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Abstract 

This study presents the results of an investigation to 

develop a novel sensor which would give a direct indication 

of the extent of impact damage in a composite. This was 

achieved by using glass reinforcing fibres to produce a 

light-guide, which was embedded within a composite laminate. 

The laminate was then subjected to impact events or bending 

stresses of sufficient magnitude to cause damage. The 

impact energies used in this study varied between 2 and 10 

Joules, and the indentation depths varied between 0.125 and 

1 mm, allowing damage propagation to be monitored. The 

fall-off in the transmitted light was used to monitor the 

level of damage, along with C-scanning and sectioning to 

provide reference data. The use of reinforcing fibres to 

produce the sensor meant that the strains required to cause 

failure in the fibres was realistically close to those of 

the composite constituents. Changes in the transmission 

characteristics of the sensor were found to correspond to 

real failure events occurring during impact. 
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Chapter 1. Introduction. 

Chapter 1. Introduction 

1.1. Rationale 

Fibre reinforced composite materials offer a number of 

advantages over conventional engineering materials. This 

is due to their exceptional specific properties, enabling 

the production of strong and light components leading to 

their extensive use in aerospace, automotive and high 

technology sporting goods. However, such composites can 

easily be damaged, particularly by impacts, even at low 

energies. This damage can be impossible to visually 

detect. 

Due to the susceptibility of fibre reinforced composites 

to this so called barely visible impact damage (BVrD), 

examination techniques for inspecting composite parts 

have been developed. These can be comparatively well 

known techniques such as ultrasonic C-scanning and X-ray 

radiography. The damage can also be imaged using less 

surface interferometric common techniques such as 

techniques and thermography. All of these methods are 

generally laboratory based techniques, which require the 

component to be removed from the structure before 

examination can be carried out. Therefore, techniques 

which allow the component to be examined in-situ have 

also been sought. 

Damage detection in-situ has been approached from a 

number of directions. Embedded or surface mounted 

1 



Chapter I. Introduction. 

piezo-electric sensors have been used to monitor the 

strain-waves associated with impact damage. This enables 

the damage location to be found by triangulation between 

mUltiple sensors. Another approach has been to include 

optical fibre sensors within the structure of the 

composite. These sensors can be of a number of different 

types, with varying degrees of sophistication. Looking 

at the extremes of sophistication, some sensors can 

monitor the precise strain in the composite, allowing the 

detection and quantification of impact events. These use 

various interferometric systems, the most common being 

the Fabry-Perot interferometer. Alternatively, they can 

be simple crack interceptors which act merely as an 

on/off switch when a crack propagates through the optical 

fibre. 

The inclusion of an optical fibre, typically having a 

diameter of 125 ~m, in a material reinforced with fibres 

having a typical fibre diameter of 10 ~m, requires some 

careful consideration. The inclusion of the optical fibre 

distorts the expected reinforcing fibre arrangement, 

introducing distortions in the structure of the 

composite. The amount of distortion depends on the angle 

between the direction of the optical fibre and the 

direction of the reinforcing fibres. If the reinforcing 

fibres lie perpendicular to the optical fibre, the 

distortion is high, whereas if they lie parallel, the 

distortion is low. This distortion leads to the 

development of a resin rich region, the size of which 

varies with angular mismatch in the fibres. A number of 

authors have carried out studies on the effect of 

2 



Chapter I. Introduction. 

embedded optical fibres on composites, with most saying 

there is little negative effect. Others, however, report 

degradation particularly in compressive properties. 

In order to overcome the problems associated with the 

inclusion of an optical fibre into a composite component, 

an alternative form of optical sensor was sought. The 

use of reinforcing fibres to produce an optical sensor 

would allow the properties of the sensor to more closely 

mirror that of the composite. The failure of the 

reinforcing fibres would also be closely related to those 

of the reinforcing fibres within the composite. It was, 

therefore, expected that such a sensor would allow the 

failure of the composite to be directly monitored, with 

changes in sensor performance being closely related to 

specific failure events in the composite. Thus it was 

proposed that the possibility of utilising glass 

reinforcing fibres as an optical damage sensor should be 

investigated. 

1.2. Aims of this Study 

The aim of this study is to examine the possibility of 

using glass reinforcing fibres as an optical damage 

detection system, for use within composite structures. 

All aspects pertinent to the use of reinforcing fibres to 

produce an optical light-guide will be examined in the 

first instance. Subsequent to the production of an 

operational light-guide, the suitability of this for use 

as an optical damage detection sensor will be 

3 



Chapter I. Introduction. 

investigated. The effect of this damage detection sensor 

on the impact damage performance of the composite will 

also be examined. Having developed a damage detection 

sensor utilising glass reinforcing fibres as the sensing 

element, any problems associated with the use of this 

sensor will be addressed. 

1.3. Structure of this Thesis 

In order to address the proj ect discussed above, this 

thesis will be structured in the following manner: 

i) Introduction 

ii) 

The 

Literature survey 

specific areas discussed will include the 

statistical failure processes of reinforcing fibres 

and also aspects relevant to fragmentation of 

reinforcing fibres when embedded. Damage 

development under impact and damage detection 

within composites will also be thoroughly 

investigated. 

iii) Examination of the raw materials 

This chapter will discuss the experimental 

examination of the raw materials considered for use 

in this study. Suitable materials will be selected 

and considered for further utilisation. 

iv) Production of a reinforcing fibre light-guide 

4 



Chapter I. Introduction. 

This chapter will discuss the the methods used to 

produce the reinforcing fibre light-guide (RFLG) 

from the selected raw materials. 

v) Loss mechanisms associated with the reinforcing 

fibre light-guide 

This chapter will include a discussion of loss 

mechanisms commonly associated with optical fibres 

and their particular application to the unique 

geometry of the reinforcing fibre light-guide. 

Some experimental investigations into the operative 

loss mechanisms will also be presented. 

vi) Examination of damage development in composite 

containing reinforcing fibre light-guides 

This chapter will present detailed examination of 

the damage observed within panels containing RFLG's 

and also reference panels, allowing the effect of 

the embedded RFLG to be established. 

vii) Examination of the performance of the 

reinforcing fibre light-guide as a damage sensor 

This chapter will include a discussion of the 

sensing mechanisms of the fibre and also modelling 

of the sensor performance. Experimental results 

which show the performance of the sensor under 

impact will be presented. 

vii) Conclusions and further work 

5 
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Chapter 2. Literature Review 

Readers who are unfamiliar with the operation of optical 

fibres or composite materials are refered to some of the many 

books dealing with them. Recommended reading in the field of 

optical fibres and sensors include Moller (1988), Ghatak and 

Thygajan (1989), Yariv (1991) and Udd (1991). Recommended 

reading in the field of composite materials include Tsai and 

Hahn (1980), Hull (1981) and Harris (1986). 

2.1. Factors pertinent to sensor performance 

Due to the nature of glass or carbon fibre composite 

materials, when a load is applied, fibres within the 

composite will break as they attain their failure strain. 

The load at which the fibres fail depends on the fibre 

strength distribution and the level of adhesion between the 

fibres and the matrix. The determination of fibre strength 

will be the subject of section 2.1.2, while section 2.1.1 

will focus on the determination of the adhesive strength of 

the fibre/matrix bond. 

2.1.1. Fibre/matrix adhesion testing 

This section will examine three methods of adhesion testing 

in composites, fibre fragmentation, fibre pUll-out and 

micro-indentation. Following a brief description of each 

method, their advantages and disadvantages will be presented. 

6 
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Chapter 2. Literature Review 

In the fibre fragmentation test, a single fibre is mounted 

axially in a resin coupon. The coupon is then strained, 

causing stress to be transferred from the matrix into the 

fibre. 

fibre 

In this way, a tensile stress is observed in the 

(Herrera-Franco and Drzal (1992), As I own et al. 

(1989) ) . The strength of the interface between the 

reinforcing fibre and matrix resin alters the rate at which 

the stress builds up to the maximum value. The fibre will 

break as the tensile stress in the fibre increases to its 

break strength. Once a break occurs, the stress 

redistributes, building up from the broken fibre ends. The 

fibre will continue to break and the stresses will 

redistribute each time a fracture occurs. The nature of the 

build up has been described mathematically by a number of 

researchers, notably Cox (1952) and Kelly and Tyson (1965) 

who proposed the most commonly used models. 

Kelly and Tyson (1965) proposed that the build-up of tensile 

stress in the fibre could be approximated to a linear 

build-up to a plateau at the fibre break stress. This meant 

that the fibre would continue to break until all of the 

fragments had a single critical length. This length would be 

dependent on the rate of stress build-up within the fibre 

and, thus, the strength of the adhesive bond (see figure 

2.1). They stated the formula for the build-up as 

2.1 

where ~ is the interfacial shear stress at failure, crf is 

the measured failure stress, d is the diameter of the fibre 

7 



Chapter 2. Literature Review 

and le is the critical length below which no further fibre 

fracture can occur. 

Weak bond 
OL~ __ .~ ~--~----- ... --.. -- ------ ---

Length 

Figure 2.1. Illustrating the difference in fragment lengths developing 

when a weak and strong interface are compared. 

The above model assumes that a single failure stress exists 

for the fibre. In the case of polymeric and ceramic 

reinforcing fibres, this assumption is not valid, due to the 

inherent flaw distribution. Thus, a length distribution 

varying between le/2 and a value somewhat greater than Ie 

will be obtained, as there are in fact different values of crt 

for each break location. The assumption of a single average 

value of the failure stress makes the calculation possible; 

however, the assumption is not strictly correct in the case 

of polymeric or ceramic reinforcing fibres. The model was 

originally proposed for tungsten fibres in a metal matrix, 

for which the single stress assumption would be nearly 

correct. 

In order to compensate for this invalid assumption, modifying 

constants have been proposed. The most commonly used of 

these (Netravali et al. (1989)) states that 

where ~ is the average fragment length. 
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Chapter 2. Literature Review 

Fibre pUll-out testing (Herrera-Franco and Drzal (1992)) is 

carried out using a resin block from which a fibre protrudes. 

The embedded length of the fibre within the block is kept 

short so that the fibre will pullout of the block without 

fracturing. The level of adhesion can then be calculated 

from the embedded surface area of the fibre and the load 

required to pull the fibre out. 

The micro-indentation test (Herrera-Franco and Drzal (1992)) 

involves preparation of a thin section of a real composite. 

A blunt indenter is then positioned above one fibre and load 

is applied until the adhesion between fibre and matrix fails 

and the fibre is pushed out of the composite. The level of 

adhesion can then be calculated in the same way as for fibre 

pUll-out testing. 

The advantages and disadvantages of each approach are shown 

in table 2.1. 

Technique Advantages Disadvantages 
Fibre fragmentation One sample gives lots of Flexible resin required. 

data points. Average fibre strength must 
Simple preparation of be measured. 
samples Debonding not considered. 
Easy observation of failures 

Fibre pull-out Real resin systems used. Only one data point 
Fibre failure strength need obtained per sample. 
not be known. Difficult to interpret data 

properly. 
Micro-indentation Real composite specimens Preparation may degrade 

can be analysed. the adhesion properties. 
Complex measurement 
systems required. 

Table 2.1. Compar1son of the advantages and d1sadvantages of 

fibre/matrix adhesion test methods. 
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micro-indentation 
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relatively complex geometries 

and fibre pull-out tests, 

fragmentation testing was chosen for this study. 

2.1.2. Statistical strength of reinforcing fibres 

2.1.2.1. Theoretical considerations 

of the 

fibre 

As stated previously, non-metallic composite reinforcing 

fibres generally do not have a single failure strength. This 

strength distribution is caused by flaws of varying severity 

within the reinforcing fibres (Weibull (1951), Wagner et al. 

(1984), Hagege and Bunsell (1988), Baxevanakis et al. 

(1993)). Flaws can be due to various reasons, such as the 

inclusion of microscopic particles during the production 

stage, minuscule cracks in the fibre surface or cracks and 

crystallographic defects within the fibre itself. Flaws can 

also be introduced by external influences such as mishandling 

and environmental conditions. The flaws are unlikely to be 

systematically introduced and will therefore be random in 

size and position. As the flaw distribution is unlikely to 

be uniform, different pieces of fibre will have different 

strengths. Also, the longer the piece of fibre, the more 

chance there is that a large flaw will be present within that 

length. In this way, a length effect is observed, with the 

fibre strength increasing as the fibre length decreases. This 

length effect is easily observed in practice, by carrying out 

tensile tests on various lengths of fibre. 

10 
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To describe this strength distribution, a commonly used 

formula is the Weibull distribution (Weibull (1951)), shown 

in equation 2.3. 

(x _xu)m 
fix) = I-e Xo 2.3 

where Xis the parameter of interest, Xu is the lower limit of 

X, m is termed the Weibull shape parameter and Xo is termed 

the Weibull scale parameter. This was developed as a 

generally applicable theory that could be used in many 

circumstances in which random effects were involved. Weibull 

(1951) applied this equation to the fatigue life of steel, 

the yield strength of steel, the break strength of cotton 

fibres and the size of adult men born in the British Isles, 

among other things. To analyse the data, In(ln(l/(l-f(Z)))) 

is plotted against In(z). If the Weibull function applies, 

the data forms a straight line with a gradient of m and an 

intercept at y=o of %=Zo. 

Some of the examples used by Weibull (1951) follow the basic 

form of equation 2.3. These give a single straight line when 

the Weibull distribution curve is plotted. Others take the 

form of a two parameter distribution, with two straight line 

sections of different gradients. Weibull (1951) proposed that 

this may be due to real effects, such as a change in the mode 

of operation of the examined process. This may, for example, 

take the form of a change from surface flaws to bulk flaws in 

a reinforcing fibre, as the length changes. 
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Weibull (1951) notes that, although there is no theoretical 

basis for his expression, it is found empirically to fit many 

situations. It is also an easy expression to use. The power 

law function used by Weibull (1951) in the equation is the 

simplest expression which he found to give a good fit to his 

data, and suggested that this expression should only be used 

while the fit was good. 

When used to analyse reinforcing fibres, the equation 

proposed by Weibull takes the form 

2.4 

where P f is the probability of fibre failure, 0' is the 

applied stress, au is the stress below which no fibres 

fracture (commonly assumed to be equal to 0), V is the fibre 

volume, m takes the meaning indicated in equation 2.3 and 0'0 

is equivalent to Xo. In the case of reinforcing fibres, as 

the flaw distribution depends on the volume of the fibre 

(increased volume increases the likelyhood of a large flaw 

being present), a volume correction term is necessary. This 

is taken into account by the inclusion of the volume term in 

equation 2.4. If the flaw distribution was assumed to be 

active only at the surface of the fibre, for example, being 

due to scratches present at the surface, then V in equation 

2.4 would be taken as the surface area of the fibre. Thus, 

this equation is only strictly applicable for fibres with 

constant volume or surface area. If this is not taken into 

account scatter will be introduced in the results. It is, 
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however, commonly assumed that reinforcing fibres have a 

single diameter, with only their length being varied. 

Despite the number of alternative distributions which have 

been proposed (Baxevanakis et al. (1993), Gurvich et al. 

(1997) a, Zhu et al. (1997)), the power function proposed by 

Weibull (1951) seems to be the most widely adopted expression 

(Gurvich et al. (1997)b, Chi and Chou (1983), Favre and 

Jaques (1990)). 

2 .1.2.2. Testing of fibres to determine the statistical 

parameters 

In order to establish the 

individual fibres, bundles 

statistical 

of fibres 

failure parameters 

or embedded single 

fibres can be tested. All of these approaches have been used 

successfully by various researchers. The advantages and 

disadvantages of each method are shown in table 2.2, along 

with the authors who have adopted each approach. 

13 
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Sample type Advantages Disadvantages Users 
Single fibres Easy diameter Sensitive testing Wagner et a1. 

measurements. machines needed (1984) 
Easy to monitor ((Marsh (1959) and Chi and Chou 
number of fibres (1961), Biddulph et (1983) 
tested. al. (1994)). Favres and Jaques 

Fibres selected, (1990) 
possibly rejecting Varelas et a1. (1997) 
the weakest fibres. Wilson (1997) 

Pan et a1. (1997) 
Mili et a1. (1996) 

Fibre bundles No prior selection Impossible to Cowking et a1. 
of fibres. measure the (1991)a and (1991)b 
Can give data on diameters of Hill and Okoroafor 
fibre interactions. individual fibres. (1984) 
One test gives lots Difficult to monitor Mili et a1. (1996) 
of data points. fibre fracture. Chi et a1. (1984) 

Embedded fibres Can give Weibull Fibres selected, Netravali et a1. 
data and adhesion possibly rejecting (1989) 
data in one test. the weakest fibres. Wagner and Eitan 
Reduces handling Not a direct (1990) 
problems. measure of the fibre Anderson and 
One fibre gives strength, the Tamuzs (1993) 
multiple data points. analysis methods Shioya and Takaku 
Gives Weibull data infer the Weibull (1995) 
for fibres in their values from the 
servlce data. 
environments. 

Table 2.2. Compar~son of three methods used to obta~n data on the 

statistical flaw distribution within reinforcing fibres. 

Due to problems associated with fibre handling and also the 

fact that one test would provide both Weibull data and 

adhesion data, embedded fibres were selected for use in this 

study. 
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2.1.3. Stress concentrations in multi-fibre composites 

The single fibre fragmentation test provides information on 

the adhesion between a reinforcing fibre and the matrix resin 

and can also give data on the fibre strength distribution. 

However, it gives no information on the interaction between 

fibres in the vicinity of a fibre break. The presence of a 

fibre break will cause a stress concentration in the resin 

around the break. This will affect any reinforcing fibres 

close to the break, increasing the likelihood of failure. 

The existence of these stress concentrations has been clearly 

demonstrated by Fiedler and Shulte (1997)a, who carried out a 

photoelastic study on single-fibre model composites. Their 

results showed the stress concentration spreading through the 

resin in the region of a broken fibre. 

A number of authors have attempted to predict the failure 

stress of composite materials. Early work was carried out by 

Daniels (1945) who examined an unembedded bundle of fibres. 

He analysed the problem by assuming that the excess load, 

upon breakage of a fibre, was equally shared among the 

remaining fibres. This approach was adopted by Rosen (1964) 

in his model to predict the tensile stress at which a 

composite would fail. However, the assumption of load 

sharing is not thought to be applicable to composites and, 

hence, would present a limitation of this model. No 

consideration of a stress concentration was given in this 

study and was noted by the author as a limitation of the 

approach. Zweben (1968) extended Rosen's model to overcome 

some of the limitations in the earlier work. 

the introduction of a stress concentration 
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approach used to define the stress concentration factor was 

that of Hedgepeth and van Dyke (1967) presented shortly. 

More recently, Wisnom and Green (1995) modelled the failure 

of composites, by examining the interaction between fibre 

breaks. They included no stress concentration factors in 

their analysis, using only the statistical failure properties 

of the fibres. They predicted that, once there were 

sufficient broken fibres in a small area, the breaks would 

interact. When the breaks interacted, that volume of 

composite would pUllout of the rest of the composite. This 

would clearly be a catastrophic failure event. Their 

predictions were found to compare well with experimental 

data, despite no stress concentration being considered. 

Measurements and predictions concerning the level of the 

stress concentration resulting from a fibre fracture have 

been made by a number of authors. The values predicted by 

various authors, and the method used to derive this value are 

shown in table 2.3. 

Authors Method used Value predicted for Value predicted for 
the nearest the next nearest 
neighbour neighbour 

Hedgepeth and van Mathematical 1.33 (2D case) ---
Dyke (1967) analysis 

Nedele and Wisnom Finite element Not significant ---
(1 994)a and (1994)b analysis 
F eidler and Schulte Finite element 1.46 (3D case) 1.15 (3D case) 

(1997)b analysis 
van den Heuvel et Laser Raman 1.26 (2D case) ---

al. (1997) spectroscopy 
Chohan and Galiotis Laser Raman 1.36 (2D case) ---

(1997) spectroscopy 1.24 (3D case) 
Table 2.3. Var~ous predl.ctl.ons of the level of stress concentratl.on 

caused by a fibre fracture. 
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Fukuda and Kawata (1976) found that the properties of the 

composite significantly affected the stress concentration, 

although their predicted values were similar to those of 

Hedgepeth and van Dyke (1967). Ochiai et al. (1991) also 

found that the matrix properties were significant. They 

found that the maximum stress concentration occurred when a 

crack ran into the matrix resin, from the fibre. Wagner and 

Eitan (1993) and Wagner et al. (1996) found that the overall 

stress concentration was much lower than that predicted by 

Hedgepeth and van Dyke (1967). However, in similarity with 

most other authors, they found that the number of broken 

fibres in an area, and also the volume fraction of fibres, 

both significantly altered the stress concentration. 

It can be seen from table 2.3 that there is no consensus at 

the present stage as to the size of the stress concentrations 

operative in composite systems. However, there is consensus 

upon the fact that high volume fraction and the presence of 

other broken fibres both increase the level of the stress 

concentration. Due to this lack of consensus, for the 

purposes of this study the levels of stress concentrations to 

be used are the 1.33 predicted for a 2D composite by 

Hedgepeth and van Dyke (1967) and also the 1.15 predicted by 

Fiedler and Schulte (1997)b for the next-nearest neighbouring 

fibres. The first value has been chosen, as the 1.33 

predicted by Hedgepeth and van Dyke is similar to the 

limiting value, when close contact occurs between the fibres, 

for most of the studies. The second has been chosen as it is 

one of very few, if not the only, published value for the 
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stress concentration factor in the next-nearest neighbouring 

fibres. 

2.2. Damage Mechanisms in Composites 

An understanding of the damage mechanisms in composite 

materials has long been recognised as vital for them to be 

widely adopted in critical applications. Studies on the 

failure of long fibre reinforced polymers were being carried 

out in the early 1960' s. Broutmann (1965) studied 

delamination in glass fibre reinforced composite tubes, 

finding that compressive failure and delaminations occurred 

significantly before the expected failure strain was reached. 

Throckmorton et al. (1963) studied the effect of coupling 

agents on the failure characteristics, again in glass 

reinforced polymers. 

The nature of failure depends on the loading regime 

experienced by the composite. Therefore, for the purposes of 

this study it has been decided to limit the area studied to 

impact damage. 

2.2.1. Impact Damage 

It is observed that impacted composites can sustain property 

degradation, while showing little visible sign of damage at 

the surface. Thus, damage due to impact is very important 

and an understanding of impact damage is critical to the use 
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of composites. Two types of impact are generally considered, 

these being low velocity impact and high velocity, or 

ballistic, impact. These have very different damage 

characteristics and this study will concentrate on low 

velocity impact damage. The study will also be limited to 

sub-perforation impacts, because the key aim is to locate and 

quantify barely visible damage. 

2.2.1.1. Methods of impact testing 

A number of ways of inducing controlled impact damage are 

available, including Charpy and Izod test methods as well as 

drop-weight and dropped-dart impact testing and static 

indentation. A number of authors have examined each of these 

methods, with their findings being summarised in table 2.4. 

Test method Advantages Disadvantages References 
Charpy and Izod Ready availability Loading not Cantwell and 
testing of test equipment characteristic of Morton (1991) 

impact damage. Owen (1981) 
Drop-weight and Good modelling of --- Cantwell and 
dropped-dart testing impact damage Morton (1991) 

situations Owen (1981) 
Kaczmarek and 
Maison (1994) 

Static indentation Progressive Results need Owen (1981) 
deformations can be extrapolation to Kaczmarek and 
easily produced impact situations. Maison (1994) 
Equipment is Sjoblom et al. 
readily available. (1988) 

Table 2.4. Comparison of test methods available to induce 1mpact damage. 

After studying the above works it can be concluded that, as 

long as care is taken in the analysis, both static loading 
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and drop-weight impact testers can be used to study impact 

induced damage in composites. However, such test 

methodologies as Charpy and Izod testing are unsuitable. 

2.2.1.2. Damage morphology 

Impact damage can only consist of fibre fracture, 

delamination and matrix cracking. The exact nature of the 

induced damage will depend on the properties of the 

composite, the lay-up sequence and the laminate thickness 

(Hitchen and Kemp (1995». External factors including the 

impacter geometry, the weight of the impacter and the speed 

of impact also affect the damage build up in the composite 

(Cantwell and Morton (1991), Chaturvedi and Sierakowski 

(1985), Woo and Chen (1995». 

The observation of damage caused by low velocity impact is 

difficult, as by its very nature it is internal. Thus, novel 

techniques are required to observe the damage, such as X-ray 

techniques which can be used to study delamination and matrix 

cracking (Hitchen and Kemp (1995». Modifications to the 

standard techniques have also been proposed, which allow the 

inspection of fibre fracture (Highsmith and Keshav (1997». 

The alternative technique of ultrasonic C-scanning generally 

shows only delamination (Ashbee (1989». Both of these 

techniques tend to give plan views with no depth information, 

although this can be obtained in some cases. These and other 

techniques which have been used to examine damage in 

composites will be discussed in greater detail in section 

2.2.2. 
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The early stages of damage development in panels subjected to 

low velocity impacts can be summarised in the following 

manner: 

i). Initiation of damage occurs in the form of matrix 

cracks, either on the opposite side of the panel to the 

impact event in thin panels, or on both sides in thick 

plates (Ambur et al. (1995), Joshi and Sun (1985), Liu 

and Malvern (1987)). 

ii). Where matrix cracks intersect, delaminations can 

form (Joshi and Sun (1985), Lamme rant and Verpoest 

(1996)). However, not all matrix cracks will lead to 

delaminations (Liu and Malvern (1987)). 

iii) . 

progresses, 

Delaminations 

frequently 

propagate 

forming 

as the impact 

a characteristic 

'peanut' shape, consisting of a wasted rectangle 

(Hitchen and Kemp (1995), Joshi and Sun (1985), Liu 

(1988), Wu and Springer (1988)). This shape has been 

found to occur due to bending mismatches between the 

plies (Liu (1988)). The mismatch in bending stiffness 

has also been found to relate to the total delamination 

area (Hong and Li u 

Methods by which 

(1989), Hitchen and Kemp (1995)). 

the location and extent of 

delaminations can be predicted have also been developed 

(Hitchen and Kemp (1995), Clark (1989)). Delamination 

is also generally found to increase in size towards 

the non-impacted face of the composite. 
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The final mode of failure is fibre fracture. This occurs as 

the panel bends, with fibre failure occurring due to tensile 

or compressive stresses (Richardson and Wisheart (1996)). 

The failure of fibres occurs in the later stages of impact 

damage and leads to ply splitting and ultimately to 

penetration. 

Delamination due to impact causes little degradation in the 

tensile properties, which are only significantly degraded due 

to damage induced in the fibres (Ashbee (1989), Richardson 

and Wisheart (1996)). In compression, however, the 

delaminated areas buckle, leading to failure and a gross 

reduction in the properties. Pavier and Clarke (1995) 

investigated this failure by replicating damage in a 

controlled fashion using PTFE film and cut plies to model 

delamination and fibre damage. They found that their 

replication method was valid, as the trends followed by their 

test pieces were correct. 

The observations made in the above works have all been made 

on model composites consisting of thin plates. It has been 

suggested by other authors that results from real composite 

structures indicate that failure processes may differ in more 

complex situations (Wiggenraad et ala (1996), Greenhalgh et 

ala (1996), Ireman et ala (1996)). 

2.2.1.3. Methods of improving impact performance 

A number of authors have examined the effect of the matrix 

resin on the impact performance I with a view to improving 
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impact resistance. Boll et al. (1986) studied the effect of 

different resins on the damage process. They found that a low 

fracture energy resin gave much more extensive delamination 

than a high fracture energy resin. They also found that fibre 

fracture was more extensive in the high fracture energy 

resin, while transverse cracking occurred in both specimens. 

Lesser (1997) examined the effect of crosslink density on 

impact damage. His results showed that a decrease in 

crosslink density 

resistance within 

gave an increase 

the composite. 

in the impact 

Xian and Choy 

damage 

(1994) 

examined the use of a modified bismaleimide resin to toughen 

the composite. They found that there were two critical 

energies under impact, one to initiate damage and one leading 

to critical damage. They also found that the nature of the 

matrix was very significant in determining the impact 

performance of the composite. 

Studies on environmental changes can also be used to infer 

the effect of altering the matrix resin, by studying the 

resin both above and below the glass transition temperature 

(Tg) . Such studies have indicated that the energy at 

perforation of the composite did not depend on the resin. 

However, at energies below perforation, the resin flexibility 

was found to be critical in determining the extent of damage 

(Bibo et al. (1994) and (1995)). Karasek et al. (1995) a and 

(1995) b found that moisture did not affect the damage at 

temperatures below the resin Tg, but above the Tg the damage 

increased dramatically in a moist environment. It was also 

found that the initiation of damage occurred at higher 

energies with more flexible resin, but once the damage had 

initiated its extent was greater. Cantwell (1996) backed up 
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this data, indicating that at temperatures below the Tg the 

impact performance was constant. 

An alternative approach, by which the impact resistance can 

be altered, is modification of the fibres. This is achieved 

by using a mix of fibres, to form a hybrid fibre composite. 

Hitchen and Kemp (1996) presented results for a cost 

effective hybrid composite under impact. The system they 

developed consisted of high performance carbon fibres in the 

principal directions, with standard carbon fibres in the 

secondary directions. By optimising the lay-up sequence, the 

properties of the composite could be made to approach those 

of the high performance fibres, while reducing the cost. 

Impact performance was maximised by careful choice of the 

lay-up sequence. Khatri and Koczak (1996) used E-glass 

fibres to increase the resistance of carbon 

fibre/polyphenylinesulphide composite to flexural loading. 

Their results showed that careful placement of the 

hybridising fibres gave a distinct enhancement in the 

flexural properties of the composite. Their results also 

showed that failure of the carbon fibre sections was delayed, 

due to the support provided by the E-glass reinforced 

regions. This led to an overall increase in the load to 

failure of the composite. 

