
Analysis of Large Scale Linear Programming
Problems with Embedded Network Structures:

Detection and Solution Algorithms

A thesis submitted for the degree of Doctor of Philosophy

by

N alan Giilplnar

Department of Mathematics and Statistics, BruneI University

December 1998

Abstract

Linear programming (LP) models that contain a (substantial) network structure fre­

quently arise in many real life applications. In this thesis, we investigate two main

questions; i) how an embedded network structure can be detected, ii) how the network

structure can be exploited to create improved sparse simplex solution algorithms. In

order to extract an embedded pure network structure from a general LP problem we

develop two new heuristics. The first heuristic is an alternative multi-stage generalised

upper bounds (GUB) based approach which finds as many GUB subsets as possible.

In order to identify a GUB subset two different approaches are introduced; the first is

based on the notion of Markowitz merit count and the second exploits an independent

set in the corresponding graph. The second heuristic is based on the generalised signed

graph of the coefficient matrix. This heuristic determines whether the given LP prob­

lem is an entirely pure network; this is in contrast to all previously known heuristics.

U sing generalised signed graphs, we prove that the problem of detecting the maximum

size embedded network structure within an LP problem is NP-hard. The two detection

algorithms perform very well computationally and make positive contributions to the

known body of results for the embedded network detection. For computational solu­

tion a decomposition based approach is presented which solves a network problem with

side constraints. In this approach, the original coefficient matrix is partitioned into

the network and the non-network parts. For the partitioned problem, we investigate

two alternative decomposition techniques namely, Lagrangean relaxation and Benders

decomposition. Active variables identified by these procedures are then used to cre­

ate an advanced basis for the original problem. The computational results of applying

these techniques to a selection of Netlib models are encouraging. The development and

computational investigation of this solution algorithm constitute further contribution

made by the research reported in this thesis.

Dedicated to my family

Acknowledgements

I would like to thank to my supervisor Professor Gautam Mitra for his continuous and

enthusiastic support, guidance and many discussions of research topics.

I wish to also thank to Professor Istvan Maros for his generous advice, guidance and

careful comments on my analytical as well as written contribution.

I would like to sincerely thank to Doctor Gregory Gutin for helpful advices, guid­

ance and friendly encouragement throughout years.

I also would like to thank to all members of mathematical programming research group

who have always been friendly and kind to me and made my experience of research in

the Department of Mathematics and Statistics enjoyable one.

I am also deeply grateful to Turkish Educational Council and Mugla University for

the financial support to complete this research.

Contents

List of Figures

List of Tables

List of Symbols

List of Abbreviations

Terminology and Notation

1 Structure Analysis in Linear Programming: Identification and Solu­

tion Methods

1.1 Background to Optimisation

1.2 The Linear Programming Problem

1.3 Network Flow Problem

1.4 Special Structures in LP Constraints

1.5 Exploiting Structures in LPs . . '. . .

1.6 A Need For an Automatic Structure Extraction Method.

1. 7 An LP Problem with Embedded Pure Network Structure (LPEN)

1.8 Analysis of LP Models

1.9 Structure of the Thesis

PART 1: Detection of Embedded Pure Network Structures

2 Review of Algorithms for Network Extraction

2.1 Introduction...........

1

v

.
VI

.
IX

.
IX

..
Xll

1

1

3

4

6

8

10

11

14

21

21

22

22

2.2 Problem Statement 23

2.3 Preprocessing ... 24

2.4 Deletion and Addition Based Methods for Embedded Network Detection 28

2.4.1 Terminology 30

2.4.2 The Row Scanning Deletion Algorithm 31

2.4.3 The Column Scanning Deletion Algorithm 33

2.4.4 The Row Scanning Addition Algorithm . . 34

2.4.5 An Example (Row Scanning Deletion Algorithm) 36

2.5 GUB Based Methods for Embedded Network Detection. 37

3 A New GUB Based Algorithm for Network Extraction 39

3.1 Introduction . 39

3.2 Terminology . 40

3.3 A Multi-stage GUB Based Algorithm (M-GUB) 41

3.4 U sing the Merit Counts For Detecting G UB .. 42

3.4.1 An Example (M-GUB with Merit Count) . 44

3.5 An Independent Set Algorithm For Detecting GUB 46

3.5.1 An Example (M-GUB with an Independent Set) 48

3.6 Computational Results 50

3.7 Discussion 55

4 A Network Extraction Algorithm By Using Generalised Signed Graphs 56

4.1 Introduction

4.2 Generalised Signed Graphs .

4.3 Balanced Signed Graphs ..

4.4 Embedded Networks and Generalised Signed Graphs

4.5 Pure Network Graphs

4.6 A Network Extraction Algorithm: GSG .

4.7 Complexity of the Algorithm

4.8 An Example with the GSG Algorithm

4.9 Computational Results

4.10 Discussion

..
11

56

57

58

59

61

63

65

66

68

71

PART 2: Computational Solution of Embedded Network Problems Using

Lagrangean Relaxation and Benders Decomposition 71

5 Alternative Approaches For Solving LPEN Problems

5.1 Introduction

5.2 Problem Statement

5.3 Specialised Simplex Methods.

5.4 Decomposition Algorithms ..

5.5 An Advanced Basis Method For Solving LPEN Problems

6 Lagrangean Relaxation and Benders Decomposition

6.1 Introduction

6.2 Lagrangean Relaxation

6.2.1 Basic Methodology

6.2.2

6.2.3

6.2.4

A Lagrangean Relaxation of the LPEN Problem

Determination of the Lagrangean Multipliers ..

Solving Lagrangean Relaxation of the LPEN Problem .

6.3 Aggregation of Side Constraints

6.4 Benders Decomposition.

6.4.1 Theoretical Framework.

6.4.2 Benders Decomposition For the LPEN Problem

72

72

73

74

80

82

87

87

88

88

89

91

94

96

99

99

102

7 Solving an LP with an Embedded Network Structure: Advanced Basis104

7.1 Introduction................. 104

7.2 Unit Starting Basis and Crash Procedures

7.2.1 The Crash CLTSF Procedure ...

7.3 Constructing An Advanced Basis with Lagrangean Relaxation

7.4 Constructing An Advanced Basis with Benders Decomposition

7.5 Computational Results

7.5.1 Results with Lagrangean Relaxation

7.5.2 Results with Benders Decomposition

7.5.3 Consolidated Results

111

105

109

111

112

113

114

116

119

7.6 D· . IScuSSlon

8 Summary Conclusions and Future Directions

8.1 Summary of Contributions . .

8.2 Suggestions for Further Work

References

IV

121

122

122

124

125

List of Figures

3.4.1 The network detected within the LP problem.

3.5.2 The undirected graph of the LP problem.

4.3.1 Balanced and unbalanced signed graphs.

4.8.2 The generalised signed graph of the LP coefficient matrix ..

4.8.3 The generalised signed graph after the W-reflection.

45

49

59

67

67

5.5.1 Schematic diagram of LPEN solution method using advanced NSSX basis. 85

v

List of Tables

1.8.1 The characteristics of models, the embedded network and GUB structures. 16

1.8.2 The characteristics of models, the embedded network and GUB structures. 17

1.8.3 The characteristics of models, the embedded network and GUB structures. 18

1.8.4 The characteristics of models, the embedded network and GUB structures. 19

1.8.5 The characteristics of models, the embedded network and GUB struc-

tures for supply chain problems

1.8.6 The qualitative analysis of industrial models

2.3.1 The number of inessential rows and inessential columns.

2.3.2 The number of essential rows and essential columns. . .

3.6.1 The number of network rows detected by the two-stage GUB based

algorithms.

4.9.1 The number of network rows and network extraction time for Netlib

models.

4.9.2 The number of network rows for supply chain models.

7.2.1 Rowand column priorities

7.5.2 Results with the Lagrangean relaxation method.

7.5.3 Results with Benders decomposition with one cut.

7.5.4 Results with Benders decomposition with no cut

7.5.5 The consolidated results.

VI

19

20

26

29

52

69

71

110

115

117

118

120

List of Symbols

V For all

U Union

n Intersection

C Subset

C Proper subset

o Empty set

zT Transpose of z

E Element of a set

x, y Decision variables

9i Gradient of row i

Pi Penalty of row i

Gi The ith GUB subset

~ The set of real numbers

N Set of network row indices

N Node-arc incidence matrix

E Set of eligible (essential) rows

C Set of eligible (essential) columns

P Feasible point set, constraint set

,\ The vector of Lagrangean multipliers

z* Optimum value of a given linear programming problem

A Coefficient matrix of a linear programming problem

aij A non-zero element of the coefficient matrix in row i and column j

A Ternary matrix

aij A non-zero element of the ternary matrix in row i and column j

"
Vll

W

W

T

S

V

A

£

RP i

p:= q

C(ViVk)

9,1i

9[W]

m·· ~J

0'(9)

v(A)

/-1(9)

Ii(N)

Ii(N)

RCi

CCj

A vertex i in a graph

A subset of vertices

The compiement set of W

Tree subgraph for a graph

An independent set of a graph

Set of vertices in a graph

Set of arcs in a directed graph

Set of edges in an undirected graph

Maximum merit count for row k

The reflected row penalty of row i

p is "assigned the value" q

Weight of an edge ViVk

Alternative symbols to represent a graph

Subgraph of 9 induced by W

An edge j linking vertices Vi and Vk in an undirected graph

An arc j linking vertices Vi and Vk in a directed graph

The merit count of non-zero element in row i and column j

Cardinality of a maximum independent set of graph 9

Maximum number of network rows in the coefficient matrix A

N umber of edges with negative weights in graph 9

Set of rows in which each variable is a network variable

Set of rows in which each variable is a non-network variable

The number of non-zero elements in row i, row count

The number of non-zero elements in column j, column count

Vlll

List of Abbreviations

LP

ER

EC

GUB

SUB

VUB

ERS

PNF

EPN

SSX

GSG

PNET

GNET

GVUB

TIME

D-GUB

ITER

NETR

NETC

GUBR

GUBC

M-GUB

NSSX

CNET

CLTSF

LPEN

DMEPN

Linear Programming

The number of Essential Rows

The number of Essential Columns

Generalised Upper Bound

Simple Upper Bound

Variable Upper Bound

Exclusive Row Structure

Pure Network Flow problem

Embedded Pure Network

Sparse SimpleX method

Generalised Signed Graph

Pure NETwork structure

Generalised NETwork structure

Generalised Variable Upper Bound

CPU time (seconds)

Double GUB algorithm

The number of iterations

Number of NETwork Rows detected

Number of NETwork Columns detected

Number of GUB Rows detected

Number of GUB Columns detected

Multi-stage GUB based algorithm

Network based advanced basis

NETwork based Crash procedures

Lower Triangular Symbolic Crash for Feasibility

Linear Programming problem with Embedded Network structure

Problem of Detecting Maximum Embedded Pure Network structure

IX

Terminology and Notation

Graph

A graph 9 with m vertices (also called nodes) and n edges consists of a vertex set

V(9) = {v}, V2,' .. , v m } and an edge set £(9) = {eI, e2, ... , en} where each edge is an

unordered pair of vertices. We denote the edge ei in alternative ways as VkVj, (k,j) or

(Vk,Vj) where k,j E {I"" ,m} and i E {I"" ,n}. If VkVj E £(9), then Vk and Vj

are said to be adjacent. If a graph does not have any parallel edges or loops where the

endpoints coincide, then it is called a simple graph; otherwise it is a multigraph.

Directed Graph

A directed graph or digraph is a graph where each edge is an ordered pair of vertices. In

other words, if there is a direction specified for the edges connecting the vertices, then

a graph is called a directed graph; otherwise, a graph is called an undirected graph. In

a digraph 9, the link CLi = (Vk, Vj) is called an arc; the arc set is denoted by A. The

vertex Vk is called the tail of CLi and the vertex Vj is the head of CLi, and the direction is

denoted as Vk -+ Vj meaning "there is a link from vertex Vk to vertex vi".

Network

A network is a directed graph whose arcs have associated numerical values of costs,

capacities and nodes are suply, demand and as well as transhipment.

Node-arc Incidence Matrix

The node-arc incidence matrix can be portrayed pictorially as a directed graph 9 (V , A)

where V = {Vt, ... , vm } is the set of nodes corresponding to rows of the matrix Nand

A = {at, ... , ~} is the set of arcs representing columns of the matrix N. In the matrix

N = [nij], i E {I"" ,m} and j E {I"" ,n}, each entry is either

(a) nij = + 1, if Vi is the tail (initial) vertex of arc aj,

(b) nij = -1, if Vi is the head (final) vertex of arc aj, or

(c) nij = 0, if Vi is not connected by arc aj.

x

Walk, Path, Cycle

In an undirected graph, a walk of length k is a sequence Vo, el, VI, e2, ... ,ek, Vk of vertices

and edges such that ei = Vi-l Vi for all i. A path is a walk with no repeated vertex. A

walk with the first vertex Vk and the last vertex Vj is called closed if Vk = Vj. A cycle

is a closed walk of length at least one in which the first vertex is the same as the last

vertex and this is the only vertex repetition. A loop is a cycle of length one.

Complete Graph

A complete graph or a clique is a simple graph in which for every pair of vertices there

exists an edge between them.

Connected Graph

A graph Q is connected if for each pair Vi, Vk E V(Q) there exists a path, Vi, vk-path,

connecting vertex Vi to vertex Vk. Otherwise, it is a disconnected graph.

Independent Set

A subset S of the vertex set V(Q) is called an independent set of the graph Q if no two

vertices of S are adjacent in Q. An independent set with maximum cardinality is said

a maximum independent set. The number of vertices in a maximum independent set

of Q is called the independence number of Q and is denoted by a(Q).

Isomorphic

An isomorphism from Q to H is a bijection f : V(Q) ---* V(H) such that ViVk E £(Q) if

and only if f(vi)f(Vk) E £(H). The graph Q is said to be isomorphic to H, and written

Q '" H.

Subgraph, Spanning Subgraph

A subgraph of a graph Q is a graph H such that V(H) C V(Q), £(H) C £(Q) and

every endpoint of an edge in £(H) is in V(H). This is denoted as H C Q and means

that "Q contains H". If the graph H is a subgraph of Q, then Q is a supergraph of H.

Xl

A spanning subgraph (or spanning supergraph) of Q is a subgraph (or supergraph) Ji

with V(Ji) = V(Q).

Tree, Spanning Tree

A tree is a connected graph which contains no cycles. A spanning tree is a spanning

graph that is a tree.

Forest

A forest is a graph G with no cycles, that G is not necessarily connected. Every

component of a forest is a tree.

Degree

The degree of a vertex Vi in graph Q is the number of edges of Q incident with Vi.

lnduced Subgraph

Suppose that V'is a nonempty subset of V. The subgraph of Q whose vertex set is V'

and whose edge set is the set of those edges of Q that have both ends in V'is called the

subgraph of Q induced by V' and is denoted by Q[V') .

..
XlI

Chapter 1

Structure Analysis in Linear

Programming: Identification and

Solution Methods

1.1 Background to Optimisation

Optimisation is broadly defined as the mathematical problem of finding the minimum

or maximum of a function f(x) and the corresponding set of values of the vector x =

(XI, X2, •.. , x n). The variables Xj may be allowed to take on any value in ~n, that is

-00 < Xj < 00 for j = 1"" ,n, whereupon the problem is called an unconstrained

optimisation. The general unconstrained optimisation problem may be stated as

Minimise (Maximise) f(x)

subject to

x E ~n

(1.1)

Alternatively, if the variables take values which are restricted to a point set P, that

is Xj E ~n n P, then the problem is called a constrained optimisation problem. The

general constrained optimisation problem may be stated as

Minimise (Maximise) f (x)

subject to

x E ~n n P

1

(1.2)

In (1.2), the point set P specifies restrictions on x, that is P = {x I 9i(X) = hi, i =
1"" ,1 and 9i(X) > hi, i = 1+ 1, ... , m}j the restrictions include both equality and

inequality constraints. The function f(x) is called an objective function. The problem

is that of finding a point x*, out of all points which satisfy the constraints 9i(X*) = hi for

i = 1, ... , 1 and 9i(X*) > hi for i = 1 + 1, ... , m which minimises (maximises) the objective

function, that is z* = f(x*). Any point x which satisfies all constraints (x E P) is said to

be feasible. If the set P is empty, that is P = 0, then it is not possible to find an x such

that x E P and the given problem has no feasible solution. A maximisation problem

can be easily converted to a minimisation problem using the simple transformation

Maximumf(x) = -[Minimum- f(x)] (1.3)

The constrained optimisation problems are traditionally divided into two categories.

The first is the ubiquitous linear programming (LP) in which the constraints and the

objective function are linear. The second category includes non-linear optimisation in

which at least one constraint and/or the objective function is non-linear. In this study,

we only consider the linear case.

From a practical and computational point of view, optimisation problems are often

loosely categorised into three groups: small, medium, and large scale. Optimisation

methods which are the most appropriate for small and medium scale problems are not

necessarily appropriate for large scale problems. A particular characteristic of most

large scale problems is that the constraints are usually sparse, that is most of the co­

efficients associated with a given variable are zero. Thus, algorithms for solving large

scale optimisation problems need to exploit this sparsity and any recognisable structure

within the problem. The solution of such problems presents a real challenge to practi­

tioners who need to develop efficient and practical computational methods.

This study addresses large scale LP problems with embedded pure network structures

and focuses on the detection of the embedded network structure and its solution meth­

ods. In this chapter, we progressively introduce LP problems with embedded pure net­

work structures. The rest of this chapter is organised in the following way. In section

2

1.2, we introduce an LP problem stated in a general form. In section 1.3, a network

flow problem is defined and its properties are described. In section 1.4, we consider

structure constraints as they arise in LPs. In section 1.5, the relevance of exploiting

network structures in LPs is emphasised. In section 1.6, we explain the necessity of an

automatic network extraction algorithm. In section 1.7, we define LP problems with

embedded pure network structures (LPEN) and two different problem statements are

given. Section 1.8 presents an analysis of a selection of applied models which appear in

the literature. In section 1.9, we provide an outline of the thesis.

1.2 The Linear Programming Problem

The linear programming problem forms an important part of optimisation problems

in which all functions j,9i in (1.2) are linear. LPs arise in many real life problems

such as scheduling of work and transportation, maximising profits, minimising costs

and network optimisation. A wide range of representative applications is discussed in

[96]. The general LP problem can be stated as follows;

n

n

Minimise j (x)

subject to

LaijXj = bi, i = 1, ... ,1
j=l

LaijXj < bi, i = 1 + 1, ... ,m
j=l

-00 < X· < +00 J' - 1 '" k J ,-"

Xj > 0, j = k + 1, ... ,n.

The LP problem may be presented in several equivalent forms [32]. The most common

is the standard form in which all constraints are stated as equalities:

Minimise j (x)

subject to

Ax = b

X>o

where the matrix A is called a constraint or coefficient matrix.

3

1.3 Network Flow Problem

A mathematical model of a network describes a system where the flow of some resource

is conserved; the system is organised into a set of sites called nodes where a resource

may be distributed or accumulated [8]. The resource may be transferred within the

system from one site to another following a set of directed arcs. If for every arc, one

unit of flow on the arc decreases the amount of resource at the origin node by one unit

of resource and increases the amount of resource at the destination node by one unit,

then the network is called a pure network. In a less restrictive form of the network

called a generalised network, there need not be a one-for-one transfer of resource from

one node to another on every arc. That is, every column in the constraint matrix has

at most two non-zero elements, but the values of these two elements are not necessarily

unit but finite. Such a network is also known as a graph with gains.

Consider a directed graph 9 = (V, A) which consists of a set of nodes V = {I,· .. ,m}

and a set of arcs A = {(i,j) : i,j E V} joining pairs of nodes in V. The pure network

flow (PNF) problem or minimum cost network flow problem is stated as follows

Minimise z = z= Pij Yij

(i,j)EA

subject to

z= Yik - z= Ykj = bk , V k E V
iEI(k) jEO(k)

lij < Yij < Uij, V (i,j) E A

where I(k) = {i E V : (i, k) E A} and O(k) = {j E V : (k,j) E A}.

(1.4)

An arc ak = (i, j) is said to be directed from node i and directed to node j. In

this sense, the set of tail nodes of arcs that are directed (in) to node k is I (k) and the

set of head nodes of arcs that are directed (out of) from node k is O(k). The cardinality

of V is denoted by m and that of A is denoted by n. There are altogether n decision

variables Yij (in alternative notation this can be represented as Xj) which represent the

number of units of flow in the arc (i,j). For each node k E V, a constant bk represents

the requirement at that node; a node for which bk > 0 is called a supply node, a node

4

for which bk < 0 is called a demand node, and a node for which bk

transhipment node.

o is called a

The constraints in (1.4) are called flow conservation (nodal balance or KirchofJ) equa­

tions which indicate that the flow may be neither created nor destroyed in the network.

These equations require that the net flow out of node k, that is the total flow into the

node k minus the total flow out of node k, should balance the supply or demand, bk ,

of node k. In a network, total supply is assumed to equal to total demand, that is

L: bk = o. The vector p represents the costs for per unit flow along the corresponding
kEV

arcs. The last inequality in (1.4) is called the capacity restriction for each arc.

The PNF problem is a special class of the LP problem with a constraint matrix made

up of the node-arc incidence matrix (see the definition). The PNF problem can be

stated in more compact form as follows;

Minimise {ex, subject to: N x = r, l < x < u},

and has the following special properties (see [105]);

• each column in the coefficient matrix N has at most two unit entries which are

of opposite sign, that is at most one + 1 and at most one -1 entry,

• a non-singular basis corresponds, in a natural way, to a spanning tree, therefore,

it has a triangular structure,

• a non-singular basis is unimodular; that is the determinant of the basis matrix is

either +1 or -1,

• there is an optimal integral flow if the flow capacities and node requirements are

integral due to the total modularity of the constraint matrix.

These properties lead to some special additive algorithms which have low order poly­

nomial complexity [1]. We consider the following example of the PNF problem.

5

7

Minimise z = LX j
subject to

Xl + X2 = 4

X3 + X4 = 8

j=l

-Xl - X4 - Xs + X7 = -6

-X2 - X3 - X6 - X7 = -16

Xs + X6 = 10

0<x'<8)'=1 ... 7
- J - "

The LP representation of the above PNF problem in terms of the node-arc incidence

matrix N is set out as follows.

cx

Minimise [1 1 1 1 1 1 1] X

N X b
Xl

1 1 0 0 0 0 0 X2 4

0 0 1 1 0 0 0 X3 8

subject to -1 0 0 -1 -1 0 1 X4 -6

0 -1 -1 0 0 -1 -1 Xs -16

0 0 0 0 1 1 0 X6 10

X7

o < xT = (Xl, X2, X3, X4, Xs, X6, X7)T < 8

1.4 Special Structures in LP Constraints

Large scale LP models which arise in many practical applications have sparse coefficient

matrices and display invariably special structure(s). Over the years, a few of these

special structures have proven to be desirable from a computational stand point. The

most well known constraint structures (see Gunawardane et al. [54]) are set out below.

1. Simple Upper Bound (SUB),

6

2. Variable Upper Bound (VUB),

3. Generalised Variable Upper Bound (GVUB),

4. Generalised Upper Bound (GUB),

5. Exclusive Row Structure (ERS),

6. Generalised Network Structure (GNET),

7. Pure Network Structure (PNET).

Simple Upper Bound

Simple upper bounds are a set of rows in the LP coefficient matrix A for which each

constraint i has only one non-zero coefficient. For example, lj < Xj < Uj where lj and

Uj are lower and upper bounds of the variable Xj. Some or all components of lj and Uj

can be -(X) or (X), respectively. Particularly, if lj = -(X) and Uj = 00, then the variable

Xj is called a free variable.

Variable Upper Bound

A set of constraints which are of the form Xj < Xk, j =f k where Xj may not appear in

any other special constraints is called VUBs. However, the variable Xk may appear in

some constraints. In this case, the variable Xk is said to be the variable upper bound

of Xj.

Generalised Variable Upper Bound

If a set of constraints has a non-negative right hand side value, and every variable with

a strictly positive coefficient in each constraint does not have a non-zero coefficient in

any other constraint of this set, then the constraint is called a Generalised Variable

Upper Bound (GVUB).

Generalised Upper Bound and Exclusive Row Structure

A GUB structure for the coefficient matrix A of an LP problem refers to a subset of

rows such that every column of A has at most one unit entry within the subset of rows.

7

A given GUB row taken from such a subset defines a collection of GUB columns which

have unit entries in this row and zero in all the remaining GUB rows in this set. The

exclusive row structure is a generalisation of the GUB structure. In this case, we can

consider any non-zero entry in these rows instead of + 1 and -1 entries for more details ,
see [17].

