels. As can 

be seen from the images, the dominant texture characteristic is due to the 

contrast between the white glass fibre and the black carbon fibre. Different 

orientations of material appear quite similar to the human eye, although the 

different pieces (circle, triangle, square) can be distinguished from the 

background. The orientations of the pieces are illustrated in (j). Note that this 

is only an illustration, not a template. The image shows real pieces of carbon 

which have been manually laid-up. 

Image (a) in Figure (3.7.2) represents all the orientations of 

unidirectional carbon fibre used in composite component manufacture, and as 

such is an important test image. The image sequence of Figure (3.7.2) shows 

how any particular orientation of material can be detected by the application 

of the appropriate mask. Each mask has been trained to maximise the texture 

energy of a given orientation whilst minimising the texture energy of the other 

three. For each orientation the filtered image and the resultant extracted 

boundary are shown. This is an impressive demonstration of the power of a 

single convolution mask, and goes a long way towards proving the suitability 

of this texture analysis method for inspection of carbon fibre materials. The 

masks which provide the discrimination are shown in Figure (3.7.3). 

It is worth noting here that in real applications the texture analysis mask 

need never encompass as many as four textures. In fact for most inspection 

tasks the objective is merely to detect the boundary between the foreground 

and background ply, so only two textures need be distinguished. 
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(h) 

+4SO 

(j) 

Figure (3.7.2) continued from previous page. Demonstrating the selectivity 
achievable by using trained masks to discriminate the different orientations 

of fibre shown in image (a). An indication of the respective fibre orientations 
is given in (j). The masks used are shown in Figure (3.7.3). 
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(h) -45° 

Figure (3.7.3). The masks used in Figure (3.7.2). The caption 
below each mask corresponds to the caption of the relevant image. 

Example (3). The next example demonstrates the use of a single 

convolution mask on textures which are less regular than the man-made 

materials common in industrial inspection. Image (a) of Figure (3.7.4) shows 

an image in which one leather sample is overlaid on another. The leathers in 

question have a different grain, and therefore a different texture. The template 

used to produce the overlay is shown in image (b). Figure (3.7.4) is the first 

image in this thesis that does not exhibit "real" boundaries, but rather is a 

composite of textures. By reference to the template the segmentation achieved 

by the texture analysis process can be measured. Image (a) in Figure (3.7.4) 

represents a difficult task for segmentation, in that the respective textures are 

irregular. Such textures are often difficult to separate in feature space, and the 

result can be poor segmentation especially near region boundaries. 
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(a) 

(b) (c) 

(d) (e) 

Figure (3.7.4). Example demonstrating how segmentation improves 
with larger mask size for non-regular textures. (a) Original image 
with one leather texture overlaid on another (b) Template used to 

generate overlay (c) Segmentation by 3x3 mask (d) Segmentation by 
5x5 mask (e) Segmentation by 7x7 mask. 
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The results shown in Figure (3.7.4) are good, and demonstrate again 

the power of convolution based texture segmentation. Some notable properties 

of the method can be detailed by reference to these images. Images (c), (d), 

and (e) show the segmentation achieved using mask sizes of 3x3, 5x5, and 

7x7 respectively. A mask size of 5x5 exhibits a large improvement in 

segmentation over that achieved by 3x3, while a further increase to 7x7 

provides only a marginal improvement. There are two processes which 

contribute to this result. 

• If the mask size is smaller than the spatial extent of the texture 

elements which make up the texture, then poor discrimination 

results. This accounts for the large errors in image (c) where 3x3 

masks have been used. 

• For irregular or random textures, the smoothing implicit in larger 

masks will reduce the effects of any inhomogeneous areas of 

texture and so provide slightly better segmentation. This 

accounts for the smoother segmentation shown in image (e). 

One more segmentation feature is evident from the image sequence of 

Figure (3.7.4), namely the "rounding-off" of region corners. This effect is 

discussed more fully in the next section. 

3.8 Segmentation Accuracy. 

There are two distinct types of segmentation error: misclassification of 

pixels within a texture region, and misclassification of pixels at or near a 

boundary between texture regions. In the examples presented so far both 

types of error have been evident. For an application such as ply inspection 

where the individual texture regions are comparatively large, then inter­

regional errors are not particularly important. Small "erroneous" regions can 

be discarded on the basis of area or perimeter, and so segmentation errors 

of this type are not critical. Conversely, since the detection of boundaries is 

the prime aim, then misclassification of pixels at or near a region boundary is 
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much more of a concern. The discussion of segmentation accuracy is 

therefore presented here only in terms of boundary accuracy. The effects of 

region curvature, mask size, smoothing operator, and secondary smoothing 

are all investigated. 

In order to measure boundary accuracy, it is preferable to use 

composite images where the position of the texture boundaries are known 

exactly, and so error evaluation can be carried out more precisely. The images 

used to determine boundary accuracy have been generated by overlaying one 

texture on top of another, using a template to delineate the respective regions. 

Each image sequence shows the composite image, the template used to 

generate that image, and the segmentation achieved by texture analysis. The 

difference between the boundaries of the template and of the segmented 

image constitute boundary errors. 

The first set of images use denim as the texture, with two orientations 

of denim providing two different textures. Denim was chosen since it can be 

segmented using 3x3 masks as well as 5x5 and 7x7, and so allows 

comparison between different mask sizes. Three templates have been used 

to generate the images, each chosen to exhibit different amounts of boundary 

curvature. The templates themselves were digitised from hand-cut paper 

shapes, and so are not geometrically accurate. The image sequences of 

Figure (3.8.1) show the three composite images used for the experiment, the 

templates used to generate them, and the segmentation results achieved 

using a 3x3 mask. Images (a) through (c) show the segmentation of an image 

created using a circular template, images (d) through (f) using a "G" shaped 

template, and images (9) through (i) using a star shaped template. 

The threshold in the texture segmentation process has been 

automatically chosen each time so that the number of pixels above the 

threshold is as near as possible to the number of pixels in the template. This 

simple device results in near-optimal thresholding, and produces a 

segmentation result which is visually very close to the template. 
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(a) (b) (c) 

(d) (e) (f) 

(g) (h) (i) 

Figure (3.8.1). The texture images used to measure boundary accuracy, the 
templates used to generate the texture overlay, and the segmentation 

achieved using a previously trained 3x3 mask. 
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The images in Figure (3.8.1) serve only to illustrate the segmentation 

for one particular 3x3 mask. A more quantitative assessment of the effect of 

mask size and boundary curvature is presented in Table (3.1), which details 

the mean boundary error and maximum boundary error for each mask size on 

each image. All errors are measured in pixels, and not as Euclidean distances. 

From the table the effects of curvature and mask size can be considered. 

BOUNDARY ERRORS 
IMAGE 

3x3 5x5 7x7 
MEAN MAX MEAN MAX MEAN MAX 

CIRCLE 0.85 4 0.86 4 0.75 3 

"C" 0.87 4 0.9 3 0.8 3 

STAR 1.52 10 1.63 10 1.52 10 

Table (3.1). Table of boundary errors incurred by different mask 
sizes on the three composite images shown in Figure (3.8.1). All the 

figures quoted are in pixels. 

Regarding the effect of boundary curvature, the results for the circle 

image and the "C" image are very similar. This suggests that the quite high 

curvature exhibited by the "C" image does not have a significant effect on 

segmentation. The extreme curvature of the star image does, however, have 

a detrimental effect on segmentation. This is evident from the boundary errors, 

and from inspection of image (i) in Figure (3.8.1) which shows the "rounding 

off" of the star corners. Such an effect is common to all region based analysis 

methods. The extreme points of the star in Figure (3.8.1) represent only a few 

pixels, and so the dominant texture in the neighbourhood is that of the 

background material. This effect is also evident in the human vision system. 

Where we can detect the presence of "texture corners", it is probably due to 

the extrapolation of detected boundaries which allow us to deduce the 

existence of corners. 

The effect of mask size seems to be somewhat less linear than might 

have been expected. It has already been mentioned in the previous section 

that too small a mask size will result in poor segmentation, and that larger 
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masks provide more smoothing and so generally better segmentation. With 

regards to boundary errors, it might have been expected that this extra 

smoothing implicit in the larger masks would result in edge attenuation, and 

so increase boundary errors. 3x3 masks might therefore be expected to 

provide more accuracy. From the data in Table (3.1) it seems that this is not 

so. The most accurate boundaries are provided by 7x7 masks, with 5x5 masks 

producing the least accurate. This non-linear effect is representative of the 

unpredictable results found in other experiments carried out within this project. 

The conclusion is that the best mask size for segmentation accuracy in the 

single channel model is texture dependent. It is tempting to hypothesise that 

the mask closest in size to the texture primitive will provide best results, but 

in the absence of a suitable method to determine primitive size, then this must 

remain speculation. 

A second set of experiments were carried out to determine the effect 

of the smoothing filter on boundary error. The segmentation feature 

proposed by Laws is the absolute sum of values in a 15x15 neighbourhood. 

This corresponds to filtering a rectified image with a 15x15 mask where each 

element is set to 1. For ease of reference this mask is referred to from now 

on as low-pass. Another possibility is to use a Gaussian filter, which as the 

name suggests has a Gaussian spatial profile. Such a mask has several 

attractive properties. It is smooth and localised in both the spatial and the 

frequency domains, and so is least likely to introduce any changes which were 

not present in the original image [Marr,1982]. It is far more isotropic 

(rotationally invariant) than the low-pass mask, and isotropy reduces the 

distortion of edges in the filtered image. Equally importantly, a 15x15 Gaussian 

mask can be decomposed into two one-dimensional Gaussian operators with 

dimensions 1 x15 and 15x1 [Niblack, 1985]. This means that such a mask can 

be implemented on the pipeline processing card as a two pass process. 

In choosing the Gaussian mask, the method of [Davies,1987] is followed, 

which states that the optimum value of sigma is directly proportional to the 

linear dimension of the neighbourhood. Since the mask is being implemented 

as two one-dimensional filters, then the isotropy cannot be properly 
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maximised, and so the criterion to maximise is taken as the accuracy of the 

Gaussian as implemented in a 15x15 convolution mask. For a 15x15 

neighbourhood the corresponding value of sigma is 3.6. Using this Gaussian 

as a smoothing mask rather than the low-pass, the results shown in Table 

(3.2) are obtained. 

BOUNDARY ERRORS 
IMAGE 

3x3 5x5 7x7 
MEAN MAX MEAN MAX MEAN MAX 

CIRCLE 0.75 3 0.79 3 0.73 3 

IICII 0.82 3 0.83 4 0.77 3 

STAR 1.2 10 1.32 10 1.27 10 

Table (3.2). Table of boundary errors incurred by different mask sizes on 
the three composite images shown in Figure (3.8.1). The smoothing is 

performed by a Gaussian mask. All the figures quoted are in pixels. 

These figures are an improvement over the results shown in Table (3.1) using 

the low-pass smoothing mask. Even from inspection of the smoothed images, 

it appears that the region boundaries are more clearly defined. The 

improvement is especially noticeable with reference to the star image, where 

the mean boundary error has decreased by approximately 20% for each mask 

size. The main reason is that the Gaussian mask produces less rounding of 

corners than the low pass mask. This is because the Gaussian mask is 

centrally weighted. As a result, less blurring occurs, and so small regions are 

less likely to be smoothed out of existence. 

In addition to the results of these tests, many images taken from 

preform lay-ups have been processed using both Gaussian and low-pass 

smoothing. The opinion of human observers has been that Gaussian 

smoothing produces less edge attenuation. The conclusion both from 

controlled experimentation and subjective observation therefore, is that 

Gaussian smoothing is preferred over low-pass smoothing. 

A third set of experiments has been carried out to test the effect of what 
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is referred to here as secondary smoothing. This entails a second smoothing 

and thresholding stage after the initial segmentation, the result of which is to 

smooth the region boundaries. The full segmentation process is then as 

represented in Figure (3.8.2). Stages (4) and (5) are identical to stages (2) 

and (3). The effect this additional smoothing process has on boundary 

accuracy can be found in Table (3.3). 

INPUT SEGMENTED 

IMAGE 
(1) (2) (3) (4) (5) IMAGE 

GREY·SCALE 15x15 THRESHOLD 15x15 THRESHOLD 
FILTERING SMOOTHING SMOOTHING 

Figure (3.8.2). Texture segmentation using grey-scale filtering with 
a secondary smoothing stage. 

BOUNDARY ERRORS 
IMAGE 

3x3 5x5 7x7 
MEAN MAX MEAN MAX MEAN 

GIRGLE 0.71 3 0.70 3 0.66 

"G" 0.74 3 0.78 4 0.72 

STAR 1.35 10 1.5 10 1.4 

MAX 

3 

3 

10 

Table (3.3). Table of boundary errors incurred by different mask sizes on the 
three composite images shown in Figure (3.8.1). Smoothing is carried out 

using a Gaussian filter. A secondary smoothing stage is carried out 
using the same mask. All the figures quoted are in pixels. 

These figures provide an interesting result when compared to those of Table 

(3.2). For the circle and "G" images, where the region boundaries are smooth 

with modest curvature, secondary smoothing results in a decrease in boundary 

errors of between 6% and 11 %. For the star image where the region 

boundaries have areas of extreme curvature (corners), secondary smoothing 

results in an increase in boundary errors of between 10% and 130/0. The 

variations obtained are similar for Gaussian smoothing and normal low-pass 
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smoothing (not reported here), although Gaussian always exhibits the best 

result. This suggests that secondary smoothing may be a useful function in 

certain applications where the regions are expected to exhibit smooth 

boundaries with no points of extreme curvature. 

The above experiments relating to mask size, region curvature, 

smoothing operator, and secondary smoothing, have been repeated on an 

image where the texture is unidirectional carbon fibre material with glass fibre 

weft, shown in Figure (3.8.3). This, as has been mentioned previously, is a 

prime material in many composite manufacturing processes. The image 

sequence of Figure (3.8.3) shows the composite texture image and the 

generating template, as well as showing two images to illustrate the effect of 

secondary smoothing on the extracted region boundary. The particular 

example shown is using a 3x3 mask which produces a particularly ragged 

boundary with this texture if secondary smoothing is not effected. The table of 

Table (3.4) details the results using this image. 

The results in this table show that for this texture, boundary errors 

decrease as mask size increases. Again this is against the intuitive idea that 

small masks should produce better accuracy, and seems to reinforce the 

concept that the mask should be matched to the texture in question. 

This table gives a clear indication of the effect the smoothing stage can 

have on boundary accuracy. The overall decrease in boundary errors obtained 

by using secondary Gaussian smoothing rather than one low-pass smoothing 

operation ranges from 10% for 7x7 masks to 30% for 3x3 masks. The 

maximum boundary error, whilst not quite so well behaved, also tends to 

reduce with secondary smoothing. 

It is, however, important to remember that these results all relate to 

composite images exhibiting no "real" boundaries, and so should be 

interpreted with care. Images with real boundaries often have edge areas 

which exhibit a pattern which is a product not only of the local texture on either 

side of the boundary (as in composite images), but also of the spatial pattern 

caused by the physical edge itself. 
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(a) 

(b) 

(e) 

(d) 

Figure (3.8.3). Demonstration of effect of secondary smoothing. (a) shows an 
image with an area of unidirectional cloth at 0° overlaid on a background 
of unidirectional cloth at 45°. (b) Template which made the overlay (e) 
Boundary extracted from segmentation using 3x3 mask. (d) Boundary 
extracted using same mask but with secondary smoothing. 
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(a) 

(b) 

(c) 

Figure (3.8.4). Demonstration of effect of secondary smoothing on an image 
with real edges.(a) An image of two plies taken from the robotic lay-up cell . 
(b) Boundary extracted from segmentation using 5x5 mask. (c) Boundary 

extracted using the same mask but with secondary smoothing . 
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Secondary smoothing does produce "cleaner" boundaries on such images (see 

Figure (3.8.4») but the effect on boundary accuracy is not necessarily 

beneficial. This last point is addressed in more detail in Chapter Seven. 

BOUNDARY ERRORS 
IMAGE SMOOTHING 

3x3 5x5 7x7 
MEAN MAX MEAN MAX MEAN MAX 

CARBON Low-pass 2.01 7 1.29 6 1.13 5 

Low-pass 2nd 1.58 5 1.17 7 1.09 6 

Gaussian 1.67 7 1.19 5 1.12 4 

Gaussian 2nd 1.44 6 1.08 5 1.02 4 

Table (3.4). Table of boundary errors incurred by different mask sizes on the 
composite image shown in Figure (3.8.3). Data is given using low-pass 
smoothing, secondary smoothing with low-pass, Gaussian smoothing, and 
secondary smoothing with Gaussian. All the figures quoted are in pixels. 

The results presented in this section, although derived from a small 

dataset, are consistent with the performance of the single channel model for 

texture segmentation. The observations that can be made are summarised in 

the following section. 

3.9 Conclusions. 

This chapter has presented the single channel texture analysis model, 

and examined it in some detail. The main points are as follows: 

• The method IS elegant, in the sense that it IS easily realisable In 

hardware. 

• For regular textures, successful discrimination can be achieved 

between at least four textures in anyone image. 

• Irregular textures, whilst more difficult, can also be discriminated. Larger 

masks may be required, and the number of textures which may be 

discriminated in anyone image may be lower than for regular textures. 

• Segmentation accuracy is generally good, assuming an appropriate 
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mask is used. 

• The method seems appropriate for the task of automated inspection in 

composite lay-up. 

• In general, segmentation improves with mask size. Boundary accuracy 

on the other hand seems to be a non-linear function involving both 

mask size and texture primitive size. 

• Region boundaries exhibiting extreme curvature result in segmentation 

inaccuracies. 

• Gaussian smoothing provides more accurate boundaries than low-pass 

smoothing. 

• In applications where region boundaries are smooth with modest 

curvature, secondary smoothing can increase accuracy. 
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TER 

Convolution Mask Optimisation. 

4.1 Introduction. 

This chapter will present a method of optimising, or training, convolution 

masks for the task of texture discrimination. The flexibility this introduces 

enables the single channel model to be applicable in a much wider range of 

texture analysis problems than would otherwise be the case. Mask training 

means that a convolution-based texture analysis inspection system can be 

easily modified to cope with a change in the material or product to be 

inspected. For an industrial inspection system, such flexibility is essential. 

4.2 The Monte-Carlo Approach. 

As already mentioned in Section 2.4.3, an algorithm to optimise 

convolution masks for texture analysis has already been published 

[Benke,Skinner,1987]. The algorithm takes the form of a heuristic random 

walk, and uses a Monte Carlo approach for mask optimisation. Such an 

algorithm makes random choices of location in a parameter domain believed 

to contain the maximum, and the location giving the highest function value is 

taken as an approximation to the optimum. If such a process is carried out 
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iteratively, then successively better approximations can be obtained. For 

complex problems where the function to be considered is multivariate, non­

linear, and/or multi-modal, then analytic solutions are frequently not applicable 

and the Monte Carlo approach is often the only solution available. The task of 

optimising a convolution mask for texture discrimination presents just such a 

problem. In this case the function is a combination of texture energies, with the 

variables being the mask elements. The function may well be non-linear and/or 

multi-modal. 

In the algorithm described in [Benke,Skinner, 1987] four major 

constraints are placed on the search domain. 

• Firstly, the convolution masks are required to have integer 

elements. This constraint IS purely for computational 

convenience, since the vast majority of image processing 

hardware requires kernel coefficients to be integer rather than 

floating point. 

• The mask elements must sum to zero. This constraint ensures 

that the masks' response is zero over a non-textured (uniform 

intensity) area of image. It also means that texture analysis is 

performed only on the basis of second order statistics and 

higher. 

• The masks are normalised so that the maximum magnitude of 

any of their elements is equal to some arbitrary integer, X. Such 

normalisation is necessary since for any given mask, an infinite 

number of equivalent masks can be constructed by scaling the 

values uniformly. Usually X is chosen as 100, which gives more 

than acceptable dynamic range. 

• In order to reduce the number of free variables, the masks are 

constrained to symmetry about the vertical axis. 

The Monte Carlo algorithm of [Benke,Skinner,1987], applied to the 

task of discriminating between two areas of texture, is represented in Figure 
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begin 
r initialise maximum texture energy to zero 
Emu := 0 

/* get initial best mask 
loop for num.tries 

generate.random.mask(rmask) 
filter .image(image1 ,image2,rmask) 
measure. texture.energy(image2,A,B,EA, Ea) 
if MAX(EAJEa) > Emu 

Em •• := MAX(EAJEa) 
best.mask := rmask 

endif 
endloop 

1* measure texture ratio for initial best mask 
filter.image(image1,image2,best.mask) 
measure.texture.ratio(image2,A,B,Rmu) 

r main loop 
loop I = 0 for num.lteratlons 

generate.random.mask(rmask) 
filter.image(image1,image2,rmask} 
measure. texture.ratio(image2,A,B,Rr) 

r generate random mask 
/* filter image with random mask 
1* measure texture energy in A and B 
1* select mask producing highest energy 

/* filter image with best mask 
r measure ratio of texture energies 
1* between regions A and B 

1* loop for required # of iterations 
1* generate random mask 
/* filter image with random mask 
1* measure ratio of texture energies 
1* between reglons A and B 

learned.mask := welghted.average(best.mask,Rm •• ,rmask,Rr) 1* produce learned mask as 

end 

filter.image(image1,image2,learned.mask) 
measure.texture.ratio(image2,A,B,RI) 

if (Rr > Rm •• ) AND (R, > RI) 
Rm •• := Rr 
best.mask := rmask 

e/seif (RI > Rm •• ) AND (RI > Rr) 
Rm •• := RI 
best.mask := learned. mask 

endif 
en d/oop 

/* weighted average of the best 
1* mask and the random mask 
1* filter with learned mask 
r measure ratio of texture energies 
1* between regions A and B 

/* select mask producing highest 
/* ratio of texture energies 

Figure (4.2.1). Pseudo-code for the Monte Carlo algorithm of 
[Benke, Skinner, 1987] . The function MAX(xl,x2) returns whichever 

is the greater of xl and x2. 

(4.2.1). This algorithm can be implemented in a similar framework to that 

described in Chapter Three for the training of binary masks. Two training 

areas A and 8 are user selected, and the algorithm attempts to produce a 

mask which will maximally discriminate them. Note that two image stores are 

required, one to hold the training image and one to receive the filtered image. 

The first step in the algorithm is to produce an initial mask, chosen to 

maximise the texture energy in one of the training regions. This mask is 

applied to the training image, and the discrimination achieved between the two 

4-3 



training regions is measured. This mask is now regarded as the current best 

mask. The algorithm then attempts to improve upon this mask in an iterative 

loop. At each iteration, a new "guess" is made at the optimum mask. In 

practice this means the generation of a random mask constrained to zero­

sum, scale, and vertical symmetry. The discrimination achieved by this new 

mask is measured. A third mask is now produced called the learned mask. 

This mask is a weighted average of the current best mask and the random 

mask. This mask is also applied to the training image, and the discrimination 

achieved measured. The final step in the loop is to compare the discrimination 

achieved by each mask, and to choose the mask giving the best discrimination 

as the current best mask for the next iteration. This process is repeated for a 

pre-determined number of iterations, and so the discrimination of the current 

best mask is iteratively improved. [Skinner et al,1990] report that an optimum 

mask is usually found within about 1000 iterations. A point to note is that the 

algorithm can be parametrised to produce filters which maximise output energy 

for a particular training area whilst minimising output energy for the other, 

since this may sometimes be required. Alternately, the algorithm can be left 

to allow the characteristics of the textures in the training regions to determine 

automatically which will have higher texture energy and which lower. The latter 

case will result in optimal discrimination, while the former case may not. For 

the purposes of this chapter, the algorithm will not be used to force a particular 

region to high texture energy, but rather will be left to produce optimum 

discrimination. This algorithm is now examined in more detail. 

The initial mask is produced by generating a number of random masks, 

and choosing the one which maximises the texture energy in either training 

region A or B. Each random mask must satisfy the constraints with regard to 

scale, symmetry and zero-sum. In order to simplify the equations relating to 

random mask generation, the symmetry constraint is relaxed. This is for clarity 

only. 

To generate a kxk random matrix r with elements which sum to zero 

would be a time consuming trial and error process. It is optimised by 

producing only k2-1 random elements, and choosing the last element to be 
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equal to the negative sum of the other mask elements. This enforces the zero­

sum constraint. The last element in the mask, r(k-1 ,k-1), will therefore have 

a different probability distribution from the other elements, but this is of 

negligible importance. The elements for a kxk random mask r are therefore 

derived as follows 

., {O 
r(~, J) = RND(l) 

if i = j = ( k-1 ) 

OTHERWISE 

i=k-l j=k-l 

r (k-1, k-1) == - L L r (i, j) 
i=O j=O 

i,j=O .. k-1 (4.1) 

where RNO(1) is a function which produces a uniform distribution of pseudo­

random real numbers between -1 and 1. The mask normalisation required to 

scale r so that the maximum magnitude of anyone element is X, can be 

defined as 

r (i , j ) == ROUNrl r (i , j) * x ) 
lMAX(r(~,J) ) 

i,j==O .. k-1 (4.2) 

where MAX(r(i,j» represents the maximum magnitude of any element of r, and 

ROUNO(n) returns the nearest integer to real number n. Equations (4.1) and 

(4.2) therefore define the generation of the random mask r with integer 

elements, suitably constrained to scale and zero-sum. 

For an image function I with spatial domain 0, convolution with r to 

produce a filtered image F is defined as 

p=k-l q=k-l 

F(i,j) = L L r(p,q)*I(i'+p,j'+q) Vi,jED (4.3) 
p=O q=0 

where i'=i-k/2,j'==j-k/2 

Note that as a standard function of many image processing cards, including 

the one used in this work, the values F(i,j) would be automatically rectified, so 

that 

F(i,j) =/ F(i,j) / Vi, JED (4.4) 

Fortunately this is in keeping with the idea of texture energy as proposed by 
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[Laws,1980]. It is assumed throughout this thesis that all filtered images have 

been rectified as in (4.4). 

For a filtered image F, the corresponding texture energy image F' is 

given by calculating for each pixel (i,j) the mean of the rectified values in a 

window centred on (i,j). This can be considered a moving average smoothing 

operation on F, so that 

w w 
P="'Z q="'Z 

FI(~,]') = ~"" (. . -'- r.7'" L.,; L.,; F ~ +p, ] +q) 
w w w 

P=-"'Z q=-"'Z 

V i, jeD (4.5) 

where W is the window size of the smoothing operator. W is set by Laws and 

most other workers to 15. 

The texture energy of any area is obtained by summing F' over that 

area, so that for the training region A with spatial domain DA, the total texture 

energy E is defined as 

(4.6) 

An equally effective approximation to the total texture energy in a region 

can be obtained if the smoothing stage indicated by equation (4.5) is omitted. 

This approximation is only valid if the region in question is significantly larger 

than W, the window size of the smoothing filter. With W=15, and the training 

areas with dimensions of at least 64x64, the criterion is satisfied for this 

application. The total texture energy in region A can therefore be taken directly 

from the filtered image F, so that equation (4.6) becomes 

E = LLF(i,j) (4.7) 

For a random mask r applied to the training image, the texture energy 

in each training region is measured, and the largest chosen thus 

(4.8) 
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where EA and EB are the texture energies In region A and region B 

respectively, and Er is the texture energy associated with mask r. To choose 

the initial best mask b, N random masks ro to rN_1 are generated, and the one 

with the largest associated texture energy selected, so that 

b = r i which maximises Ei i=O .. N-1 (4.9) 

where Ej is determined for each mask rj using equation (4.8). N is usually 

chosen, rather arbitrarily, as 10. This gives reasonable performance. 

At this stage it is useful to summarise the process of choosing an initial 

best mask. A number of random masks are generated as defined in equations 

(4.1) and (4.2). The random mask giving the maximum texture energy in either 

training region, measured by equations (4.7) and (4.8), is chosen as the best 

initial mask according to equation (4.9). This mask becomes the current best 

mask b. 

Referring back to Figure (4.1), the next step is to measure the texture 

discrimination achieved by this mask. The discrimination achieved by a mask 

is measured as a ratio of texture energies. Assuming as before that the 

textures themselves are to be allowed to determine which region gravitates 

towards higher texture energy, then the texture ratio for mask b is denoted as 

Rb , and defined as 

EA if EA~EB (4.10) 
~ 

R = b 

EB if EA<EB 
~ 

where EA and EB are the texture energies of regions A and B respectively. 

Note that to force one or other area to high texture energy, simply use that 

regions' texture energy as the numerator in the texture ratio equation of (4.10). 

The region chosen as numerator is iteratively directed towards higher texture 

energy, whilst the region chosen as denominator is iteratively directed towards 

lower texture energy. 

Now consider the main loop of the algorithm. A new random mask r is 
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generated using equations (4.1) and (4.2). The mask is applied to the training 

image in the way defined in equation (4.3) and the texture energy of each 

region measured as in equation (4.7). The texture discrimination between the 

two training regions for this mask is denoted as Rp and this is measured by 

application of equation (4.10). 

The next stage is the generation of the learned mask I. This is 

calculated as a weighted average of the current best mask b and the random 

mask r. The weighting attached to each mask is taken as the texture ratio 

achieved by that mask. In this way the learned mask is weighted more 

strongly in favour of the mask with better discriminatory power, but will also be 

significantly affected by the weaker mask. This will produce a mask which is 

different from either of the constituent masks, and which may achieve greater 

discrimination. The learned mask 1 is therefore calculated as 

l(p,q) = Rbb(p,q) + Rrr(p,q) p,q=O .. k-1 (4.11) 

where k is the mask size. The power of this heuristic random walk 

algorithm lies in this concept of a learned mask. If this mask were not 

generated, the number of iterations taken to improve discrimination using only 

random guesses would be prohibitive. By combining two masks in proportion 

to their power of discrimination, it is hoped to produce a mask which reflects 

the best features of both constituent masks. If applied in an iterative algorithm 

then this is a surprisingly effective approach. Since the learned mask wi" be 

significantly different from the current best mask, the problem of finding only 

local minima is also avoided. 

The learned mask 1 must also be normalised as in equation (4.2). It 

IS then applied to the training image as in equation (4.3), and the 

corresponding texture ratio calculated as in equation (4.7). 

From the three masks now defined, the current best mask, the random 

mask, and the learned mask, the one giving the highest texture ratio is chosen 

as the current best mask for the next iteration. 
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Formally this is represented as 

(4.12) 

where Rb, RI, and Rr are the texture energies associated with masks b, I, and 

r respectively. In this way the discriminatory power of the current best mask 

is iteratively increased. The process is repeated for a set number of iterations. 

4.3 Performance of the Benke and Skinner Algorithm. 

The algorithm detailed in the previous section has been implemented 

on the pipeline card, and so is able to run at about 10 iterations per second 

for 3x3 masks, 8 iterations per second for SxS masks, and 5 iterations per 

second for 7x7 masks [King, 1994]. The algorithm has been extensively tested 

on many textures, with generally good results. It is neither necessary nor 

desirable to reproduce these results here, but instead the trends observed and 

the improvements implemented will be detailed. A more complete 

demonstration of the power of this method is given in Chapter Five, when an 

improved version of the Benke and Skinner algorithm is compared against a 

new algorithm. For the purposes of this and the following section, results can 

be effectively explained with reference to a single suitably chosen dataset of 

textures, namely samples of carbon fibre at four different weave orientations. 

Similarly only the results for the optimisation of SxS masks are detailed, since 

the extension to other mask sizes provides no additional information. It is 

useful in this section to illustrate the performance of the algorithm using 

graphs, the first of which can be found in Figure (4.3.1). 
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Figure (4.3.1). Graph showing iterative improvement of masks trained 
using the Benke and Skinner algorithm. The test data is different 
orientations of carbon fibre material. The last point is the texture 

ratio achieved after 1000 iterations. 

The orientations which each mask has been trained to discriminate are 

indicated by the legend on the graph. Since the Monte Carlo method uses 

random masks then each run will progress differently, and so the average, or 

expected, performance is depicted. Each set of data on the graph therefore 

represents the performance of the algorithm averaged over 10 runs. The final 

point plotted represents the texture ratio achieved after 1000 iterations. This 

is perhaps not as clear as it might be on the graph (i.e. the appearance of the 

"160" on x-axis is misleading), but this is due to limitations of the software 

package used to produce the graphs. The graph is presented in this format 

(rather than over the full 1000 iterations) to allow the optimisation rate in the 

early stages to be easily observed. 