Other ways in which the impact performance of composites can 

be adapted involve the use of a third dimensional element to 

link the plies together. These can consist of a woven 

composite, stitching to hold the fibre bundles together and 

also the inclusion of short fibres randomly oriented, to 

bridge the interface between plies. Authors who have 
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examined the effect of these materials on the impact 

performance include Bibo and Hogg (1996), Lagace and Wolf 

(1995) and Wu and Liau (1994). 

2.2.2. Sensing of Impact Damage 

2.2.2.1. Remote sensing technigues 

The technique of C-scanning involves directing pulses of 

ultrasonic waves through the sample and detecting the time 

taken for the pulses to reach a sensor (Mallick (1988), 

Ashbee (1989)). A contact fluid, commonly water, is 

generally required to ensure good transfer of the ultrasonic 

waves between the transducer and sensor via the sample, 

although Cawley (1994) presented a system which used a laser 

beam to replace the contact medium. The sensor can either be 

placed opposite the source, on the other side of the 

specimen, or on the same side as the source, using reflected 

waves for condition monitoring. Any damage present within 

the composite will lead to different transmission 

characteristics in these regions, when compared with 

undamaged regions. This results in time of flight changes 

between source and detector, thus, enabling damage to be 

detected. The basic technique gives defect size data but 

little else, so efforts have been made to obtain more 

information, either through more accurate measurement of the 

plan view (Smith (1994)) or through implementation of 3D 

viewing. 
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Authors who have presented ways of modifying standard 

C-scanning equipment to give 3D data include Scarponi and 

Briotti (1997) and Kaczmarek (1995). Their results allow 

information on the extent of delamination between individual 

pairs of plies and also on the location of matrix cracking in 

the composite to be obtained. 

An alternative approach to the classic C-scanning arrangement 

was presented by Wooh and Daniel (1994), using ultrasonic 

A-scanning. This was done because A-scanning has the 

potential to provide more information than either B-scanning 

or the more common C-scanning. They describe a testing 

system and also archival and processing techniques. The 

problems with such a system include the amount of data 

generated from a single a-scan prior to processing. To 

overcome this, an efficient waveform compression program was 

proposed. The final system was then capable of detailed 3D 

imaging of damage within the composite. 

Another approach which is based on the modification of sound 

waves by damage is the use of Lamb waves (Cawley (1994)). In 

this technique, sound waves are induced in a specimen and 

allowed to propagate through it. The presence of damage will 

modify the propagating waves and can, thus, be detected using 

a sensor to monitor the waves in the composite. 

As well as X-ray radiography and the use of sound waves, a 

number of other techniques exist for the remote observation 

of composite panels. These include thermographic techniques, 

electrical techniques and also various optical approaches 

(Scott and Scala (1982)). 

26 



Chapter 2. Literature Review 

The heat flow differences between damaged and undamaged 

regions can be used to detect the presence of damage, in a 

technique called thermography. A panel is heated, commonly 

using an infra-red heat source, and then imaged using a 

thermal imaging camera. Defects within the panel show up as 

areas of inhomogeneous heating (Vavilov et al. (1993), Scott 

and Scala (1982), Cawley (1994)). This generally requires 

the heat source to be turned off before the thermal imaging 

camera is turned on, otherwise the camera, which images in 

infra-red, will be dazzled by the heater. Kaiser (1993) 

presented a thermographic imaging arrangement which overcame 

this problem by using millimeter-waves to heat the panel. 

Optical techniques can also be used to monitor surface or 

bulk inhomogeneities. Surface inhomogeneities will be 

present after an impact, in the form of deformation and 

distortion due to cracking and delamination within the 

structure. These distortions have been examined using 

various interferometric techniques. Interferometry provides 

very sensitive methods of measuring the distortion and, thus, 

allows the damage to be precisely located and measured. 

Authors who have presented such techniques include Komorowski 

et al. (1990), Scott and Scala (1982) and Cawley (1994). 

Electro-magnetic examination can be employed to locate the 

inhomogenious material resulting from an impact. The 

technique of eddy-current examination can, however, only be 

applied to composites containing electrically conductive 

fibres, such as carbon fibres (Scott and Scala (1982), Gros 

and Lowden (1995), Shelley (1996)). This technique relies on 
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the electrical conductivity of the fibres, which is affected 

by the presence of impact damage. Measurement of the panel 

is carried out in a point to point manner, allowing a 2D 

image of the damage to be obtained. The level of the 

response from the panel gives an indication of the extent of 

impact damage. 

An unusual approach was proposed by Haque and Raju (1995) 

which looked at the stiffness degradation in the region of 

impact damage. This technique involved light, instrumented, 

tapping of the sample. The response of the panel was 

detected by the instrumentation within the tapping probe and 

was found to vary when damage was encountered. In this way, 

the presence of damage could be monitored and its size 

detected using a pulse width or force amplitude measurement. 

2.2.2.2. In-situ sensing techniques 

Techniques for sensing the damage development in real time, 

in-situ, are also important. The methods discussed 

previously are generally only applicable for use with the 

panel removed from any structure. For the location of impact 

damage when the panel is contained in a structure, 

alternative techniques have been developed. 

A variety of piezo-electric based sensors have been used to 

locate impacts impinging on composite materials. These 

sensors have been used to monitor the acoustic waves 

associated with an impact event, the deformation associated 

with an impact event or changes in the sample resulting from 
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an impact event. Among the authors who have used the 

acoustic waves propagating as a result of an impact event or 

panel distortions are Campbell et al. (1993), Okafor et al. 

(1996), Joshi and Munir (1996) and Jenq and Chang (1995). 

Campbell et al. (1993) used polyvinylidenefluoride (PVDF) 

film as the piezo-electric element used to monitor both 

strains in the panel and also the transient waves associated 

wi th impact. Okafor et al. (1996) used three sensors to 

allow impact location to be established by triangulation. 

Joshi and Munir (1996) used a more complex panel with 

stiffeners attached, in order to mimic a real structure. 

They found that using a neural network enabled them to locate 

the impact events, despite the presence of the stiffeners. 

In contrast to the above works, Jenq and Chang (1995) used 

PVDF film to allow them to follow the distortion of the panel 

during an impact event. 

Authors who have used changes in the panel, as a result of an 

impact event, to monitor the presence of impact damage 

include Okafor et al (1995), Neary et al. (1996) Tan et al. 

(1995) and Smith and Hoa (1994). Neary et al. (1996) and Tan 

et al. (1995) used fixed piezo-electric elements to monitor 

Lamb waves. The damage was detected in the manner described 

in section 2.2.2.1. Smith and Hoa (1994) used PVDF film to 

monitor both Lamb waves and surface acoustic waves, again 

allowing damage detection. An alternative approach was used 

by Okafor et al. (1995), who used changes in the modal 

frequency response of the sample to monitor delamination 

size. The data was processed using a neural network which 

had been trained using standard samples. 
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The use of optical fibre sensors as a method of monitoring 

the occurrence of impact on a composite panel has also been 

demonstrated by a number of authors. Early work on the use 

of optical sensors was published by Hale et al. (1980), in 

which optical fibres were used to monitor strain levels in a 

specimen of steel. They discussed a method of reducing the 

strength of an optical fibre to a controllable level, so that 

its failure strain was precisely known. At fracture of the 

fibre, this meant that the strain in the specimen was known. 

Hofer (1987) used this crack detecting system as the basis of 

a damage detection method for use in aerospace applications. 

His proposal was that the fibres could be used either 

embedded, or surface mounted on to the sample. Measures et 

al. (1989) presented a detailed examination of a similar 

system to that used by Hofer. However, their results 

included an examination of the effect of fibre embedment on 

the properties of the composite. Their paper suggested that 

the inclusion of optical fibres had a negligible effect on 

the properties of the composite, both in tensile and 

compressive loading. 

Grace et al. (1996) used a similar system to those discussed 

above but extended it to provide an impact location method. 

The embedded optical fibres were arranged in a grid or spiral 

within the panel so that a large proportion of the panel was 

covered. The use of optical time domain reflectometry (OTDR) 

allowed the location of impact induced breaks within this 

grid to be ascertained. 

Dry (1995) I (1996) and Dry and McMillan (1997) used hollow 

glass fibres filled with a liquid resin to form a system 
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which was capable of detecting cracks in a similar way to the 

above works. However, upon fracture the resin contained in 

the fibre flowed from the core and effected a repair. 

Preliminary results have been obtained, which show the system 

to be capable of performing both functions. 

A variety of more complex non- interferometric sensors have 

also been employed in impact damage detection. Jianliang et 

al. (1996) etched castelations into an optical fibre so that 

it acted as a microbend strain sensor. They proposed that 

this arrangement, along with a neural network, would enable 

the detection of impact events. The work of Noharet et al. 

(1995) used polarisation maintaining fibres with a hole 

either side of the core to monitor impact events within a 

sandwich composite panel. Modelling as to the effect of the 

sensor were carried out with particular interest ln its 

performance under multiple impact events. 

Various types of interferometric sensor have been proposed, 

to give a more sensitive sensor than the non-interferometric 

types. The most common of these is the Fabry-Perot 

interferometer. Greene et al. (1995) used a composite panel 

containing four embedded Fabry-Perot interferometers. 

Comparison of the time delay between the signal arriving at 

each sensor was used to calculate where the panel had been 

impacted, allowing the impact location to be found with a 

high degree of accuracy. A paper by Chang and Sirkis (1995) 

used both the Fabry- Perot interferometer and also a path 

matched differential interferometer to study impact events. 

Both types of interferometer were found to be capable of 

detecting impact on composite materials. Schindler et al. 
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(1995) also used surface mounted and embedded Fabry-Perot 

sensors. In this case, however, the impact location was 

predicted using a neural network. 

Akhavan et al. (1995) compared the performance of the 

Fabry-Perot sensor with both PVDF piezo-electric sensors and 

also standard electrical resistance strain gauges. The 

performance of the optical sensor was found to be superior to 

that of the electrical resistance gauge, particularly in 

responding to the transient shock waves experienced in 

impact. 

Other interferometric 

employed. Malki et al. 

sensing systems have also been 

(1996) used intermodal interference 

in multimode optical fibres to examine both vibration and 

impact detection within composites. Again a grid of fibres 

was used and time delay between the wavefront arriving at 

each sensor allowed accurate position location. Pierce et 

al. (1996)a and (1996)b used an optical fibre as an acoustic 

wave sensor in a damage detection system. In their 

arrangement, an ultrasound transmitter was used to launch 

Lamb waves into the composite. The waves were reflected from 

holes or damage wi thin the composite. To detect these 

reflected waves, an optical fibre, which made up one arm of a 

Mach-Zhender interferometer, was surface mounted on the 

composite. It was found that larger defects gave a larger 

signal reflection and, thus, damage could, to an extent, be 

quantified. 
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2.2.2.3. Neural networks for damage characterisation 

The use of neural networks to locate impacts has generated a 

significant amount of interest. 

proposed neural network designs 

A number of authors have 

specifically for damage 

location. These have not been tested using optical sensors 

and composites, but the network structures should be 

applicable. Shaw et al. (1995) developed a mathematical 

model to describe the deformation of a fully clamped 

homogeneous isotropic rectangular plate. Having developed 

this analytical description they proposed a neural network 

methodology which could be used to give impact location. 

Simulated sensor data was generated using a mathematical 

model, and used to assess the accuracy of the neural network. 

The precise results would depend on the sensor type employed 

and experimental processes among other factors, so full 

assessment was not possible. The process did, however, show 

itself to be capable of locating impact events with a good 

degree of accuracy, using resistance strain gauges, with no 

post processing. Jones et al. (1995) proposed a further two 

neural networks which could be used to monitor impact 

location on a plate. Their networks were tested using an 

aluminium specimen with four strain gauge sensors mounted on 

the corners of the plate. 

2.2.2.4. Effect of embedded optical fibres on the composite 

The use of optical fibres within a composite structure raises 

a few questions. Optical fibres distort the composite in 

such a way that a resin rich region exists around the fibre. 
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The size of this varies with the exact geometry of the 

composite specimen. A number of studies have been made to 

discover the effect of the embedded optical fibre on the 

properties of the composite. 

Sirkis et al. (1994) and Sirkis and Chang (1994) have written 

papers looking at the effect of embedded fibres specifically 

on the impact performance of composites. They first examined 

the macro-scale failure processes, such as delamination. 

They concluded that no effect was observed to suggest that 

the embedded fibres affected delamination formation within 

the specimens. This was consistent among a number of 

different lay-up sequences. The same lay-up sequences were 

examined in the second paper, which looked at micro-scale 

fracture within the composite. Their conclusion from this 

study was that small optical fibres (80-125 ~m) had no 

influence on the fracture pattern. 

(>200 ~m) were found to influence it. 

Larger optical fibres 

Sirkis and Lu (1995) used modelling to examine the effect of 

a polyimide coated optical fibre on a composite. Their 

results for this arrangement indicated that the optical fibre 

gave no degradation to the longitudinal tensile properties. 

However, transverse tensile and compressive strength was 

found to be significantly degraded. 

Sirkis and Singh (1994) used Moire analysis to examine 

whether the embedded optical fibre gave a stress 

concentration within the composite. It was found that no 

stress concentration existed, using the 

considered in this study. Goldrein et al. 
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Moire fringes to study the effect of strain on an embedded 

optical fibre. Their specimen consisted of an embedded 

optical fibre embedded within a carbon fibre composite, with 

the fibres running parallel to the optical fibre. This 

specimen was loaded perpendicularly to the fibre in tension 

and the resultant strain was monitored. It was found that 

the bulk composite was strained to a much higher level than 

that experienced by the optical fibre. 

Seo and Lee (1995) studied the effect of embedded optical 

fibres on transverse crack spacing within the composite. 

They also examined the effect of coatings on the crack 

spacing. Their findings showed that there was a very slight 

reduction in transverse crack spacing in composites 

containing embedded fibres, regardless of whether the fibres 

were embedded in the loading direction or purpendicular to 

it. 

Levin and Jarlas (1997) carried out a study to establish the 

effect of impact damage on the performance of embedded 

optical sensors, specifically Fabry-Perot interferometry. 

Their findings showed that the sensor was less vulnerable 

when embedded within the centre of the composite. The sensor 

was found to increase damage when embedded within some areas 

of the composite and debonding was found to be the most 

detrimental damage mode, as far as sensor performance was 

concerned. 
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2.2.3. Conclusions 

It can be seen that both remote and in-situ sensing 

techniques are readily available. However, the only well 

developed techniques are C-scanning and x-ray radiography. 

In particular, the use of optical sensors raises problems 

with the properties of the composite, although their precise 

effect is not known. The in-situ approach seems to offer 

significant advantages over remote techniques in as much as 

the data can be obtained in in-service conditions. However, 

both have a role to play in damage detection in composites. 
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Chapter 3. Results 1: Examination of the Raw 

Materials 

This chapter examines the constituent materials required to 

produce a light-guide from reinforcing fibres. The optical 

characteristics of the raw materials are examined and 

necessary pre-treatments of the fibres are discussed. 

3.1. Examination of the Constituent Materials 

3.1.1. Quartzel Glass 

The glass reinforcing fibres selected for use in this study 

were 99.99% pure silica fibres produced by Quartz et Silice, 

under the trade name Quartzel glass fibres. 

3.1.1.1. Experimental procedure 

Rods of Quartzel glass with a diameter of 5 mm were obtained 

and ten sections of 10 mm length were cut from random 

positions. These were examined for voids and solid 

contaminants, using a stereo microscope, with light being 

transmitted through them in order to silhouette any 

contained faults. Photographs of the observed sections were 

taken. 
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The density of the glass was measured, to ensure that the 

amount of voiding within the sample was not excessive, using 

a Hubbard pyknometer. The apparent density of each glass 

rod was measured according to BS 733 parts 1 and 2 using a 

standard temperature of 23 0 C +/-0.2. 

3.1.1.2. Results and Discussion 

The glass used to produce the reinforcing fibres was 99.99% 

pure silica, with a chemical composition of impurities shown 

in table 3.1, as quoted in Quartz et Silice product 

literature. 

Trace Element PPM by weight 
Al 17.7 
B 0.09 
Ca 0.5 
Cr 0.08 
Cu 0.05 
Fe 0.6 
K 0.6 
Li 0.7 

Mg 0.06 
Na 0.8 
Ti 1.5 

Table 3.1. Typ~cal analys~s of the maJor l.mpurl.t~es wl.thl.n Quartzel 

glass. 

The presence of voiding within the glass rods is shown in 

figure 3.1. It was observed that the majority of the voids 

were elongated along the length of the rod. This is thought 

to be due to the extrusion of the rod from the molten glass. 
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The average density measurement and standard deviation is 

given in table 3.2, along with the theoretical value of 

density for high purity silica. 

percentage of voiding was very low. 

It was found that the 

No direct evidence of 

the presence of voids, within the reinforcing fibres 

themselves, was found. However, the existence of voids 

could not be disproved. The presence of voiding within the 

raw material may lead to microfine voids in the fibre 

centres (Loewenstein (1983)) If these voids were present, 

then the light transmission characteristics of the fibres 

would be compromised and, thus, the possibility of their 

presence cannot be ignored . This study was carried out 

using readily available raw materials and , thus, no action 

to eliminate the voiding could be taken. The observed 

problems could be overcome with specially produced fibres. 

1--1 
1 mm 

Figure 3.1 . Picture of voiding within rods of Quartzel glass. 
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Density Standard 
kg/m3 deviation 

Average density of Quartzel rods 2.16 0.08 
Theoretical density of silica 2.20 ---

Table 3.2. Show1ng the compar1son of the average dens1ty of the rods 

with the theoretical density of silica. 

3.1.2. Cladding Materials 

3.1.2.1 Experimental procedure 

A number of potential cladding materials were obtained and 

the refractive index of each was measured. This was carried 

out using an Abbe refractometer with a sodium 'D' line 

light-source, having an emission wavelength of 489 nm. Thin 

specimens of each potential cladding material were prepared 

and examined. Bromonapthalene was used as a contact fluid, 

to ensure that good transmission was obtained between the 

prisms of the refractometer and the sample. This was chosen 

as it had a much higher refractive index than the silica 

glass. Three refractive index measurements were carried out 

for each of the potential cladding materials, at a standard 

temperature of 25oC. 

3.1.2.2. Results and Discussion 

The measured refractive indices of each of the potential 

cladding materials is plotted on a graph, shown in figure 

3.2. A line is plotted on the graph marking the refractive 

index of the silica glass. There is also a line showing the 
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refractive index of the contact fluid. Any potential 

cladding materials were required to have a refractive index 

which fell below that of the silica glass, to satisfy 

physical requirements for light-guide operation. 
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Figure 3.2. Graph showing the refractive indices of potential cladding 

materials. 

It can be seen, therefore, that the cladding materials which 

were suitable for use were: 

i). 3M THV 200P 

ii). Dow Corning Sylgard 184 

iii). Epoxy Technologies OG 137. 

Epoxy technologies OG 135 and OG 136 both had refractive 

indices very similar to that of the silica glass. The 
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measured values indicate that these materials may be 

suitable, but the refractive index is too close to that of 

the fibres for good light-guiding characteristics (see 

chapter 5). 

Dow Corning Sylgard 184 was found to give good coatings due 

to its liquid mix and relatively long cure time of 1 hour at 

100oC, ensuring that bubbles were eliminated. Epoxy 

Technologies OG 137 was processed from a solvent, but this 

proved to give a bubble-filled coating. The coating was 

also very brittle making the light-guides difficult to 

handle. Bubbling was found to limit the efficacy of the 3M 

THV 200P too, as it was also processed using a solvent. 

Hence, both of these products were rejected for initial 

study purposes, with a view to reconsideration once the 

technology had been proven using Sylgard 184. 

3.1.3. Transmission Characteristics of the Glass and 

Cladding 

3.1.3.1. Experimental Procedure 

A Perkin Elmer Lambda 19 UV-Vis-NIR Spectrometer was used to 

measure the absorption of the silica glass and the cladding 

materials, between the wavelengths of 200 and 850 nm. This 

encompassed the visible region of the spectrum, which was of 

the greatest interest for this study. Samples of Sylgard 

184 silicone resin and OG 137 resin were analysed as 
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potential cladding polymers. 

were also examined. 

Sections of Quartzel glass rod 

The Sylgard 184 silicone resin was cast, to give a specimen 

with a thickness of approximately 2 mm, which was then 

mounted in a standard specimen mounting card. The OG 137 

resin was cast into a thin film on a glass microscope slide, 

to which the resin remained at tatched. The thickness of 

this resin film was approximately 0.25 mm. The slide, 

including resin film, was then mounted in a standard 

specimen mounting card. 

To measure the transmission of the silica glass, sections of 

the raw material, with a diameter of 5 mm, were polished to 

a 1 ~m diamond finish, to give an overall specimen thickness 

of approximately 4 mm. These were then mounted within the 

standard specimen mounting card. 

3.1.3.2. Results and Discussion 

Typical absorption spectra for silica glass, Sylgard 184 and 

OG 137 are shown in figure 3.3. It can be seen that none of 

the materials absorb light to any great extent within the 

visible region of the spectrum. Silicone resin can be seen 

to have an absorption peak starting at around 200 nm, in the 

ultraviolet region. Silica starts to absorb at around 300 

nm, again in the ultraviolet region. The cut-off point of 

the OG 137 is also seen to be approximately 300 nm, but this 

is due to the cut -off point of the glass microscope slide 
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substrate, rather than an inherent cut-off point of the 

resin. The spectra show that all of these materials have 

good optical transmission properties within the visible 

region, making them suitable for use in this study. 
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Figure 3.3. Graph showing the transmission characteristics of silica 

glass, OG 137 and Sylgard 184. 

3.2. Light-guide Production 

3.2.1. Fibre Cleaning 

3.2.1.1. Experimental Procedure 

The fibres, as received from the manufacturer, were coated 

with a protective 'size'. This was applied to protect the 

fibres during handling and also to improve the bonding 

between the fibres and an epoxy resin matrix system. For 
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the purposes of this study, the size had to be removed to 

maximise the light-guiding characteristics. 

To study the effectivness of fibre cleaning and to optimise 

the cleaning proceedure, X-ray photoelectron spectroscopy 

(XPS) was used. The technique of XPS is surface specific, 

with a maximum depth of 10 nm being examined. Given that 

the fibre bundle consisted of high purity silica fibres 

surrounded by a polymeric size, it was decided to monitor 

the amount of carbon present, less carbon indicating cleaner 

fibres. 

Two types of fibre were considered for use as the raw 

material, from which the reinforcing fibre light-guide 

(RFLG) would be produced. These will be known in this study 

as type 1 and type 2. Type 1 fibres consisted of a bundle 

of about 600 fibres, with a small amount of twist and a size 

coating applied at the point of manufacture. Type 2 fibres 

consisted of a bundle of about 200 fibres, to which neither 

twist nor size had been applied. 

The processes used to clean the type 1 fibres were as 

follows: 

i). Ramp at 100 C per minute to 700°C, hold at 700 0 C for 

1 hour 

ii). Instantaneous heating from ambient to 700°C, hold 

at 7000 C for 1 hour 
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iii) . Instantaneous heating from ambient to 700oC, 

hold at 700 0 C for 15 minutes 

iv). Drawn through a tubular furnace of length 30 cm, 

with a nominal temperature of 700 0 C and a dwell in 

the furnace of 1.5 hours, air being passed through the 

furnace to remove any effluent gasses 

v). Drawn through a tubular furnace of length 30 cm, 

with a nominal temperature of 850 0 C and a dwell in 

the furnace of 1.5 hours, air being passed through the 

furnace to remove any effluent gasses 

fibres were also tested in the as-received condition. 

Type 2 fibres were tested in the as-received condition and 

also cleaned using method v). This was done to confirm that 

both types of fibre could be cleaned in the same manner. 

Cleaning methods i) to iii) were used to determine the best 

approach by which to accomplish size removal from the fibre 

surface. Once this had been established, the cleaning 

method was mimicked using a tubular furnace, allowing 

greater lengths of fibre to be cleaned. The thermal profile 

through the tubular furnace was measured, to monitor how 

well the tubular furnace mimicked the more highly 

controllable furnace used for methods i) to iii) . 

Samples were produced the day before analysis and stored 

over night in an evacuated dessicator. All handling was 
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carried out using tweezers and scissors which were cleaned 

with acetone and allowed to dry prior to use. Storage trays 

were non-plastic although the dessicator was plastic. 

The samples cleaned using processes i) to iii) were cooled 

to approximately 50 0 C prior to being placed in the 

dessicator; this took around 30 minutes after removal from 

the furnace. Samples produced in the tubular furnace were 

exposed to the atmosphere for up to 5 hours before being 

placed in the dessicator, as a result of the production 

process. Following cleaning the surfaces were susceptible 

to deposition of contaminants, so, storage under vacuum was 

employed to limit the contact between the samples and the 

air. The level of contamination would be expected to be 

dependent on the length of time the samples were exposed to 

the contaminants. 

The XPS test specimens were around 5 mm square, this being 

achieved by laying fibre bundles side by side, on a small 

square of double-sided tape. Care was necessary to ensure 

that the coverage of the adhesive tape was complete, 

ensuring that it was the fibre and not the tape which was 

examined. The prepared sample was then placed in the XPS 

analyser, a Vacuum Generators ESCALAB 210. Examination of 

the samples was carried out using a survey scan between the 

binding energies of 0 to 1300 eV, allowing the elements in 

the sample to be identified. Detailed scans were also 

carried out over a 20 eV range around the elements observed 

in the survey scan, chiefly carbon, oxygen and silicon. 

Peak areas were determined using the integral data 
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manipulation software of the system. This allowed the 

atomic percentages (at%) of each element to be calculated. 

A perfectly clean silica surface was also tested, in order 

to determine the level of contamination expected to be 

deposited during sample storage and handling procedures. 

The clean surface was achieved by fracturing a silica rod 

into sections of suitable size for analysis. These sections 

were treated in two ways; three were left alongside the 

fibre production process for a period of 5 hours, and stored 

in exactly the same way as the fibre samples. Three further 

samples were fractured immediately prior to being placed in 

the analysis chamber, being exposed to the air for a maximum 

of 5 minutes. 

3.2.1.2. Results and Discussion 

Prior to discussing specific results of the XPS examination 

on the reinforcing fibre cleaning processes, it is critical 

to consider some of the limitations of XPS analysis. XPS 

relies on electrons being emitted from the sample due to 

impinging X-rays. These electrons are emitted from the 

sample up to a depth of between 1 to 10 nm, depending on the 

chemical composition of the material. Thus, XPS gives 

results which are very specific to the surface of the 

material. Hence, the results are only strictly applicable 

to homogeneous materials. Where a surface layer is present, 

it will interfere with the results, as elements only present 

in the surface layer will appear to be present in larger 
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quantities than is actually the case (Smith (1991)). The 

reasons for this are shown in figure 3.4. The overall 

tendency is, therefore, for XPS to give a distorted analysis 

if a surface layer is present. In order to overcome this 

limitation a number of alternative approaches are available. 

However, in this case they were not used, as precise 

information on the thickness of the layer was not required. 

Surface layer No surface layer 

Figure 3.4. Schematic illustration of the manner in which a surface 

layer gives a distorted analysis of the sample composition using XPS. 

The samples under consideration in this study, consisted of 

pure silica fibres which had been coated with a polymeric 

size. The cleaning temperatures used would not affect the 

glass, as they were significantly below its softening 

temperature. The carbonaceous residue would, therefore, be 

expected to be present as a layer on the surface. 

As the material was known to be inhomogeneous at the 

surface, due allowance was made in the interpretation of the 

results. The measured percentage of carbon in the specimen 

was, thus, expected to be greater than would be anticipated. 

It was also expected that the ratio of silicon to oxygen 

would be roughly 1 to 2, with slightly more oxygen present 

due to hydration of the surface, and the presence of other 
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contaminants. This was found to be the case in the majority 

of the results. 

The results from XPS analysis for the type 1 fibres in the 

as-received condition are shown in table 3.3. Results from 

XPS for cleaning processes i), ii) and iii) are shown in 

tables 3.4, 3.5 and 3.6 respectively. 

element C Is o Is Si2p N Is 
Test 1 63.9 23.3 9.4 3.4 
Test 2 50.0 30.6 13.2 6.2 
Test 3 57.9 27.8 to.2 4.2 

Table 3.3. Atom1c percentages of the elements observed 1n the 

as-received fibres. 

element C Is o Is Si2p N Is 
Test 1 8.8 61.4 29.8 --
Test 2 9.0 61.0 30.0 --
Test 3 13.1 60.9 26.1 --

Table 3.4. Atom1c percentages of the elements observed 1n f1bres cleaned 

using method i. 

element CIs o Is Si2p N Is 
Test 1 12.7 62.1 25.2 --
Test 2 5.7 62.2 32.1 --
Test 3 13.6 61.5 24.9 --

Table 3.5. Atom1c percentages of the elements observed 1n f1bres cleaned 

using method ii. 

element C Is o Is Si2p N Is 
Test 1 13.9 59.4 26.7 --
Test 2 21.2 53.4 25.4 --
Test 3 16.1 57.5 26.5 --

Table 3.6. Atom1C percentages of the elements observed 1n f1bres cleaned 

using method iii. 
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These results show that nitrogen, which was present in the 

as-received fibres, was eliminated in all the cleaning 

procedures. This is thought to be due to the decomposition 

of nitrogen-containing polymers, present in the size. It 

can be seen that the fibres which were held at temperature 

for 1 hour were significantly cleaner than those which were 

held for 15 minutes. However, the level of environmental 

contamination had not been considered at this stage. The 

discovery of the amount of environmental contamination was 

critical in this case, as the chief contaminant was carbon, 

an ever present contaminant. 