Generalised Network Structure and Pure Network Structure

Consider the coefficient matrix A of an LP problem and also a subset of constraints. If

each column of A in the restricted subset of constraints has at most two non-zero entries

of arbitrary sign and value, then the columns of A and the subset of rows comprise a

generalised network structure. If these non-zero elements at each column are unit and

having of opposite sign, that is each column has at most one + 1 and at most one -1

non-zero entry in these rows, then the columns of A and the subset of rows comprise

a pure network structure. In the rest of this thesis, we consider only pure network

structures and often refer to a pure network structure as a network structure.

1.5 Exploiting Structures in LPs

The invention of the simplex method for LP problems by Dantzig in 1947 has ushered

in the era of optimisation. Since then, operations researchers have made considerable

improvements in methodologies for solving LPs. And yet practitioners have outpaced

these developments, as there are many LP models of real problems whose solutions are

beyond the capability of the current technology. The challenge today in linear program­

ming remains to scale up and to solve larger and larger models [79].

Large scale LP problems which arise in many practical applications have a sparse con­

straint matrix and often possess alternative structures such as those described in the

previous section. For very large LP problems whose coefficient matrices are made up

of a high proportion of rows and columns of a special structure, the direct solution

using the classical simplex method is generally computationally expensive and may be

impractical on a restricted computer platform. If properly identified (extracted), these

8

structures may be then exploited by an appropriate optimisation method. As many re­

searchers such as Brown and Olson [18] reported, exploiting a special structure within

an LP problem can lead to remarkable improvements in the computational solution

time. These methods take advantage of the special structure when updating the basis

by using either special simplex algorithms or the basis factorisations.

Apart from improvements in the computational solution time, the resulting advan­

tages over the standard simplex method are several. The special operations related to

the structure within the LP reduces both the amount of work needed to perform the

algorithmic steps and the amount of computer memory to store the essential data. In

addition, these special operations can be executed by making extensive use of linked list

structures, pointers or logical operations in the iterative steps of LP solution algorithms.

For instance, the graph based operations for network structures are easy to implement

and perform much faster than other methods. The matrix operations of finding the

entering vector and determining the updated dual variable values are performed by

tracing paths within the basis graph. Since the graph contains only non-zero entries in

the problem (basis), the list procedures eliminate checking or performing unnecessary

arithmetic operations on zero elements. In addition, by exploiting the triangular basis

properties of such problems, the basis inverse is stored implicitly as a graph. This graph

is updated during basis exchange steps by simply changing a few pointers in the list

structures.

In the last decade, the growing success of solving pure network flow problems and gen­

eralised network flow problems have given motivation to consider methods for solving

more general LP problems with embedded network structures. The embedded networks

are of interest for the following main reasons. First, the presence of network constraints

can suggest a useful interpretation of the LP in terms of some network in the underlying

applications. For instance, Greenberg [51] provides a paradigm for explaining the flow

variables and dual values in the solution analysis of such problems. Secondly, for very

large LP problems whose coefficient matrices are made up of a high proportion of rows

and columns of embedded network structures, the direct solution using the classical

9

simplex method may be generally expensive and may be impractical on a restricted

platform. These classes of problems can be solved by exploiting the underlying net­

work structure. The idea of exploiting the network structure within LP has a growing

importance in mathematical programming since network flow problems can be solved

much faster using specialised additive algorithms such as network simplex rather than

the state-of-the-art LP codes [1].

1.6 A Need For an Automatic Structure Extraction

Method

An embedded structure must be identified before developing a methodology to exploit

it in the solution algorithm. We set out the rationale for underlying procedures which

can automatically identify the embedded structure. When a human analyst is mod­

elling a linear programming application, he or she generally knows which portion of the

LP constraint matrix contains the embedded structure. In this case, the problem still

remains as how to specify the portion of the embedded structure to the solver.

One way is for the modeller to explicitly specify which constraints and variables con­

stitute the structure. Another way could be to require the modeller to arrange the LP

problem so that the embedded structure is easy to recognise; for instance, the struc­

ture could be put at the top of the constraint matrix. As a last way, the modeller can

identify the structure through an appropriate row and column ordering. In this case,

the modeller can analyse the situation beforehand and specify what kind of ordering

will produce the desired structure.

Even though these ways are possible, in many cases it may not be easy to transfer

this information to the machine readable format for the data of the optimisation solver.

Therefore, there is a need to extend the concept of algebraic modelling languages to

allow transformation of the information about the structure. It is unfortunate that no

algebraic modelling language is equipped with this extension. The languages which are

10

available in the public domain follow some internal and systematic rules to generate

the input data file. The resulting ordering of the structure of rows and columns is very

unlikely to display any exploitable structure. Recently, Fragniere et al. [42] proposed

such an extension which attempts to create a general scheme for passing a model struc­

ture from algebraic modelling to the solver.

Assuming that such tools are not readily available and we have to deal with many

legacy models, we can see why an automated structure extraction procedure is a ne­

cessity. Firstly, it prevents the burden on the modeller of specifying the location of

the structure. Secondly, arranging the LP in a specific way or ordering the rows and

columns may not be possible for every LP model, and may sometimes decrease the size

of the structure. As suggested by Bixby and Fourer [13], an automated identification

of the network structure might be faster and more reliable than the human analyst. In

addition, a larger network than the modeller can detect by inspection might be found.

Finally, the user should have a tool for transmission of the information about the struc­

ture. As a result, in the context of exploiting the structure in a general purpose solution

methodology, an automated extraction procedure is necessary since a user might not

be familiar with the structure in the LP model.

1.7 An LP Problem with Embedded Pure Network

Structure (LPEN)

If an LP model includes a subset of constraints and variables which together define

a pure network flow, such a network structure appearing within the LP problem is

called an embedded pure network (EPN) structure and the remaining constraints are

called side (or coupling) constraints. The variables that do not represent a flow in the

embedded network are called side variables. Detecting an EPN structure within the

LP problem with constraint matrix A is to find a submatrix N where N comprises

some rows of A and the reflections of some other rows of A such that every column

of N has at most one + 1 entry and one -1 entry. The reflection of a row i is the

11

row obtained from i after multiplying every non-zero entry of row i and the right hand

side value bi by -1. We refer to the submatrix consisting of pure network structure

as an embedded network matrix. The problem of detecting a maximum embedded pure

network structure (DMEPN) is to find the maximum number of pure network rows in

the coefficient matrix of the LP problem. Consider an LP problem with simple upper

bounds in the standard form stated as

Minimise cT x

subject to

Ax = b

l<x<u

where A E ~mxn and c, x, 1, u E ~n and b E ~m.

Problem Statement I (PSI)

(1.5)

Bixby and Fourer [13] defined an EPN structure within the LP problem as a subset

of rows of the coefficient matrix A such that each column intersecting with these rows

contains at most two unit entries and are of opposite signs; that is one + 1 and one -1.

Let N be the matrix representation of the network subset and Q be the submatrix of

the other constraints that might have also non-zero elements apart from + 1 and -1.

The EPN problem for the given LP problem may be stated as

PSI:

Problem Statement 2 (PS2)

Minimise cT x

subject to

Nx = b'

Qx = b"

l<x<u

(1.6)

Glover and Klingman [47] defined the EPN structure within an LP problem in an

alternative form. They viewed the EPN problem as an LP problem that has a net­

work structure with additional (side) constraints, which are not network and additional

(side) variables, which are not network variables. Glover and Klingman's EPN problem

statement is set out as

12

PS2:

Minimise CI T x, + C2 T x"

subject to

AllX' + A 12x" = bl

A21 x' + A 22X" = b2

it < x' < UI

I < x" < U 2 _ _ 2

(1. 7)

where An E ~PXq, AI2 E ~pxr, A2I E ~sxq and A22 E ~sxr. The remaining vectors

are of appropriate dimensions. It is seen that the coefficient matrix A of the given LP

problem is partitioned as

where An displays a pure network structure. A major portion of the LP literature has

been devoted to special classes of LP embedded network problems such as

• if p = q = 0, then the problem is a standard LP problem,

• if r = 0, then it is a pure network flow problem with side

constraints (in PSI form),

• if r = ° and the submatrix All contains only one non-zero entry

in each column, it is a GUB problem with side constraints,

• if r = s = 0, then it is a pure network flow problem.

Equivalence of the two Problem Statements

It can be shown that the two different problem definitions of embedded pure networks

are equivalent; one can be reformulated as the other by simple algebraic reformulation

steps. Consider Glover and Klingman's formulation of the EPN problem PS2. By

introducing a vector of free variables, Y = (YI, Y2, ... ,Yp)T with zero cost, the above

representation may be restated as

13

Minimise CIT x' + Oy + C2T x"

subject to

An x' + 1y = bl

A I2 X" - 1y = 0

A 2I X' + A 22 X" = b2

h < x' < UI

1 < x" < U 2 _ _ 2

-00 < y < +00

where I is the identity matrix of dimension (p x p). In this formulation, the columns

corresponding to the non-network variables become linear constraints while the network

structure is kept. As a result, the above formulation can be stated as Bixby and Fourer's

problem definition PSI where

o
-I

b" = [~], c
T = [c, 0 C2 l, and b' = b,.

1.8 Analysis of LP Models

x'

y

x"

An embedded network structure arises in many applications including production schedul­

ing, distribution, facility location and personnel assignment and is of importance to

many industries including transportation, energy and distribution. In order to demon­

strate the benefits of exploiting the EPN structure within LP problems, we analyse

models that are widely accessible and represent a diverse set of applications. There­

fore, many of our test problems have been drawn from the Netlib library [43] which

contains LP problems that are generally accepted as benchmarks for the development

of LP solution methods. The characteristics of the test problems are summarised in

terms of the number of constraints (under the heading ROWS), the number of variables

(under the heading COLUMNS) and the number of non-zero entries (under the heading

NONZEROS) in Tables 1.8.1, 1.8.2, 1.8.3 and 1.8.4.

14

We also consider a set of three instances of a large scale industrial model taken from

the domain of supply chain planning [80]. These models are instances of a multi-stage

multi-period production and distribution model and are known to posses a large propor­

tion of embedded network rows. The problem statistics of these models are presented

in Table 1.8.5.

For the purpose of this thesis, we restrict our attention to the exploitation of only

EPN structure within LP models. However, we can also easily extract a GUB structure

since some of our network extraction methods are based on the identification of GUB

structures. Therefore, we analyse models in the literature in terms of not only the

network structure but also the GUB structure. The results are presented in terms of

the number of network rows (under the heading NETR) and the number of network

columns (under the heading NETC), namely those that have at least one non-zero entry

in the network rows, as well as the number of GUB rows (under the heading GUBR)

and the number of GUB columns (under the heading GUBC) in Tables 1.8.1, 1.8.2,

1.8.3, 1.8.4 and 1.8.5. These results show that many real life LP problems include a

certain number of network rows and network columns. These results vindicate that

it is worthwhile to investigate special algorithms which detect and exploit the EPN

structure.

15

MODELS II ROWS COLUMNS NONZEROS II NETR NETC GUBR GUBC ~
, Ii ,

25fv47 822 1571 11127 199 781 141 542

adlittle 57 97 465 29 81 28 80

afiro 28 32 88 15 28 14 26

agg2 517 302 4515 62 119 36 89

agg3 517 302 4531 62 119 36 89

bandrn 306 472 2659 74 204 56 169

beaconfd 174 262 3476 88 206 83 204

bgprob 1650 1425 8952 652 1089 375 821

blend 75 83 521 19 59 14 56

bnll 644 1175 6129 255 676 184 630

bn12 2325 3489 16124 1284 2459 820 2148

boeingl 351 384 3865 95 268 70 197

boeing2 167 143 1339 38 131 31 123

bore3d 234 315 1525 78 139 57 122

brandy 221 249 2150 39 147 31 121

capn 272 353 1786 70 210 47 175

cre-a 3517 4067 19054 803 3291 675 3173

cre-c 3069 3678 16922 718 3224 607 3147

cycle 1904 2857 21322 505 2349 392 1295

czprob 930 3523 14173 718 3101 702 3086

d2q06c 2172 5167 35674 758 2904 567 2315

d6cube 416 6184 43888 38 781 27 566

degen2 445 534 4449 189 489 180 480

degen3 1504 1818 26230 620 1665 579 1654

dilO01 6072 12230 41873 2922 9659 2073 8114

disp4l 2004 1747 5904 725 1305 632 1252

e226 224 282 2767 76 196 60 164

Table 1.8.1: The characteristics of models, the embedded network and GUB structures.

16

MODELS II ROWS COLUMNS NONZEROS II NETR NETC GUBR GUBC
i II I

II I I

energy 2263 9799 29063 1486 7643 1086 4735
etamacro 401 688 2489 98 416 68 391
fffff800 525 854 6235 97 755 83 688
finnis 498 614 2714 199 348 136 272

forplan 162 421 4916 30 240 20 240

ganges 1310 1681 7021 526 1299 293 921

gfrd-pnc 617 1092 3467 459 1047 276 918

greenbea 2393 5405 31499 881 4363 766 2574

greenbeb 2393 5405 31499 880 4253 767 2582

grow15 301 645 5665 15 75 8 47

grow22 441 946 8318 22 110 11 65

grow7 141 301 2633 7 35 4 23

israel 175 142 2358 18 28 13 26

kb2 44 41 291 11 33 8 30

ken7 2426 3602 11981 1186 2559 788 2258

k102 71 36699 212536 33 36699 17 36699

130 2701 15380 51169 226 4490 226 4490

lotfi 154 308 1086 72 232 50 224

maros 847 1443 10006 286 1264 199 797

modszk1 688 1620 4158 113 537 104 505

nesm 663 2923 13988 190 1635 161 1512

notch 217 204 636 108 204 102 204

pds-2 2953 7535 16390 2148 7155 1254 5687

perold 626 1376 6026 139 578 100 525

pilot4 411 1000 5154 105 409 101 404

pilot87 2031 4883 73804 304 905 265 875

Table 1.8.2: The characteristics of models, the embedded network and GUB structures.

17

MODELS II ROWS COLUMNS NONZEROS II NETR NETC GUBR GUBC
I Ii I " I I

pilot 1442 3652 43220 253 833 193 736
pilot.ja 941 1988 14706 192 754 152 702
pilot.we 723 2789 9218 201 1044 154 988
pilotnov 976 2172 13129 198 828 153 718

reCIpe 92 180 752 44 112 30 96

sel05 106 103 281 41 74 33 70

sc205 206 203 552 77 141 64 136

scagr25 472 500 2029 270 375 213 305

scagr7 130 140 553 72 105 60 89

scfxm1 331 457 2612 104 341 91 300

scfxm2 661 914 5229 208 682 182 600

scfxm3 991 1371 7846 312 1023 273 900

scorpion 389 358 1708 164 260 107 192

scrs8 491 1169 4029 212 950 132 860

scsd1 78 760 3148 39 640 7 224

scsd6 148 1350 5666 74 1140 15 456

scsd8 398 2750 11334 199 2360 40 944

sctap1 301 480 2052 120 360 120 360

sctap2 1091 1880 8124 470 1410 470 1410

sctap3 1481 2480 10734 620 1860 620 1860

seba 516 1028 4874 134 355 103 285

share1b 118 225 1182 37 144 31 134

share2b 97 79 730 23 64 18 43

shell 537 1775 4900 479 1475 238 972

ship041 403 2118 8450 312 2082 280 1872

ship04s 403 1458 5810 224 1334 192 1128

Table 1.8.3: The characteristics of models, the embedded network and GUB structures.

18

I MODELS II ROWS I COLUMNS I NONZEROS II NETR I NETC II GUBR I GUBC II
, ,

Ii

ship081 779 4283 17085 608 4259 544 3760

ship08s 779 2387 9501 336 2091 272 1600

ship121 1152 5427 21597 732 5223 636 4500

ship12s 1152 2763 10941 360 2187 264 1464

SIerra 1228 2036 9252 672 2016 650 2014

stair 357 467 3857 153 313 87 231

standata 360 1075 3038 165 . 681 110 528

stocfor1 118 111 474 47 82 43 78

stocfor2 2158 2031 9492 914 1674 824 1636

stocfor3 16676 15695 74004 7028 12998 6354 12682

storm5 3530 6900 20205 1639 4975 1125 4253

truss 1001 8806 36642 498 6864 182 4714

tuff 334 587 4523 99 353 91 331

voids 160 132 446 75 132 64 128

vtp.base 199 203 914 38 89 24 88

wood1p 245 2594 70216 77 885 77 885

woodw 1099 8405 37478 301 3545 293 2281

Table 1.8.4: The characteristics of models, the embedded network and GUB structures.

I MODELS II ROWS I COLUMNS I NONZEROS II NETR I NETC II GUBR I GUBC II
modell 4740 36277 105875 3755 36166 2580 30191

mode12 4450 62366 204954 3306 58836 2154 41724

mode13 3692 59907 158650 3306 58836 2154 41724

Table 1.8.5: The characteristics of models, the embedded network and GUB structures

for supply chain problems.

19

We have also carried out a qualitative analysis of industrial LP models which have been

reported in the literature. For our analysis, we have considered ~ representative sample

reported by Sharda [96]. This sample includes recently reported applications of LP,

mostly since 1980. The results of our analysis are shown in Table 1.8.6.

APPLICATION NUMBER EPN

AREAS OF MODELS STRUCTURE

CONSIDERED DEDUCED

Airlines industry 17 8

Chemical industry 7 6

Coal industry 3 2

Communications, and computer industry 16 6

Iron and steel industry 6 4

Paper and publication industry 4 3

Petroleum industry 8 6

Textile industry 4 2

Transportation 5 5

Production scheduling, inventory control, 8 6

and planning

Forestry 5 3

Energy and natural resources 10 6

Health care 7 3

Other industries 8 2

Economic analysis, banking, and finance 19 5

Miscellaneous 18 7

Table 1.8.6: The qualitative analysis of industrial models

20

1.9 Structure of the Thesis

This thesis is organised in two parts. The first part contains a description of methods

used to detect network structures in general LP problems. The second part describes

solution techniques which exploit the underlying network structure. In chapter 2, we

review network extraction algorithms discussed in the research literature. In chapter

3, we investigate a multi-stage GUB based algorithm which includes two different ap­

proaches for detecting a GUB subset efficiently. The first approach uses the merit count

concept and the second one exploits an independent set in the corresponding graph of

the coefficient matrix. The computational experiments are reported in this chapter. In

chapter 4, an EPN detection heuristic is described which uses a generalised signed

graph of the corresponding coefficient matrix. We prove that the detection of a max­

imum EPN structure in an LP problem is NP-hard, even if we restrict ourselves to

special classes of the LP problems. The computational results are reported and the

algorithm is also compared with a well established network detection algorithm in this

chapter. In chapter 5, we review alternative solution methods for the LPEN problem

and describe the algorithmic framework of our procedure. In this approach, we exploit

the EPN structure by first partitioning the problem into a network and a non-network

part and then applying a decomposition technique. We consider Lagrangean relaxation

and Benders decomposition procedures. In chapter 6, we explain the theoretical as­

pects of these decomposition procedures and show how to apply them to the LPEN

problem. The solution of decomposed problems is used to create an advanced starting

point for the LPEN problem. This concept of creating an advanced basis is the subject

of chapter 7. We introduce a network based advanced basis procedure in this chapter

and present our computational results of two decomposition methods with different ad­

vanced bases. The computational results of applying these techniques to a selection of

Netlib models are also reported in this chapter. Chapter 8 summarises the research

results reported in this thesis and concludes with suggestions for further work.

21

Chapter 2

Review- of Algorithms for N etw-ork

Extraction

2.1 Introduction

A number of researchers have reported alternative algorithms for detecting EPN struc­

tures within an LP problem. These range from simple permutations of rows and columns

to full (linear) transformations of the coefficient matrix. Generally, entire transforma­

tion methods are used to convert the complete coefficient matrix to a node-arc incidence

matrix for the pure network; such a network structure is called a hidden structure.

Hidden structures were investigated by Schrage [97] and Bixby [15]. Bixby and Cun­

ningham [16] described an algorithm which either converts an LP problem to a PNF

problem or shows that such a conversion is impossible. Their algorithm which is based

on matroids uses elementary row operations and non-zero variable scaling. Recently,

Baston, Rahmouni and Williams [7] introduced another algorithm which exploits the

representation of a network by a polygon matrix. In this representation, polygons of a

network are given in terms of a spanning tree. The theory of conversion of an entire

LP problem to a PNF problem has been underpinned by graph theoretic approaches.

However, when the entire conversion fails, few practical results have been achieved to

reliably identify a subset of rows which form the network structure. An efficient algo-

22

rithm for doing so is of considerable value because real life LP models are not usually

converted to a PNF problem completely.

Partial transformation methods are designed to look for a large subset of the coeffi­

cient matrix which exhibits the network structure, with the presumption that large

subsets are more efficiently exploited than small subsets. The problem of detecting an

EPN structure of maximum size was shown by Bartholdi [6] to be NP-hard. Therefore,

heuristic approaches have in practice been the most effective in finding large embedded

network structures although they are not guaranteed to find the largest one. These

heuristics are based on simple deletion or addition operations or finding other special

structures. We classify them into two categories; the first category includes deletion

and addition based methods and the algorithms in the second category are based on

the GUB structures (see section 1.4).

The rest of this chapter is organised in the following way. In section 2.2, we intro­

duce the problem statement. In section 2.3, the main preprocessing procedures such

as reduction and scaling are introduced. In section 2.4, deletion and addition based

algorithms are described. In section 2.5, we review the GUB based methods.

2.2 Problem Statement

We are concerned with an LP problem with m constraints and n bounded variables

as set out in (1.5). Certain rows and columns of the sparse coefficient matrix A have

no effect on whether any subset is an embedded pure network. Moreover, rows that

contain entries other than +1, -1 and 0 cannot be considered as network rows. Pre­

processing procedures remove and set aside certain number of rows and columns in the

coefficient matrix. Having applied the preprocessing procedures, the coefficient matrix

A is partitioned into two submatrices. We introduce a submatrix A which has only

+ 1, -1 non-zero entries and call this a ternary matrix. The matrix formed by the rest

of the rows of A which are not included in A (that is rows that consist of non-unit

23

entries) is denoted as R. The LP problem (1.5) may then be restated as

Minimise cT x

subject to

Ax = b'
Rx = b"

I < x < u.

(2.1)

Rows and columns of the submatrix A are called eligible rows and eligible columns, re­

spectively. Network extraction algorithms are applied to only eligible rows and columns.

Having applied any network extraction method, the LP problem given in (1.5) or III

(2.1) may be stated as

Minimise cT x

subject to

Nx = b~
Sx = b;

Rx = b"

1 < x <u.

(2.2)

It is easily seen that A and bl in (2.1) are partitioned as A = [;] and bl = [:::] ,

respectively. The matrix N is an embedded network which is formed by EPN rows and

S is the submatrix formed by the rest of the rows of A which are not included in the

network structure.

2.3 Preprocessing

A preprocessing procedure is applied to the coefficient matrix of the given LP problem

to make the number of rows and columns of the ternary matrix as large as possible. In

this section, we describe the main steps of reduction and scaling procedures which have

been used by most researchers as an initial step of the EPN extraction algorithm.

24

Reduction Procedure

A reduction procedure is designed to reduce the dimension of the coefficient matrix yet

maintaining an equivalent LP model. The main idea is to look for many simple instances

of inessential rows and columns which need not appear explicitly in the constraints. Re­

duction methods were originally introduced by Brearley, Mitra and Williams [17].

Simple reduction

A given LP problem may have different types of inessential rows and columns which

are listed below. Where appropriate, we assume that MPS format [37] is the method

of specifying the LP model.

1. Rows that have only zero elements (ZR),

2. Columns that have only zero elements (ZC),

3. Rows specified as free (type N) in the rows section of the MPS input (FR),

4. Columns that have elements only in the free rows (FC),

5. Columns specified as fixed (type FX) in the bounds section of the MPS input

(FXC),

6. Rows that have elements only in the fixed columns (FXR).

A further reduction is based on the observation that if a row has only one non-zero

entry and is defined as an equality (type E) in MPS format, then the row only serves to

fix a variable. This is denoted as l-ER. Thus, the row and its one intersecting column,

l-EC, are inessential (ineligible). Table 2.3.1 contains the number of inessential rows

and inessential columns computed in this way for a subset of Netlib models and a set

of supply chain models.

Reduction with computed bounds

It is also possible to compute lower and upper bounds on the linear forms and use these

bounds to fix variables or free rows. Such steps are fully discussed in [17].