This graph effectively illustrates a weakness in the Benke and Skinner 

algorithm. Four of the masks generated follow a similar path, and achieve a 

texture ratio of between 3 and 4 after 1000 iterations. One mask performs 

much better with a texture ratio greater than 5. The remaining mask cannot 

achieve any significant ratio at all. 
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These discrepancies are a direct result of the symmetry constraint 

imposed, which requires that the masks generated are symmetric about the 

vertical axis. The result of this is that the performance of the masks depends 

on the symmetry exhibited by the textures in question. Where vertical 

symmetry is reflected in both training textures, then a near-optimum mask can 

be produced. This is the case with the fibre orientations of 0° and 90° which 

results in a ratio of greater than 5. Where one of the textures does not exhibit 

this type of symmetry, then a reasonable but far from optimal mask can still 

be produced. This is the case with any texture pair which includes one 

orientation of either 45° or -45°. If neither texture exhibits vertical symmetry, 

as is the case when trying to discriminate 45° from -45°, then the mask is not 

able to produce any kind of discrimination at all. 

4.4 Improving The Benke and Skinner Algorithm For Automated 

Inspection. 

This section will present two modifications to the original algorithm 

which have been shown to improve performance. They are detailed in the 

following two sub-sections. 

4.4.1 Removal of Symmetry Constraint. 

Obviously the symmetry constraint is detrimental to the objective of 

finding optimum masks for texture discrimination. Benke and Skinner proposed 

the symmetry constraint to reduce the number of free variables in the mask, 

and therefore speed up the convergence to an optimal mask. They justified 

this by claiming that natural textures do not in general exhibit an "innate left­

right asymmetryll. This assumption is obviously invalid for industrial inspection. 

The constraint that masks exhibit symmetry must therefore be relaxed. 

Figure (4.4.1.1) shows a graph generated using masks with no 

symmetry constraint, using the same texture dataset used to produce the 

graph of Figure (4.3.1). The results illustrated in Figure (4.4.1.1) show an 

overall improvement in discrimination over the results of Figure (4.3.1). 

Removal of the symmetry constraint has enabled the masks to produce 
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greater feature-plane separation, with only a relatively slight decrease in the 

rate of convergence. Specifically, the carbon samples at 450 and -450 can be 

readily discriminated by antisymmetric masks. This graph also shows that 

some texture pairs are easier to discriminate than others. The question of how 

to quantify the discriminability of textures is one which awaits a better 

understanding of texture. 
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Figure (4.4.1.1). Graph showing iterative improvement of masks trained 
using the Benke and Skinner algorithm with no symmetry constraint. The test 

data is different orientations of carbon fibre material. The last 
point is the texture ratio achieved after 1000 iterations. 

4.4.2 A New Optimisation Criterion. 

Experiments with the Benke and Skinner algorithm have suggested that 

the ratio of texture energies is not the most appropriate measure of texture 

discrimination, when the means of discrimination itself is to be a simple 

threshold. For reliable thresholding it is required to separate the texture 

classes in the feature-plane as much as possible. Maximising the texture 

energy ratio introduces a subtly different criterion to the one required. To 

maximise a ratio, the most effective way is to minimise the denominator. This 

corresponds to minimising the texture energy of one of the training regions, 
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whilst keeping the texture energy of the other comparatively high. The masks 

which are chosen will therefore be the ones which minimise the texture energy 

in one or other of the regions. This will generally provide texture discrimination , 
but not optimal texture discrimination, since the measure of texture ratio 

becomes highly non-linear for low texture energies. To illustrate this, assume 

that the texture energy of one training region, region A, is static at a value 

equivalent to an average pixel grey-level of 200. For the second region, region 

B, reducing the average grey-level increases the texture ratio in a non-linear 

manner. This can be appreciated by reference to Figure (4.4.2.1), which 

shows how the ratio of texture energies varies non-linearly when the average 

grey-level of the second training area decreases. 
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Figure (4.4.2.1). Non-linear increase of texture ratio when the 
texture energy in region B decreases. The value in region A is 

assumed to be constant, and equal to 200. 

From this graph it is obvious that a greater increase in texture energy ratio can 

be achieved by minimising the grey-level of region B than by increasing the 

grey-level of region A. As a result of this, the algorithm will tend to produce 

masks which minimises the grey-level of one of the regions. This will produce 

a high texture ratio, but does not guarantee maximum discrimination. For 

example, consider a mask which when applied to two training regions A and 

B results in average grey-levels of 200 and 50 respectively. The corresponding 

texture energy ratio would be 4, whilst the separation of the peaks on the 

grey-level histogram, which is a more important feature for thresholding, would 
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be 150. A second mask might result in an average grey-level of 150 and 30 

respectively. The corresponding texture energy ratio for this mask would be 

5, but the distance between the two peaks on the grey-level histogram would 

be only 120. The algorithm as defined would therefore choose the mask which 

is producing less feature-plane separation. 

A more appropriate criterion for mask optimisation would therefore be 

one which measured the histogram separation of texture classes in the 

feature-plane. This can be approximated by the difference in mean grey-level 

of the respective texture regions after convolution with the relevant mask. The 

mean grey-level for region A with spatial domain 0 A' is denoted GA and 

defined as 

(4.13) 

where N is the number of pixels in DA• The histogram separation S for two 

regions A and 8 is therefore 

(4.14 ) 

This measure is obviously linear over its full range, which the texture 

energy ratio measure defined in equation (4.10) is not. It also has the capacity 

to be either positive or negative, and so equation (4.12) which defines the 

choice of best mask for the next iteration must be adapted thus 

(4.15 ) 

where S Sand S are the histogram separations associated with masks b, 
b' I' r 

I, and r respectively. The learned mask is still calculated in a similar manner 

to that defined in equation (4.11), but the histogram separation term replaces 

the texture energy ratio term. The resulting equation is 

P, q=O . . k-1 (4.16 ) 
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The Benke and Skinner algorithm using histogram separation as the 

maximisation criterion performs at least as well, and in most cases noticeably 

better, than the version using ratio of texture energies. The graph of Figure 

(4.4.2.2) shows the results when applied to the test dataset of textures. 

The histogram separation measure has several attractive features. As 

already stated, it is a linear measure of the property to be maximised, namely 

feature-plane separation. It is readily extendable to the task of discriminating 

between more than two texture classes, as shall be seen in Section 4.4.3. It 

also results in faster convergence in the sense that a near optimal mask is 

produced in relatively few iterations. This is illustrated by reference to Figure 

(4.4.1.1) and Figure (4.4.2.2). 
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Figure (4.4.2.2). Graph showing iterative improvement using Monte 
Carlo algorithm with histogram separation. The test data and graph 

format are the same as in previous graphs. 

In the former case, using ratio of texture energies, the ratio is increasing 

at a relatively slow, but consistent, rate. The performance after 1000 iterations 

is significantly greater than after 120 iterations. In the latter case, using 

histogram separation, there is a much sharper initial improvement in mask 

performance (i.e. within the first 50 iterations). There a proportionally smaller 

improvement in the result at 1000 iterations over the result at 120 iterations 

than when using the ratio of texture energies. 
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It is difficult to produce a more rigorous argument to support the 

assertion that using histogram separation results in faster convergence than 

using ratio of texture energies, since the two different measures of 

performance cannot be directly compared. However, experience with the 

algorithm does indicate that the new measure does produce faster 

convergence. A possible reason for this appears to be the increased dynamic 

range offered by the histogram separation measure. This can vary from a 

value greater than 100, to a value less than -100. When this measure is used 

in equation (4.16) to calculate the learned mask, then a mask giving good 

separation may be weighted by perhaps 10 times as much as a mask giving 

weak separation. This means much stronger proportional weighting for good 

masks than takes place using the ratio of texture energies. The result is faster 

optimisation. An additional factor is that histogram separation may be negative, 

and so this introduces another degree of freedom into the calculation of the 

learned mask. 

4.4.3 Extension to More than two Texture Classes. 

Adopting the histogram separation measure as the criterion for mask 

optimisation means that the algorithm of Benke and Skinner can be adapted 

to deal with more than two texture classes. For the sake of clarity only the 

extension to three classes is detailed, since the extension to more is 

analogous. 

When attempting to discriminate only two texture classes, it was noted 

that the algorithm itself could be allowed to determine which texture energy to 

maximise and which to minimise. With three textures the situation is slightly 

different. What is required in this case is to discriminate a particular texture 

from the other two. The algorithm must therefore be 'told' which texture is to 

be discriminated. This is most easily implemented by assuming without loss 

of generality that the first texture region, region A contains the texture to be 

discriminated. Using this assumption then the only change required to extend 

the algorithm to deal with three textures is that equation (4.14) now becomes 
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(4.17) 

where GA, Ga, and Gc are the mean grey levels of regions A, B, and C 

respectively. Equation (4.17) defines the histogram separation as being the 

minimum separation between the region to be discriminated A, and the other 

two regions. By choosing this as the criterion to maximise, the inter-class 

errors between textures is minimised, and so ensuring optimum segmentation. 

Equation (4.17) has been implemented in the Benke and Skinner 

algorithm, and the results for different texture classes observed. In general the 

performance is good, and for regular textures good discrimination can be 

achieved with three or four texture classes. This has already been illustrated 

by Figure (3.7.2) in the previous chapter. For more irregular textures the 

performance degrades, but is generally still acceptable. In the absence of a 

much more elaborate texture model, the only way to check if one texture class 

can be easily discriminated from other classes is to experiment. 

The performance of the algorithm in optimising masks for discrimination 

between three textures is illustrated in Figure (4.4.3.1). 
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Figure (4.4.3.1). Graph showing performance of Benke and Skinner algorithm 
using histogram separation as the criterion to discriminate three 
texture classes. The format is the same as in previous graphs. 
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The dataset is again different orientations of carbon fibre, and the 

legend indicates the various orientations used for each test. The first 

orientation listed is discriminated from the two which follow. From this graph 

it can be seen that the optimisation of the masks proceeds at a slower rate 

than when discriminating between only two texture classes of the same 

dataset. From this it might be deduced that the task of discriminating two 

regular textures presents a multi-modal function with many peaks, and so 

optimisation to at least a local minimum is fast. With three or more textures , 

or with more irregular textures, the function seems to exhibit far fewer, or 

perhaps narrower peaks. The algorithm requires more iterations (guesses) to 

optimise a mask for such data. 

4.5 Conclusions. 

The algorithm presented by [Benke,Skinner,1987] has been 

implemented and extensively tested. By dropping the symmetry constraint the 

classes of texture which can be optimally discriminated is increased. A new 

optimisation criterion has been introduced, and has been shown empirically to 

produce faster and better discrimination. This criterion is also directly 

extendable to the discrimination of more than two texture classes, and the 

revised algorithm has been found to successfully optimise masks for such 

tasks. 

The algorithm does however still exhibit some restrictive properties. 

Firstly, the number of iterations required for mask optimisation is sometimes 

prohibitive. This is not the case using the carbon fibre dataset used to illustrate 

results in the previous two sections, but can be true when using materials 

exhibiting more complex texture primitives. If a system has to be trained to 

inspect a large number of such textures then the training time would be 

considerable. Secondly, because the algorithm uses a Monte Carlo approach 

then the number of iterations required for optimisation is unpredictable. A fixed 

number of iterations for optimisation is preferable. 

As a result of these drawbacks a new algorithm has been developed 

to optimise convolution masks. This is presented in the following Chapter. 
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TER 

A New Algorithm for Convolution 
Mask Optimisation. 

5.1 Introduction. 

This chapter will detail a new algorithm for convolution mask 

optimisation. It will be shown that the algorithm is more effective and more 

efficient than the Benke and Skinner algorithm described in Chapter Four. 

5.2 The Basis Algorithm. 

The task of producing a convolution mask optimised for a specific 

texture analysis criteria might be considered as a combinatorial optimisation 

problem. Solving such a problem amounts to finding the IIbestll or lIoptimal li 

solution among a finite or countably infinite number of alternative solutions 

[Aarts, Korst, 1989]. Two approaches to such a problem can be identified. 

General algorithms are applicable to a wide range of problems, and so can 

to a certain extent be called problem independent. The heuristic random walk 

algorithm described in the previous chapter is, with suitable modifications, 

applicable to a wide range of problems and so is an example of a general 

algorithm. Tailored algorithms use problem-specific information and their 
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application is therefore limited to a restrictive set of problems. In this chapter 

a new tailored algorithm which uses information specific to the texture analysis 

task is presented, and shown to provide better performance for this application 

than the heuristic random walk algorithm of Benke and Skinner. 

The strength of the Benke and Skinner algorithm lies in the concept of 

constructing a learned mask. This mask combines the current best mask , 

which has good discrimination, with a newly guessed mask, and as a result 

may produce better discrimination. The weakness of this approach is that the 

guesses are entirely random. With no criteria for the guessed masks, the 

probability of making a good guess is comparatively low, and so long 

sequences of poor guesses are likely. This means that the number of 

iterations required for optimisation is unknown, unpredictable, and possibly 

prohibitive. 

To consider the problem in a slightly different way, it seems reasonable 

to hypothesize that the masks required in the single channel model are 

sensitive to some feature or combination of features inherent in the training 

textures. If, instead of combinations of random masks, linear combinations of 

masks which have been chosen for their sensitivity to different texture features 

are produced, then fast generation of a mask capable of near optimum texture 

discrimination might result. An algorithm working on this theory would therefore 

be a tailored algorithm, using knowledge of the underlying problem to provide 

faster optimisation. 

An algorithm based on this idea has been developed, and is presented 

in Figure (5.2.1). The algorithm produces a mask which is a weighted average 

of a set of previously determined masks. These masks are referred to as 

basis masks, and the new algorithm has been termed the basis algorithm. 

The nomenclature in Figure (5.2.1) has been selected to be as meaningful as 

possible, but for the sake of brevity in the following equations simpler 

terminology is adopted. The basis algorithm is explained as follows. 

Let the number of kxk basis masks be n, and each of the n basis 

masks be referred to as mi, where i=O .. n-1. In the loop to find the best initial 

mask, each of the basis masks mi is applied to the training image I with spatial 
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domain 0 to produce a filtered image f thus 

p=k-l q"k-l 

f(x,y) = ILL m(p,q). I(xl+p,y+q) I Vx,yeD 
p=O q"O 

where Xl =x- k ,.J =y_ k 
7'.1' 7 

(5.1) 

The mean grey-level for region A with spatial domain 0 A' is denoted G
A 

and 

defined as 

GA = j,I: I: f(x,y) (5.2) 

where N is the number of pixels in DA. The histogram separation between the 

training regions A and B achieved by each basis mask is denoted as SI' and 

is measured thus 

The current best mask b is chosen as the basis mask giving best separation, 

such that 

j=O . . n-l (5.4) 

In the main loop, a learned mask 1 is generated as a weighted average of the 

current best mask b and a basis mask mi' The weighting attached to the 

current best mask is the histogram separation achieved by that mask, Sb' The 

weighting attached to the basis mask has two factors, Sb and Aj • The first, Sb' 

is the histogram separation achieved by the basis mask. The idea of a second 

weighting factor, Aj , has been derived from a popular optimisation technique 

called simulated annealing. Annealing is the physical process of heating up 

a solid until it melts, followed by cooling it down until it crystallizes into a state 

with a perfect lattice structure (and therefore minimum free energy) [Aarts, 

Karst, 1989]. The ground state of the solid (i.e. the lattice) is obtained only if 

the maximum temperature is sufficiently high and the cooling is done 

sufficiently slowly. 
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begin 

end 

/* initialise maximum histogram separation to zero 
Smn:= 0 

/* get initial best mask 
loop I = 0 for num.basls.masks 

filter .image(image1 ,image2,basis.mask(i» 
measure.histogram.separation(image2,A,B,S(i» 
If abs(S(i» > abs(Sma.) 

Sma. := SCi) 
best. mask := basls.mask(l) 

endif 
endloop 

/* main loop 
loop j = 0 for num.amplitude.scalars 

loop 1= 0 for num.basis.masks 

/* filter with basis mask 
r measure separation achieved 
/* between regions A and B 

r select mask with best 
r discrimination 

/* iteratively vary amplitude 
/* for each basis mask 
r calculate learned mask 
/* A(j) Is amplitude scalar 
/* (see text) 

learned.mask := weighted.average(best.mask,Smax,basls.mask(i),S(I),AO» 

fllter.lmage(lmage1,image2,learned.mask) 
measure.hlstogram.separation(image2,A,B,SI) 
If abs(SI) > abs(Smax) 

Sma.:= SI 
best.mask := learned. mask 

endif 
end/oop 

en d/oop 

/* filter with learned mask 
r measure separation achieved 

/* select mask with best 
/* discrimination 

Figure (5.2.1). Pseudo-code for the basis algorithm. 
The function abs(x) returns the absolute value of x. 

The name simulated annealing has been given to a class of 

optimisation algorithms which model the annealing process in order to perform 

function minimisation. From an initial state, the function is perturbed i.e. a new 

value in the vicinity of the initial state is obtained. If this new value is les$ than 

the current (initial) value, then it becomes the current minimum. The process 

is repeated iteratively to determine the minimum of the function. As described 

so far the process is very similar to that used in the Monte Carlo based 

heuristic random walk algorithm detailed in the previous chapter. For simulated 

annealing however, there is some control over the size of the perturbation 

area. Initially the possible area of perturbation will span the entire range of the 

function. This is equivalent to the maximum temperature of the liquid in the 

annealing process, where molecules are free to interact as they wish. After so 

many iterations however, the possible area of perturbation will decrease 

5-4 



slightly, so the new function "guesses" are more limited in their range. This is 

analogous with reducing the temperature in annealing. As the temperature 

falls, the molecules will begin to form the low energy lattice structure. If the 

temperature falls sufficiently slowly, then the ground state of the solid will be 

reached, and meta-stable states (local minima in terms of the functional 

analogy) will be avoided. In simulated annealing therefore the possible area 

of perturbation is reduced in a controlled manner in an attempt to find the 

global minimum of the function. 

It is this idea of controlling the area of perturbation which has led to the 

use of a second scaling factor in the algorithm described here. It might be 

regarded as producing a "fine tuning" effect to increase the overall 

discrimination. The scaling factor is denoted as Ai' where j=1 .. M. The term Aj 

is varied iteratively downwards from 1 to some lower bound greater than O. 

This facilitates the fine tuning which may be required to accurately 

approximate the optimum mask. The learned mask in loop j,i is therefore 

calculated as 

1 (P, q) = Sb b(p, q) + Si A] mi (P, q) P, q=O . . k-l , (5.5) 

where k is the mask size. The value of M can range from 1, in which case the 

weighting of the basis masks is not scaled at all (since A1 = 1), to perhaps 5, 

in which case four additional scaling loops are performed. The former will 

provide a rough approximation to the optimum in very few iterations, the latter 

a better approximation but in many more iterations. The optimum value of M 

is determined empirically in Section 5.4.1. Note that the histogram separation 

achieved by each basis mask, Si' is already known, since this was recorded 

in the initial loop. As a result of this only one image convolution is required per 

loop for the basis algorithm compared to two for the Benke and Skinner 

algorithm. 

The learned mask is normalised so that the maximum magnitude of any 

one element is X, thus 

1 (. .) = ROUNri 1 (i I j) *X ) 
~/J \MAX(l(~/J)) 

i,j=O .. k-l (5.6) 
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where MAX(r(i,j» represents the maximum magnitude of any element of I, and 

ROUND(r) returns the nearest integer to real number r. SI' the histogram 

separation for the learned mask is measured as defined in equation (5.3). 

The best mask for the next iteration is chosen as 

b = t (5.7) 

The total number of iterations required for the optimisation of a mask by the 

basis method is therefore equal to the number of iterations required to 

calculate the initial best mask (the number of basis masks) plus the number 

of iterations required in the main loop (the number of basis masks times the 

number of scalars). 

Hence 

# iterations = n(M+l) (5.8) 

5.3 Possible Basis Mask Sets. 

The success of the basis algorithm will obviously depend on an 

appropriate basis mask set being chosen. The masks sets tested are 

• an augmented set of Laws masks 

• sampled Gabor filters 

• eigenfilters 

Each of these mask sets has been generated and tested for 3x3, 5x5, 

and 7x7 masks. All the masks have been normalised as in equation (5.6) so 

that the maximum magnitude of element is equal to 100. The details specific 

to the generation of each of the above masks sets are examined in the 

following three sections. 

5.3.1 Augmented Laws Filter Set. 

The Laws filter set is an obvious candidate for basis masks. 

[Laws,1980] defined 3x3, 5x5, and 7x7 masks for texture discrimination, and 

no-one has yet published a mask set claiming better performance. For this 
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application one mask from each set must be discounted, namely L3L3, L5L5, 

and L7L7, since these masks are not zero-sum. In addition, it is advantageous 

when dealing with synthetic materials (commonly encountered in machine 

vision tasks) to enlarge the set by adding another two masks for each spatial 

resolution. These masks are chosen to have a strong diagonal element to 

them, and enable more effective masks to be produced for textures exhibiting 

a similar structure (e.g. carbon fibre cloth at ±45°). Whilst these masks are 

redundant in the sense that the Laws mask sets are independent and 

complete (the 3x3 and 5x5 sets at least), they do offer an advantage in terms 

of performance with the basis algorithm. The additional masks have been 

constructed by rotating other Laws masks, E3L3, E5L5, and E7L7 . The 5x5 

form of the masks added are shown in Figure (5.3.1.1). Note that these 

masks have yet to be normalised, and are simply the Laws mask E5L5 rotated 

by -45° and 45° respectively. 

0 -2 -1 -4 -6 6 4 1 2 0 

2 0 -8 -12 -4 4 12 8 0 -2 

1 8 0 -8 -1 1 8 0 -8 -1 
I 

4 12 8 0 -2 2 a -8 -12 -4 

6 4 1 2 0 a 1-2 -1 -4 -6 
I 

Figure (5.3.1.1). Additional masks in the augmented Laws filter set. 
The masks shown are rotated versions of E5L5. 

The number of masks in the augmented Laws set is therefore 10 for 

3x3 masks, 26 for 5x5 masks, and 37 for 7x7 masks. For reasons of brevity 

these masks are referred to from now on simply as the Laws basis set. 

5.3.2 Sampled Gabor Filters. 

Gabor filters have enjoyed a high profile in the texture analysis literature 

recently [Caelli,Moraglia,1985], [Perry,Lowe,1989], [Jain,Farrokhnia, 1991]. 

This is mainly due to psychophysical experiments which have suggested that 

the response profile of simple cells in the human visual cortex can best be 

approximated by Gabor signals [Pollen,Ronner,1983], [Oaugman, 1980]. This 

would seem to be a good justification for their inclusion in these experiments, 
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but there is a problem here. The small size of the masks, with the largest 

being 7x7, means that the sampled versions cannot realistically be called 

Gabor filters. The approximations are just too coarse. There is however a 

second reason to use Gabor functions, and that is that the functions 

themselves are easily controllable in terms of frequency and orientation. They 

therefore provide a convenient means of generating a set of filters whose 

frequency and orientation can be specified. This is ideal for the requirement 

of finding good basis mask sets. 

The response of an even-symmetric Gabor filter in the spatial domain 

is given by 

h (X, y) = exp{-~r X 2

2 + -tz]eos (21WoX) (5.9) 
[ax ay 

where Uo is the frequency of a sinusoid along the x-axis, and crx and cry are the 

space constants of the Gaussian envelope along the x and y axes 

respectively. To obtain different orientations a rigid rotation on the axes of the 

function is effected. That means the parameters of the function are 

transformed, so that 

Xl = xeos (9) - ysin(9) 

y' = xsin (9) + yeos (9) 

(5.10) 

where e is the angle of rotation, so that equation (5.9) is parametrised by x' 

and y' rather than x and y. The function can be sampled as a 3x3, 5x5 or 7x7 

mask. To ensure that each mask is zero sum, the mean is calculated and 

subtracted from every element before normalisation. 

Table (5.1) shows the frequencies, orientations and Gaussian 

parameters which have been used to generate the functions sampled in these 

tests. The reason for the different values of crx and cry is that the extreme value 

(cr
x
=cr

y
=100) produces step lIedgesll in the sampled masks, compared to the 

smoother more ramp-like lIedges" produced when crx and cry have values more 

appropriate to the mask size. It seems likely that this will have some effect on 

the power of discrimination of the masks generated. Therefore two sets of 
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Gabor masks will be tested for each mask size. The choice of frequencies and 

orientations are empirical, chosen after experimentation. 

Name of <Jx <Jy Frequencies Orientations # Masks 
Mask Set in cycles/mask in degrees 

Low High Step Low High Step 

Gabor31 100 100 0.5 1.5 0.5 0 135 22.5 21 

Gabor32 0.73 0.73 0.5 1.5 0.5 0 135 22.5 21 

Gabor51 100 100 0.5 2.5 1.0 0 135 22.5 21 

Gabor52 1.16 1.16 0.5 2.5 1.0 0 135 22.5 21 

Gabor71 100 100 0.5 3.5 1.0 0 135 22.5 28 

Gabor72 3.6 3.6 0.5 3.5 1.0 0 135 22.5 28 

Figure (5.1). Parameters for each of the sampled Gabor masks. 

5.3.3 Eigenfilters. 

Eigenfilters were introduced by [Ade,1983a] and discussed in section 

(2.4.5). From a training region of texture the eigenvectors of the corresponding 

covariance matrix are calculated, and these are used as the coefficients in 

convolution masks. These eigenfilters are derived without loss of information 

from the covariance matrix, and so fully describe the second order statistics 

of the sample texture. It is reasonable to consider then that they might be 

useful in texture discrimination. 

A method to derive the eigenvectors from the texture covariance matrix 

has been implemented based on the Householder Reduction [Press et ai, 

1990]. Experiments have been performed with eigenfilters from either or both 

training regions. It is important to remember that since the eigenfilters have to 

be extracted from the texture samples to be discriminated, then there is the 

additional overhead incurred in calculating the eigenfilters to consider, an 

overhead which increases exponentially with mask size. For 3x3 or 5x5 masks 

this is not significant, but for 7x7 or larger neighbourhoods the processing time 

is of the order of tens of seconds. 
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5.4 Performance of the Basis Algorithm. 

The main parameters which have to be investigated in the basis 

algorithm are the choice of basis mask set, and the optimum number and 

value of scalars. It is convenient to tackle the latter problem first, since this will 

simplify the task in determining the best basis mask set. This is a reasonable 

approach, since experiments have shown that the optimum number and value 

of scalars are largely independent of the basis mask set used. The Laws basis 

set is therefore used throughout the following section. 

5.4.1 Scalars. 

To determine the optimum number of scalars, the texture dataset 

depicted in Figures (5.4.1.1 a) and (5.4.1.1 b) is used, where the second 

dataset is the histogram equalised version of the first. The texture pairs used 

are, from top to bottom, two different orientations of carbon fibre with glass 

weft (the orientations are 0° and -45°), two different grains of leather, wood 

grain and packing foam, and herringbone and cotton. The last two textures are 

taken from [Brodatz, 1966]. These textures have been chosen to cover a 

range of texture regularities and texture element sizes. They are also all 

textures which might be encountered in automated visual inspection. 

The results for different scalars are shown for each mask size on each 

texture in Figure (5.4.1.2a) for non-equalised textures, and in Figure 

(5.4.1.2b) for the equalised versions. Two sets of results are shown for each 

mask size. The first shows the optimisation rate with four additional scaling 

loops, the second with only one additional scaling loop. The values of the 

scalars are 

A = [0. 7 , 0 . 5 , 0 . 3 , 0 . 1 ] and A = [0. 5 ] (5.11 ) 

for four scaling loops and one scaling loop respectively. These values have 

been found to perform well empirically. 

To interpret the data in Figures (5.4.1.2a) and (5.4.1.2b) it is necessary 

to refer back to the basis algorithm shown in Figure (5.2.1). Remembering 

that there are 10 3x3 Laws basis masks, 26 5x5 masks, and 37 txl masks, 
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then the loop to choose the initial mask takes 10, 26, or 37 iterations 

depending on mask size. The main loop to optimise the best mask takes 

another 10, 26, or 37 iterations. Each subsequent scaling loop therefore takes 

another 10, 26, or 37 iterations. 

From the graphs it is clear that the basis algorithm produces a mask 

with good discrimination after the first optimisation loop. The first scaling loop 

produces a further small improvement, and all further scaling loops produce 

only very slight improvements. The texture pair which benefits most from 

scaling is the carbon fibre pair. 

In general, therefore, scaling provides only minor improvements in 

discrimination, although for some textures this can be useful. It is concluded 

therefore that one scaling loop is adequate. The scaling value of O.S has been 

selected since this was shown empirically to provide the best performance. 

5.4.2 Comparison of Different Basis Mask Sets. 

To compare the performance of the basis algorithm for different mask 

sets the texture dataset shown in Figure (5.4.2.1) is used. The discrimination 

will be measured between pairs of textures. Discrimination between three 

textures is treated in the next section in the comparison with the Monte Carlo 

algorithm. The texture pairs of Figure (5.4.2.1) are, from top to bottom, two 

different orientations of carbon fibre with glass fibre weft (the orientations are 

900 and 4S0
), two different orientations of carbon fibre with thermoplastic weft 

(the orientations are 90° and -4S0) , two different grains of leather, histogram 

equalised images of leather and water from [Brodatz,1966], and histogram 

equalised images of raffia and wood from [Brodatz,1966].The results for this 

dataset using 3x3, SxS, and 7x7 masks are shown in Figures (5.4.2.2a), 

(5.4.2.2b), and (5.4.2.2c) respectively. The mask sets tested are the Laws 

basis set described in Section 5.3.1, the two Gabor basis sets described in 

Section 5.3.2, and two eigenfilter sets which have been extracted from the 

texture samples. The set denoted as EIGEN1 consists of the eigenfilters 

extracted from the first texture sample of each pair only, whilst the set denoted 

as EIGEN2 consists of the eigenfilters extracted from both texture samples. 
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(a) Carbon fibre at 0°. 

(c) Leather grain #1. 

(e) Wood grain. 

(9) Herringbone weave. 

(b) Carbon fibre at -45°. 

(d) Leather grain #2 . 

(1) Packing foam. 

(h) Cotton fabric. 

Figure (5.4.1.1 a). Texture dataset used to determine the optimum number of 
amplitude scalars. Results for these textures are presented in Figure 

(5.4.1.2a). 
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(a) Carbon fibre at 0°. (b) Carbon fibre at -45°. 

(e) Leather grain #1. (d) Leather grain #2. 

(e) Wood grain. (f) Packing foam. 

(g) Herringbone weave. (h) Cotton fabric . 

Figure (5.4.1.1 b). Histogram equalised version of the texture set of the 
previous page. Results for these textures are presented in Figure (5.4.1.2b) , 
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Figure (5.4.1.2a). Graphs showing that one amplitude scaling loop is near 
optimum for all mask sizes. Texture samples from Figure (5.4.1.1 a) 
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Figure (5.4.1.2b). Same format as previous page, but this time the 

texture samples have been histogram equalised (shown in Figure (5.4.1.1 b»). 
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(a) Carbon & glass at 90°. (b) Carbon & glass at 45°. 

(c) Carbon at 90°. (d) Carbon at -45 0
• 

(e) Leather grain #1. (f) Leather grain #2. 

(h) Water (038 from Brodatz). 

U 
~ 

(i) Raffia (084 from Brodatz). (j) Wood (068 from Brodatz) . 
Figure (5.4.2.1). Dataset used to compare performance of various sets of 

basis mask. Images (g), (h), (i), and (j) have been histogram equalised . 
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Figure (5.4.2.2a). Optimisation rate for different 3x3 basis mask sets. The 
dataset is shown in Figure (5.4.2.1). 
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Figure (5.4.2.2b). Optimisation rate for different 5x5 basis mask sets. The 
dataset is shown in Figure (5.4.2.1). 
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The number of masks for EIGEN1 is therefore 9 3x3 masks, 2S SxS masks, 

and 49 7x7 masks, and the number of masks for EIGEN2 is 18 3x3 masks , 

SO SxS masks, and 98 7x7 masks. The performance of each mask set can be 

summarised as follows. 

• The Laws basis set produces consistently high discrimination In 

relatively few iterations 

• The Gabor sets are slightly less consistent in the discrimination 

produced. Of the two Gabor sets, GABOR1 with O'x=O'y=100 performs 

slightly better on some textures. 

• EIGEN2, the basis set consisting of eigenfilters extracted from both 

texture samples, provides the best discrimination for all texture samples 

with SxS and 7x7 masks. More iterations are required, due to the high 

number of masks in the basis set. EIGEN1, with eigenfilters extracted 

from only one texture sample, performs inconsistently. 

In summary, in this section the performance of potential basis mask 

sets for the specific application of discriminating two textures has been 

investigated. The conclusion is that the Laws basis set is preferable when 

discriminating two textures. The number of iterations required is modest, and 

the difference between the discrimination achieved by the Laws set and the 

eigenfilter set is generally very small. 