The results from freshly cleaved silica rods are shown in 

table 3.7. The results from the environmentally exposed 

silica rods are shown in table 3.8. 

element CIs o Is Si 2p N Is 
Test 1 7.5 64.0 28.5 --
Test 2 9.8 62.0 28.2 --
Test 3 8.0 63.3 28.7 --

Table 3.7. Atom~c percentages of the elements observed ~n the freshly 

cleaved silica rod specimens. 

element CIs o Is Si 2p N Is 
Test 1 11.4 61.0 27.6 --
Test 2 11.7 61.0 27.3 --
Test 3 10.6 61.7 27.7 --

Table 3.8. Atom~c percentages of the elements observed 1n 

environmentally exposed silica rod specimens. 

It can be seen that the freshly prepared samples displayed 

about 8 at% carbon contamination and that the exposed 

samples displayed about 11 at% carbon contamination. This 
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showed that the production and storage conditions did indeed 

lead to some contamination of the fibres. 

Statistical analysis was used to compare the mean value of 

the cleaning methods, with the mean value of the standard 

for contamination given in table 3.8. This was done, using 

the ANOVA test to determine whether the mean values were 

statistically identical, and was carried out in the 

following manner: 

The test statistic is 

Ho: 1l1=1l2 

HI: III *- 112 

3.1 

3.2 

where Ho is the hypothesis, III and 1-1-2 are the means under 

comparison and HI is the alternative hypothesis, which will 

be accepted if Ho is found not to apply. The hypothesis Ho 

is accepted if f<F, where f is the value calculated and F is 

the value determined from the statistical F-tables. 

The value F is determined in the following manner 

Fa, I-I, I (J-l) 3.3 

where a is the level of Significance, chosen in this case to 

be 5%, giving 95% confidence in the statistic. I is the 

number of test methods under comparison, always 2 in this 

study, as each cleaning method was only compared to the 

standard silica surface. The value J is the number of 
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repeats of each test, 3 in this study. Expression 3.3 then 

provides the coordinate position in the F-table from which F 

can be read. 

The value f is calculated using table 3.9. 

Source of Sum of Degrees of Mean square f 
variation square freedom 

Treatments SSTr I-I MSTr=SSTr/(I -1) MSTr/MSE 
Error SSE 1(1-1 ) MSE=SSE/(I(1-1 » 
Total SST IJ-l 

Table 3.9. Table for calculat~ng the value of f 

where I and J have that same meaning as before and the other 

values are calculated as follows 

~I ~J 2 1- 2 
SST=L1i=1 L1j=1 Xij - [JX •• 

1 ~I 2 1 2 
SSTr=J L1i=1 Xi. -1JX .. 

3.4 

3.5 

3.6 

the value of Xij is determined from the position of the data 

in table 3.10 arranged in the following manner 

Sample 

Standard X21 X23 

Table 3.10. The arrangement of data for calculating the value of f. 

The other values are calculated in the following manner 
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3.7 

x .. = LI=1 LJ=1 Xij 3.8 

and 

3.9 

These are then entered into table 3.9, enabling the value of 

f to be determined and compared with the value of F from the 

table, to see if the conditions for Ho are satisfied. If 

they are, the hypothesis is accepted and the means are 

considered statistically equal. If the conditions are not 

satisfied then the hypothesis Hl is accepted and the means 

are not considered equal. 

The process of comparing the data is illustrated in the 

following examples. Here, the data for the standard silica 

rods is first compared to the data for cleaning method i. 

The calculation is then repeated for cleaning method iii. 

Tables 3.11 and 3.12 below show the data and calculation as 

arranged for cleaning method i. 

Cleaned method i 8.8 9.0 13.1 
Standard 11.4 11.7 10.6 

Table 3.11. Data for the calculation. 
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Source of Sum of square Degrees of Mean square f 
variation freedom 

Treatments 1.3 1 1.3 0.4 
Error 11.9 4 3.0 
Total 13.2 5 

Table 3.12. Table show1ng the calculat10n of f for clean1ng method 1. 

From the F-table, F was determined as 7.71. Comparing f 

with F, it can be seen that f<F and, hence, hypothesis Ho is 

readily accepted. 

Examining the calculation for cleaning method iii, the data 

for this calculation is shown in tables 3.13 and 3.14. 

Cleaned method iii 13.9 16.1 21.2 
Standard 11.4 11.7 10.6 

Table 3.13. Data for the calculation. 

Source of Sum of square Degrees of Mean square f 
variation freedom 

Treatments 50.9 1 50.9 7.0 
Error 29.1 4 7.3 
Total 80.1 5 ... 

Table 3.14. Table show1ng the calculat10n of f for clean1ng method 111. 

Again it can be seen that f<F and hence Ho is accepted. 

However, in this case f is much closer to the value of F 

and, hence, the equality of the means is more tentatively 

acceptable. 

Given that cleaning method iii was conducted in ideal 

conditions in an enclosed furnace it was decided to reject 

the 15 minute hold of this method, in favour of a 1 hour 

55 



Chapter 3. Results 1: Bxamination of the raw materials. 

hold at 700°C, as studied in cleaning method i. Method i was 

therefore mimicked using a tubular furnace. 

Upon measuring the furnace temperature it was found that the 

temperature barely rose above 700 0 C (see figure 3.5), 

suggesting that the cleaning process would not be as 

effective as method i. Results for type 1 fibres cleaned in 

this manner are shown in table 3.15. 

element CIs o Is Si 2p N Is 
Test 1 2l.4 54.4 24.2 --
Test 2 24.4 50.8 24.7 --
Test 3 2l.1 53.4 25.6 --

Table 3.15. Atoml.C percentages of the elements observed l.n fl.bres 

cleaned using method iv. 

It can be seen that cleaning was not as good as would have 

been expected, given the nominal temperature and length of 

hold. This was backed up by statistical analysis which 

revealed that the mean value was not comparable to that of 

the standard silica surface. 

To overcome this problem, the nominal temperature of the 

furnace was increased to 850oC. Measurement of the 

temperature showed that in this case the temperature rose 

above 700 0 C for a total length of 20 cm (see figure 3.5). As 

the furnace was 30 cm long and the total dwell time in the 

furnace was 1.5 hours, the fibres experienced a dwell time, 

at greater than 700oC, of 1 hour, as required by cleaning 

method i. The results of this cleaning process are shown in 

table 3.16. 
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element CIs o Is Si2p N Is 
Test 1 8.9 63.9 27.2 --
Test 2 11.5 59.8 28.7 --
Test 3 13.3 58.6 28.1 --

Table 3.16. Atom1c percentages of the elements observed 1n f1bres 

cleaned using method v. 

Figure 3.S. 
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Graph showing the temperature profile through the tubular 

furnace at nominal temperatures of 700 and 8S0oe. 

Here, again it can be seen that the cleaning was as expected 

and statistical analysis revealed the fibres to be no more 

contaminated than the standard. Thus, this method provided 

a suitable cleaning process, and became the selected method 

of cleaning the fibres. 

Type 2 fibres were then analysed to see if the same approach 

to cleaning was successful. Table 3.17 shows the results of 

testing on the as-received fibres. The fibres were also 

cleaned using method v, the results being shown in table 

3.18. 
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element CIs o Is Si 2p N Is 
Test 1 41.7 38.3 16.9 3.2 
Test 2 51.1 32.16 13.8 3.0 
Test 3 61.3 23.5 13.2 2.1 

Table 3.17. F~bres of the second type ~n the as-rece~ved cond~t~on. 

element CIs o Is Si2p N Is 
Test 1 15.0 59.5 25.6 --
Test 2 13.9 58.1 28.0 --
Test 3 7.2 65.5 27.3 --

Table 3.18. Atom~c percentages of the elements observed ~n f~bres of the 

second type cleaned using method v. 

Statistical analysis revealed that cleaning was indeed 

comparable to the standard and, thus, type 2 fibres could be 

cleaned in the same way as type 1 fibres. 

3 .3 . Summary 

The properties of Quartzel glass fibres and various 

potential cladding materials have been determined, to 

establish their suitability for use in this study. The 

glass used to produce the fibres was demonstrated to have 

suitable transmission characteristics, as were three of the 

potential cladding materials, Dow Corning Sylgard 184, Epoxy 

Technologies OG137 and 3M THV 200P. Dow Corning Sylgard 184 

was selected for initial studies, with the other two being 

set aside for study at a later stage. The most sui table 

method of cleaning the Quartzel glass fibres was also 

established, in order to prepare them for conversion to an 

RFLG. 
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Chapter 4. Results 2 : Production of a 

Reinforcing Fibre Light-Guide 

This chapter discusses the production of an RFLG using the 

raw materials selected in the previous chapter. The methods 

used to produce the RFLG are examined and the transmission 

characteristics are measured 

4.1. Application of the Cladding Material 

4.1.1. Experimental Procedure 

Application of the Sylgard 184 silicone resin to the cleaned 

fibre bundles was undertaken in the following manners: 

i) Applying the resin drop by drop to the cleaned 

fibre bundle and drawing the fibre bundle between two 

glass rods with a gap of 70 ~m between them 

ii) Spray coating of cleaned fibre bundles with a 

solution of 10 wt% of silicone resin in cyclohexane 

iii) Dip coating of the cleaned fibre bundles in a 10 

wt% solution of silicone resin in cyclohexane. 

Once coated, the RFLG's were embedded within carbon fibre 

composites and their ability to guide light was examined. 

Sections of the composite were then embedded within bakelite 
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and polished to a 1 ~m diamond finish on both sides of the 

sample, facilitating microscopic examiation of the coating 

using both reflected and transmitted light. 

The practicality of diluting the silicone resin with 

cyclohexane was studied by monitoring the viscosity of the 

resin during cure, once the cyclohexane had evaporated. 

Testing was carried out using a Rheometrics ARES parallel 

plate rheometer at lOOoC. 

4.1.2. Results and Discussion 

Coating method i) proved to be unsuccessful as it was found 

that some areas of the fibre were well coated, while the 

resin failed to penetrate other areas. The coating quality 

is shown in figure 4.la and 4 .lb. This method of coating 

was therefore abandoned after initial sensing studies had 

been undertaken (chapter 6) . 

It was found that cyclohexane diluted the silicone resin 

and, once evaporated, did not affect it's curing. The 

viscosity change during cure is shown in figure 4.2. It can 

be seen that there is no significant difference between the 

two, differently treated, resin systems during cure. 
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f-------4 
2 0 ~m 

(a) (b) 

Figure 4.1 a and b . Showing a well coated section of the fibre bundle 

and a poorly coated section of the fibre bundle respectively. 

Having established that the dilution process did not affect 

the resin cure profile, coating processes ii) and iii) were 

examined. The critical requirement was that the reinforcing 

fibres would continue to guide light once embedded. It was 

discovered that spray coated fibres, once embedded, would 

not guide light over the required sample size of 20 cm , when 

only one coat had been applied. Microscopy revealed that 

the reason for this failure was due to areas in which the 

applied coating had allowed the epoxy resin to come into 

contact with the guiding cores. This meant that the 

requirements for operation of an optical fibre were 

contravened. 
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Figure 4_2_ Graph showing the change in viscosity with time, of curing 

silicone resin. 

Microscopic examination also revealed the areas in which the 

light guiding characteristics were best and worst. It was 

found that in regions where the coating was thin, the 

reinforcing fibres failed to guide light. However, in 

regions where the reinforcing fibre bundle remained closely 

packed and well coated, the fibres were seen to guide light 

well. This is shown for a spray-coated RFLG in figure 4.3a 

and 4. 3b. 

The results from dip-coated fibres showed that an even 

thinner layer of polymer had been deposited, preventing them 

from guiding light over the required length. 
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(a) (b) 

Figure 4.3 a and b. Reflected and transmit ted l i ght through a 

spray- coated RFLG which was only coated once . 

To overcome this a thicker coating had to be applied, 

ensuring that all areas were coated sufficiently. It was 

found that for spray-coated RFLG's to guide routinely ove r 

20 cm, four coatings were required, with each being cured 

prior to application of the next coat. The result was that 

some areas of the RFLG had far too much resin present, to 

ensure that other areas had sufficient (see figure 4. 4a) . 

Figure 4.4b shows that the RFLG performs much more uniformly 

than that shown in figure 4 . 3b. 

In the case of the dip-coated RFLG, it was discovered that 

25 coatings were required with the resin being gelled afte r 

every fifth coat had been applied. The dip-coated fibre s 

were found to have less excess resin present. This was 

because the resin could contact the fibre bundle from all 

directions, whereas spray-coating gave uneven exposure ove r 

the fibre bundle length . The low level of excess resin 

present in the dip-coated RFLG' s, gave less distortion t o 
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the surrounding composite. This is shown in figure 4.5a and 

4.5b. 

~ 
100 ~m 

(a) (b) 

Figure 4.4 a and b. Showing a spray-coated RFLG with four applied coats. 

~ 
125 ~m 

(a) (b) 

Figure 4.5 a and b. Showing a dip-coated RFLG with 25 applied coats. 

As a result of this study it was decided that the standard 

preparation of the RFLG would be to apply 25 dipped coats of 

a 10 wt% solution of Sylgard 184. 
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4.2. Volume Fraction and Void Content of the 

Reinforcing Fibre Light-Guide 

4.2.1. Experimental Procedure 

Having established the most appropriate method of applying 

the coating material, the resultant volume fraction (Vf ) of 

fibres and of voids was measured. This was carried out 

using image analysis, due to the small quantities of coated 

fibre available. To allow the analysis of the Vf of fibres 

and voids, the following approximation was used. In the 

case of continuous fibre reinforced composites, the area 

fraction of both fibres and voids can be taken to be equal 

to their respective Vf ' s. For the purposes of testing, ten 

separate RFLG's were prepared and embedded within carbon 

fibre composite to simplify subsequent preparations. 

Sections of the composite were mounted in bakelite and 

polished to a 1 Jlm finish. Both optical and electron 

microscopy were then carried out and photographs of the 

RFLG's were taken. These were scanned into a personal 

computer and analysed using Data Translation Global-Lab 

Image image analysis software. It was found that the SEM 

photographs were low in contrast between the fibres and 

cladding material, making analysis difficult. 

optical microscope images could be analysed. 

However, the 

Having 

carried 

digitised the images, particle 

out by applying thresholding 

size analysis 

to select only 

was 

the 

regions of the image required. In this manner, the area of 

the RFLG was first measured, followed by the total area of 
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the glass fibres and finally the total area of voids. The 

volume fractions of fibres and voids were then calculated 

for each section. 

4.2.2. Results and Discussion 

Results of the image analysis on the RFLG's are listed in 

table 4.1, with the mean and standard deviation values being 

shown in table 4.2. 

Section number Volume fraction of fibres Volume fraction of voids 
1 0.26 0.01 
2 0.30 0.06 
3 0.22 0.04 
4 0.19 0.07 
5 0.22 0.11 
6 0.26 0.01 
7 0.22 0.06 
8 0.33 0.00 
9 0.26 0.03 

10 0.19 0.01 
Table 4.1. VOl.d content and volume fractl.on of fl.bre wl.thl.n the dl.p 

coated RFLG. 

Fibres Voids 

Mean 0.25 0.04 

Standard deviation 0.04 0.03 
Table 4.2. Mean and standard devl.atl.on values for the f~bre volume 

fraction and void content in the dip-coated RFLG. 

It can be seen that the Vf of the fibres is reasonably 

consistent at around 0.25, with only one section being 

significantly above this level. The Vf of voids is quite 

high in some of the sections, and insignificant in others. 
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Errors in this analysis are likely to be low, as there was 

good contrast between the different constituents of the RFLG 

(shown in figure 4. 6a and 4. 6b) . Thus, measurement of the 

area of the RFLG's, the reinforcing fibres and the voids 

would be accurate, leading to low errors in the calculated 

values of v f • The measurement of voids would experience the 

highest errors, as they will be irregular and comparitively 

small. It is also possible that the measured values of 

voiding will be inaccurate, as voids may be created during 

the polishing process. 

f---j 
50 j!Jn 

~ 
20 j!Jn 

(a) (b) 

Figure 4.6a and b. Photographs showing fibres and voids within a 

dip-coated RFLG and an enlarged section respectively. 

Examination of the photographs revealed that the RFLG's with 

the largest fraction of voids contained a single large void 

within the centre. The RFLG's with volume fraction of voids 

of approximately 0.04 to 0.05, contained a number of small 

voids within the fibre bundle (see figure 4.6). It is 

apparent from the results in table 4.1, that some larger 

voids do exist and other areas of the RFLG contain no voids 

at all. 
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4.3. Transmission Characteristics 

4.3.1. Experimental Procedure 

In order to understand the potential and operation of the 

RFLG, it was necessary to test the inherent ability of the 

fibre bundle to guide light. As the fibres were fragile and 

difficult to handle, a robust method of mounting the fibres 

was necessary. 

figure 4.7. 

The test specimen developed is shown in 

(-==:=I l Light = Je!!!!!!----...... -.----------IjI--. 
Figure 4.7. Test specimen design for use in the determination of the 

inherent light guiding ability of the reinforcing fibres. 

The specimen used heat shrinkable tubing (HST) to encase the 

fibre bundle. The HST was shrunk at both ends, entrapping 

the fibre bundle and allowing it to be connected to a light 

source and photodetector. This was achieved using SMA 

fibre-optic connectors, which had been suitably modified to 

accommodate the HST within the ferrule. The shrunk length 

at each end of the specimen was approximately 2 cm. A cut 

was introduced into the HST 4 cm from the light source, 

allowing a conventional multimode optical fibre to be 

introduced. This enabled a reference signal to be used to 
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monitor the variation in intensity of the light source. The 

area around the cut was supported using a larger section of 

HST. Total shrunk length of the HST was kept below 6 cm, to 

minimise contact between the fibre and the HST. During 

testing, the total shrunk length of HST remained constant 

and, thus, losses caused by contact between the fibres and 

the HST could be ignored. The end of the sample into which 

light was launched, was not disturbed once positioned, 

ensuring that launching losses were constant throughout the 

experiment and could also be ignored. The tension on the 

sample at the launch end was maintained by clamping the 

sample at the point from which the reference optical fibre 

emerged. 

Testing of the RFLG's was carried out by connecting the 

launch end of each sample to a white light source and the 

exit end and reference fibre to photodetectors. The light 

intensities measured on each photodetector were recorded. 

The exit end of the sample was then disconnected from the 

photodetector and a further 1 cm of the HST was shrunk. 

Once the HST had cooled, 1 cm was cut from the end of the 

sample and it was reconnected to the photodetector. The 

light intensities from both photodetectors were then 

recorded again. The process was repeated until the total 

length of RFLG remaining dropped to 20 cm, at which point it 

became very difficult to handle the sample without 

disturbing the reference fibre, or the launch end. 

To remove any effect of changes in the intensity of the 

light source, each measured value of intensity through the 
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RFLG was divided by its corresponding reference signal. 

This normalised the intensity to variations of transmitted 

light. The data was then plotted and curves fitted to 

establish the loss rate in the light guides. 

The cutback data was expected to follow an exponential 

scale, as the loss was expected to be a fixed percentage of 

the light entering a given length of RFLG. Hence, recorded 

data was plotted and an exponential curve was fitted to the 

data. The equation that was fitted took the form: 

Y=a*EXP(b*X) 4.1 

The variable b was of interest for the purposes of this 

study, as this defined the shape of the exponential, or in 

this instance the proportion of light lost per centimetre. 

This was converted to percentage of light lost per cm by 

multiplying b by 100. 

Testing was carried out on fibres with the surface 

conditions shown below: 

i). Type 1 fibre bundles in the as-received condition 

ii). Type 2 fibre bundles in the as-received condition 

iii) . Type 2 fibre bundles coated while in the 

as-received condition 

iv). Type 1 fibre bundles cleaned 
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v). Type 2 fibre bundles cleaned 

vi) . Type 1 fibre bundles cleaned and coated to 

produce an RFLG 

vii) . Type 2 fibre bundles cleaned and coated to 

produce an RFLG. 

A minimum of 5 samples of each type were tested, and the 

results were statistically analysed to establish 95% 

confidence intervals of the mean. The statistical method 

used was the student t-test, as the sample size was small. 

4.3.2. Results and Discussion 

A typical cutback curve is shown in figure 4.8, along with 

the calculated best fit curve. The results of cutback 

testing for each sample type are shown in table 4.3. 

Condition Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7 
11 92.1 21.6 16.7 74.8 21.4 114.0 46.5 
iii 32.0 18.9 23.3 19.0 27.7 37.3 ---
IV 9.4 10.5 15.1 7.0 10.5 --- ---
V 6.2 6.8 4.6 5.2 5.5 --- ---
vi 23.7 23.1 24.5 33.8 23.6 --- ---
vii 23.0 15.4 21.3 14.0 15.4 --- ---

Table 4.3. Table of results for the transm1SS1on character1sat1on of the 

fibre bundles and light-guides. 

No data is presented for condition i as the fibres did not 

guide light well enough for a measurement to be made. 
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LengIh (011) 

Figure 4_8. Typical results from cutback testing of a fibre bundle. 

This example shows a fibre bundle that has been cleaned but not coated. 

In order to compare the values for each sample type shown 

in table 4.3, 95% confidence intervals for the position of 

the mean values were calculated. This was carried out in 

the manner of a confidence interval, using equations 4.2 to 

4.4. 

4.2 

where X is the mean of the data for each test method, n is 

the number of observations, B is the standard deviation and 

~ is the value observed from the table. The correct value 

of v for the table observation is calculated from 

v=n-l 4.3 
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The standard deviation can then be calculated using equation 

4.4. 

4.4 

Table 4.4 shows the mean value from each sample type and the 

calculated mean variance. 

Condition Mean value Mean variance 
11 55.3 (28.9 81.7) 
III 26.4 (20.8 31.9) 
IV 10.5 (8.0 13.0) 
V 5.7 (4.9 6.4) 
vi 25.8 (21.9 29.6) 
vii 17.9 (14.4 21.3) 

Table 4.4. 95% conf~dence ~nterval of the mean for each type of f~bre 

bundle and RFLG. 

This data is represented graphically in figure 4.9. 

It can be seen from the results in table 4.4 and the graph 

in figure 4.9, that type 2 fibres bundles in the as-received 

condition were very variable in their performance. This was 

to be expected as no attempt had been made to clean the 

fibres. Once coated, their performance was found to be less 

variable, suggesting that the coating process had affected 

the surface contamination. 
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Figure 4.9. Results from the cutback testing of the uncoated fibre 
bundles and the RFLG's. 

After cleaning, the performance of both types of fibre 

bundles was significantly improved, with the type 2 fibres 

being better than the type 1 fibres. This can be explained 

by the small amount of twist applied to the type 1 fibres 

during manufacture, which was not present in the type 2 

fibres. This will lead to increased bending losses in the 

type 1 fibres. 

After coating, RFLG's produced using both types of fibre 

bundle guided less well than when merely cleaned. However, 

RFLG's produced from the type 2 fibres were still better 

than the type 1 fibres. The reason for the increase in the 

loss upon coating, will be examined in chapter 5. 
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4.4. Summary 

The optimum method of coating the fibres have been 

determined, in order to maximise their light-guiding 

characteristics once embedded. Significant faults in the 

coating process were identified allowing them to be avoided. 

The quality of the applied coating was studied to enable its 

uniformity to be determined. 

Having applied the coating successfully, the transmission 

characteristics of the fibres were measured. This included 

the determination of the level of loss experienced for a 

variety of fibre conditions. 
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Chapter 5. Results 3 : Loss Mechanisms 

Associated with the Reinforcing Fibre 

Light-Guide 

This chapter examines the mechanisms by which light can be 

lost from the RFLG. A number of these loss mechanisms are 

dependent on the raw materials and, while considered, they 

will not be numerically modelled as the factors affecting 

these are production related and, thus, beyond the limits of 

control available in this study. Areas such as bending and 

evanescent coupling are considered numerically, as these 

will significantly affect the performance of the embedded 

RFLG. 

5 .1. Rationale 

The rationale behind this chapter is that the fibres were 

clearly seen to lose light when connected to a light source. 

Figure 5.1 was taken using a bundle of fibres mounted on the 

viewing platform of a microscope and connected to a 

white-light source. The light source was carefully shrouded 

to prevent stray light affecting the quality of the image. 

The only light used for this photograph was that which 

emanated from the fibres. It can be seen that there is a 

steady loss throughout the bundle, seen as a background glow 

making all of the fibres visible; a large number of bright 

points of light can also be seen. It would, thus, seem that 
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the light is lost from the fibres by more than one 

mechanism. 

H 
1 llIII 

Figure 5.1. Photograph of a fibre bundle guiding light, showing loss of 

light in two distinct ways: a). As distinct points of light; b). As a 

steady loss right across the fibres. 

Methods by which the light can be lost are presented in the 

following sections, accounting for both of the loss types 

observed in the specimen. One loss mechanism which is not 

discussed is the possibility of a completely broken fibre. 

This would clearly lead to a total loss of light at the 

break point, giving a bright spot on the photograph. 

Clearly in a bundle of fibres, some breaks are likely to 

exist, however, no way of establishing the exact number 

could be found. It should also be noted that no broken 

fibres were seen in the examined specimens, despite the fact 

that a large number of bright spots were observed. Broken 

fibres are not totally discounted as a loss mechanism, 

indeed they will be discussed in chapter 7, as they form the 

basis for the operation of the RFLG as a damage detection 

sensor. 
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5.2. Bending losses associated with the nature of 

the RFLG 

During manufacture, the fibres were drawn from the molten 

glass, gathered together into a tight bundle and wound on to 

a drum. The fibres will be approximately aligned, although 

they will tend to twist around each other and a significant 

amount of bending will be observed (see figure 5.2) 

the angular offset is low, it can be easily seen. 

-i 
200 flIII 

While 

Figure 5.2. SEM image of the fibre bundle showing the angular spread in 

the fibres. Lines with an offset of 0, 2.5 and 5 degrees have also been 

superimposed to show the level of disarray in the fibre bundle. 

In order to model the bending and establish possible radii 

of curvature caused by this interaction between fibres, 

certain assumptions were required. Firstly, only two fibres 

were considered. It was assumed that one of these fibres 

crossed the other fibre at a clearly defined angle and that 

it deformed around the other fibre to form an arc of a 

circle. It was assumed that the other fibre was totally 
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undeformed by this process. 

is shown in figure 5.3. 

The geometry of the situation 

Figure 5.3. Showing the geometrical calculation of the interaction 

length of the bent fibre. 

It can be seen that the length over which interaction takes 

place can be simply calculated using trigonometry to give 

L 2a/cos ex. 5.1 

where a is the radius of the fibre and ex. is the angle of 

interaction between the two fibres. 

length of interaction, the radius 

Having calculated the 

of curvature (ROC) was 

calculated using the geometric construction shown in figure 

5.4. It can be seen that the ROC is then calculated using 

the expression: 

R2 = L2 + (R-a) 2 5.2 

Expanding this gives: 

R = (L2 + a 2)/2a 5.3 
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where R is the ROC. 

~a L ~-.~~ -------------" .. '-- - ---- ---

R-a 
R 

Figure 5.4. Geometrical construction used to calculate the radius of 

curvature of the deformed fibre. 

Having calculated the ROC, the losses associated with the 

bend were considered. A number of authors (Gloge (1972), 

Synder and Mitchell (1973) (1974), Love and Winckler (1978), 

Bader et al. (1989), Bader et al. (1991), Bader and Maclean 

(1991)) have developed models which consider the losses 

associated with circular bends in an optical fibre. In the 

case of the RFLG, a multi-mode optical fibre would be 

produced and, thus, that by Bader and Maclean (1991) was 

adopted as most of the others considered single-mode fibres. 

In this approach, the losses were calculated using 

ray-tracing techniques, to model the paths of rays around 

the bend. Having calculated the loss for each ray, the 

losses were combined to give an overall value of the power 

output as a proportion of the power input. 

To achieve this it was first assumed that each ray possessed 

unit power, 

the fibre. 

at the point of entry to the curved section of 

Another assumption of the model was that the 
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fibre possessed an infinite cladding, meaning that no light 

could re-enter the core of the fibre after reflection at the 

cladding/air boundary. In order to model the situation 

mathematically, the geometry of the 

nomenclature used, are shown in figure 5.5. 

2aj 

R 

I I 

I : 
I 

rj r,: 
I 

I I 

I : 
I I 

I : 
__ ...1.-.1...-_ 

Radiated 

situation and 

Figure 5.5. Schematic illustration of the geometry of the waveguide and 

an entering ray. 

To calculate the number of mode groups transmitted through 

the fibre, Bader and Maclean (1991) gave the formula: 

5.4 

where n l is the refractive index of the core material, k is 

2~/A (A being the wavelength of light) and p is the number of 

the mode group currently under consideration. 

an integer and is calculated such that: 
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The term Pmax is the number of modes carried in the fibre. 9c 

is defined as the critical angle for guiding to occur and 

can be calculated using equation 5.6. 

5.6 

where n2 is the refractive index of the cladding. However, 

equation 5.5 was derived assuming that sin 9 = 9, which is an 

approximation only valid at small values of 9. In 

conventional optical fibres the difference in refractive 

indices will be very low, making the assumption valid. 

However, in this study, the chosen cladding materials gave a 

large difference, making the assumption invalid. A method 

was therefore required to overcome it. 

In effect what equation 5.5 says is that 9z at P=Pmax must be 

less than 9c and, hence, equation 5.4 can be rewritten as: 

5.7a 

and, substituting for k 

5.7b 

Equation 5.7b then allows the integer Pm~ to be calculated, 

enabling 9z for each integer value of P to be calculated 

using equation 5.4. 

82 



Chapter 5. Results 3: Loss mechanisms associated with the reinforcing fibre light-guide. 

The angles 80 and 8i , marked in figure 5.5, will vary for each 

modal group, depending on the precise location of X (see 

figure 5.5). To take account of this spread, a number of 

rays were considered in each modal grouping. This was done 

by moving X to different, fixed, positions, for example Xl' 

thus varying r to r l • For this study, rays were considered 

every 0.5 ~m through the core, but not impinging on the walls 

on entry into the curved section. Thus, 17 rays were 

considered per mode group, equally spaced through the core. 