25

I II INESSENTIAL ROWS II INESSENTIAL COLUMNS II
I Model Names II ZR I FR I FXR 11-ER 1/ ZC I FC I FXC I 1-EC /I

25fv47 - - - 27 - - - 25

bn12 45 - - 15 - - - 14

cre-a 89 1 - 6 - - - 3

cre-c 83 1 - 15 - - - 11

cycle 19 330 - 123 - - - 107

czprob 3 - - 190 - - 229 190

d2q06c 1 - - 10 - - - 10

d6cube 12 - - 1 - - - 1

energy 26 - 2 - 127 - 391 -

ganges 1 - - 184 - - - 184

greenbea 4 - - 73 - - 103 73

greenbeb 4 - - 75 - - 115 75

ken7 1 - - 989 - - - 989

pilot 1 - 1 1 - - 203 1

scfxm3 1 - - 24 - - - 24

sctap2 1 - - - - - - -

sctap 1 - - - - - - -

scrs8 1 - - 25 - - - 25

ship12l 109 - - 204 - - - 204

SIerra - 1 5 - - - 20 -

stocfor2 - - - 16 - - - 16

woodw 1 1 - - - 4 - -

modell 1 - - 5 - - - 5

mode12 1 - 290 1 - - 2459 1

mode13 1 - - 1 - - - 1

Table 2.3.1: The number of inessential rows and inessential columns.

26

These reductions are applied repeatedly to the given model, revealing at each itera­

tion more rows which can be removed or made free, and columns which can be fixed.

Thus, the cyclic application of reduction continues until a minimal model results.

Scaling Procedure

Scaling is another preprocessing step which multiplies the rows and columns by scalar

weights. Normally, scaling procedures are introduced to improve the numerical stability

of the solution procedure. However, the scaling procedure is adopted here to increase

the number of eligible rows and eligible columns which have only +1, -1 non-zero en­

tries, that is the dimension of the ternary matrix is increased. After scaling, we can set

aside the remaining rows which cannot be in the network.

Bixby and Fourer [13] suggested a myopic algorithm to check whether a +1, -1 scaling

exists for all rows within the coefficient matrix. The algorithm first fixes the scale on

any row or column. By repeatedly scanning rows and columns, the other scales for each

row and column implied by the requirement that each element be +1, -1 are found. If

this procedure leads to a contradiction, then no +1, -1 scaling for all rows exists. If

the procedure terminates before the whole matrix is scanned, then the matrix is not

connected. We have developed the following scaling algorithm which is based on the

Bixby and Fourer's approach [13]; for more detail see [55] and [58].

Scaling Algorithm

Step 1 Find a set of essential rows and columns

Set aside the empty and single element columns. Let E' and C' be sets of rows

and columns, respectively, such that for each j E C' there is aij -# 0 for at least

two rows i E E'.

Step 2 Scale rows

For each row i E E', identify the most frequently occurring row non-zero value

of magnitude, ai such that ai -# 1. Scale row i by 1/ ai to maximise the number

of columns j E C' such that laijl = 1

27

Step 3 Scale columns

Find a column j E 0' in which multiple non-zero entries have the same

magnitude, aj. Scale column j by 1/ aj.

Step 4 Improve the scaling

For each i E E', let Pi be the number of columns j E 0' such that laij I i:- 0 and

the smallest Pi for any intersecting row be Pmin = min{pi : i E E'} such that

laij I i:- O. Find the magnitude j3j i:- 1 for column j by using the following

criterias;

1. the set of row indices {i E E': Pi = Pmin, laijl = j3j} is as large as

possible,

2. the set of row indices {i E E': Pi = Pmin, laij I = j3j} has more members

than the set {i E E': Pi = Pmin, laijl = I}.

Scale column j by 1/ j3j.

The results of applying this scaling algorithm to a subset of Netlib models and a set of

supply chain models are presented in Table 2.3.2.

2.4 Deletion and Addition Based Methods for Em-

bedded Network Detection

Deletion and addition based methods are designed to extract an EPN structure by

deletion or addition of rows or columns. These algorithms are summarised as

1. the row scanning deletion,

2. the column scanning deletion,

3. the row scanning addition.

Both the row scanning deletion and column scanning deletion algorithms start with a

full network initialisation, then scan each row and column to delete rows and columns

which violate the network structure. The row scanning addition algorithm starts with

28

" BEFORE SCALING II AFTER SCALING II
Model Essential Essential Essential Essential

Names Rows Columns Rows Columns

25fv47 186 745 224 911

bnl2 1314 2054 1418 2483

cre-a 554 2687 1247 3825

cre-c 573 2433 997 3626

cycle 312 2100 507 2350

czprob 718 3102 719 3102

d2q06c 642 2373 844 3177

d6cube 48 905 87 1733

energy 1427 7489 1531 7693

ganges 581 1456 631 1481

greenbea 443 3994 916 4660

greenbeb 443 3991 914 4650

ken7 1437 2613 1437 2613

pilot 165 548 276 907

scfxm3 360 1080 423 1176

sctap2 470 1410 470 1410

sctap3 620 1860 620 1860

scrs8 39 601 214 955

ship121 828 5197 828 5207

SIerra 1155 2016 1155 2016

stocfor2 1262 765 1262 1698

woodw 228 3151 301 3545

modell 4153 36134 4291 36272

model2 3690 58836 3690 58836

model3 3690 58836 3690 58836

Table 2.3.2: The number of essential rows and essential columns.

29

an empty network subset, then adds rows into the network subset without destroying

the structure until the maximal number of network rows is found.

2.4.1 Terminology

Let E and C denote the sets of essential rows and columns, re!,pectively, which define

the ternary matrix A = [aij] such that aij E {-I, 1, O}, i E E, J E C, E c {I, 2, ... , m},

C C {I, 2, ... , n} and A E ~IElxICI.

Conflict

Two rows in A are said to be in conflict if there is at least one column of A with non-zero

entries of the same sign in both rows. Conflicts prevent the appearance of certain pairs

of rows to create an embedded network.

Row penalty

The penalty of row i of the matrix A is defined as the number of conflicts in which it

participates. If Cj+ and Cj- are respectively the numbers of +1'8 and -l's in column

J, the penalty of row i, Pi, may be formalised as

Pi = L (Cj + - 1) + L (Cj - - 1), ViE E (2.3)

where

Cj+= L (iij, and Cj - L -aij, VJEC. (2.4)
aij>O aij<O

A matrix penalty, h, is the sum of the individual row penalties and is computed as

(2.5)

Row reflection

The reflection of row i of the matrix A refers to the multiplication of each element in

row i by -1. Row reflection can be seen as a special case of scaling with -1; each non­

zero entry in row i is (iij := -(iij, for J E C and the right hand side value is bi := -bi.

30

Penalty of row reflection

The penalty for the reflection of row i, RP i , can be written as

RP i = L Cj - + L Cj + , V j E C. (2.6)
aij>O aij<O

2.4.2 The Row Scanning Deletion Algorithm

The row scanning deletion heuristic was first developed by Brown and Wright [20], [22].

The general idea is to initially consider all rows in the subset of the essential rows as

potentially in the embedded network, then to delete one row at a time until the remain­

ing subset is a feasible network.

The algorithm consists of two phases. Phase I attempts to delete rows in order to

obtain a feasible set. The measure of infeasibility at any point is either the row penalty

or the matrix penalty. The row penalty represents how severely a row conflicts with

other rows in the subset. The algorithm iterates for each row which has the penalty

such that Pi > 0, i E E. The row is deleted or reflected to reduce the penalty at each

iteration. When Pi = 0, the row i is a network row. The algorithm terminates with zero

penalty for all rows in a network subset N. Thus, N becomes the set of row indices of

the network matrix N introduced in (1.5). In Phase II, the deleted rows which do not

cause any row conflicts are reconsidered. This leads to a reinsertion algorithm which

increases the number of network rows in the set N. We outline the basic steps of this

algorithm below.

The Row Scanning Deletion Algorithm

Phase I - Deletion of Infeasible Rows

Step 1 Initialisation

Compute Cj+ and Cj- from (2.4) for all j E C. Initialise the rows of the

network matrix N as the essential rows of A, N := E.

Step 2 Compute row penalties

Compute row penalties from (2.3) for all i E N. If Pi = 0 for all i E N, then

terminate phase I and go to step 7; otherwise, go to step 3.

31

Step 3 Select a row

Select any tEN such that Pt > o. Compute the reflected row penalty for each

j E C by using formula (2.6).

Step 4 Delete or reflect the row

If RP t < Pt , then reflect the row t and go to step 5. Otherwise, delete row t,

then set N := N\ {t}, and go to step 6.

Step 5 Update cd and cj for each column

Update number of non-zero entries for each column as follows and go to step 2.

For each o'tj = 1 and j E C, set cd := Cd - 1 and cj := cj + 1.

For each o'tj = -1 and j E C, set cj := cj - 1 and cd := Cd + 1.

Step 6 Reduce the number of non-zero entries in each column

For each j E C, reduce the non-zero counts as follows, and then go to step 2.

If o'tj = 1, then set cd := Cd - 1.

If o'tj = -1, then set cj := cj - 1.

Phase II - Reinsertion

Step 7 Select a row for reinclusion

For row t E E\N;

if cd = 0, V o'tj = 1, j E C, or cj = 0, V o'tj = -1, j E C, go to step 8,

if cd = 0, V o'tj = -1, j E C, or cj = 0, V o'tj = +1, j E C, reflect the

row t and then go to step 8.

Step 8 Restore the row

Set N := NU{t} and E\N:= (E\N)\{t}.

Let cd : = 1, V o'tj = 1 and j E C, cj : = 1, V o'tj = -1 and j E C.

Step 9 Terminate the algorithm

If E\N = 0, then terminate the algorithm. Otherwise, go to step 7.

Brown and Wright used the matrix penalty instead of the row penalty and chose the

row with maximal penalty, Pt = max{Pi: i EN}, in their algorithm (see [20] and [22]).

In addition, they obtained the following sharp upper bound on the network set size for

32

a coefficient matrix with m essential rows: u = m - max(cj + c;), V j E C. Bixby and

Fourer [13] reported some modifications of this algorithm to increase the efficiency and

effectiveness. One of them is introduced to reduce the cost of a pass in the row scanning

algorithm. Rows are considered for deletion or reflection in decreasing order of their

original penalties and row penalties are not updated entirely. This ordering remains

unchanged throughout the algorithm except to accommodate the reflected rows.

2.4.3 The Column Scanning Deletion Algorithm

This algorithm was first studied by Ahn (see [13]). The idea is that for any column of

the coefficient matrix A, only two rows from N which have a common non-zero entry

in this column may be in the embedded network; the other rows which have a non-zero

entry in this column have to be deleted. The deletion algorithm based on scanning

columns operates quite differently from the previously described algorithm based on

the row scanning.

The column scanning deletion algorithm proceeds as follows. The essential rows and

columns (formed after reduction and scaling procedures) are considered. At the be­

ginning, all essential rows are initialised as a network row, N := E. Each column is

examined once and all but one or two rows intersecting with (having a non-zero entry

in) this column are deleted. In this way, the network set N is reduced until all columns

are examined or there is no essential row in the set E. After applying the column

scanning deletion algorithm, some rows which are already deleted can be restored to

increase the number of network rows. This is achieved using the Phase II procedure as

in the row scanning deletion algorithm. In this case, cj and c; are determined from

(2.4).

The important aspect of this algorithm is that the algorithm does not reflect rows

in the course of scanning a column, since a reflection may create conflicts with columns

which have already been scanned. In order to deal with this problem, Bixby and Fourer

[13] distinguished new and old rows in the set N. Initially, all rows are new but when-

33

ever a column is scanned and two intersecting rows remain undeleted, both rows become

old if they are not labelled old already, see [13] for more details. We outline the basic

steps of the algorithm. Let Li be the label of row i as new or old and I j is the set of

all intersecting rows when column j is scanned.

The Column Scanning Deletion Algorithm

Step 1 Initialise

Set N := E and label all rows as a new row Li := new, Vi E N.

Step 2 Find a set of rows intersecting with the current column

Consider column j E C and find a set of rows intersecting with column j as

I j = {i EN: aij -# O}.

Step 3 Choose rows

If IIj I > 2, then choose p, q E Ij such that Lp = new or Lp = Lq = old and

apj = 1, aqj = -1. Otherwise choose some p E Ij and delete all other rows, then

set N := N\{i Elj : i -# pl.

Step 4 Reflect and delete

If apj = aqj, then reflect row p and delete other rows. Set N := N\ {i E I j : i -# p, i -# q}

and Lp := old and Lq := old and then go to step 2 to scan another column.

2.4.4 The Row Scanning Addition Algorithm

An addition algorithm is obviously to add rows to an empty subset which is trivially a

network. The algorithm starts with an empty network set and increases the number of

network rows-without creating conflicts with rows already inserted, so that each column

restricted to these rows has only one + 1 and one -1 non-zero entries. An addition algo­

rithm was first introduced by Brearley, Mitra, and Williams [17] for finding embedded

GUB structures within LP problems. Brown, McBride and Wood [21] presented an

addition algorithm for finding an embedded generalised network structure. Bixby and

Fourer [13] reported some implementation issues to make the algorithm more efficient.

Conceptually, the addition algorithm is similar to the reinsertion steps introduced in

Phase II of the previous algorithm. In this case, the algorithm starts with an empty

set of network rows.

34

The Row Scanning Addition Algorithm

Step 1 Initialisation

Initialise the network set as N := 0. For each j E C, set cd := ° and cj := 0.

Step 2 Add a row

Choose a row i E E. If cd = 0, for all (iij = +1, j E C; and cj = 0, for all

(iij = -1, j E C, then add row i and set N:= N U {i} and go to step 3.

Step 3 Update cd and cj

Update the number of +l's and -l's in each column:

for each (iij = + 1, j E C, set cd := 1 and

for each (iij = -1, j E C, set cj := 1.

Step 4 Reflect and add

If cd = 0, for all (iij = -1, j E C; and if cj = 0, for all (iij = +1, j E C, then

reflect row i and set N := N U {i}. Update cd and cj like in step

3 and go to step 2.

Recently, Hsu and Fourer [73] have introduced a variation of the addition algorithm

which uses the scale factors for each row and column in the network structure. In this

approach, the scaling and the detection steps are applied together.

The Augmentation heuristics

Bixby and Fourer [14] introduced heuristics that try to enlarge a network structure that

have been found by any of the deletion and addition based methods. They called them

augmentation heuristics, which are summarised as

• the deletion-driven exchange,

• the insertion-driven exchange,

• the hybrid exchange.

The deletion-driven exchange approach picks a network row that might be deleted, then

determines whether one or more non-network rows might be inserted to the network

35

set as a result. The insertion-driven exchange approach first picks a non-network row

that might be inserted then determines whether its insertion can be made possible by

the deletion of at most one network row. The last approach is the hybridisation of

these two approaches and attempts to combine the best features of the preceding two

procedures. Note that although augmentation heuristics might improve the results of

any extraction heuristic, they might be, however, time consuming.

2.4.5 An Example (Row Scanning Deletion Algorithm)

Consider the following constraints of an LP problem given.

rl : Xl + X2 > 8

r2 : X2 + X3 > 8

r3 : X3 + X4 > 6

r4 : Xl + X4 + Xs > 4

rs : Xl + X2 + Xs + X6 > 9

r6 : X2 + X3 + X6 + X7 > 4

r7 : X3 + X4 + X7 > 7

rs : X4 + Xs > 3

rg : Xs + X6 > 3

rIO : X6 + X7 > 3

An initial simplex tableau is constructed by adding slack variables 81,82,· .. ,810 and

artificial variables aI, a2, ... ,aIO. The columns associated with the slack variables and

the artificial variables are set aside since they can be included at any time to the

network matrix. The set of the essential rows is E = {rl' r2,··· ,rIO}. For each i E

{I,· .. ,10}, the initial row penalties are PI = 5, P2 = 6, P3 = 6, P4 = 8, Ps = 11,

P6 = 11, P7 = 8, Ps = 6, Pg = 6, PlO = 5 and the network subset N is initialised as

N = {rI, r2,· .. ,rIO}. At each iteration, a row is chosen to reflect or delete with the

maximum row penalty as Pt = max{Pi: i E {I,··· ,10}}. In the case of a tie, an

arbitrary choice is made. At the first iteration, row t = 6 is selected. The reflected row

penalty is RP
6

= O. Since RP6 < P6 , the sixth row is reflected, then all row penalties

are reduced. By continuing to iterate, the fifth, fourth, and seventh rows are reflected.

36

Thus, the current row penalties for each row are obtained as Pt = 1, P2 = 2, P3 =

2, P4 = 3, P5 = 4, P6 = 4, P7 = 3, P8 = 2, Pg = 2, Pto = 1. Row 5 with the maximum

penalty is then chosen. Since RP5 = 7 and RP5 > P5 the fifth row is deleted. The

same procedure is applied to the remaining rows. At the end of Phase I, the network

set is obtained as N = {rt, r3, -r4, -r6, rg}. In Phase II, no row deleted in Phase I is

reinserted to the network set since all rows cause the conflict with rows in N. Thus,

the algorithm terminates with network structure N.

2.5 GUB Based Methods for Embedded Network

Detection

The concept of QUB was introduced by Dantzig and Van Slyke [31]. Since then, much

work has been done on this subject. The identification of a QUB structure within an

LP problem was investigated by Brearley, Mitra and Williams [17]. The automatic

identification of a QUB structure in the LP problem was also developed by Brown and

Thomen [23]. In this section, we concentrate on detection of embedded pure network

rows by making use of the Q UB structure.

The Brown and Wright's Approach

Brown and Thomen [23] first proposed a bipartite network flow factorisation by finding

two QUB subsets which typically appear in a transportation problem and in an assign­

ment problem. They assumed that rows of the coefficient matrix of a PNF problem

are partitioned into two subsets such that each column has only one non-zero entry in

a subset and the other entry is in another subset; but additionally the entries are of

opposite sign. Clearly, each subset corresponds to a QUB structure. As a result, the

EPN structure can be considered to be a paired combination of QUB subsets. This

relationship between network and QUB structures motivated Brown and Wright [20]

to introduce an automatic EPN identification heuristic which is based on double QUB

factorisation called D-QUB.

37

The algorithm D-GUB proceeds as follows. The first eligible row subset is determined

by scaling after the reduction process. The first GUB subset G t is found by applying a

GUB detection heuristic to a subset of essential rows E t . Rows in Gt are then removed

from the set E t . For the second eligible set E 2 , each row that is not involved in Gt is

scanned and checked for columns in which the row has non-zero entries. Row reflection

is also carried out if necessary in order to create as many essential rows as possible to

obtain opposite sign entries. If the set Gt has no non-zero entries or has one non-zero

entry of opposite sign, then the row is an essential row. If Gt has no non-zero entry

or one non-zero entry with the same sign in each column, then the row is a candidate

to create the second GUB set in the reflected form. Otherwise, the row is not eligible

and can be deleted. The GUB heuristic is then applied to the eligible set E2 and the

second GUB set G2 is obtained. The network structure is then constructed by consider­

ing the rows in Gt and in G2 • The main steps of the D-GUB algorithm are set out below.

The D-GUB Algorithm

Step 1 Determine a set of essential rows El for the selection as network rows.

Step 2 Apply a GUB heuristic to the eligible set E1 . Find the first GUB subset G t .

Step 3 Determine the second set of essential rows E2 from the remaining rows which

are not involved in G t . If E2 = 0, then go to step 6.

Step 4 Reapply the GUB heuristic to rows of E 2 • Identify the second GUB subset G2 •

Step 5 Construct the network structure N by combining rows of G t and G2 •

Step 6 Terminate the algorithm.

Brown and Wright applied a GUB extraction heuristic which consists of two phases.

Phase I attempts to delete as few rows as possible in order to produce a feasible GUB

set. Phase II examines rows deleted in phase I and reincludes rows to find as many

GUB rows as possible. They implemented the D-GUB algorithm and compared it with

the row scanning deletion algorithm. Their computational results showed that D-GUB

is inferior for a set of models in terms of the number of network rows detected.

38

Chapter 3

A Ne-w GUB Based AlgorithITl for

Net-work Extraction

3.1 Introduction

In this chapter, we present a new GUB based algorithm for detecting an EPN structure

within the LPEN problem. This heuristic is based on pairing as many GUB subsets

as possible. Therefore, we call this a multi-stage GUB based algorithm, M-GUB. In

order to~detect a GUB subset, two different procedures are introduced. The first pro­

cedure is based on the notion of the Markowitz merit count concept to exploit the

matrix non-zero structures. The second procedure considers the relationship between

the GUB structures in an LP problem and the independent sets in the corresponding

graph. The GUB structures in this case are detected by using some known independent

set heuristics.

The rest of this chapter is organised as follows. In section 3.2, we define the basic

terminology. In section 3.3, the multi-stage GUB based algorithm is introduced. In

section 3.4, we describe the use of merit count criterion for detecting GUB structures

in M-GUB algorithm. In section 3.5, the independent set algorithm which is applied

to detect GUB structures is explained. The results of computational experiments are

reported in section 3.6. A brief discussion of results is given in section 3.7.

39

3.2 Terminology

In this section, we give definitions of some terminology which are used in the description

of our algorithm. For more detail, the reader is referred to [59].

PN-conflict

Consider the ternary matrix A defined in section 2.2 and recall that (iij E {-I, 0, I}.

We say that a pair of rows i and k of the coefficient matrix A is in P N-conflict if there

exists at least one column j such that the following property holds;

The following structures for A E ~2X2 are examples of two rows in PN-conflict.

81 : [1 1], 82: [-1 1], 83: [1 0], 84: [-1 0]
1 -1 -1 -1 1 -1 -1 1

85 : [1 0], 86: [-1 0]
1 1 -1 -1

Clearly, an embedded network structure in the coefficient matrix A is a set of rows such

that no row is in PN-conflict with any other row in this set. It can be easily shown

that a matrix is a pure network matrix if and only if no pair of rows in the matrix is in

PN-conflict. To establish this, it suffices to show that if no pair of rows of the matrix is

in PN-conflict, then it is a network matrix. Assume that for a network matrix it is not

so. Then there is a column with non-zeros of the same sign. The corresponding rows

are clearly in PN-conflict which contradicts the assumption of a network matrix.

GUB-conflict

We say that two rows of the coefficient matrix A are in GUB-conflict if they have two

non-zero entries in the same column. Clearly, a GUB structure is a set of rows, such

that no pair of rows from this set is in GUB-conflict.

40

Merit Count

Let (iij f= 0 be an arbitrary non-zero element of the coefficient matrix A. The merit

count of this element, mij, is defined as

mij = (RGi - l)(GGj - 1), (3.1)

where RGi and CGj are the number of non-zero elements in row i and in column j,

respectively. The numbers RGi and GGj are often referred to as row counts and column

counts.

3.3 A Multi-stage GUB Based Algorithm (M-GUB)

We extend the D-GUB algorithm considered in [20] to more than two, that is multiple

GUB structures, and call this a multi-stage GUB based algorithm, M-GUB. This algo­

rithm finds as many GUB subsets as possible to create a large number of network rows

[59]. In this section, we describe the M-GUB algorithm; the two procedures for finding

GUB structures are discussed in section 3.4 and section 3.5.

The M-GUB algorithm proceeds as follows. Initially, the network subset is assumed

to be empty. At each stage, the current network set is constructed by adding the new

GUB structure to the previous network subset. A GUB set G t of rows is extracted

from Et . The first network structure Nt coincides with G t . The second eligible set E2

consists of rows Ti (or their reflections) in E t but not in Nt, such that either Ti or its

reflected form -Ti is not in PN-conflict with any row in Nt. If Ti is in PN-conflict with

a row in Nt but -Ti is not in PN-conflict with any row in Nt, then -Ti rather than Ti

belongs to E2 •

The second GUB set G2 is extracted from E2. The second network structure N2 is

set to be Nl U G2. Subsequently, the third eligible set E3 is constructed similarly to E2

and the third GUB subset G3 is extracted from E3 . The third network structure N3 is

set to be N2 U G3 . The algorithm repeats the above operations until the current Ei is

empty. Then the corresponding network structure N i - 1 includes the maximum number

41

of pure network rows within the scope of the M-GUB algorithm. If the algorithm is

restricted to obtaining the network set N2 only, then this becomes equivalent to the

D-GUB algorithm (see section 2.5). Our M-GUB algorithm is a generalisation of the

D-GUB algorithm and is stated below.

The Multi-stage GUB Algorithm: M-GUB

Step 1 Determine the initial eligible row set El and network set No = </>.

Step 2 Extract the initial GUB subset G1 C E1 , and the first network

subset is Nl = G1 .

Repeat for k = 1,2,3, ...

Step 3 Determine the set Ek+1 of the remaining eligible rows not in

PN-conflict with G1 U ... U Gk using the row reflection if necessary.