5.5 Comparison of the Basis and Benke and Skinner Algorithms. 

In this section the performance of the basis algorithm and the improved 

Monte Carlo algorithm developed in Section 4.4 is compared. Both algorithms 

will use histogram separation as the optimisation criterion. The basis algorithm 

will use one scaling loop, with the scaling value equal to O.S. Results are 

presented for discrimination of two and three textures. For two textures, the 

basis algorithm will use the Laws basis set, whereas for three textures 

performance of Laws, Gabor, and eigenfilter basis sets is compared against 

the performance of the Benke and Skinner algorithm. 

The texture dataset used to compare the performance for discrimination 
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of two textures is shown in Figure (5.5.1). The texture pairs are (a) and (b), 

carbon fibre with glass weft, orientations 0° and -45°, (e) and (d) carbon fibre 

with thermoplastic weft, orientations 0° and 90°, (e) and (1) wool and packing 

foam, (g) and (h) two different grains of leather, (i) and (j) histogram equalised 

images of raffia and leather taken from [Brodatz,1966], and (k) and (I) 

histogram equalised images of water and wood taken from [Brodatz,1966]. 

The results for 3x3, 5x5, and 7x7 masks are shown in Figures (5.5.2a), 

(5.5.2b), and (5.5.2e) respectively. 

These results show a definite superiority of the basis algorithm over the 

Benke and Skinner algorithm, especially for 5x5 and 7x7 masks. Only for 

textures (a) and (b) with 3x3 masks does the Monte Carlo algorithm produce 

a higher discrimination, and in that case it seems that 3x3 masks are too small 

to produce satisfactory discrimination for those textures anyway. For 5x5 and 

7x7 masks on the same textures the basis algorithm is markedly superior.! n 

general it seems that not only is the basis algorithm faster, which might have 

been expected, but also that the discrimination achieved is higher than that 

produced using the Monte Carlo algorithm. These results were of course 

produced using only 1000 iterations of the Monte Carlo algorithm, and given 

more iterations it is likely that the discrimination would be improved. The 

number of iterations required however is unknown and may well be prohibitive. 

It is concluded that in the discrimination of two textures the basis algorithm is 

in all cases preferable, and that the augmented Laws basis set is appropriate. 

For the discrimination of three textures the performance of the Monte 

Carlo algorithm is compared with the basis algorithm using the augmented 

Laws basis set, the Gabor basis set with O"x=O"y=100, and the basis set 

comprising eigenfilters extracted from all three texture samples to be 

discriminated. Data is only presented for 5x5 masks, since this seems to be 

representative of results obtained using other mask sizes. The texture dataset 

is not shown, since it comprises textures already presented in Figures 

(5.4.1.1 a), (5.4.2.1), and (5.5.1). 
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(a) Carbon & glass 0°. (b) Carbon & glass -45°. (c) Carbon 0° 

(d) Carbon 90°. (e) Wool. (f) Packing foam 

(g) Leather grain #1. (h) Leather grain #2. (i) Raffia (Brodatz 084) 

(j) Leather (Brodatz 024). (k) Water (Brodatz 038). 

Figure (5.5.1). Texture dataset used to compare performance of basis and 
Monte Carlo algorithms. 
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Figure (5.5.2a). Comparison of optimisation rate for basis and Monte Carlo 
algorithms using 3x3 masks. The dataset is from Figure (5.5.1). 
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Figure (5.5.2b). Comparison of optimisation rate for basis and Monte Carlo 
algorithms using 5x5 masks. The dataset is from Figure (5.5.1). 
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Figure (5.5.2c). Comparison of optimisation rate for basis and Monte Carlo 
algorithms using 7x7 masks. The dataset is from Figure (5.5.1). 
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Figure (5.5.3). Discrimination between three textures. The first texture In 

each list is the texture discriminated. All data is for 5x5 masks only. 
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Figure (5.5.3) continued from previous page. Discrimination between 
three textures. The first texture in each list is the texture discriminated. All 

data is for 5x5 masks only. 
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The triples of texture to be discriminated are carbon fibre with glass weft, 

orientations 0°, -45°, and 90°, carbon fibre with thermoplastic weft, orientations 

0°,45°, and 90°, wool cotton and packing foam, and leather water and wood. 

The last texture triple are taken from [Brodatz, 1966] and have been histogram 

equalised. The results obtained using this dataset are shown in Figure (5.5.3). 

These results can be summarised as follows. 

• The Laws basis set performs disappointingly for some orientations of 

carbon fibre. In graph (e) for example, when attempting to discriminate 

carbon at 45° from carbon at 0° and 90°, the histogram separation 

achieved is only just over 60, compared to 100 for the Benke and 

Skinner algorithm after 1000 iterations. For the other textures the Laws 

set performs at least as well and generally better than the Benke and 

Skinner algorithm. 

• The performance of the Gabor basis set is generally worse than the 

Laws basis set 

• The best performance is provided by the eigenfilter basis set. The 

discrimination achieved is consistently greater, and sometimes 

significantly greater, than that achieved by the Benke and Skinner 

algorithm. The high number of masks (75) in this basis set means that 

more iterations are required than for Laws or Gabor filter sets, but this 

is still a significant improvement over the performance offered by the 

Benke and Skinner algorithm. 

It must be concluded that the Laws basis set is not entirely appropriate 

for discrimination of three or more texture classes. It has been used 

successfully in many experiments, most involving carbon fibre samples, but 

occasionally it is not able to produce the required discrimination. The Laws 

basis set comprises relatively few filters, and is heuristicly derived. It is 

perhaps unreasonable therefore to expect it to provide all the basis filters 
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masks. 

• When optimising a mask to discriminate between two textures, the 

Laws basis set is preferred. When optimising a mask to discriminate 

between three or more textures, best results are obtained using a set 

of eigenfilters. 

The work contained in this chapter is complementary to the work 

already detailed in Chapter Four, and completes the investigation into texture 

analysis for automated inspection of composite materials. It has been shown 

that a single convolution mask can be used to discriminate a required texture 

from a limited number of background textures. The problem of how to optimise 

a mask for such a purpose has been examined in some detail with satisfactory 

results. The following chapter considers an alternative method of boundary 

detection which can be used when there is no texture information to help. 
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TER 

Optimising Edge Operators. 

6.1 Introduction. 

The objective of this project is to develop tools which can be used in 

the automated visual inspection of composite components. The preliminary 

investigation described in Chapter One found that boundary detection could 

not be accomplished by thresholding, or by the application of conventional 

edge operators such as the Sobel masks. As a result of this texture analysis 

techniques have been investigated. Such techniques, as demonstrated in 

Chapter Three, can distinguish between different orientations of carbon fibre. 

Inspection of dry-fibre lay-ups will, however, often require boundary detection 

between plies of the same material and orientation, and so the boundary 

cannot be found by any conventional texture analysis method. For such a 

problem segmentation is obviously inappropriate, and a method of detecting 

the boundaries directly must be developed. 

Gradient edge operators, such as the Sobel operators, perform poorly 

on textured images. The edge information at ply boundaries is swamped by 

the edge information contained in the weave. What are required are edge 
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operators which are sensitive to edge information at ply boundaries but 

insensitive to the edge information contained in the texture. Considering the 

work detailed in the previous chapter, it seems logical to attempt to train 

convolution masks for the purpose using the basis algorithm. 

6.2 Edge Detection in Textured Images. 

There are two issues which need to be addressed when performing 

edge detection in textured images. How to obtain convolution masks suited to 

the task, and how to most effectively apply them in practice? The following two 

sections will detail the approach adopted in this work. 

6.2.1 Modification of the Training Algorithm. 

In fact only superficial modifications need to be made to enable the 

basis training algorithm to produce masks optimised for edge detection. The 

"front end II needs to be modified to allow the sizes of the training regions to 

be user-selectable. This allows one training region to be positioned only over 

a portion of the "edge" to be detected, whilst the other contains a 

representative sample of the background texture which the generated mask 

should be as insensitive to as possible. It is also useful to have a third training 

region, which can be used in a variety of ways. With three training regions a 

mask can be trained to enhance two different edge profiles, whilst suppressing 

the third region which is again background texture. Such a mask might be 

optimised to enhance edges at varying orientations. Alternately the third region 

can be used to minimise the effect of a particular feature in the background 

texture. These points are illustrated in the examples provided in Section 6.3. 

Using variable sized training regions does not require any modifications 

to the basic equations of the algorithms, since the optimisation criterion 

defined in equation (5.4.2.3) is calculated on the basis of mean grey-level. 

This is another advantage of adopting histogram separation as the 

optimisation criterion. 
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6.2.2 Applying Edge Operators to Textured Images. 

The conventional approach to edge detection in non-textured images 

is represented in Figure (6.2.2.1). This assumes, for simplicity, that only a 

single edge operator is required. The input image is convolved with the edge 

operator, and the result thresholded at a predetermined level to produce a 

binary edge image. This is illustrated in Figure (6.2.2.2) (although note that 

two edge operators have been used in this example). Depending on the 

application, a further edge linking process may be performed on the binary 

edge image to remove "noise" and form edge segments into object 

boundaries. 

e -- edge operator 

e 

I ~BEII 

I -- Input Image 

C -- Convolution 

T -- Threshold 

BEl -- Binary Edge Image 

Figure (6.2.2.1). Detecting edges in non-textured 
images. 

When dealing with textured images the scheme represented in Figure 

(6.2.2.1) is not generally adequate. This is demonstrated in Figure (6.2.2.3) 

with an image of corduroy material. The response of the edge operator to 

edges inherent in the texture background increases the "noise" of the filtered 

image to such an extent that it is difficult to adequately discriminate boundary 

and non-boundary pixels using a simple threshold. Note that this image shows 

a fairly low contrast texture background. If the texture was visually more 

distinct, then it would prove impossible to extract the object boundaries using 

conventional edge operators. 
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(b). Magnitude image obtained from Sobel edge operators. 

(c). Threshold to produce binary edge image. 

Figure (6.2.2.2). Edge detection in a non-textured image. 
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(a). Input image. (b). Sobel magnitude image. 

(c). Thresholded at 50. (d). Thresholded at 60. 

(e). Thresholded at 70. 

Figure (6.2.2.3). Edge detection in a textured image. 
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This effect of "edge noise" arising from textured images is evident even 

with the trained edge operators presented in Section 6.3. Such an effect is 

unavoidable with real images, since texture is never entirely homogenous. To 

overcome this problem, the scheme represented in Figure (6.2.2.4) has been 

adopted. 

e -- edge operator k -- smoothing kernel 

e k 

I -- Input Image T -- Threshold 

C -- Convolution t -- thinning 

BEl -- Binary Edge Image 

Figure (6.2.2.4). Image processing operations for detection of 
edges in textured images using optimised convolution masks. 

The input image is convolved with the edge operator as before. The resultant 

image is then smoothed using a Gaussian kernel before being thresholded. 

This image is then thinned to produce a one pixel wide binary edge image. 

This process is demonstrated in Figure (6.2.2.5) using a 5x5 smoothing 

kernel and Figure (6.2.2.6) using a 15x15 smoothing kernel. The effect of 

smoothing the edge image is to reduce the strength (grey-level) of isolated or 

weaker edge points but maintain the strength of boundary points where the 

neighbouring pixels are also strong edges. Once this process has been carried 

out pixels at or near the boundary can be discriminated from non-boundary 

pixels fairly well. The resulting (thresholded) image exhibits very thick 

boundaries due to the attenuation introduced by smoothing, and so a thinning 

operation is performed to produce pixel wide boundaries. The resulting image 

is significantly tidier in its representation of the major boundaries present in the 

original image, and the edge fragmentation is much less than without the extra 

operations. 
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(a). Image (b) of Figure (6.2.2.3) after 
smoothing with a 5x5 Gaussian kernel. 

(c). Thresholded at 50. 

(b). Thresholded at 40. 

(d). Image (c) thinned. 

Figure (6.2.2.5). The effect on boundary detection of smoothing 
with a 5x5 kernel. 
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(a). Image (b) of Figure (6.2.2.3) after 
smoothing with a 15x 15 

Gaussian kernel. 

(c). Thresholded at 35. 

(b). Thresholded at 30. 

(d). Image (c) thinned. 

Figure (6.2.2.6). The effect on boundary detection of smoothing 
with a 15x15 kernel. 
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The processing time required for these extra operations (smoothing and 

thinning) is not a significant problem since both procedures have been 

implemented using convolution [King, 1994]. The process illustrated in Figure 

(6.2.2.4) takes between 0.5 and 1 second, depending on the number of 

thinning operations required. 

Obviously the smoothing and thinning stages are likely to introduce 

some error into the edge detection process, and so this should really be 

considered as a means of obtaining a moderately accurate boundary estimate, 

rather than a means of accurately identifying individual edge points. 

6.3 Results. 

This section will present the results as a series of example applications 

for the mask optimisation tool. The performance will be compared to the that 

achieved using conventional edge operators, such as the rather ad-hoc 

operators shown in Figure (6.3.1). 

2 1 

3 2 

4 5 

o 0 

1 2 

3 4 

6 8 

o 0 

1 1 2 

323 

654 

000 

-4 -5 -6 -8 -6 -5 -4 

-3 -2 -3 -4 -3 -2 -3 

-2 -1 -1 -2 -1 -1 -2 

2 3 4 0 -4 -3 -2 

1 2 5 0 -5 -2 -1 

1 3 6 0 -6 -3 -1 

2 4 8 0 -8 -4 -2 

1 3 6 0 -6 -3 -1 

1 2 5 0 -5 -2 -1 

2 3 4 0 -4 -3 -2 

Figure (6.3.1). 7x7 horizontal and vertical edge 
operators. 

For each example these masks are applied to the relevant image, the 

magnitude image produced according to the following equation: 

(6.1 ) 

where gx and gy are the respective responses of the masks. 

Visual Inspection of Denim. 

Image (a) of Figure (6.3.2) shows an image with two pieces of denim, 
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a circular piece and a larger background piece. The pieces have been aligned 

to present virtually identical textures. The boundary of the circular piece is 

more visible at some points than others, due to uneven lighting. If the edge 

operators shown in Figure (6.3.1) are applied to this image, then the result is 

the image shown in image (b) of Figure (6.3.2). The edge operators have 

managed to enhance the boundary of the circular piece, but there is a very 

high proportion of background noise contributed by the texture. The best result 

that can be achieved after this image has been smoothed (15x15 Gaussian), 

thresholded, and a thinning operation applied is shown in image (e). Note that 

this result is better than anything achievable using standard 3x3 or 5x5 edge 

operators. 

In an attempt to improve upon this performance, the masks shown in 

Figure (6.3.3) were generated using the basis algorithm, with a set of 

eigenfilters extracted from an image of denim as the basis set. 

-94 13 38 -20 -47 71 31 100 99 -11 -45 -63 -73 34 

-49 51 33 6 -54 -3 -14 24 56 81 21 -43 -29 26 

2 -58 80 -4 -21 -33 19 25 -66 89 22 -19 72 -35 

74 22 -50 45 13 -85 -77 -52 35 -13 -43 -97 55 -80 

96 100 -5 -63 57 -85 -57 29 5 -2 1 -59 -88 -60 

60 53 3 -42 16 -8 -68 19 50 38 6 -17 -82 37 

-33 48 10 -18 0 22 25 8 14 99 66 -7 -78 -49 

Figure (6.3.3). 7x7 masks optimised to detect horizontal and 
vertical edges of denim material. 

The left-most mask has been trained over horizontal edges in the image and 

the right-most mask over vertical edges. Both have been optimised to 

minimise their response to the background texture. The result of applying 

these masks to image (a) in Figure (6.3.2) and combining the results into a 

single magnitude image is shown in image (d) of Figure (6.3.2). 

The ratio of edge to background noise is considerably better than that 

achieved using the standard edge operators. The result after smoothing, 

thresholding and thinning is shown in image (e). 

6-10 



(a) Image of circular piece of 
denim on a similar background. 

(c) Result of smoothing, 
thresholding, and thinning (b). 

(b) Result of applying the edge 
operators of Figure (6.3.1) to (a). 

(d) Result of applying the edge 
operators of Figure (6.3.3) to (a). 

(e) Result of smoothing, 
thresholding, and thinning (d). 

Figure (6.3.2). Comparison of edge operators on denim image. 
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Whilst this result is not perfect, it is a considerable improvement in 

performance over that offered by conventional edge operators, and would 

probably suffice for many applications. 

Inspection of Carbon Fibre After the Cutting Process. 

This example will demonstrate an application where the use of three 

training regions proves to be particularly advantageous. Image (a) of Figure 

(6.3.4) shows an image of two pieces of carbon fibre. The fabric has just been 

cut, and the boundary between the pieces lies approximately down the centre 

of the image. This particular material is used in the construction of aircraft 

fuselage, and is a much thicker material than is normally used for most simple 

components. The horizontal lines are glass fibre weft. The diagonal lines are 

also glass fibre, and are intended to help hold the material together. If it were 

required to find the vertical boundary between these pieces after cutting, then 

the vertical edge operator in Figure (6.3.1) might well be used. The result of 

applying this mask is shown in image (b). The boundary has in fact been 

enhanced, and the inherent symmetry of the mask has made it insensitive to 

the glass fibre weft. The diagonal glass fibre, however, is detected, with the 

result that the information required to determine the position of the vertical 

boundary cannot be extracted. Orientation information does not help, since the 

edges detected relate to the break in the glass fibre weft, and so provide no 

coherent boundary direction information. 

For an application such as this, the basis algorithm can be used in 

conjunction with three training regions to provide an improvement in 

performance. A mask can be optimised to enhance vertical boundaries (breaks 

in the weft) whilst minimising the background texture information (continuous 

weft) and also specifically minimising a region covering a specific trait of the 

texture (the diagonal glass fibre). The result of applying a mask trained in such 

a manner is shown in image (c) of Figure (6.3.4). 

As can be seen, the mask has not been wholly successful in eliminating 

the diagonal information, but the ratio of boundary to unwanted texture 

information is much improved. 
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(a) Image of carbon material after 
cutting. 

(b) Result of applying vertical edge 
operator of Figure (6.3.1) to (a) 

(c) Result of applying optimised edge (d) Result of smoothing, thresholding , 
operator to (a). and thinning (c). 

Figure (6.3.4). Detecting the boundary between pieces of carbon material after 
cutting. 
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After smoothing, thresholding, and thinning, the boundary is evident as is 

shown by image (d). It is likely that a larger mask would provide a more robust 

solution at this image resolution, since such a mask would be better able to 

eliminate the diagonal information. 

Application in the Robotic Assembly Gel/. 

Image (a) of Figure (6.3.5) shows an image of two pieces of carbon 

fibre. This image has been normalised before printing to improve the observed 

contrast. No such pre-processing was effected in the experiments. Both the 

background and the foreground plies in image (a) are at 0° orientation, with 

the result that the boundary is not clearly visible at all points in the image, 

even to the human eye. The magnitude image obtained using the conventional 

edge operators is shown in image (b) of Figure (6.3.5). As can be seen, 

images such as this are particularly difficult to process using standard 

methods. 

Image (c) shows the result of applying a single optimised mask to 

image (a). This magnitude image is obviously different from any previously 

presented, in that the boundaries show up as dark areas against the bright 

areas produced by uniform texture. In all previous examples, masks have 

been optimised to enhance the boundary information and minimise 

background texture information. To detect the boundary between identically 

oriented pieces of carbon fibre, it is sometimes useful to produce masks which 

minimise the grey-level at region boundaries and maximise it in homogenously 

textured regions. This has increased the discrimination achieved, since the 

boundary areas commonly have a lower natural texture energy than the 

textured regions. The output of a mask optimised in this way can be inverted 

to produce an image where the edges are enhanced, or alternately any 

subsequent thresholding stage can be adapted to threshold out each pixel 

below the specified threshold rather than above. In the examples shown in this 

section the latter cou rse has been followed. 
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(a) A ply on a background of the same texture. 

(b) Result of applying the edge operators of Figure 
(6.3.1 ). 

(c) Result of applying an optimised edge operator. 

Figure (6.3.5). Comparison of edge operators for carbon fibre image. 

6-15 



Whilst the result shown in image (c) of Figure (6.3.5) is good, 

experiments with images taken from the robotic assembly cell have 

demonstrated that it is useful to optimise masks to be sensitive to more than 

one edge "type". What is meant by edge type can be explained by reference 

to image (a). The top boundary shows up as being dark due to uneven 

lighting, whilst the bottom and vertical boundaries are more difficult to see, and 

are only really evident as a phase difference in the texture. In each lay-up, 

there will be some variation in these "phase edges", and so it is useful to train 

each mask using three training regions, two of which cover different edge 

types, and one of which covers an area of homogenous background texture. 

The masks produced have therefore been optimised to be sensitive to a range 

of edge types and orientations. Not every attempt to produce a mask is 

successful, since there is a limit to what one mask can be sensitive to, and so 

a process of trial and error in the positioning of training regions is necessary 

to produce good masks. Image (c) in Figure (6.3.5) was produced by a mask 

trained specifically to detect horizontal phase difference edges, but as the 

image shows, vertical and dark edges are also quite successfully detected. By 

combining two suitably optimised masks an even larger percentage of the 

relevant boundaries in each lay-up can be detected. The percentage of 

boundary detected can be increased by combining the results of more masks 

if the additional processing time incurred can be accepted. 

The above points are demonstrated by reference to the images shown 

in Figure (6.3.6). Image (a) shows the boundary which can be extracted after 

applying one optimised mask to image (a) in Figure (6.3.5), and smoothing, 

thresholding, and thinning the result. Image (b) shows the boundary which can 

be extracted by combining the output of two masks, where the second mask 

has been trained on vertical edges. In each case the threshold has been 

determined by thresholding out a predetermined area of the image. This 

simple technique is adequate for this particular application. It is in fact quite 

robust, since any slight overestimate of the boundary area results in thicker 

boundaries, rather than significantly higher noise levels. This effect is then 

eradicated by the thinning stage. 
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(a) Boundary extracted using one optimised mask. 

(b) Boundary extracted using two optimised masks. 

(c) Boundary extracted from a different image of the 
same ply, using the same two masks used in (b). 

Figure (6.3.6). Boundaries extracted using optimised masks. 
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The last image, image (c) shows the boundary extracted from an image 

of the same ply after it has been re-Iaid. The ply has therefore moved slightly, 

with the result that the profile of the edges will have changed. As can be seen, 

the boundary is still detected, which shows that the edge operator is useful for 

real applications where there may be a significant variation from lay-up to lay­

up. The edge operator may therefore be regarded as providing robust 

performance. The thresholding technique used is identical to that used in the 

other examples. 

Finally, Figure (6.3.7) demonstrates that the masks developed perform 

equally well on other images of identically oriented carbon fibre. All the 

examples in images (a) to (d) of Figure (6.3.7) have been processed using 

the same parameter for boundary thresholding used in the previous examples. 

Despite the significant difference between the length of boundaries in these 

images and those in the previous examples, the thresholds determined by this 

method produce reasonable results. This is due to the relatively high 

edge/non-edge ratio achieved by the optimised edge operators. 

6.4 A Word About Lighting. 

Carbon fibre is particularly susceptible to ambient lighting conditions, 

and in particular to any variation in the relative position of the dominant light 

source. Any such variation can result in a significant change in the observed 

texture of the materials. All the examples presented in this chapter have been 

produced from real images taken from the robotic cell, which does not have 

a controlled lighting environment. The masks have been tested on various 

images over a period of time, and therefore have been exposed to some 

variation in lighting conditions. The results presented are typical of the robust 

performance obtained. On occasion however, a mask proves particularly 

sensitive to lighting variation. The precise reason for this is unclear, but it may 

be due to a temporal lighting fluctuation having been present in the training 

image used to produce the mask. Since the masks are trained to be 

insensitive to a particular texture, then any significant change in the observed 

texture of a material will obviously affect the performance adversely. 
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(a) Two plies on a background of the 
same texture. 

(c) Two carbon shapes on a 
background of the same texture. 

(b) Boundaries extracted using 
optimised masks. 

(d) Boundaries extracted using 
optimised masks. 

Figure (6.3.7). Boundary extraction on other carbon fibre images. The masks 
and thresholding technique are the same as used to produce the results 

shown in Figures (6.3.6). 
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Again it is worth stating that most masks produced are robust to a reasonable 

variety of lighting variations, and only some masks prove particularly sensitive. 

Even so, this highlights the importance of controlling the lighting environment 

in machine vision applications, especially for algorithms which rely on any sort 

of training. 

6.5 Conclusions. 

This chapter has demonstrated how masks can be optimised to perform 

as edge operators in textured images. The main points can be summarised as 

follows. 

• Optimised masks can provide an improvement in performance 

over standard edge operators for certain applications. 

• Optimised masks may allow simple fast boundary detection 

techniques, such as those demonstrated here, to be used where 

previously more sophisticated techniques were necessary. 

• The basis algorithm is easily applicable to the task of optimising 

edge operators for use in textured images. 

• The flexibility of the approach is increased by allowing the use 

of three training regions. For some applications, four or more 

training regions might be appropriate, but obviously there is a 

limit to the power of a single convolution mask. 

• The lighting plays an important role in the performance of texture 

edge operators, as it does in any texture application. 
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TER 

Inspection of Composite Preforms 
Using Texture Based Tools. 

7.1 Introduction. 

Previous chapters have detailed the development of texture analysis tools 

designed to be of use in the automated inspection of composite preforms. In this 

chapter an attempt is made to evaluate these tools for typical lay-up inspection tasks, 

and to gain some idea of the inspection error involved. This is necessary to establish 

confidence that these techniques are of potential use in inspection of composite lay­

ups. 

Inspection errors can be estimated in a theoretical way, or by empirical 

measurements. For this application a theoretical approach is not feasible since it would 

require accurate modelling of the textures presented by the carbon materials. This in 

itself represents a considerable research task. The alternative, empirical measurement 

of error, must therefore be adopted. For non-rigid materials such as carbon fibre plies 

however, there are also difficulties with this approach. The basic problem is that of 

obtaining a yardstick against which to compare the estimates obtained using texture 

analysis. For a rigid component this can be achieved using a device such as a co­

ordinate measuring machine to obtain a very accurate estimate of component 
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jimensions. The difference between this estimate and the estimate obtained from a 

nachine vision system gives an accurate indication of the inspection error of the vision 

iystem [Lyvers et ai, 1989]. For inspection of carbon fibre ply edges however, no 

eadily available mechanism exists for obtaining an accurate estimate of ply edge 

)osition. The approach adopted in this chapter therefore is, by necessity, ad hoc and 

mprecise. However, it is useful in providing an indication of the inspection error 

nherent in texture based inspection of composite preforms. 

'.2 Review of the Inspection Requirements. 

Composite materials (mainly carbon fibre based) are used to manufacture an 

!ver increasing range of products in the aerospace industry. Composites exhibit ideal 

,roperties for aerospace, due to their superior strength-to-weight and stiffness-to­

veight ratios in comparison with conventional alloy components. The first stage of 

:omposite component manufacture involves laying-up sheets of fibre, usually carbon, 

lS detailed in Chapter One. The number and shape of these sheets, or plies, are 

letermined by the designer using mathematical modelling and CAD tools. The 

,ccuracy required in the lay-up process is defined in terms of the positional accuracy 

If ply edges in the lay-up, and is typically of the order of ±1 mm (although it is very 

loubtful that this is actually achieved in manual lay-up). The task of automated 

lspection of composite lay-ups is therefore essentially one of checking the ply edges 

re where they are supposed to be. This thesis has detailed two methods for detection 

f ply edges. Chapter Three described how images showing plies of differing 

laterial/orientation could be segmented using texture analysis. Chapter Six showed 

ow edge operators could be trained to detect boundaries between plies of the same 

laterial and orientation. Both of these methods result in boundaries which deviate 

om the true edge by several pixels in places (see for example Figure (3.7.2) or 

igure (6.3.5»). Boundary errors of this type are common to any texture analysis 

lethod, since texture is a neighbourhood property by definition. In fact the 

3gmentation errors produced by a convolution based texture analysis approach are 

iSS than for any other method [Ou Buf et ai, 1990]. It is of course desirable to 

linimise any error in the inspection process. One way this can be addressed involves 

Ie use of boundary models. The remainder of the chapter will attempt to quantify the 
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nspection error intrinsic when using the texture analysis tools of Chapters Three and 

;ix. 

r.3 The Concept of Subpixel Edge Detection. 

To consider how error in boundary estimates can be reduced, it is instructive 

o consider the concepts which underpin subpixel edge detection. Most subpixel 

~dge operators depend on accurately modelling the imaging process. This involves 

cnowledge of both the scene being imaged (edge profiles and/or boundary 

)eometries), and the image formation mechanism itself (CCO sampling, analogue to 

jigital conversion etc). As a result, subpixel edge detection is commonly performed 

is a two stage process. 

In the first stage, knowledge of image formation is used to estimate the position 

)f individual edges to sub-pixel accuracy. This may be accomplished by many different 

nethods. [Lyvers et ai, 1989], [Koplowitz, Lee, 1991] fit the local pixel information 

o an edge model and estimate edge position and orientation more accurately from this 

nodal. An alternative approach is to treat the pixel values as discrete samples of a 

:ontinuous surface, and so this surface once reconstructed can either be re-sampled 

it a finer resolution [Nawla, Binford, 1986], or edge estimation performed in the 

:ontinuous domain [Nomura et ai, 1991]. A third approach involves using second 

lerivative operators, such as Laplacian of Gaussian (LOG). These operators produce 

I zero crossing at an edge location which can be interpolated with a precision 

!epending on the signal to noise ratio of the image [Huertas, Medioni, 1986]. 

The second stage in many subpixel approaches involves utilising knowledge 

lbout the objects being imaged. In practice this means fitting the edge points to a 

nodel of the boundary being inspected, usually a straight line or low degree 

)olynomial [Dorst, Smeulders, 1984], [Klaasman, 1975], [Nakamura, Aizawa, 1984]. 

"his fitting of edge points to a boundary model can in fact produce subpixel results 

!ven if the edge points themselves have not been estimated to subpixel precision 

Havelock, 1989]. The resultant best fit line or curve is not constrained to interpolate 

~hole pixel values, and so can be used to make measurements to subpixellevel. 

In this application no suitable method exists to perform the first stage of 

ubpixel edge detection, the location of individual edge points to subpixel accuracy. 
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-Iowever the second stage, fitting edge pOints to simple models, does seem to offer 

;ome potential. As already mentioned, plies are designed using CAD packages, and 

n fact are typically constructed of straight lines and arcs. The accuracy of this edge 

~stimate can therefore be improved by fitting the detected boundary points to an 

~ppropriate model. Obviously, given the relatively large inaccuracies produced by 

:exture segmentation, subpixel accuracy is not achievable. A moderate increase in 

)verall accuracy should however be realisable. 

It is appropriate here to mention image distortion, especially that caused by the 

ens. An edge which is physically straight (or circular or elliptic etc.) may not appear 

;0 when imaged. Such distortion is always present, but if significant can remove the 

ustification for using simple analytic boundary models. An attempt was made to 

~stablish the distortion of the camerallens system used in these experiments by 

neasuring the dimensions of a small machined part when placed in different areas of 

:he image (i.e. centre, top corner, bottom corner etc.). The images were examined in 

nagnified form (using 8x magnification), and no variation in dimension was observed. 

rhis would seem to indicate that the distortion of the lens used in these experiments 

s slight i.e. less than one pixel across the field of view. Distortion will however still 

)Iay a part in the results obtained. In the work presented here no attempt has been 

nade to compensate for this. From the literature it would seem that ignoring the effect 

)f distortion is common practice. 

The remainder of this chapter will describe the boundary modelling approach 

idopted for both straight and curved ply edges, and present the results of experiments 

~arried out in an effort to gauge the accuracy achievable from this method of 

nspection. 

r.4 Inspection of Straight-Edged Plies. 

This section will detail the method employed to estimate the error present when 

nspecting lay-ups consisting of straight edged plies. In fact many composite 

:omponents in the aerospace industry are manufactured from plies exhibiting only 

,traight edges. It is only more complex components, such as propeller blades, which 

equire more complicated ply shapes. Inspection error for straight-edged plies is 

herefore of considerable interest. A common method for fitting boundary points to a 
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itraight edge model is described in the following section. 

r.4.1 Least Squares Fitting to a Straight Line. 