The number of rays considered for each modal grouping, 

mUltiplied by the number of mode groups, Pmax' gives the total 

number of rays and was termed S. 

To calculate the losses associated with the introduction of 

a bend, Bader and Maclean (1991) established the values of 80 

and 8 i . The formulae used are shown in equations 5. 8a and 

5.8b respectively: 

S.8a 

(r cos 8z ) / (R-a) S.Sb 

These angles were calculated for each value of 8z and each 

value of r, to give the two angles of intersection for each 

ray under consideration. It should be noted, however, that 

8 i can cease to exist at certain geometries. This is because 

the ray will reflect from the outer wall at a large angle 

such that it does not hit the inner wall, but continues its 

path only interacting with the outer wall. Thus, if 
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equation 5.8b gives an impossible answer, 9; can be taken to 

be zero. 

Using equations 5. 8a and 5. 8b, ~tr can be calculated from: 

5.9 

and ~p can be calculated from: 

The geometry of the curve is such that 9i is smaller than 9z • 

Hence, if the ray is guided without loss in the straight 

fibre, it will not experience loss at the inner surface of 

the curved fibre. However, 90 is always greater than 9z with 

the result that both tunnelling and refraction can occur. 

These will both lead to loss of light power in the core of 

the fibre. So called leaky rays can exist when ~ is less 

than Oe i more power is lost from the ray as 90 approaches ge. 

When eo is greater than ge , light rays are refracted out of 

the core and all of the power in the ray is lost. When 

leaky rays are present, the power is lost progressively, as 

more interactions with the outer surface occur. Thus, the 

number of reflections from this outer surface must be known. 

Firstly ~b is defined as the angle of travel around the 

circlular arc. This must be greater than or equal to ~tr' 

The number of reflections, N, is then calculated from: 

5.11 
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where N is an integer. 

The power remaining in the core, as a proportion of the 

light entering the core, P(~b)/P(O), at an angle ~b around the 

circle is then: 

1 ~S 
p (~b) / P ( 0 ) = S ~ s= 1 (1- T) N 5.12 

where S is the total number of rays and T is the generalised 

Fresnel transmission function (Synder and Mitchell (1973)), 

calculated from: 

5.13 

for cases where 8o <8d , where 8d is the complement of the 

critical angle, as defined in equation 5.6, and j=21tn l /A-. 

Thus, using equations 5.12 and 5.13, the power output can be 

calculated for any ROC. 

For the purposes of this study, to maintain compatibility 

with the loss measurements made in chapter 4, the loss was 

calculated over the length of 1 cm. Thus ~b was calculated 

for each radius of curvature, to correspond to a total bent 

length of 1 cm. This assumes that the whole of the fibre is 

uniformly bent into a circular path, which is obviously not 

the case. However, the results will be an indication of a 

worst case scenario, with the true losses being lower than 

those calculated here. Calculations were carried out for a 
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cleaned fibre and also one which was coated with Sylgard 

184. This was done to discover if the application of a 

coating could account for the increased losses observed in 

the coated fibre bundles, compared to those without a 

coating (see chapter 4) . 

The graph shown in figure 5.6 presents the power output from 

both a clad and unclad fibre with varying angular offsets 

between the two interacting fibres. This was calculated 

using equation 5.12 for each angular offset. The refractive 

indices used in the calculation were 1.4585 for the fibre, 

1.41 for the silicone cladding and 1 for the air cladding 

It can be seen that the coated fibre would lose light much 

more rapidly than the uncoated one. This is due to the 

change of critical angle to a much lower value in the case 

of the coated fibres. It is, therefore, easier for a higher 

percentage of the total guided rays to either leak or be 

refracted from the fibre core. This provides a possible 

explanation for increased loss in the coated fibres. 

The predicted loss in the uncoated fibre is lower than was 

observed. However, this model takes no account of surface 

contamination and damage to the fibres. The losses 

predicted for the silicone-coated fibre is higher than those 

experienced in the cutback test, for the fibre angular 

offsets seen to be prevalent in the fibre bundles. Here the 

assumptions made in the calculations account for this. The 

fibres within the bundle will be bent around a variety of 

curves with different ROC. It was assumed, however, that 

they would only be bent around one ROC, for the full 1 cm 
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length. In reality, some regions will have a large ROC and 

will, thus, give little or no loss, while others will be 

more curved and give a high loss. 
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0.2 
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Figure 5.6. Graph showing the predicted losses due to bending in 

silicone and air clad fibres. 

Within this model, no allowance has been made for the entry 

of light from one guiding core into another. With the 

mUltiplicity of guiding cores this is a possible interaction 

and may help to account for the predicted losses being 

higher than those observed. The loss will change if light 

couples from one core to another, as the model monitors the 

effect of curvature on a given number of rays with unit 

power. The coupling of light into a core will either change 

the number of rays, or the power in a ray. This will 

obviously affect the losses in the fibre and invalidate the 

model assumptions. Also, it was assumed that lost light was 

permenantly lost to the system. If light transfers from one 
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core to another, then this assumption is invalid and the 

overall loss will be reduced. 

The effect of bending on the losses is firmly established 

for optical fibres and will account for a significant part 

of the losses from the RFLG. This mechanism of loss will 

add to the continuous background losses in the photograph 

shown in figure 5.1. 

5.3. Evanescent losses from the RFLG after 

embedding 

5.3.1. Experimental 

Within an optical fibre, at the interface between the core 

and the cladding material, the light is reflected when 

guiding occurs. However, the reflection does not take place 

precisely at the interface, with the energy penetrating 

slightly into the cladding material. This penetration is 

refered to as the evanescent field. The evanescent field 

falls off exponentially, so the bulk of the energy is 

reflected at or very close to the interface, although some 

will penetrate to a significant depth into the cladding. An 

absorbing body within range of this energy penetration, will 

lead to loss of light from the core. The depth of energy 

penetration into a flat plate can be calculated using 

equation 5.14 (Harrick 1967). 

5.14 
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where DP is the depth at which the energy has dropped to 37% 

(This being lie) of its original value. The other symbols 

take the following meanings: A is the wavelength of light 

under consideration, n 1 is the refractive index of the core, 

n2 is the refractive index of the cladding and 8 is the angle 

between the ray and a line perpendicular to the direction of 

the fibre. 

Evanescent losses will occur in the RFLG if fibres within it 

come into close contact with the matrix resin of the 

composite. This is due to the fact that the matrix resin 

has a refractive index greater than that of the fibres and 

will, therefore, not satisfy the requirements for guiding. 

Hence, any light energy penetrating as far as the matrix 

resin will be lost to the RFLG. 

In order to examine the effect of these evanescent losses on 

the RFLG, six were prepared in the same way as those which 

were to be embedded. These were then placed within tubes of 

the shape shown in figure 5.7, a photodetector being 

attached to one end and a white-light source to the other. 

The third arm of the tube allowed bromonapthalene to be 

introduced, covering the light-guide 1 cm at a time. 

Bromonapthalene has a refractive index of 1.64 which was 

significantly higher than that of the glass fibres and 

would, thus, mimic the matrix resin of the composite. A 

reading of the transmitted light intensity was taken for 

each successive submersion length, the process being 

repeated for all of the RFLG's, using a clean tube for each 
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test, preventing contamination of the sample prior to 

testing. 

Bromonapthalene 

I~ 
~~

.res 
-~ ---

Light Photo-~J~~[dd<M; 
Figure 5 _7_ Schematic illustration of the experimental setup used to 

measure the effect of embedding on the guiding characteristics_ 

5.3.2. Results and discussion 

5.3.2.1. Results 

The results of the progressive submersion of the RFLG's in 

bromonapthalene are shown in figure 5.B. Each of the sample 

fibres were produced in the same way and were nominally 

identical. It can be seen that there is some variance 

between the results for each fibre due to the variation in 

coating quality observed in chapter 4. However, fitting 

exponential curves to the results showed that there was only 

a variance of between 6 and 13.5 %/cm of transmitted light. 

A solid line is superimposed on the data which shows the 

predicted extent of the loss. This was claculated using the 

model which will be developed in the following section. 

This figure will therefore be discussed in more detail later 

in the chapter. 
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5.3.2.2. Modelling light loss within the RFLG 

In order to model the losses, the following assumptions were 

made: 

i) the fibres within the bundle lie straight, and thus 

fibres within the bundle that are close to the matrix 

resin remain there 

ii) there is no transfer of light between the guiding 

cores during transmission 

iii) the coating is uniform, with thin regions 

remaining uniformly thin 

iv) the amount of light energy which penetrates to the 

absorbing medium is lost to the system. 

Examining equation 5.14, it can be seen that the depth of 

penetration depends on the angle of approach of the ray to 

the fibre wall. This was calculated using equations 5.4 to 

5. 7b for each of the bound modal groupings. The depth of 

penetration of each modal group was then calculated for a 

wavelength of 550 nm (roughly the middle of the visible 

spectrum), wi th n 1 

respectively. 

and n2 being taken as 1.4585 and 1.41 
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Figure 5.8. Graph of experimental results for the progressive submersion 

of RFLG's in bromonapthalene. The predicted loss from the model is also 

shown. 

For the purposes of the model, a situation was considered 

where a single reinforcing fibre rested in a layer of 

coating such that at its thinnest point the coating was 100 

nm thick. The assumed situation is shown in figure 5.9, 

along with the penetrating energy decay curves. 

To calculate the fall in the penetrating energy, a loss 

curve was fitted through two known points, these being zero 

depth with 100% of energy remaining and DP depth with 37% of 

energy remaining 
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Fibre 5.9. Schematic illustration of the assumed arrangement of the 

fibre and cladding. The penetration of light energy into the cladding is 

also superimposed_ 

This data provided two coordinate points on the curve, 

allowing a model curve to be fitted. It was assumed that 

the falloff in energy was elliptical, not exponential, as 

it was possible to fit an elliptical curve to the two known 

fixed points. It was not possible to carry out similar 

curve fitting for an exponential curve, because too few 

points were known. The equation was calculated using the 

generic equation for an ellipse, centred at the origin, 

which is shown in equation 5.15 
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5.15 

where x and yare general points on the axes, a is the 

intersection with the X-axis and b is the intersection with 

the Y-axis. The value of a was known to be 100%; b could 

then be calculated by letting the value of x be 37% and y be 

DP. From the obtained values of a and b, it was possible to 

calculate the amount of energy penetrating through the 

cladding material, for any thickness of cladding, for each 

modal group. 

Considering rays propagating in the fibre, the rays will be 

distributed radially about the centre of the fibre. The 

amount of energy lost will vary around the fibre, with 

losses occuring only in the bottom half (see figure 5.10). 

The energy lost per modal group per reflection from the 

fibre's bottom surface can then be calculated in the 

following manner. 

Figure 5 .l.0. Schematic illustration showing the area over which light 

energy will be lost to the system. 
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The depth of penetration required to reach the absorbing 

medium was first calculated using the construction shown in 

figure 5.10 and equation 5.16. 

cos 8 = (a+100)/(a+l) 5.16 

where 8 is the angle around the fibre section, a is the fibre 

radius and 1 is the depth of penetration to the absorbing 

medium. Using the elliptical curves, which had been fitted 

to each modal grouping, the energy loss for each value of 8 

was calculated for each modal group. 

The number 

fibre was 

of reflections from the lower surface of the 

then calculated for each modal group using 

equations 5.17 and 5.18. 

The distance between successive reflections was first 

calculated using equation 5.17. 

L = 2a/tan 8z 5.17 

where L is the distance between consecutive reflections at 

the top and bottom of the fibre, 8z is the modal angle and a 

is the fibre radius. The number of reflections per 

centimetre on the bottom of the fibre was then calculated 

using equation 5.18. 

NR = 1/2L 5.18 
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where NR is the number of reflections and L must have the 

units of centimetres. 

Having calculated the number of reflections per centimetre 

for each modal group, the cumulative loss per modal group 

per centimetre was calculated. Initial power in each mode 

was taken as 100, with the fixed loss per reflection, 

calculated previously, being applied for each reflection. 

The calculated values are shown in table 5.1. The effective 

loss in the fibre as a whole, per centimetre, was calculated 

by averaging the losses in each mode, over the whole fibre. 

This was calculated to be around 36 %/cm per fibre. 

Mode number Percent lost per centimetre 
1 28.9 
2 28.9 
3 30.0 
4 30.0 
5 31.1 
6 32.2 
7 33.3 
8 35.6 
9 37.8 
10 43.3 
11 64.4 

Table 5.1. Percentage loss per cent1metre for each modal group1ng w1th1n 

the fibre core. 

Once the loss in an isolated fibre had been determined, the 

situation for a RFLG was considered. In order to consider 

the actual losses in an RFLG, the average number of fibres 

which were close to the matrix resin was determined. Ten 

separate embedded RFLG' s were examined using optical 

microscopy, to determine the number of reinforcing fibres in 

close proximity to the matrix resin. The results of this 
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study indicated that on average 33 fibres were close to the 

resin and would be expected to lose 36 % of their light 

energy. However, there were 200 fibres in the bundle. 

Assuming that each fibre carried an equal proportion of the 

initial light, the amount of light lost per fibre bundle was 

calculated to be around 6 %/cm. This value is similar to 

the observed values from the experiments, as shown in figure 

5.8. 

The assumption 

elliptical, as 

that the 

opposed 

falloff in light energy 

to exponential, would lead 

was 

to 

inaccuracies in the determination of the energy loss. Prior 

to the intersection point at 37 % (See section 5.3.1), the 

elliptical curve fit will tend to overestimate the energy 

lost, whereas after the intersection, it will tend to 

underestimate it (see figure 5.9). However, the number of 

known points on the curve precluded the fitting of an 

exponential curve. 

The assumption that the fibres were straight and would stay 

spacially constant with respect to each other along the 

bundle length is also incorrect, as was discussed in section 

5.2. This would lead to error in the prediction of energy 

loss, as new fibres could come into contact with the 

absorbing layer, leading to a spreading of the loss through 

more than the initial fibres. As the loss removes a fixed 

proportion of the light in the fibre, the largest amount is 

lost at the first reflection. Hence, this assumption will 

lead to an underestimation of the light loss. 
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The assumption that no energy transfer takes place between 

fibre cores is also an over-simplification. Just as light 

can transfer energy, via the evanescent field, into an 

absorbing body, so it can also transfer energy into a 

guiding body in its vicinity. As the fibres in the bundle 

are closely spaced, there is the possibility of transfering 

light energy between fibres which have experienced no loss 

and those that have lost light. This would lead to the 

model, as proposed, being inaccurate. A fibre that lost 

light after energy transfer, would lose a different amount 

from that which would be predicted if no transfer had 

occured. 

The assumption that the coating is uniformly thick is also 

an over simplification, as the coating will vary randomly. 

In some areas the fibres will all be well coated and in 

others, more will be exposed than was assumed (discussed in 

greater depth in chapter 4). The geometry of the bundle 

means that it is more likely that substancially less fibres 

would be close to the resin than that more of the fibres 

would be close to it. This is because the bundle tends to 

exist as a clump, which will have a relatively constant 

circumference, meaning that only a given number of fibres 

can exist at the edge of the clump in a thinly coated 

region. Conversely, where a thick region exists, it will 

tend to surround the whole, or part, of the clump reducing 

the number of fibres in contact with the resin, in that 

region. In this manner a reduction in loss is more likely 

than an increase in loss, leading the model to overestimate. 
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The assumption that the layer of Sylgard 184 passes the 

fibre in a flat plane, will also lead to an inaccuracy. In 

fact it is observed in many of the RFLG's that at least one 

fibre will be close to the resin on more than one side. 

This will clearly lead to an underestimation of the losses, 

as the percentage of energy lost will be much higher in such 

a fibre than it would be if only one side of the fibre lost 

light. 

From the above discussion it can be seen that the 

assumptions can lead to both over- and under-estimates being 

made of the total loss due to evanescent coupling. However, 

the effect of these losses on the RFLG has been 

demonstrated. It is suggested that evanescent losses will 

account for the vast majority of the excess loss observed in 

the embedded RFLG over and above those observed in the 

unembedded RFLG. 

5.4. Scattering and absorption of light 

Scat tering of light, is another mechanism by which light 

could be lost to the core of a reinforcing fibre. The most 

likely form of scattering in this case, is due to impurities 

or irregularities. The presence of impurities within the 

fibre core could lead to localised changes in refractive 

index, leading to refraction of the light and possibly its 

loss from the core altogether. Blemishes on the fibre 

surface could also lead to scattering. These loss 

mechanisms should be minimised, to maximise guiding 
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characteristics, although with high purity silica fibres 

impurities should be low and, thus, the effect of refractive 

index changes on scattering should be minimal. 

Scattering from inclusions in the core glass may, however, 

have a significant contribution in the case of these fibres. 

It was observed that the raw glass, from which the fibres 

were drawn, contained a significant amount of voids (section 

3.1). If light were to strike one of these voids, it would 

have the effect of a prism in the structure and could 

increase scattering (see figure 5.11). It can be seen that 

voids in the fibre core would lead to light being lost at 

discrete locations, providing a mechanism by which the 

bright spots in figure 5.1 could be formed. 

Figure 5.11. Schematic illustration of the scattering effects associated 

with the presence of voids in the fibre core. 
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5 .5. The effect of voiding within the cladding 

Voids were inevitable in the application of the coating, so 

their effect on the guiding characteristics was important. 

Two possible situations were considered, these being the 

presence of a void at the point of light launching into the 

fibre, and a void encountered in the RFLG structure. Each 

of these cases is illustrated in figure 5.12. 

Figure 5.12. Schematic illustration of the effect that voids have on 

light guiding, both at the end of the fibre and also mid-fibre. 

It can be seen from this diagram that the effect of the void 

at launching is a momentary increase in the critical angle 

leading to an initial large quantity of modes within the 

fibre. Once the fibre is surrounded by solid cladding these 

modes are lost to the fibre and the situation returns to 

that which would be expected if a void was not present. 

When a void is encountered in the middle of the fibre, light 

strikes the core/cladding interface at well below the 

critical angle for a core in contact with air. Therefore, 

the light continues to be guided, unaffected by the presence 

of the void. Thus, voids in the cladding have no 

significant loss-promoting effect over and above those of a 
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fully clad fibre and can be neglected from the point of view 

of this analysis. 

5.6. Summary 

Due to the observation of light loss from a fibre bundle, a 

variety of potential loss mechanisms have been discussed. 

Bending losses, well established in convential optical 

fibres, have been examined in the context of the RFLG. 

Evanescent losses from the RFLG, when embedded, have also 

been examined both numerically and experimentally. Both of 

these loss mechanisms were found to be capable of giving 

significant losses in the RFLG. The effect of surface 

damage and voiding both within the fibre and between fibre 

and matrix have 

fibre and surface 

also been examined. Voiding within the 

damage were both shown to be potential 

loss inducing mechanisms. 
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Chapter 6. Results 4: Examination of damage 

development in composite containing 

reinforcing fibre light-guides 

This chapter discusses the development of damage within the 

composite, under impact and crush testing. The level of 

adhesion between the prospective cladding materials and the 

composi te was also examined. Bearing in mind the adhesion 

data, the effect that the presence of the RFLG had on damage 

development was examined. 

6.1. Study of the adhesion between the cladding and 

the matrix resin 

6.1.1. Experimental 

To provide information on the level of adhesion between the 

cladding polymers and the composite, a specimen was prepared 

consisting of a layer of cladding polymer sandwiched between 

two square pieces of pre-preg 1 cm in length. The sandwich 

of pre-preg and cladding polymer was then attached between 

two aluminium strips, previously abraded and degreased with 

acetone, to form a lap- shear specimen. The edges of the 

sample were sealed using PTFE tape to prevent the resin 

flowing out of position, and the sample was cured under 

slight positive pressure, to ensure intimate contact between 

the cladding polymer and the matrix resin. 
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Five samples were prepared using e a c h of the cladding 

polymers Sylgard 184 and OG 137, as well as samples with no 

cladding polymer between the pre -preg square s, to give a 

reference value. Prior to preparation of the composite the 

silicone resin was fully cured, whereas the OG 137 was 

applied to the surface of one of the pre - preg square s as a 

solution and allowed to dry. 

Aluminium support 

J 
Composite/cladding polymer sample 

Figure 6 . 1. Schematic illustration of the samples used to test the 

interface strength between the cladding polymers and the compos i te. 

Testing was carried out using a Tensometer type 'E' tensile 

tester at a speed of 0.5 mm/minute, a load/extension curve 

being plotted as testing proceeded. The fracture surfaces 

were observed upon failure, to pin - point the locus of 

failure. 

6.1.2. Results and Discussion 

The graph shown in figure 6.2 shows a plot of peak load 

obtained for each of the specimen types, under tensil e 

testing. It is clearly seen that the adhesion between the 
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Sylgard 184 and the composite is very low, an observation 

which is verified by examination of the fracture surface. 

The fracture was observed to be totally interfacial in 

nature, with no apparent adhesion between the two materials. 

In the case of OG 137, it is observed that the level of 

adhesion is much closer than that of the reference samples; 

again the fracture surface gives evidence to this. It was 

observed, in thi s case, that both pieces of pre-preg 

retained fragments of OG 137. This indicated that failure 

had occurred in both the OG 137 and the interface at similar 

levels of load. 

300 

5anlJfe types: 
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1. ReIerenoe ll1IIer1aJ. 
2. 00137. 
3. SfIgard 184. 
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Figure 6.2. Graph showing the results of adhesion testing of the two 

chosen cladding polymers, with the composite. The strength obtained from 

reference panels is also shown. 

While it can be said that the strength of the OG 

137/composite interface approached that of the reference 

samples, it cannot be said that it approached that of the 
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composite/composite interface. This is because observation 

of the failure location in the reference samples showed that 

failure had occurred in the aluminium/composite interface. 

This showed that the composite/composite interface was 

significantly stronger than the reference level measured in 

the tests. 

Al though neither interface approaches the strength of the 

composi te itself, it can be seen that the OG 137 has a 

stronger interface with the composite than Sylgard 184 and, 

hence, will be less detrimental. 

6.2. Preliminary damage sensing study 

6.2.1. Experimental 

Initial sensing studies were carried out using an RFLG 

produced from fibre bundles described in section 3.2 as type 

1 fibres. These fibres were first cleaned and then coated 

using the process described as method i in section 4.1. 

Composite specimens were prepared using a 16 ply, cross-ply, 

lay-up sequence of {O,90,90,O,O,90,O,90}s. Panels were 

prepared which contained no optical fibres, RFLG's, 30, 50 

and 125 ~m conventional optical fibres, to allow comparison 

of the effect of the various optical fibre types on the 

induced damage. Fibres were positioned every centimetre 

between plies 1 and 2 and also between plies 15 and 16, in 

the 0 direction, in the following manner: in the case of the 

RFLG and 125 11m optical fibres, a single fibre was placed 

106 



Chapter 6. Results 4: Examination of damage development in composite containing reinforcing fibre light-guides. 

every centimetre, in the case of the 50 ~m optical fibres a 

bundle of 6 to 10 fibres were laid every centimetre and in 

the case of the 30 ~m optical fibres a bundle of 200 fibres 

were laid every centimetre. The panels were then cured in 

an autoclave and C-scanned, using a sound frequency of 10 

MHz, before being cut into 70 mm squares. The specimens 

were then air dried at 60 0 C for three days and stored in a 

desiccator until required for testing. 

Impact testing was carried out using five different impact 

energies, 2, 4, 6, 8 and 10 J, using a Rosand instrumented 

impact tester, fitted with a 20 mm hemispherical tup. Two 

samples of each type were impacted at each of 2, 4, 6 and 8 

J, with one being impacted at 10 J. Subsequent to impact 

testing, the specimens were C-scanned to reveal the extent 

of the damage, and the damaged area was measured for each 

optical fibre type. The damaged areas were then compared, 

to reveal any differences between the specimens containing 

different optical fibre types. 

The C-scanner used in this study was only capable of 

providing a profile image of the damaged region. In order 

to ascertain the likely location of the damage within the 

composi te, reference composite panels containing no optical 

fibres, which had been impacted at one of the impact 

energies used in the study, were taken and mounted in 

cold-curing mounting resin. Cold-curing resin was chosen, 

as no heat or pressure had to be applied to the specimen, 

which would have tended to increase the damage in the 

already delaminated composite. 
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Having mounted each panel, it was then sectioned using a 

diamond wheel, to remove sections within the damaged region. 

Slices of 1 cm width were cut through the centre of the 

specimen, and to either side of the specimen. The composite 

slices were carefully polished to a 1 Jlm diamond finish, 

ensuring that all of the deformation introduced during 

diamond cutting and grinding was removed before progressing 

to a finer abrasive. A dye penetrant was then applied to 

the polished surface. The dye penetrant was allowed to soak 

into any cracks present in the polished surface, before 

being wiped off after a five minute soak time. The dye used 

was a fluorescent dye, which fluoresced under the light of a 

mercury discharge lamp. Using this arrangement, on a Leitz 

Optimat microscope, the presence and position of cracks 

could be observed, as the dye penetrant fluoresced with a 

green light in the crack locations. Photographs of the 

sections were taken using a 3200 ASA film as the light 

levels were very low. 

6.2.2. Results and Discussion 

Typical C-scans from the composite containing RFLG's, at 

each of the impact energies used in the study, are shown in 

figure 6.3, along with an unimpacted reference panel. 

The vertical lines apparent on the panels containing RFLG's 

are not delaminations, but are due to the presence of the 

RFLG' s. They appear in this fashion as the sound-wave 
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transmission characteristics of the silicone resin is 

significantly different from that of the composite t leading 

to scattering of the ultrasonic waves. The increase in size 

of the delamination t as the incident impact energy 

increases, is clearly seen. 

(Q Reference (iO 2J Impact (Iii) 4J Impact 

(iv) 6J Impact (v) 8J Impact (vO 10J Impact 

1---1 
20 mIn 

Figure 6.3. C-scan images of an unimpacted reference panel and five 

composite panels containing RFLG's impacted at increasing impact 

energies. 

Comparison was carried out between the measured delamination 

areas for each of the optical fibre types used In this 

study. The results are shown in figure 6.4. It can be seen 

that there is no significant difference between the measured 

delamination areas for each of the different optical fibre 

types. This indicates that despite the poor adhesion 
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between the RFLG and the composite, they do not appear to 

have a detrimental effect on the properties of the composite 

under impact loading. 
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Figure 6.4. Graph of the delamination area against impact energy for the 

different sample types used in the preliminary study. 
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Figure 6.5. Illustrating the location of damage within a reference panel 

impacted at 2 J. Sections (b) I (cl and (d) show the damage across 

sections indicated by lines (i) , (ii) and (iii) in figure (a) I 

respectively. 

The examination of the location of the impact damage, 

revealed that a 2 J impact gave predominantly transverse 
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splitting of 90 0 plies. However, some delamination was 

observed, shown in figure 6.5. An 8 J impact not only gave 

splitting through the plies, but significant delamination at 

0/90 interfaces. The damage area was also seen to have 

spread further after the 8 J impact. This is shown in 

figure 6.6. 
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Figure 6.6. Illustrating the location of damage within a reference panel 

impacted at 8 J. Sections (b), (c) and (d) show the damage across 

sections indicated by lines (i), (ii) and (iii) in figure (a) I 

respectively. 

6.3. Crush testing 

6.3.1. Experimental 

Crush testing was carried out on samples of composite 

containing RFLG's and also composite containing no 

light-guides, to simulate impact damage in a more 

controllable fashion. RFLG's were embedded between plies 1 
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and 2 of a 16 ply composite with the lay-up sequence 

The RFLG's used in this study were 

fibres, with an optimised coating 

{O,90,90,0,O,90,O,90}s' 

produced using type 2 

described as method iii in section 4.1. The composite was 

strips of approximately 2.5 mm produced in 200*20 mm 

thickness. These were cut to give a specimen of 100*20 mm, 

for the purposes of crush testing. The geometry of tup and 

of specimen clamping used for the crush test was the same as 

that used in the impact study. The setup used was a 20 mm 

hemispherical tup, the sample being edge clamped and the 

central portion unsupported. Three RFLG's were embedded 

within each specimen, with one fibre embedded centrally, one 

fibre placed 2 mm to one side of the centre and the other 

placed 4 mm to the other side, allowing damage spread to be 

monitored. 

Prior to testing being carried out, each strip was C-scanned 

to ensure that the composite contained no large voids. Each 

composite strip was crushed to an individual indentation 

depth of either 0.125, 0.25, 0.375, 0.5, 0.625, 0.75, 0.875 

or 1 mm respectively, with two composite specimens of each 

type being tested to each level. Subsequent to the crush 

testing, the samples were C-scanned, to allow the difference 

between the sample before and after testing to be examined, 

and the size of any damaged region to be ascertained. 

The size of each delamination was measured by firstly 

scanning the C-scanned image into a computer and then using 

Data Translations Global Lab Image software to measure the 

area of delamination, directly from the images. The 
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delamination area was obtained from the computer in terms of 

pixels, this being converted to mm2 using the calibration 

facility of the software. 

Examination of the damage location was carried out in the 

manner discussed in the previous section, using a 

fluorescent dye penetrant. In this instance, however, 

rather than cutting 1 cm wide sections, the damage location 

was examined by polishing 2 mm from each specimen between 

examinations. In this manner, the damage was examined at 

regular intervals through the section, rather than a brief 

snap-shot through the centre and at the edges being 

obtained, as was the case in the previous study. 