Step 4 If Ek+1 is empty, then go to step 7.

Step 5 Extract a GUB subset Gk+1 C E k+1 •

Step 6 Construct the pure network set N k+1 by appending the rows of

Gk+1 to the previous network set N k , as N k+1 = Nk U Gk+1 .

Step 7 Terminate the algorithm.

3.4 Using the Merit Counts For Detecting GUB

It is now well established that the concept of merit count as introduced by Markowitz

[81] (also see Duff et al. [36]) plays an important role in identifying sparse matrix

structures. Within LP, the merit count has been used to reduce the non-zero growth

during basis factorisation [90].

In the M-GUB algorithm, we use the merit count concept to establish possible row

and column interactions and to make a choice for the current GUB subset. The main

concern is to choose a GUB row out of the rows in the current eligible subset such that

the chosen row does not prevent a large number of other candidate rows from inclusion

42

into subsequent GUB sets. We illustrate the usefulness of our merit count approach

with an example in the next section.

The first GUB subset G1 is detected from the first eligible set El by using the fol­

lowing procedure. The first row in G1 is the one with the minimum row count (that

is the minimum number of non-zero entries). The kth row in G1 is the one with the

minimum row count among remaining rows of E1 , such that the kth row is not in G UB­

conflict with the rest of the rows in G1 .

In order to construct the ith GUB subset Gi , we introduce the following procedure.

For each column j, we compute the congestion Tj (restricted non-zero count) which is

the number of non-zero entries in column j in the network subset Ni - 1 . For a given

column s, let]{s be the set of row indices of the non-zero coefficients, that is, Ks = {kl

aks #- a}. The merit counts mks of all non-zero entries in column s are calculated by

the formula

(3.2)

Let Lk denote the set of column indices that have non-zero coefficients in row k. Then,

the maximum merit count for row k is defined as

(3.3)

For stage i (i > 2), the GUB set Gi is constructed in the following way. We consider

all columns j (in order) with congestion values Tj = 0 or 1 such that at least one row

from Ei has a non-zero entry in this column. We compute Wk for each row k having a

non-zero entry in the intersection with column j; we then choose the row with minimum

Wk and add it to the set Gi .

This heuristic is adopted to increase the number of GUB sets found in this way. The

congestion values of columns which appear in the chosen GUB row are then updated

and the algorithm steps set out above are repeated. We terminate the algorithm at

stage i when every column has been considered.

43

3.4.1 An Example (M-GUB with Merit Count)

Consider the following LP constraints. We apply the M-GUB algorithm with the merit

count procedure explained above. Columns corresponding to slack variables and artifi­

cial variables need not be considered since they can be included as network columns at

any time.

1'1 Xl + X2 > 8

1'2 : X2 + X7 + XIO > 8

1'3 : X3 + X4 > 6

1'4 : Xl + X4 + X9 > 4

1'5 : Xl + X2 + X5 + X6 > 9

1'6 : X2 + X3 + X6 + X7 > 4

1'7 : X3 + X4 + X7 > 7

rs : X4 + X5 > 3

1'9 : X5 + X6 > 3

rIO : -X6 + Xs + XIO > 3

1'11 : -X3 + X7 + X9 = 0

1'12 : X5 + Xs > 0

Thus, the eligible subset of rows EI = {rI, 1'2,' .. ,r12} is considered. The sequence

of row counts is {RCI,RC2 , ... ,RC12 } = {2,3,2,3,4,4,3,2,2,3,3,2}. If we apply the

minimum row count procedure in order to construct the first GUB subset, the first row

is chosen automatically as an element of the first GUB subset. The third and ninth

rows are then included as rows of GI . So the first GUB subset is G1 = {rl, 1'3, r9} which

is also the first network set. The congestion of columns are Tj = 1 for j = 1,2, ... ,6 and

Tj = 0 for j = 7, ... , 10.

We proceed with the second eligible set E2 = {-r2, -1'4, -1'5, -1'6, -1'7, -rs, rIO, 1'11, -r12}.

The first column with congestion one is considered. There are two candidate rows which

have a non-zero entry in this column, that is KI = {4, 5}. Thus, one of them can be

chosen as the first row of G2 • The sequence of merit counts corresponding to each non­

zero entry in rows 4 and 5 are {m4jla4j =I- O,j = 1,4,9} = {2,4,2} and {m5jl a5j =I- 0,

44

Figure 3.4.1: The network detected within the LP problem.

j = 1,2,5, 6} = {3, 6, 6, 6}, respectively. The maximum merit count of row 4, W4 = 4

is smaller than that of row 5, Ws = 6. Thus, row 4 in the reflected form is included

in G2 • If we did not use the merit count heuristic and chose row 5 which has a higher

merit count this would prevent a number of rows from entering the network structure.

In the same manner, rows 2 and 6 are considered for the second column and row 2 in

the reflected form is included to the set G2 • For the third column, neither row 7 nor

row 11 is chosen, because row 7 has a non-zero entry in column 4 whose congestion is

two and row 11 is in GUB-conflict with rows in G2 • By repeating the same procedure,

the second GUB subset G2 is obtained as G2 = {-r4' -r2, -r12}' In this stage, the

network structure is constructed as N2 = NI U G2 = {rl' r3, rg, -r4, -r2, -rI2}'

The same procedure is carried out for detecting the third GUB set G3 out of rows

in the third eligible set E3 = {rlQ, rn}. The set E3 is obtained from the remain­

ing rows that are not involved in neither GI nor G2 and not in PN-conflict with N2 •

The third GUB set G3 = {rn, rlQ} is detected in the same manner. The network

structure N3 is obtained by adding rows in G3 to the network subset N2 such that

N3 = {rI, r3, rg, -r4, -r2, -r12, rn, rIO}' Since it is not possible to find any more eligi­

ble rows, the algorithm terminates. The network structure N3 consisting of eight nodes

and ten arcs is displayed in Figure 3.4.1 and the node-arc incidence matrix N is as

follows.

45

rl 1 1 0 0 0 0 0 0 0 0

r3 0 0 1 1 0 0 0 0 0 0

rg 0 0 0 0 1 1 0 0 0 0

N=
-r4 -1 0 0 -1 0 0 0 0 -1 0

-r12 0 0 0 0 -1 0 0 -1 0 0

-r2 0 -1 0 0 0 0 -1 0 0 -1

rn 0 0 -1 0 0 0 1 0 1 0

rIO 0 0 0 0 0 -1 0 1 0 1

3.5 An Independent Set Algorithm For Detecting

GUB

A GUB subset in an LP problem corresponds to an independent set in a graph corre-

sponding to the coefficient matrix of the LP problem [23]. This motivated us to consider

another approach to detect each GUB subset in our network detection algorithm [56].

The relationship between GUB structures and independent sets in the corresponding

graphs was used to prove that the problem of detecting a maximum GUB structure is

NP-hard in [23].

For a ternary matrix A, the corresponding graph Q(A) has vertex set V = {VI, V2,· .. ,vm '}

where m' is the number of rows in A. Vertices Vi and Vk in Q(A) are adjacent, that is

they are linked by an edge, if and only if row i and row k are in GUB-conflict. A set of

vertices S in Q(A) is called independent if no two vertices in S are adjacent. Clearly,

every GUB structure in A corresponds to an independent set in Q(A) and vice versa.

Most algorithms for constructing an independent set in a graph can be divided into

two categories. In the first category, we have algorithms that construct the indepen­

dent set directly such as a greedy algorithm and a matching algorithm. The algorithms

which improve (enlarge) the existing independent set belong to the second category and

are called improvement algorithms. We describe algorithms from both categories which

we Use in our network detection procedure.

46

Greedy and Matching Algorithms

The greedy algorithm picks up a vertex of minimum degree, adds it to the current

(initially empty) independent set and deletes it together with its neighbours from the

graph. This procedure is repeated until all vertices are deleted. A set of edges of 9

is called a matching, if the edges in the set have no common vertices. The matching

algorithm builds a maximal matching in graph g. A maximal matching is constructed

by choosing edges of 9 one by one and discarding those which have common vertices

with already chosen ones. The vertices of the maximal matching are deleted from g;

the remaining vertices constitute an independent set. Descriptions of the greedy and

matching algorithms can be found in numerous articles in the literature; for example,

see [92] for a recent reference.

Improvement Algorithms

Improvement algorithms such as local search and k-change are designed to improve the

current feasible solution. Local search procedure starts at an initial feasible solution

and searches for a better solution in its neighbourhood [93]. If there exists an improved

solution, then the search is repeated from the new solution. The k-change procedure

removes k elements from a neighbourhood and replaces them with the new solution in

order to achieve a better feasible solution.

The 2-opt algorithm is a k-change algorithm. Given an independent set S in graph

g, the algorithm tries to find a pair of non-adjacent vertices Vi, Vj not in S with only

one neighbour, Vk, in S (Vi and Vj has only one edge to S). If the algorithm succeeds it

replaces Vk by Vi and Vj in S. The search for an improving pair of vertices continues un­

til no improvement is possible. A description of the 2-opt algorithm can be found in [76].

M-GUB with an Independent Set

We consider an undirected graph 9 induced by the nodes corresponding to the rows

of the eligible set E1 . The first independent set S1 is obtained by applying a greedy

47

algorithm to this graph. The nodes in Sl also coincide to the rows of the first network

set N1, that is N1 = Sl. The second independent set S2 is found by reapplying the same

algorithm to the subgraph induced by the nodes which are not included in Sl. If the

set S2 is empty, then the algorithm terminates with the network structure N1 detected.

Otherwise, all rows (both in the original and in the reflected forms) corresponding to

nodes of the set S2 are then scanned one by one in respect of PN -conflict with rows of

the set N1 • If row Ii or -Ii is not in PN-conflict with rows in N 1 , then Ii or -Ii is

included to the network set. In this way, the second network set N2 is obtained. The

third independent set S3 is obtained from the subgraph induced by the remaining nodes

which are not included in N2 • If S3 =I- 0, then rows which correspond to nodes in S3 are

scanned to check whether they are in PN -conflict with any row in the network set N2 .

The same procedure is repeated until no more independent set is found or no more row

can be added to the previous network structure.

3.5.1 An Example (M-GUB with an Independent Set)

Consider the following LP problem constraints. We apply the M-GUB algorithm with

the independent set heuristic consisting of the greedy algorithm.

11 : Xl + X2 = 1

12 : X3 + X4 = 2

13 : Xs + X6 = 3

14 : X3 + X7 + X13 = 4

IS : X6 + X7 + Xs + Xg + X1S = 5

16 : X2 + Xg + XlO + X14 = 6

17 : X4 + X10 + Xll = 7

IS : Xs + Xs + Xll + X12 = 8

Ig: Xl + X12 + X13 + X14 + X1S = 9

The corresponding undirected graph of the coefficient matrix is depicted in Figure 3.5.2.

The degrees of nodes are d1 = 2, d2 = 2, d3 = 2, d4 = 3, ds = 5, d6 = 4, d7 = 3, ds =
4, dg = 5. We detect the first independent set Sl = {VI, V2, V3} which is also the first

network set, N1 = {II, 12, 13}' By reapplying the greedy algorithm to the subgraph

48

induced by nodes not included in Sl, the second independent set S2 = {V4 , V6, V8 } is

obtained. Then all rows corresponding to nodes of the set S2 are scanned and the

network structure N2 = {rl) r2, r3, -r4, -r6, -r8} is obtained. The third independent

set is found from the subgraph induced by the remaining nodes which are not included

in N2; S3 = {vs, V7}. However, the network set N2 cannot be improved since rows 5

and 7 are in PN-conflict, even in the reflected forms, with rows of N 2 . Therefore, the

algorithm terminates.

Figure 3.5.2: The undirected graph of the LP problem.

We apply the 2-opt algorithm after the first independent set Sl is found. It can be seen

from Figure 3.5.2 that Sl can be improved only by exchanging node V2 with nodes V4

and V7. Therefore, the first independent set is enlarged to S'l = {VI, V3, V4, V7}. When

applying the greedy algorithm to the subgraph consisting of the remaining nodes, the

second independent set S'2 = {V2' V6, V8} is obtained. After scanning nodes in S'2 in

respect of PN-conflict with the rows of the first independent set, the network subset is

obtained by adding the reflected form of the rows in S'2 to the first independent set S'l;

The same procedure is reapplied to the subgraph consisting of the nodes, not included

in the network N'2, so the third independent set is found S3 = {vs}. Since row 5, in

49

the original and in the reflected form, is in PN-conflict with rows in N2, the network

structure detected already is not changed. The algorithm stops with the network struc­

ture N/2 whose node-arc incidence matrix N is as follows. The rows and columns of

the network matrix detected are depicted with the bold nodes and arcs in Figure 3.5.2.

Columns which have only one non-zero entry in the matrix N correspond to a self-loop.

-rg

11000000000000

00001100000000

00100010000010

00010000011000

o 0 -1 -1 0 0 0 0 0 0 0 0 0 0

o -1 0 0 0 0 0 0 -1 -1 0 0 0 -1

o 0 0 0 -1 0 0 -1 0 0 -1 -1 0 0

3.6 Computational Results

In the computational experiments, we evaluate the performance of our network extrac­

tion algorithms for both efficiency and effectiveness. Efficiency of an algorithm refers

to the CPU time taken to find an EPN structure while effectiveness of the algorithm is

measured by the size of the network structure detected.

We computationally investigate the performance of the M-GUB algorithm for a set

of real-world problems which are readily available to the scientific community. There­

fore, we chose a set of Netlib models [43] whose characteristics in terms of the number

of rows, columns and non-zeros are summarised in section 1.8. The number of eligi­

ble rows of the coefficient matrix A is presented under the heading EROW in Table 3.6.1.

All algorithms used in the experimental investigation are implemented in FORTRAN,

compiled and run on a DEC ALPHA 3000/600 computer with 96 MB memory. We

investigate altogether five algorithms which are

50

D-GUB: Two-stage (double) GUB without merit count,

D-GUBMC: Two-stage GUB with merit count,

M-GUBMC: Multi-stage GUB with merit count,

D-INDSET: Two-stage GUB with independent set,

M-INDSET: Multi-stage GUB with independent set.

In order to evaluate the performance of the merit count concept, we consider only two­

stage of the M-GUB algorithm; and apply it with merit count and without merit count.

The results obtained by D-GUB and D-GUBMC are set out in Table 3.6.1 in terms

of the number of network rows. In the D-GUB algorithm, the rows are considered in

non-decreasing order of row counts. The results in Table 3.6.1 reveal that the number

of network rows detected by D-GUBMC are more than those detected by D-GUB for

all models except ship121 and 25fv47. Therefore, we may claim that our use of the

merit count concept is clearly vindicated.

We carry out extensive computational experiments to check which of the above in­

dependent set algorithms is suitable for the multi-stage GUB algorithm. The obtained

results show that the matching algorithm is always inferior to the greedy one. For this

reason, an independent set heuristic consisting of the greedy algorithm is used to detect

each GUB subset in the M-GUB algorithm. We also attempt to enlarge results of the

GUB structure by using an improvement algorithm, namely the 2-opt algorithm. The

2-opt heuristic applied to the independent sets constructed by the greedy algorithm

gives very marginal improvements or no improvements at all. We observe that the

2-opt heuristic unlike the greedy algorithm is time consuming. For these reasons, we

use only the greedy algorithm for constructing GUB structures in our computational

experiments.

In Table 3.6.2, we set out the results for the M-GUB algorithm with two different

GUB detection procedures in terms of the number of network rows, the number of

network columns, namely, those that have at least one non-zero entry within the net­

work rows, and the computational time taken to detect network structures. In order to

51

I Model Names II EROW II D-GUB II D-GUBMC II
25fv47 224 149 146

agg3 . 141 46 46

cre_a 1247 659 688

cycle 507 373 403

czprob 719 640 708

energy 1531 633 1237

greenbea 916 743 775

nesm 190 161 170

osa007 1048 1036 1043

pilot87 341 266 270

scagr25 301 213 235

scrs8 214 132 146

scfxm3 423 279 280

sctap3 620 620 620

SIerra 1155 641 666

ship12l 828 732 666

stocfor2 1262 812 898

Table 3.6.1: The number of network rows detected by the two-stage GUB based

algorithms.

52

show the performance improvement of the multi-stage compared to the two-stage algo­

rithm, we juxtapose the results obtained using two different GUB detection procedures.

For the two-stage case, we terminate the M-GUB algorithm after finding the second

GUB set G2 • From the results set out in Table 3.6.2, we may conclude that the multi­

stage G UB algorithm in the majority of the cases performs better than the two-stage

GUB algorithm; thus indicating the improvement achieved by the extension introduced

by us over the double GUB algorithm of Brown and Wright.

We further wish to consider the relative performances of the M-INDSET and M­

GUBMC algorithms. An analysis of the results in Table 3.6.2 also reveals that there are

seven winners for the M-INDSET algorithm and seven winners for M-GUBMC while

there are three ties. Thus, the difference in performance taking into consideration the

number of network rows is not significant. As a result, we cannot conclude that any­

one of these GUB detection procedures dominates the other. We therefore extend the

experiments to a set of three instances of a large scale industrial model taken from

the domain of supply chain planning [80]. These models are known to possess a large

proportion of embedded network rows. For these three models, the problem statistics

are given in Table 1.8.5. The number of essential rows (under the heading EROW) and

the corresponding network rows detected by M-GUBMC and M-INDSET are presented

in Table 3.6.3.

I Model Names II EROW II M-GUBMC II M-INDSET II

modell 4291 3656 3755

model2 3690 3060 3306

model3 3690 3060 3306

Table 3.6.3: The number of network rows for supply chain models.

The results in Table 3.6.3 encourage us to conclude that perhaps for certain classes of

constraints M-INDSET is better than M-GUBMC in identifying the EPN structure.

53

Algorithms D-GCBMC M-GCBMC D-IKDSET M-IKDSET

Model Kames KETR KETC TIME KETR KETC TIME KETR KETC TIME KETR KETC TIME

25fv47 146 507 0.01 198 768 0.03 187 746 0.01 199 781 0.01

agg3 46 91 0.01 59 106 0.01 62 119 0.01 62 119 0.01

cre..a 688 3131 0.20 823 3474 1.03 799 3283 0.12 803 3291 0.17

cycle 403 1264 0.04 506 2350 0.09 500 2345 0.01 505 2349 0.02

czprob 708 3093 0.05 717 3102 0.02 718 3101 0.02 718 3101 0.02

energy 1237 5899 0.13 1504 7547 0.95 1475 7623 0.05 1486 7643 0.06

greenbea 775 2587 0.09 877 4344 0.21 859 4062 0.03 881 4363 0.04

nesm 170 1538 0.03 188 1630 0.04 178 1585 0.01 190 1635 0.01

osa007 1043 23949 1.06 1043 23949 1.18 1043 23949 0.08 1043 23949 0.10

pilot87 270 868 0.02 303 905 0.04 302 905 0.02 304 905 0.03

scagr25 235 321 0.01 271 375 0.02 270 375 0.01 270 375 0.01

scrs8 146 852 0.07 213 952 0.14 212 950 0.01 212 950 0.01

scfxm3 280 806 0.02 355 1034 0.05 309 1020 0.02 312 1023 0.02 I

sctap3 620 1860 0.01 620 1860 0.01 620 1860 0.01 620 1860 0.01

SIerra 666 2016 0.06 671 2016 0.07 671 2016 0.05 672 2016 0.07

ship121 666 4704 0.83 732 5222 1.96 732 5223 0.10 732 5223 0.10

stocfor2 898 1659 0.21 947 1698 0.25 901 1666 0.06 914 1674 0.09

I Total II 8997 55145 2.85 II 10027 61332 6.10 II 9838 60828 0.62 11 9923 61257 0.78

NETR: The number of network rows, NETC: The number of network columns, TIME: cpe time(seconds).

Table 3.6.2: The performance of four selected algorithms.

~
lO

If we consider the structure detection time, for these three models, the time taken is

between five and eight seconds for the M-INDSET algorithm which is again well within

5% of the sparse simplex solution time. However, the algorithm M-GUBMC is slower

than M-INDSET. As a result we may claim that while the M-INDSET algorithm is

marginally better than the M-GUBMC algorithm for Netlib nlodels, the M-INDSET

algorithm is dominant for supply chain models.

3.7 Discussion

In this chapter, we have considered a GUB based algorithm for detecting EPN struc­

ture in an LP problem and have shown that our approach of extending the two-stage

heuristic to a multi-stage heuristic leads to improved performance. We have applied

the Markowitz merit count concept -in a novel way and improved the GUB detection

heuristic. We have introduced the independent set algorithm as an alternative approach

to finding GUB sets.

All the algorithms have been tested on a range of Netlib models and we have not

been able to identify a GUB detection heuristic in M-GUB which is the best in all cases

for the Netlib models. However, we can easily conclude that the algorithm M-INDSET

outperforms all the others for supply chain models. Taking into consideration the com­

puting time, we have observed that the structure detection time is usually less than 5%

of the sparse simplex solution time.

55

Chapter 4

A N et"Work Extraction Algorithlll

By Using Generalised Signed

Graphs

4.1 Introduction

Signed graphs are often used in social psychology as a mathematical model to investi­

gate relationships among people within a group [27]. Consider a group of people such

that every two individuals are either friendly, unfriendly, or indifferent toward each

other. Such a group of people with such kind of relationships hetween each individual

is referred to as a social system which is represented by a signed graph. Each vertex

represents the individual within the group. A positive edge joins two vertices if there

is a positive relation between two people, that is they are friendly toward each other.

A negative edge joins two vertices if two corresponding people have a negative relation,

that is they are unfriendly with each other. Indifference between two individuals is

indicated by the lack of any edge joining the corresponding individuals. A signed graph

is a special case of a generalised signed graph. For the purpose of this thesis, we use

generalised signed graphs to represent the relationships among rows of the coefficient

matrix of an LP problem with respect to the pure network structure. This relationship

leads to a heuristic for extracting such an EPN structure within the LP problem. The

56

importance of this heuristic is that, in contrast to the previously known network ex­

traction procedures, the heuristic determines whether a given LP problem is an entirely

pure network.

The rest of this chapter is organised in the following way. In section 4.2, we broadly de­

fine the generalised signed graphs. In section 4.3, balanced signed graphs are described.

In section 4.4, by exploiting the relationship between the generalised signed graphs and

embedded pure networks, it is proved that the problem of detecting the maximum size

EPN structure in an LP problem is NP-hard, even for very special families of matrices.

In section 4.5, the pure network graphs are summarised. In section 4.6, we introduce

a new network extraction algorithm based on generalised signed graphs: we call this

the GSG algorithm. In section 4.7, the complexity issues of the GSG algorithm are ex­

plained. In section 4.8, the GSG algorithm is explained using an illustrative example.

The computational results are presented in section 4.9 followed by a discussion of the

results in section 4.10.

4.2 Generalised Signed Graphs

A generalised signed (as) graph is defined as an undirected graph in which the weight

of any edge is +1, -lor O. If we consider a graph 9 = (V, £) with the set of vertices V

and the set of edges £, a GS graph is represented with a function c : £ ~{-1, 0, +1}.

A GS graph 9 = (V, £ , c) is called a signed graph if c(£) c {-I, + I}. Since a positive

or a negative sign is attached to every edge of the signed graph, it is natural to refer to

each edge as a positive or a negative edge with respect to their weights of +1 or -1,

respectively.

We construct a generalised signed graph corresponding to the coefficient matrix of

an LP problem as follows. A ternary submatrix A = [£iij] (see section 2.2) of the LP

coefficient matrix A is obtained after the preprocessing procedure described in section

2.3. Assume that A is an m' X n' matrix such that m' < m and n' < n. The vertex set

of 9(A) is {VI, ... , V m ,}; ViVk is an edge of 9(A) if and only if there exists a column j of

57

A such that both aij and alej are non-zero. For an edge ViVk, the weight c(ViVk) equals

to either (+ 1) or (-1) if for every column j of A either (at least one of aij and alej

is zero or both of them are non-zero and of the opposite signs) or (of the same sign),

respectively. Otherwise, the weight c(ViVk) is zero. In other words, if two rows i and k

of matrix A com prise a network structure (not in P N -conflict), then the corresponding

vertices Vi and Vk are adjacent with a weight of + 1. Otherwise, these rows cannot be

together in the network structure, therefore they are joined by an edge with a weight

of o. If two rows become network rows only after reflecting one of them, then the two

adjacent vertices are joined by an edge with a weight of -1.