Given a set of data points to be fitted to a straight line, the least squares 

nethod states that the line 

y = a + bx (7.1) 

,hould be fitted through the given points (X1'Y1)' ... , (xn,yn) so that the sum of the 

,quares of the distances of those points from the straight line is minimum. The usual 

)ractice is to measure error in the vertical direction (the v-direction), as shown in 

:igure (7.4.1.1). This assumes that the x-direction variable is independent i.e. there 

s no uncertainty in the x-direction. This assumption is generally not valid in image 

)rocessing applications, where there is uncertainty in both x and y directions. In such 

1 case the error should be measured as the perpendicular distance from a point to the 

ine. This can be accomplished using a different form of the line equation, namely 

ax + by + 1 = 0 (7.2) 

f, however the data points define a line which is close to horizontal, then the 

epresentation of equation (7.1) in conjunction with the standard least squares 

ormulation is appropriate i.e. the vertical distance measure is very close to the 

)erpendicular distance. Similarly for vertical lines, then y can be treated as 

ndependent, and the horizontal distance from point to line taken as an error measure. 

:or the sake of simplicity, attention is restricted to the inspection of horizontal edges, 

tnd so it is appropriate to make use of equation (7.1) and the standard least squares 

ormulation. Such an approach is also justified by the fact that checking of horizontal 

ldges is sufficient for some lay-up inspection tasks. 

For a line defined as in equation (7.1), a point on the line with x-coordinate Xj 

las the v-coordinate equal to a + bXj • 
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y ~ a + bx 

a+ bx 
j 

x. 
J x 

Figure (7.4.1.1). Vertical distance of a point (x.,y) 
f . h I' J J rom a stralg tine y = a + bx. 

Hence its distance from the data point (xj'Yj) as shown in Figure (7.4.1.1) is 

lnd the sum of the squares in the vertical direction is 

n 

q=I:(yj -a-bx)2 (7.4) 
j~1 

vhich will be a minimum when the line best fits the data in the least squares sense. 

"he general approach taken to solving equation (7.4) is based on the realisation that 

vhen q is minimum, then the first derivative of q (i.e. rate of change of q) will equal 

:ero. Since q depends on both a and b, then the partial derivatives of q with respect 

::> both a and b must be considered. These must both equal zero for a minimum. i.e. 

aq = -2~ (y. - a - bx) = 0 (7.5) aa L..J J J 

aq = -2~ x(r,. - a - bx) = 0 ab L..J J J J 
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umming over j from 1 to n. Equation (7.5) can be rearranged to form 

an (7.6) 

'hese equations can be solved explicitly for a and b by Cramer's rule [Kreysig, 1988]. 

Hven this approach to boundary modelling, what inspection error is present? 

'.4.2 A Framework to Estimate Inspection Error. 

In order to estimate the error of ply inspection, it is necessary to have some 

ardstick to measure against, i.e. an accurate estimate of the "true" position of the ply. 

'he determination of this is no trivial task. Initially it was thought that the lay-up robot 

ould be used to help estimate inspection error. The basic idea is that a ply would be 

lid-up on a white background (achieved by covering the lay-up table in paper) so 

!nabling easy detection of ply edge. The robot would then remove the ply, wait for a 

3W seconds while a background ply was laid-up by hand, and then re-Iay the ply in 

1e original position. The edge of the ply against the background ply could then be 

letermined using texture analysis or textured edge detection as appropriate, and the 

9sult compared to the measurement made when the ply was laid-up against the white 

lackground. The difference in the two measures would be taken as the error in the 

3xture analysis or textured edge operator estimate. However the basic assumption 

nderlying this scheme, that the robot could be relied upon to consistently lay-up a ply 

1 (virtually) the same position, proved to be false. Experiments were conducted 

(hereby a ply was continually laid-up on the white background and inspected by the 

ision system using the horizontal Sobel edge operator and least squares line fitting 

) obtain an accurate estimate of the position of one horizontal edge. The lay-up 

rocess was found to move the position of the ply by as much as 1 mm per cycle. This 

) mainly due to the peeling action evident on ply release from the gripper device, and 

las verifiable by human observers. After 50 cycles the ply had moved by up to 40mm 

'om its original position. Although this movement is consistent in its direction, there 

) a large variation in the magnitude of movement, and so it is not possible to use the 
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robot to provide a reliable yardstick of the true position of the ply. However these 

experiments have proven useful in that they have identified the intrinsic inaccuracy in 

the automated lay-up process. Investigation of the causes of this inaccuracy is the 

realm of other researchers. 

Due to the problems in determining inspection error using the robot , a more 

reliable method has been devised. This is described as follows, and is illustrated in 

Figure (7.4.2.1). 
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Figure (7.4.2.1). The right-most edge of the foreground ply can be detected by edge 
operators if a white sheet of styrene is used to give contrast. With the sheet removed , 
the results using texture can be obtained and compared. 

A background ply is laid-up on the table ((a) in Figure (7.4.2.1 )). A thin white sheet 

of styrene (chosen because it is flexible with a low coefficient of friction , but any similar 

material will suffice) is placed on top of the ply ((b) in Figure (7.4.2.1 )). A foreground 

ply is then laid-up such that there is a very slight overlap (2 or 3mm) between the 

foreground ply and the styrene sheet ((c) in Figure (7.4.2.1 )). Since there is a strong 

contrast between the black foreground ply and the white styrene background, the ply 

edge position can be estimated to subpixel precision by applying a conventional 

gradient edge operator (such as Sobel), thresholding at an appropriate level , and 
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performing a least squares fit to a straight line. Variations within threshold selection , 

within certain bounds, were found to have negligible effect on the fitted edge. This is 

due to the fact that the rectified output of the Sobel operator on either side of the 

ply/background edge is largely symmetric, and so increasing/decreasing the threshold 

will eliminate/add an approximately equal number of points on either side of the true 

edge position. The process of applying the edge operator and fitting the resulting 

points to a straight line is repeated over 50 images and the mean values of a and b 

taken to define the line representing the real ply boundary position. The required 

vardstick has now been obtained, i.e. an accurate estimate of the position of the ply 

edge in image space. The styrene sheet can now be removed ((d) in Figure (7.4.2.1»). 

Since the overlap is very slight and styrene has a very low coefficient of friction, the 

:>osition of the plies is unaffected. The position of the foreground ply is then estimated 

Jsing texture analysis or a textured edge operator as appropriate, and a least squares 

ine fitting operation performed on the resultant edge points. The difference between 

:he line obtained from texture analysis and the line obtained when the styrene sheet 

s present is taken as the error in the texture-based inspection process. The distance 

s measured between the two best fit lines in the vertical direction, which is again 

ustified by the fact that both lines are very close to the horizontal. Distance is 

neasured at two points (sufficient for a straight line), one chosen to be near the left 

3xtremity of the relevant ply edge, and the other near the right extremity, as shown in 

:igure (7.4.2.2). For each point an x-coordinate is chosen, and this is then used to 

~enerate the corresponding y-coordinates for each respective line. The difference 

)etween the two y-coordinates is the distance from one line to the other (i.e. from the 

exture estimate to the estimated "true" position). A subpixel estimate of inspection 

mor can be obtained using this process. This can be converted to absolute error if 

he pixel dimensions are known. A simple way to accomplish this is to image a steel 

uler and so measure the number of millimetres the image covers in both the 

lorizontal and vertical directions. The dimension of a pixel can then be calculated. 

rhis approach to calibration, although ad-hoc in character, is commonly used in 

ndustrial inspection applications. 
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Image Coordinate System 
r-----4) X 

Error in texture 
'\.1/ . (D' "True" edge estimate Istance 1) 
Y /' '" .... 1:. ............................................................................. 7 1 ... . 

/ E . Texture ~ror In te~ture 
estimate estimate (Distance 2) 

Figure (7.4.2.2). The difference between the texture 
estimate and the "true" edge is taken as the 

inspection error. 

7.4.3 Parameters Affecting Inspection Error. 

The inspection error is dependent on a number of variables which can be 

nvestigated. These are discussed as follows. 

The Number of Textures to Analyse: There are three possible ways texture analysis 

:an be used to process the image shown in Figure (7.4.3.1 a) in order to estimate 

Joundary position. 

(1) Detect the texture of the foreground ply and determine the boundary 

from this (segmented image shown in Figure (7.4.3.1 b}). 

(2) Detect the texture of the background ply and determine the boundary 

from this (segmented image shown in Figure (7.4.3.1 c»). 

(3) Perform processes (1) and (2) (i.e. analyse both textures) and form a 

boundary by combining the two resultant boundaries. 

This combining of boundaries would, using most methods of boundary 

epresentation, be a somewhat intricate and time consuming process. However since 
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least squares fitting to boundary points is being performed, an elegant solution to the 

problem presents itself. The relevant boundary points from both texture boundaries are 

passed to the fitting algorithm and the best fit line over al/ the points is found. This 

implicitly performs the required combining of boundaries with almost no increase in 

computation time. 

Image Resolution: An intuitive notion to reduce inspection error is to image the lay-up 

at higher resolution so that each pixel represents a smaller area. A one pixel error will 

therefore represent a smaller absolute error. That is, if each pixel represents an area 

of 1 mm2 of the lay-up table, then a one pixel error represents an absolute error of 

1 mm. If magnification is increased so that each pixel represents an area of O.Smm2 

of the lay-up table, then a one pixel error represents an absolute error of O.Smm. The 

reality however is not so simple. The most obvious drawback is that increasing the 

resolution means that more frames are required to inspect the same area, with a 

:;orresponding increase in processing resources. More importantly, image processing 

techniques which perform well at low resolution may well be unsuitable for higher 

resolution images. Indeed many techniques are implicitly designed for low resolution 

Imaging. The most obvious example is convolution-based edge detection. The 3x3 

Sobel mask is designed to detect edges in an image, the implicit understanding being 

:hat edges are of the order of 1 or 2 pixels wide. For high resolution images, an edge 

:>rofile may be far wider. Considerable post-processing would be required to extract 

:he desired information from such an image. In theory the answer is to use larger edge 

)perators, but this imposes a huge computational load and is usually not feasible. 

~hoosing a suitable image resolution can therefore be a trade-off between 

:omputational simplicity and acceptable inspection error. Forthis application this raises 

wo main questions with respect to increasing image resolution: are the methods so 

ar developed able to cope, and what is the effect on inspection error? 

°ost-Processing of Texture Boundaries: The effect on inspection error of four post­

)rocessing operations has also been investigated. The first, iterative fitting, applies to 

)oundaries obtained by either texture analysis or by texture edge operator. 
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(a). Input image showing a ply 
boundary. Foreground ply at 900

, 

background at -450
• 

(b). Segmentation based on texture 
analysis of foreground ply. 

(c). Segmentation based on texture 
analysis of background ply. 

Figure (7.4.3.1). Boundary detection by texture analysis. 
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The second and third, secondary smoothing and boundary sampling 

respectively, apply only to boundaries obtained using texture analysis. The 

fourth, boundary thinning, applies only to boundaries obtained using texture 

edge operators. These operations are described in more detail below. 

(1) Performing an iterative least squares fitting process. This 

involves forming the best fit line in the normal way, and then 

calculating the distance from each point to the line. Points over 

a certain threshold are disregarded and a new line formed from 

the remaining points. This process is performed for a preset 

number of iterations. 

(2) Secondary smoothing of texture boundaries before best line 

fitting. This process was described in Section 3.8, and was 

found there to reduce segmentation error on artificially 

constructed texture images which exhibited low boundary 

curvature. 

(3) For texture boundaries, performing a sampling operation and 

forming the best fit line from the sampled points. This might be 

expected to reduce variance in the boundary points used in line 

fitting, and therefore produce a more accurate result. 

(4) Thinning of edges resulting from texture edge operators. When 

texture edge operators are used, the resultant image is 

smoothed and thresholded to produce edges which are many 

pixels wide. These edge points can themselves be used to form 

the best fit line, or a thinning operation can first be performed. 

7.4.4 Results Using Texture Analysis. 

Tests were carried out using a variety of plies and material orientations 

(i.e. 0°/+45°/90°). For each lay-up configuration ten lay-ups were performed. 

This is a small sample size, but due to the expensive nature of the materials, 

and the time taken to perform the tests, this was deemed acceptable. Each 

lay-up was inspected ten times with each combination of parameters (i.e. 

1 Ox1 0 images processed for each combination of parameters) and the results 

7-13 



noted for each test. Results are presented in tabular form. Table 7.1 gives the 

inspection results for 0°/90° ply lay-ups using texture analysis, with all results 

shown in pixels. The distance between the estimate of the "true" boundary and 

the boundary obtained by texture is measured at two points (Distance 1 and 

Distance 2 in Table 7.1) as described in Section 7.4.2. For each set of 

measures, the mean (Jl) and the standard deviation (0") were calculated, and 

the minimum and maximum values recorded. This process was repeated using 

iterative fitting, secondary smoothing (as described in Section 3.8), and 

boundary sampling, as well as combinations of these. Results for secondary 

smoothing with iterative fitting, and secondary smoothing with boundary 

sampling, are not included since the addition of secondary smoothing to these 

processes produced no significant change in the results. 

Firstly the results obtained with no post-processing of texture 

boundaries are considered (i.e. no iterative fitting, secondary smoothing, or 

boundary sampling). These results appear in the first two rows of Table 7.1. 

The most obvious result is that the accuracy of boundary estimate is increased 

by analyzing both textures. This can be appreciated more easily by 

considering Figure (7.4.4.2) which illustrates the relative orientational and 

translational error more clearly than the raw data. 

Distance 1 Distance 2 

2.08 ..................................................................................................................... 1.52 

-0.18 A-priori 
0.06~~~-------~~:;;;;:::== ~- boundary 

-~ estimate. 
-1.74. . ...... ...... .. . . . . . . . . .. . . . . . . . . . . . . . . . . .. .......... . . .. -1.6 

................ Boundary obtained by analysing foreground texture 

.. ".... Boundary obtained by analysing background texture 

Boundary obtained by analysing both textures 

Figure (7.4.4.2). Illustration of the boundary estimat.es. pre.sen!ed in the first 
two rows of Table 7.1. The figures denote the deViation In pixels from the 
expected ply edge. 
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Straight 
Edge Options Textures Analysed 
0°/90° 

1 pixel is 
0.61xO.59 Foreground Background Both 

mm2 

11 2.08 11 -1.74 11 ::: -0.06 
Distance 1 cr ::: 0.11 cr ::: 0.21 cr = 0.06 

min::: 1.88 min = -1.37 min::: -0.02 
max::: 2.24 max::: -2.16 max - -0.20 

11 1.52 11 -1.60 11::: -0.18 
Distance 2 cr::: 0.08 cr::: 0.15 cr::: 0.08 

min::: 1.37 min::: -1.36 min::: -0.10 
max::: 1.65 max::: -1.78 max - -0.37 

11 1.60 11 - -1.87 11 ::: -0.16 
Distance 1 1 cr::: 0.06 cr::: 0.12 cr:::0.17 

min::: 1.47 min::: -1.68 min::: -0.09 
max::: 1.67 max = -2.08 max - -0.42 

11 0.67 11 - -1.22 11 = -0.03 
Distance 2 1 cr::: 0.10 cr::: 0.23 cr = 0.15 

min::: 0.43 min = -0.70 min::: 0.01 
max::: 0.76 max::: -1.52 max::: 0.27 

11 3.00 11 - -3.02 11:::-1.01 
Distance 1 2 cr::: 0.15 cr = 0.11 cr = 0.07 

min::: 2.65 min = -2.77 min = -0.89 
max = 3.24 max = -3.14 max = -1.16 

11 - 2.86 11 ::: -3.00 11 = -0.IT5 
Distance 2 2 cr=0.15 cr = 0.15 cr=0.13 

min = 2.59 min = -2.86 min::: 0.01 
max::: 3.05 max::: -3.36 max::: -0.31 

11 - 1.56 11 = -1.75 11 = -0.06 
Distance 1 3 cr::: 0.3 cr = 0.19 0'=0.12 

min::: 0.83 min::: -1.46 min = 0.01 
max::: 1.94 max::: -2.05 max = -0.31 

11 - 1.43 11 - -1.46 11 = 0.26 
Distance 2 3 cr = 0.1 cr = 0.08 cr = 0.09 

min = 1.32 min = -1.37 min = 0.14 

max = 1.62 max = -1.62 max = 0.39 

11 - 2.08 11 = -2.07 11 ::: -0.31 

Distance 1 1+3 cr=0.15 cr = 0.03 0' = 0.60 
min::: 1.9 min::: -2.03 min = 0.05 

max = 2.35 max = -2.11 max = -1.43 

11-2.16 11 - -0])8 11 = 0.25 

Distance 2 1+3 cr = 0.14 cr:::0.14 cr = 0.30 
min = 1.97 min = -0.57 min = 0.10 

max = 2.35 max = -0.99 max = 0.74 

11 = 2.61 11 = -3.04 11 = -3.66 

Distance 1 1+2+3 cr = 0.30 cr::: 0.42 cr::: 0.59 
min = 2.43 min = -2.48 min::: -2.71 

max = 2.88 max = -3.51 max = -4.57 

11 = 3.10 11 ::: -2.65 11 = 0.70 

Distance 2 1+2+3 cr::: 0.19 cr = 0.05 cr = 0.46 
min = 2.70 min = -1.52 min::: 0.26 

max::: 3.36 max = -2.72 max = 1.66 

Table 7.1 
Key: 1 - Iterative fitting, 2 - Secondary smoothing, 3 - Boundary sampling. 

Note that this is merely an illustration and is not to scale. The actual length of 

the boundaries here is approximately 400 pixels, so the orientational deviation 

is grossly exaggerated. 
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It is clear from this diagram that the boundary from texture 1 lies above the 

real boundary, whilst that of texture 2 lies below. By forming the best fit over 

all points (i.e. combining the boundary information from both plies) then a 

more accurate result is obtained. This is generally true for all the lay-up tests 

performed. This seems to be due to the fact that ply edges present areas of 

texture different from both foreground and background plies. In the foreground 

ply this is due to the disturbance to the edge that the cutting operation 

produces. In the background ply it seems to be due to the slight shadowing 

effect near the edge of the foreground ply. As a result the estimates of 

foreground and background ply position tend to flank the area occupied by the 

ply boundary. Combining the foreground and background boundary estimates 

therefore results in a more accurate ply boundary estimate. For these lay-ups 

the mean deviation from the real edge is 0.06 pixels at the left edge, and -0.18 

pixels at the right edge. More importantly, the maximum deviation measured 

(which really specifies the confidence interval of inspection accuracy) is 0.37 

pixels. Unfortunately this result does not fully reflect the situation when 

inspecting lay-ups, as will be seen when the results for other lay-ups are 

considered. 

The next two rows of Table 7.1, marked with a 11111 in the lIoptions" 

column give the results obtained by performing an iterative least squares fit to 

the boundary points. The only significant difference this has introduced to the 

results is that the variance of boundary estimates is increased (standard 

deviation = 0.17 for Distance 1 and 0.15 for Distance 2), and accordingly the 

maximum deviation is larger at 0.42 pixels. 

The two rows marked with a "211 in the options column give the results 

obtained when secondary smoothing is applied to the texture boundaries 

before least squares fitting. From the table it can be seen that this process 

Significantly increases the error of the boundary estimate. This is an interesting 

result, since the opposite effect was observed in Section 3.8 in tests with 

artificially constructed texture images with low curvature boundaries. The 

reason for this discrepancy is not altogether clear, but possibly the real edges 

exhibit a higher degree of curvature than the artificial boundaries of the test 
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imagery. Whatever the reason this result illustrates the danger of limiting 

testing to a few artificial images. The data is much easier to measure and 

analyse for such images, but the results are not necessarily readily extendible. 

Sampling of texture boundaries, marked "3" in the "options" column has 

little effect with these lay-up configurations other than to increase the standard 

deviations. The results shown were obtained by taking every fifth boundary 

point, which was derived empirically as providing good performance. 

The last four rows of the table show results obtained by combining the 

various boundary post-processing procedures. The rows marked" 1 +3" in the 

options column are obtained by sampling the texture boundary (again every 

fifth point was taken), and then performing an iterative best fit to these points. 

The most notable effect is to reduce the reliability of the boundary estimate (cr 

= 0.60 and 0.30) and increase the maximum deviation (1.43 pixels). By 

combining all three operations (secondary smoothing, boundary sampling, and 

iterative fitting) this effect is increased, with cr = 0.59 and 0.46, and maximum 

deviation = 4.57. 

The general conclusions to be drawn from Table 7.1 are as follows. A 

more accurate estimate of boundary position is obtained if both foreground 

and background plies are analysed. Post processing of texture boundaries at 

this image resolution tends to produce less consistent results, and therefore 

reduces the reliability of boundary estimates. The best result was obtained 

using no post-processing, and gave a maximum deviation from the real edge 

of 0.37 pixels. Since the vertical pixel dimension is 0.59mm at this resolution, 

then this converts to a maximum error of 0.23mm. If this data were universally 

representative the conclusion would be that, at this image resolution, ply 

boundary position for straight-edged plies could be estimated to approximately 

+/-0.25mm. Unfortunately this is not the case. 

Table 7.2 gives the inspection results for lay-ups where the foreground 

ply is +45° and the background ply 0°. The overall conclusions which can be 

drawn from this data are largely the same as from Table 7.1 but the deviations 

from t~e real edge position are larger. 
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Straight 
Edge Options Textures Analysed 
45%° 

1 pixel is 
0.61xO.59 Foreground 

mm2 
Background Both 

Distance 1 
!.l 0.366 !.l 1.!:!7 !.l- 0.99 
0' = 0.09 0' = 0.09 0' = 0.10 

min = 0.27 min = 1.74 min = 0.82 
max = 0.54 max - 1.99 max 1.15 

!.l -2.77 !.l - -0.29 !.l = -1.59 
Distance 2 0' = 0.14 0' = 0.15 0' = 0.10 

min = -2.49 min = -0.02 min = -1.38 
max = -2.97 max = -0.47 max - -1.74 

!.l 1.12 !.l- 1.82 !.l = UJ3 
Distance 1 1 0' = 0.26 0' = 0.13 0' = 0.07 

min = 0.70 min = 1.53 min = 1.81 
max = 1.70 max = 2.03 max 2.06 

!.l -3. f1 !.l-'0.07 !.l=-1.72 
Distance 2 1 0' = 0.22 0' = 0.15 0' = 0.09 

min = -2.72 min = -0.05 min = -1.57 
max = -3.40 max = 0.44 max - -1.87 

!.l -1.f2 !.l- 3.24 !.l- 1.00 
Distance 1 2 0' = 0.15 0' = 0.10 0' = 0.06 

min = -0.85 min = 3.05 min = 0.93 
max = -1.42 max = 3.39 max - 1.12 

!.l -4.15 !.l - 1.15 !.l = -1.50 
Distance 2 2 0' = 0.13 0' = 0.11 0' = 0.10 

min = -3.96 min = 0.98 min = -1.30 
max = -4.37 max = 1.41 max = -1.68 

!.l- 0.13 !.l - 2.1:I !.l = 1.04 
Distance 1 3 0'= 0.20 0' = 0.12 0' = 0.08 

min = 0.03 min = 1.99 min = 0.87 
max = 0.47 max = 2.37 max = 1.14 

!.l - -2.93 !.l- -0.20 !.l = -1.62 
Distance 2 3 0' = 0.12 0' = 0.08 0' = 0.09 

min = -2.76 min = -0.04 min = -1.45 
max = -3.09 max = -0.31 max = -1.74 

!.l - -0.16 !.l-'2.67 !.l = 2.13 
Distance 1 1+3 0' = 0.36 0' = 0.19 0' = 0.23 

min = 0.11 min = 2.21 min = 1.56 
max = -0.76 max = 2.97 max = 2.76 

!.l - -2.66 !.l = 0.38 !.l = -2.00 

Distance 2 1+3 0' = 0.24 0' = 0.22 0' = 0.30 
min = -2.41 min = -0.02 min = -1.46 
max = -3.10 max = 0.78 max = -2.36 

Table 7.2 
Key: 1 - Iterative fitting, 2 - Secondary smoothing, 3 - Boundary sampling. 

In fact, as can be seen from Figure (7.4.4.3), the boundary estimate is 

skewed somewhat from the expected position. After investigation, this 

phenomena appears to occur as a result of edge disturbance in the foreground 

ply, which can transpire as a result of the cutting process. Such disturbance 

produces a texture variation which causes errors in the texture boundary. This 

effect is discussed further in Section (7.4.6). The practical result of the edge 

disturbance however, is that the maximum error for inspection at this 

resolution has to be taken as 1.75 pixels, which translates to an absolute error 
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of +/- 1 mm, too inaccurate for most composite lay-up applications. In an effort 

to improve upon this, more experiments were carried out at a higher image 

resolution, this time with a reduced pixel size measured at O.26xO.25mm2. This 

is approaching the limit of this form of texture based inspection for the carbon 

fibre materials used in this project. For higher resolution images the image 

area represented by the texture primitives (i.e. the weave or weft of the 

material) is such that 7x7 convolution kernels are not able to separate the 

textures. 

The results of the experiments carried out at higher resolution for 45%° 

lay-ups are shown in Table 7.3. In general, the results are similar to those in 

the previous tables, but some differences are observable. Notably the mean 

deviation measured over the tests is reduced by applying all three post­

processing operations, although the maximum deviation remains much the 

same. Therefore, although post-processing of texture boundaries obtained 

from high resolution images can have a positive effect, the extra processing 

overheads incurred, especially in iterative fitting, will usually not be worth the 

effort. 

Distance 1 
1.87 ..... 

Distance 2 

0.99 

0.37 ........ . 

A-priori 
boundary 
estimate. --~~------~~~--~~~--

-0.29 

-1.59 

-2.77 

Boundary obtained by analysing foreground texture 

Boundary obtained by analysing background texture 

Boundary obtained by analysing both textures 

Figure (7.4.4.3). Illustration of the boundary estimates ~resented in the first 
two rows of Table 7.2 (no post-processing). 
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I Straight Edge 
45%° Options Textures Analysed 

1 pixel is 
0.26xO.25 

Foreground 
mm2 Background Both 

11 -0.28 11 -1.64 11 = -0.70 
Distance 1 a = 0.23 a=0.12 a = 0.14 

min = 0.05 min = -1.46 min = -0.46 
max = -0.67 max - -1.85 max -0.91 

11 -0.72 11 -1.17 11=-1.16 
Distance 2 a=0.15 a = 0.19 a = 0.11 

min = -0.54 min = -0.87 min = -0.99 
max = -0.99 max = -1.39 max - -1.32 

11 0.15 11 - -1.32 11 = -0.32 
Distance 1 1 a = 0.07 a=0.12 a = 0.11 

min = 0.03 min = -1.17 min = -0.13 
max = 0.29 max = -1.56 max -0.47 

11 -1.44 11 - -o.n 11 = -1.33 
Distance 2 1 a = 0.25 a = 0.09 a = 0.15 

min = 0.89 min = -0.59 min = -1.18 
max = -1.80 max = -0.94 max - -1.58 

11 1.94 11 - -2.69 11 = -0.39 
Distance 1 2 a = 0.20 a = 0.04 a = 0.07 

min = 1.66 min = -2.65 min = -0.25 
max = 2.23 max = -2.78 max - -0.48 

11 -0.07 11 - -2.35 11 - =1.27 
Distance 2 2 a = 0.26 a = 0.07 a = 0.09 

min = -0.03 min = -2.27 min = -1.15 
max = 0.47 max = -2.51 max = -1.44 

11 - 0.64 11- -1.45 11 = -0.33 
Distance 1 3 a = 0.2 a=0.15 a=0.14 

min = 0.34 min = -1.20 min = -0.13 
max = 0.99 max = -1.74 max = -0.62 
11- -1.22 11--1.12 11 = -1.40 

Distance 2 3 a = 0.3 a = 0.15 a = 0.15 
min = -0.71 min = -0.86 min = -1.19 
max = -1.73 max = -1.40 max = -1.66 

11 - 0.14 11- -1.67 11 = -0.27 
Distance 1 1+3 a = 0.18 a=0.41 a = 0.23 

min = 0.03 min = -0.65 min = 0.05 
max = 0.56 max = -2.15 max = -0.52 

11 - -1.56 11 = -0.52 11 = -1.40 
Distance 2 1+3 a = 0.32 a = 0.25 a = 0.23 

min = -0.79 min = -0.09 min = -1.06 

max = -1.96 max = -0.99 max = -1.85 

11 = 1.24 11 = -1.82 11 = -0.20 

Distance 1 1+2+3 a = 0.44 a = 0.10 a = 0.24 
min = 0.52 min = -1.62 min = 0.07 

max = 1.94 max = -1.97 max = -0.56 

11=0.19 11 = -2.86 11 = -0.87 

Distance 2 1+2+3 a = 0.44 a = 0.18 a = 0.27 
min = -0.08 min = -2.69 min = -0.53 

max = 0.69 max = -3.16 max = -1.33 

Table 7.3 
Key: 1 - Iterative fitting, 2 - Secondary smoothing, 3 - Boundary sampling. 

The most important fact to be gleaned from these experiments is that the error 

in pixels is similar at higher resolution as it is at lower resolution. The absolute 

error however, is less, since each pixel represents a smaller area. 
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Straight E ge 
0°/90° Options Edge Operator 

1 pixel is 
0.61 xO.59 mm2 

~ = -0.43 
Distance 1 cr = 0.04 

min = -0.33 
max = -0.48 
~ = 0.68 

Distance 2 cr = 0.04 
min = 0.59 
max = 0.73 
~ = -0.31 

Distance 1 1 cr = 0.05 
min = -0.20 
max = -0.38 
~ = 0.53 

Distance 2 1 cr = 0.05 
min = 0.47 
max = 0.61 
~ = 0.15 

Distance 1 2 cr = 0.04 
min = 0.08 
max = 0.22 
~ = 0.07 

Distance 2 2 cr = 0.06 
min = -0.03 
max = 0.15 
~ = 0.13 

Distance 1 1+2 cr = 0.04 
min = 0.07 
max = 0.18 
~ = -0.06 

Distance 2 1+2 cr = 0.07 
min = 0.06 

max = -0.21 

Table 7.4 
Key: 1 - Iterative fitting, 2 - Thinning. 

For the data in Table 7.3, taking the maximum deviation as 1.32 pixels as 

obtained with no post-processing, and the vertical pixel dimension as 0.25mm, 

then an absolute error of +/-0.33mm results. 

7.4.5 Results Using Texture Edge Operators. 

The same experiments that were performed using texture analysis were 
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performed using textured edge operators. The results for the first lay-up 

configuration (0°/90°, pixel resolution 0.61 xO.59mm2) are shown in Table 7.4. 

This time only two post-processing operations are applicable: iterative fitting, 

and thinning of edge points. From the data in Table 7.4, it can be seen that 

for textured edge operators, these post-processing operations do provide a 

decrease in error. With no post-processing the maximum deviation is 0.73 

pixels (0.43mm), with iterative fitting 0.61 pixels (0.36mm), with thinning 0.22 

pixels (0.13mm), with iterative fitting and thinning 0.21 pixels (0.12mm). This 

data compares favourably with that derived using texture analysis on this 

configuration at this resolution (+/-0.23mm). Textured edge operators were 

also used on the 45%° lay-up, again with a pixel resolution of 0.61xO.59mm2 , 

and the results are shown in Table 7.5. As with texture analysis, the 

disturbance of the edges in these lay-ups causes an increase in inspection 

error, but with textured edge operators the effect is not as pronounced. With 

no post-processing the maximum deviation is 0.92 pixels (0.54mm), with 

iterative fitting 1.11 pixels (0.66mm), with thinning 0.84 pixels (0.50mm), with 

thinning and iterative fitting 0.83 pixels (0.49mm). The boundaries obtained 

using textured edge operators can therefore be estimated to +/-0.5mm at this 

resolution, compared to +/-1 mm with texture analysis. The best post­

processing configuration would be to implement only the thinning process, 

since this produces almost identical results to thinning with iterative fitting, but 

with considerably less processing required. Another point to note is that 

textured edge operators produce more consistent boundary estimates than 

texture analysis, as shown by the lower standard deviation values. 

A further application for textured edge operators is the detection of 

boundaries between plies at the same orientation. Table 7.6 gives the results 

for boundary estimation with foreground and background plies both at 0°. The 

results for this ply configuration are consistent with those obtained when the 

ply orientations differ. From the data in Table 7.6, iterative fitting of points 

produced the best result for this ply configuration, with a maximum deviation 

of 0.37 pixels (0.22mm), whilst thinning resulted in a maximum deviation of 

0.47 pixels (0.27mm). 
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-Straight Edge 
45%° Options Edge Operator 

1 pixel is 
0.61 xO.59 mm2 

Jl = 0.87 
Distance 1 0' = 0.04 

min = 0.80 
max = 0.92 

Jl = -0.02 
Distance 2 0' = 0.05 

min = 0.01 
max = 0.09 

Jl = 1.04 
Distance 1 1 0' = 0.05 

min = 0.96 
max = 1.11 
Jl=-0.13 

Distance 2 1 0' = 0.05 
min = -0.02 
max = -0.22 

Jl = 0.73 
Distance 1 2 0' = 0.06 

min = 0.61 
max = 0.84 
Jl = 0.-0.37 

Distance 2 2 0' = 0.08 
min=-0.19 
max = -0.48 

Jl = 0.58 
Distance 1 1+2 0'=0.10 

min = 0.46 
max = 0.83 
Jl=-0.19 

Distance 2 1+2 0' = 0.11 
min = -0.06 
max = -0.38 

Table 7.5 
Key: 1 - Iterative fitting, 2 - Thinning. 