Photography was again carried out using a 3200 ASA film, to 

give images of the whole damage region. The size of the 

damage regions dictated that a montage technique be used to 

give a full image. The montage was achieved by scanning the 

photographs into a computer file and processing the images 

using image analysis and manipulation software. This 

enabled large montage sections to be easily produced for 

later analysis. The location of delaminations, revealed by 

fluorescence microscopy, was used to compare damage 

formation within the reference panels and those panels which 

contained RFLG's. 
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6.3.2. Results and discussion 

6.3.2.1 C- scanned data 

The results of C-scanning for reference panels 

panels after impact are shown in figures 6.7 

respectively. 

and RFLG 

and 6.8 

I 
16 mm 

(a) (b) (c) (d) (e) 

Figure 6 . 7. C-scanned images of the damage contained in the reference 

panels. Picture (a) is for an indentation depth of 0.5 mm; (b) 0.625 mm ; 

(c) 0.75 mm; (d) 0.875 mm and (e) 1 mm. 

I 
16 mm 

(a) (b) (c) (d) (e) 

Figure 6.8. C-scanned images of the damage contained in the panels 

containing RFLG' s. Picture (a) is for an indentation depth of 0.5 mm; 

(b) 0.625 mm; (c) 0.75 mm; (d) 0.875 mm and (e) 1 mm . 

Measurement of the 

revealed that there 

the areas observed 

containing the RFLG's 

damage area for 

was no significant 

for the reference 

(see figure 6.9). 
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Figure 6.9. Graph of the change in delamination area with indentation 

depth for both panels containing RFLG's and reference panels. 

6.3.2.2. Damage location study 

6.3.2.2.1. Visual observations 

Results from the damage location study revealed no damage 

within the composite before an indentation depth of 0.625 

mm. This is in conflict with the C-scanned data, but it was 

considered possible that, due to the small damage area, the 

damage could have been missed in the polishing process. At 

indentation depths of 0.625 mm and above, the damage was 

evident. 

It was observed that, in general, the location of damage was 

consistent between reference panels and panels containing 

RFLG's. The location of the delamination damage showed no 

significant variation, tending to be towards the edges at 
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the point of indentation, with very little damage observed 

in the centre of the specimen. Further from the indentation 

point, to either side of the central section, damage was 

observed to move in towards the centre of the composite. 

This happened with both the reference panels and those 

containing RFLG' s. It would appear, therefore, that the 

presence of an RFLG in the composite did not adversely 

affect the resistance of the composite to delamination, in 

the arrangement chosen for the tests. 

Example sections for a reference panel and a panel 

containing RFLG's are shown in figures 6.10 and 6.11 

respectively; the similarity in the location of the 

delaminations can be seen, with cracks and delaminations 

showing up as bright lines. The reasons for the particular 

morphology of the impact damage pattern will be discussed in 

the next section. 

One difference in the damage pattern does, however, present 

itself. A crack can be seen emanating from the location of 

an RFLG in figure 6.11, and running vertically through plies 

2 and 3 of the composite. Plies 2 and 3 can be seen to have 

bent in the vicinity of the RFLG's, to make space for them 

wi thin the composite. The observed crack tends to emanate 

from either the central or 2 mm displaced RFLG. The 

composite in this region is already bent around the RFLG's 

and will, thus, suffer more serious bending stress as it is 

in the centre of the specimen. The stress fields leading to 

the formation of this crack are discussed in more detail in 

the following section. 
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~ 
1 mm 

Figure 6 . 10 . Sections showing the location of damage within a reference 

panel crush tested to an indentation depth of 1 mm. Fractures can be 

observed as bright lines within the composite structure, with two typical 

delaminations being indicated with arrows. 
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Figure 6 .11 . Sections showing the location of damage within a composite 

panel containing RFLG's, crush tested to an indentation depth of 1 mm. 

Fractures can be observed as brightlines within the composite structure. 
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6.3.2.2.2. Consideration of stresses 

As it is bent, the composite will be under a complex 

arrangement of stresses, considered macroscopically in 

figure 6.12. It can be seen that the composite experiences 

both compressive and tensile loading within its structure, 

in the plane of the composite sheet. Also there will be a 

compressive loading through the thickness of the composite 

at B, due to the tup impinging on its surface. 

~ ~~-~-=---] 
~~pressi~~ 

Compression S-~ Compression 

Thnsion 

Figure 6. 12 . Stress fields within the composite plate subjected to a 

bending load. 

Considering the tensile and compressive loadings towards the 

ends of the bent region (marked A in Figure 6.12) it is 

observed that the top surface is under tension, while the 

bottom surface is in compression. At the centre of the 

specimen 

reversed. 

(marked B in figure 6.12) the situation is 

Both tensile and compressive loading will lead to 

interfacial stresses building up which can cause 

delaminations to develop between unlike plies. The 

situation is considered for the four possible combinations 

of ply orientations and loadings. These being 0/90 

interface in tension and compression and also 90/0 interface 

in tension and compression, the resultant deformations, 

leading to delaminations occurring, are shown in figure 
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6.13. 

degree 

In this 

plies 

figure, the deformations of the 

are considered for a ply 

a and 90 

which is 

unconstrained. Any difference in unconstrained deformations 

between the two plies indicates an area where a differential 

stress will build up and failure is more likely to occur. 

Thus, delaminations due to bending could occur on all of the 

considered interfaces. 

Liu (1987) examined the bending stiffness mismatch and 

proposed this as the reason for delamination to occur. The 

deformation induced by bending, again for separate 

unconstrained plies is considered in figure 6.14. This 

would suggest that delamination would only occur upon a 90/0 

interface, as in a 0/90 interface any delaminations will 

tend to close, due to the manner in which the two plies 

deform. In the case of the 90/0 interface, as the 90 degree 

ply resists bending, it will tend to cause tensile stresses 

at the interface, leading to delamination. However, in the 

si tuation considered by this study, the indentor contacts 

the surface at a point, not in a line. Under these 

circumstances, a 90 0 rotation of the sample inverts the 

interface from 0/90 to 90/0 and delaminations can occur 

because of the bending stiffness argument. Thus, 

delamination would be expected to occur on both 0/90 and 

90/0 interfaces, as observed in the polished sections. 

120 



Chapter 6. Resul t s 4 : Bxamination of damage developme nt i n composite containing reinforcing fibre light - guide •. 

< 
Figure 6.13. 
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> ) < 
Illustration of the unconstrained ply deformation due to 

various loading regimes, showing the strain differentials which lead to 

delamination . 

Little delamination was seen in the centre of the specimen, 

directly beneath the indentation point. It is proposed that 

this is directly due to the presence of the tup. The 

compressive loading associated with the tup, as it impinges 

on the surface, would tend to close any cracks which run 

into that region, limiting the potential for delamination. 

Figure 6.14. 

o 
"' __ liliiii90 

Load 

• __ ~90 
'-~~_~_--' 0 

Schematic illustration of the effect of bending on 

delamination of the composite,from the bending analysis view point . 
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The tup, being hemispherical, will constrain a ci rcular 

region at the centre of the deformed zone. Delamination 

will not be likely to occur in this zone and, thus, a 

central undamaged region would be anticipated. Referi ng to 

figures 6.7 and 6.8, such a region can be seen to be present 

in the C-scans. When considering the damaged sections shown 

in figures 6.10 and 6.11, the expected morphology of the 

damage must, therefore, be born in mind. Damage would 

therefore be expected to occur in the shaded region shown i n 

figure 6.15. 

Figure 6.15. Schematic illustration showing the deformation induced by a 

central indentation and the spread of the damaged region through the 

examined sections. 

The observed crack through plies 2 and 3, emanating from the 

region of the central or 2 mm displaced RFLG, is thought to 

develop in the following manner. The geometry of the 

situation is shown in figure 6.16. It can be seen that 

prior to the indentation process, plies 2 and 3 are already 

bent due to the presence of the RFLG. Once indentation 

commences, the central region on the top surface will be 

under compressive loading. It is, thus, likely that if the 
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compressive load is sufficiently great, the compos i t e will 

fail in this region, in the manner expected o f a compressive 

failure. The expected morphology of such a crack is shown 

in figure 6.16 and is seen to be similar to the obser v e d 

crack form. Thus, elimination of the bent region around the 

RFLG would reduce the likelihood of this form of failure . 

Compressive load 
due to bending 

Delamination crack 

< 

Figure 6. 16 . Illustrating the failure of plies 2 and 3 due to the 

presence of the RFLG and compressive loading due to bending . 

6.4. Summary 

The effect that the presence of an RFLG has on the damage 

location within the composite has been established. It was 

first established that the interface between Sylgard 184 and 

the composite was very weak, while that of OG137 was 

relatively strong. However, despite the weak interface, 

initial impact studies found the delamination area was not 

increased by the presence of RFLG's. More detailed studie s, 
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using crush testing, confirmed that the area of delamination 

was not increased although a damage mechanism associated 

with the RFLG was identified. The stresses generated during 

crush testing were considered in order to account for the 

damage morphology observed in the samples. 
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Chapter 7. Resul ts 5: Examination of the 

performance of the reinforcing fibre 

light-guide as a damage sensor 

This chapter contains a discussion of the performance of the 

RFLG as a sensing element. In order to understand the 

sensing process of the RFLG and its performance when 

embedded within the composite, a knowledge of the average 

strength of the fibres and adhesion between the fibres and 

cladding was also necessary. 

7.1. Average fibre strength determination and 

adhesion testing 

7.1.1 Experimental 

The fragmentation test was used to establish both the 

adhesion between the fibres and cladding and also the 

Weibull statistical information for the fibres. This 

approach was adopted as it overcame some of the difficulties 

involved in handling the fibres which precluded the testing 

of single, unembedded, fibres. The interfacial shear 

strength was obtained using a classical force balance 

approach, with the conversion factor of 4/3 used to 

calculate the ineffective length from the average fragment 

length. 
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Single silica fibres were separated, from a fibre bundle 

which had been cleaned. Care was taken to handle the fibres 

only at one end, leaving the majority of the fibre in a 

virgin condition. A thin layer of Sylgard 184 was cast into 

a square polypropylene tray, which was approximately 10 cm 

wide. The separated fibre was then placed upon the surface 

of the resin. It was found to be possible to place two 

fibres within each tray without them interfering with each 

other. Once this had been done, a second thin layer of 

resin was poured on top of the fibres. To cure the resin, 

the specimens were placed in an oven at either 100°C or 35oC, 

the cure times being 1 hour or 3.5 days respectively. 

Once the specimens had been cured, the resin was removed 

from the tray. Microscopic examination was used to locate 

the fibres and tensile 'dog-bone' specimens with a gauge 

length of 15 mm were stamped out of the resin. Care was 

take to ensure the fibre lay straight along the gauge length 

of the specimen. 

Testing was carried out using a Polymer Laboratories 

Mini-Mat miniature tensile testing machine, at a speed of 

0.5 mm/min, to an applied strain of 20 %. Fragments were 

observed using oblique lighting, with a stereo-microscope 

being used to view the specimen. A CCD camera was attached 

to the camera mounting tube of the microscope, allowing the 

fragmentation process to be recorded on to a video. After 

all the specimens had been examined, the videos were 

reviewed and the strain at which each fragment formed was 

measured. 

126 



Chapter 7. Results 5, Examination of the performance of the reinforcing fibre light - guide as a damage sensor 

7.1.2 Results and Discussion 

The fragmentation specimen cured at displayed 

fragmentation of the fibre immediatly after curing (shown i n 

figure 7.1a); other areas, with no fragmentation, displayed 

a sine wave bending of the fibre (shown in figure 7 .lb) . 

This was due to thermal contraction of the resin after 

curing. When cured at 35 0 C no fragments were formed, 

although small amounts of sine wave deformation could still 

be observed. Test results, therefore, were all for the 350 C 

cure schedule. 

1---1 
100 pa 

(a) 

Figure 7.1 a and b . 

rippling respectively. 

(b) 

Showing a thermal expansion induced fragment and 

Fragmentation was observed in all 16 of the samples tested. 

However, 5 of the samples were seen to give a large amount 

of debonding and interfacial damage, or to contain a fibre 

which was seriously off-centre in the specimen (see figure 

7.2) . These samples were rejected, as the assumption that 
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the strain in the fibre is equal to the strain in the 

matrix, could not be made with any level of certainty. 

Thus, 11 samples were accepted, giving a total of 80 

fragments. An example of an acceptable sample is shown in 

figure 7.3. The strain at which each fragment occurred was 

recorded from the video screen, by measuring between fixed 

gauge marks on the sample. A gauge length of 12 mm was 

considered for each specimen as this length was clearly 

visible at all levels of strain. Due to the relatively 

small number of fragments, it was decided to plot all of 

these on the same Weibull plot, giving a considered gauge 

length of 132 mm. Considering the samples together also had 

the advantage that any analysis would be more accurate, as 

there were more fragments under consideration. 

4 mm 

Figure 7 . 2. Photograph of a fragmentation specimen showing a seriously 

off-centre fibre with debonding along the fibre. This can be seen by the 

extended bright regions (circled) indicating fibre breakage and debonds 

running along the fibre edges. 

The calculation process used in this study, was a 

development of that proposed by Shioya and Takaku (1995). 

This involved modification of the Weibull equation to allow 
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determination of the Weibull parameters from a plot of the 

natural logarithm of the number of fractures against the 

natural logarithm of the strain. The equation that they 

developed is 

Figure 7.3. 

fragmentaion. 

shown in equation 7.1. 

4 nun 

Photograph of a fragmentation specimen showing good 

This can be seen by the bright points of light (circled) 

indicating an isolated break with no disturbance to the surrounding 

interface. 

7.1 

where n is the number of fragments, L is the gauge length, Ec 

is the composite strain and Ef is the fibre modulus. The 

parameters ~ and A are the Weibull shape and scale parameters 

respectively. 

Takaku 

length. 

(1995) 

The parameter La is defined by Shioya and 

as an arbitrarily determinable reference 

However, it is proposed in this study that La must, 

in fact, be the sample gauge length used, so as to remove 

any arbitrary changes in the Weibull shape and scale 

parameters. The other modification to the equation is to 

use a weibull equation in terms of strain rather than 
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stress, as in equation 7.1. The equation used in this study 

is therefore given in equation 7.2. 

In(n)=pln(~)-pln(~) 7.2 

where eo is the Weibull scale parameter in terms of strain. 

The Weibull parameters were determined by plotting a graph 

of In(n) :In(8c ). This gave a straight line at lower strains, 

which had a gradient of p, with eo being determined from the 

intercept on the strain axis. At higher strain, the curve 

deviated from the predicted straight line, as the area ove r 

which stress within the fibres is building up becomes more 

significant reducing the overall fibre stress. The graph of 

the experimental results is shown in figure 7.4. By using 

the above method, P was determined to be 1.23, with 80 being 

calculated to be 0.0013, for a gauge length of 132 mm. 

From this data it was possible to predict values for 80 at 

different gauge lengths. This was achieved by using weakest 

link theory to predict the value of 80 at the new gauge 

length, using equation 7.3. 

7.3 

The classic weibull plot of In (In (1/ (l-P f )) ) : In (E), where Pf 

is the probability of fibre failure, could then be plotted 

using equation 7.4 

7.4 
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Figure 7.4. Experimental plot of the number of fragments against the 

strain, showing the straight line fitted to the initial measurements. 

As an example, the Weibull plot at 40 mm was calculated and 

is shown alongside the curve fitted to the experimental data 

in figure 7.5. 

The strength of the interface was calculated using the 

relationship shown in equation 7.5. 

7.5 

where 't is the interfacial shear stress, D is the fibre 

diameter, measured as 9 J.1m, Ef is the fibre modulus of 72 

GPa, Be is the composite strain when In(ln(l/(l-Pf)))=O and D 

is the ineffective length. 

calculated using equation 7.6. 
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D=4/3*the average fragment length. 
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Figure 7 _ 5_ Weibull plot calculated from the measured Weibull 

parameters_ 

The values of Ec and the average fragment length used, were 

those at saturation of the fragmentation process. This 

meant that the interfacial shear stress calculated was the 

value and, therefore, the interfacial shear limiting 

strength. From the experimental study, the average fragment 

length was found to be 1.63 mm, 0 was calculated to be 2.2 mm 

and ~ was calculated as 54 MPa. 
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7.2. The effect of bend stresses on the fibres 

7.2.1. Experimental 

Having established the statistics of fibre failure for the 

fibres used in this study, the effect of bending at 

different ROC was examined. This initially involved the 

modelling of the stress in a fibre for a given bend radius. 

The stress at which 1, 50 or 99 % of the fibres would be 

expected to have broken, for each bend radius was also 

calculated. 

The effect of bending on the transmission characteristics of 

the RFLG was tested by bending five separate RFLG's around 

fixed radii. The radii used in this study were 3, 7, 10, 

13, 17, 24, 35, 43 and 52 mm, the RFLG being encased in 

shrunk HST to support it while it was bent. The encased 

fibre was connected to a white-light source and a 

photodetector. Modelling of the effect of this bending on 

the RFLG was undertaken, incorporating stress concentration 

factors to provide data on the interaction of breaks. 

7.2.2. Results and Discussion 

7.2.2.1 Theoretical effect of bending on the fibres 

Stress analysis was carried 

following manner. The strain 

calculated, using simple beam 
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fibre as a beam with one fixed end and one free end, with a 

distributed load. The equation used in this analysis is 

shown in equation 7.7. 

7.7 

where y is the distance from the neutral axis, 8 is the 

deflection, Cl is a constant relating to the beam geometry 

and L is the length of interaction. The value of Cl for this 

geometry was 8. The value of y was taken as the radius of 

the fibre, 4.5*10- 6 m. The values of 8 and L were calculated 

considering that the fibre was bent around 90 0
, using the 

construction shown in figure 7.6. 

Figure 7.6. Schematic construction showing how Land 0 are calculated. 

From figure 7.6 it can be seen that equations 7.8 and 7.9 

can be used to calculate Land 8 respectively. 

L =(1t*(2R+2a))/4 7.8 

8 = O.293*R 7.9 
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where R is the ROC and a is the fibre diameter, taken as 

4.5*10-6 m. 

Using these equations, the stress in the fibre for any ROC 

can be calculated. Figure 7.7 shows the stress values 

predicted for ROC's varying over two orders of magnitude. 

1010 

- - - - PredicIed shu fer 1% fibre breakage 
- - - Predided IItreu fer 990/0 fibre breakage 
- - - - - Predic:ted shu fer 50% fiber breakage 

10' 
__ Predic:ted IItreIs in the fibre 

1r1 --- ---l --- ---I ---
107 

-. 
-. 

1r1 

-. 

1r1 
0.001 0.1 10 1000 

radius r:I CIIVIIIurII (1lYI'I) 

Figure 7.7. Predicted number of fibres failing for a given radius of 

curvature. 

Also shown in figure 7.7 are lines showing the stresses for 

given probabilities of failure, either 1, SO or 99 %, which 

were calculated as follows. The operative Weibull scale 

parameter for each interaction length, assuming a 90 0 bend, 

was calculated using equation 7.3. Having calculated the 

Weibull scale parameter, the probability of failure was 

fixed as 0.01, 0.5 or 0.99 and calculation of the strain was 

carried out for each value of Pf , using equation 7.4. The 
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values of strain calculated were converted to stress using 

the fibre modulus of 72 GPa. 

Looking at figure 7.7, it can be seen that a significant 

number of fibres will have broken, for an ROC as large as 1 

cm and the first few fibres would be expected to have failed 

at an ROC of greater than 10 cm. This is the area at which 

the sensing action of the RFLG would be expected to be 

operative. The effect of bend induced fibre breakage on the 

light transmission characteristics, at these larger ROC was, 

therefore, examined. 

7.2.2.2. Effect of bending on transmission characteristics 

Results from the experimental study revealed a steady loss 

of light with decreasing bend radius, as shown in figure 

7.8. 

The number of fibres expected to break at each bend radius 

was modelled using an analysis similar to that described in 

the construction of figure 7.7. Equation 7.7 was again used 

to calculate the strain in the fibres, with the same value 

of C1 • The values of Land 0 were calculated using equations 

7.8 and 7. 9 respectively, for each ROC used in the study, 

assuming that the length of interaction equated to a 90 0 bend 

in the fibre. From this strain data, the probability of 

failure of the fibre was calculated using equation 7.4, 

having first calculated Eo for each of the radii used in the 

test, using equation 7.3. 
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Having calculated the probability of a fibre failing when a 

bend of each of the radii, was introduced, the percentage of 

light lost due to fibre failure in the bend was calculated. 

The probability of failure equated to the percentage of 

light lost, as it was assumed that each fibre carried an 

equal amount of light prior to fracture and none afterwards. 

90 

80 

f 
i 50 
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~ 
Point at \Wtich all fibres 
aI'Ied8d by stress COIICenIratioIIS 

-- Predicted Ira'lamission loss 
20 - - - - Test 1 

- - - - Test2 

10 
--- Test3 
----- Test4 
--- Test5 

01L-----~--------~~================L_ __ 
o 5 10 15 20 25 30 35 40 45 50 55 

Bend radius (rnn) 

Figure 7.8. Graph of the experimental loss curves from the bending 

experiment alongside predicted loss curves. 

An extension to this model was considered by the inclusion 

of a strain concentration correction. The sample under 

consideration was a coated bundle of fibres and, thus, a 

strain concentration could affect the fibres around a broken 

one. The strain concentration used in this model were 1, 

1.33 and 1.15 for fibres unaffected by a broken one, next to 

a broken one and the next-nearest neighbour to a broken one 

respectively {See section 2.1.3}. The determination of 
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these values has been discussed in chapter 2. The number of 

fibres around a broken one was taken as 6 for both nearest 

and next-nearest neighbours, as it was assumed that the 

fibres were closely packed. 

The inclusion of the strain concentration factor meant that 

a proportion of the fibres would experience a higher 

probability of failure than the unaffected fibres. The 

presence of three operative probabilities of failure was 

allowed for in the model, by assuming that the overall 

probability of failure was a weighted mean of those, 

calculated using equation 7.10. 

7.10 

where Pfc is the overall probability of failure, Pfn is the 

probability of failure of the fibre unaffected by the strain 

concentration, Pfs is the probability of failure of the 

fibres affected by the first strain concentration and Pf t is 

the probability of failure of the fibres affected by the 

second strain concentration. The values Fn, Fs and F t are the 

number of fibres experiencing each probability of failure. 

The results from the model concurred well with the measured 

loss for each ROC, at the start of the test (see figure 

7.8). At tighter bend radii, the measured light-loss 

deviated from the model used. The deviation from the model 

is thought to result from the presence of strain 

concentrations as the fibres break. At the point of 

deviation (marked by a vertical line), it is noted that all 
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the glass fibres within the RFLG 

affected by a strain concentration. 

are either broken or 

At this point it is 

expected that the strain concentrations from fibre breaks 

will increase (see chapter 2), leading to accelerated 

failure of fibres and explaining the deviation from the 

model. 

7.3. Preliminary Sensing Studies 

7.3.1. Experimental 

Preliminary sensing studies were carried out in the manner 

described in section 6.2. Samples containing 30, 50 and 125 

~m optical fibres, along with samples containing RFLG's, were 

impact tested. The precise arrangement of the specimen was 

discussed previously. To give good optical coupling of 

light into and out of the light-guides, the edges of the 

specimen were polished to a 1 ~m diamond finish. 

Prior to impact testing, the intensity of the light 

transmission through each fibre was measured. This was 

carried out using an X-travel stage on to which the specimen 

was clamped. The stage was positioned between a white-light 

source and a photodetector fixed opposite each other. A 

linear variable displacement transducer (LVDT) was used to 

monitor the movement of the X-travel stage. A schematic 

illustration of the experimental setup is shown in figure 

7.9. 
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In order to measure the light intensity through the fibres, 

the panel was scanned between light source and detector. To 

measure the variation of light intensity, the photodetector 

was connected via a data aquisition board to a computer. 

The LVDT was also connected to the computer, to allow 

spatial positioning of the intensity measurements. This 

setup allowed a trace of intensity against position to be 

obtained, showing the position and intensity of the embedded 

fibres. It was ensured that the test could be replicated by 

repeating each examination three times, with the sample 

being removed and repositioned between tests. 

Composite containing 
optical fibres 

X-travel stage 

-\ 
I I 

Computer ! 

I 
---~ 

Figure 7.9_ Schematic illustration of the experimental setup used in the 

preliminary sensor study. 

The specimens were impacted using a Rosand instrumented 

impact tester, with a 20 mm hemispherical tup. Two test 

specimens of each type were impacted at each of four 

different impact energies, namely 2 J, 4 J, 6 J and 8 J. 

One specimen of each type was impacted at 10 J. The light 

intensity through each fibre was again measured subsequent 
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to the impacts and compare d wi t h t he i ntensities measured 

prior to impact. 

7.3.2. Results and Discussion 

Examples of the optical f i bres use d i n this study are s hown 

in figure 7.10. 

f-j 
125 )JIll 150 )Ul\ 

(a) (b) 

f-j 
150 )Ul\ 150 J.Lm 

(e) (d) 

Figure 7.10. Photographs showing a) 125 ~m, b) 50 ~m, e) 30 ~m and d ) 

RFLG. 
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Results from impact testing revealed that the different 

optical fibres used in this study had markedly different 

sensor performance. The intensity measurement approach gave 

a clear indication of where impact damage had taken place, 

with a distinct loss of intensity in one or more of the 

fibres around the impact point. The results discussed are 

all taken from the fibres between plies 15 and 16. 

~r--------------------------------------. 

300 , 
Before impact ~ 

i ~'I " II 

i :1 
200 " I I 

I 
~Impact: : 

Cispl8ClllT1l!l1t (mm) 

Figure 7.11. Intensity trace from the bottom fibres of a RFLG based 

composite panel taken before and after a 2 J impact. 

In the case of the RFLG's, specimens impacted with an energy 

of 2 J showed detection of the damage. An example of the 

light intensity trace is shown in figure 7.11. At this 

energy, none of the other fibre types gave a change in 

intensity and, hence, no damage was detected. 

The 30 and SO ~m optical fibres gave the same sensitivity as 

each other, being capable of detecting a 4 J impact, or 
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greater. An example of the light intensity trace for a 

specimen containing 50 ~m optical fibres, is shown in figure 

7.12. 
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Figure 7.12. Intensity trace from the bottom fibres of a SO ~m optical 

fibre panel taken before and after a 6 J impact. 

The 125 ~m optical fibres proved to be the least sensitive, 

only being capable of detecting a minimum of a 6 J impact 

(See figure 7.13). 

From this study it was concluded that the RFLG was capable 

of acting as a sensor for impact damage detection and was 

indeed more sensitive to impact damage than the conventional 

optical fibres. 
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Figure 7.13. Intensity trace from the bottom fibres of a 125 ~m optical 

fibre panel taken before and after a 6 J impact. 

7.4. Crush testing 

7.4.1. Silicone clad RFLG's 

7.4.1.1. Experimental 

Samples were prepared in the manner discussed in section 

6.3. The edges of the samples were polished to ensure good 

light coupling into and out of the RFLG. To connect the 

RFLG's to a white-light source a clamp was made which could 

be fixed firmly on to the edge of the composite sample. The 

fibre-optic output from the light source could then be 

firmly attached. To give stable connection of the RFLG to a 

photodetector, large core optical fibres were fitted in to 

clamps made from polyethylene. These were then clamped on 
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to the edge of 

embedded RFLG's. 

the composite, over the location of the 

The large core optical fibre could then be 

connected to photodetectors. The security of the attachment 

was examined by clamping a section of composite to a light 

source and photodetector and subjecting it to a violent 

displacement. The light transmission was measured before 

and after this, with the process being repeated five times. 

Crush testing was carried out using an Instron 1195 machine 

at a testing speed of 0.5 mm/min. The 20 mm hemispherical 

tup, used in impact testing, was mounted on to the crosshead 

and lowered on to the clamped sample. The limit switches 

were set so that a constant withdrawn height could be 

attained. The crosshead was withdrawn to the limit switch 

cut-off point, and an initial reading of the transmitted 

light intensity was taken. The tup was then pressed into 

the composite to a depth of 0.125 mm, before being withdrawn 

to the limit switch cut-off point. A reading of the light 

transmission was then taken again. This process was 

repeated on the same sample of composite in the same 

location, for indentation depths of 0.25, 0.375, 0.5, 0.625, 

0.75, 0.875 and 1 mm. Testing was repeated for 7 samples. 

7.4.1.2. Results and Discussion 

Examination of the security of the clamps, which were used 

to connect the RFLG's to the photodetectors, revealed that 

the light intensity varied by less than 0.1 % of the reading 
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after each shake. It was therefore deemed that the security 

of the clamping arrangement was sufficient. 

The results from crush testing revealed that the RFLG was 

capable of detecting damage development wi thin a composite, 

confirming the results from the preliminary study (section 

7.3) . However, it went on to extend this, revealing that 

progressive damage could be successfully followed. Results 

from each of the fibres positioned centrally, 2 mm and 4 mm 

away from the point of contact, for all of the specimens are 

shown in figures 7.14, 7.17 and 7.18 respectively. 
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Figure 7.14. Results of crush testing of composite panels containing 

Sylgard 184 clad RFLG' s, showing the light transmission data from the 

central fibres. The predicted curve is also shown as the solid line. 

concentrating firstly on data from the central fibres, shown 

in figure 7.14, it can be seen that as the indentation depth 

increases, more light is lost from the RFLG's. This follows 

a generally linear path, particularly over the first few 
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points, to an indentation depth of 0.5 mm. After this point 

there is greater deviation from the straight line. The 

point of deviation marks the start of the composite 

experiencing large scale failure, and it is suggested that 

the failure will be the cause of the excess losses 

experienced at higher indentation depths. 

Prediction of the expected loss for a given indentation 

depth was carried out in a similar manner to that used in 

the bending analysis (section 7.2), carried out using 

equations 7.4 and 7.7. In this case, the beam was assumed 

to be fixed ended and to have a distributed loading regime. 

This gave the value of the constant el , in equation 7.7, as 

384. The value of y, the distance from the neutral axis, 

was again taken as the radius of the fibre, 4.5*10-6 m. The 

deflection, 0, was taken as being equal to the indentation 

depth, plus the thickness of ply 1. 