We restrict ourselves (as it is done in most of the papers on the topic, for example

see [3, 13, 20, 56]) to only the row reflection operation. We define the reflection oper­

ation in a GS graph as follows. For a vertex Vi in the GS graph 9, the vi-reflection of

9 is the GS graph 9V i which is obtained from 9 by changing the signs of the weights

of edges incident to the vertex Vi. For a non-empty subset W = {WI,· .. ,WI} of V, the

W -reflection of 9 is a GS graph 9w = (... ((9Wl)W2) ...)WZ. Clearly, 9w can be obtained

from 9 by changing the signs of weights of the edges between the set of vertices Wand

the set of remaining vertices which do not belong to W, W.

4.3 Balanced Signed Graphs

Consider a signed graph 9 = (V, £). The graph 9 is balanced if its vertex set can be

partitioned into two subsets Wand W = V \ W (one of which may be empty) such

that the two sets satisfy the following conditions:

• each edge joining two vertices in the same subset is positive,

• each edge joining vertices in the different subsets is negative.

For a graph H, let f1(H) be the number of negative edges e in H (that is, c(e) = -1).

Clearly, f1(9w) = 0 and f1(9w) = o. When the set W equals V, the set W is obviously

empty.

58

V2

e1.•· e2

e6

Vg V 1 e
.•.• 8. •..• V3

: e3 e3

OV4
V()------------~

5 e4 e4
V4

GS2

Figure 4.3.1: Balanced and unbalanced signed graphs.

In Figure 4.3.1, we consider two signed graphs GS1 and GS2 in which the negative

edges are denoted by dashed lines and the remaining edges are positive. It can be eas­

ily shown that the signed graph GS1 is balanced while the GS2 is unbalanced. Assume

that the vertex set in GS1 is partitioned as W = {Vb V2, V3} and W = {V4' vs}. Clearly,

this partition satisfies the two conditions for being a balanced signed graph.

In a signed graph, a cycle is called positive if it has an even number of negative edges,

and is called negative otherwise. We observe that a cycle with no negative edge is pos­

itive. It can be easily shown that by vertex reflections a cycle can be turned into one

whose edges are all positive if and only if it is a positive cycle. Therefore, the reflections

of vertices in cycles in a signed graph do not have any effect on whether the cycle is

positive or negative. By using this definition, we can now give the main characteristic

of a balanced signed graph: a signed graph is balanced if and only if every cycle of the

signed graph is positive [65].

4.4 Embedded Networks and Generalised Signed Graphs

Consider the DMEPN problem defined in section 1.7. Let v(A) denote the maximum

number of pure network rows. In order to show that the DMEPN problem is NP-hard,

59

we first introduce the following parameter for the GS graph 9 = 9(A) = (V, E):

TJ(Q) = max{a((Qw)(O) U (QW)(-l)): w c V}. (4.1)

For a graph Q, (Q)(-l) ((Q)(O) and (Q)(+l), respectively) denotes the spanning subgraph

of 9 whose edges are of negative (of zero and positive weight, respectively). The cardi­

nality of a maximum independent set of vertices in Q is denoted as a(9), and is called

the independence number of Q. The parameter in (4.1) is of importance due to the

following easily verifiable claim.

Proposition 4.4.1 For a ternary matrix A, we have v(A) = TJ(Q(A)).

Proposition 4.4.1 allows us to study TJ(Q) for GS graphs Q rather than v(A) for the

ternary matrix A. However, we cannot restrict ourselves to any special class of GS

graphs due to the following claim:

Proposition 4.4.2 For a as graph 1i, there exists a ternary matrix A such that Q(A)

is isomorphic to 1i.

Pro of: Let {VI,"" vm '} and {el,"" en'} be the vertex set and the edge set, respec­

tively, of 1i. Construct a matrix A of dimension m' x 2n' as follows. For an index

j E {I, ... , n'}, if the weight c(ej) = 1 (c(ej) = -1), ej = ViVk, then columns 2j - 1

and 2j consist of zero entries apart from ai,2j = 1, ak,2j = -1 (ai,2j = ak,2j = 1); if the

weight c(ej) = 0, ej = ViVk, then columns 2j - 1 and 2j consist of zero entries apart

from ai,2j = 1, ak,2j = -1, ai,2j-1 = ak,2j-1 = 1. It is easy to check that 1i is isomorphic

to 9(A).

The two above propositions and the well-known fact that the independence number

problem is NP-hard [92] imply that the DMEPN problem is NP-hard as well. Here, we

can restrict ourselves to GS graphs 9 all of whose weights are zero. When all weights

are +1, the problem to compute TJ(Q) becomes trivial; the case of all weights equal to

-1 is treated in the following theorem.

Theorem 4.4.3 The problem of computing TJ(Q) for signed graphs Q all of whose

weights are -1 is NP-hard.

60

Proof: Let H be a graph and H' be a vertex disjoint copy of H. To obtain the

graph 9 = 9 (H) add to HUH' all edges between Hand H'. Assign to every edge

of 9 the weight -1. This theorem follows from the fact that 1](9) = 2a(H) whose

proof is given below. Let W be a set of vertices in 9. As can be seen from (4.1),

1](9) = maxa((9w)(-1)). Then,

a((9w)(-1)) = max{ a(9[V(H) n W]), a(9[V(H') n W])}

+ max{ a(9[V(H) n W]), a(9[V(H') n W])} < a(H) + a(H') = 2a(H).

Thus 1](9) < 2a(H). In addition, we have 1](9) > 2a(H) since a((9v(Ji))(-1)) = 2a(H).

Therefore, the proof is completed.

Here, for a graph 9 = (V, E) and W C V, 9[W] stands for the subgraph of 9 in­

duced by W; W = V\ W. In the construction of the proof of the last theorem, let us

add edges of weight 1 between the pairs of non-adjacent vertices in 9. We obtain a

signed complete graph K. As K is a spanning supergraph of 9, 1](K) < 1](9). However,

a((Kv('J-l))(-1)) = 2a(H). Thus, 1](K) = 2a(H). We derive the following corollary.

Corollary 4.4.4 The problem of computing 1](K) for signed complete graphs K is NP­

hard.

4.5 Pure Network Graphs

In this section, we characterise signed graphs 9(A) whose matrices A are pure network

matrices and call such graphs pure network graphs. In other words, a signed graph 9

is a pure network graph if and only if there exists a set W of vertices in 9 such that

Jl(9w) = o. In this section, a few results which are directly related to pure network

matrices are presented since they are used in the description of our EPN extraction

algorithm GSG. The assertions stated here are scattered in the literature, and are rather

unknown to nonexperts in the area of signed graphs. We were not be able to find any

publications in which all the results are covered. Therefore, we refer to the reader

to a number of publications which 'cover' the results of this section; for example, see

61

[66,64,67,107, 108]. We provide complete proofs of the following lemmas and theorem

as they are short, possibly, original and (especially that of Lemma 4.5.2) useful from

an algorithmic point of view. We consider only connected graphs; disconnected graphs

can be treated by studying their components one by one.

Lemma 4.5.1 Every signed tree T can be turned into an all plus tree.

Proof: We prove the lemma by induction of the number of edges in T. The lemma is

true when the number of edges is one. Let x be a vertex of T of degree one. By the

induction hypothesis, there is a set W C V(T) - x such that f1((T - x)w) = O. In the

tree Tw, the edge e incident to x is positive or negative. In the first case, let W' = W

and the second case, let W' = W u {x}. Then, f1(TW1) = o.

Lemma 4.5.2 Every signed tree T is a pure network graph.

Proof: From lemma 4.5.1, every signed tree of a signed graph can be turned into an

all positive tree. Therefore, each tree corresponds to a pure network graph.

By considering these lemmas, we can summarise the relationship between the corre­

sponding signed graphs of an LP coefficient matrix and pure network graphs in the

following theorem.

Theorem 4.5.3 For a connected signed graph Q and a spanning tree T of Q, the fol­

lowing assertions are equivalent:

1. Q is a pure network graphj

2. Q is a balanced graphj

3. Q does not have a negative cyclej

4. If W C V(Q) such that f1(Tw) = 0, then f1(Qw) = o.

Proof: The equivalence of assertions 1 and 2 is obvious and follows from the definitions

of pure network graphs and balanced signed graphs. By the latter definition, assertion

2 implies assertion 3. By considering the chords of T one by one, we see that assertion

4 follows from assertion 3. Clearly, assertion 4 and Lemma 4.5.2 imply assertion 1.

62

4.6 A Network Extraction Algorithm: GSG

Theorem 4.5.3 leads to a new algorithm which can be applied to extract an EPN struc­

ture within an LP problem [61]. The algorithm is essentially based on the GS graph of

the corresponding coefficient matrix of the LP problem and we call it the GSG algo­

rithm. The GSG algorithm has two important. properties that distinguish it from other

network extraction algorithms in the literature. The first property is that the GSG

algorithm determines whether the given LP problem is an entirely pure network. The

second feature is that instead of any addition or deletion strategies or any other spe­

cial structure detection heuristics to construct an EPN structure, the GSG algorithm

employs two graph theoretic algorithms; namely finding a spanning tree and detecting

an independent set in the GS graph.

The algorithm GSG proceeds as follows. The GS graph of the corresponding ternary

matrix of the given LP problem is constructed by scanning either rows or columns of the

submatrix A.. Then a spanning forest on the subgraph H = 9(+1) U9(-1) is found. Since

the spanning forest can be converted to one with all positive signed edges (see Lemma

4.5.1), by using a recursive algorithm we can compute W C V such that f-L(Tw) = o. At

this stage, the W-reflection procedure is applied to nodes of Wand as many negative

edges as possible are turned into positive edges in the subgraph; we denote the GS

graph as HI = 9w. If all edges in the graph HI have weights of +1, then the algorithm

terminates by concluding that the GS graph is a pure network graph. Otherwise, we

obtain a spanning subgraph HI! = (9w)(0) u (9W)(-1) by deleting all edges with positive

weights. A maximal independent set S is then found by applying a minimum-degree

greedy heuristic to the subgraph H". The minimum-degree greedy algorithm proceeds

as follows; starting from the empty set S, it appends to S a vertex of HI! of minimum

degree, deletes this vertex together with its neighbours from HI!, and the above proce­

dure is repeated until HI! has no more vertex (for more detail, see [92]). It can be easily

seen that the vertices of the maximal independent set S correspond to rows of A that

form a pure network [62]. The main steps of the algorithm are set out as follows.

63

The GSG Algorithm

Step 1 Construct the GS graph 9 = 9 (A) = (V, £' , c);

Step 2 Find a spanning forest T of 1{ = 9(+1) u 9(-1);

Step 3 Using a recursive algorithm based on the proof of Lemma 4.5.2,

compute W C V such that J1(Tw) = O. Find the graph 1{' = 9w.

Step 4 Using the minimum-degree greedy heuristic, find a maximal independent

set S in the graph 1{" = (9w)(0) U (9w)(-1).

Step 5 Terminate the algorithm with network matrix N = S.

Note that if 9 is a pure network graph, our heuristic's output is S = V. We ob­

serve that constructing a generalised signed graph by scanning columns is faster than

rows; this assertion is discussed in section 4.7. Therefore, the following pseudo code of

the GSG algorithm is based on this observation.

Pseudo Code of the GSG Heuristic

Arguments:

A = [aij] is a ternary matrix of dimension m' x n'

N =: 0, W := 0 and S := 0.
begin

V := {VI, ... 'Vm '}

£':= 0
(*Construct the signed graph 9 = 9(£1) = (V, £') with the function c. *)

for j := 1, ... ,n' do

for all pairs of rows i, k such that aij =I 0, akj =I 0 and 1 < i < k < m' do

if aij = akj, then

w:= -1

else

w:= +1
endif

(* aij and akj are the same sign *)

(* aij and akj are of opposite sign *)

64

if ViVk~ £ then

£ := £ U{ ViVk}

C(ViVk) := w

elseif c(ViVk) =I 0 and c(ViVk) =I w then

c(ViVk) := 0

endif

endfor

endfor

(*Find a spanning forest T of 1{ = g(+l) U g(-l). Compute W C V for f1(Tw) = o. *)

while W =I V do

if there is an edge e = ViVk E £ such that Vi E W, Vk E V \ Wand c(ViVk) =I 0, then

set W:= WU{Vk}.

else

if c(ViVk) = -1 then

for all Vs E V and VsVk E £ do

c(VsVk) := -c(VsVk)

endfor

endif

let Vs be any vertex of V \ W; set W := W U{ Vs}.

endif

endwhile

(*Find the maximal independent set S on subgraph 1{" = (gw)(O) U (9w)(-1). *)

(*Terminate the algorithm. *)

end

4.7 Complexity of the Algorithm

Clearly, time complexity in step 1 is O(nl m /2
). However, in practice, most matrices

of LP problems are sparse and, therefore, represented in computer memory by special

data structures [5] (linked lists [29]) which keep only non-zero entries.

65

In order to analyse what time is required when the matrix A is sparse, we, for sim­

plicity, assume that every column of A has exactly kc non-zero entries. Then, step 1

runs in time O(n'k;). The above implementation of step 1 is based on the column

scanning. Similarly, we can construct a signed graph 9 by scanning rows. However,

assuming that every row of A has exactly kr non-zero entries, we obtain that the im­

plementation of step 1 by scanning rows requires time 0(kr m,2). For real values of

m', n', kr and kc, n' k; ~ kr m,2. This fact leads us to the column scanning implementa­

tion of step 1.

Using breadth-first search or depth-first search, the spanning forest T in step 2 can

be computed in time 0(1£1). The proof of Lemma 4.5.2 implies an O(I£I)-time recur­

sive algorithm. It is known that a degree-greedy algorithm has complexity of 0(1£1)

[92].

4.8 An Example with the GSG Algorithm

Consider the following constraint set of an LP problem.

Xl X2 X3 X4 X5 X6 X7 Xs Xg XIO Xu

rl : XI+X2=1 VI : 1 1

r2 : -XI-X2+X3+X4=2 V2 : -1 -1 1 1

r3 : -X3+X5+X6=3 V3 : -1 1 1

r4 : X3+X7=4 V4 : 1 1

r5 : -X6-X7-XS-xg=5 V5 : -1 -1 -1 -1

r6 : X2+X9+XlO=6 V6 : 1 1 1

r7 : -Xl +X2+X4 +XlO-XU =7 V7 : -1 1 1 1 -1

rs : -X5-XS+XU +x12=8 Vs : -1 -1 1

The GS graph 9 corresponding to the coefficient matrix of the LP problem is con-

structed, and is depicted in Figure 4.8.2. A spanning tree of the graph 9 is displayed

with bold lines on the signed subgraph.

66

X12

1

+1

-1

Figure 4.8.2: The generalised signed graph of the LP coefficient matrix.

With the recursion procedure, the vertex subset W is obtained as W = {V6, Vs, V4} in

where each vertex has a negative edge incident on. Applying the W-reflection procedure

to the set W, all negative edges on the spanning tree are turned into all positive edges.

This step aims to reduce the number of negative edges on the GS graph. The GS graph

H' after the W-reflection operation is displayed in Figure 4.8.3.

+1

Figure 4.8.3: The generalised signed graph after the W-reflection.

67

By taking out the all + 1 edges, we obtain the new GS graph 1-l" and the maximal

independent set S = {VI, V2, V4, Vs, VB} is then obtained by using the degree-greedy

algorithm. Thus, the set of network rows in terms of the original row indices is N =

{rl' r2, -r4, -rs, rB}.

4.9 Computational Results

The GSG algorithm is implemented in C++ and computational experiments are car­

ried out on a Pentium-II 266MHz computer with 128 MB of RAM. The performance of

the GSG algorithm is tested for a set of Netlib models as well as supply chain models

used in the previous chapter. The effectiveness and efficiency of the GSG algorithm is

compared with the well established Row Scanning Deletion algorithm, RSD (see section

2.4.2) and the M-GUB algorithm with two GUB detection procedures (see section 3.3).

Of these algorithms RSD is implemented using two different rules for the selection

of rows. The first rule selects rows in the original order of their row penalties and the

second one considers the row with the maximum row penalty first. In both cases, the

row penalties are updated as the heuristic proceeds. We observe that ordering rows ac­

cording to their row penalties and choosing the one with the maximum penalty always

performs better than the first rule.

In Table 4.9.1, we present the results of the RSD algorithm combined with the sec­

ond rule which gives consistently better performance. Since the performance of the

multi-stage algorithm has been found to dominate those of two-stage algorithms, we re­

strict ourselves to the multi-stage algorithms; M-GUBMC (multi-stage GUB with merit

count) and M-INDSET (multi-stage GUB with independent set). We therefore set out

the results of these algorithms in Table 4.9.1 in terms of the number of network rows

(under the heading NETR) and the CPU time in seconds (under the heading TIME).

These results include only the time spent on the detection of EPN structures. The time

taken to input the initial data and to apply preprocessing and scaling procedures is

excluded since it is the same for all algorithms.

68

Algorithms II RSD /I M-GUBMC /I M-INDSET /I GSG II II I , Ii

TIME II NETR Model Names NETR TIME NETR TIME NETR TIME
,

Ii

25fv47 207 0.05 198 0.02 199 0.01 204 0.01

agg3 61 0.07 59 0.00 62 0.01 58 0.01

creA 809 1.32 823 0.29 803 0.07 828 0.20

cycle 505 0.04 506 0.04 505 0.01 505 0.04

czprob 718 0.93 717 0.03 718 0.01 718 0.06

energy 1497 0.11 1504 0.30 1486 0.02 1497 0.32

greenbea 881 0.25 877 0.08 881 0.02 877 0.07

nesm 190 0.03 188 0.02 190 0.02 190 0.01

osa007 1043 0.19 1043 0.59 1043 0.06 1043 0.11

pilot87 300 0.10 303 0.01 304 0.01 303 0.03

scagr25 275 0.03 271 0.01 270 0.01 300 0.01

scrs8 213 0.03 213 0.03 212 0.01 213 0.01

scfxm3 366 0.11 355 0.01 312 0.01 375 0.02

sctap3 620 0.03 620 0.01 620 0.01 620 0.04

SIerra 790 0.66 671 0.03 672 0.02 762 0.12

ship121 732 0.46 732 0.36 732 0.04 732 0.28

stocfor2 947 0.41 947 0.08 914 0.03 1042 0.14

I Total /I 10154 4.82 /I 10027 1.91 II 9923 0.3711 10267 1.48 II

NETR: The number of network rows, TIME: CPU time (seconds).

Table 4.9.1: The number of network rows and network extraction time for Netlib

models.

69

The results in Table 4.9.1 show that the GSG heuristic broadly speaking outperforms

all other algorithms. Although for some models the difference between the number

of network rows detected by different algorithms is not significant, GSG finds signifi­

cantly more network rows than others for some models such as stocfor2, scagr25 and

scfxm3. Sierra is the only model where GSG detects a significantly smaller number of

pure network rows compared with RSD (the best heuristic for this model). The GSG

algorithm still significantly outperforms the other two heuristics, namely M-GUBMC

and M-INDSET for this model.

Overall, we can conclude that the heuristic GSG dominates other algorithms for the

chosen subset of Netlib models. When we consider the efficiency issue, we may conclude

that the GSG algorithm is faster than the RSD and the M-GUBMC algorithms, how­

ever, it is slower than the M -INDSET algorithm. In the aggregated form, looking at the

total number of network rows, RSD performs close to GSG. Taking into consideration

. the effectiveness as well as the efficiency of algorithms GSG performs better than RSD.

We also wish to test the performance of these heuristics for a set of three instances

of a large scale industrial model taken from the domain of supply chain planning [80].

As mentioned before, these models are instances of a multi-stage multi-period produc­

tion and distribution model and are known to posses a large proportion of embedded

network rows. The problem statistics of these models are presented in Table 1.8.5.

Since the M-INDSET algorithm dominates the M-GUBMC algorithm (see Table 3.6.3)

for these models, we only present the results obtained by the M-INDSET algorithm as

well as the algorithms RSD and GSG in Table 4.9.2. In these cases, while time taken is

between two and three seconds for M-INDSET, the GSG takes around eleven seconds.

Moreover, RSD is slower than these two algorithms.

We observe from the results in Table 4.9.2 that the algorithm GSG clearly outperforms

the other two heuristics in terms of the number of network rows. In addition, the GSG

algorithm terminates by concluding that the ternary matrix A is a pure network itself

70

Model ALGORITHMS

Names RSD M-INDSET GSG

modell 3509 3755 4139

model2 3060 3306 3690

model3 3060 3306 3690

Table 4.9.2: The number of network rows for supply chain models.

for model 2 and model 3. The GSG detects more network rows than RSD and M­

INDSET for model 1. Regarding the computing time, the network extraction time for

the algorithm GSG is still less than 5% of SSX solution time.

4.10 Discussion

In this chapter, we have shown that the problem of detecting a maximum EPN struc­

ture in an LP problem is related to balancing of generalised signed graphs. We have

presented a network extraction algorithm which is based on the generalised signed

graph of the corresponding coefficient matrix of the given LP problem. The compu­

tational results showed that this algorithm performs well compared to other algorithms.

We have observed that the quality of the solutions found by the GSG heuristic can

be improved if one is ready to spend more time on detecting an embedded pure net­

work. Indeed, our computational experiments have shown that the number of rows

in the network found depends (sometimes, significantly) on the spanning tree. To en­

hance the results, one can build several spanning trees rather than just one in which

case parallel algorithms may be considered. Another issue which helps to improve the

performance of this heuristic is to use a local search improvement algorithm. In order to

obtain an independent set S, we have used the degree-greedy algorithm. The set S, in

many cases, can be enlarged by using local search improvement algorithms (for instance,

see [95]). However, the improvement algorithms are normally time demanding.

71

Chapter 5

Alternative Approaches For Solving

LPEN Problems

5.1 Introduction

In this work our aim is not only to detect EPN structures in LPEN problems, but also

to exploit the network structures to find improved computational solutions to LPEN

models. Three classes of solution methods which exploit embedded network structures

have been discussed in the literature. In essence, the first group of methods is made

up of specialised simplex algorithms for solving embedded network linear programs.

These methods are based on the partitioning of the basis. The second group consists

of the methods for solving network flow problems where the side constraints have a

special (non-network) structure. These are singly constrained network problems and

multicommodity flow problems. The methods in this group are specialised and have

the drawback in that they do not solve an arbitrary network flow problem with side

constraints. The third group consists of methods which are based on the strategy of

problem decomposition using Lagrangean relaxation.

In this chapter, we first describe these three classes of solution methods and then

explain our approach which involves creating an advanced starting point for the LPEN

problem. The rest of this chapter is organised in the following way. In section 5.2,

72

the problem statement is recast in a convenient form. In section 5.3, we review the

specialised simplex algorithms which are based on factorisation of the basis matrix. In

section 5.4, the partitioning algorithms that are based on the decomposition of the LP

problem are described. In section 5.5, our network based advanced basis procedure is

introduced in a summary form.

5.2 Problem Statement

We consider the LP problem with simple upper bounds in the standard form given in

(1.5). Assume that an EPN structure within an LPEN problem is detected. After such a

subset of EPN rows has been identified, the LP problem can be interpreted as satisfying

the conservation of flow at the nodes defined by network rows and side conditions on

flows specified by the non-network rows. Using the node-arc incidence matrix N, the

given LP problem (1.5) can be restated as an LPEN problem in a decomposed form

shown below.

Minimise Zo = c,T x' + C"T x"

subject to

N x' = b'

U x' + V x" = b"

[' < x' < u'

[" < x" < u".

(5.1)

In (5.1), the subsets of rows and columns, submatrices and vectors are respectively

defined as

m = ml + m2, n = nl + n2,

N = [nij] E ~ml xn1 , U = [Uij] E ~m2 xn1 , V = [Vij] E ~m2xn2,

C' , x', [', u' E ~nl, c", x", [" ,u" E ~n2, b' E ~ml and b" E ~m2.

In general [' and [" may be -CXJ or finite and similarly u' and u", +CXJ or finite. In

many real life problems, [' and [" are usually zero. For finite values of u', u" inequalities

x' < u', x" < u" are turned into the equations x' + s' = u', x" + S" = u", where s', s" > 0

73

and s' E ~nl, s" E ~n2. The vector x' represents the network variables that have at least

one non-zero element in the corresponding column of N. The second constraint set is

referred to as the side constraints and the vector x" defines the non-network variables.

5.3 Specialised Simplex Methods

In the past specialised simplex methods have been developed to process difficult classes

of LP problems. By and large these methods aim to reduce

• storage requirement of the original data and intermediate computed data (trans­

formation matrices),

• computational time for each SSX iteration.

Two main approaches called inverse compactification and mechanised pricing have been

developed by researchers [19]. Inverse compactification schemes involve maintaining the

basis inverse matrix or an operationally sufficient substitute as the basis factors in a

more advantageous form than the explicit one. One of the earliest and the most signif­

icant examples is the product form of the inverse given by Dantzig and Orchard-Hays

[33] which takes advantage of the sparseness of most large matrices arising in practical

applications. Subsequent and much improved schemes involve triangular factorisation,

partitioning or use of a working basis that is more tractable than the original one, [72],

[35].