The slight discrepancies in results for different lay-ups are probably due not 

only to different edge characteristics of the ply, but also to different 

characteristics of the edge operators themselves. 
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Straight Edge 
0%° 

1 pixel is 
Options Edge Operator 

0.61 xO.59mm2 

Jl = -0.41 
Distance 1 0" = 0.04 

min = -0.35 
max - -0.49 

Jl=0.17 
Distance 2 0" = 0.05 

min = 0.09 
max = 0.24 

Jl = -0.28 
Distance 1 1 0" = 0.06 

min =-0.19 
max = -0.37 

Jl=0.14 
Distance 2 1 0" = 0.06 

min = -0.01 
max = 0.21 

Jl = -0.30 
Distance 1 2 0" = 0.08 

min = -0.21 
max = -0.46 

Jl = -0.04 
Distance 2 2 0" = 0.09 

min = 0.01 
max = -0.23 

Jl = -0.32 
Distance 1 1+2 0"=0.13 

min = -0.07 
max = -0.57 

Jl = 0.02 
Distance 2 1+2 0" = 0.07 

min = 0.01 
max = 0.10 

Table 7.6 
Key: 1 - Iterative fitting, 2 - Thinning. 

It is important to remember that these operators are trained, and so two masks 

trained for the same application but on different training areas can exhibit 

slightly different properties. 

Unfortunately, the superior performance of texture edge operators at 
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low resolution does not carry over to higher resolution. In fact, when the 

foreground and background plies are of different orientations, it proved 

impossible to train a mask to enhance the boundary whilst suppressing the 

background textures. There is no reason to believe that this is caused by 

anything other than the fact that the maximum mask size (7x7, due to 

hardware limitations) is too small to cope. When both plies are at the same 

orientation however, it is possible to train a mask to detect boundaries whilst 

suppressing the texture, although the performance is not as good as at lower 

resolution. The results obtained from using such a mask are shown in Table 

7.7. Again, fitting gives the best results with a maximum deviation of 2.26 

pixels (O.57mm). This is similar to the results obtained at lower resolution 

(O.50mm). 

7.4.6 Summary and Discussion. 

A method of using texture based tools for inspection of straight edged 

plies has been devised. An attempt has been made to establish the error of 

this inspection method for different material configurations and image 

resolutions, and to obtain an understanding of the significant parameters 

affecting inspection. 

The most important conclusion which must be drawn from these 

experiments is that the results are largely material dependant. The optimum 

parameters will vary for different materials and configurations, as will the 

resulting inspection error. To some extent this result could have been 

anticipated. In the texture analysis literature examples of segmentation are 

often given, and it is easily observable that classification results and 

segmentation accuracy vary according to the texture samples used as well as 

with the texture method employed (see for example [du Buf et ai, 1990]). 

However the results given here are not obtained from synthetic imagery, but 

from images of physical objects (plies), and there is also a physical 

phenomenon which must be considered with regard to boundary detection: the 

effect of the cutting process on ply edges. All dry fibre composite materials 

have specific fibre directionality, and the relationship between this and the 
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direction of cut can affect the cleanness of cut at ply edges. The cleaner the 

cut, the more homogenous the texture around the ply edge (i.e. the fibres are 

not disturbed to form a slightly different texture effect which might be 

misclassified). The cleaner the cut therefore, the more accurate the 

segmentation produced by texture based inspection. From the results shown 

in Tables 7.1 to 7.7, it would seem that edges of material at ±4So produce the 

largest inspection error. This is in agreement with the experience gained in 

cutting dry-fibre materials: edge disturbance is least prevalent when the 

direction of cut is either perpendicular or parallel to the fibre direction. Other 

angles of cut with respect to fibre direction create more edge disturbance. 

Obviously this effect will depend on the material type and cutting method as 

well as the fibre orientation. It is difficult therefore to obtain definitive figures 

regarding inspection accuracy. Nevertheless, these experiments have been 

useful in giving a good indication of the magnitude of error i.e. ±O.33mm to 

±O.Smm depending on material and inspection method. 

As regards the significant parameters affecting inspection, only very 

general conclusions can be drawn. For texture analysis based inspection, the 

inspection error can be reduced by increasing the image resolution. There are 

two limitations of this. Firstly, at higher resolutions convolution kernels larger 

than 7x7 will be required to separate textures. Secondly, for higher resolution 

images there is a corresponding decrease in the field of view, which will have 

implications for the hardware required to inspect a component. For texture 

edge operators, increasing resolution is not guaranteed to reduce inspection 

error. This is probably due to the fact that at higher resolutions more detail is 

present in the background texture, and so the task of the edge operator in 

suppressing the background texture is that much more difficult. More "noise" 

is therefore present in the filtered image. 

No method of post-processing the boundaries has been found which 

consistently and reliably reduces the inspection error. 
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Straight Edge 
0%° Options Edge Operator 

1 pixel is 
0.26xO.25mm2 

Jl = 2.21 
Distance 1 (J'=0.17 

min = 1.94 
max = 2.57 

Jl = 1.43 
Distance 2 (J' = 0.07 

min = 1.26 
max = 1.53 

Jl=2.19 
Distance 1 1 (J' = 0.05 

min = 2.09 
max = 2.26 

Jl = 1.27 
Distance 2 1 (J' = 0.06 

min = 1.23 
max = 1.44 

Jl=2.18 
Distance 1 2 (J' = 0.56 

min = 1.34 
max = 3.24 

Jl = -0.04 
Distance 2 2 (J' = 0.34 

min = 0.01 
max = 0.48 

Jl = 0.63 
Distance 1 1+2 (J' = 0.47 

min =-0.10 
max = 1.16 

Jl = 1.72 
Distance 2 1+2 (J' = 0.45 

min = 0.73 
max = 2.33 

Table 7.7 
Key: 1 - Iterative fitting, 2 - Thinning. 

7.5 Inspection of Curved Edges. 

As well as straight edges, it is desirable to estimate edge location error 

for plies with curved edges. As already mentioned, the shape of plies in the 

aerospace industry is usually defined by straight lines and arcs. For a fully 

7-27 



implemented system it would be required to be able to model all the various 

conic arcs (circle, ellipse, parabola, hyperbola) as well as other low degree 

polynomials. For the sake of these experiments however, attention is restricted 

to circular arcs. This is justified by the fact that many ply shapes are 

constructed from straight lines and circular arcs. In addition the results gained 

from circular arcs should be representative of what might be obtained using 

any other conic sections. 

7.5.1 Least Squares Fitting of Circular Arcs. 

Least squares fitting of circular arcs is not as straightforward as for 

straight lines. Phrased in the literature as "nonintuitive behaviour" [Ballard and 

Brown, 1982], results obtained using the explicit least squares solutions for 

circle fitting (based on the general conic equation shown as equation (7.7») 

seem just plain wrong. That is, the resultant circle does not fit the input data 

at all well. 

AX2 + 2Bxy + Cy2 + 20x + 2Ey + F = 0 (7.7) 

Most workers, it would seem, have abandoned a closed form solution and 

adopted an iterative approach instead [Ballard and Brown, 1982], [Landau, 

1986], [Hooley, 1993]. Two of these iterative algorithms were implemented 

and tested. One algorithm due to [Landau, 1986] was found to perform well 

only if the input data is spread evenly around the circumference (the iterative 

estimate of circle centre is based on the centre of gravity of data points). This 

algorithm is therefore not at all suited to fitting arcs. The other algorithm due 

to [Hooley, 1993] performed correctly. Both, however, require a large amount 

of computation per iteration and a large number of iterations. Given two 

hundred data points to fit to, the computation time was approximately 15 

seconds for the [Hooley, 1993] algorithm. Attention therefore turned back to 

a closed form solution. [Shunmugam, 1986] has reported a least squares 

solution based on the parametric form of the circle shown in equation (7.8). 
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x = (cosS + Xc (7.8) 

Y = (sinS + Yc 

where xc,Yc represents the coordinates of the centre of the circle of radius r. 

In this formulation the data points are represented in polar coordinates (ri'S;). 

For a "well-centred
ll 

set of points (centre of the circle at or near the origin) the 

corresponding error measure for point i can be defined as 

which is the deviation of point i from the best fit circle centred at (xc,Yc) with 

radius r. The general least squares solution of equation (7.9) can be 

represented in matrix form as 

L cos2Sj L sinS jCosS j LcosSj Xc L rcosS. 
I I 

L sinS jCosS j L sin2Sj L sinSj Yc = L (jsinS j (7.10) 

L cosS j LsinS j L1 ( Lrj 

The system of equations represented by (7.10) can be solved for xc' Ye l and 

r by numerical methods [Press et ai, 1990]. A simple and very robust 

approach is Gauss-Jordan elimination, and a version of this algorithm was 

implemented. 

Experiments with this version of the least squares approach to arc fitting 

were instructive in that they showed that this method performed correctly for 

well-centred data points, but that if this condition was not met then 

"nonintuitive behaviour" once again resulted1
• A necessary condition for using 

this algorithm in the field of image processing therefore, is that a reasonably 

1 Subsequent work has established that this is due to a flaw in the formulation of 
e error measure in the original paper. 
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accurate estimate of arc centre be obtained, either a-priori (i.e. from CAD 

data) or from the data points themselves. The data points can then be 

translated by an amount (xo,Yo), where (xo,Yo) is the estimate of arc centre. In 

effect, the data points are being translated to centre on the origin. The 

algorithm can then be used to calculate values for (xc,Yc) and r. The final value 

for arc centre is then (xo+xc ' Yo+Yc)' 

As long as the data points are pre-processed to centre at or near the 

origin, then the method of [Shunmugam, 1986] produces near identical 

results (to a few hundredths of a pixel for both centre and radius estimate) to 

the algorithm of [Hooley, 1993]. Processing time is however a mere 0.4 

seconds for an un-optimised implementation of the Shunmugam algorithm, 

compared to the 15 seconds required by the iterative algorithm. In fact the 0.4 

seconds could be significantly decreased by implementing the required 

trigonometric functions in look-up tables. In addition a more efficient equation 

solver could be implemented to take advantage of the symmetry of the matrix 

in equation (7.10). 

If the estimate of arc centre is badly inaccurate then the resulting 

performance can degrade. The sensitivity of the algorithm to inaccuracies in 

centre estimate was investigated as follows. An arc was created using a 

graphics routine, and it's centre and radius estimated to subpixel precision 

using the iterative algorithm. The performance of the closed form algorithm for 

the same arc was then evaluated. The initial estimate for arc centre was 

varied from the known centre (i.e. that deduced using the iterative algorithm), 

and the results (i.e. estimates of radius and centre) compared with those 

produced by the iterative algorithm. For variations in the initial estimate of arc 

centre up to +10 pixels, the results were virtually identical to those produced 

by the iterative algorithm. The stability of the closed form algorithm is 

illustrated in Figure (7.5.1.1). This shows that the sum of the residuals of the 

points fitted to the arc using the closed form algorithm vary very little as the 

estimate of arc centre decreases in accuracy (only the x ordinate was varied 

to produce this graph). The conclusion therefore, is that the closed form 

algorithm can easily withstand errors of up to ±1 0 pixels. For this application 
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a-priori knowledge of the expected centre position (obtained from ply design 

or training data) can be used, or alternately an estimate of the centre can be 

obtained by geometric means from the data points. 

(J) 
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224.99 
L 
Q) 
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Expected Centre 
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Centre Estimate (x coord) 

Figure (7.5.1.1). The best estimate of arc centre x­
coord is 36.80. This graph shows how robust the least 
squares arc fitting is for increasingly inaccurate centre 
estimates. All figures in pixels. 

7.5.2 A Framework to Estimate Inspection Error. 

Inspection error of curved edges was estimated in a very similar way 

to straight edges. The plies cut this time were circular, and were cut using a 

specially machined metal template. The "real" boundary position in image 

space is determined in the same way as for straight edges in Section 7.4.2. 

A background ply is laid-up, and a sheet of styrene placed on top. In this 

instance the styrene sheet has been cut with a curved boundary which 

matches the profile of the ply foreground ply i.e. an arc. The foreground ply is 

laid-up, so that there is a slight overlap with the styrene sheet along the arc 

boundary. The position of this boundary can now be obtained by applying an 

edge operator. For these experiments only a portion of the circular boundary 

is processed subtending an angle of approximately 120°. This is consistent 

with the curved profiles of many plies in existing lay-up applications. The 

portion processed can be visualised as the arc swept out by the hand of a 

watch going from 5 minutes past to 25 minutes past. This being the case, the 
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vertical Sobel edge operator was used to detect edge points. Once a suitable 

threshold had been applied, the remaining points were fitted to an arc using 

the least squares formulation of [Shunmugam, 1986]. This process was 

repeated over fifty iterations and the mean result taken. (The initial estimate 

for the centre of this arc was established empirically at this point, and was 

thereafter used when performing least squares arc fitting of texture 

boundaries). The arc fitted to the Sobel edge points was then taken an 

accurate estimate of the boundary position. The styrene sheet is then carefully 

removed without disturbing the ply position. Texture-based estimates of 

boundary position can now be obtained. 

For simplicity, the distance is measured between the estimated "true" 

edge and texture-based estimate in the horizontal direction. Distance is again 

measured at two points evenly distributed on the arc, as shown in Figure 

(7.5.2.1). For each point a v-coordinate is chosen, and this is then used to 

generate the corresponding x-coordinates for each respective arc. The 

difference between the two x-coordinates is taken as the distance from one 

arc to the other (i.e. from the texture-based estimate to the estimated "true" 

position). This process enables us to obtain a subpixel estimate of inspection 

error, which can again be converted to absolute error by considering the 

dimensions of an individual pixel. 

Image Coordinate System 

.......---~ X \ Error in texture 
~~stimate (Distance 1) 

\ 
\ - Texture estimate • 

y "True" edge /'" i 
i 
i 
i 
i 
; 
; 

.I Error in texture 
~stimate (Distance 2) 
,I 

Figure (7.5.2.1). The difference between the texture 
estimate and the "true" edge is taken as the 

inspection error. 
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7.5.3 Results Using Texture Analysis. 

Since with straight edges best results for texture analysis were obtained 

at higher resolution (1 pixel::::: 0.25mm2), inspection of curved edges using 

texture analysis was restricted to this resolution. Table 7.8 shows the results 

obtained for the 0° foreground plies on 90° background ply at a resolution of 

0.26xO.25mm2. With no boundary post-processing the maximum deviation is 

1.21 pixels (0.30mm). One point to note is that the results are less consistent 

than for straight edges (standard deviations are 0.24 and 0.33). This seems 

to be a feature of least squares arc fitting, which has an extra degree of 

freedom compared to line fitting, and seems as a result to be more sensitive 

to small changes in input data. Iterative fitting certainly appears to have a 

detrimental effect, increasing the maximum deviation to 2.51 pixels. 

Secondary smoothing produces an increase in maximum deviation to 

2.00 pixels, similar to the increase observed when secondary smoothing is 

applied to line fitting. Boundary sampling, taking every tenth point, made little 

difference. No combination of the above processes served to improve upon 

the original result obtained with no boundary post-processing. 

The results for 45° foreground plies on a 0° background ply with a pixel 

resolution of 0.25mm2 are shown in Table 7.9, and generally provide better 

results than those shown in Table 7.8. With no post-processing the maximum 

deviation is 0.54 pixels (0.14mm). The only anomalous result from this data 

comes from secondary smoothing, which for once produces a significant 

improvement in performance, giving a maximum deviation of 0.26 pixels 

(0.07mm). This result is inconsistent with other results presented here, and 

indeed with experience gained throughout many other tests. It does however 

indicate the difficulty in analyzing results taken from real images, where any 

number of factors can affect the results, and usually do. 

From the data presented here then, the confidence of texture analysis 

boundary estimates for arc inspection is approximately +0.30mm. This is a 

very similar result to that achieved in the inspection of straight edges using 

texture analysis (+1-0.33mm). This is somewhat surprising, in that the 

inspection of straight edges seems intuitively simpler. 
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Curved 
Edge 
0°/90° 

Options Textures Analysed 

1 pixel is 
0.26xO.25 Foreground Background Both 

mm2 

Il 0.44 Il - 0.33 Il = 0.48 
Distance 1 cr = 0.08 cr = 0.68 cr = 0.24 

min = 0.33 min = 0.10 min = 0.20 
max = 0.61 max = 1.30 max - 0.94 

Il ·0.f8 1l--l.17 Il = 0.19 
Distance 2 cr = 0.09 cr=0.19 cr = 0.33 

min = 0.66 min = -0.87 min = 0.06 
max = 0.95 max = -1.39 max - 1.21 

Il 0.99 Il - 2.39 Il = 2.02 
Distance 1 1 cr=0.18 cr=0.14 cr = 0.32 

min = 0.63 min = 2.15 min = 1.27 
max = 1.23 max = 2.61 max - 2.51 

Il 1.31 Il -1.02 1l=1:7R 
Distance 2 1 cr=0.15 cr = 0.27 cr = 0.28 

min = 1.03 min = 0.62 min = 0.26 
max = 1.53 max = 1.44 max = 0.66 

11 0.41 11 --2.sg 11 = 1.56 
Distance 1 2 cr=0.15 cr = 0.37 cr = 0.25 

min=0.10 min = 1.79 min = 1.10 
max = 0.64 max = 2.97 max = 2.00 

11 0.51 11 -·r . .v.r 11 = 1.01 
Distance 2 2 cr = 0.11 cr = 0.42 cr = 0.29 

min = 0.27 min = 0.51 min = 0.56 
max = 0.66 max = 1.84 max = 1.56 

11 - -0.03 Il = 0.48 11 = 0.36 
Distance 1 3 cr = 0.23 cr = 0.48 cr = 0.39 

min = 0.07 min = -0.09 min = -0.10 
max = -0.39 max = 1.01 max = 0.97 

11 - 0.48 11 - -0.80 11 = -0.11 
Distance 2 3 cr=0.19 cr = 0.36 cr=0.41 

min = 0.19 min = -0.11 min = -0.07 
max = 0.73 max = -1.42 max = 0.88 

11 - 0.55 11 = 2.04 11 = 1.47 
Distance 1 1+3 cr = 0.40 cr = 0.79 cr = 0.31 

min = -0.09 min = 0.61 min = 0.96 
max = 1.21 max = 3.27 max = 2.01 

11 - 0.95 11 = -0.06 11 = 1~3g 

Distance 2 1+3 cr = 0.33 cr = 0.69 cr = 0.32 
min = 0.32 min = -0.09 min = 0.83 

max = 1.54 max = 1.25 max = 2.04 

Il = -0.94 11 = 5.14 11 = 2.41 

Distance 1 1+2+3 cr = 0.36 cr = 0.58 cr = 0.30 
min = -0.49 min = 3.88 min = 1.62 

max = -1.56 max = 6.19 max = 2.73 

Il = -0.66 11 = 3.41 11 = 2.05 

Distance 2 1+2+3 cr = 0.35 cr = 0.51 cr = 0.28 
min = -0.50 min = 2.45 min = 1.39 

max = -1.56 max = 4.46 max = 2.42 

Table 7.8 
Key: 1 - Iterative fitting, 2 - Secondary smoothing, 3 - Boundary sampling. 
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-Curved 
Edge Options Textures Analysed 
45%° 

1 pixel is 
0.26xO.25 Foreground Background Both 

mm2 

11 -0.70 11 - 1.29 11 = 0.36 
Distance 1 cr=0.12 cr = 0.19 cr=0.12 

min = -0.47 min = 0.95 min = 0.16 
max = -0.87 max = 1.55 max - 0.54 

11 -1.15 11 - 1.20 11=0.10 
Distance 2 cr = 0.12 cr = 0.17 cr = 0.10 

min = -0.91 min = 0.95 min = -0.06 
max = -1.30 max = 1.55 max - 0.26 

11 -0.£1 11-1.10 11 = 0.69 
Distance 1 1 cr=0.13 cr=0.13 cr = 0.16 

min = 0.01 min = 0.91 min = 0.39 
max = -0.52 max = 1.35 max = 0.91 

11 -U.01 11 - <Y.98 11 = 0.40 
Distance 2 1 cr = 0.11 cr=0.16 cr=0.16 

min = -0.50 min = 0.75 min = 0.17 
max = -0.90 max = 1.24 max = 0.70 

11 -2.02 11 - 2.25 11 = 0.13 
Distance 1 2 cr = 0.10 cr = 0.06 cr = 0.07 

min = -1.81 min = 2.12 min = 0.04 
max = -2.16 max = 2.38 max = 0.26 

11 - -2.49 11 = 2.26 11 = -(f.T 

Distance 2 2 cr = 0.09 cr = 0.07 cr = 0.06 
min = -2.33 min = 2.13 min = 0.01 
max = -2.62 max = 2.42 max = -0.18 

11 - -0.95 11- 1.31 11 = 0.21 
Distance 1 3 cr=0.12 cr = 0.21 cr = 0.08 

min = -0.82 min = 0.86 min = 0.08 
max = -1.18 max = 1.66 max = 0.35 

11 - -1.59 11 - 1.26 11 = =0.04 
Distance 2 3 cr = 0.11 cr = 0.18 cr=0.10 

min = -1.45 min = 0.93 min = 0.01 
max = -1.80 max = 1.54 max = -0.17 

11 = -0.54 11 = 131 11 = 0.80 
Distance 1 1+3 cr = 0.36 cr = 0.38 cr = 0.32 

min = 0.09 min = 0.72 min = 0.39 
max = -1.17 max = 1.97 max = 1.46 

11=-1.16 11 = 1.13 11 = 0.50 

Distance 2 1+3 cr = 0.21 cr = 0.50 cr = 0.25 
min = -0.98 min = 0.34 min = 0.20 

max = -1.64 max = 2.21 max = 1.05 

11 = ~2.59 11 = 2.40 11 = 0.94 

Distance 1 1+2+3 cr=0.19 cr = 0.30 cr = 0.23 
min = -2.29 min = 2.06 min = 0.41 

max = -2.93 max = 2.89 max = 1.24 

11 = -2.75 11 = ~~54 11 - 0.62 

Distance 2 1+2+3 cr=0.15 cr = 0.30 cr = 0.30 
min = -2.45 min = 2.20 min=0.16 

max = -3.03 max = 3.15 max = 1.19 

Table 7.9 
Key: 1 - Iterative fitting, 2 - Secondary smoothing, 3 - Boundary sampling. 
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Certainly the least squares fitting algorithm for straight lines appears to 

function in a more stable manner. 

7.5.4 Results Using Texture Edge Operators. 

Table 7.10 gives results for 0° foreground plies on a 90° background ply 

with a pixel resolution of 0.61xO.59mm. The best result is obtained with no 

post-processing of boundaries (maximum deviation 0.52 pixels, 0.32mm) in 

contrast to the result obtained when inspecting straight edges, where improved 

results were obtained by thinning and/or iterative fitting of boundary 

information. 

Table 7.11, giving results for 45° foreground plies on a 0° background 

ply at the same resolution, shows best results when the edge points are 

thinned before arc fitting. The maximum deviation for these lay-ups is greater 

(1.48 pixels, 0.9mm) and indicates a relatively poor result for the edge 

operator. This is instructive in that it shows that the error of these operators 

is not really something which can be predicted. Rather, for a particular 

application the relevant masks, once trained would have to be tested to 

properly determine intrinsic edge estimation error. This is not a desirable 

process since it increases the work necessary to set up such a system, but for 

applications requiring guaranteed accuracy this seems advisable. For 0° 

foreground plies on a 0° background ply at this resolution the results are 

shown in Table 7.12. Best results are again achieved by thinning of 

boundaries before fitting giving a maximum deviation of 0.56 pixels (0.34mm), 

which is much more in-keeping with other results achieved using texture edge 

operators. 

Finally, Table 7.13 gives results for inspection of 0° foreground plies on 

a 0° background ply with a resolution of 0.26xO.25mm2 per pixel. The best 

result is provided by thinning and fitting (maximum deviation = 1.69 pixels, 

0.44mm) although the improvement over no post-processing is modest 

(maximum deviation = 1.74 pixels, 0.45mm), and so the latter method would 

probably be chosen. Again this shows that texture edge operators actually 

produce a more accurate estimate of boundary position with lower resolution 

7-36 



images. 

7.6 Conclusions. 

This chapter has detailed the implementation and testing of a method 

of using texture based tools for inspection of composite preforms. An attempt 

has been made to establish the error of this inspection method for different 

material configurations and image resolutions, and to obtain an understanding 

of the significant parameters affecting inspection. The process of determining 

inspection error has received negligible coverage in the literature, and certainly 

no results have been published regarding error inherent in texture based 

inspection in an industrial application. The process of estimating inspection 

error is difficult to formalise, and a rather ad-hoc scheme has been adopted 

here. It has not proven possible to obtain definitive figures for inspection error. 

The results will vary according to material type, orientation, and cutting 

method. In addition convolution kernels optimised on different training data 

may produce slightly different results. The experiments reported here do 

however indicate that an inspection error of ±O.33mm to ±O.5mm is intrinsic 

to this method of inspection, whether inspecting straight or curved edged plies. 

Reducing this inspection error to a more acceptable level is the topic of the 

next chapter. 

It is worthwhile commenting on the variance of the results obtained. 

There are two possible causes of this: the texture-based tools, and the 

boundary fitting process. As regards the texture, it is certain that even when 

processing two images of the same lay-up captured within a fraction of a 

second of one another will produce slightly different results. This is a result of 

lighting variation (especially that caused by fluorescent tubes which oscillate 

at 50Hz), sampling effects, and possibly camera vibration. Again this indicates 

the limitations of comparative tests carried out on synthetic images. Another 

factor which will playa part in the variation observed in results is thresholding. 

Whilst the threshold algorithm used here performs adequately, slight variations 

in the texture analysis output can cause the chosen threshold to go up or 

down a point. 
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Curved EOge 
0°/90° Options Edge Operator 

1 pixel is 
0.61 xO.59mm2 

Jl = 0.26 
Distance 1 cr=0.16 

min = 0.03 
max = 0.52 

Jl = 0.35 
Distance 2 cr = 0.05 

min = 0.20 
max = 0.45 

Jl = 0.98 
Distance 1 1 cr=1.1 

min = 0.43 
max = 1.45 

Jl = 0.67 
Distance 2 1 cr=0.13 

min = 0.39 
max = 0.77 

Jl = 0.45 
Distance 1 2 cr=0.12 

min = 0.32 
max = 0.70 

Jl = 0.62 
Distance 2 2 cr=0.16 

min = 0.29 
max = 0.96 

Jl = 0.95 
Distance 1 1+2 cr = 0.21 

min = 0.63 
max = 1.38 

Jl = 0.56 
Distance 2 1+2 cr = 0.08 

min = 0.40 
max = 0.70 

Table 7.10 
Key: 1 - Iterative fitting, 2 - Thinning. 

This slight change in threshold will affect hundreds, possibly thousands of 

pixels in the filtered image, almost all of them on object boundaries. This will 

obviously affect the boundary estimate. It is difficult to see how this effect 

could be avoided. 
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Curvedtage 
45%° Options Edge Operator 

1 pixel is 
0.61 xO.59mm2 

~ = -1.47 
Distance 1 a=0.19 

min = -1.06 
max = -1.82 
~ = 0.79 

Distance 2 a = 0.04 
min = 0.74 
max = 0.88 
~ = -1.79 

Distance 1 1 a = 0.28 
min = -1.25 
max = -2.07 
~ = 0.90 

Distance 2 1 a = 0.07 
min = 0.84 
max = 1.06 
~ = -0.01 

Distance 1 2 a = 0.32 
min = -0.07 
max = -0.86 
~ = 1.27 

Distance 2 2 cr = 0.09 
min=1.14 
max = 1.48 
~ = 0.86 

Distance 1 1+2 a = 0.94 
min = -0.21 
max = 2.43 
~ = 1.20 

Distance 2 1+2 a=0.10 
min = 0.99 
max = 1.39 

Table 7.11 
Key: 1 - Iterative fitting, 2 - Thinning. 

Concerning the boundary modelling stage, even given the slight 

variations in the texture boundaries, the variance in the best fit boundary does 

seem surprising (or even non-intuitive). Least squares fitting does seem rather 

sensitive to very small variations in the input data. 
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Curved Edge 
00/00 Options Edge Operator 

1 pixel is 
0.61 xO.59 mm2 

Jl = 0.36 
Distance 1 0'=0.14 

min=0.13 
max = 0.60 

Jl = 0.43 
Distance 2 0'=0.12 

min = 0.23 
max = 0.59 

Jl = 0.70 
Distance 1 1 0' = 0.8 

min = 0.50 
max = 1.15 

Jl = 0.65 
Distance 2 1 0'=0.15 

min = 0.41 
max = 0.80 

Jl = 0.33 
Distance 1 2 0' = 0.08 

min = 0.27 
max = 0.41 

Jl = 0.41 
Distance 2 2 0' = 0.09 

min = 0.29 
max = 0.56 

Jl = 0.85 
Distance 1 1+2 (j = 0.23 

min = 0.73 
max = 1.18 

Jl = 0.23 
Distance 2 1+2 0'=0.12 

min=0.17 
max = 0.53 

Table 7.12 
Key: 1 - Iterative fitting, 2 - Thinning. 

Perhaps this is intrinsic to the least squares approach, which relies on 

determining the point where the error function is at a minimum. Small changes 

in input data may well have an exaggerated effect on the position of the 

minima of the function. Another possible source of error is the lens distortion 

alluded to in Section 7.3. 
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Curved Edge 
0%° Options Edge Operator 

1 pixel is 
0.26xO.25mm2 

Jl = 1.54 
Distance 1 0'=0.12 

min = 1.35 
max = 1.74 

Jl = 1.06 
Distance 2 0' = 0.11 

min = 0.86 
max = 1.21 

Jl= 1.51 
Distance 1 1 0' = 0.48 

min = 0.67 
max = 2.08 

Jl = 0.85 
Distance 2 1 0' = 0.44 

min=0.12 
max = 1.35 

Jl = 1.76 
Distance 1 2 0'=0.12 

min = 1.56 
max = 1.92 

Jl = 1.40 
Distance 2 2 0'=0.16 

min=1.10 
max = 1.68 

Jl = 1.27 
Distance 1 1+2 0' = 0.32 

min = 0.73 
max = 1.69 

Jl=1.13 
Distance 2 1+2 0' = 0.28 

min = 0.67 
max = 1.49 

Table 7.13 
Key: 1 - Iterative fitting, 2 - Thinning. 

It is conceivable that this could contribute to the unexpected variations in 

model fitting, especially as regards arc fitting. 

In summary, this chapter has detailed the implementation and testing 

of the texture-based tools described in previous chapters. Simple boundary 

models have been incorporated in the inspection process, and estimates of 
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inspection error have been obtained experimentally. In the next chapter a 

novel boundary refinement approach is investigated in an attempt to reduce 

inspection error. 
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TER 

Boundary Refinement. 

8.1 Introduction. 

Chapter Seven demonstrated how texture analysis in conjunction with 

an appropriate boundary model could provide a fast and elegant method of 

inspecting carbon fibre lay-ups. The inspection error was of the order of 

±O.33mm to ±O.5mm, which is acceptable for many current lay-up applications. 

This chapter will describe a novel boundary refinement approach developed 

in an attempt to reduce inspection error. This is in effect a post-processing 

operation, which takes the texture-based estimate as a starting point from 

which to perform a local search for urealu edge points. 

8.2 General Approach. 

The general approach to boundary refinement investigated in this 

chapter is presented in Figure (8.2.1). It has already been mentioned in 

Section (1.6) that the problem with detecting edge points in a textured image 

is that the textures themselves produce many edge segments which confuse 

the situation. The scheme represented in Figure (8.2.1) relies on the 

assumption that since only a small area of the image is being searched which, 
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according to the texture information, contains the real boundary, then the 

probability of detecting urealu edge points is much higher. 

for each boundary of interest 
do 

extract texture boundary 
perform limited search perpendicular to boundary for edge points 
form edge points into a new boundary 

Figure (8.2.1). A general approach to texture boundary refinement. 