Strain was again calculated, using equation 7.6, with the 

gauge length being taken as 16 mm, the unsupported width of 

the specimen. 

Having calculated the maximum strain in the centre of the 

fibre, the strain distribution was assumed to be as shown in 

Figure 7.15. It can be seen that the distribution consists 

of three main regions. These are due to the shape attained 

by the fibres under bending. At the edges, the fibre top 

surface will be under tension with the bottom under 

compression. The situation is reversed in the centre 

section of the fibre. Thus, the maximum strain experienced 
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in the centre falls away along the fibre to zero before a 

maximum strain in the edges is attained. This is shown in 

the strain profile in figure 7.15. Equation 7.7 takes no 

account of the strain at the edge of the bent region, giving 

only the maximum strain. Therefore, the maximum edge strain 

was calculated by assuming that the edge region, up until 

the zero strain point, took the form of a beam with one 

fixed end, of length 4 mm, with a distributed load. This 

gave the value of C1 as 8, enabling the maximum edge strain 

to be calculated. 

In the above manner, the maximum strains at the edge and in 

the middle of the fibre, as well as the presence of zero 

points were known. The position of these points along the 

fibre were also known, allowing elliptical curves to be 

fitted through the maxima from the two closest zero points, 

as shown in figure 7.15. This allowed the strain in a 

reinforcing fibre to be modelled precisely, allowing the 

calculation of the probability of failure for small segments 

around the bend. In this way the number of fibres failing 

in each segment of the fibre bundle could be calculated and 

the total number of broken fibres for such a bend could be 

predicted. 

The ellipses are symmetrical around a mirror line running 

perpendicularly through the maximum strain point. Because 

of this, only half of each of the three curves need be 

considered, with twice the number of segments experiencing 

that strain. However, due to the symmetry of the two outer 

curves, only one of these need be considered, with 
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calculated values being multiplied to take this into 

account. 
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Schematic illustration of the bending of a reinforcing 

fibre due to indentation, and the induced strain profile in the fibre. 

The strain in the fibre was calculated for segments of 100 ~m 

length around the bend. The Weibull statistical probability 

of failure was calculated for a 100 ~m segment, using 

equation 7.4. Again, the strain concentration factors were 

included using a weighted mean calculation, which took 

exactly the same form as shown in equation 7.10. The total 

number of reinforcing fibres broken at each indentation 

depth was calculated from these probabilities of failure. 

From this analysis the predicted curve shown in figure 7.14 

was calculated assuming that each fibre initially carried 

the same amount of light and after fracture carried none. 

It can be seen that the curve fit was reasonable at the 

lower indentation depths, although it deviated at higher 

149 



Chapter 7. Results 5: Examination ot the pertormance ot the reintorcing tibre light-guide as a damage sensor 

indentation depths. The deviation is thought to be due to 

the unpredictable and increasing strains resulting from the 

fracture of the composite. It should be noted that 

delaminations are only observed to occur from an indentation 

point of 0.5 mm, with large scale fracture occuring from 

0.625 mm. 

Turning attention to figure 7.17, considering the fibre 

positioned 2 mm from the point of indentation, it can again 

be seen that the experimental data shows a decrease of light 

intensity with increasing indentation depth. This change in 

intensity also follows a broadly linear pattern and again 

the deviation occurs at the point where the composite starts 

to fracture. 

As the RFLG is offset from the centre, it will not be 

indented to the same degree as the central one. Thus, the 

strain in the fibres will be lower and the model to predict 

the induced light loss must be modified. This was done by 

assuming that the deformation was linear, with a deformed 

length of 16 mm and a central displacement equal to the 

indentation depth. The new value of S for the displaced 

fibres can then be calculated using trigonometry and the 

construction shown in figure 7.16. It can be seen that the 

predicted curve fits the data reasonably, only significantly 

deviating once the composite has started to macroscopically 

fracture. 
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16 .... 

Figure 7.16. construction to allow the calculation of the maximum 

indentation depth for the fibres displaced from the indentation point. 
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Figure 7.17. Results of crush testing of composite panels containing 

Sylgard 184 clad RFLG's, showing the light transmission data from the 

fibres placed 2 mm from the centre. The predicted curve is also shown as 

the solid line. 

Finally, looking at figure 7.18, in which the fibre is 

positioned 4 mm from the point of indentation, it can be 

seen that as the indentation progressed, there was increased 

loss of light, indicating detection of the increasing 

damage. It can also be seen that this is less marked than 

in the previous two RFLG positions, indicating that further 

away from the indentation, or impact point, the damage would 
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be expected to be less severe. Using the new value of 8 

calculated in the method described above, the predicted 

curve again fits reasonably with the experimental data, up 

to the point where the composite starts to fail. 

Figure 7.18. 
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Results of crush testing of composite panels containing 

Sylgard 184 clad RFLG's, showing the light transmission data from the 

fibres placed 4 mm from the centre. The predicted curve is also shown as 

the solid line. 

It is observed that the model, while fitting the measured 

data reasonably, tends to underestimate the number of fibres 

breaking. This is likely to be due to the overestimation of 

the failure stress by Weibull analysis, due to the 

likelihood of rejection of the weakest fibres because of 

breakage at the time of separation, or due to stresses 

imposed during handling. 
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7.4.2. OG137 clad RFLG 

7.4.2.1. Experimental 

It has been stated previously that more than one potential 

cladding material, with suitable optical properties, was 

available for this study (chapter 3). Once the principle of 

the RFLG had been demonstrated using Sylgard 184, another of 

the potential cladding materials was examined. This was 

done with a view to overcoming some of the problems 

associated with the use of a silicone resin. The main 

problem, its poor adhesion, was demonstrated in section 6.1. 

Epoxy Technologies OG 137 was selected as the cladding 

material to be examined, as it was a rigid thermoplastic, 

whereas the other possible materials were flexible. 

Excessive flexibility of the Sylgard 184 was perceived as 

one of the problems associated with its use. 

Initial results (section 3.1) had shown that OG 137 gave a 

distinctly void-filled coating, because of the rapid 

evaporation of the solvent in which it was dissolved. It 

was, however, found to be possible to produce a RFLG, 

containing minimal voiding, by baking the coated fibre 

bundle in an oven at a temperature of 200oC. At this 

temperature, the OG 137 had softened and the voids 

collapsed, leaving a relatively void-free solid. The 

thickness of this coating was found to be too low to sustain 

guiding over all but short distances once embedded. The 

problem was overcome by applying 2 further coatings of the 

OG 137, each coating being baked as before. 
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A single RFLG of this type was embedded centrally between 

plies 1 and 2 of composite specimens with the same 

dimensions and lay-up sequence as those used for crush 

testing of the silicone-clad RFLG' s. Crush testing of the 

composite was then carried out as for the silicone coated 

RFLG's, although no reference specimens were tested. This 

was due to the lack of material available and because it was 

not deemed essential as this was a preliminary study; the 

main thrust of this study was to demonstrate the 

effectiveness of the RFLG as a sensor for damage, when a 

more rigid cladding material was employed. The RFLG's were 

connected to the light source and photodetectors in the same 

manner as used previously (section 7.4.1). 

7.4.2.2. Results and discussion 

Optical microscopy was carried out on an embedded OG 137 

coated RFLG, with it being analysed using both transmitted 

and reflected light (see figures 7.19a and 7.19b). 

It can be seen that the fibres guide well throughout the 

bundle, indicating that the coating is of reasonable 

quality. It can also be seen that the disruption to the 

composite, caused by the presence of the RFLG is lower than 

that caused by the Sylgard 184 clad RFLG. This is thought 

to be due to melting or softening of the OG 137 during cure 

of the composite, allowing it to deform under the curing 

pressure, minimising disruption. The deformation would be 
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in stark contrast to the resistance of the thermosetting 

Sylgard 184, which would have little tendency to deform. 

Thus, OG 13 7 gives a much less disruptive , more practical, 

RFLG from this point of view. 

~ 
100 I'm 

(a) (b) 

Figure 7.19 a and b. Showing photographs of an OG 137 clad RFLG in both 

reflection and transmission. The lower disruption caused by t h is fibre, 

compared to the silicone clad RFLG is clearly seen. 

Results from crush testing the specimens containing the OG 

137 coated RFLG's are shown in figure 7 . 20 . It can be seen 

that, as with the silicone-coated RFLG ' s, at low deformation 

the light loss is linear. However, in the case of the OG 

137 coated RFLG's, this linear region is much shorter. This 

is thought to be due to the brittle nature of the OG 137. 

Whereas the silicone resin will tend to blunt cracks and 

reduce the effect of external pressures on the reinforcing 

fibres, the brittle OG 137 will tend to crack and lead to 

premature failure of the reinforcing fibres. This would 

account for the rapid loss in linearity shown by the RFLG in 

this instance. Prior to this loss, it can be seen that, 
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again, the model fits reasonably with the loss data, 

although more data would be required to confirm this . 
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Figure 7.20. Results of crush testing of composite panels containing OG 

137 clad RFLG's. The predicted curve is also shown as a solid line. 

7.4.3. Comparison of different cladding materials 

From comparison of the results obtained using OG 137 as the 

cladding and those obtained using Sylgard 184, it would 

appear that the operation of the RFLG as a sensor, depends 

critically on the properties of the cladding. Both of the 

cladding materials used in this study proved suitable for 

use in the production of a RFLG and to be capable of acting 

as damage sensors. The operation of the sensor produced 

using these cladding materials has been modelled over the 

linear region of the curve. It has, however, been observed 

that the portion over which the model is valid depends on 

the cladding material. 
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The sensor produced using Sylgard 184 as the cladding 

material, performed in a linear fashion until the composite 

started to delaminate and crack extensively. At this point 

the central RFLG, and that placed 2 mm from the centre, were 

seen to deviate from the straight line predicted. The RFLG 

placed 4 mm from the centre was seen to deviate to a lesser 

extent. In this manner, the spread of the damage through 

the composite could be followed. The RFLG clad using OG 

137, however, was seen to deviate from the straight line at 

much lower indentation depths. 

This difference in performance of the two RFLG's is thought 

to be due to the difference in the properties of the 

cladding. The silicone resin is highly flexible and will, 

thus, conform to the deformation induced by indentation. In 

contrast, the OG 137 is brittle and will tend to crack under 

deformation. The effect of this cracking will be to break 

more reinforcing fibres than would be predicted by the 

model. Due to the unpredictable nature of the cracking 

within the RFLG, the amount of loss after cracking of the 

cladding will be random. The softer nature of the Sylgard 

184 would eliminate the effect of cladding failure, 

postponing the onset of random failure until the failure of 

the composite itself. 
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7 . 5 . Summary 

The statistical failure parameters of the fibres and the 

level of adhesion between fibre and matrix were determined. 

This provided necessary data for the development of a model 

which was used to predict the performance of the RFLG. 

Experimental data was presented, from preliminary impact 

studies, which demonstrated the potential of the RFLG to 

detect damage. This preliminary study was extended, using 

RFLG's with a Sylgard 184 silicone resin cladding, by crush 

testing. The RFLG was shown to be capable of monitoring 

progressive damage development. This was followed by an 

examination of an alternative cladding polymer, Epoxy 

Technologies OG137, which was also shown to be capable of 

acting as a progressive damage sensor i however differences 

in the performance of the two sensors were observed. These 

differences and the reasons for them were analysed. 
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Chapter 8. Conclusions and further work 

8.1. Conclusions 

It has been demonstrated that glass reinforcing fibres can 

be used to produce an RFLG. 

The optical performance of the RFLG has been maximised for 

the raw materials used. 

It has been demonstrated that the RFLG can be embedded 

within carbon fibre composites. 

The effect of the RFLG on the delamination of the composite 

under impact was found to be negligible despite the low 

adhesion between the cladding material and the composite. 

Once embedded, the RFLG has been found capable of acting as 

an impact energy sensor. A linear fall in the transmitted 

light intensity was found to apply, up to the point that 

either the composite, or the cladding of the RFLG, started 

to crack. 

Two cladding materials were examined in this study, one 

flexible and the other brittle. The flexible cladding was 

found to leave linearity at the point that the composite 

started to crack excessively. The brittle cladding was 

found to leave linearity once the cladding material started 

to fail. This occurred before failure of the composite. 
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The fall in transmitted light intensity, due to an impact 

event, was modelled. The effect of other potential loss 

mechanisms have also been considered, both qualitatively and 

quantitatively. 

8.2. Further Work 

8.2.1. Immediate Requirements 

There are two key areas which require addressing in order to 

maximise the performance and sensitivity of the RFLG as an 

impact sensor. These are the quality of the reinforcing 

fibres used and the properties of the cladding material. 

Addressing the first of these, the reinforcing fibres used 

in this study were commercially available high purity silica 

reinforcing fibres. It was found, in this study, that the 

glass used to produce the fibres contained voids, indicating 

the possibility of voids within the fibres. Both the 

presence of voids and any damage to the fibre surfaces would 

limit the light guiding performance of the fibres. 

Therefore, the performance of the sensor would be improved 

if these imperfections could be eliminated. Of these, the 

voiding would be the easier to address, in the following 

manner. The raw glass could be carefully prepared and 

selected to minimise the presence of voids. The use of 

optical glass production techniques may also help in this 

aim. 
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It would be more difficult to address the problem of surface 

damage, as this is introduced by the process of handling the 

fibres after production, and also in subsequent preparation. 

However, one way of limiting this damage would be to apply 

the cladding material at the point of fibre manufacture. 

This would prevent the handling associated with fibre 

cleaning and subsequent cladding application, which was 

unavoidable in this study. 

Turning attention to the other key area, for this 

application the cladding material must have suitable optical 

properties to allow the formation of a light-guide and also 

suitable mechanical and adhesion properties, to enable it to 

act as a reinforcing element in the composite. This study 

has demonstrated that the properties of the cladding 

material has a significant effect on the performance of the 

sensor. It is suggested that the ideal properties for a 

prospective cladding material would be: 

i) Refractive index as low as possible 

ii) Very good adhesion to epoxy matrix resins 

iii) Mechanical properties which are similar to the 

epoxy matrix, but slightly more flexible. 

The first two will maximise the optical performance of the 

RFLG and the stress transfer in to the fibre. The third of 

these, however, is important to maximise the performance of 

the sensor. It was found, in this study, that a brittle 

cladding lost its linear response to impact damage, when the 
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cladding failed; whereas a flexible cladding maintained its 

linearity until failure of the composite. Therefore, a 

flexible cladding gives 

the composite and is 

more information on the failure of 

thus desirable. The mechanical 

properties must, however, be close to those of the matrix to 

allow the RFLG to contribute to the composite strength. 

8.2.2. Potential Scope 

If a suitable cladding material was available, this sensor 

would open up a number of very interesting possibilities. 

In this study, the RFLG has been presented as a discrete 

optical fibre within a'carbon fibre composite. However, the 

existence of a favourable cladding material would allow the 

construction of sensing plies which could be incorporated as 

part of the structure. This would have the following 

advantages: 

i) Impact location and sizing could be easily obtained, 

if crossed sensing plies were used. 

ii) The composite would be hybridised using both glass 

fibres and a flexible resin, allowing the impact 

performance to be altered in the ways discussed in the 

literature survey. 

Thus, a truly versatile, simple, cost effective sensor would 

be obtained. 
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Abstract. This paper reports on the design and development of a novel class of 
advanced fibre reinforced composite (AFRC) where some of the reinforcing fibres act as 
the light guide. This class of fibres have been termed 'self-sensing fibres' and 
composites manufactured incorporating the self-sensing fibres have been termed 'self­
sensing composites'. The self-sensing fibres were embedded within a 16-ply carbon 
fibre reinforced epoxy composite. The feasibility of using these fibres for impact 
damage detection was successfully demonstrated. 

1. Introduction 

The detection of impact damage in AFRC structures is of significant interest especially in cases where 
these materials are used for load bearing applications [lJ. Impact damage can drastically reduce the 
mechanical and structural integrity of AFRCs [2]. Unlike conventional engineering materials, it is 
often very difficult to detect low velocity impact damage in AFRC structures [3J. A number of optical 
fibre sensor systems have been demonstrated as being suitable for damage detection in AFRCs. 
Conventional optical fibres have outer diameters in the range 125-230 Ilm, whereas reinforcing fibres 
have outer diameters in the range of 7 -12 Ilm. The use of large diameter optical fibres can result in the 
introduction of fibre waviness in the reinforcing fibres. Fibre waviness has been shown to reduce the 
compressive properties of AFRCs [4,5,6]. Conventional optical fibre sensors such as Bragg gratings, 
interferometric sensors etc. can not be readily incorporated into AFRC manufacturing processes. The 
costs associated with these sensor systems also tends to prohibit their use in mass produced AFRC 
components, e.g., filament wound pressure vessels. A potential solution to theses problems is to use 
the reinforcing fibre as the optical sensing medium. The self-sensing composite is ideal for 
applications where it is necessary to know if a specified load/strain threshold has been exceeded, rather 
than, requiring information on the magnitude of the load or strain. The reinforcing fibre system used in 
this study were commercially available (Quartzel) II Ilm high purity silica fibres. These fibres have a 
low dielectric constant, offer high heat resistance and a high resistance to thermal shock. As a 
consequence of this, they are used extensively in the aircraft industry for radomes, electromagnetic 
windows and thermal insulation applications. 

2. Experimental 

2.1 Production of the self-sensing composites 

The Quartze] fibres were donated by Quartz ET SiIice, France. The fibre tows contained 
approximately 400 individual filaments. The fibres tows were desized at 700°C in an electric furnace 
and upon cooling to ambient temperature, a silicone resin (cladding) was applied to the Quartzel fibres. 
The Quartzel 'optical fibres' were then placed in-between the outer two plies of a 16 layered cross-ply 
[0,90,90,0,0,90,0,90]s composite. The optical fibre bundles were located at a spacing of 10 mm. The 
prepreg system used was T300/920 (carbon fibre reinforced epoxy) as supplied by Ciba-Geigy. 
Composites without any embedded optical fibres were also manufactured for comparison purposes. 
The composites were autoclaved using the manufacturer's recommended cure schedule. The cured 
composite panels were cut into 70 mm squares, c-scanned and then dried in an air-circulating oven at 
60°C for three days. The test specimens were then stored in a desiccator until required. 



2.2 Light intensity measurements 

After the coating operation, the attenuation characteristics of the Quartzel optical fibres were evaluated 
using a Photon Kinetics FOA-I 000 universal fibre optics analyser. The transmission loss of the self­
sensing fibres were measured using the cut-back method. 

The intensity of light transmitted through each embedded optical fibre bundle was measured 
before and after impact. This was achieved using the experimental arrangement illustrated in Figure 1. 
Here the composite panel was clamped on to an X-translation stage which moved the panel between a 
white light source and a visible light enhanced photodiode. The signal output from a custom made 
Access Pacific photodiode amplifier gave the transmitted intensity through the fibres. The position of 
the optical fibre bundle was measured using a linear variable displacement transducer. 

Tungsten Light guide 0 
Halogen 1============ 
Lamp 

Translation stage 

Photodetector 

~ •• t---;/ Amplifie~ 

LVDT 

i 
, 

Figure I Experimental set-up for the optical intensity measurements 
through the embedded Quartzel optical fibres. 

2.3 Introduction of impact damage 

The composite panels were impacted on Rosand Instrumented falling-weight impact testing machine at 
2 J, 4 J and 6 J using a 10 mm hemispherical tup. The specimens were c-scanned again after the 
impact trials and the light transmission intensity through the embedded optical fibre bundles were re­
measured. 

3. Results and discussion 

3.1 Quality of the Quartzel optical fibres 

The bum-off and coating process which were used in the current trials resulted in significant fibre 
fractures. The difficulties associated with obtaining a high quality coating are illustrated in Figures 2 (a 
and b). Figure 2 (a) illustrates the case where a reasonable coating quality was obtained and Figure 2 
(b) shows a region with a poor coating quality. Attempts are currently being made to spread the fibres 
prior to the coating operation. A range of low viscosity resins are also being investigated to improve 
the penetration of the resin into the fibre bundle. A previous study on the effectiveness of the bum-off 
treatment to remove the 'size' (coating applied to the fibres at the time of manufacture to protect the 
fibre from damage) indicated the presence of contaminants in the form of carbides on the fibre surface 
[7]. Therefore, the high attenuation characteristics exhibited by the current set of Quartzel fibres as 
shown in Figure 3 is understandable. Improvements to the optical fibre quality is being addressed 
through the use of un-twisted fibre tows and a dual-desizing process. Here the fibre size will initially 
be removed using an acidic solution followed by the burn-off as described previously [7]. An 
automated coating process will be used in future studies to improve the quality and the consistency of 
the coating process. 



(a) (b) 

Figures 2 (a and b): (a) Micrograph indicating good wetting and penetration by the silicone resin into 
the fibre bundle; (b) Micrograph showing poor penetration of the silicone resin . Note also the surface 

damages on the fibres due to cleaving. 
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Figure 3 Transmission intensity of the silicone 
coated self-sensing fibres . 
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Figure 4 Absorption spectrum of the silicone 
resin . A path length of2 mm was used. 

Figure 4 illustrates the absorption spectrum for the silicone resin obtained using a PERKIN 
ELMER Lamda 19 UVNISINIR spectrometer. Figure 4 showed that no significant absorption took 
place between 400 and 1600 nm . 

The quality of the cleave can also play an important role in the efficiency of the light coupling 
into the Quatrzel optical fibres . The difficulties associated with obtaining a good cleave are readily 
apparent in Figures 5 (a and b). A brief study was under taken to investigate the influence of applied 
tension on the fibres during the cleaving operation. The fibre tows were subjected to a radius of known 
curvature and then cleaved using a sharp blade. The introduction of a high tensile load on the fibres 
proved beneficial in obtaining a clean fracture surface, see Figure 5 (a). When the fibre was under a 
lower tensile or compressive load, a poor quality of cleave was obtained, see Figure 5 (b). Research is 
continuing to establish the optimum approach to cleaving these fibres. The quality of the cleave was 
not an issue when the self-sensing fibres were embedded in the composite because the launch and 
detection-ends were polished, see Figure 6 (a). With reference to Figures 6 (b) the mismatch between 
the reinforcing fibres and the optical fibre (50/125) and the presence ofa resin rich region are clear. 



(b) 

Figures 5 (a and b): (a) Micrograph showing reasonable quality cleaves when the fibres were cleaved 
under a high tensile load; (b) Micrograph showing poor quality cleaves when the fibres were cleaved 

under low tensile or compressive loads. 

(a) (b) 
Figures 6 (a and b): (a) Micrograph of a polished section from the self-sensing composite. The arrow 

indicates the location of the embedded self-sensing fibre bundle; (b) Micrograph of an embedded 
50/ 125 multimode optical fibre in a carbon/epoxy composite. 

3.2 Detection of impact damage 

Figures 7 (a-c) illustrate typical c-scans for the self-sensing composites which were impacted at 2 J, 4 J 
and 6 1. The white vertical stripes represent the location of the Quartzel optical fibres and the white 
regions marked (x) represent the extent of the delamination as a consequence of the impact. The extent 
of the delaminations was found to increase with increasing incident impact loads. It is not clear at this 
stage if the presence of the self-sensing fibres influenced the extent and/or the nature of the 
delaminations. For example, Figure 7 (c) indicated that delaminations had taken place in the self­
sensing fibre direction. This is understandable because of the poor affinity between the fully cured 
silicone resin and the epoxy matrix. However, co-curing the two resin systems will enhance the 
interfacial bonding. 

Figures 8 (a and b) illustrate the light transmission characteristics of the composite panels 
before and after impact at 2 J for the impacted surface and the opposite side respectively. The data for 
the 4 J was not included as it showed a similar behaviour to the samples which were impacted at 2 1. 
Figures 9 (a and b) show the light transmission characteristics of the composite panels before and after 
a 6 J impact. The decrease in the light intensity after the impact event was clearly seen in all cases. 
There was some indication from Figure 9 (a) that the self-sensing fibre bundle which was located to the 
left of the primary impact zone also sustained some damage. This observation is also verified by the c­
scan shown in Figure 7 (c). It is proposed that the nature of the coating, the depth of the embedment 
and the type of coating can be selected to optimise the sensitivity of the impact damage detection 

system. 



(a) (b) (c) 
Figures 7 (a, b and c): C-scans for the self-sensing composites subjected to a 2 J, 4 J and 6 J impact 

respectively. The delaminated region is marked with a (x). 
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(a) (b) 
Figures 8 (a and b): Optical transmission intensity through the self-sensing fibres before a 2 J impact: 

(a) the impacted surface and (b) the opposite side of the impacted surface. 

(a) (b) 
Figures 9 (a and b): Optical transmission intensity through the self-sensing fibres before a 6 J impact: 

(a) the impacted surface and (b) the opposite side of the impacted surface. 



3.3 General discussion 

The self-sensing optical fibre reinforced composites offer advantages over conventional optical fibre 
sensor systems. Firstly, since the self-sensing optical fibres are conventional reinforcing fibres, they 
can be integrated into any AFRC preforms or manufacturing processes such as filament winding, 
pultrusion, pre-pregging and weaving. Secondly, the self-sensing composites can be considered as a 
hybrid composite (AFRC containing two or more reinforcing fibre types). Hybrid fibre composites 
offer properties which can not be realised by their mono-fibre counterparts. For example, hybridising 
carbon fibres with glass fibres has been shown to improve the impact resistance compared to a mono­
carbon fibre composite. Thirdly, the self-sensing fibres will permit a large area of the AFRC to be 
monitored. This is a major limitation of the current range of conventional optical fibre sensor systems. 
It is proposed that the cladding material can be selected to sense a range of other parameters, for 
example, diffusion of fluids into the composite. 

4. Conclusions 

The feasibility of using the reinforcing fibres as the light guide was successfully demonstrated. These 
optical fibres were embedded within a carbon fibre composite and were used as a crack-detection 
sensor. In the current programme, 150 cm long self-sensing fibres were successfully produced, 
however, they could not be produced on a consistent basis. It is proposed that the light transmission 
characteristics of these fibres can be improved by reducing the extent of fibre breakage, improving the 
quality of the cleave and by improving the coating process. The self-sensing composite was capable of 
detecting incident impacts as low as 2 J within and at a distance of 10 mm away from the primary 
impact zone. 

Acknowledgements 

The authors would like to thank the EPSRC for CASE studentships for D. Brooks and S Hayes, and the 
award of a ROPA award to T. Liu. G. Fernando acknowledges the receipt of a Royal Society 
equipment grant for the development of the sensor. The authors would like to thank Professors P. 
Curtis, B. Ralph, Drs. S. Hitchen, M. Kemp and J. Coleman of the DRA and J. Harry of QUARTZ ET 
SILICE for supporting the research programme. The assistance given by Dr. K Hale, S. Knowles and J. 
Moses are duly acknowledged. 

References 

I Morton J and Cantwell W 1991 Composites 22 (5) 347-362 
2 Gause Lee W and Buckley Leonard J 1987 Instrumented Impact Testing of Plastics and Composite 

Materials ASTM STP 936 Kessler S L, Adams G C, Driscoll S B and Ireland D Red. (ASTM 

Philadelphia) 
3 Meyer P 1988 Composite Science and Technology 33 279-293 
4 Jensen D W, August J A and Pascual J 1992 Active Materials and Adaptive Structures Knowles G J 

ed. (lOP Publishing Ltd, Bristol and Philadelphia) 
5 Piggott M R 1995 Composites Science and Technology 53 202-205 
6 Wisnom M R 1994 J. Composite Materials 28 I 66-76 
7 Hayes S, Brooks D, Liu T, Vickers S and Fernando G F SPIE Proceeding Smart Structures and 

Materials J 996 



Paper 2 

192 



Smart Mater. Struct. 6 (1997) 432-440. Printed in the UK PII: S0964-1726(97}82362-2 

In situ self-sensing fibre reinforced 
composites 

S Hayes, T Liu, 0 Brooks, S Monteith, B Ralph, S Vickers and 
G F Fernandot 

Department of Materials Engineering, Brunei University, Uxbridge, Middlesex, UK 

Received 15 October 1996, accepted for publication 24 January 1997 

Abstract. This paper discusses the development of a novel composite system in 
which some of the reinforcing fibres act as the light guide. The reinforcing fibre 
light guide was made by applying an appropriate cladding material onto 
commercially available 9 J.Lm diameter silica fibres. The resultant light guide was 
termed a 'self-sensing' fibre. The self-sensing fibres were embedded within a 
lS-ply carbon fibre reinforced epoxy prepreg system and cured to produce a 
composite panel. The composite panels were impact tested to investigate the 
feasibility of using the self-sensing fibres as an impact damage sensor system. 
Similarly, three types of conventional optical fibre, with outer diameters of 30, 50 
and 125 J.Lm respectively, were also embedded within composite panels. The 
results indicated that the self-sensing fibres were capable of detecting impact 
damage as low as 2 J for impacts carried out using a 20 mm hemispherical tup. 
The self-sensing fibres proved more sensitive to impact damage than the 
conventional optical fibres used in this study. 

1. Introduction 

A number of optical-fibre-based sensor (OFS) systems have 
been used for inferring the structural integrity of advanced 
fibre reinforced composites (AFRCs). The sensor designs 
include Bragg gratings {l. 2J, Fabry-Perot [3] and intensity­
based [4,5] optical fibre sensors. In terms of costs, the 
intensity-based OFS techniques tend to be significantly 
cheaper than interferometric techniques. In cases where 
the absolute values of temperatures and strains are not 
required, intensity-based health monitoring techniques can 
offer a cost effective means of monitoring the structural 
integrity of AFRCs. However, from an AFRC design 
viewpoint, there is a significant mismatch in the diameter 
of optical fibre sensors and the reinforcing fibres in the 
composite. The diameters of the optical fibres are generally 
in the range of 125-230 JLm, whereas the reinforcing 
fibres (such as carbon and glass fibres) usually have a 
diameter in the range of 7-12 JLm. The effect of this 
diameter mismatch is not apparent when the composite 
is subjected to tensile mechanical testing, but it can be 
detrimental when the material is subjected to long-term 
dynamic compressive and/or tension/compression loading. 
This diameter mismatch also makes it difficult to integrate 
a large number of OFSs into the composite. Furthermore, 
the integration of the OFS into composite preforms such as 
prepregs or woven fabrics is currently difficult to achieve 
at a continuous production level. 