Mechanised pricing, sometimes called column generation, involves the use of a sub­

sidiary optimisation algorithm instead of direct enumeration to find the best nonbasic

variable to enter the basis when there are many variables. The first contribution was

given by Ford and Fulkerson [41], in which columns were generated by a network flow

algorithm. Since then column generation has been applied to many mathematical pro­

gramming problems. In this section, we review the specialised simplex algorithms which

have been developed to solve structured LP problems using the inverse compactification

techniques.

74

Structured LP problems can be partitioned such that the basis factorisation which

is used in each iterative step of the SSX algorithm can be sped up. In the literature,

some factorisation techniques which take advantage of special structures within the

problem have been developed. These algorithms first partition the constraints of the

LP problem into two classes: those that have the special structure (factored) and those

that do not (explicit). Then the special structure is induced in the basis as well as the

LP tableau. If the dimension of the basis submatrix consisting of rows in the special

structure are allowed to vary (or even fail to be present) as the solution progresses, then

it is called a dynamic row factorisation, otherwise it is called a static row factorisation.

The earliest example of factorisation was given by Dantzig [32] for simple upper bounds.

Dantzig and Van Slyke [31] extended this approach to the GUB structure which is an

example of static row factorisation. The GUB/SSX algorithm is based on the revised

simplex method which uses a working basis of constraints which are not GUB rows.

This basis representation is used for pivoting, pricing, and inversion. A variable in

the basis which corresponds to a G UB row is called a key variable. This algorithm

was known to reduce substantially computational time for problems which have a large

number of GUB rows. In the 1970's, IBM, SCICONIC and other optimisation software

developers had GUB based SSX.

Hartman and Lasdon [68] specialised this GUB approach to the multicommodity ca­

pacitated transhipment problems. They considered this problem as a block diagonal

linear program with coupling rows and described a compact inverse version of the SSX

method. In this case, the structure of the basic pure network columns introduces ad­

ditional structure into the working basis, allowing further simplifications in the basis

representation and update techniques. The only nongraph theoretic or nonadditive op­

erations required are updating of the working basis inverse and multiplication by this

inverse. Hence all the nonunimodular aspects of the problem are condensed into a min­

imal size single matrix. However, they did not implement their procedure. Graves and

McBride [50] subsequently formalised and also generalised this factorisation approach.

75

Schrage [99] extended the succession of SUBs and GUBs by introducing VUB con­

straints. He used a compact or implicit scheme for storing the VUB constraints by

expressing them in terms of the other variables. In this way he was able to solve the LP

as if the special structure constraints did not exist. This permits the basis representa­

tion to be treated in two parts; one a large matrix which changes infrequently and thus

needs occasional update, and the other a small working basis which requires regular

update.

In addition, he applied this idea to GVUB constraints which arise frequently in models

with fixed charges [98]. He demonstrated the manner in which the GVUB structure

can be used to advantage in accelerating the computations within the simplex solution

algorithm. It was claimed that implicit representation of GVUB constraints results in

computational savings in the process of the revised simplex method. Daniel [30] pre­

sented a generalisation of VUB and GUB constraints and pointed out some issues of

computational implementation of implicit representation.

Todd [103] developed a geometric interpretation of factorisation and showed that an

extreme point of the feasible region of an LP problem lies in a face of the polyhedron

of a simple structure. Then he defined directions of motion from the extreme point

that either are in this face or move into a face of dimension one higher. Such direc­

tions form direction matrices which help to check the optimality of the current extreme

point, and if not attained, proceed to an adjacent extreme point with strictly improved

objective function value. Some special cases corresponding to variable and generalised

upper bounds and a network polyhedron where the direction matrices can be obtained

explicitly were examined.

A unifying mathematical framework for dynamic row factorisation was presented by

Brown and Olson [18]. They reported three algorithms which are based on different

LP model row structures: GUB, pure network rows, and generalised network rows.

They reported a distinguishing feature of their dynamic factorisation is that it limits

attention to binding constraints, handling binding factored constraints with great effi-

76

ciency, and working with a relatively small number of binding explicit constraints. They

implemented these algorithms and compared their performance with two well known

commercial solvers OSL and CPLEX. Their computational results show that each of

these algorithms is superior to the traditional solvers. Based on their experience they

claimed that the efficiency of any particular factorised approach is influenced by the

relative number of special constraints and their influence on the algorithm: size and

quality of the special structure determines the influence of any particular factorisation

applied to any particular LP.

Specialised simplex methods have been developed for problems having a special struc­

ture with a single side constraint. These methods exploit the near triangularity of

the basis; in other words the factored structure completely dominates. Glover et al.

[49] reported an implementation of Klingman and Russell design (see [78]) for solv­

ing singly constrained transhipment problems and reported computational results of

the algorithm. Their limited computational results from a set of randomly generated

test problems show that singly constrained transhipment network flow problems can be

solved 25 - 30 times faster than the state-of-the-art LP code (at the time of publication

of their paper) APEX-III. They also developed a single pivot procedure for determining

near optimal integer solutions when the optimal solution to this problem is not integer.

Generalised networks with a side constraint were addressed by Hultz and Klingman

[74] who presented details for simplex priceout, column generation, and basis update.

They also reported an implementation that solves the singularly constrained generalised

network problem. They claimed that their code was between 6 to 28 times faster than

APEX-III for only three randomly generated test problems. For the same problem, a

cyclic method was developed by Mash [89]. It was claimed that this method provides

a more efficient computational scheme than known adaptations of the simplex method

since the codes for the pure network problem can be easily altered to accommodate

the cyclic method. The method produces integral solutions at all iterations (except

possibly the last one).

77

For large LP problems with pure network structures, researchers have developed spe­

cialised simplex methods in which the basis is considered in two parts: one correspond­

ing to a rooted spanning tree defined on the underlying graph, and the other a general

working basis. Efficient graph theoretic labelling and traversal algorithms are applied

for pricing, basis representation and basis update. Klingman and Russell [78] sketched

a factorisation method for solving transportation problems with side constraints. The

method is basically the primal simplex method, specialised to exploit fully the topo­

logical structure embedded in the problem. The steps of updating costs and finding

representations in the simplex procedure reduce to a sequence of simpler operations

that utilise fully the triangularity of the spanning tree.

Chen and Saigal [28] presented a similar approach for solving capacitated network flow

problems with additional linear constraints. While Klingman and Russell did not pro­

vide any computational results for transportation problems with side constraints, Chen

and Saigal presented only four problems which have at most twenty side constraints.

They compared their results with the out-of-kilter procedure and the MPSX solver.

From the limited results, they conjectured that their procedure is roughly twice as fast

as MPSX on constrained capacitated network flow problems.

Barr et al. [4] exploited the network structure in LP problems by applying the pri­

mal simplex algorithm in which the inverse of the working basis is maintained as an L U

factorisation. They implemented these procedure called NETSIDE and compared it

with general in-core LP systems; XMP, MINOS and LISS and a special system MCNF

for multi commodity network flow problems. They tested the performance of their pro­

cedure on a set of randomly generated models and two real life problems. They reported

that NETSIDE is approximately twice as fast as XMP and MINOS.

The presence of very efficient generalised network solvers motivated McBride [91] to

develop a specialised simplex method for solving embedded generalised network prob­

lems with additional side constraints and additional variables. He presented methods for

pricing, column generation, basis representation and basis update. He also described

78

data structures representing LPs with embedded generalised network structures. He

implemented these procedures and called it EMNET. EMNET was tested for a number

of generated problems which had very few side constraints and side variables. For this

class of models EMNET was found to be five times faster than MINOS.

The factorisation approach has been extended to embedded pure network structures

by Glover and Klingman [47]. They introduced a special partitioning procedure for the

LPEN problem and called it the Simplex Special Ordered Network (SON) procedure.

This procedure is based on the steps of the primal simplex algorithm for the general

case of EPN structures (see problem statement PS2 given in section 1.7) with side con­

straints and side variables.

The SON procedure is derived from a theoretical characterisation of the network topol­

ogy of the basis embodied in the master basis tree. The basic variables related to the

network portion are stored in a specially constructed graph called the master basis tree.

The rules characterising the conditions for adding and deleting arcs, and specifying the

appropriate restructuring of the master basis tree are summarised using fundamental

exchange rules. The exchange rules and accelerated labelling algorithms for modifying

the master basis tree in an efficient manner to replace arithmetic operations are the

main features of this procedure. The operations normally performed by using the full

basis inverse was replaced by special labelling and graph traversal techniques [5] to the

master basis tree and its interface with the working basis.

They also showed that the topology of the master basis tree and exchange rules to

reconstruct the master basis can be characterised by seven mutually exclusive and col­

lectively exhaustive basis exchange cases in [48]. The organisation of the simplex SON

method maintains the network portion of the basis as large as possible at each iteration

of the simplex algorithm, thereby enabling these labelling and list procedures to operate

on a maximally dimensioned part of the basis.

79

5.4 Decomposition Algorithms

LP problems of practical interest have the property that they may be described, III

part, as composed of separate LP models tied together by a number of constraints

considerably smaller than the total number imposed on the original problem. From a

computational point of view, decomposition is a well established approach for solving

large scale LP problems and especially those that contain constraints of special struc­

tures.

The decomposition techniques first manipulate the given LP problem and then uses

one of solution procedures. Problem manipulation is a device for restating the given

problem in an alternative form that is apt to be more amenable to solution. This leads

to a residual problem which is called the master problem. On the other hand, solution

strategies reduce an optimisation problem to a related sequence of simpler optimisation

problems. This leads to subproblems amenable to solution by specialised algorithms.

The key problem manipulations are dualisation, projection, inner linearisation and

outer linearisation while the key solution strategies are feasible directions, piecewise,

restriction and relaxation. The definitions of these terms are expressed in more detail

by Geoffrion in [45] and [46]. Many existing computational methods for large scale

programming can be formulated as particular patterns of problem manipulations and

solution strategies applied to a particular structure.

The first decomposition method was developed by Dantzig and Wolfe [34] to process

LP problems with block angular structures. The block angular structure involves a set

of disjoint block diagonal submatrices as well as a set of coupling constraints. If the

adjacent block structure of the matrix is joined by a few columns from the beginning

of the first block and the end columns of the neighbouring block, then the matrix has

a staircase structure. These problems are often called multi-stage problems since each

major block corresponds to a stage. If the number of blocks are limited to only two,

then such a problem is called a two-stage problem.

80

It is well known that Benders decomposition is suited for two-stage (mixed) integer pro­

gramming problems [11] and stochastic programming with two-stage and multi-stage

problems [75]. In Benders decomposition, the problem defined by the binding con­

straints is called the master problem and the problems defined by the side constraints

are called subproblems. The strategy of the decomposition procedure is to operate on

two separate problems. Information between the two problems is passed from one prob­

lem to another until a point is reached where the solution to the original problem is

achieved. These steps are interpreted as projection followed by outer linearisation and

relaxation.

The other well known decomposition method is Lagrangean relaxation which can be

applied to any problem and does not presuppose any special structure. A large scale

mathematical programming problem is decomposed into simpler problems where con­

straints are partitioned into two categories. Constraints in the first category are retained

as binding constraints and constraints in the second category are removed (relaxed),

grouped together as side constraints and penalised for the constraint violation. Relax­

ation of these side constraints makes the corresponding sub-problem easier to solve than

the original problem and this approach has become well known as Lagrangean relax­

ation. This procedure has been applied to many linear, non-linear, integer and mixed

integer problems. We observe that the Lagrangean relaxation procedure can also be

classified as dualising the side constraints, then relaxing the side constraints and solving

a piecewise linear or non-linear Lagrangean dual problem by finding feasible directions.

The Lagrangean relaxation procedure has been used as an alternative approach to

exploit EPN structures in LP problems. Venkataraman et al. [106] introduced a surro­

gate constraint and a Lagrangean approach to solve constrained network problems. The

surrogate constraint approach is used to generate a singly constrained network problem

which is solved using the algorithm of Glover et al. [49]. They compared their results

with a subgradient optimisation approach.

81

Belling-Seib et al. [10] considered three alternative solution procedures for network

flow problems with one side constraint. These methods are a specialised primal simplex

algorithm, a straightforward dual method, and Lagrangean relaxation. Their compu­

tational results indicated that the specialised primal simplex algorithm is superior to

other approaches for all but very small problems.

Bryson [24, 25] applied a parametric programming method to solve the Lagrangean

dual problem obtained by dualising the single and multiple side constraints. Shetty

[102] applied the Lagrangean relaxation method for a network flow problem with vari­

able upper bounds. Recently, Hsu and Fourer [73] have also investigated this approach

for solving the LPEN problem. In our investigation, we have chosen Lagrangean re­

laxation and Benders decomposition as primary steps for the solution of the LPEN

problem. The two decomposition techniques are discussed in more detail in chapter 6.

5.5 An Advanced Basis Method For Solving LPEN

Problems

The LPEN problem Po can be solved by any well known LP solution algorithm. While

this is an obvious approach, our goal is to exploit the EPN structure in the problem

thereby finding a computationally superior solution method. Simple LP solutions use

a sequence of factored LP basis matrices represented in a sparse form. Advanced ba­

sis procedures [63], [83] are known to speed up the SSX algorithm. In our approach,

we have taken the concept of advanced basis into consideration. The key idea is that

we apply a decomposition method to obtain a good (near optimum and near feasible)

solution so that it can be used as a "hot start" for a general SSX solver which then

processes the original LP problem to optimality. We first apply Lagrangean relaxation

since this procedure is a commonly established procedure to exploit the special struc­

tures. As an alternative decomposition procedure, we introduce Benders decomposition

of the LPEN problem.

82

Our approach based on an advanced basis is described here in a summary form. Af­

ter applying preprocessing and scaling procedures, we extract the embedded network

structure in the coefficient matrix of the LP problem by applying one of the network

extraction algorithms explained in the first part of the thesis. Then Lagrangean re­

laxation or Benders decomposition is applied to the LPEN problem. The Lagrangean

relaxation procedure creates a pure network flow model by adding the non-network

constraints into the objective function with Lagrangean penalties. A series of minimum

cost network flow problems are then solved iteratively by assigning trial values to the

Lagrangean multipliers at each iteration. The Benders procedure decomposes the LP

problem into a master and a subproblem. At each iteration, a cut obtained by solving

the subproblem is introduced into the master problem and then solved again iteratively.

From the solution of the last decomposed problem, an advanced basis is created; we

call this a network based advanced SSX basis (NSSX). The NSSX basis constructed

in this way is introduced as a starting basis to our experimental system FortMP [37]

which is a general simplex solver. The choice of the pivotal algorithms (primal, dual or

primal-dual) play an important role since one may be faster than the other in the final

stage of the solution of the given LPEN problem.

Hsu and Fourer [73] suggested the dual-primal finishing strategy which avoids infea­

sibility thereby eliminating the need for Phase 1 in the two-phase simplex method.

They claimed that this strategy is superior to the other simplex pivotal algorithms in

terms of the number of iterations and CPU time. In our computational work, we have

investigated three pivotal algorithms: primal, primal-dual and dual as SSX completion

strategies. We can now sketch the overall algorithmic framework of our approach which

is set out below. The schematic flow of this algorithm in block diagrammatic form is

also depicted in Figure 5.5.1.

83

Solution Algorithm for the LPEN Problem

Step 1 Preprocessing and scaling

Apply a preprocessing procedure to reduce the size of the problem and a scaling

procedure to increase the number of essential rows and columns that have only

+1, -1 non-zero elements.

Step 2 Network extraction

Detect an EPN structure out of the set of essential rows and columns. Decom­

pose the problem into network and non-network structures as shown in (5.1).

Step 3 Solve the decomposition problem and create an advanced basis

Either

Or

Apply Lagrangean relaxation followed by the multiplier adjustment

procedure (see section 6.2) and construct a triangular crash basis.

Apply Benders decomposition (see section 6.4) and construct a starting basis

by merging bases extracted from the solution of the master problem and

the subproblem.

Step 4 Complete the SSX solution

Process the given LPEN problem applying the primal, dual or primal-dual SSX

algorithm using the advanced basis obtained above.

Step 5 Terminate the algorithm

One of the key advantages of the approach described above is that it develops a way to

exploit the EPN structure of an LP by using a standard network solver and standard

LP solvers. Therefore, the main computational work including the linear algebra and

the basis factorisation are taken care of by standard solvers. By contrast, the work

described by other researchers in section 5.2 involves specialised SSX algorithms where

all of the linear algebra is redeveloped.

84

Network
Extraction

Lagrangean
Relaxation

Network
Solver

LP
Solver

Benders

Advanced
NSSX
Basis

Primal
SSX

.AJgorithm

Primal-Dual
SSX

.AJgorithm

Dual
SSX

AJgorithm

Figure 5.5.1: Schematic diagram of LPEN solution method using advanced NSSX

basis.

85

From a computational point of view, this has some drawbacks since practitioners will

almost certainly use commercial optimisation packages rather than developing code

themselves. Software developers of optimisation packages such as CPLEX, IBM, OSL

and FortMP are not interested in developing a specialised code when they have already

developed and maintain a primal simplex, dual simplex and network simplex code.

Another reason why the methods described in section 5.2 have not been widely used

is because those methods fail to take advantage of improvements in LP technology.

While they may have compared well with LP solvers of late 1970's and early 1980's, see

for example methods described in [4], [28], [91], they do not hold up well today since

the state-of-the-art in mathematical programming has improved tremendously during

the last decade. On the other hand, our approach works with standard solvers so this

approach as time defines improved performance as the standard solvers get faster.

86

Chapter 6

Lagrangean Relaxation and Benders

Decomposition

6.1 Introduction

Computing a 'good' feasible solution for a given minimisation or maximisation prob­

lem provides a lower and/or an upper bound to the optimum solution of the original

problem. Lagrangean relaxation and Benders decomposition are two well established

techniques for calculating such solutions. In this chapter, we first consider the theoret­

ical properties of Lagrangean relaxation and Benders decomposition. We then discuss

how these methods are applied to solve the LPEN problem given in (5.1).

The rest of this chapter is organised as follows. In section 6.2, we apply Lagrangean re­

laxation to the LPEN problem and introduce a multiplier adjustment algorithm to solve

the Lagrangean dual problem. In section 6.3, we first aggregate the side constraints

of the LPEN problem to reduce the size of the original problem and then apply the

Lagrangean relaxation procedure. Section 6.4 focuses on an alternative decomposition

procedure namely Benders decomposition.

87

6.2 Lagrangean Relaxation

6.2.1 Basic Methodology

One of the most computationally useful ideas of the 1970's is the observation that many

hard problems can be viewed as easy problems complicated by a relatively small set of

side constraints. A large scale mathematical programming problem is decomposed into

simpler problems where constraints are partitioned into two categories. Constraints in

the first category are retained as binding constraints and those in the second category

are grouped together as side constraints. The latter constraints are loosely termed as

complicating constraints as they hinder the solution of an otherwise easy problem.

Relaxation of these side constraints makes the corresponding sub-problem easier to solve

than the original problem. In the Lagrangean relaxation method, the side constraints

are attached by multipliers (dualising side constraints), relaxed and then introduced

into the objective function. In other words, the complicating constraints are replaced

by penalty terms in the objective function. These penalty terms are computed as the

amount of violations of the side constraints multiplied by their dual variables.

In the last decade, Lagrangean relaxation has grown from a successful theoretical con­

cept to a tool that has increasingly been used in large scale mathematical programming

applications. There are several surveys on Lagrangean relaxation (for example, see [38],

[44], [101]) as well as extensive use of Lagrangean relaxation in practical applications

of linear, non-linear, dynamic and integer programming (for example, see [24], [39],

[100], [52], [53]). In the domain of combinatorial optimisation, the Lagrangean relax­

ation method was first introduced by Held and Karp [69]. They applied this technique

to the travelling salesman problem. Since then, this method has been widely used to

solve other classes of constrained optimisation problems [9], [38], [70], [71]. In discrete

optimisation, Lagrangean decomposition is preferred to the LP relaxation to provide

a lower bound for a minimisation problem and is interfaced with a branch and bound

procedure [2].

88

According to Fisher [40], there are three major questions in designing a Lagrangean

based system: 1) which constraints should be relaxed, 2) how to compute good mul­

tipliers, 3) how to deduce a good feasible solution to the original problem, given a

solution to the relaxed problem. Roughly speaking, the answer to the first question is

that the relaxation problem must be significantly easier than the original problem. For

the second question, there is a choice to use either a general purpose procedure called

the subgradient method or a "smarter" method called multiplier adjustment or vari­

ous versions of the simplex method implemented using column generation techniques.

Similarly, the answer to the third question tends to be problem specific.

6.2.2 A Lagrangean Relaxation of the LPEN Problem

Consider the problem Po in (5.1). We group and relax the non-network (side) constraints

U x' + V x" = b"; weight them using the Lagrangean multipliers ,\ and introduce in the

objective function. The problem is then restated as the Lagrangean relaxation

PL ()..):

Minimise ZL()..) = ,\Tb" + (CIT - ,\TU)x' + (c"T - ,\TV)x"

subject to

Nx' = b'
t' < x' < u'

t" < x" < u"

,\ E ~m2 and unrestricted.

(6.1)

Clearly, the Lagrangean multipliers ,\ penalise the violation of the corresponding side

constraints introduced in the objective function. It is easily seen that the relaxed prob­

lem PL ()..) is a pure network flow problem in x', the feasibility of x" can be trivially

satisfied, whereas Po is a general LP problem. This network flow problem is solved

efficiently by special algorithms such as the network simplex algorithm [77], [87].

The Lagrangean function ZL()..) is convex, piecewise-linear and continuous; these im­

portant structural properties make the Lagrangean relaxation problem easier to solve.

However, the Lagrangean function is not everywhere differentiable. It is differentiable

89

whenever the optimal solution of the Lagrangean subproblem is unique. It is, however,

subdifferentiable everywhere in the convex hull of the problem. Let (7r ' ,... 1] ,... 1]) ,"',VI, I,v2, 2

be dual variables corresponding to constraints in Po. The dual of the original LP prob-

lem Po is then formalised as

Do:

Maximise b,T 7r + b"T A + l,T (J"1 + l"T (J"2 - u,T 1]1 - u"T 1]2

subject to

NT 7r + UTA + (J"1 - 1]1 = e'

VT A + (J"2 - 1]2 = e"

(J"I, (J"2, 1]1, 1]2 > 0

7r, A unrestricted.

(6.2)

The dual problem of PL ()..) is the same as problem Do with the different right hand side

values. The Lagrangean dual problem PD with respect to the side constraints is to find

the set of Lagrangean multipliers A* that maximise the Lagrangean function ZL(>.). The

objective function of PD is given by max, min process and shown as follows;
).. (x',x")

PD:

Z* * = max{ min (e' - AT S)x' + (e" - ATT)x" + Ab"}
L()")).. (x',x")

where the Lagrangean multipliers are computed by solving the LP problem

ZL()"*) = Maximise w

subject to

w < j. + ATgj J' - 1 ... K
- J ,-"

(6.3)

(6.4)

In (6.4), fj is the objective value of the original problem and gj is the subgradient of

the jth basic solution

(6.5)

and K denotes the number of all basic solutions of the Lagrangean problem.

We may consider the Lagrangean problem PL (>.) and its relationship with the origi­

nal problem Po which is described with the following properties.

90

Property 1:

For any vector A of Lagrangean multipliers, the optimum value z* L(>.) of the Lagrangean

function is a lower bound on the optimal objective function value z~ of the original

primal optimisation problem Po, that is, zL(>') < z~ for all A.

Property 2:

There exists a set of Lagrangean multipliers A* for which the objective value of the

Lagrangean relaxation zL(>'*) attains the optimal value of the original problem Po, that

. * * IS, Z L(>.*) = Zo'

Property 3:

For some choice of the Lagrangean multiplier vector A, if the solution of the Lagrangean

relaxation (x', x") is feasible in the optimisation problem and satisfies the complemen­

tary slackness conditions involving non-negative primal {x', x", S', Sll}, and non-negative

dual {0"1' 0"2, 'f/t, 'f/2} variables with the property x' 0"1 = x" 0"2 = S''f/l = s" 0"2 = 0, then

(x', x") is an optimal solution to Po.

It is worthwhile to note that when applying Lagrangean relaxation to linear programs,

the first property has long been known, but Geoffrion [44] observed that the second

property does not hold for integer programs in general.