The first stage, that of extracting the texture boundary, can be 

accomplished by texture analysis or by texture edge operators as appropriate. 

The boundary referred to is the best fit line or arc, rather than the raw texture 

boundary points themselves, since this provides a more accurate estimate of 

ply position. The more accurate the boundary estimate the smaller the area 

that should be searched for actual edge points, and so the lower the 

probability of choosing erroneous edge points. 

The boundary refinement approach shown in Figure (8.2.1) is an 

intuitive one, and is similar to methods adopted by other workers for different 

applications. In [Ballard, Brown, 1982] a scheme is described based on 

adjusting a-priori boundaries. The scheme is attributed to [Bolles, 1977], but 

in fact the paper contains no reference to this type of technique. Wherever it 

was first described, the procedure detailed in [Ballard, Brown, 1982] is as 

follows. Local searches are carried out at regular intervals along directions 

perpendicular to the approximate (a-priori) boundary. An edge operator is 

applied to each point along each perpendicular direction. For each such 

search, the edge with the greatest magnitude is selected from among those 

whose orientation is nearly parallel to the tangent to the approximate 

boundary. The set of edge points so chosen is fitted to an analytic curve and 

becomes the new boundary representation. No detail of performance is given 

in [Ballard, Brown, 1982], and since the original reference is unclear, no 

other information is available. 
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A variation on the idea is described in [Pavlidis, Liow, 1990], where 

initial segmentation of non-textured images is region-based, achieved using 

a split-and-merge algorithm. A second stage of processing, referred to as 

contour modification, is then performed to improve boundary accuracy by 

utilising local edge information. This process involves modifying the region­

based contour to maximise a merit function. The function in question is 

composed of three terms representing edge magnitude, curvature, and phase 

change. The first term is directly proportional to the magnitude of an edge, so 

that strong edges are more likely to be chosen. The second term favours 

boundary smoothness and avoids sharp turns, especially in low contrast areas 

of an image. The third term corresponds to changes in direction of the 

boundary, which should be small. There is some degree of overlap between 

the functionality of the last two terms, although their mathematical formulation 

is quite different. 

The scheme adopted In this work is a combination of the above 

methods, and is as follows. The texture boundary is obtained using the 

methods described in Chapter Seven, and this is taken as an initial estimate 

of boundary location. Local searches are carried out along this boundary in a 

perpendicular direction. At each point along this perpendicular search, an edge 

operator is applied and the result is evaluated using a merit function, as 

defined in the following section. The point giving the highest output from this 

function is chosen as the new edge. The set of edges resulting from this 

localised boundary search is fitted to the relevant boundary model using the 

least squares method detailed in Section 7.4.1, and this is taken as the new 

boundary estimate. Figure (8.2.2) demonstrates the idea of this search. 

The texture estimate is used to guide the process. For each local 

search, an initial search point is generated from a parametric representation 

of the texture estimate. The orientation of the perpendicular is calculated, and 

a parametric line representation used to generate the coordinates of each pixel 

to be evaluated as a potential edge point using the merit function. The spatial 

extent of the search on either side of the texture estimate is specified by a 

preset parameter, denoted as k in Figure (8.2.2). 
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Arrows indicate direction of search. 

Texture 
Estimate 

.~Mft~I'!i ~~ 
I! I 

- Initial search point 

- Point selected after search 

k - Extent of 
search in 

pixels 

Figure (8.2.2). A localised search is carried out using the texture estimate as 
a guiding template. Each pixel encountered in the search is evaluated using 
the merit function described in Section (8.3). 

The calculations to generate pixel coordinates in each local search 

require repetitive floating point operations, and as a result the processing time 

required for each complete boundary search is approximately two seconds. If 

required, the process could be made more efficient. 

8.3 The Merit Function. 

The merit function developed for this application is composed of three 

terms, as shown in equation (8.1). 

merit(x,y) = mag(x,y) + a*orient(x,y) + P *dist(x,y) (8.1) 

where x,y are the coordinates of the pixel being evaluated. The function 

merit(x,y) is composed of three terms relating to the magnitude of the edge 

at pixel(x,y), the orientation associated with that edge, and the distance from 

pixel(x,y) to the boundary estimate obtained using texture information. The 

choice of edge magnitude and orientation as contributing terms is common to 
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most boundary search algorithms [Ballard, Brown, 1982], [Pavlidis, liow, 

1990]. The choice of the third term which represents the distance from a 

candidate edge point to the estimate of boundary position obtained from 

texture is novel. Candidate edge points which minimise this term will be 

favoured by inclusion of this term. Conversely, candidate edges points deep 

within areas which have been classified as belonging to either the foreground 

texture (ply) or background texture (ply) will not be favoured. 

Each of these terms is a function producing a result in the range 0 .. 1. 

The precise implementation of these terms is described in the remainder of 

this section. The relative weighting which should be applied to the three terms 

is governed by the parameters a and ~, and the determination of appropriate 

values for these parameters is covered in Section 8.5. 

8.3.1 The Mag(x,Y) Function. 

At each point under evaluation, the corresponding edge magnitude is 

measured as shown in equation (8.2). 

magnitude = /gx/ + /gy/ (8.2) 
z 

where gx and gy are the respective responses of the edge operators used, 

and z is a normalising constant calculated from these edge operators as 

L ( /gxi / + /gyi / ) 

i z=-------
4 

and i indexes each coefficient of the edge operators. The normalising constant 

is designed to ensure that the value obtained for edge magnitude is never 

greater than 255, the value that can be held in one image pixel, and assumes 

that the edge operators are symmetric and zero-sum. The choice of the 

denominator in computing z has been arrived at by consideration of the 

maximum possible output of gx and gy for any given edge pattern, although 
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this maximum can in fact only be generated when processing binary images. 

Nevertheless, the choice of 4 as the denominator in computing z provides 

adequate dynamic range for edge magnitude. The edge operators used in this 

scheme are conventional gradient edge operators which typically give a 

reasonably accurate indication of edge position and orientation. The actual 

edge operators for a particular application can be chosen to match the 

expected edge profile. The Sobel edge operators have been used throughout 

these experiments. 

The larger the value obtained by application of equation (8.2) the 

stronger the edge at that location. In the boundary refinement procedure 

described in [Pavlidis, Liow, 1990] the edge magnitude was used directly in 

the merit function i.e. the greater the magnitude the stronger the case for that 

edge point to be chosen. For this application however, the situation is different. 

Figure (8.3.1.1) shows a magnified portion of a ply edge, and the magnitude 

image obtained by applying the Sobel edge operators. 

From this figure it is evident that edge magnitudes on the ply boundary 

are less than the edge magnitudes produced as a result of the weft of the 

material (in fact it is this effect which prompted the investigation into texture 

analysis in the first place). 

. ' ·f'.····, :;~Il:' .. ' 'If"" ·'.If· '." :, ~ ;: ;.;- ... ' , . "';, " .. ,... ,.' i 

.' •............ , .......... ' ..... ' ' .... ; ... " n "U .,. I ! .. II" ' . 
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~;:>)%~~: ~.: :'.' ''':';-A''::\~:::r ,.' ':.:~~>:~:~w<~;~~tf?' '·:}mtf$%.itt:::~_: :,- >%"~~~::~~'/m:~;::~. c';:";:::'¥.: '(.WW'// 

:~- .. -=:.' .. 
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- ca -=- ( .. c:., 
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Figure (8.3.1.1). A magnified image of a ply edge and the corresponding 
magnitude image produced by application of Sobel edge ope rafo rs. 
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It is therefore not a good strategy to choose simply the strongest edge, but 

rather to tailor the merit function to favour edges with a profile (magnitude) 

close to that commonly produced at ply edges. The function adopted for this 

is 

mag (x,y) = 1 - min (1, I etarget - e xy I ) 
etarget 

(8.3) 

where etarget is the expected edge magnitude of a point on a ply edge, e
xy 

is 

the measured edge magnitude of a point at pixel(x,y), and the function 

min(a,b) returns a if a < b, otherwise b. 

The term I etarget - exy I represents the absolute difference between the 

current edge magnitude and the magnitude expected of a point on a ply edge, 

regarded here as the edge "target". This difference measure is normalised by 

dividing by etarget. The resultant value could be greater than 1 if exy > 2etarget, 

which is possible if exy represents a particularly strong edge, and so the 

min(a,b) function is used to ensure that the result does not exceed 1. 

Finally this value is subtracted from 1, so that edge magnitudes which 

are close to the target value give a high function result (:::~1), whilst edge 

magnitudes which are not close to the desired value give a low function result 

(;:::,0). A plot of the mag(x,y) function is shown in Figure (8.3.1.2). This shows 

how the function will behave if the value for etarget is relatively low (;:::,0.25 in 

Figure (8.3.1.2») which is in fact close to the situation for carbon fibre 

inspection. From this it can be seen that the function mag(x,y) appears 

"cropped" to produce a non-zero output only over a narrow range of edge 

magnitudes. As a result the function has a better response profile over the 

edge magnitudes that are most common, since very high edge magnitudes are 

rare and in this application provide no useful information as regards ply 

boundaries. 
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e target 

1 

mag(x,Y) 

exy 1 

Figure (B.3.1.2). A plot of the function 
mag{x,y), as defined in equation (B.3). 

8.3.2 The Orient{x,y) Function. 

The second term of equation (B.1) is a function of edge orientation. 

This is simply required to give a high value (::::1) when the measured edge 

orientation is close to that of the texture boundary (and therefore hopefully to 

the orientation of the ply edge), and a low value (::::0) when it is not. The 

orientation of an edge is measured by equation (8.4). 

e = tan-1(gy] 
xy gx 

(8.4) 

Similarly the orientation of the texture boundary can be calculated locally by 

e = tan- 1(dY] 
t dx 

(8.5) 

where 

dx = (txi_n - txi+n ) (8.6) 

dy = (tYi-n - tYi+n) 

and {tXi,tyJ is the local texture boundary point, n is a small integer. In the 
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most straightforward case, that of straight edge inspection, St need only be 

calculated once, since it will be constant for all points on the texture boundary. 

Given SXY and St, they represent similar orientations if they are 

numerically close, or if they are separated by almost 2It. The difference 

between Sxy and St is therefore 

Sti ranges from 0 for identical SXy and St, to It for opposite orientations 

of SXy and St· To produce a function which will output 1 in the former case and 

o in the latter, Sti must be normalised and subtracted from 1, thus 

Sti 
orient(x,Y) = 1 -

It 
(8.8) 

A graph of orient(x,y) versus Sti is shown in Figure (8.3.2.1). 

1 

orient(x, y) 

o 
e~ 

Figure (8.3.2.1). A plot of the function orient(x,y) 
as defined in equation (8.8). 

8.3.3 The Dist(x,y) Function. 

The third term of equation (8.1) relates to the distance of each 

candidate point to the texture boundary estimate being used as a guiding 

template. Given that the texture boundary estimate is reasonably accurate, 
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then the probability of finding the real edge close to this estimate is high, and 

correspondingly the probability of an edge far from the texture estimate being 

on the ply boundary is low. The dist(x,y) function is designed to produce a 

high value (~1) for candidate points on or near the texture boundary, and a 

low value (~O) for candidate points further away from the texture boundary. 

The furthest point from the texture boundary which will be evaluated depends 

on the extent of the perpendicular search as determined by the parameter k 

in Figure (8.2.2). The required function can therefore be achieved by 

equation (8.9). 

dist(x,y) 
= k - dxy 

k 
(8.9) 

where k is the maximum spatial extent of the local search on either side of the 

texture boundary, and dxy is the distance measured in pixels from pixel(x,y) to 

the texture boundary. If dxy is 0, the output is 1. If dxy = k, the output is O. 

Figure (8.3.3.1) illustrates the output of this function when k=3. Note the step 

effect which results, since all distances are in whole pixel units. 

1 k=3 

dist(x,Y) 

o 1 2 3 

dxy 

Figure (8.3.3.1). A plot of dist(x,y) as 
defined in equation (B.9). 

8.4 Determination of the Target Edge Magnitude. 

In Section B.3.1 the idea was developed that points on a ply boundary 
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do not exhibit particularly strong edge magnitudes, and that points at or near 

the weft in fact produce stronger edge magnitudes. It was conjectured that an 

improvement in performance of the merit function could be achieved if edge 

points were assessed as to how well they matched the expected magnitudes 

of points on ply edges, the term etarget in equation (8.3). Some method is 

therefore required to determine an appropriate value for e target· 

Since the task is simply to maximise the function mag(x,y) for a single 

variable, then it is appropriate to employ an exhaustive search algorithm. In 

this, the value of etarget is varied linearly over its range and the performance for 

each value assessed. The way in which performance is assessed for a 

straight-edged ply is described as follows. 

An estimate of the "true" position of a straight-edge ply boundary is 

obtained as described in Section 7.4.2. That is, it is laid-up overlapping 

slightly with a styrene sheet so that the ply boundary is easily obtainable using 

conventional edge operators. Edge points are fitted to a straight line using the 

least squares approach described in Section (8.4.1). The process of applying 

edge operators and fitting the resulting points to a straight line is repeated 50 

times and the mean values of a and b taken to define the line representing the 

real ply boundary position. The styrene sheet is then removed with no, or at 

least negligible, ply disturbance. The texture boundary is now obtained by 

texture analysis. Given the accurate estimate of boundary position and the 

texture-based estimate, the boundary refinement stage can be applied. By 

setting a. = ~ = 0, merit(x, y) as defined in equation (8.1) is made to rely solely 

on the performance of the mag(x,y) term. The value of etarget is set to an initial 

value, and the boundary refinement process performed. The resulting set of 

points are used to fit a least squares line. From this line, the deviation from the 

"real" boundary can be measured, as described in Section 7.4.2. It is this 

deviation which is used to assess the best value for etarget· The boundary 

refinement process is repeated (using the same texture estimate) with 

increasing values of e and a graph of e t versus deviation obtained. target' targe 

This process can be repeated for a number of different lay-ups in order to 

obtain an aggregate view of the appropriate value for etarget· 
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Examples of the results obtained with this process are displayed 

graphically in Figure (8.4.1) for six lay-ups, all of which have a background ply 

at 0° orientation and a foreground ply at 90°. These graphs all follow a similar 

pattern. There is an initial peak (large error) corresponding to low magnitude 

edges. These lIedges" are probably the result of noise an low contrast surface 

markings, and obviously offer no information on ply boundary position. There 

is then a well-defined minima centred at approximately 0.18 on the x-axis, 

which indicates that accurate boundary estimates are obtained with this value 

of etarget· The shape of this minimum varies from graph to graph, but the effect 

is observable in all. For higher edge values the deviation increases before 

settling to a plateau which corresponds to the high edge magnitudes produced 

by the weft. 

These graphs therefore validate the theory that pixels on the ply 

boundary exhibit a particular range of edge magnitudes. The conclusion from 

Figure (8.4.1) is that for 0°/90° lay-ups under the lighting conditions prevalent 

throughout the experiments, an edge target of approximately 0.18 is 

appropriate. 

More generally, experiments with other lay-up configurations have 

shown that the particular range of edge magnitudes exhibited is dependant on 

material, orientation, and of course lighting. Whilst all produce graphs similar 

to those shown in Figure (8.4.1), the optimum value for etarget can be 

anywhere between 0.17 and 0.28. This makes it impossible to select a single 

value for composite inspection, and so a value must be obtained for each 

edge configuration present in a component. This will not usually be too much 

of a drawback however, since the texture analysis or texture edge operators 

require similar training. In any case the number of possible configurations is 

limited, and many small components will exhibit only two or three different 

edge types. Another disadvantage is that this type of training to recognise 

object boundaries depends heavily on consistent lighting conditions, since any 

variation may possibly alter the edge profiles. 
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Figure (8.4.1). Graphs used to determine optimum value for etargeto The graphs 
record the maximum deviation from the IIrealll boundary position for different 

values of etarget for six different lay-ups, all with plies at 0° and 90°0 
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For inspection of carbon fibre lay-ups however, it has been obvious from the 

beginning of this project that controlled lighting will be a pre-requisite of any 

industrial implementation. All things considered therefore, training an algorithm 

for boundary recognition imposes no extra limitations than were already in 

existence. 

B.5 Determination of Merit Function Parameters. 

For a merit function as defined in equation (B.1), some method of 

deriving appropriate values for the parameters ex and ~ is required. In 

[Pavlidis, Liow, 1990] parameter selection was performed by empirical 

means, selecting values which appear to produce good results. The method 

adopted here is based on training the algorithm to provide optimum 

performance for a particular application. The performance criterion is identical 

to that described in Section B.4 for determining the optimum edge target. That 

is, the parameters ex and ~ are varied iteratively and a refined boundary 

estimate obtained for each iteration. The deviation from this estimate to the 

"real" edge is measured and provides an assessment of performance for that 

combination of parameters. The parameters giving the best result are chosen. 

Note that an appropriate value for edge target must already have been 

obtained using the process described in Section B.4. 

The search method used to determine ex and ~ is different from that 

used to determine etarget. Since two parameters are involved, then a more 

efficient direct search method has been implemented. This method is a 

variation on the widely used Hooke and Jeeves direct search algorithm 

[Walsh, 1975]. Given a function f (in this case the inspection error, 

parametrised by ex and ~) which is to be minimised the Hooke and Jeeves 

method will proceed as follows. 

An initial base point (ex, ~) is chosen. For each variable a step length is 

chosen, giving d
a 

and dp- Once the function has been evaluated at the base 

point (giving f(ex, ~»), the method progresses through a sequence of 

exploratory and pattern moves. The purpose of an exploratory move is to 

acquire information about the search domain in the neighbourhood of the 
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current base point i.e. at f(a±d(l' ~±dp). A pattern move attempts to speed up 

the search by using information already acquired about the search domain' I.e. 
by moving in a IIsuccessfulll direction in larger step sizes. 

Since, in this case, the search domain is a function of only two 

variables, a modified version of the Hooke and Jeeves algorithm has been 

implemented which uses only exploratory moves. The details of this are as 

follows. 

(1) Evaluate the function f(a, ~). aopt := a, ~oPt := ~ 

(2) Iterations := 1 

(3) Evaluate f(a+d(l'~)' If this is a success (the function value is 

smaller here) aopt := a+d(l' 

(4) Evaluate f(a-d(l'~)' If this is a success aopt := a-d(l' 

(5) Evaluate f(a,~+dp). If this is a success ~oPt := ~+dp. 

(6) Evaluate f(a,~-dp). If this is a success ~oPt := ~-dp. 

(7) a := a opt ' ~ := ~oPt 

(8) Iterations := iterations + 1. 

(9) d(l := djiterations, dp := dpiiterations. If some preset number of 

iterations has not been reached, then go to (3). 

Again this process of parameter selection can be repeated over several 

lay-ups to obtain an aggregate view of the most suitable parameters for a 

particular lay-up configuration. Figure (8.5.1) illustrates how the algorithm 

converges to values of a and ~ which minimise the error function. These 

graphs are representative of results obtained using other lay-up configurations, 

and indicate that the task of obtaining consistent values for a and ~ is less 

straightforward than obtaining a value for etarget. The general conclusions that 

can be drawn are as follows. 

From equation (8.1) which defines the merit function, the weighting of 

the edge magnitude term is unity, and a and ~ represent the respective 

weighting of edge orientation and distance from the texture boundary. The 

most surprising aspect of Figure (8.5.1) is that for two of the three lay-ups the 

optimum value of ~ is negative, indicating that pixels close to the texture 
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boundary are unlikely to constitute the ply boundary. In other words, the 

texture boundary in this case is not very accurate. The value obtained for ~ 

using other lay-up configurations tended to confirm this, which is surprising 

considering the results obtained in the previous chapter. This is probably due 

to the variation inherent in the texture estimate. It does not seem to provide 

a reliable enough feature for the boundary search algorithm. As a result, the 

distance from the texture boundary is not as useful a term in the merit function 

of equation (8.1) as might have been hoped. In many cases the weighting of 

the term, as signified by the value of ~, is around zero. 

Conversely, the other term in equation (8.1), edge orientation, is 

obviously of considerable importance. Values for ex in Figure (8.5.1) range 

from 4.17 to 9.29, which indicates that in the edge refinement scheme adopted 

here the orientation of the edge points gives more information about the 

likelihood of the point lying on a ply boundary than the edge magnitude. 

The graphs of Figure (8.5.1) also tend to raise questions regarding the 

stability of the search algorithm, i.e. does it converge? The search algorithm 

used has perhaps not been designed as carefully as it might have been, 

computational simplicity having taken precedence. However, from the 

experience obtained in performing these tests it is argued that further effort in 

this area is not warranted. The variation in ply edges is such that the most that 

can be obtained from the search algorithm is an indication of the relative 

importance for each parameter, not a precisely defined value for each 

parameter. The algorithm has been successful in achieving this, and provides 

a considerable improvement over the empirical choice of parameters favoured 

by other workers [Pavlidis, Liow, 1990]. An improved search algorithm could 

produce no more. 
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Figure (8.5.1). Three pairs of graphs showing the convergence of ex and ~ 
using the modified Hooke and Jeeves algorithm. Each pair of graphs were 

obtained from a different lay-up, all with plies at 0° and 90°. 
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8.6 Summary of Refinement Algorithm. 

A boundary refinement algorithm has been developed to improve on the 

accuracy obtainable from texture-based estimates. The algorithm performs a 

localised search for ply edge points using the texture boundary as a guiding 

template. The points chosen are the ones which best maximise a merit 

function of edge magnitude, orientation, and distance from the texture 

boundary. 

Successful operation of the algorithm depends on determining suitable 

values for three parameters of the merit function. The optimum choice of 

parameters may vary from one ply configuration to another i.e. the values 

which give optimum performance when inspecting 0°/90° lay-ups may not give 

optimum performance when inspecting other lay-ups. 

The first parameter to be determined is an estimate of edge magnitude 

at ply boundaries. This is obtained using an exhaustive search algorithm over 

several training images. Once a suitable value is obtained it can be used in 

determining suitable values for the other two parameters. These parameters 

appertain to the relative weighting given to the other two terms in the merit 

function (edge orientation and distance from the texture boundary). A direct 

search algorithm is used to estimate the respective weighting that should be 

applied to the other terms i.e. a and p. Once these training processes have 

been completed, the boundary refinement process can be used in conjunction 

with the texture-based tools to provide more accurate inspection, as illustrated 

by the results in the next section. 

8.7 Results. 

Estimates of inspection error using texture based tools with boundary 

refinement have been obtained using the method described in Section (7.4.2). 

That is, an accurate estimate of the II real II edge position is obtained, and the 

difference between this and the estimate obtained using texture analysis with 

boundary refinement taken as the inspection error in the inspection process. 

Experiments were carried out for four lay-up configurations: 0°/90°, 45%°, 

45°/90°, and 0%°. These were chosen as being representative of the 
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configurations encountered in many practical applications. For each lay-up 

configuration, six lay-ups were performed (Le. twelve plies cut and laid-up). 

For each lay-up the "real" boundary position was estimated as in Section 

(7.4.2). The results using texture analysis and boundary refinement were then 

obtained from 25 images of the lay-up. For each image processed the 

maximum deviation from the "real" boundary position was recorded, both for 

the initial texture estimate and after boundary refinement. The data obtained 

from these experiments is presented in Table (8.1) for 00/900 lay-ups, Table 

(8.2) for 450/00 lay-ups, Table (8.3) for 450/900 lay-ups, and Table (8.4) for 

00/00 lay-ups. The ply configuration, image resolution, and values used for 

etarget, a, and P throughout the experiments is shown in each table. For each 

lay-up the table records the mean maximum deviation over the 25 images, and 

the maximum deviation measured in the 25 images. This information is given 

both for the initial texture estimate and after boundary refinement. The right­

most column translates the maximum deviation measured after boundary 

refinement into millimetres. 

Firstly, consider the boundary refinement parameters used for each 

configuration. For etarget, values of 0.18, 0.22, 0.26, and 0.23 were found 

suitable for 00/900, 450/00, 450/900, and 00/00 respectively. This indicates again 

that different material orientations exhibit different edge profiles. For a, values 

used were 5.0, 3.0, 5.0, and 2.5 respectively. For all ply configurations tested 

therefore, edge orientation is a good guide of boundary position. Values for p 
of 0.0, 0.0, 0.0, and 0.1 indicate that distance from the texture estimate 

provides little information. 

The figures for inspection error from the texture based estimate cover 

a wide range. The figures for inspection error after boundary refinement show 

a very marked improvement. For 00/900 (Table (8.1 »), the mean error over the 

six lay-ups is better than 0.5 pixel. The maximum deviation over each set of 

25 images is consistently under 1 pixel, and the overall maximum deviation is 

0.8, which corresponds to an absolute error of O.16mm. Results for the other 

configurations show a similar pattern with a maximum deviation in millimetres 

of 0.21, 0.21, and 0.18 for 450/00 lay-ups, 450/900 lay-ups, and 00/00 lay-ups. 
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0°/90° 
1 Pixel is etarget = 0.18 ex = 5.0 ~ = 0.0 0.2mm2 

Lay-up # Pixel Error in Pixel Error 
Texture estimate After refinement 
MEAN MAX MEAN MAX MAX(mm) 

1 2.39 2.76 0.31 0.42 0.08 
2 1.95 2.37 0.24 0.57 0.11 
3 1.43 1.7 0.44 0.80 0.16 
4 1.31 1.69 0.18 0.52 0.10 
5 1.83 2.16 0.30 0.51 0.10 

6 1.83 2.19 0.21 0.33 0.07 

Table (8.1). Boundary errors before and after boundary refinement for 0°/90° 
lay-ups. Each lay-up was imaged and processed 25 times. The mean error 
and maximum error are reported above. All measurements in pixels, except 

where otherwise stated. 

45%° 
1 Pixel is etarget = 0.22 ex = 3.0 ~ = 0.0 
0.2mm2 

Lay-up # Pixel Error in Pixel Error 
Texture estimate After refinement 
MEAN MAX MEAN MAX MAX(mm) 

1 0.39 0.6 0.44 0.76 0.15 

2 3.30 3.57 0.51 0.9 0.18 

3 3.4 3.87 0.68 1.07 0.21 

4 1.83 2.07 0.82 1.00 0.20 

5 2.64 2.95 0.36 0.63 0.13 

6 1.65 1.00 0.54 0.91 0.18 

Table (8.2). Boundary errors before and after boundary refinement for 45%° 
lay-ups. Each lay-up was imaged and processed 25 times. The mean error 
and maximum error are reported above. All measurements in pixels, except 

where otherwise stated. . 
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45°/90° 
1 Pixel is etarget = 0.26 a = 5.0 ~ = 0.0 
0.2mm2 

Lay-up # Pixel Error in Pixel Error 
Texture estimate After refinement 
MEAN MAX MEAN MAX MAX(mm) 

1 1.32 2.14 0.48 0.79 0.16 

2 1.21 1.69 0.61 0.91 0.18 

3 1.08 1.70 0.84 1.02 0.20 

4 2.25 2.65 0.59 1.08 0.21 

5 2.77 3.16 0.66 0.89 0.18 

6 1.03 1.83 0.21 0.37 0.07 

Table (8.3). Boundary errors before and after boundary refinement for 45°/90° 
lay-ups. Each lay-up was imaged and processed 25 times. The mean error 
and maximum error are reported above. All measurements in pixels, except 

where otherwise stated. 

0%° 
1 Pixel is etarget = 0.23 a = 2.5 ~ = 0.1 
0.2mm2 

Lay-up # Pixel Error in Pixel Error 
Texture estimate After refinement 
MEAN MAX MEAN MAX MAX(mm) 

1 1.82 2.04 0.40 0.76 0.15 

2 1.85 2.50 0.41 0.57 0.11 

3 3.83 4.06 0.65 0.92 0.18 

4 2.76 3.26 0.73 0.91 0.18 

5 3.96 4.26 0.59 0.86 0.17 

6 3.15 3.70 0.58 0.79 0.16 

Table (8.4). Boundary errors before and after boundary refinement for 0%° 
lay-ups. Each lay-up was imaged and processed 25 times. The mean error 
and maximum error are reported above. All measurements in pixels, except 

where otherwise stated. 
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The raw data used to compile Tables (8.1) to (8.4) is shown in Figure 

(8.7.1). This shows clearly the consistency of the results obtained. From all the 

tests performed, involving the processing of 600 images, on only 3 occasions 

was the estimated inspection error greater than 1 pixel: 1.07 for 45%°, 1.02 

and 1.08 for 45°/90°. The improvements gained by boundary refinement can 

be appreciated by reference to Figure (8.7.2) which shows the texture 

estimate results and the boundary refinement results on the same graph. The 

reduction in inspection error is clear. It has to be concluded that boundary 

refinement can be used to provide a more accurate estimate of ply boundaries 

in inspection of carbon fibre workpieces. From the data presented here, the 

inspection error is of the order of +0.2mm or less. 

8.8 Conclusions. 

This chapter has described a novel boundary refinement process 

developed in an attempt to reduce the inspection errors inherent in texture 

based boundary estimates. The algorithm takes the form of a local search, 

using the texture estimate as a guiding template. The points selected on each 

search are those which maximise a merit function of edge magnitude, edge 

orientation, and distance from the texture estimate. The merit function requires 

three parameters to be set to provide good performance: etarget specifies the 

probable edge magnitude of a point on the ply boundary; a weights the edge 

orientation term; p weights the distance from the texture estimate term. Values 

for these terms are obtained for each edge configuration using multiple training 

images in conjunction with simple function optimisation algorithms. The effect 

of boundary refinement has been examined over a representative range of ply 

configurations. The inspection error obtained was of the order of ±0.2mm or 

better. 
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Figure (8.7.1). Graphs showing the results of accuracy testing for various 
ply configurations. Each graph gives the maximum deviation from the real 

edge measured over 25 iterations for six different lay-ups. 
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TER 

Application of Techniques. 

9.1 Introduction. 

To date this thesis has concerned itself with the development and 

evaluation of texture based algorithms designed for industrial inspection of dry 

fibre composite lay-ups in the aerospace industry. The algorithms have been 

designed with industrial constraints in mind. They are computationally simple 

in comparison to many algorithms developed in academia, and would probably 

not stand direct comparison with more sophisticated methods. However they 

can be implemented in near-real-time on low cost commercially available 

hardware, and so offer an industrial readiness which more sophisticated 

methods do not. It is the aim of this chapter to put some flesh on this claim by 

using the algorithms developed to implement an inspection system as part of 

a prototype automated assembly cell. The performance of the cell and 

inspection system will be demonstrated using a sample lay-up application. The 

prototype assembly cell is described in detail in Sections 9.2 through 9.5. 

Section 9.6 introduces the sample component, and Section 9.7 details the 

inspection results obtained when laying-up the sample component. Section 
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9.8 considers the ability of the inspection process to detect lay-up errors, and 

Section 9.9 presents the conclusions of the chapter. 

9.2 Cell Hardware. 

As detailed in Chapter One, the work described in this thesis has been 

carried out as part of a larger multidisciplinary project aimed at developing the 

enabling technologies required for automated lay-up of dry fibre composite 

components. Until recently the various research areas, including inspection, 

have to a large extent developed in isolation. A recently awarded EP8RC 

equipment grant facilitated the purchase of a computer controlled cutting table, 

and so removed the main obstacle to the development of a fully functioning 

prototype assembly cell encompassing all the research of the group. The 

hardware of the cell is shown in Figure (9.2.1). The components of the cell 

are as follows: ASS IRS3000 articulated robot and controller; FANUC 810 

articulated robot and controller; computer controlled cutting table and 

controller; electrostatic gripping device (EGO); vision system; tacking device; 

lay-up table. The main components are described in more detail in the 

following sections. 

9.2.1 The Computer Controlled Cutting Table. 

The cutting table's task is to cut the required ply shapes from a sheet 

of the appropriate material. The cutting table is basically a two-axis gantry 

robot, fitted with a CO2 pulse laser which performs the cutting, as shown in 

Figure (9.2.1.1). The cutting area of the table is 2.5 metres by 1 .25 metres. 

The parameters of the system (i.e. cut speed, laser power etc.) can be 

adjusted depending on the material to be cut. The table is controlled by a 

software package called DNC3 running on a PC connected to the table via an 

R8232C link. The geometry of each ply in the component is designed using 

Autosketch, a PC based CAD package. DNC3 imports the data files generated 

by Autosketch. The position on the table where the plies are to be cut can be 

defined in Autosketch, or manually controlled in DNC3. The table is not at 

present capable of performing as part of a fully automated cell since it can 
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Figure (9.2.1). Hardware of the prototype assembly cell. 
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Figure (9.2.1.1). The computer controlled cutting table. The laser head is 
surrounded by a case of special plastic which acts as a filter to reduce 

the possible hazard of beam reflectance . 

only be controlled interactively. That is, it cannot be controlled remotely by the 

cell control PC. It is hoped that this will be overcome by a revised version of 

the cutting table software, but at present human interaction is required to 

synchronise the cutting operation with the lay-up cycle . 