A possible solution to the above mentioned diameter 
mismatch between the optical fibre and the reinforcing 

t To whom correspondence should be addressed. 
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fibres is to use the reinforcing fibres as a light guide. 
Conventional E-glass fibres are not suitable for transmitting 
light over long distances; however, quartz reinforcing 
fibres which are commercially available are ideal for this 
application. These fibres have a low dielectric constant, 
offer high heat resistance and a high resistance to thermal 
shock. As a consequence of this, they are used extensively 
in the aircraft industry for radomes, electromagnetic 
windows and thermal insulation applications. The term 
'self-sensing fibres' is used in the following text to describe 
the appropriately coated quartz fibres which then act 
as a light guide, The term 'self-sensing composites' 
refers to the situation where the self-sensing fibres are 
embedded in the composite. The self-sensing composite 
is ideal for applications where it is necessary to know if 
a specified load/strain threshold has been exceeded rather 
than requiring information on the magnitude of the load or 
strain. 

2. Experimental details 

2.1. Selection of reinforcing fibre light guide and 
cladding material 

With reference to table 1, the commercially available 
Quartzel fibres were identified as a suitable candidate to 
prove the concept of the reinforcing fibre light guid~ as they 
have comparable mechanical properties to conventIOnal E­
glass fibres. A selection of the cladding materials which 
were initially evaluated for this programme is presented in 
table 2 along with relevant properties of interest. 
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Table 1. Specified properties for selected fibre types. 

Property Quartzel E-Glass S-Glass PMMA Opticala 

Diameter (J-Lm) 9 12 9 250-3000 125 
Coefficient of thermal expansion (x 10-6 ) 0.54 5 4 260 0.54 
Refractive index (589 nm: 23 =C) 1.4585 1.547 1.524 1.492 1.46 
Young's modulus (GN m-2) 73 76 86 3.3 73.1 
Tensile strength (GN m-2) 3.6 3.2 4.4 3.6 
Maximum service temperature rC) 1050 650 700 100 600 

a Optical refers to typical commercially available 50/125 multi mode optical fibres. 

Table 2. Selected properties for potential cladding materials. 

Property 

Polymer type 
Refractive index (589 nm: 23'C) 
Coefficient of thermal expansion (x 1 0-6 ) 

Young's modulus (GN m-2) 

Cure time and temperature 
Maximum service temperature ('C) 

• Epoxy Technologies. 

b Dow Coming. 

c 3M. 

2.2. De-sizing and surface analysis 

The term de-sizing is used to describe the situation where 
the coating (size) which was applied to the reinforcing 
fibres at the time of manufacture is removed. The fibres 
were coated with a proprietary organic 'size' at the time 
of manufacture to protect the fibres from abrasion damage 
during production. The fused quartz fibres were donated 
by Quartz et Silice in the form of a continuous fibre bundle 
consisting of approximately 400 individual filaments. The 
following experiments were carried out to investigate the 
optimum de-sizing conditions. (i) Refiuxing the fibres in an 
acetic acid solution with a pH of four for a period of 3 h at 
95°C. The de-sized fibres were then washed with deionized 
water to remove any residual acetic acid from the fibres. 
(ii) Pyrolysis of the as-received fibres in a tube furnace at 
700°C in air. With reference to the pyrolysis experiments, 
two heating regimes were investigated, namely (a) heating 
the fibres from ambient to 700 °C using a heating rate of 
10 °C min-I and (b) introducing the fibres directly to the 
furnace which was set at 700 dc. These two heating regimes 
are referred to as slow and fast respectively. 

The surface of the Quartzel fibres was inspected 
using scanning electron microscopy (SEM) and x-ray 
photoelectron spectroscopy (XPS). The SEM samples were 
secured onto mounting stubs with double-sided tape and 
then sputter coated with gold. The XPS test specimens 
were prepared just prior to the analysis. Due care and 
attention was paid to avoid any contamination of the fibre 
surfaces. 

2.3. Coating (cladding) the reinforcing fibres 

The silicone resin (Sylgard 182) was prepared by mixing 
the base resin and the hardener in the required proportions 

Epoxy 
1.45 
58 

150=C/1 h 
395 

Sylgard 182b 

Silicone 
1.41 
96 
0.006 
150=C/15 min 
200 

THV200pc 

Fluoro 
1.35 

0.006 
solvent cast 
330 

of 10: 1 by weight of resin to hardener. The coated fibres 
were first passed between a pair of rollers and then drawn 
through a furnace which was set at ISO°C. The draw rate 
was 15 mm min-I. The thickness of the resultant self­
sensing fibre bundle was approximately 70 /Lm. 

2.4. Light transmission characteristics of the 
self-sensing fibres 

The attenuation characteristics of the Quartzel optical fibres 
were evaluated after the coating operation using a Photon 
Kinetics FOA-1000 universal fibre optics analyser. The 
transmission loss of the self-sensing fibres was measured 
using the cut-back method. Experiments were also 
conducted to investigate the best way to cleave the self­
sensing fibres. 

2.5. Production of the self-sensing composites 

The composite panels were produced from Ciba-Geigy 
1'300/920 carbon fibre prepregs. A vacuum-assisted hand 
lay-up technique was used to produce 300 rom square 
panels with a ply sequence of 16 plies in the sequence 
{O, 90, 90, 0, 0, 90, 0, 90}s' The conventional optical 
fibres and the self-sensing fibres were introduced between 
plies I and 2 and plies 15 and 16 at a spacing of 10 mm. 
Five categories of composites were manufactured: 

(i) reference composite with no optical fibre embed­
ment; 

(ii) self-sensing composite; 
(iii) composite containing (conventional) embedded 

125 /Lm optical fibres; 
(iv) composite with (custom made) embedded 50 /Lm 

optical fibres; 
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(v) composite with (custom made) 30 J.Lm embedded 
optical fibres. 

In the case of the 125 J.Lm optical fibres and the self­
sensing fibres, a single fibre and a coated fibre bundle 
respectively were laid each time. In the case of the 50 J.Lm 
optical fibres a small bundle of 8 to 14 fibres was laid. 
For the 30 J1.m optical fibres, the whole 200-fibre bundle 
was laid each time. The panels were cured in an autoclave 
using the manufacturer's recommended cure schedule. The 
cured panels were C-scanned as a quality check and then 
cut into 70 mm squares. The test specimens were dried in 
an air-circulating oven at 60 °C for three days and stored 
in a desiccator until required for impact testing. 

2.6. Light intensity measurement and impact testing 

The intensity of the light transmission through each optical 
fibre was measured prior to conducting the impact tests. 
This was achieved by clamping the test panel on to an X­
travel stage. A schematic illustration of the experimental 
set-up is shown in figure 1. The reproducibility of the light 
transmission measurements was investigated by repeating 
each test three times with the panel being removed and 
reclamped between each test. The panel, white light source 
and visible light enhanced silicon photodiode were fixed in 
the Y- and Z-planes: this allowed the panel to be scanned in 
the X-plane using the travel stage. A custom built Access 
Pacific photodiode amplifier, sensitive to photocurrent in 
the range 100 pA to 10 nA, was used to assess the 
light transmission characteristics of the embedded self­
sensing fibres. The test specimen was screened to prevent 
stray light reaching the photodiode other than by passing 
through the upper row of fibres. This was achieved by 
baffles positioned above and below the clamping frame. A 
linear variable displacement transducer (LVDT) was used 
to identify the position of the self-sensing fibres along the 
panel. The data from the photodiode amplifier and the 
LVDT were captured to a computer with a Data Translation 
data acquisition board and a custom written data acquisition 
program using DT-Vee software. Each panel was tested and 
then turned over to allow examination of the self-sensing 
fibres located on the opposite side of the composite panel. 

The test specimens were impacted on a Rosand 
Instrmnented Impact Tester using a 20 mm hemispherical 
tup. Two test specimens per composite type were impacted 
at impact energies of 2, 4, 6 and 8 J. One test specimen 
per composite type was impacted at 10 J. After impact the 
light intensity was measured as described in the previous 
paragraph and subsequently the panels were also C-scanned 
after impact testing to establish the extent of delamination. 

3. Results and discussion 

3.1. De-sizing and surface aualysis 

Figures 2(a) and (b) show SEM micrographs of the swface 
of the self-sensing fibres before and after bum-off. It is 
apparent from the figure that the bum-off treatment was 
successful in removing debris from the fibre surfaces. The 
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~S results for the different de-sizing treatments used in 
thiS study are summarized in table 3. 

With reference to table 3, considerable scatter was 
observed in the as-received fibre data. The acetic acid de­
sizing treatment was found to be not as effective as the 
pyrolysis de-sizing process. The pyrolysis-based de-sizing 
process was found to be least efficient when the fibres 
were introduced directly into the furnace which was set 
at 700°C with a short hold period of 15 min. A longer 
dwell period resulted in the lowest carbon content on the 
surface of the fibres. It was not possible to identify the 
origin of the nitrogen peak. with any certainty but it may be 
associated with the presence of amine functional groups in 
the size. The nitrogen peak. was undetectable after the de­
sizing operations. Typical XPS spectra for the quartz fibres 
subjected to different treatments are shown in figure 3. 

3.2. Evaluation of the self-sensing fibres and 
composites 

3.2.1. Quality of the cladding. SEM was used to inspect 
the quality of the impregnation process. Figures 4(a) and 
(b) illustrate good and poor penetration of the polymer 
around the de-sized Quartzel fibre bundle respectively. 
The quality of the coating was found to be a function 
of the polymer viscosity. temperature and the degree of 
separation of the individual fibres in the bundle. Further 
work is currently in progress to study the influence of 
resin (cladding material) viscosity on the coating quality. 
Other cladding materials such as epoxies are also being 
investigated. 

3.2.2. Cleaving. The difficulties associated with 
obtaining good quality cleaves are also readily apparent 
in figures 5(a) and (b). The quality of the cleave for the 
self-sensing fibre system was found to be improved by 
cleaving the fibres under tension. This was achieved by 
bending the fibre bundles around glass cylinders of various 
diameters and then using a fresh razor blade to cleave the 
fibre bundle each time. Although pre-tensioning was found 
to improve significantly the quality of the cleaves, it was 
not possible to obtain a uniform cleave for all the individual 
fibres in the bundle. From a practical viewpoint, cleaving­
related issues may not pose any significant concern because 
if the self-sensing fibres are embedded within the structure, 
then polishing the free edge of the structure to expose the 
embedded fibre bundle(s) is possible. 

3.2.3. Embedded optical fibres and self-sensing fibres. 
Figures 6(a)-{d) illustrate the effect of the embedded 125, 
50 and 30 JJ.m fibres and the self-sensing fibres on the 
AFRC respectively. With reference to figure 6(a), the 
diameter mismatch between the reinforcing fibres and the 
conventional 50/125 JJ.m optical fibre is readily apparent 
along with the presence of a large resin-rich region. 
In the context of a low-cost impact damage detection 
system. it is difficult to envisage large-area coverage 
of engineering structures with conventional optical fibres 
which are at least an order of magnitude larger in diameter 
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Figure 1. Schematic illustration of the experimental set-up which was' used to measure the transmitted light intensity through 
the conventional optical fibres and the self-sensing fibres before and after impact. 
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Figure 2. Scanning electron micrograph of the Quartzel fibres: (a) before burn-off and (b) after burn-off. 

Table 3. Summary of the XPS results for the Quartzel fibre surface as a function of de-sizing conditions. 

Condition Carbon (at.%) Oxygen(at. %) Silicon(at. %) Nitrogen(at.%) 

As-received fibres-run 1 63.87 
As-received fibres-run 2 57.93 
Acetic acid reflux 31.29 
Fast ramp to 700 °C & hold for 15 min 13.88 
Fast ramp to 700 °C & hold for 1 h 12.65 
Slow ramp to 700 °C & hold for 1 h 9.04 

than the reinforcing fibres. The advantage of using smalJer­
diameter optical fibres is illustrated in figures 6(b) and 
(c) which show 50 /-Lm and 30 /-Lm embedded optical 
fibres respectively. Figure 6(d) shows a micrograph of 
the embedded silicone-coated Quartzel fibres . The apparent 
glow in the self-sensing fibres was achieved by illuminating 
the fibres from the opposite end. 

The self-sensing fibres have a number of advantages 
over conventional optical fibre sensing techniques, includ­
ing the following. 

(i) The sensing fibres will not have any detrimental 

23.3 9.41 3.43 
27.77 10.15 4.15 
49.56 19.15 
59.44 26.68 
62.14 25.21 
61.0 29.96 

effect on the properties of the composite because of 
diameter compatibility and the ability to engineer the 
interface as required. 

(ii) The sensing fibres can be incorporated at pre­
determined locations into most composite preforms at the 
manufacturing stage. 

(iii) The instrumentation involved for the source and 
the detector can be simple, low cost and robust. 

(iv) The cladding material can be selected to fulfil other 
sensing requirements, for example, temperature monitoring. 

The self-sensing fibres also have the potential to be 

435 



S Hayes et a/ 

eetlO l surv 
F~es befOre j)rocfulng ] 

1600 
I SUI'V .! 
~ o 15/ 
I C Is I C 5000 '- I C 1200 

0 : 
0 -u u '-

~ 4000 t .. 
n 800 '" '" ~ t 

5 s ~!U 2000 - 400 

0 0 
F1bras - ,low riIIP 700deg ~ 1 hour 

0 100 200 300 400 550 600 700 eoo 0 200 400 600 800 1000 J200 
8indln«J Energ1 / eV B1Mlng fnergy I eV 

(a) (b) 

~f s~. !! 

1 
1200 sU/'v !! 

c 1000 CI600 
0 °800 
u 1200 r- u .. 

L. 

J n j n 600 
t I t 

!it;!; J 5 400 !! 

200 
FIllru - ,catlc .cia + flry 

zoo .00 600 800 1000 1200 200 ., 600 800 1000 J200 
lilndln9 EIlersy I IV Bll1clino EnIl"llY I • v 

(c) (d) 

Figure 3. Typical XPS spectra for: (a) the as-received Quartzel fibres; (b) slow ramp to 700 0 e held 1 h; (c) fast ramp to 
700 °C held 1 h; and (d) acetic acid refluxed. 

(a) (b) 

Figure 4. Scanning electron micrographs showing the extent of penetration of the cladding material (silicone) around the 
fibres: (a) good penetration and (b) poor penetration. 

used in many sensor applications in which ordinary optical 
fibres are used. However, a number of areas still need to be 
addressed with respect to the self-sensing composite. These 
include the following. 

(i) Control over the distribution of the fibres within the 
bundle during the coating process. 

(ii) Minimizing the void content and the extent of fibre 
damage during the cladding operation. 

(iii) Selection of the cladding material to make it 
chemically compatible with the epoxy matrix. 
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(iv) Control over the interfacial bond strength to obtain 
the required level of sensitivity towards impact damage. 

3.2.4. Impact damage detection. The sensing fibres 
were located between plies 1-2 and 15-16 because damage 
development in AFRCs shows a characteristic spread from 
the point of impact on one surface through the thickness 
of the test specimen. In this paper, only the results 
from the bottom row of optical and self-sensing fibres are 
reported. A clear indication of the extent of delamination 
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(a) (b) 

Flg~re 5. Scanning electron micrographs showing the effect of tension on the quality of the cleave: (a) fibres cleaved under 
tension and (b) fibres cleaved in a stress-free state. 

(a) (b) 

(c) Cd) 

Figure 6. Embedded conventional optical fibre sensors and embedded self-sensing fibres within carbon fibre cross-ply 
composites: (a) 125 J.Lm optical fibre; (b) 50 J.Lm optical fibre bundle; (c) 30 J.Lm optical fibre bundle; (d) self-sensing fibre 
bundle. 
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(f) Reference (If) 2J fmpact 

(iv) 6J fmpact (v) 8J Impact (vi) lOJ Impact 

Fig~re 7. ~election of six typical C-scans for a reference panel (no impact) and five impacted self-sensing composite panefs 
at different Impact energies. 
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Figure 8. Illustration of the observed relationship between the incident impact energy and the resultant delaminated area as 
inferred from the C-scans. 

as a consequence of the impact event can be inferred 
from the C·scans presented in figure 7(iHvi). In general, 
delamination damage was readily visible in the C-scans for 
impact energies above 2 J. However, two test specimens 
which were impacted at 2 J did show some evidence of 
delamination. The vertical lines which can be seen in 
figure 7 show the locations of the coated self-sensing fibres 
and do not represent voids. The total area of delamination 
was calculated using image analysis and was found to 
increase as a function of impact energy as shown in figure 8. 
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The corresponding data for the 125, 50 and 30 f.Lm fibres 
are also represented in figure 8. In order to make any 
quantitative comments on the relative influence of the 
embedment on the nature of impact damage development, 
detailed microscopic information is first required. The 
details of a study on the nature of damage development 
in these test specimens will be published in due course. 

The results from the light intensity measurements of 
the silicone-coated self-sensing composite before and after 
impact are presented in figures 9-11. With reference to 
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Rgure 9. Light transmission characteristics of the self-sensing composite before and after impact at 2 J. 
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Figure 10. Light transmission characteristics of the composite with embedded 50 J-I.m optical fibres before and after impact at 
6 J. 

figures 9-11. the X -axes refer to the position of the self­
sensing fibres from left to right within the composite panel 
and the Y-axes represent the measured light intensity before 
and after impact testing. The self-sensing composite was 
capable of detecting a 2 J impact whereas the C-scan data 
suggest that there is no damage at this loading. None of 
the other embedded fibre types were capable of detecting a 
2 J impact load. It is also apparent from figure 9 that the 
light transmission characteristic of the self-sensing fibres 
is highly variable. This inconsistency has been attributed 
to fibre damage caused by the current coating (cladding) 
process. Other methods of coating the self-sensing fibres. 
including the feasibility of electrostatic spraying. are being 
assessed. The self-sensing fibres were capable of detecting 
impact events at 4, 6. 8 and 10 I. 

The effects of 4 J and 6 J impact loading on the 30 
and 50 J.Lm embedded optical fibres were similar and hence 
figure 10 shows only the results from the 6 J impact loading 
of the 50 J.Lm fibres. The light transmission characteristics 

of the custom made 30 and 50 J.Lm optical fibres were more 
consistent when compared with the self-sensing fibres. It is 
interesting to note that the 50 J.Lm fibres was also capable 
of detecting the effects of a 4 J impact approximately 
10 mm on either side of the impact point. Microscopic 
examinations revealed the presence of remote matrix cracks 
in the vicinity of the fractured 50 J.Lm optical fibres. The 
composite panel with the embedded 501125 optical fibres 
was capable of detecting impact damage at 6 J or greater. 
At impact loadings above 6 J, there was clear visual 
evidence of impact damage and hence the data for the 8 
and 10 J impact tests are not discussed. 

4. Conclusions 

In summary. the feasibility of using reinforcing fibres as a 
light guide has been demonstrated. The self-sensing fibres 
were successfully embedded into carbon fibre prepregs and 
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Agure 11. Light transmission characteristics of the composite with embedded 125 J,Lm optical fibres before and after impact 
at 6 J. 

then processed into composite panels. The self-sensing 
fibres were capable of detecting impacts as low as 2 J 
when impacted using a 20 mm hemispherical tup. The 
conventional optical fibres which were used in this study 
were capable of detecting impacts at and above 4 J. 
Further work is currently in progress to improve light 
transmission characteristics of the self-sensing fibres and 
inter-connection techniques. 
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Abstract. This paper presents a general overview of a number of optical fibre 
sensor systems which have been developed and used in advanced fibre-reinforced 
composites for in-situ process and condition monitoring. The in-situ process 
monitoring techniques were optical-fibre-based evanescent wave spectroscopy, 
transmission near-infrared spectroscopy and refractive index monitoring. The 
optical fibre sensors were successful in tracking the cure reaction. The condition 
monitOring of advanced fibre-reinforced composites was carried out using two 
intensity-based optical fibre sensor systems: an extrinsic multi-mode Fabry-Perot 
sensor and Bragg gratings. In addition to this, the feasibility of using the reinforcing 
fibre as a light guide was demonstrated. These sensor systems were evaluated 
under quasi-static, impact and fatigue loading. The test specimens consisted of 
prepreg-based carbon-fibre-reinforced epoxy and glass-fibre-reinforced epoxy 
filament-wound tubes. Excellent correlation was obtained between surface-mounted 
strain gauges and the embedded optical fibre sensors. The feasibility of using 
these sensor systems for the detection of impact damage and stiffness reduction in 
the composite due to fatigue damage was successfully demonstrated. 

1. Introduction 

Advanced fibre-reinforced composites (AFRC) are used 
extensively for primary and secondary load-bearing 
applications. Consequently, there is a growing interest 
in sensor systems for on-line process monitoring and 
for evaluating the integrity of these materials in-service. 
From an AFRC manufacturer's viewpoint, the primary 
requirement is to establish the chemical state of the resin 
system and then to optimize the cure schedule to account 
for the condition of the resin. End-users of AFRCs 
have a different requirement, namely, a facility to monitor 
the structural integrity in situ or in real-time. Both 
these requirements can be fulfilled using optical-fibre-based 
sensing systems. 

techniques such as measurement of dielectric properties, 
viscosity, acoustic velocity etc. This is because the optical­
fibre-based sensor techniques can give information on the 
actual chemical concentrations of the constituent chemicals 
in the resin system, whereas the other techniques can only 
infer chemical concentration and/or composition. The non­
optical techniques mentioned above require a vast database 
of information in order to establish a correlation between 
the sensor data and the state of cure. Furthermore, the 
results from some of these techniques may be influenced by 
moisture, the relative volume fractions of the fibres, fibre 
orientation and electrical interference from the processing 
equipment. OFS are immune to these factors and can 
give additional information on moisture content and the 
temperature ramp which is used during the heat-up cycle. 

1.1. In-situ cure monitoring 

Optical fibre sensors (OFS) offer a number of unique 
advantages for cure monitoring when compared with other 

t To whom con-espondence should be addressed. Current address: 
Department of Engineering Systems. Royal Military College of Science. 
University of Cranfield, Scriven ham. Swindon SN6 SLA. UK 

0964-17261981020145+14$19.50 ~ 1998 lOP Publishing Ltd 

The following points illustrate the need for on-line cure 
monitoring. 

(i) The extent of cure and the homogeneity of 
the cure in large AFRC structures. The mechanical 
properties of AFRCs are generally dominated by the 
properties of the reinforcing fibres. However, the matrix­
dominated properties, such as compressive strength, impact 
strength, hygrothermal behaviour, load-transfer efficiency 
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and interlaminar shear strength can be affected by the 
crosslink density of the resin system used. The crosslink 
density is in turn influenced by factors such as the chemical 
state of the resin before cure, moisture content and the 
processing conditions. The long-term and the overall 
properties of the composite will also be influenced by the 
temperature profile and cure schedule. 

(ii) The chemical state of the resin (or prepreg) prior 
to cure. This is a quality control issue. A number of 
AFRC users of prepregs and resins do not have access to 
equipment to monitor the extent of cure of the preprcgs 
or resins prior to hot-pressing or autocIaving. This means 
that no processing modifications can be made to the cure 
schedule to compensate for the variable state of cure of the 
starting materials. 

(iii) Optimizing cure schedules with specific reference 
to interleaving technology (hybrid resins). This point is 
related to recent advances in interleaving technology in 
AFRCs to suppress delamination growth and to retard 
the rate of fatigue damage propagation. Any interleaving 
material which is used to improve the fatigue and impact 
resistance should be compatible with the base resin and 
have a higher G Ie value. Any manufacturing method which 
utilizes hybrid resin technology will need access to cure 
schedules and models to ensure homogeneous curing. The 
results gained from this programme should allow existing 
models to be improved. This will enable components made 
with different resin systems to be processed in an autoclave 
simultaneously. 

All the above mentioned points could be addressed if 
a simple technique to monitor, in situ, the initial chemical 
state of the resin and the chemical changes in the resin 
resulting from curing was available. From a cost-effective 
viewpoint, the power to the autoclave can be turned off 
once a specified degree of cure has been achieved. In order 
to do this with a degree of confidence, a sensor system is 
required to monitor both the rate of cure and the temperature 
within the composite. 

1.2. In-situ condition monitoring 

A major concern with AFRCs is the difficulties associated 
with detecting fatigue and impact damage. This is due to 

the progressive nature of internal damage development in 
AFRCs. Conventional non-destructive evaluation (NDE) 
methods include the following: (i) strain measurements 
using surface-mounted strain gauges or extensometers (I]; 
(ii) dye penetrant-enhanced x-ray radiography (2]; (iii) 
C-scans [3]; (iv) thennography (4J; (v) acoustic emission 
[5] and (vi) electrical conductivity (6]. Although these 
techniques have been used widely by industry and in the 
laboratory, they are unsuitable for on-line monitoring. 

The stiffness of an AFRC can provide useful 
infonnation on its integrity. For example, damage in 
the fonn of fibre fractures and delaminations will reduce 
the overall stiffness of the material. The stiffness can 
be inferred from strain measurements made by embedded 
or surface-mounted devices. Examples of optical-fibre­
based sensor systems which have been used for strain 
monitoring in AFRCs (7) include intrinsic and extrinsic 
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Figure 1. Generalized reaction scheme for an 
epoxy-amine resin system. 
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Fabry-Perot type sensors [8,9], intensity-based sensors 
[10], polarization-based sensors [II] and oplical-fibre­
based Bragg grating sensors [12,13]. From a materials 
viewpoint, the optical fibre Bragg sensors are ideally 
suited for deployment in AFRC structures because of 
their simple design, small size and ease of integration 
into composite materials with minimal perturbation to 
the reinforcing fibres. They have a simpler design than 
most interferometric sensors, may be multiplexed [14] 
and are immune to intensity drifts. However, from 
an industrial point of view, reliability and low cost in 
installation and maintenance are important criteria to be 
fulfilled before OFS can compete with conventional sensors 
such as resistive strain gauges. Intensity-based OFS can 
be considered as a compromise between high-precision 
interferometric sensors and low cost. 

In this paper we report the practical use of some optical­
fibre-based sensor systems for in-situ process (cure) and 
condition monitoring of AFRCs. 

2. Optical fibre-based cure sensors 

Typical high-performance commercial resin systems use 
epoxy/amine formulations. Processing of these resin 
systems involves the conversion of the matrix resin from 
a low-molecular-weight viscous liquid or semi-solid to 
a highly cross-linked rigid structure. The processing 
parameters include pressure, vacuum and heat. Figure I 
shows the generalized epoxy-amine reactions which occur 
during cure. It can be seen from the reaction scheme 
that epoxy groups and amine groups are consumed during 
the cure process. Since vibrations due to C-H, N-H and 
O-H groups are the most prominent in the near-infrared 
region, the wavelength range from 1100-2300 nm is ideal 
for monitoring changes which occur to C-H, N-H and 0-
H groups during the cure process. The refractive index of 
the resin system also increases with the extent of cure. 

This paper reports on four types of optical fibre sensors 
which have been developed to monitor the cure of epoxy­
amine resin systems. These techniques are based on near­
infrared spectroscopy and refractive index measurements 
during cure. 

2.1. Near-infrared spectroscopy-based optical fibre 
cure sensors 

A transmission spectroscopy sensor and an evanescent wave 
spectroscopy sensor were used to carry out the in-situ cure 
monitoring experiments on a model epoxy/amine resin. A 
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Figure 2. Schematic of transmission and evanescent wave 
optical fibre cure monitoring set·up. 

diagram of the equipment and fibre configurations used for 
these sensors is shown in figure 2_ The equipment used 
to scan across the spectrum was identical for both types 
of sensor. This consisted of a modulated quartz-halogen 
source and diffraction grating monochromator (Bentham 
Instruments). Light emerging from the monochromator 
was launched into the fibre using a microscope objective 
lens. Light received from the sensor was detected using 
an InGaAs photodiode detector and lock-in amplifier. 
Data acquired from the detection system and control of 
the monochromator wavelength were undertaken with PC 
control. 

The transmis ion sensor was constructed from two 
501125 /--Lm step-index silica optical fibres placed inside 
a precision bore metal capillary tube (internal diameter 
= 254 /--Lm) which had onc side ground down exposing 
the inside of the tube. The buffer coating was left on 
the outside of the fibres (diameter = 240 J.Lm) to allow a 
close fit inside the capillary_ The fibres were aligned with 
a gap of approximately 1.25 mm between the end-faces _ 
A stoichiometric mixture of Epikotc 828 resin (based on 
a diglycidyl ether of bisphenol-A epoxy resin) and 1,6-
hexanediamine was placed over the sensor region so that 
the resin ran between the two optical fibres of the sensor. 
The hot-plate temperature was maintained at 40 °C and 
spectra were collected throughout cure over the range 1450-
1700 nm. 

Figure 3 shows overlaid spectra obtained from the 
optical fibre transmission sensor during the cure of Epikote 
828 + hexanediamine at 40 °C. The peaks at 1535 nm, 
1650 nm and 1670 nm are due to both primary and 
secondary amine groups, epoxy groups, and aromatic C-H 
groups, respectively_It can readily be seen that the amine 
peak at 1535 nm and the epoxy peak at 1650 nm decrease 
in magnitude during cure whereas the aromatic C-H peak 
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Figure 3. Optical fibre near-infrared transmission spectra 
of Epikote 828 and hexanediamine at 42 C; peaks 
numbered 1, 2 and 3 correspond to amine groups, epoxy 
groups and aromatic C-H groups, respectively. 
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Figure 4. Overlaid optical fibre evanescent wave spectra 
obtained during cure of Epikote 828 + hexanediamine at 
40 :C. 

stays approximately the same. Additionally, it can be seen 
that the overall baseline of each spectrum ri ses during cure. 
This is due to an increase in the refractive index of the resin 
as it cures. 