6.2.3 Determination of the Lagrangean Multipliers

One of the key issues in the use of Lagrangean relaxation is to design a procedure to

optimise the Lagrangean dual problem because the Lagrangean dual often requires a

specialised algorithm that must be tailored for each application model. In general, the

basic approaches to solve the problem PD in (6.4) can be classified into three categories;

• subgradient optimisation,

• various verSIOns of the simplex method implemented using column generation

techniques,

91

• multiplier adjustment procedures.

In this section, we give general basic issues of these methods and present a multiplier

adjustment approach to solve the Lagrangean dual problem of the LPEN problem.

1- Subgradient Optimisation

Subgradient optimisation is a traditional approach used to solve the Lagrangean dual

problem. The method is easy to program and has achieved success on many practical

problems. Its computational performance and theoretical convergence properties are

discussed in Held, Wolfe and Crowder [71] and in several references on non-differentiable

optimisation. It is an adaptation of the gradient method in which subgradient is used

instead of gradient. The method starts from an initial set of multipliers, AO. At iteration

k, a sequence of multipliers {A k} is calculated by the rule

(6.6)

where gk is a subgradient direction of the Lagrangean dual problem and tk is the step

size which can be calculated commonly in practice as

The step size depends upon the gap between the current lower bound ZLB and the up-
m

per bound ZUB and the user defined parameter, generally 0 < 7r < 2, with 'L,g; being
i=l

a scaling factor. In subgradient optimisation, bounds do not monotonically improve

and the method is terminated upon reaching an arbitrary iteration limit.

11- A Simplex Based Algorithm

Another class of algorithms for solving the Lagrangean dual problem is based on apply­

ing a variant of the simplex method to the original problem and generating an appro­

priate entering variable at each iteration by solving a Lagrangean relaxation problem

with the current value of simplex multipliers. Primal simplex with column generation

has been used for this class of solution procedures. However, this approach is known

92

to converge very slowly and does not produce monotonically increasing lower bounds

[38]. Therefore, researchers have developed column generation implementations of dual

forms of the simplex method, especially the dual and primal-dual simplex method. The

primal-dual simplex method can also be modified to make it the method of steepest

ascent for the Lagrangean dual problem.

Marsten et al. [88] had applied the modification of these simplex procedures which

they called "boxstep". The boxstep proceeds as follows. It begins with initialisation

of AO and a sequence {Ak} is generated. In order to obtain Ak+l from Ak, the problem

given in (6.4) is solved with the additional requirement that IAi - Afl < 8 for some fixed

positive 8. Assume that A' is the optimal solution of this problem. If IA~ - Af I < 8 for

all i, then A' is optimal in the Lagrangean dual problem. Otherwise, set

where tk is a scalar. The same procedure is carried out until optimality is reached.

111- A Multiplier Adjustment Algorithm

A multiplier adjustment method is a specialised procedure that solves a Lagrangean

dual problem by exploiting the structure of a particular model. It is also known as the

"Lagrangean dual ascent" as it can be viewed as an ascent procedure. This method is

often preferred to subgradient optimisation in solving a Lagrangean dual problem since

an ascent procedure guaranties monotone bound improvement. Fisher et al. [39] and

Guignard et al. [53] gave an application of this method to an assignment problem and

an allocation problem. Guignard et al. [52] and Beasley [9] discussed the theoretical

issues of this method.

Developing a multiplier adjustment procedure is considered to be an art; different prob­

lems require different multiplier adjustment algorithms unlike subgradient optimisation

which is capable of being applied directly to many problems. It is an iterative method

and starts with an initialised set of Lagrangean multipliers. The initialisation of mul­

tipliers is dependent on the underlying model structure and affects the quality of the

93

final bound. At each iteration, only a small subset of multipliers is examined and one or

more multipliers of violated constraints are adjusted. The calculation of the multiplier

adjustment amount is also problem specific. At iteration k of the multiplier adjustment

method, a set of ascent directions is determined such that the effect on the optimum

value of the Lagrangean dual problem by a movement along a direction is evaluated.

The common improvement on multipliers is made by the rule

(6.7)

where gk is an ascent direction and tk is the step size. The step size can be chosen either

to maximise ZL().k+tk9k) or to get to the first point at which the directional derivative

changes. The ascent direction involves changes to multipliers corresponding to violated

(greater and equal) constraints which is made generally with the following rules:

• if g/ < 0, then reduce the multiplier A/

• if g/ = 0, then do not change the multiplier A/

• if g/ > 0, then increase the multiplier A/.

The determination of the set of the directions and order in which directions are scanned

are problem specific and affect the final bound. If the set of ascent direct~ons is empty,

in other words all constraints are satisfied, or the set has no improving direction, the

procedure is terminated even though an optimal dual solution is not found.

6.2.4 Solving Lagrangean Relaxation of the LPEN Problem

Consider the problem PL ().) in (6.1). It actually consists of two subproblems; network

and non-network. Thus, solving the kth Lagrangean relaxation problem involves a net­

work part which provides the solution for network variables Xf and a trivial non-network

subproblem which finds solution for non-network variables Xff. The non-network sub­

problem is solved simply by setting the side variables to bounds in their feasibility

ranges according to their reduced costs as

(X/f)k = (l/f)k if c/f - (Ak)TVj > 0,

(x/,)k = (u/,)k if c/, - (Ak)TVj < °
94

(6.8)

where Vi denotes the jth column of the matrix V. The network subproblem can be

solved by the primal or dual network simplex algorithm. For our computational work,

we use MINET a minimum cost network flow solver developed by Maros [82], [86].

As described in the previous section, there exists three types of techniques to solve

the Lagrangean dual problem. The subgradient method, however, fails for the La­

grangean dual of the LPEN problem because ZL('\) cannot be guaranteed to be finite for

all A. Another. reason is that the subgradient algorithm does not guarantee that there

exists the monotone increasing lower bound; it might be worse than the previous lower

bound at the process of the algorithm.

As noted by Fisher [38], simplex based methods are generally harder to program and

have not performed quite so well computationally as the subgradient method. However,

recently Hsu and Fourer [73] described a method for solving the Lagrangean dual prob­

lem using the trust region constraints. We consider that this is similar to the Boxstep

method. In our procedure, we solve PL(,\) only by a multiplier adjustment approach

which finds a good (near optimal and near feasible) solution for the original LP problem

as it progressively improves the lower bound.

The multiplier adjustment heuristic solves iteratively a sequence of network linear pro­

grams with different values of A. Even though the solution (x', x")k is an optimal

solution for the Lagrangean relaxation problem at the kth iteration, it is not guaran­

teed that it is a feasible solution of the original LP problem. To improve the current

lower bound, the algorithm finds another direction and updates the multipliers. The

procedure is stated below; for more detail the reader is referred to [57].

The Multiplier Adjustment Algorithm

Step 1 Initialisation

Let k = 0, assign the Lagrangean multipliers an initial value, say AD = O.

Step 2 Solve subproblems

Solve the network subproblem and find the network flows (x')k. Apply

95

rule (6.8) to bound restrictions on the non-network variables to determine

their solution values. If there does not exist a feasible solution for the

network subproblem, then terminate the algorithm and conclude that the

original LP problem has no feasible solution.

Step 3 Compute gradients

Calculate gradients for each side constraint. Check gradients; if all side

constraints are satisfied, that is g/ = 0, then stop the algorithm and conclude

that a feasible solution to the original problem has been found.

Step 4 Compute the adjustment

Compute~..\ = min{c'k - (..\k)TUj, c"k _ (..\k)TVj}.

Step 5 Update the Lagrangean multipliers

Choose a set of the violated constraints. Update the Lagrangean multipliers,

..\i k+1 of the violated constraints as ..\/+1 = ..\/ + I~..\I.

Step 6 Update the problem

Let k = k + 1, construct another minimum cost network flow problem

with new multipliers and go to step 2.

It is worthwhile to mention here that, for k = 0, the problem represents the net­

work components of the embedded network LP problem since the side constraints are

all ignored (..\ = 0). Hence, the objective value of the network subproblem and the

objective value of the LP problem Po are the same. Hsu and Fourer [73] called this the

zero-multiplier method.

6.3 Aggregation of Side Constraints

In mathematical programming, aggregation techniques consist of a set of methods for

solving optimisation problems by combining data, using an auxiliary model which is re­

duced in size and complexity relative to the original model. They have been developed

to help form the most appropriate reduced models that provide good approximations

96

to the original problem [94]. In order to perform a row or a column aggregation, a

set of constraints or variables are replaced with a single row or a single column. If

a set of rows is multiplied by different weights and aggregated to a single constraint,

this is known as a weighted aggregation. If a row is selected such that it dominates a

set of rows, the choice of this row is called an aggregation by dominance. The same

terminology applies to columns.

In this section, we consider another approach which quickly finds a near optimum

solution of the LPEN problem by aggregating the side constraints. Instead of solving

the problem with the original side constraints, the Lagrangean relaxation problem with

respect to the aggregated side constraints is used to find a starting basis. The weight

vector consisting of only ones is used to aggregate the non-network constraints. We

apply a basic heuristic to aggregate side constraints in the given embedded network

problem in (5.1). Each side constraint i is considered to group according to the type

of variables. Variables which appear in the given side constraint i are either network

variables or non-network variables and can be classified into two subsets as

Ii(N) = {jl aij 1= 0, j is a network variable} and

Ii(N) = {jl aij 1= 0, j is a non-network variable}.

The side constraints are aggregated into three groups using the following criteria:

• the group of rows which have only network columns, that is Ii(N) = 0. Let this

be defined as a subset Rl of the row indices i,

• the group of rows which have only non-network columns, that is Ii(N) = 0. Let

this be defined as a subset R2 of the row indices i,

• the group of rows which have both network and non-network columns, that IS

Ii(N) 1= 0 and h(N) 1= 0. Let this be defined as a subset R3 of row indices i.

The aggregated embedded LP problem becomes a minimum cost network flow problem

with only three side constraints and is set out below.

97

APo :

Minimize Zo = c,T x' + c"T x"

subject to

Nx' = b' ,
and the following aggregated constraints

R1 :

L: (L: Sij) x / = L: b/'
iER1 jE1i(N) iER1

In vector notation, this can be written as SIX' = (31, where

SI = [L: SiI,' .. , L: sinl] and (31 = L: b/'.
iER1 iERl iER1

L: (L: tij)x/' = L: b/'
iER2 jE1iCN) iER2

In vector notation, this can be written as T2x" = (32, where

T2 = [L: til, ... , L: t in2] and f32 = L: b/'.
iER2 iER2 iER2

L: [L: (SijX/ + tijX/')] = L: b/'
iER 3 jE1i(N)u1i(N) iER3

In vector notation, this can be written as S3X' + T3X" = (33, where

S3 = [L: SiI,' .. , L: sinl], T3 = [L: til,' .. , L: t in2] and (33 = L: b/'.
iER3 iER3 iER3 iER3 iER3

l' < x' < u' - - ,

1" < x" < u".

The multiplier adjustment procedure explained in the previous section can now be ap­

plied to solve the following Lagrangean relaxation of the aggregated embedded network

flow problem in which there are only three multipliers to be adjusted.

98

Minimise ZL('x) =)q(31 +)..2(32 +)..3(33 + c,T X' + C"
T

x" -)..1 U1x' -)..2 V; x" -)..3(U3X' + V3X")

subject to

Nx' = b'

[' < x' < u'

[" < x" < u"

6.4 Benders Decomposition

This decomposition was introduced by Benders [11] to solve mixed integer programming

problems. Since then, it has been applied to many large scale problems in mathematical

programming, especially, for solving two stage as well as multistage stochastic program­

ming problems [75]. The embedded network flow problem may be considered as a two

stage problem in which the network part is the first stage and the non-network part

is the second stage. This has motivated us to use Benders decomposition to create

an advanced starting basis for solving the original LPEN problem. In this section, we

describe our algorithm based on the Benders decomposition procedure.

6.4.1 Theoretical Framework

We consider the LPEN problem Po given in (5.1) and split the original problem into

a master P master and a subproblem Psub . The latter is used to generate cuts as in

the Benders decomposition method. Initially, the P master problem is a pure network

problem stated as

Pmaster:

M
. . . ,T ,
llllmlse ZM = c x

subject to

Nx' = b'

[' < x' < u'

99

(6.10)

(6.9)

Let x'* denote an optimal solution of P master, then the subproblem Psub is defined as

Psub:

Minimise z s = e"T x"

subject to

V x" = b" - U x'*

[" < x" < u"

(6.11)

The corresponding dual linear program Dsub of the subproblem Psub is stated using dual

variables 1rT = (1rt, 1r2, 1r3)T as

Dsub:

Maximise 1rl T (b" - U x'*) - 1r2 T u" + 1r3T ["

subject to

1rl TV - 1r2T + 1r3T < e"

1rl free

1r2,1r3 > 0

The feasibility condition of the problem Dsub is that

(6.12)

The assumption that Po is feasible requires the feasibility of Psub for all values of x'

satisfying [' < x' < u' and N x' = b'. In addition, from duality theory, problem Dsub is

finite if and only if

(6.13)

This constraint can be appended to the first master problem to ensure that the solu­

tion to the new master problem leads to a feasible solution of the original problem; this

constraint is called a feasibility cut.

By considering an upper bound on the objective function of Dsub, the smallest value of

this upper bound is denoted by () and used to formulate the master problem as follows.

100

Minimise ZM = c,T x' + ()

subject to

Nx' = b'

() - (1Tl*)T(bll
- Ux') + (1T2*)Tu" - (1T3*)T[" > 0

(1Tl*)T(b" - Ux') - (1T2*)Tu" + (1T3*)T[" < 0

[' < x' < u'

(): free

(6.14)

where 1T* = {1Tl*,1T2*, 1T3*} is the optimal solution of Daub. In (6.14), the constraint

(6.15)

is called an optimality cut which ensures that the subproblem is solved to optimality.

At each iteration of the decomposition procedure, either an optimality cut (6.15) or a

feasibility cut (6.13) is added to the master problem; if primal infeasibility (dual un­

boundness) is found for the subproblem, then the feasibility cut is added. If the primal

problem is feasible (dual bounded), then the optimality cut is then appended to the

master problem. Then the master problem which is a network flow problem with side

constraints is solved.

Each optimal solution of the master problem (x'*, ()*) is suboptimal and gives a lower

bound on the objective value of the LPEN problem, that is LB = c,T x'* +()* < z~. When

the master and subproblem are both feasible, the solution (x'*, x"*) is a feasible solution

£ h () d b d h . UB ,T,* IIT,,* > * or t e problem 5.1 an creates an upper oun , t at IS = C X + c x _ Zo'

At each pass of the decomposition, the lower bound is updated, at the kth pass the

lower bound is calculated as

(6.16)

Initially, the upper bound is set to infinity. If the subproblem at iteration k is solved

to optimality, then a new upper bound may be found by the relation

(6.17)

101

When the relative gap satisfies the following property, then the problem is considered

to have been solved with sufficient accuracy [75],

UBk - LBk
ILBkl + 1 <TOL (6.18)

and the algorithm is terminated. We use TOL = 10-6 in our computational experi­

ments.

6.4.2 Benders Decomposition For the LPEN Problem

It is well known that Benders decomposition converges to an optimal solution in a finite

number of iterations. Instead of solving the entire embedded network flow problem with

Benders decomposition, our aim is to take advantage of a good intermediate solution

obtained by the decomposition algorithm and create an advanced starting point. There­

fore, we preset the maximum number of iterations MAXP and use it as a termination

criteria of Benders decomposition. Our procedure is set out below.

Benders Decomposition For the LPEN Problem

Step 1 Construct a master and a subproblem

Decompose the LPEN problem into a master and a subproblem. Initialise the

maximum pass number, MAXP.

Repeat for k = 0, ... , MAXP

{ Step 2 Solve the master problem

Solve the master problem by an SSX solver. (When k = 0, use a network

solver.) If the solution is infeasible, then conclude that the entire LP

problem is infeasible and go to step 7.

Step 3 Construct a new subproblem and solve

By fixing the solution x'* of the master problem and revising the right

hand side, construct Psub and then solve this subproblem by the Primal

SSX algorithm.

102

Step 4 Obtain the lower bound

Calculate the lower bound using relation (6.16).

Step 5 Create a cut

If an optimal solution is found for the subproblem, then

calculate the upper bound using relation (6.17),

check the optimality conditions shown in (6.18).

If the optimality condition is satisfied, then

go to step 7.

Else

create an optimality cut (6.15).

Endif

Elseif the subproblem does not have a feasible solution, then

create a feasibility cut (6.13).

Endif

Step 6 Update the problem

Add this cut to the master problem.}

Step 7 Terminate the algorithm

103

Chapter 7

Solving an LP with an Embedded

Network Structure: Advanced Basis

7.1 Introduction

The simplex method requires a starting point which is a basic solution. The calculation

of an initial basis is of great importance as it determines to a large extent the amount

of computation that is required to solve the problem to optimality. The traditional way

is to use a unit starting basis which consists of all the logical (including artificial) vari­

ables. For the solution of large scale LP models, the performance of the revised sparse

simplex method or its variants can be considerably enhanced if an advanced basis is in­

troduced instead of using the traditional all-logical initial basis. In general, procedures

to create an advanced basis are designed to construct the initial basis computation­

ally in an effective way. Many LP systems provide some forms of crash procedures.

The most well established of these procedures constructs a triangular basis using some

heuristics; for example, see Bixby [12], Maros and Mitra [83].

There has been relatively little attention paid to this computational aspect of the sim­

plex method compared to other aspects such as reinversion, Phase-I procedures and

pricing. In this chapter, we introduce two procedures to create an advanced basis for a

general LP solver. The solution of a network flow problem after applying Lagrangean

104

relaxation or iterated solutions of the master and subproblem in Benders decomposition

is used to compute a good (near optimal and near feasible) solution for the given LPEN

problem. Active variables identified in this way are then used to create an advanced

basis.

The rest of this chapter is organised in the following way. In section 7.2, we first

briefly describe how to create the all-logical initial basis and review some well known

methods of obtaining an advanced starting point reported in the literature and then

give the basic description of a lower triangular symbolic crash procedure. In section 7.3

and section 7.4, we describe two procedures for computing an advanced basis by ap­

plying Lagrangean relaxation and Benders decomposition, respectively. Computational

results are presented in section 7.5 followed by a discussion of the results in section 7.6.

7.2 Unit Starting Basis and Crash Procedures

Consider the LP problem in the standard form given in (1.5). An initial basis for the

LP problem is always obtained by augmenting the constraint matrix A by adding the

artificial and slack variables so that the augmented matrix contains an identity matrix.

This is the traditional method of obtaining a starting basis and leads to well known

all-logical (unit) basis. The given LP problem may be reexpressed as

subject to

[A Il[:a]=b
x > 0, Xa = 0

The vector Xa contains the artificial variables that must be all zero and Ca = O. These

variables are known as logical variables. The variables x are called structural (or natural)

variables. A basis B is then immediately created out of the columns of [A, I] which

is made up of the logical variables as B = I. The objective at this stage is to drive

artificial variables to zero (make as many as possible non-basic) in order to obtain a

105

feasible solution to the original problem. This is known as the Ph I d h' h ase proce ure w IC

has two outcomes; either a feasible solution is found or it is established that there is no

feasible solution to the given constraints. If a feasible solution is obtained after Phase

I, then the initial basic feasible solution is found. For the above system, this stage can

be formulated as

Minimise c7 x + c~ Xa + Xo

subject to

B-IAx + B-l]xa = B-l b = f3 > 0

x > 0, Xa = 0

where c and ca are the updated objective coefficients and Xo is the current objective

value. B-1 is the inverse basis and usually represented in a factored form; product and

elimination form of the inverse. Thus, computing the factors without going through a

series of pivots and corresponding set of updates sequentially can be interpreted as a

block-pivot operation.

Since the traditional procedure starts with a unit basis that does not have any structural

variables, it has been shown to be computationally unattractive, particularly for large

scale problems. However, it has long been recognised that a starting basis which con­

tains some structural variables needs fewer iterations and less time to find an optimal

solution compared to the all-logical basis (see [84]). Such a basis is called an advanced

basis and the procedure by which it is computed is known as a crash procedure. In other

words, crash procedures are methods of creating a starting basis which contains more

structural variables. All crash procedures aim to find block pivots and carry out the

corresponding factorisation or reinversion. Alternative heuristic procedures for creating

advanced starting bases have been described in the literature. These crash procedures

can be classified into two main categories, namely triangular and block triangular.

Triangular Crash

All triangular crash procedures have a common strategy which is to replace as many

logicals and artificials in the logical/artificial basis with the structural variables in such

106

a way that the resulting basis matrix has a triangular form with a zero free diagonal. If

the matrix found by the triangular crash procedures does not satisfy the full row rank

property, then it is usually augmented by logical variables as necessary to form a non­

singular triangular matrix that can be used as a starting basis for the simplex algorithm.

The triangularity of this basis matrix ensures that a factored inverse representation of

the basis with a minimum number of non-zeros can be trivially created. Two types

of triangular bases can be extracted out of the LP constraint matrix. The first one is

the lower triangular basis in which the non-zeros are located in and below the main

diagonal. The other one is the upper triangular basis in which non-zeros are located

in and above the main diagonal. If a crash procedure does not take into account the

actual numerical values of coefficients but it considers the location of non-zeros then ,
it is called a symbolic crash. If the numerical values are used, then this is a numerical

crash procedure.

The triangular crash procedure was first introduced by Carstens in [26]. He defined

the improvement of the objective value as GAIN and introduced some heuristics for

choosing the possible pivots which lead to improvement in GAIN. It is called 'GAIN

switch on'. The vector selected for entering the basis is processed serially and the one

which has a reduced cost coefficient which will cause a gain in the functional value and

in feasibility is taken. He also introduced another strategy called 'GAIN switch off'

which ignores the objective function, but considers sparsity of the coefficient matrix

alone. Simple three-level strategies are defined using GGj and RGi for the number of

the non-zeros for column j and row i of the coefficient matrix A. These are set out as

follows.

• Consider the nonbasic columns in order of increasing sequence of GGj and choose

column j with the smallest number of non-zero coefficients and the pivot aij # 0,

in column j and row i for which RGi is a minimum.

• Consider the rows in order of increasing sequence of RGi and choose the one with

the minimum Rei and pivot aij # 0 for column j with the minimum GGj .

• Consider non-zeros aij # 0 in their increasing order of count (RGi - 1) x (G Gj - 1)

107

and select the coefficient which is the smallest.

Recently, Bixby described a procedure for obtaining an initial basis in [12], and called

it the CPLEX basis. This procedure does not take into account the traditional spar­

sity based approach. It can be interpreted as a variation of Carstens' gain switch on

approach using the objective function coefficients. On the other hand, he considered a

more general problem with bounded variables and described his algorithm in terms of

these. Maros and Mitra introduced some crash heuristics which have been used in the

solver FortMP system [37]. One of them is a Lower Triangular Symbolic Crash designed

for Feasibility (CLTSF). This crash procedure is summarised in the next section since

our procedure makes use of a part of its logic. The second one is an anti-degeneracy

strategy called CRASH(ADG). This crash procedure is used when the logical basis is

degenerate but not completely. These two crash procedures are based on the triangu­

larity feature of the matrix. They also proposed another crash procedure which aims to

remove the artificial variables as many as possible by violating the triangularity struc­

ture of the CLTSF. This is a numerical crash procedure which is called CRASH(ART).

These three crash procedures are explained in more detail in [83], [85]. The experimen­

tal results are presented for some Netlib and industrial models and the computational

performance of these crash procedures is compared with the CPLEX starting basis.

Block Triangular Crash

The block triangular crash procedure was first introduced by Gould and Reid in [63].

This algorithm is a numerical crash procedure which tries to find a basis close to fea­

sibility. In this procedure, first the coefficient matrix A is permuted into a lower block

triangular form. A series of small dense LP problems are then solved based on these

diagonal matrices. A basis is then assembled from their solutions. This procedure

is computationally more demanding than the triangular crash procedures. However,

Gould and Reid suggested that the block triangular crash procedure can lead to com­

putational improvements in the simplex method. They also found that their techniques

are better than the 'GAIN switch off' algorithm.

108

7.2.1 The Crash CLTSF Procedure

Conceptually, CLTSF sets out to replace the variables of the all-logical basis by struc­

tural variables. The triangular structure of the basis is obtained using the logical oper­

ations only. The simplest way to trace the possible triangular structure is to introduce

row and column counts, RCi and CCj which are defined as the number of non-zeros

in row i and column j of the matrix A. Since elements above the diagonal consist of

only zero elements in a lower triangular basis, the first diagonal element can be found

easily as pivot row i such that RCi = min{RCk }. If RCi = 1, then the pivot column is

automatically found. Otherwise, the pivot column is the one with a non-zero element

in this row having the smallest column count.