Previously in this thesis, all plies inspected have been cut manually 

using a knife. Plies inspected within the cell however, will have been cut by 

laser. This process has the effect of charring the edges of plies, producing a 

small dark area on the edge. The effect of this charring is, if anything , 

beneficial to the vision system. Texture analysis and texture edge operators 

are not really affected, but the boundary refinement stage has a slightly easier 

task since the dark edges produce slightly more contrast at ply boundaries . In 

addition, laser cutting has the effect of "sealing" ply edges, which prevents 

fibres on the edge from fraying (the effect of which was noted to be 

detrimental in Section 7.4.4). From the point of view of the inspection task 

therefore, laser cutting of plies is very suitable . However, the cutting process 
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has yet to be properly optimised for carbon fibre materials. Plies are not 

always cleanly cut, and frequently require to be manually freed from the 

surrounding waste material before the robotic pick operation can proceed. The 

position of the ply may be disturbed slightly during this manual intervention , 

and so the figures for lay-up accuracy (given in Section 9.7.2) are not yet 

indicative of the potential of the automated lay-up cell. 

9.2.2 The Lay-Up Table and Inspection Frame. 

The plies are laid-up on a table with a flat aluminium top shown in 

Figure (9.2.2.1). A frame has been constructed around the table on which 

cameras and/or lights can be mounted as required, and this is shown in 

Figure (9.2.2.2). At present only a single camera is mounted on the frame. 

Lighting is provided by shining spotlights mounted on the table onto a white 

sheet suspended over the frame. In this way, the lay-up is illuminated by a 

very diffuse light. This is the best way to light carbon fibre since any direct 

light produces strong highlights in an image. 

9.2.3 The Lay-Up Robot. 

The plies are transported between the cutting table and the lay-up table 

by an electrostatic gripping device (EGO) attached to an IRB3000 articulated 

robot. The development of the EGO has been one of the fundamental 

research areas of the project [Chen, Sarhadi, 1992]. It is fully software 

configurable and so provides much greater flexibility than other gripping 

devices, such as vacuum grippers. The IRB3000 is controlled via RS232C link 

by the cell controller. The accuracy of the robot is quoted as ±O.15mm or 

better. The resolution of movement under PC control is O.125mm on each of 

the x,y, and z axes. Figure (9.2.3.1) shows the lay-up robot with gripper 

attached. The cutting table and lay-up table are also visible. 
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Figure (9.2.2.1). The lay-up table. 

Figure (9.2.2.2). The camera and lighting frame. 
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Figure (9.2.3.1). An image of the cell, showing the lay-up robot 
and EGO. 

9.2.4 Vision System Hardware. 

All the algorithms described in this thesis have been developed on a 

transputer based vision system comprising three distinct entities : a 

framegrabber card housing one T 425 transputer, a transputer motherboard 

housing five T800 transputer modules (TRAMS), and a pipeline processing 

card housing one T 425 transputer and several A 110 processors configured to 

provide a fast convolution capability. A host PC running under DOS provides 

system 1/0. It is this vision system which is currently used in the automated 

assembly cell. All software on the vision system has been written in OCCAM 

using the Transputer Development System (TDS). The hardware architecture 

of the system is shown in Figure (9.2.4.1). The texture analysis process 

detailed in Chapter Three, and the mask optimisation processes detailed in 

Chapter Five have been implemented on the pipeline machine to maximise 

processing efficiency. An image can be passed to the pipeline card , 

segmented by texture, and returned to the framegrabber card in approximately 

one second, the bulk of this time being taken up by image transfer overheads 

[King, 1994]. 
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Figure (9.2.4.1). Diagram of the vision system hardware. The ellipses 
represent TRAMS, the arrows each represent a transputer link. 

From [King, 1994] with permission. 

Currently available low cost framegrabbers and processors are capable of 

performing the required operations in substantially less time, due to the high 

bandwidth provided by dedicated video buses. At the moment the processing 

power of the transputer network is largely unused, save for the fast parallel 

calculation of the grey-level histogram used in some thresholding algorithms. 

The remaining processing is carried out on the framegrabber card. This card 

has video RAM which is a great advantage when developing algorithms, but 

does entail a longer memory cycle time. These processes are, however, 

parallel in nature, and so could be ported to run on the transputer network if 

increased speed using this system was required. Such an operation generally 

results in a speed increase of slightly more than 500%, due to the superior 

clock rate and memory cycle time of the TRAMS compared to that of the 

framegrabber card. 

The host PC of the vision system is connected to the cell controller via 

an RS232C link, which enables the inspection process to be synchronised with 
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the lay-up process, and the result of the inspection related to the cell 

controller. 

9.2.5 Tacking Device. 

It is desirable to tack each newly laid-up ply to the stack of previously 

laid-up plies to prevent subsequent movement and enable manual 

transportation of the completed preform stack. Considerable research into the 

tacking process has been carried out over the years, and early work in this 

area within the research group led to a successful implementation and 

understanding of heat bonding [Willcox, 1994]. However this approach is not 

appropriate for all applications since the impurities introduced by the 

thermoplastic are unacceptable in some structurally critical component 

sections. As a result, a new tacking method based on stitching is currently 

under development. A stitching device mounted on a FANUC S10 articulated 

robot is used to tack each ply to the preform stack. As yet reliability is poor, 

and so for the purposes of the work described in this chapter the tacking 

operation will be omitted. This causes no problems, since the lay-up process 

using the EGO produces no movement of previously laid plies (a possible side 

effect of vacuum grippers). The stitching device and the Fanuc S1 0 robot are 

shown in Figure (9.2.5.1). Also attached to the S10 is the laser inspection 

system described in Section 10.4.1. 

9.2.6 Cell Controller. 

The cell controller is a PC through which all components of the cell are 

linked. Cell control software is an invisible component of the cell, but a very 

important one. The main tasks performed include generation and control of 

data files for each component, robot control, calibration of cutting table with 

robot, calibration of vision system with robot (discussed in Sections 9.3.1 and 

9.3.2 respectively), configuration and control of gripper, communication with 

and synchronisation of each component in the cell. The way in which the cell 

is designed to operate is described in the following sections. 

9-9 



Figure (9.2.5.1). The Fanuc S 10 robot, with the 
stitching device attached. Also shown is the laser 

triangulation device currently under investigation within 
the research group. 

9.3 Cell Set-Up. 

The objective of this section is to describe the vanous processes 

required to configure the cell for operation. The diagram of Figure (9.3.1) 

illustrates the requirements which must be fulfilled before the cell can operate. 

These can be divided into two different types of operation, summarised as 

follows. 

System set up consists of three main processes: calibration of the lay­

up robot against cutting and lay-up tables, calibration of the vision system 

against the lay-up robot, and creation of a database of inspection information 

for various materials used by the cell. Ideally the calibration processes would 

be carried out only once. In practice however, periodic calibration would be 

required because of camera movement due to vibration etc. 
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Figure (9.3.1). Operational structure of the cell. 

, 

The more likely problem is some movement of the camerallens system, and 

with this in mind the vision system calibration process has been designed to 

be capable of automatic re-calibration before lay-up of each component. 

The third operation required for system set-up is the creation of a file 

of information specifying how the various ply configurations should be 

inspected. For example, to inspect a ply of unidirectional material at 45° on a 

ply of unidirectional material at -45°, what mask should be used, how much 

smoothing is required, what threshold is to be used, etc? The creation of this 

file enables automatic generation of inspection parameters for a new 

component, providing the particular inspection configuration represented by 

each ply has previously been included in the material inspection data file. If 

this is not the case then the material inspection data file must be updated. 
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This approach to automatic generation of inspection parameters assumes that 

lighting conditions are consistent. 

Component set up is required only once for each design of component 

to be manufactured. The aim of this process is to create the data files 

containing all the information the cell requires to perform lay-up. This includes 

a file containing information specific to the inspection task. This file is later 

used by the vision system. 

Sections 9.3.1 and 9.3.2 describe the requirements for lay-up robot 

calibration and vision system calibration respectively, and provide an overview 

of the methodology adopted. Section 9.3.3 describes the process for creating 

the inspection data for each material configuration. Section 9.3.4 describes 

the creation of component specific data files. 

9.3.1 Lay-Up Robot Calibration. 

The lay-up robot must be calibrated with both the cutting table and the 

lay-up table. For the cutting table the objective is to be able to map the 

position of a newly cut ply in cutting table coordinates to the corresponding 

robot coordinates. To this end the robot is "taught" the position of various 

points on the cutting table using a specially designed tool. Once the 

coordinates of these points are known in both cutting table coordinates and 

robot coordinates, then a mapping between coordinate systems is possible. 

The details of this mapping are described in Appendix B. 

Calibration of the robot and the lay-up table is, at this stage, merely 

concerned with obtaining the centre point of the table, a feature which is useful 

in determining component lay-up position. A more critical calibration with the 

lay-up table is carried out as part of the vision system calibration process 

described in the next section. The functionality of the lay-up robot calibration 

is illustrated in Figure (9.3.1.1). 
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Figure (9.3.1.1). Calibration of the lay-up robot. The link between the robot 
controller and the calibration program is via an RS232C link. The IIhandll icon 

indicates the requirement for human interaction. 

9.3.2 Vision System Calibration. 

In Chapter One the criteria for inspection of plies in the lay-up was 

described. Part of those criteria is that the ply boundaries detected by the 

vision system should be compared against the specification in the component 

design. Exactly how this is to be accomplished has not so far been detailed. 

Ideally, inspection should be based on the CAD data created when the 

component is designed. In order to achieve this a means of mapping the CAD 

coordinates to the vision system coordinates is required. The approach 

adopted here is to map both CAD coordinates and vision system coordinates 

to robot coordinates. The robot coordinate system is therefore used as a 

common coordinate system enabling direct comparison between CAD data 

and vision system results. The CAD data must anyway be mapped into robot 

workspace for ply lay-up. Mapping vision system coordinates into robot 

workspace therefore offers an elegant solution to the inspection problem, 

enabling easy comparison between CAD data and vision system data. 

To map vision system coordinates into robot workspace, the robot and 

vision system must be calibrated together. This task has been investigated in 

some detail by a another researcher within our group involved in garment 

assembly [Jones, 1994]. The basic idea is that for a number of co-planar 

points in the camera field of view, the vision system coordinates and the 
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corresponding robot coordinates are obtained. Any image point can then be 

mapped to robot coordinates by reference to the nearest taught point, and an 

offset from that point which is a function mapping the offset in pixels to an 

offset in robot coordinates. The accuracy of the overall mapping is dependant 

on the number of taught points (since for a fine array of taught points the 

offset from any image point is small and so the potential error in offset small), 

and the function used to map the offset. For the garment assembly application, 

linear mapping functions were initially used with some success, but a 

significant increase in accuracy resulted from a more sophisticated spline 

based mapping function [Jones, 1994]. The degree of sophistication required 

for calibration in the composite assembly cell should be less for two reasons. 

Firstly the focal length of the lens in these experiments is 70mm, versus 16mm 

in garment assembly, and a long focal length reduces lens distortion. It is the 

lens distortion in the garment assembly cell which necessitated the use of a 

spline mapping function. Secondly, the field of view in the composite assembly 

cell is less, and so a one pixel error in the composite assembly cell represents 

a smaller absolute error than would be the case in the garment assembly cell. 

For these reasons a linear mapping approach has been adopted to calibrate 

robot and camera. 

The area of the lay-up viewed by the camera is marked by a 3x3 array 

of targets. The coordinates for the centre of each target in both robot and 

vision system coordinates are obtained, and these are referred to as taught 

points. A mapping function uses this calibration data to enable mapping 

between robot and vision coordinates. The details of the calibration and 

mapping procedures are to be found in Appendix B. 

The functionality of the vision system calibration in terms of system data 

creation is illustrated in Figure (9.3.2.1). 
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Figure (9.3.2.1). Robot and vision system calibration. 

9.3.3 Material Inspection Data Creation. 

Much of the effort in the development of the prototype assembly cell 

has been directed towards introducing as much flexibility as possible. The 

eventual goal, although some way off, is to provide a flexible manufacturing 

cell which can be configured to assemble a new component design directly 

from CAD. That is, all the cutting, pick and place, tacking and inspection 

parameters could be automatically generated without the requirement for any 

reprogramming. A scheme to evaluate the feasibility of this approach for the 

inspection task has been adopted here. This involves the creation of a 

database of information relating to the inspection of different material 

configurations. 

For example, for unidirectional material, masks would be trained to 

perform boundary detection for ply configurations of 0%°, 45°/45°, etc, and 

texture analysis for ply configurations of 00/±45°, 0°/90°, ±45°/90°. For each 

orientation the mask, smoothing performed, and threshold value used are 

noted. Boundary refinement parameters for each edge configuration are also 

obtained and noted, using the method described in Section B.S. Once this 

information has been written to file, then for a component composed entirely 

of unidirectional material, the relevant parameters to inspect each edge can 

be automatically selected using the component CAD data. 

Lighting conditions must be very stable for this approach to succeed. 

The lab area housing the prototype assembly cell is subject to considerable 

lighting fluctuations due to the influence of sunlight. The lay-up experiments 
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detailed later in this chapter were successfully carrl'ed out ft over an a emoon , 
and no problems were encountered. The performance of the masks 

themselves is generally robust, and the inspection process is not dependant 

on an optimum threshold selection, since the boundary refinement stage 

determines the final accuracy. However, a final decision regarding this 

approach must await a full evaluation of the cell at a future date. 

The functionality of the process in terms of system data creation is 

illustrated in Figure (9.3.3.1). 

FILE CREATION 
PROGRAM 

VISION SYSTEM 

MATERIAL 
INSPECTION 

DATA 

Figure (9.3.3.1). Creation of material inspection data .. 

9.3.4 Component Data Creation. 

To set up the system to lay-up a particular component, the relevant 

data files must be created as shown in Figure (9.3.4.1). At present there are 

three stages involved in creating the required data files. One for the cutting 

table using Autosketch, one for the lay-up robot using the compfile and gripper 

programs, and one for the vision system using the visfile program. This is 

obviously undesirable since inconsistencies due to operator error are possible. 

However at present no means of extracting the relevant data from the CAD file 

produced by Autosketch is available. 

The lay-up data file for each component is created by the compfile 

program, which prompts the user for information such as the number of plies 

in the component, the dimensions of each ply, the position on the cutting table, 

the target position on the lay-up table, material type and orientation, etc. The 

gripper program enables the operator to define the area of the EGO used to 
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Figure (9.3.4.1). Creation of component specific data files. 
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pick each ply, and updates the data file with this information. This operation 

could in fact be performed automatically, but an appropriate method has yet 

to be devised. 

In addition a component inspection file is created for use by the vision 

system. This file contains information regarding which masks, thresholds, etc. 

to use to process each image. This file is created by combining information 

from the component lay-up data file (material and orientation of foreground 

and background plies) with information from the material inspection data file 

(for a given combination of materials, which mask to use, what the threshold 

value is etc.). The result is a file specifying all the information necessary to 

process each image for each ply. 

9.4 The Cell Lay-Up Cycle. 

Once the various system and component set-up procedures have been 

completed, component lay-up can proceed. The lay-up cycle of the cell is 

depicted in Figure (9.4.1). 

The first stage in lay-up IS ply cutting, and this requires human 

interaction. DNC3 is used to control the table to cut the desired ply. The 

operator must then IItell" the cell control software which ply is to be picked. All 

other data required (cut position, lay-up position, gripper configuration etc.) is 

contained in the data files produced during set-up. The ply can then be picked 

and placed. The next stage is inspection of ply position by the vision system, 

the details of which are covered in Section 9.5. From the point of view of the 

cell controller, it need only send a IIstarf' message over the RS232C link to the 

vision system, and await a message back indicating the result of the 

inspection. 

9.5 Operation of the Vision System in the Cell. 

This section will describe the operation of the vision system in the 

context of the cell, as well as detailing the actual image processing which 

takes place during inspection. 
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Figure (9.4.1). The lay-up cycle of the cell. Manual interaction is 
indicated by the "hand" icon. 
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9.5.1 Inspection Stage Overview. 

Figure (9.5.1.1) illustrates the interaction between the cell controller and 

the vision system. Firstly the vision system reads the relevant component 

inspection file. The vision system then enters the component inspection loop. 

In this, the vision system awaits a message from the cell controller indicating 

which ply is to be inspected. A special end-at-operation message tag indicates 

that the lay-up process is at an end, and will cause the vision system to cease 

looping. If a ply number is passed, the ply number enables the relevant 

parameters (mask, threshold, etc.) to be selected from the data previously 

read from file. This approach provides a flexibility for the cell controller to 

request inspection of any ply in any order, a facility especially useful in 

development but also useful when problems in lay-up occur. 

Once the relevant parameters have been selected, an image can be 

grabbed and processed as detailed in the following section. The last task for 

the vision system is to pass the position of the ply edge (or an appropriate 

error message if no edge was found) to the cell controller. 

9.5.2 Image Processing Operations for Ply Inspection. 

Figure (9.5.2.1) illustrates the processing carried out on each image. 

There are two main processing paths which can be followed, depending on 

whether the image is to be processed using texture analysis or a texture edge 

operator. In both cases a boundary refinement stage is performed. The only 

processes depicted in Figure (9.5.2.1) which may require some explanation 

are those relating to boundary extraction. For the texture analysis operation, 

object boundaries are extracted from the binary image as chain code. For 

texture edge operators the thresholded output (possibly after thinning) is 

considered to provide potential boundary points. In both cases the boundary 

points of interest are obtained by reference to the CAD data. From this the 

expected edge position in the image can be calculated (see Appendix 8). The 

image area within a certain distance of this expected edge position (e.g. ±10 

pixels) is considered to form an "area of interest". The only boundaries which 

will be processed are those which pass through this area of interest. If 
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Figure (9.5.1.1). Interaction between vision system 
and cell controller. 

insufficient boundary information is found in this area, then presumably the ply 

has not been laid-up or has been badly misplaced, and the vision system will 

report this with an appropriate error message. 

All other processes depicted in Figure (9.5.2.1) have been described 

in previous chapters. 

9.6 The Sample Component. 

The sample component chosen to demonstrate the operation of the cell 

is illustrated in Figure (9.6.1). It has a relatively simple structure and is 
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Figure (9.5.2.1). Image processing performed on each image inspected. 
Which of the above paths will be followed depends on whether the image 

is to be analyzed using texture analysis or a texture edge operator. 
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Figure (9.6.1). The sample component. All dimensions are in millimetres. 
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constructed only of rectangular shaped plies. This type of structure is 

commonly found in small aerospace components such as spars (used in 

structural reinforcement) and root wedges (used in propeller manufacture). The 

materials indicated are also typical of the application, with the majority of plies 

consisting of unidirectional carbon fibre at various orientations, interspersed 

with an occasional ply of woven carbon fibre. Figure (9.6.1) also indicates the 

approximate section of the component which will be inspected during lay-up. 

For production purposes multiple cameras could be employed to inspect other 

areas of the component as required. For the sample component one other 

camera viewing perpendicular ply edges would probably be sufficient. Using 

the techniques described in this chapter, the area viewed by each camera 

could be calibrated and processed independently with no need for registration 

between images. This approach is directly extendible to inspection of large 

components, although of course the hardware requirements will rise with the 

component size. The issue of inspecting larger components is considered in 

Section 9.7.2. 

The tolerance for each ply in the lay-up is +1 millimetre from the edge 

position specified in the component CAD data. 

9.7 Cell Operation. 

This section will detail the operation of the cell in laying-up the sample 

component. The sequence of operations is indicated and illustrated with 

images where appropriate, with particular attention paid to the role of the 

vision system. Interpretation of inspection data is considered, and the 

detection of lay-up errors investigated. 

9.7.1 Lay-Up of the Sample Component. 

The vision calibration process, as described in Appendix B, has been 

designed so that the vision system can be re-calibrated before each 

component lay-up. Appendix B provides an image sequence of this operation 

and the resulting calibration data. 

The first step in the lay-up cycle is ply cutting. A sheet of the desired 
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material (in the case of ply one of the sample component , unidirectional 

carbon at -45°) is suitably positioned on the cutting table , and the cutting 

operation initiated. Figure (9.7.1.1) shows an image of the cutting table in 

operation. The very bright area in the image results from heat generated by 

the CO2 laser which actually performs the cutting. After cutting , the gantry is 

withdrawn from the cutting area. The lay-up robot can then pick up the ply. 

Figure (9.7.1.2) shows an image sequence of the robotic picking operation , 

and an image of a ply on the gripper surface. The gripper has a modular 

design , with different areas of the gripper fitted with different dielectrics for 

testing purposes. 

Figure (9.7.1.1). The cutting table in operation . A small 
rectangular ply is being cut. A rectangular hole is visible in the 
material where a previous test ply has been cut and picked. 

The ply is then transported to the lay-up table and released. This is 

shown in the image sequence of Figure (9.7.1.3). The cell controller then 

communicates with the vision system, indicating which ply is to be inspected. 

Vision system processing can then take place to obtain the position of the ply 

edge, and calculate deviation from the edge position defined in the CAD data. 

The mapping of CAD data into image space is achieved using the mapping 

function detailed in Appendix B. 

9-25 



Figure (9.7.1.2). The robotic picking operation. The 
third image shows a ply on the underside of the 

gripper. 
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Figure (9.7.1.3). The robotic place operation. The 
array of targets on the table shows the area imaged 

during inspection. 
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For the purposes of these tests, the vision system does not provide a 

pass/fail result, but merely records the data relating to deviation from the CAD 

data. The lay-up cycle for the next ply can now begin. The waste material from 

the first cutting operation is removed, and a sheet of woven carbon material 

is placed in position. The cut, pick, and place operations for ply two can then 

proceed. The lay-up of plies three and four follow the same cycle. Appendix 

C contains all images captured by the vision system for these lay-up tests. 

For the purposes of this chapter, four sample components were laid-up, 

shown together in Figure (9.7.1.4) This is a small sample, but the cell is not 

yet at a stage where it is appropriate to fully investigate performance 

evaluation. Both the cutting operation and the pick and place operations are 

still being optimised. In addition, the various calibration and mapping 

processes have yet to be fully evaluated. The purpose of this chapter is purely 

to demonstrate that the inspection techniques described in this thesis are 

suitable for implementation in an automated cell. The inspection results for the 

lay-ups are discussed in the next section. 

Figure (9.7.1.4). The four components laid-up by the prototype 
assembly cell. 
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9.7.2 Interpretation of Inspection Data. 

Figure (9.7.2.1) presents the inspection results obtained for each ply 

of each component. The figure shows the edge of interest with the expected 

ply position (from CAD) drawn as a black line, and the estimated ply position 

from the vision system drawn as a white line. The left and right extremes of 

the inspected edge are also shown in a magnified window to enable a better 

evaluation of the result. In every case the vision system estimate of ply edge 

position is in good agreement with human visual judgement. This figure 

provides good evidence that the techniques developed in this thesis are 

appropriate to the task of composite lay-up inspection. 

The deviation of the estimated ply position from the expected position 

is shown in both millimetres and pixels below the images of each edge. The 

resolution of the images is such that 1 pixel:::: O.2mm. This data is reproduced 

in tabular form for each component in Tables 9.1 to 9.4. From Section 8.7, 

the inspection error which must be taken into account is ±O.2mm. Given that 

the tolerance on ply edge position is ±1 mm, how should these results be 

interpreted? 

Figure (9.7.2.2) illustrates the data for the four components 

diagrammatically. The illustration is not to scale, and so the orientation of the 

detected edge is greatly exaggerated. The figure shows the ideal ply position 

(according to CAD), the ±1 mm limits and the inspection results for each ply of 

each lay-up. The figure also shows the "uncertainty zone" for each ply, caused 

by the ±O.2mm inspection error allowance. If the result of the inspection falls 

within this zone then the vision system cannot say for certain whether the ply 

edge position is within specification or not. 

From Figure (9.7.2.2), only ply 1 in component #2 can definitely be said 

to be out of specification. Ply 3 in component #1, ply 2 in component #2, plies 

2,3 and 4 in component #3, and plies 1 and 4 in component #4 lie within the 

uncertainty zone. All other plies (eight in total) can be said to be within 

specification. However this data only represents a small section (approximately 

1 OOmm) of ply boundary. From Figure (9.7.2.2) it is clear that interpolating this 

inspection result along the full length of the ply boundary would result in a 
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deviation greater than 1 mm for all plies. There is obviously a consistent 

discrepancy between the orientation of the plies and of the boundaries 

extracted from CAD data. This source of this discrepancy (Le. cutting, picking, 

placing, calibration process? etc) is not yet known, and further work in 

improving all aspects of cell operation is ongoing. However, inspection of the 

images shown in Figure (9.7.2.1) confirms that the discrepancy in orientation 

is not due to any vision system error. 

In the general case (when the cell is functioning correctly), the validity 

of extrapolating the estimated edge position outside of the area inspected is 

doubtful. Extrapolation of straight lines must be approached with caution. Any 

slight error in the estimated orientation of ply edge position would, if 

extrapolated for any significant length, produce an estimate well outside the 

±0.2mm inspection error expected within a single image. For this reason, 

extrapolation of the inspection result obtained from a single camera is not 

considered appropriate. The consequence of this is that the vision system can 

only check the position of the ply edge within the area viewed. 

Taking this to its logical conclusion, to completely inspect a large 

component would require many cameras, each viewing only a small area of 

the ply edge. Such an approach, although not out of the question for 

aerospace components, is unlikely to be required. Most components have a 

"critical section" which must be laid-up within specification if the component is 

to be acceptable. If this section is within specification then the position of the 

other ply edges are relatively unimportant. Inspection would therefore 

concentrate on such critical sections of components. In addition, although 

carbon fibre is a non-rigid material, the flat handling approach adopted within 

the cell (Le. pick and place to and from flat tables, using a flat gripper) means 

that there is no real opportunity for the material to distort so that some edges 

are significantly out of specification and others in. 
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Figure (9.7.2.1 a). Results for component #1. The black line is the expected 
boundary position, the white line the position estimated by the vision system. 
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Figure (9.7.2.1 b). Results for component #2. The black line is the expected 
boundary position, the white line the position estimated by the vision system. 
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Figure (9.7.2.1 c). Results for component #3. The black line is the expected 
boundary position, the white line the position estimated by the vision system. 
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Figure (9.7.2.1 d). Results for component #4. The black line is the expected 
boundary position, the white line the position estimated by the vision system. 
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The proposed approach therefore would be to inspect all relevant areas 

of lay-up, such that plies within specification within these areas are considered 

to be fully within specification. The observable accuracy of the results shown 

in Figure (9.7.2.1) give confidence that such an approach would be 

successful. However it will not be possible to fully evaluate the 

appropriateness of the approach until the cell has reached a stage where 

sample components can be laid-up, tacked together, and transported to BAe 

or Dowty for resin injection and subsequent testing. 

In summary then, it can be said that the optimum manner of inspecting 

large components by viewing small areas of the boundary has yet to be 

established. However the results shown in Figure (9.7.2.1) prove that the 

inspection process within these small windows is sufficiently accurate and 

reliable. 

9.7.3 Processing Time. 

Table 9.5 shows the processing time taken to inspect each ply of each 

component. Table 9.6 shows a breakdown of the time taken to inspect ply 2 

of component #1, chosen as a typical example. The image passing overhead 

is the time taken to send and receive the image over the transputer links to 

and from the pipeline card. The texture segmentation time is the time taken 

to perform image convolution, smoothing, and thresholding on the pipeline 

card. Boundary processing time is the time taken to extract the boundary of 

interest from the segmented image. Boundary refinement time is the time 

taken to perform the boundary refinement process detailed in Chapter Eight. 

Display time is the time taken to draw the CAD data line and vision system 

estimate line into video RAM, and to display the inspection results on the VDU 

(transputer-host liD is rather slow). 
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COMPONENT #1 

Deviation in Pixels Deviation in mm 
Ply # 

Left Edge Right Edge Left Edge Right Edge 

1 2.73 -3.72 0.55 -0.74 

2 2.11 -1.38 0.42 -0.28 

3 0.16 -4.5 0.03 -0.9 

4 3.57 -2.28 0.71 -0.46 

Table 9.1 Deviation from CAD data for component #1. 

COMPONENT #2 

Deviation in Pixels Deviation in mm 
Ply # 

Left Edge Right Edge Left Edge Right Edge 

1 0.36 -7.3 0.07 -1.46 

2 4.54 -0.18 0.91 -0.04 

3 2.99 -1.33 0.60 -0.27 

4 3.79 1.8 0.76 0.36 

Table 9.2 Deviation from CAD data for component #2. 

COMPONENT #3 

Deviation in Pixels Deviation in mm 
Ply # 

Left Edge Right Edge Left Edge Right Edge 

1 2.09 -3.11 0.42 -0.62 

2 4.87 0.43 0.98 0.09 

3 4.41 0.24 0.88 0.05 

4 4.33 1.48 0.87 0.30 

Table 9.3 Deviation from CAD data for component #3. 
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COMPONENT #4 

Deviation in Pixels Deviation in mm 
Ply # 

Left Edge Right Edge Left Edge Right Edge 

1 1.42 -4.75 0.29 -0.95 

2 3.46 -0.82 0.69 -0.16 

3 3.01 -0.33 0.60 -0.07 

4 5.92 0.16 1.18 0.03 

Table 9.4 Deviation from CAD data for component #4. 

From Table 9.6, it is clear that the boundary refinement stage is the 

major contributor to ply inspection time. This process has not been optimised 

in any way. It requires many floating point calculations, but at present is 

running on a T425 transputer which has only software support for floating 

points operations. If ported to run on a T800 (which has floating point support 

in hardware), a significant speed increase should be achievable. In addition, 

it is essentially a parallel process, and so a further speed increase could be 

achieved by a parallel implementation on the network of four transputers. 

However, it is perhaps more appropriate to consider the processing time which 

would be achievable on commercially available image processing hardware. 

The image passing overhead would virtually disappear, due to the high 

bandwidth of a dedicated video bus. The time for texture segmentation would 

be about the same as it is now (the 28 milliseconds per image convolution 

achieved by the pipeline card compares favourably with commercially available 

systems). The time taken for boundary processing and boundary refinement 

would both be reduced if, as is likely, a faster host processor and reduced 

memory access time were available (currently 20M Hz and 6 cycle 

respectively), as well as hardware floating point support. In addition, boundary 

processing time could be more significantly reduced if hardware blob labelling 

were available. The final category of Table 9.6, display overheads, could really 

be eliminated completely. 
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Figure (9.7.2.2). Illustration of inspection results for components 1-4. 
The ±1 mm tolerance and the "uncertainty zone" caused by ±O.2mm 

inspection error are shown. 
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Component Number Ply Number Processing Time 
(seconds) 

1 3.23 

2 3.35 
1 3 3.46 

4 3.39 

1 3.31 

2 3.37 
2 3 3.44 

4 3.38 

1 3.17 

2 3.37 

3 3 3.48 

4 3.43 

1 3.26 

2 3.37 

4 3 3.49 

4 3.40 

Table 9.5 Processing time for each ply. 

OPERATION TIME (seconds) 

Image Passing Overheads 0.59 

Texture Segmentation 0.22 

Boundary Processing 0.15 

Boundary Refinement 2.10 

Display Overheads 0.29 

Total 3.35 

Table 9.6 A breakdown of the processing time for ply 2 of component #1. 
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To summarise, with an appropriate (but low cost) image processing 

system, inspection time should be approximately one second or better, per 

image. Most components would require multiple images to be processed, and 

so the number of images to be processed will determine the overall processing 

time. For small components requiring only two or three images per ply 

therefore, processing time will probably be approximately two or three 

seconds, whilst for larger components a proportionately longer time will be 

required. In either event, inspection time will not be the cycle bottleneck, since 

cutting, pick and place, and tacking each require significantly more time than 

inspection. If it were required to decrease inspection time, then the images 

could be grabbed in a very short space of time, and processed concurrently 

with the other operations in the cell. 

9.8 Detecting Lay-Up Errors. 

Previous sections have established the performance of the vision 

system within the prototype assembly cell for inspection of a sample 

component. The results of the inspection have been visually convincing, and 

figures for deviation from CAD data have been obtained. This penultimate 

section considers the appropriateness of the inspection technique for detecting 

lay-up errors, of which there are two possible types. 