The evanescent optical fibre sensor was constructed 
from a piece of high-refractive-index core optical fibre 
(II = 1.65). A 30 cm length of silicone resin cladding 
material was removed from the fibre to allow the fibre core 
to be in intimate contact with the resin during cure. Figure 4 
shows overlaid spectra obtaincd using the sensor during 
the cure of Epikote 828 and hexanediamine at 40 °C. The 
spectra have been baseline-corrected to compensate for the 
refractive index baseline shift by dividing each absorbance 
value by the mean of all values in the curve. Peak areas 
for the amine absorption peak at 1535 nm wcrc measured 
for each cure spectrum obtained from the transmission and 
evanescent sensors. The data were converted to a fractional 
amine conversion (0') to allow comparisons between the 
data using the following equation: 

ex = J - (Area),/(Area)o 
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Figure 5. Data obtained during cure of Epikote 828 + hexanediamine at 40 'C from optical fibre evanescent wave and 
transmission sensors. 

where cr is the fractional amine conversion and (Area), and 
(Area)o are the amine peak areas at a time t during cure 
and at the start of the reaction. 

Data obtained for amine fractional conversions from the 
transmission and evanescent optical fibre sensors during 
cure are shown in figure 5. It can be seen that the 
two sensors showed similar profiles up to 50 min cure 
time. After this point the two methods began to deviate. 
This was because the evanescent sensor showed the amine 
absorption peak area to fall to zero towards the end of 
cure. producing a fractional conversion value of zero. 
However, the transmission sensor at the same cure time 
showed some amine still to be present. Results from FTIR 
spectroscopy experiments confirmed that at 40 °C. there was 
some amine present at the end of cure with a final fractional 
conversion of amine of approximately 0.8 being achieved. 
This compares well with the transmission optical fibre data. 

2.2. Refractive-index-based cure sensors 

Two single-wavelength optical-fibre-based sensors have 
been developed to monitor the cure of epoxy resin systems 
using changes OCCUlTing to the refractive index of the resin. 
The first type of sensor is a modification of the evanescent 
sensor shown in figure 2. The sensor was constructed from 
a piece of high-refractive-index optical fibre which has a 
small portion of its cladding removed (25 mm). Light 
from a 1310 nm laser diode source was introduced into the 
fibre and the intensity monitored using an InGaAs detector. 
photodiode amplifier and PC. 

The second type of optical fibre sensor was based on 
Fresnel reflections from a cleaved fibre end placed in a 
curing resin sample. A silica fibre 2 x ) coupler was 
set up with a 1310 nm laser diode source and an InGaAs 
photodiode detector at the double end. The single fibre end 
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was cleaved and placed in the resin sample. Changes in 
the reflection from the optical-fibre-resin boundary were 
monitored and related to changes in the refractive index 
during cure. Results obtained from both types of sensor 
during the cure of Epikote 828 and hexanediamine at 45°C 
are shown in figure 6. As the temperature of the resin rises 
to its set-point, changes occur to both the back-reflection 
and stripped cladding sensors. After this point, any changes 
to the intensity of each sensor can be attributed to the 
increase in the refractive index of the resin during cure. The 
back-reflection sensor signal was found to be proportional 
to the refractive index of the curing resin whereas the 
stripped cladding sensor signal was inversely proportional 
to the resin refractive index. Both types of sensor showed 
that the cure reaction was complete after approximately 
100 min. 

3. IntenSity-based optical fibre sensors for crack 
and impact damage detection 

A typical intensity-modulated optical fibre sensor system 
consists of a light source. a sensing device. within which the 
intensity of light is altered by the measurand in some way, 
a detector to measure the intensity of the transmitted signal 
and optical fibres to carry light between these components. 
The principal advantage of such a system is that it does not 
need the complicated instrumentation and signal processing 
demanded by other classes of OFS, which increase their 
cost and reduce their applicability. 

3.1. Embedded OFS for damage detection in filament 
wound tubes 

IntenSity-based systems are susceptible to errors caused 
by spurious changes in the light intensity received at the 
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Figure 7. Schematic of the embedded optical fibre 
locations and the dimensions of the filament-wound tubes. 

detector. Power fluctuations of the source, microbending 
losses in fibres and losses at splices and connectors all 
impose variations on the sensor signal and lead to errors. 
Quantitative damage detection demands the generation of a 
reference signal to compensate for intensity fluctuations. 
Intensity-based sensor systems without such referencing 
means are technically simple and low cost but they can 
only provide qualitative information. However, there is 
still a strong demand in industry for low-cost systems for 
detecting fibre fracture and impact damage in composites. 

Hale et al [15] present one of the earliest and simplest 
intensity-based optical fibre sensors, for detecting the 
passage of cracks through a material. Optical fibres were 
attached to the surface of the material or embedded within 
it. Fibres fractured when traversed by a crack and the 
resulting drop in transmitted light gave an indication of the 
progress of cracks. In the current work, the custom-made 
17/50 IJ.m optical fibres were integrated into the filament­
wound tubes at the time of manufacture. A schematic of 
the location of the optical fibres in the filament-wound tube 
is given in figure 7. 

The light transmission through each length of the 
optical fibres was determined before and after impact with 

a white light source and a photodetector array. The 
filament-wound tubes were impacted at 2, 5, 8 and IO J 
using a Rosand instrumented impact falling-weight machine 
fitted with a 50 mm hemispherical tup. The impact point 
was located between a pair of the embedded optical fibre 
bundles. 

The optical-fibre-based crack detection sensor system 
was evaluated in two ways. Firstly, the tube was inspected 
for bleeding light after the impact and secondly, the light 
transmitted through the optical fibres was determined before 
and after impact. 

Bleeding light. The following paragraph refers 
exclusively to figure 8. Figure 8(a) illustrates that no 
bleeding light was detected after subjecting the filament­
wound tube to an 2 J impact. Figures (b) and (c) show 
bleeding light in the vicinity of the impact point after 5 J and 
IO J impacts, respectively. The micrographs presented in 
figures (d)-(f) illustrate the nature of the impact damage at 
2, 5 and 10 J respectively. The predominant damage mode 
at 2 J was matrix cracking. The extent and the number 
of matrix cracks and delaminations were seen to increase 
progressively for the 5 J and IO J impacts. The primary 
cracks have been enhanced for clarity. However, it has to 
be appreciated that the observed damage features will be' a 
function of distance and orientation from the impact point. 

Figures (g)-(i) are schematics of the observed damage 
after subjecting the filament-wound tubes to 2, 5 and 10 J 
impacts respectively. The first signs of reinforcing fibre and 
optical fibre fractures were seen at impact energies of 5 J 
and above. Figure 8(i) illustrates the presence of matrix 
cracks remote from the impact zone. This is a unique 
feature in impact-damaged glass-fibre-reinforced filament­
wound tubes which is caused by the deflection of the tube 
as a consequence of the impact. 

Intensity measurements before and after impact. The 
light intensities transmitted through the optical fibres were 
determined before and after impact. Figures 9 and 10 show 
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Figure 8, (a)-(c) Bleeding light emanating from the optical fibres after impact. (d)-(f) Micrographs showing the nature of 
?amag? sustained by the filament-wound tubes after impacts corresponding to 2, 5 and 10 J, respectively. (g)-(i) Schematic 
Illustration of the damage in the filament-wound tubes for the three incident impact loads. 

nonnalized light transmis ion through the embedded optical 
fibres. The normalization was carried out with respect to 
the average light transmission through the optical fibres for 
the composite in the undamaged state. 

Figure 9(a) shows that the crack detection system u ed 
in this study wa not capable of detecting a 2 J impact. It is 
readily apparent from figures 9(b) and 10 that the embedded 
17/50 fJ-m optical fibres were capable of detecting impact 
damage at 5 J and above. Figure 10(b) also demonstrated 
that this crack detection technique could detect remote 
cracks in the filament-wound tube which was impacted at 
10 J. 

Although the optical-fibre-based crack detection tech­
nique is simple and economical to implement, its limita­
tions have to be appreciated. The process of damage ini­
tiation and propagation in AFRCs is complex and can be 
influenced by a multitude of factors including the strength. 
stiffness and failure strain distributions of the reinforcing 
fibres and the matrix. The interfacial bond strength be­
tween the matrix and the fibres plays an important role in 
determining the observed failure modes. The method of 
stress application, i.e. , fatigue , impact. tensile, compressive 
or quasi-static loading and the rate of tress application can 
innuence the damage initiation and propagation processes 
in AFRCs. Other factors which can influence the initiation 
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and propagation of damage include the environmental con­
ditions, void content in the AFRC. relative volume fraction 
of the reinforcing fibres and their relative orientations, the 
state of residual stress. and the ply stacking sequence. 

3.2. Impact damage detection using intensity-based 
vibration sensing 

The vibrational characteristics of AFRCs can be used 
to obtain infonnation on their structural integrity. 
Optical-fibre-based techniques present an alternative to 
conventional accelerometers. Non-contact vibrometry may 
be perfonned by simple intensity-based devices (16), 
techniques such as optical triangulation (17) or laser 
interferometry. Employing optical fibre light guides 
facilitates measurements where it is difficult to focus a beam 
directly (18). Intensity-based [19,20), modal interference 
[21) and interferometric [22] opti cal fibre vibration sensors 
have all been described in the literature . Strain gauges with 
a sufficiently high bandwidth may be attached to a structure 
to pick up fluctuations in slress and strain as acoustic waves 
pass through it. Fabry-Perot (23) and Mach- Zehnder (24J 
fibre interferometers and two-mode polarimetric sensors 
(25) have been demonstrated as vibration sensors. 
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Figure 9. Normalized output light intensity as a function of location from the impact point for (a) 2 J and (b) 5 J impact. 
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Figure 11. Sectional diagram of the vibration sensor. 

Here we describe an intensity-ba ed sensor which offers 

not only low cost but also an additional function of post­
impact damage detection. A schematic of the sensor is 

pre ented in figure I I. 
The sensor comprises two de-buffered, cleaved, multi­

mode optical fibres inserted into 10 mm lengthS of silica 
capillary. The end of one fibre is kept flush with the 

end of the tube, whilst the other is allowed to protrude 

a predetermined length L. The two assemblies of fibre 

and supporting capillary are then fitled into a larger-bore 
tube, giving the arrangement depicted in figure II. The 
tolerances between the fibre and the supporting tubes, and 
the supporting tubes and the outer tube arc of the order of 
3-5 /-Lm, ensuring that the optical fibres are well aligned. 
The sensor is held together with epoxy resin . 

The lowest natural frequency, fl' of a cantilever beam 

is given by: 

( I) 

where C I is a geometrical factor, E is the Young's modulus. 
I is the 2nd moment of area, A is the cross-sectional area of 
the beam and L is its length. For SOlI 25 multi-mode optical 
fibres the relationship between unsupported fibre length and 
natural frequency is shown by figure 12. 

The relative sensitivity and frequency response of the 
device may be tailored by altering its geometry. Its resonant 
frequency may be tuned to a particular wavelength, over a 
range of a few thousand Hertz, by varying the length of 
the cantilever. Sensors employing shorter cantilevers are 
able 10 respond to higher frequencies, but will tend to be 
less sensitive than longer ones, giving a smaller change in 
intensity for a given amplitude of vibration. 

In the first instance, the sensor was used to try to detect 
changes in a CFRP panel's response to an acoustic transient, 

following the introduction of impact damage in the panel. 
The material was a 16-ply cross-ply composite having the 

lay-up sequence {O/902l02/90/0/90lf' 
Sensors were bonded 10 the surface of 70 x 70 mm 2 

specimens with cyanoacrylate adhesive. First, the response 
of the sensor to the impact of a 6.5 mm diameter stee l 
ball from a height of 25 em was recorded. The panel was 
then subjected to an 8 J impact in a falling-weight impact 
machine fitted with a 20 mm diameter hemispherical tup, 

151 



I 
\ 

C Doyle et a/ 

Plot of 1st Fundamental Frequency vs cantilever length 
for four sizes of optical fibre 

~~~------~----------~----------------------~ . . - - ,. - - - - - - - ~ - \_ .1 ______________ , ____________________________ _ 

\ ' I 
- - -., - - - - - - - - - - ~ - - - - - - - - - - - - - - 1 - - - - - - - -

• l ' • _ ; __ • _... _, \ _ _ _. _ _ _ _ _ _ _ J _______ _ 

l . 

. - -~ - - - - - - - - -, - ~ .. - - - . - - - - - - - - - -
'. 

\ 

- - - - \ - - - - - - -' - - - - :,~ - - - - - - - -

\ ' 

500 micron dia. 
50 micron dia 
200 micron dia. 
125 micron dia. 

____ "'" _____ .' ______ ~ ~ ______ .J ______________ ~ _____________ _ 

'-, , 
"'- - - - ~ - - - - - - - - - - - - - - r - - ~ - - -. 

, 
.. .. .. - ""-... . - -

. ' 
~ _ _ _ _ _ _ _ _ _ _ _ .1 __ ~ ... ________________ : ~ _ _ _ _ _ _ _ _ _ _ _ _ _____ _ 

-~ ----------: ---~::- ~,- ----~ ---------~ -.. --:----~-=- ------------
- - - - ~ ::--::..... - - - - - -: - - - - - - - -~ - ---~- ~"'- - - = :. - - - - - - - - - ~ - - ~ - - - -- -- ---::---. '-

... --.......... - I 

- - - - - - - - - - - - --~- ~---~---.:.:: = ~ - - --~ ~ = :-~~~------..;~.=:. 
o ----------

0.002 0.004 0.006 0.008 0.010 

Cantilever Length em) 

Figure 12. Variation of lowest resonant frequency with cantilever length for four common sizes of silica optical fibre. 
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Figure 13. Representative examples of sensor output before (a) and after (b) an 8 J impact on the CFRP plate. 

producing delamination and visible cracking on its lower 
surface. The ball drop tests were repeated and the two sets 

of results compared. 

3.3. Impact damage detection based on 'self-sensing' 
composites 

Some of the limitations of the optical-fibre-based crack 
detection system mentioned above can be overcome if the 
reinforcing fibres can be made to act as the light guide. 
The concept of the reinforcing fibre light guide (RFLG) 
is ideal for impact damage detection and has a number of 

advantages: 

Figure 13 indicates that the sensor's output changed 
noticeably after the plate was damaged. The shape of the 
right-hand trace is different; vibrations were more quickly 
damped and FFf analysis indicated changes in the resonant 
frequencies of the panel. 

The important infonnation in the sensor's output is 
contained in the AC component of the signal rather than 
the DC background. Unavoidable fluctuations in the latter 
due to losses in the optical train should not, therefore, affect 
the operation of the sensor unduly, as long as they are of 
long period relative to the AC signal. 
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(i) there is minimal induced distortion on the reinforcing 
fibres when the RFLGs are embedded in the AFRC; 

(ii) RFLGs offer the possibility of eliminating resin-rich 

regions; 
(iii) the RFLGs contribute to the reinforcement of the 



Figure 14. (a) Micrograph of a self-sensing composite. 
(b) Micrograph of an embedded 50/125 optical fibre. 

composite structure; 
(iv) large areas of the composite structure can be 

covered using the RFLG . This is a major advantage over 
conventional optical fibre sensors. 

High-purity 'Quanzel' ilica-glass fibres (from Quartz 
et Silice, France) were identified a being suitable for 
producing the RFLG because of their optical properties. 
These fibres have a low dielectric constant, offer high heat 
resistance and a high resistance to thennal shock. As a 
consequence of this. they are used extensively in the aircran 
industry for radomes. electromagnetic windows and thennal 
insulation applications. 

In the current tudy. a silicone cladding was applied 
to a Quartzel fibre bundle consisting of approximately 
400 individual filaments and cured according to the resin 
manufacturer's recommended cure schedule. These RFLGs 
were then placed between the outer two plies of an 
autoclave-cured 16-layered cross-ply (0/902/02/90/0/90} r 
composite fabricated from Ciba-Geigy Fibredux T300/920 
prepreg. The fibre bundles were located 10 mm apart. 
The composite with embedded RFLGs was known a 
the 'self- ensing' composite. Reference panels without 
any embedded optical fibres were also made. The cured 
composite panels were cut into 70 mm squares. C-scanned 
and then dried in an air circulating oven al 60 cc for three 
days. The test pecimens were slored in a desiccator until 
required. A micrograph of a polished transverse section 
Ihrough a elf-sensing composite is shown in figure 14(a). 
Figure 14(b) illu lrales an embedded. conventional 501125 
optical fibre. The diameter mismatch between the optical 
fibre and the reinforcing fibre is obvious. 

In-situ monitOring using optical fibre sensors 

The intensity of light transmitted through each 
embedded RFLG wa~ measured with an apparatus described 
in a previou publication [26J. The composite panels were 
impacted on a Rosand instrumented falling-weight impact 
testing machine at 2 1, 8 1 and 10 1 using a 50 mm 
hemispherical tup. The specimens were C-scanned again 
and the light transmission intensity through the embed~ded 
optical fibres was re-measured after the impact trials . 

Figure 15 shows data for a panel. with embedded 
RFLGs impacted at 2 1. The reduction in transmitted light 
inten ' ity after the imract indicates that the RFLG is capable 
of detecting impacts with energics as low as 2 1. 

4. Damage detection using an extrinsic 
Fabry-Perot interferometric (EFPI) sensor 

Fibre Fabry-Perot (FP) strain sensors can be classified as 
intrinsic. extrinsic, in-line or Bragg-grating-based cavities. 
The intrinsic FP sensor design consists of a short length 
of single-mode fibre whose ends are coated with semi­
reflective film and then fusion spliced onto the end of a 
nonnal single-mode fibre [27]. This design is relatively 
compact but suffers from temperature cross-sensitivity and 
cannot be subjected to tensile strain larger than 4 mE [28]. 
The extrinsic FP sensors have two single-mode optical 
fibres, often housed in a capillary tube and are separated by 
an air gnp. The in-line fibre FP sensor design is constructed 
by fusion splicing a glass capillary tube onto a single-mode 
fibre of the same outside diameter [291. The Bragg-grating­
based FP sensor is created by using two or more pairs of 
in-fibre Bragg gratings to fonn the cavity [28J . 

4.1. Multi-mode EFPI strain sensor based on a CCD 
detection system 

This section reports on the deployment of a multi-mode 
EFPI sensor to monitor the structural integrity of carbon­
fibre -reinforced epoxy composites (CFRP). A schematic 
illustration of the multi-mode EFPI sensor design is 
presented in figure 16(a). The sensor consists of two multi­
mode fibres (50/125) which were separated by an air gap 
and placed into a precision bore silica capillary of 128 Jim 

internal diameter. The fibres were secured in po ition by 
fusion plicing them on to the capillary. A resin affixant 
was also used to secure the optical fibres in the capillary, 
imparting extra protection to the sensor. 

Quasi-static strain measurements are obtained by 
detennining the absolute length of the EFPI cavity . 
This can be achieved via white light interferometry 
employing one or two while light sources with a receiving 
interferometer [30], electronically scanned white light 
interferometry [31], multiple-wavelength interferometry 
[32J and channelled spectrum techniques [33J. 

Since the reflectivity of the glass/air interfaces is very 
low, the sensor is a low-finesse Fabry-Perot interferometer, 
and can be treated as a two-beam interferometer. The 
interference signal can be described by: 

/ = R(A)P(A)(I + Vcos(4Bd/A)) (2) 
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Figure 15. The effect of a 2 J impact on the transmitted light intensity through a RFLG embedded in a CFRP plate. 
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Figure 16. (a) Schematic of the EFPI sensor design; (b) the eGO detection system. 

where, ,\. is the optical wavelength in vacuum. RCA) i the 
detector responsivity, P(,\.) is the power density , d is the 
EFPI cavity length and V i the visiblltty of the interFerence 
fringes. V is a function of the relative intensity of the 
reflected light at two cleaved fibre end-faces and the cavity 
length (34J . 

In this tudy the signal processing of the interference 
signal was based on a portable CCD spectrometer (Ocean 
Optics Limited, Model S 1000). A schemal1c illustration of 
the experimental set-up i presented in figure 16(b). 

Light from a tungsten halogen lamp ~ as launched into 
a multi-mode coupler to illuminate the EFPI sensor which 
was embedded in a compo ite. The reflected light from 
the sensor was delivered ia the multi-mode coupler to a 
grating element and the refracted light was detected with 
a CCO array. The output ignal from each pixel of the 
CCO array represents the optical intensity at a specific 
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wavelength. The acquisition time for a spectrum is of the 
order of 8 ms, which is adequate for the dynamic loading 
experiments used in this study. The CCD device provided 
automatic ambient light and dark current compensation, and 
hence a low noise level. A PC was used for data analysis 
and for calculating the cavity length and hence the strain 
as a function of applied load on the composite. 

The absolute cavity length can be measured by a 
fringe counting technique [9J or by measuring the fringe 
visibility [35J. This section demonstrates the feasibility of 
strain measurement based on fringe visibility modulation. 
This approach offers higher signal processing speed when 
compared with fringe counting. 

The signal processing for visibility measurement 
involved three steps: 

(i) Normalizing the reflection spectrum to its mean 
value, in order to compensate for the intensity drifts due to 



In-situ monitoring using optical fibre sensors 

20r---------------------------------~ 

1=5:r1 

OL-----------------------------------~ 
500 lax> °&o:;;-----:InJ:::-----::700=-----:-OO)~------l-.JOCO 

~rrrr( 

(b) 
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Figure 18. (a) Cavity length versus visibility index obtained using the normalization methods; (b) in-situ strain versus 
[-In(visibility)] obtained with a multi-mode fibre EFPI sensor. 

fibre leads and the light source. Since the effect of bending 
loss on the optical fibre leads and light source intensity 
drifts are similar at all the wavelengths, normalizing the 
spectrum with respect to the average signal level will 
give aa intensity-dependent spectrum. This approach will 
overcome the problem of intensity drift normally associated 
with intensity-based strain measurements. Figure l7(a) 
shows the intensity-compensated reflection spectra from 
multi-mode EFPI sensors of two different cavity lengths 
along with a smoothed light source spectrum which will be 
used for subsequent referencing purposes. 

(ii) Normalizing the spectrum obtained after step I. 
with respect to a smoothed light source spectrum. This 
step removes the effect of the light source spectrum while 
retaining the features of the interference signal. The 
normalized spectra are shown in figure 17(b). 

(iii) Calculation of the visibility of the normalized 
interference fringes. and relating to the cavity length and 

hence strain. Instead of using the conventional definition of 
fringe visibility, the standard deviation of the normalized 
reflection spectra shown in figure 17(b) is defined as an 
index of the fringe visibility. It was found that such an 
index is an absolute measure of the low-finesse multi-mode 
EFPI cavity and thus can be used to deduce cavity length 
and strain. A typical relationship between the cavity length 
and the visibility index is shown in figure l8(a). 

In-situ strain measurement from a sensor embedded in 
a carbon fibre composite specimen has been made using 
this principle. The results are shown in figure 18(b). 
The fabrication of the composite specimen was described 
elsewhere [34 J. The visibility was first transformed using 
a logarithmic function (- In(visibility)) to provide a linear 
function with strain. The fringe visibility was found to be 
affected by the quality of the cleaves and the alignment of 
the fibres. 
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This visibility modulation scheme only involves 
nonnalization and simple statistical calculations. thus it is 
better suited to automation of the signal processing than 
other .interferometric demodulation methods. such as fringe 
countIng. 

4.2. Damage detection using in-fibre Bragg grating 
sensors and a CCD detection system 

A variety of methods can be used for interroo-atino-e e 

FBG sensors. including interferometric wavelength shift 
detection (36). Fabry-Perot wavelength filter detection 
(37). acousto-optic tuning filter techniques (38). edge filter 
ratiometric methods [39) and a conventional polychromator. 
Interferometric methods have the highest resolution and 
are suitable for high-precision strain measurements. The 
ratiometric technique offers technical simplicity and fast 
signal recovery. The cyclic frequencies typically used in 
the fatigue testing of composites are between 2-10 Hz 
with a strain range of -I % and + I %. The techniques 
mentioned above have only been demonstrated for use in 
the laboratory. further development is needed before they 
can be used for strain monitoring during fatigue testing. 
Interrogation of the FBG with a polychromator is not 
suitable for real-time strain measurements in composites 
due to the slow scanning speed of the instrumentation. 
Furthennore. the bulkiness of the instrumentation also 
makes it unsuitable for on-site applications. 

The same fibre-optie-based CCO spectrometer as 
described in the previous section was employed in this 
study. This instrument operates in the spectral range 
500--1000 nm with a resolution of 0.42 nm per pixel 
and response time of 8 ms per spectrum. Since the 
Bragg grating wavelength shift with strain is fairly small. 
it was necessary to improve the spectral resolution. 
The FBG sensor reflective spectrum was clearly defined 
and the application of a spline filling routine to the 
spectrum is justified. This curve filling procedure 
enabled the spectral resolution to be improved to better 
than 0.05 nm. corresponding to a strain sensitivity of 
approximately 80 JU. This fulfils the requirement of the 
fatigue test programme undertaken in this study. This 
CCO-based approach offers access to the whole FBG 
reflection spectrum rather than just using the peak reflection 
wavelength. 

The principle of operation of the fibre Bragg grating 
has been described extensively [40]. The FBG sensors 
were made from a standard single-mode fibre which was 
sensitized by exposing it to a high-pressure hydrogen 
atmosphere. The nominal Bragg grating wavelength was 
827 nm with a bandwidth of 0.2 nm and a reflectivity of 
90%. 

A schematic illustration of the experimental set-up 
which was used for the calibration of the CCO spectrometer 
and the characterization of the SLO light source is shown 
in figure 19. A laser light and a broad-band super­
luminescent diode (SLO) were used to illuminate the single­
mode couplers. The reflected light from the coupler was 
detected using the CCD spectrometer. The ends of fibre 
(A) from coupler number I and the Bragg grating were 
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Figure 1~. Schematic of the experimental set-up for the 
FBG strain measurement experiments. 

immersed in an index matching gel to eliminate reflected 
light from the end-faces. The nominal central wavelength 
of the SLO was 840 nm with a bandwidth of approximately 
10 nm. The output power coupled into the single-mode 
fibre was approximately 100 J-LW. The accuracy of the fibre­
optic CCO spectrometer was found to be dependent on .the 
position of the fibre tip which was housed in the SMA 
connector. as shown in the insert in figure 19. It was found 
from the reflection spectrum that the position of the fibre 
end within the SMA connector can introduce a waveleno-th e 
offset up to ±3 nm. However. once the instrument is 
calibrated this offset can be corrected and does not affect 
the strain measurement. 

The fibre Bragg grating sensor was bonded to the 
surface of a CFRP specimen. Prior to this. the bonding-area 
was first lightly abraded and degreased using conventional 
procedures. Static tensile tests were carried out on an 
Instron 4206 testing machine. The computed relationship 
between applied strain and the Bragg reflection is 0.65 nm 
per milli-strain. This correlates with the results obtained 
using the extensometer for both tensile and compressive 
loading as seen in figure 20(a). The strain range for these 
experiments was restricted to between -0.2% and 0.3%. 
The influence of temperature was not considered in this 
study because the tests were made at a constant ambient 
temperature of 23°C. 

Figure 20(b) demonstrates the stiffness reduction in 
the composite as a function of fatigue cycling. These 
tests were carried out on an Instron 8501 servo-hydraulic 
dynamic testing machine at loading frequencies from 0.1 Hz 
to a maximum of 6 Hz at a stress ratio of -0.5. Both 
the extensometer and the FBG sensors showed a similar 
trend of stiffness reduction but the stiffness obtained from 
the FBG was higher than that from the surface-mounted 
extensometer. This discrepancy between extensometer and 
FBG data may be attributed to debonding of the FBG from 

the composite. 

5. Conclusions 

On-line process monitoring of composites: we have 
successfully deployed (a) two refractive-index-based optical 
fibre sensors; (ii) an evanescent wave spectroscopy optical 
fibre sensor and (iii) an optical-fibre-based transmission 
infrared spectroscopy sensor to monitor the cure kinetics of 
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Agure 20. (a) Optical wavelength versus milli-strain for the surface-mounted FBG sensor; (b) stiffness-decay data using a 
surface-mounted extensometer and a FBG sensor. The composite was under fatigue testing using a peak stress of 
210 MPa. a frequency of 6 Hz and a stress ratio of -0.5. 

epoxy-based resin systems in real-time. A discrepancy was 
found in the cure characteristics of hexanediaminelEpikote 
828 resin using the various cure monitoring techniques. It 
is proposed that the observed discrepancy could be due 
to: (a) specific interaction between the resin system and 
the optical glass fibre surface: (b) lack of accurate data 
on the relationship between the ex.tent of crosslinking. 
development of morphology in the resin and the associated 
change in the refractive index and (c) the sensitivity of 
the evanescent sensor to localized variations in the cure 
chemistry andlor temperature. 

The concept of using reinforcing fibres as light guides 
was proven. The RFLG was shown to be capable of 
detecting 2 J impacts. This technique offers the potential 
for large-area coverage of impact damage detection in 

engineering structures. 
A simple design of fibre-optic vibration sensor has been 

shown to be sufficiently sensitive to indicate impact damage 
in CFRP. It has the possibility [0 operate satisfactorily 
without requiring a referencing system, is completely 
enclosed, and well suited to embedment within a structure 
or skin. 

Fatigue tests on carbon-fibre-reinforced composites 
with Fabry-Perot and Bragg grating sensors demonstrated 
that OFS can be used for both tensile and compressive 
strain under quasi-static and dynamic loading conditions. 
A demodulation technique for an ex.isting multi-mode 

interferometric strain sensor is proposed. 
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