The most probable error is that the robot has failed to pick the ply from 

the cutting table, and so when it comes to inspection the ply is missing from 

the lay-up altogether. There is no specific test for this within the inspection 

process. If the ply is missing however, the vision system does not find a 

texture boundary in the expected area. The vision system is therefore able to 

report that the ply is either missing or significantly displaced. This has been 

verified by tests in which the vision system is asked to inspect a ply which, so 

to speak, is not there. In each case the vision system responded correctly. 

The second type of error is that the ply is physically displaced from its 

intended position. This type of error is apparent in the images obtained during 

the lay-up of the sample component, and can readily be ascertained from the 

inspection data. As a final test however, a further set of experiments was 
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carried out to confirm that estimated ply position correlates with physical 

displacement of the ply. It was hoped that this could be accomplished within 

the cell by deliberately offsetting the robot lay-up coordinates by known 

displacements, and correlating the data with the vision system estimate of ply 

position. However, as in Section 7.4.2, the pick and place cycle of robotic lay­

up proved too unreliable to ensure accurate displacements. An alternative 

scheme was therefore devised using a special lay-up table developed for a 

previous lay-up application. This table has a top surface mounted on two 

parallel rails. The table top is therefore moveable in one dimension as shown 

in Figure (9.8.1). 

<r--- Axis of Movement 
TableTop -

I r r I 
I I 1 1 I r I I 

Rail-- II r -r 

'-- LJ 
Figure (9.8.1). The stepper motor controlled lay-up table. 

The position of the table top is controlled by a stepper motor. A lay-up of two 

plies was positioned on the table within the field of view of a camera 

connected to the vision system, and the edge position of the foreground ply 

obtained using a textured edge operator with boundary refinement. The lay-up 

was then displaced by moving the table top by 1.6mm, and again the position 

of the foreground ply determined by the vision system. The deviation in pixels 

from the original edge estimate was recorded, and the table then stepped back 

towards the original position by O.2mm. The inspect-step-inspect cycle was 

repeated until the lay-up position had gone past the original position by 

1.6mm. The process was repeated using three lay-up configurations from the 

sample component: woven on unidirectional at -45°, unidirectional at 90° on 
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woven, and unidirectional at 90° on unidirectional at 900
• The case of 

unidirectional at -45° on the table background was not considered, since it 

represents a simpler inspection task, and so would not really provide results 

relating to texture based inspection. Figure (9.8.2) shows the results obtained 

in graphical form, with the left graph of each configuration showing the 

deviation measured at the left-most extremity of the foreground ply edge, and 

the right graph of showing the deviation measured at the right-most extremity. 

As can be seen, overall the results are convincingly linear which 

indicates a good correlation between the physical displacement of a ply, and 

the estimate of its position by the vision system. A point of interest is that the 

left edge estimates are noticeably more linear than the right edge estimates. 

An investigation of this phenomenon revealed that it is not a feature of the 

inspection process (as had been feared), but rather appears to be a 

characteristic of table movement. The stepper motor gearing system is located 

on the left side of the table, rather than centrally. The effect of this is that the 

table top does not always move smoothly on the right-hand rail, and so some 

variation in movement can occur. This accounts for the less than uniform 

displacements detected by the vision system at the right edge of plies 

positioned on the table. 

The conclusion from these experiments therefore, is that physical 

displacement of ply edges can be detected using the inspection techniques 

implemented in the prototype assembly cell. 

9.9 Conclusions. 

This chapter has described a prototype robotic assembly cell for 

composite lay-up. The aim of the chapter has been to demonstrate that the 

techniques described in this thesis can be used to implement an inspection 

system for an industrial application. Aspects addressed include calibration, 

coordinate mapping, CAD data integration, cell integration, interpretation of 

inspection results, and processing requirements. It is the contention of this 

chapter that the industrial readiness of the techniques described has been 

successfully demonstrated. 
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CHAPTER 

Conclusions and Further Work. 

10.1 Introduction. 

Automation of dry fabric composite lay-up is an ongoing research topic . 

At the start of this project, the need for in-process inspection was recognised, 

but the feasibility of implementing a machine vision solution remained to be 

proven. No conventional techniques could meet the requirements of the 

application. The work presented in this thesis has shown that a machine vision 

solution to the inspection problems posed in dry fabric composite lay-up is 

feasible, and requires only low-cost hardware to operate. The main features 

of the thesis are summarised in the following section . 

10.2 Summary of Thesis. 

Advanced composite components have been introduced, and the 

current manufacturing process outlined. The particular problems faced in the 

machine vision application have been identified, and the criteria for automated 

inspection defined. A comprehensive survey of current statistical texture 

analysis methods has been carried out. A single channel texture analysis 

model has been presented, and examined in some detail. The main features 
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of the model are that it can successfully segment images containing only a few 

textures, and that it is elegant in the sense that it is computationally simple 

and easily realisable in hardware. The model has been shown to be 

appropriate for the task of automated inspection in composite lay-up. Gaussian 

smoothing has been demonstrated to provide more accurate boundary 

localisation than low-pass smoothing. 

An existing convolution mask optimisation algorithm due to Benke and 

Skinner has been implemented and extensively tested. By dropping the 

symmetry constraint the classes of texture which can be optimally 

discriminated is increased. A new, more suitable, optimisation criterion based 

on grey level separation has been adopted. A new convolution mask 

optimisation algorithm, called the basis algorithm, has been presented and 

investigated. The masks produced by this new algorithm are weighted 

averages of a pre-determined mask set. The basis algorithm has been 

demonstrated to outperform the Benke and Skinner algorithm both in terms of 

optimisation rate and discrimination achieved. It has also been demonstrated 

that convolution masks can be optimised to perform as edge operators in 

textured images. Optimised masks may allow simple, fast boundary detection 

techniques to be used where previously more sophisticated techniques were 

required. The basis algorithm is easily applicable to the task of optimising 

edge operators for use in textured images. 

The texture-based tools have been implemented and tested for typical 

composite inspection tasks. Simple boundary models have been incorporated 

in the inspection process, and estimates of inspection error have been 

obtained experimentally. The inspection error incurred is modest, 

approximately ±O.33mm. A novel boundary refinement algorithm has been 

developed in an attempt to reduce the inspection errors inherent in texture 

based boundary estimates. The algorithm takes the form of a local search, 

using the texture estimate as a guiding template. The points selected on each 

search are those which maximise a merit function of edge magnitude, edge 

orientation, and distance from the texture estimate. Optimum parameters for 

the merit function are obtained for each edge configuration using multiple 
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training images in conjunction with simple function optimisation algorithms. The 

effect of boundary refinement has been examined over a representative range 

of ply configurations. The inspection error obtained was of the order of 

+O.2mm or better. 

The industrial readiness of the algorithms developed has been shown 

by implementing an inspection system as part of a prototype automated 

assembly cell. The performance of the cell and inspection system has been 

demonstrated using a sample lay-up application. 

10.3 Conclusions on the Progress Achieved. 

The techniques described herein could be used to provide lay-up 

inspection for many of the dry-fibre preforms currently manufactured in the 

aerospace industry. Some of the more complex components (which exhibit 

more complex or irregular ply shapes) would require a more careful study of 

the most appropriate boundary models than has been carried out in this work. 

In addition, as discussed in Section 9.7.2, the best way in which to ensure 

adequate in-process inspection of larger components (i.e. how many images, 

which edge areas to inspect etc.) has not yet been established. 

However these are largely component specific issues of the type 

routinely encountered in many machine vision areas. Such issues can be 

addressed, provided that a means of performing the fundamental inspection 

task is available. The work detailed in this thesis has shown that the 

fundamental problem for inspection of dry fabric composite components, that 

of ply boundary detection, can be successfully overcome. From the criteria set 

out in Chapter One therefore, the work must be judged successful. There are 

two good reasons why the approach taken to this inspection application has 

been effective. 

Firstly, the approach taken to boundary detection is loosely based on 

an (apparently well founded) theory of human vision. This theory holds that 

there are two co-operative/competitive processes involved in human pre­

attentive scene segmentation [Grossberg, Mingolla, 1985]. One is edge 

detection, and the other is feature filling, which may be considered as a kind 
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of region growing process. The inspection techniques described in this thesis 

are in essence a very simple sequential implementation of this model. The 

image is segmented according to texture, followed by a local boundary 

refinement process based on edge detection. The implementation of each of 

the sub-processes (texture analysis and boundary refinement) may in 

themselves be considered ad-hoc, but as the results show, the underlying 

approach is sound. 

The second reason the techniques are successful, is that the 

parameters are not derived from an inflexible (either mathematical or 

empirical) model, but are in fact obtained by training. This is true of both sub­

processes. As a result the inspection process is optimised for the task in hand. 

With the advent of artificial neural networks, such training based systems are 

becoming much more widespread. However, as the results of this thesis show, 

it is not only neural based algorithms which can benefit from training. 

In the field of industrial inspection, every application is different. The 

majority of current techniques that have found their way into application are 

essentially crude, and more often than not are unable to adapt to new 

requirements without major reprogramming. Algorithms designed using the two 

criteria identified above (based on an appropriate model, and based on 

experiential learning) are likely to help us progress a step nearer those elusive 

generic vision algorithms which, at present, seem very far away. 

10.4 Further Research. 

Two areas suggest themselves as candidates for further research, and 

these are discussed in the following sections. 

10.4.1 Reducing Inspection Error. 

The tolerances on ply lay-up position are generally of the order of 

±1 mm for current applications. The techniques described in this thesis are able 

to provide confirmation to this resolution. However, if dry fabric lay-up is to 

present a viable manufacturing route for components with tighter tolerances, 

then the inspection system will need to be considerably more accurate. 
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Chapter Eight showed how the use of a boundary refinement stage in 

conjunction with boundary models could provide inspection with an error 

generally less than one pixel. One possible research area is in the 

development of a subpixel edge operator suitable for use with the low contrast 

images typically obtained from images of carbon fibre. This is a difficult 

application, significantly more demanding than the applications where subpixel 

operators are normally employed, such as dimensional measurement of 

machined parts by coordinate measuring machines (CMM's). However, the 

results achieved in Chapters Eight and Nine with the standard Sobel edge 

operators and simple boundary models are encouraging enough to provide 

some optimism for the possibilities of the technique. 

A totally different technique which promises more accurate edge 

estimation than at present is laser triangulation, and this is now being 

investigated within the research group. In our implementation of this technique, 

a laser line is projected on the area where the edge is expected to be. A CGO 

camera views the laser line at an oblique angle. Any ply edge shows up on 

the image as a step in the laser line. Machine vision techniques can be used 

to obtain the step position and height in image coordinates. The small height 

difference produced by a ply edge (less than 1 mm) means that the laser line 

must be imaged at very high resolution (approximately 40 pixels per 

millimetre). The advantage of this is that the edge position at a single point 

can be obtained very accurately. The disadvantage is that multiple images 

must be processed to inspect every edge of interest. The camera and laser 

system are mounted on an articulated robot which moves to each point to be 

inspected. The inspection time therefore depends on how many points are 

required and how long it takes to move the robot to each point. Initial results 

show that the error in estimating single edge points will be of the order of 

±O.OSmm. The limiting factor on inspection accuracy therefore, is likely to be 

the repeatability of the robot. Work on calibration, and matching inspected 

points with CAD data is continuing. 

10-5 



10.4.2 An Optimised Multi-Channel Texture Analysis System. 

This thesis has been largely based on a very simple texture analysis 

method which uses a single convolution channel to achieve real-time 

segmentation of images containing a few textures. The technique relies on the 

fact that a convolution mask can be trained which is appropriate to the task. 

The extension of this idea to a full multi-channel training model has already 

formed the basis of other work within the research group. A sophisticated 

neural network based model has been developed, and shown to out-perform 

the standard multi-channel model using Laws or Gabor filters in terms of 

texture segmentation [Zhang, 1995]. This model does however require 

significant processing and memory resources, and so is not suitable for 

industrial application using existing commercially available hardware. Between 

these two extremes of a simple single-channel model using hardware 

convolution and thresholding, and a full multi-channel neural model using more 

sophisticated feature measures, there is an opportunity for a hybrid approach. 

Image processing hardware is providing more functionality all the time. Many 

systems now have the capability to perform two, four, or even eight image 

convolutions in parallel. Such systems could perform quite powerful texture 

analysis if a multi-channel training algorithm were developed which could be 

tailored to take advantage of the available hardware. For the sake of 

processing efficiency, the texture feature of each channel would be a texture­

energy-like measure, as used in the single channel model. The efficiency of 

various classifier algorithms, and their suitability for implementation using 

standard hardware blocks would require investigation. The power of the 

resulting texture analysis system would depend on the number of channels 

available. This thesis has shown the considerable power of a single 

convolution channel for texture analysis. The successful development of the 

proposed algorithm would provide low-cost systems with a real-time texture 

analysis capability which would enable them to be used to tackle a wider 

range of industrial applications than is presently possible. 
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The MAX-MIN Operator 
Early work in texture analysis was aimed at identifying which visual 

characteristics a human observer might use to discriminate textures. Intuitively, 

one possibility is the number and pattern of peaks (points or lines of high 

intensity) and troughs (points or lines of low intensity) in the image. A "hill­

climbing" operator (called the MAX-MIN operator) was developed which finds 

these peaks and troughs in a one dimensional scan direction of the image. 

Pseudo code for the operator is given in Figure (A.1). 

The operator can be applied to an image in both row scan and column 

scan fashion, so that extrema in all directions are detected. The algorithm 

alternates between searching for local maxima and searching for local minima, 

marking each as it finds them provided they satisfy a threshold requirement. 

This is a preset parameter. The other important parameter is interval size, 

which is measured in number of pixels. A small interval size means that all 

extrema which satisfy the threshold will be marked no matter how closely 

together they fall. For a larger interval size several extrema may be 

encompassed in one interval, and only the maxima (minima) of these will be 

marked, provided of course that the threshold is satisfied. If the image exhibits 

few peaks far apart, then a large interval size combined with a threshold will 

eliminate smaller extrema caused by noise, and also be computationally more 

efficient. If, however, the image exhibits many peaks close together, or a 

pattern of smaller peaks, then a small interval size with little or no threshold 

is necessary to highlight the detail. These points are more easily appreciated 

by reference to Figure (A.2). 
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When the MAX-MIN operator is applied to an image containing cross 

and unidirectional ply, the transformed image looks encouraging. The different 

weaves produce different patterns, with the cross-ply generally 'busier' (more 

peaks and troughs) than the unidirectional. Figure (A.3) demonstrates the 

effect of the operator, with only the minima marked. 

{ *** main procedures *** } 

CLlMB(interval) 
IF maxima(interval) > maxima(last.interval) 

{ not reached local maximum } 
CLlMB(next.interval) { continue search} 

ELSE { reached local maxima} 
IF (maxima - last.minima) > threshold 

mark.maxima(last.interval) 
END 
DIVE(interval) 
{ look for next minima} 

END 

DIVE(interval) 
IF minima(interval) < minima(last.interval) 

{ not reached local minimum} 
DIVE(next.interval) { continue search} 

ELSE { reached local minima} 
IF (Iast.maxima - minima) > threshold 

mark.minima(last.interval) 
END 
CLiM B(interval) 
{ look for next maxima} 

END 

{ *** main loop *** } 

initialise_variables 
WHILE dy < ymax 

WHILE dx < xmax 
CLlMB(interval) 
DIVE(interval) 

{ end main loop } 

Figure (A.l). Pseudo code for the MAX MIN operator. 

A prototype system was developed to test whether images of woven 

and unidirectional material could be effectively segmented using features 

measured after application of the MAX-MIN operator. After some 

experimentation, the features adopted were: 
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(a) Number of extrema per unit area. 

(b) Amount of diagonal space per unit area. 

The 'unit area', or subimage, was chosen as 32x32 pixels, the diagonal 

space measured using a window of 2x8 pixels angled at minus forty-five 

degrees. To measure diagonal space, the following scheme was implemented. 

For every position within a subimage that no extrema are present anywhere 

in the 2x8 window, a counter was incremented. The reason for this is that the 

extrema in cross-ply seemed more regularly distributed, whereas in the 

unidirectional there seemed more small noise-like edge segments. The feature 

vector for each subimage is therefore two-dimensional, with one measure for 

number of extrema, and one for diagonal space. By application of a simple 

two-pass threshold, these features do provide a means of differentiating 

between cross and unidirectional ply. However, consistency and robustness 

are low, and it was concluded that better features are required than the 

extrema/space measures. This initial system had shown encouraging results 

however, and indicated that investigating texture analysis could be a fruitful 

approach to the problem. 
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Figure (A.2). Illustration of MAX-MIN operator. 
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(a) Input image showing cross and 
unidirectional material. 

(b) The image after application of 
the MAX-MIN operator. 

Figure (A.3). The effect of the MAX-MIN operator on an image of cross ply 
and unidirectional material. Only image minima have been marked. 
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Cell Calibration 
B.1 Introduction. 

Figure (B.1) shows a representation of the various coordinate frames 

present in the cell. These are: the lay-up robot coordinate frame (only the X-V 

axis shown); the cutting table coordinate frame; the vision system coordinate 

frame(s) (an independent coordinate frame for each camera field of view). 

Xr 
CUTTING TABLE LAY-UP TABLE 

~ / 
Xi 

ylrJ 
----------- CAM ERA 

- Xr 

~ ROBOT X-V 
WORKSPACE 

Figure (B.1). Coordinate frames in the prototype 
assembly cell. 

FIELDS OF 
VIEW 

There are two operations in the cell which require mapping of coordinates 

between these frames: the pick operation, and the inspection operation. For 
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the pick operation, the requirement is to map the centre point position of a 

newly cut ply in cutting table coordinates to the corresponding lay-up robot 

coordinates so that the ply can be picked. For the inspection process, the 

requirement is to map the expected position of ply edges on the preform stack 

(extracted from CAD data) into the field of view of each camera inspecting the 

lay-up. The approach adopted to fulfil these mapping requirements is detailed 

in the following two sections. 

B.2 Lay-Up Robot Calibration. 

The cutting table coordinate system involves X and Y coordinates only. 

These represent the offset in millimetres from an origin point located at one 

corner of the table. The lay-up robot has a real-world 3-D coordinate system. 

The resolution of the lay-up robot coordinate system is such that the smallest 

incremental movement is equal to O.12Smm in any axis. For this application 

the Z (height) coordinate will be constant over the cutting table. That is, the 

cutting table is considered flat. The task is therefore to map between two X-Y 

coordinate frames as shown in Figure (B.2). 

There are three operations involved in such a mapping: translation, 

rotation, and scaling. These operations can be formulated succinctly using 

homogenous coordinates. To map a point tX,ty in cutting table coordinates to 

the corresponding point rx,ry in lay-up robot coordinates, equation (B.1) can 

be used where xoff,yoff is the translation between the lay-up robot origin and 

the cutting table origin, e is the angular displacement between the two 

coordinate frames, and Sx and Sy effects the scaling required on the X and 

Y table coordinates respectively. 

~:] = [~ o XOff] ~cose 
1 yoff Sine 

o 1 0 

-Sine 

cose 
o 

(B.1 ) 

The parameters of the transformation (xoff,yoff, e, and SX,Sy) can be 

determined from three calibration points where both the cutting table 
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coordinates and the lay-up robot coordinates are known, as shown in Figure 

(B.2). 

Yr 
Yt 

y2··········· ........ C2 

.p 

C1 

Xr 

Figure (B.2). Parameters required to map 
the coordinates of P in Xt Yt to Xr Yr are derived 

from three calibration points: CO, C 1, C2. 

To this end, the lay-up robot is "taught" the position of three points on the 

cutting table. To achieve this the cutting table laser is set on minimum power, 

and used to mark the cutting table with cross-hairs at three calibration points 

(CO,C1 ,C2 in Figure (B.2»). These points are chosen as the origin, and a point 

on the X-axis and Y-axis respectively. The cutting table coordinates of these 

points are noted and stored to file. The lay-up robot coordinates for these 

points must now be obtained. This is achieved by use of a special positioning 

tool, shown in Figure (B.3). The tool has been designed and machined so that 

the point of the tool occupies the same X-Y coordinate as the tool centre point 

of the lay-up robot. This is facilitated by use of an interference fit locating ring 

on the tool. The lay-up robot is now manoeuvred so that the point of the tool 

is coincident with the centre of the cross-hair marks on the cutting table. The 

cross-hair marks are useful in this process since they enable the position of 

the tool point to be assessed independently in the X and Y axes. This process 

can be achieved by eye with good accuracy, since the human vision system 

is very good at detecting discrepancies between adjoining edge positions. 

Once the lay-up robot position has been optimally matched to the cross-hairs, 
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the coordinates are noted and stored to file. The coordinates of the calibration 

points are now known in both cutting table and robot coordinates, and so the 

transformation parameters for equation (8.1) can be extracted. 

xoff = xO 
yoff = yO 

e = tan-1 ( yl - YO) 
xl - xO 

Sx = V (xl - xO) 2 + (yl - yO) 2 

I cli 

Sy = V(x2 - XO)2 + (y2 - yO)2 

I c21 

(B. 2) 

(B. 3) 

(B. 4) 

(B. 5) 

where IC11 and IC21 represent the magnitude in cutting table coordinates of 

the displacement from the cutting table origin of C1 and C2 respectively. For 

points on the Xt or Vt axes this will simply be the Xt or Vt ordinate. 

The accuracy of the mapping process between cutting table and lay-up 

robot was tested, again using the positioning tool. New marks were created 

at arbitrary positions on the cutting table, and using the cutting table 

coordinates of these marks with the mapping function defined in equation 

(8.1), the lay-up robot was moved to its estimate of that position. The results 

over a relatively small area (e.g. 40cm2
) could not be faulted. However, over 

a larger area (the cutting table surface is 2.5m x 1.25m) there was a 

noticeable error in the position of the lay-up robot, up to a magnitude of 

approximately 3mm. There are several possible reasons for this. Firstly, either 

or both of the motion systems may exhibit non-linearity. Secondly, an error 

may be introduced if the two axes frames are not exactly co-planar i.e. the 

cutting table is not flat and/or the lay-up robot base is not in exactly the same 
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plane as the cutting table. Thirdly, the 

estimate of e obtained from the 

calibration points will contain a degree 

of error arising from positional 

inaccuracies in the cutting table and 

lay-up robot. This error will result in 

significant deviations when points far 

from the cutting table origin are 

mapped. 

In practice, all of the above 

errors will be present to some degree. 
Figure (B.3). Positioning tool used in 

To compensate for this, a more calibration of the lay-up robot. 

complex model would be required 

than the linear transformation adopted here. However, in this application there 

is a more pragmatic solution. It is not required to pick from any position on the 

cutting table. The cut position of the plies can be designated such that the 

plies are to be cut and picked from only a limited area of the cutting table. 

Therefore only this area need be calibrated. Serious errors arise only when the 

pick position is a significant distance from the point calibrated as the origin (CO 

in Figure (B.2»). This error can be minimised by choosing the origin as being 

much closer to the actual pick positions, rather than at the actual cutting table 

origin. This is illustrated in Figure (B.4). Using this approach , the error 

involved in ply picking has been minimised. 

B.3 Vision System Calibration. 

Part of the criteria for inspection of plies in the lay-up is that the ply 

boundaries detected by the vision system should be compared against the 

specification in the component design. Ideally, inspection should be based on 

the CAD data created when the component is designed. In order to achieve 

this a means of mapping the CAD coordinates to the vision system 

coordinates is required. The approach adopted here is to map both CAD 

coordinates and vision system coordinates to lay-up robot coordinates. The 
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CUTTING TABLE 

Xt 
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..... 
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C2 
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TABLE 
ORIGI~ 

lay-up robot coordinate system is therefore 

used as a common coordinate system 

enabling direct comparison between CAD 

data and vision system results. The CAD 

data must anyway be mapped into robot 

workspace for ply lay-up. Mapping vision 

system coordinates into robot workspace 

therefore offers an elegant solution to the 

inspection problem, enabling easy 

comparison between CAD data and vision 

system data. This task is analogous to that 

Figure (8.4). Calibrated area of described in the previous section, in that 
cutting table. Plies are cut such 
that their centre point lies within the required mapping is between two x-v 

the area shown. coordinate frames. However in this case a 

linear transformation between coordinates 

will not suffice. The reason for this is that lens distortion will introduce non­

linearities into the image. Experiments within the cell have shown that this 

distortion is present, but is modest with reasonable quality lenses 

(approximately one pixel across the field of view using a Tokina SZ-X 210 lens 

with the focal length set at 70mm). A slightly more complex mapping 

procedure has therefore been adopted to map between lay-up robot 

coordinates and vision system coordinates. The basic idea behind this is that 

for an array of co-planar points in the camera field of view, the vision system 

coordinates and the corresponding robot coordinates are obtained. Any image 

point can then be mapped to robot coordinates by reference to the nearest 

calibration point, and an offset from that point which is a function mapping the 

offset in pixels to an offset in robot coordinates. The accuracy of the overall 

mapping is dependant on the number of calibration points (since for a fine 

array of calibration points the offset from any calibration point is small and so 

the potential error in offset small), and the function used to map the offset. 

Since the estimated distortion over a full image frame of 720x512 pixels is only 

approximately one pixel, then a linear offset function has been adopted. If the 
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distortion of the camera lens is more severe, a more suitable spline-based 

mapping function can be used [Jones, 1994]. 

Mapping between image 

and lay-up robot coordinates is 

illustrated in Figure (8.5). For a 

point P to be mapped from lay­

up robot coordinates to image 

coordinates, the nearest 

calibration point is determined, 

and designated as CO. C1 is 

chosen as the Xi axis neighbour 

of CO nearest to P. C2 is chosen 

as the Vi axis neighbour of CO 

nearest to P. The three points 

CAMERA FIELD OF VIEW 

EB ..EB C2 EB Xi 

./ ..... P 

C1 EEr:~:''''''''''''''''EB CO EB 

EB EB 
Vi 

Figure (8.5). The camera field of view 
showing the image coordinate system. The 
robot and image coordinates for the 
calibration array are known. The robot 
coordinates of point P are known. 

CO, C1, and C2 form a IImini-coordinate framell within which a linear model is 

assumed to provide a good approximation for coordinate mapping. Equation 

(8.1) can therefore be used to provide the mapping, and the parameters for 

equation (8.1) can be extracted from equations (8.2), (8.3), (8.4), and (8.5) 

as before. 

As with calibration of the cutting table, a means of obtaining calibration 

points in both coordinate frames is required. This has been accomplished as 

follows. An array of circular IItargetsll has been affixed to the surface of the lay­

up table as shown in Figure (8.6). Each target is a white circle printed on a 

black background, with a white cross overlaid in the centre of the circle. This 

cross is not visible in Figure (8.6), due to a high level of ambient lighting. In 

fact this is desirable for the vision systems' view of the targets, since the 

method used to detect the circle centre does not use the cross, but rather 

uses the circularity of the target as described below. The crosses are, 

however, used to aid positioning of the lay-up robot over the centre of each 

target (again using the positioning tool shown in Figure (8.3»). Once obtained, 

the lay-up robot coordinates for the centre of each target are stored to file. 

The lay-up robot has now, in effect, been calibrated against the lay-up 
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table. Now by calibrating the vision 

system against the lay-up table 

(again using the targets), the 

vision system and lay-up robot can 

be calibrated against each other 

indirectly. The advantage of this 

approach is that if the camera is 

moved for any reason (i.e. change 

of focus or aperture), or even if a 

new lens is to be used, then the 

camera can be re-calibrated with 

the lay-up table (and so with the 

a·······.····. ". . '., 

. '. 

", , ... . <.: .: .. ' .' 

•. 
'~ ., .. 

·'0 -. ~J, . 

'" . 

.. 

·"a'" ~: . '. a "'-. . 
:1' -.. ~ ~ ¥, 

•• 

:.>~.::;:~:: 4 

... 

Figure (B.6). The area viewed by one 
lay-up camera, showing the array of 

calibration targets on the lay-up table. 

lay-up robot) without the need for any robot involvement. In fact this approach 

means that the camera can be re-calibrated before lay-up of each component. 

This would eliminate any temporal variation, such as CCO drift . 

The algorithm to determine vision system coordinates of the calibration 

points is shown in Figure (B.7). An image containing the calibration points is 

obtained (e.g. Figure (B.6)), and a grey-level histogram is formed from this 

image. A threshold value is automatically selected by interrogating the 

histogram and selecting the value which will threshold out a pre-determined 

number of pixels, chosen as approximately the number of pixels represented 

by the targets. The image is thresholded, and the location of each target 

obtained by analysis of the "blob" positions in the thresholded image. The 

centroid of each target (blob) can now be determined to subpixel accuracy 

[Zakaria et ai, 1987]. In this wayan accurate estimate of the centre point of 

each target in image coordinates is obtained. In addition, the validity of the 

estimate of target centre can be checked by calculation of the second moment 

invariant [HU, 1961]. For a circle this value should be near it's lower bound , 

which is approximately 0.159. If the targets have been successfully detected 

and are found to be circular, then the centroid coordinates are written to file , 

and represent the calibration points in image coordinates. The calibration 

between camera and robot is now complete. The way in which the calibration 
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data is used is detailed In the 

following section. 

B.4 Inspection from CAD. 

This section will provide a 

brief overview of how inspection 

from CAD is achieved within the 

cell. At present this is only 

implemented for rectangular 

shaped plies, but work is ongoing 

to extend this functionality to 

include arbitrary ply shapes. 

When a ply is laid-up on the 

pre-form stack, the centre point of 

the ply in lay-up robot coordinates, 

(Cxr,CYr)' can be estimated from 

knowledge of the ply cut position, 

lay-up robot pick position, and lay­

GRAB IMAGE 

GET HISTOGRAM 

SELECT THRESHOLD 

APPLY THRESHOLD 

FIND BLOBS 

CHECK CIRCULARITY 

OK 

GET BLOB 
CENTROIDS 

WRITE CENTROIDS 

TO FILE 

NOT OK 

DISPLAY ERROR 
MESSAGE 

Figure (B.7). Extracting coordinates of 
calibration points from image shown in 

Figure (8.6). 

up robot place position. Since the dimensions of the ply are known in 

millimetres, and there is a direct mapping from millimetres to robot coordinates 

(1 mm = 8 increments in robot coordinates), then the vertices of a ply in robot 

coordinates can also be estimated. For example, the lay-up robot coordinates 

of VO in Figure (B.8) are calculated as 

(B. 6) 

Given that the coordinates of VO ... V3 have been calculated and that the robot 

coordinates of the corners of the camera field of view are known (from the 

camera calibration process), then the line parameters (i.e. m and c) in lay-up 

robot space for each of the ply edges and for each of the field of view 

bounding lines can be calculated. Any points of intersection between ply edges 
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and camera field of view can 

then be calculated. These 

intersection points can then be 

mapped from robot coordinates 

into image space using the 

procedure described In the 

previous section. At present only 

ply edges which intercept both 

left and right (or top and bottom) 

edges of the field of view are 

mapped into image space to 

avoid the problem of detecting 

edge end-points near corners. 

Figure (B.9) shows an image 

1'Xr 
I V1 ~ dy----, V2 
I ; : '" 

CAMERA 
. i2 

FIELD OF- • dx _ ~I~ i'1 

VIEW I iO·· 
Cxr.Cyr 

r" i3 

LAY-UP 
TABLE-

vo 
,-I __ t 

I V3 

PLY 

-Yr 
" / 

Figure (B.8). The lay-up table shown in 
the lay-up robot coordinate frame. The 

intersection of a ply with a camera field of 
view is shown. 

taken from the prototype cell during lay-up of a sample component. Edges of 

four plies are visible in the image, and the expected ply edge position 

extracted from the CAD mapping procedure described above is shown 

overlaid. The field of view is considered to be only within the calibration array. 

As can be seen the agreement is good. From measurements taken using the 

vision system, the agreement between ply lay-up position and expected lay-up 

position extracted from CAD is better than one pixel. One pixel represents an 

area of approximately O.2mm2 of the lay-up table. 
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Figure (B.9). A lay-up image taken showing four ply edges, 
and the expected edge positions extracted from CAD data . 
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Lay-Up Images. 
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Figure (C.1). Input images for inspection of ply 1 and ply 2, component # 1 . 
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Figure (C.2). Input images for inspection of ply 3 and ply 4, component #1 . 
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Figure (C.3). Input images for inspection of ply 1 and ply 2, component #2 . 
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Figure (C.4). Input images for inspection of ply 3 and ply 4, component #2. 
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Figure (C.S). Input images for inspection of ply 1 and ply 2, component #3. 
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Figure (C.G). Input images for inspection of ply 3 and ply 4, component #3 . 
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Figure (C.7). Input images for inspection of ply 1 and ply 2, component #4 . 
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Figure (C. B). Input images for inspection of ply 3 and ply 4, component #4 . 
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