The selected element becomes the current pivot and the pivot position is logically

permuted (by row and column permutations) to the top left corner. The row i and

all remaining columns having non-zero elements in row i, if there are any, are marked

unavailable for further consideration. In this way, it is ensured that the remaining

columns do not have to be transformed at later stages. The row and column counts

are recomputed for the remaining active rows and columns. The same procedure is

repeated for finding other pivot positions. If there is not a unique minimum row count

and column count for the pivot positions at each stage, then there are multiple choices

(ties) that have to be broken. In this procedure, ties for column selection are broken

by giving the preference to removal of a logical variable with small feasibility range

and inclusion of a structural variable with large feasibility range. The feasibility ranges

are ranked in accordance with the type of variables 0,1,2,3 which are defined as fixed

variable bounded variable non-negative variable and free variable, respectively. , ,

The definition of row priority (RP) and column priority (CP) are given in Table 7.2.1.

In this table, row type and column type are denoted by RT and CT, respectively. Row

type refers to the type of the logical variable of a row, and similarly, column type refers

to the type of the corresponding structural variable. The interpretation of priorities de­

termines the individual exchanges and the final block pivot. It is therefore easily seen

109

that the most favourable combination is to replace a type 0 logical by a type 3 structural.

The pivot row and column selections are based on row and column priority functions.

The Row Priority Function, RP F(i) is defined as

RP F(i) = RP(RT(i)) - 10 X RC(i) (7.1)

where RT(i) is the type of the logical variable of row i and RC(i) is the number of

non-zeros in row i of the active columns of A. The pivot row selection is made by

finding a row r with the maximum value of this function.

I ROW PRIORITY II COLUMN PRIORITY II
I RT I RP I Comments II CT I CP I Comments II

0 3 Equality row (HP) 0 0 Fixed variable (LP)

1 2 Range type row 1 1 Bounded variable

2 1 " < " or " > " type row 2 2 Non-negative variable

3 0 Free row (LP) 3 3 Free variable (HP)

HP: Highest Priority, LP: Lowest Priority.

Table 7.2.1: Rowand column priorities.

Similarly, the Column Priority Function C P F(j) is defined as

CP F(j) = CP(CT(j)) -10 X CC(j) (7.2)

where CT(j) is the type of column j and CC(j) is the number of non-zeros in column

j of the active rows of A. Having selected row r, this row is traced for non-zero entries

and if such an entry is found, the function C P F(j) is evaluated for that column j.

Finally, the column is determined by the maximum value of CPF(j). The procedure

CLTSF is fully described in [83].

110

7.3 Constructing An Advanced Basis with Lagrangean

Relaxation

In this section, we consider an LPEN problem and describe our network based crash

procedure for creating an advanced basis. For a given set of trial values of Lagrangean

multipliers, the Lagrangean relaxation problem is itself a minimum cost network flow

problem. Therefore, the basis corresponding to an optimum solution to this problem

has a triangular form because of the natural structure of network flow problems. This

leads us to use a lower triangular crash procedure by considering only variables which

are basic in the network optimum solution. As there are generally less basic variables in

the optimum solution of network problems than the basis size of the original problem,

the logical variables associated with side constraints are introduced to gain the full row

rank and to construct a non-singular basis for the original problem.

We construct two network based crash procedures which use the main concept of the

CLTSF approach. For the first crash procedure, our choice is restricted to only network

variables and network rows. The starting basis is initialised as the one which consists of

the basic variables of the network problem and the logical variables of the non-network

rows. In other words, all non-network columns and network columns which are not in

the optimal basis of the network problem are excluded. We call this crash procedure

CNET1.

In the second method we take into account the remaining rows, and apply the CLTSF

procedure to the non-network rows that are not processed in the CNETI procedure. In

that case, the initial basis is constructed as in CNETl, and then the CLTSF procedure

is applied. Therefore, as many logical variables corresponding to non-network rows as

possible are replaced by structural variables. We call this procedure CNET2. Our com­

putational experiments show that, as we expect from theory, the CNETI and CNET2

procedures in all cases produce a lower triangular basis structure. The main steps of

the crash CNET2 procedure are set out below; for more detail the reader is referred to

[60].

111

A Network Based Crash Algorithm: CNET2

Step 1 Initialise the starting basis for the original problem. It contains all basic

variables of the optimal solution of the network problem and the logical variables

of the non-network rows.

Step 2 Define the set of active rows as all non-network rows and the set of active

columns as all nonbasic columns of the optimal network solution. Exclude the

free rows and fixed columns.

Step 3 Calculate the row and column counts of non-zero entries for active rows and

columns of the coefficient matrix.

Step 4 Make the row selection on the basis of minimum row count. If there is a tie,

then break it as in [83]. If the row selection is successful, then select the pivot

column based on minimum column count. In case of a tie, break it by [83]. If

there is no row to select, then terminate the algorithm with the current basis

that may contain some logical variables of the non-network rows.

Step 5 Update the basis by exchanging the basic column corresponding to the pivot

row with the selected pivot column.

Step 6 Delete the selected row and column from the active sets and also delete any

other active columns intersecting with the selected row.

Step 7 Update the row and column counts and go to step 4 to select the next pivot row.

We present the computational results obtained as the best out of the CNET1 and

CNET2 procedures and compare them with the original CLTSF crash procedure in

section 7.5.

7.4 Constructing An Advanced Basis with Benders

Decomposition

Having applied Benders decomposition with a preset number of passes, we use the com­

bined solution of the master (the embedded network flow problem) and the subproblem

112

to compute a good (near optimal and near feasible) solution for the given LP problem.

Let xk = ((x')\ (x")k) denote the solution vector of the master and the subproblem in

the kth pass. This solution may be

• an infeasible,

• a feasible or

• a feasible as well as optimal

solution of the LPEN problem. We create a starting basis for the original problem in

the following way. If the variable xl for the ith component appears as a basic variable

in the solution of the master or the subproblem, then we mark its status as basic. If

not, it means that the variable is non-basic, then we analyse the solution values;

Lower bound: If the solution value xl for the ith component is at its lower bound,

that is, xl = Ii; normally Ii = 0, then we set its status to non-basic at lower bound.

Upper bound: If the solution value xl for the ith component is at its upper bound,

that is, xl = Ui, then we set its status to non-basic at upper bound.

The basis factorisation procedure INVERT uses this information to create an initial

factorisation of this basis as an SSX starting point for solving the LPEN problem.

7.5 Computational Results

The algorithm described in section 5.5 and the alternative advanced bases are imple­

mented in FORTRAN and FortMP [37] is used as a callable subroutine. FortMP which

is an industrial strength mathematical programming system used for both algorith­

mic research and in collaborative projects with industry has been developed by the

mathematical programming research group at BruneI University. The computational

experiments have been carried out on a DEC ALPHA 3000/600 computer with 96MB

memory. We use CPU time and simplex iterations as alternative performance measures

of our procedures. In the network exploitation procedures, the total solution time is

calculated by including the time spent in

113

1. the network extraction including scaling,

2. the Lagrangean multiplier adjustment procedure (solving a series of network flow

problems) or Benders decomposition procedure (solving a series of the master and

subproblems),

3. an advanced basis construction, and

4. solving the entire LP problem by FortMP.

However, the time to input the original LP problem and preprocessing which are com­

mon in all runs is excluded. We present our results for each decomposition method

separately and discuss consolidated results.

7.5.1 Results with Lagrangean Relaxation

The results obtained with the Lagrangean relaxation method are set out in Table 7.5.2.

We first apply the multiplier adjustment method to the Lagrangean relaxation of the

LPEN problem and display results under the heading LR: Adjusted Multiplier. We

then consider an alternative relaxed problem in which all non-network side constraints

are aggregated. We apply the same multiplier adjustment method to solve the corre­

sponding network flow problem with at most three side constraints and the results are

displayed under the heading LR: Row Aggregation. We also consider the zero-multiplier

method (see section 6.2.4) which is a special case of the multiplier adjustment proce­

dure where all multipliers are fixed to zero and display the results in the column LR:

Zero Multiplier. The asterisk denotes the best time obtained out of different procedures.

For these methods, the advanced bases are constructed by applying two network based

crash procedures CNET1, CNET2 discussed in section 7.3. The given problems are

then solved using these advanced bases by applying primal, primal-dual and dual SSX

as a finishing strategy. The results displayed in Table 7.5.2 are chosen as the best out of

all alternative advanced bases and different finishing strategies. The maximum number

of passes to solve the Lagrangean relaxation problem is limited to 50 in both cases of

applying the multiplier adjustment procedure. We observe that for some LP models,

114

PROCEDURE LR:ZERO LR:ADJUSTED LR: ROW
NAMES MULTIPLIER MULTIPLIER AGGREGATION

II I I II I

MODEL NAMES" TIME ITER TIME ITER TIME ITER
1/ I

II
II ,

25fv47 *19.68 3164 19.75 3164 19.79 3164
bn12 55.29 5429 *26.33 3265 51.81 4394

cre-a *22.92 2810 32.11 3727 23.78 2772

cre-c 16.77 2381 *16.73 2381 17.52 2381

cycle 7.90 1335 7.91 1335 *7.56 1205

czprob 2.89 820 *2.57 759 2.72 820

d2q06c 318.76 20309 *304.59 19138 318.55 20309

d6cube *20.00 1388 122.99 10383 23.88 1672

energy *58.50 9112 59.43 9296 58.59 9112

ganges *3.60 1055 3.89 1110 *3.60 1055

greenbea *54.37 5084 58.10 5548 55.29 5084

greenbeb 60.06 5915 61.60 5372 *58.66 5915

ken 7 6.06 1313 6.19 1079 *5.97 1287

pilot *331.28 10370 336.89 19138 336.68 10370

scfxm3 3.61 890 *3.55 1086 3.59 1086

sctap2 0.93 255 *0.91 255 1.08 255

sctap3 *1.78 372 1.79 372 2.11 372

scrs8 *0.92 489 1.52 556 *0.92 489

ship12l 2.35 742 *2.14 710 2.36 742

SIerra *2.44 613 2.47 598 2.47 613

stocfor2 9.63 1541 *7.41 896 9.56 1519

woodw 4.36 780 *4.32 780 4.45 780

TIME: CPU Time in seconds, ITER: The number of SSX iterations to solve the LP

with an advanced basis.

Table 7.5.2: Results with the Lagrangean relaxation method.

115

the solution obtained using the basis constructed after optimising only the network

problem without making any multiplier adjustment (zero multiplier case) decreases the

number of iterations as well as the CPU time. However, for other cases, for instance,

models bn12, d2q06e, and greenbeb, ken7, LR: Adjusted Multiplier and LR: Row Ag­

gregation methods lead to better performance.

In Table 7.5.2, we also observe that an LP with an advanced starting point constructed

from the solution of Lagrangean relaxation of the aggregated embedded network prob­

lem is solved to optimality with fewer iterations and less time than the one from the

solution of Lagrangean relaxation of the original embedded network problem in most

models; for example, see models d6eube and ere-a. Since the multiplier adjustment

procedure is carried out unless the side constraints are satisfied or the maximum itera­

tion number is reached, the total solution time is increased in the Lagrangean relaxation

procedure.

It is worthwhile to mention that even though increasing the number of multiplier

adjustments might give a better bound, it is still time consuming. In contrast, the

aggregated side constraint can be satisfied without reaching the preset limit on the

number of passes. In some cases, however, the aggregated side constraint also requires

considerable computational time to satisfy it.

7.5.2 Results with Benders Decomposition

In Table 7.5.3, we present the results of applying Benders decomposition to a set of large

scale Netlib test models. Since at each pass a master and a subproblem are solved and

repeated passes can be time consuming for large models, we have preset the maximum

pass number to one. Therefore, only one cut is introduced into the master problem.

In Table 7.5.3, we break up the results for total solution time and total iteration number

for the master and subproblems as well as the SSX finishing strategy. In the last

column in Table 7.5.3, the total solution time including time taken to solve the master

116

r

;

PROCEDURE MASTER SUB SSX BENDERS TOTAL
NAMES PROBLEM PROBLEM BASIS SOLUTION

II

ITER II TIME
:' II

MODEL NAMES II TIME ITER TIME ITER TIME
II i

II

25fv47 0,12 497 3,25 606 18,33 2756 21.89

bnl2 0,60 301 1.04 296 40,95 3766 43,76

cre-a 0,27 201 0.31 40 24.94 3108 26.48

cre-c 0.33 115 0.48 107 19,07 2701 20,67

cycle 0.07 23 0.88 32 9,72 1035 11.08

czprob 0.52 329 0.02 121 2.49 810 3.44

d2q06c 0.89 466 20.50 3684 583.27 33082 606.20

d6cube 0.03 38 109.86 11607 210.07 28208 320.30

energy 7.23 1999 1.60 576 51.59 7267 62.80

ganges 0.88 479 0.04 344 2.07 735 3,36

greenbea 0.32 269 0.60 94 64.41 6239 66.13

greenbeb 0.15 101 0.30 48 56.67 5156 57,91

ken7 3.13 1415 0.01 0 4.15 832 7.83

pilot 0.16 30 21.47 1804 224.37 6322 246.78

scfxm3 0.10 78 0.40 163 3.30 823 3.98

sctap2 0.43 46 0.13 865 0,37 165 1.22

sctap3 0.69 48 0.19 0 0.70 234 2.07

scrs8 0.03 77 0.20 98 0.65 302 0,93

ship121 0.51 299 0.06 13 2.41 764 3.60

SIerra 0.83 604 0.02 8 2.53 960 4.02

stocfor2 1.12 683 0.08 5 14.88 2033 16.79

woodw 0.05 25 4.58 913 8.77 1335 13,63

TIME: CPU Time in seconds, ITER: The number of SSX iterations to solve the

master, the subproblem and the original LP problem.

Table 7.5.3: Results with Benders decomposition with one cut.

117

I

1

and subproblems, to create an advanced basis and to sol th " 1 LP bl . ve e ongma pro em IS

presented. Considering the results shown in Table 753 w fi d th t th t' . . ., e n a e Ime spent m

solving two master problems does not take the major proportion of the total solution

time. However, for model energy, even though the network simplex solver can be used

for the first pass of the master problem (the pure network flow problem), solving the

master problem with one cut is relatively time consuming.

PROCEDURE MASTER SUB SSX BENDERS TOTAL

NAMES PROBLEM PROBLEM BASIS SOLUTION

I MODEL NAMES II TIME ITER II TIME ITER II TIME ITER II TIME II
25fv47 0.05 61 1.60 436 17.25 2687 19.09

czproh 0.50 329 0.01 0 2.48 758 3.26

d2q06c 0.51 195 10.00 1391 334.35 20104 346.36

d6cube 0.16 2 109.32 10533 75.99 6020 185.63

ganges 0.05 475 0.02 4 1.89 656 2.72

greenbea 0.13 139 0.30 49 60.86 5733 62.02

pilot 0.02 25 22.68 1084 219.73' 6159 243.37

scfxm3 0.07 71 0.31 144 3.20 828 3.76

ship 121 0.48 297 0.04 13 2.00 681 2.89

SIerra 0.83 604 0.01 0 2.58 1007 3.97

stocfor2 1.07 682 0.04 3 12.74 1969 14.55

TIME: CPU Time in seconds, ITER: The number of SSX iterations to solve the master,

the subproblem and the original LP problem.

Table 7.5.4: Results with Benders decomposition with no cut

Time to solve subproblems depends on the size of network structures detected; if the

proportion of the network structure is not large, it means that the subproblem is rela­

tively large and cannot be solved fast. The results for models pilot, d6cube and woodw

justify this observation. Since the subproblem is the same as the previous one with only

different right had side values, the previous basis of the subproblem for a warm start

118

is used. We also observe that an advanced starting basI· I b s can a ways e constructed

from the solution of the entire master (pure network flow problem) and subproblem

like in the zero multiplier method. Table 7.5.4 displays the results of some example

cases where the total solution time reduces by solving the LP with this basis. These

results show that for some models such as d2q06c and d6cube the total solution time

is decreased by about fifty percent compared to the solution time obtained by Benders

decomposition of the LPEN with one cut.

7.5.3 Consolidated Results

We compare our network based crash procedures with the unit basis and CLTSF pro­

cedure which has one of the best performances currently reported in the literature,

see [83, 85]. We therefore set out the consolidated results in Table 7.5.5 and display

the time and iteration number to solve the LP with the advanced basis chosen as the

best performance of the Lagrangean relaxation and Benders decomposition, the crash

CLTSF and unit basis. The asterisk in this table refers to the best solution time out of

all procedures.

In Table 7.5.5, the results displayed in column two under the heading Lagrangean re­

laxation are obtained as the best out of the two crash procedures CNET1 and CNET2

which can be claimed to be good crash procedures. However, we cannot make any gen­

eral conclusion as to which of the network based crash procedures fully dominates all

others. The performance of the network based crash procedures appear to be problem

specific. We observe that the best of the Lagrangean relaxation and Benders decompo­

sition performs marginally better than the crash CLTSF procedure. In general, all the

crash procedures perform better than the unit starting basis procedure.

Considering these computational results, we make the following broad observations.

1. Exploiting embedded pure network structures within large scale LP problems

improves the total solution time and number of iterations in most of the cases

compared with the SSX method with the advanced basis and the unit basis.

119

PROCEDURE LAGRANGEAN BENDERS CRASH UNIT
NAMES RELAXATION DECOMPOSITION CLTSF BASIS

II

I MODEL NAMES II
II

I

TIME ITER TIME ITER TIME ITER TIME ITER
I

I

II

II I

25fv47 19.68 3164 *19.09 2687 24.26 3514 26.88

bnl2 *26.33 3265 43.76 3766 49.71 4098 61.43

cre-a *22.92 2810 26.48 3108 36.34 3626 30.47

cre-c *16.73 2381 20.67 2701 24.38 2892 28.18

cycle *7.56 1205 11.08 1035 11.01 1293 8.49

czprob *2.57 759 3.26 758 3.46 1112 4.14

d2q06c *304.59 19138 346.36 20104 352.40 21644 332.53

d6cube *20.00 1388 185.63 6020 115.01 9828 125.05

energy 58.50 9112 62.80 7267 *52.36 8288 57.17

ganges 3.60 1055 2.72 656 *2.65 555 4.46

greenbea *54.37 5084 62.02 5733 61.38 5279 67.42

greenbeb 58.66 5915 *57.91 5156 61.07 5213 65.86

ken7 5.97 1287 7.83 832 *5.63 1506 - 13.70

pilot 331.28 10370 *243.37 6159 306.44 9172 345.77

scfxm3 *3.55 1086 3.76 828 3.56 882 3.40

sctap2 *0.91 255 1.22 165 1.36 612 2.02

sctap3 *1.78 372 2.07 234 2.11 761 4.04

scrs8 *0.92 489 0.93 302 1.45 549 1.80

ship12l *2.14 710 2.89 681 2.28 742 3.61

SIerra *2.44 613 3.97 1007 5.27 1819 3.36

stocfor2 *7.41 896 14.55 1969 10.35 1185 12.36

woodw *4.32 780 13.63 1335 4.71 903 6.65
I II i II

RP 16B,18W 3B,12W - 3B - - OB,5W - ,

Total Time 956.23 1136.00 - 1137.19 - 1208.79 -

RP: Relative performance, B: Best out of all methods, W: Winner against CLTSF crash

procedure. TIME: CPU Time in seconds, ITER: The number of SSX iterations to solve

the LP problem with different advanced bases and the unit basis.

Table 7.5.5: The consolidated results.

120

4327

6178

4154

4205

1516

1436

21515

12469

9730

1443

6805

6341

2967

10716

1170

931

1408

880

1070

1310

1939

1480

-

-

I

I

I

2. The SSX solution time and iteration number are d d b I· h L ecrease y so vmg t e P

problem with the advanced basis obtained by our start d h· h up proce ure w IC uses
Benders decomposition in a restricted form.

3. The crash CLTSF procedure performs better than the all-logical basis. If we apply

the best network based crash procedure chosen out of CNET1 and CNET2, then

this result dominates the performance of CLTSF in most cases.

7.6 Discussion

In this chapter, we have shown how the EPN structure within large scale LP problems

can be used to create an advanced starting point to solve the original LP problem by

the SSX method. The zero multiplier approach has been used to solve a pure network

flow problem which is constructed by relaxing all of the side constraints. By considering

the non-network side constraints and applying the Lagrangean multipliers to these con­

straints, we have again constructed a network problem. To solve this network problem

with side constraints, a series of minimum cost flow problems which differ only in the

objective coefficients have been solved iteratively with a new set of fixed multipliers at

each iteration.

As an alternative, the side constraints have been aggregated and the reduced embed­

ded network problem with at most three side constraints has also been treated using

the Lagrangean multipliers approach. The near optimal and near feasible solutions ob­

tained by these methods have been used to construct advanced bases and passed to the

general SSX solver to process the original LP problem to optimality. As an alternative

way of constructing an advanced basis, we have applied Benders decomposition to the

LPEN problem. The computational results showed that even for general classes of LP

problems this is an effective procedure for creating an advanced basis.

121

Chapter 8

Summary Conclusions and Future

Directions

In this chapter, we discuss the issues raised in the investigation reported in this thesis

and present our summary conclusions. In particular, we highlight the novel concepts

and the resulting contributions. We also put forward suggestions for further work.

8.1 Summary of Contributions

The investigation of the embedded network structure within LP problems has led us to

develop automatic network detection algorithms and a solution procedure which takes

advantage of the EPN structure.

• M-GUB Algorithm

We have presented a new GUB based algorithm for detecting an EPN structure

within an LPEN problem. We have applied the Markowitz merit count concept in

a novel way to improve the GUB detection heuristic, and consequently the maxi­

mum number of the network rows within the scope of this heuristic. We have then

exploited the relationship between the GUB structures in LP problems and the

independent sets in the corresponding graphs. In this procedure, the GUB sub­

sets have been detected by an independent set algorithm. In particular, we have

122

adopted a greedy algorithm for detecting independent set' th d 1 s SInce e gree y a go-

rithm outperformed the matching algorithm in our computational experiments.

The number of network rows and columns detected by different algorithms as

well as the computing time taken by the detection algorithm have been used as

measures for the comparison. We have taken the row scanning deletion algorithm

as a benchmark heuristic. An analysis of the computational results has showed

that our approach of extending the two-stage heuristic to the multi-stage heuris­

tic leads to improved performance and our procedures perform favourably when

compared with the row scanning deletion algorithm. Taking into consideration

the computing time we have observed that the structure detection time is usually

less than 5% of the sparse simplex solution time .

• GSG Algorithm

We have presented the second EPN structure extraction algorithm which is based

on generalised signed graphs. We have shown that this algorithm performs very

well compared to other algorithms. Using generalised signed graphs, we have

proved that the problem of detecting the maximum EPN structure in an LP

problem is NP-hard; even for very special families of matrices. The main contri­

bution of the GSG algorithm is that it determines whether the given LP coefficient

matrix is entirely a pure network. This result is in contrast to other known algo­

rithms in the literature .

• Solution Algorithm

In order to exploit the EPN structure, we have introduced an advanced basis algo­

rithm which improves the computational time required to solve the LPEN models.

The main advantage of this algorithm is that it uses a general network solver and

an LP solver. The original coefficient matrix is partitioned into the network and

the non-network parts. For this partitioning, we have investigated two alternative

decompositions namely, Lagrangean and Benders. In the Lagrangean approach,

123

the optimal solution of a network flow problem and· B d h b· m en ers, t e com med
solution of the master and the subproblem have been u d t t d (se 0 compu e goo near
optimal and near feasible) solutions for the given LP problem.

In both cases, we have terminated the decomposition algorithms after a preset

number of passes. The near feasible and near optimal solutions obtained by these

methods have been used to construct advanced bases and passed to the general

SSX solver to process the original LP problem to optimality. We have presented

comparisons with the unit basis and a well established crash procedure. We have

found that the computational results of applying these techniques to a selection

of Netlib models are promising enough to encourage further research in this area.

8.2 Suggestions for Further Work

Based on our experience of computational algorithms investigated in this thesis, we

suggest the following further research.

• The investigation carried out in this study for detecting EPN structures can be

naturally extended to extract embedded GNET structures. In this way, the em­

bedded GNET structure can be exploited. Like pure network solvers the methods

for solving generalised networks are becoming competitive when compared to sim­

plex based LP solvers [91].

• We have observed that the number of network rows detected depends (sometimes,

significantly) on the spanning tree computed in the GSG algorithm. T~ enhance

the results, several spanning trees rather than just one can be built in which case

parallel algorithms may be considered. In addition, the independent set S can be

enlarged by using local search improvement algorithms.

• In the application of Benders decomposition to the LPEN problem, even though

the first master problem can be solved by the network solver, at the other iter­

ations the master problem becomes a network flow problem with cuts. At this

stage, the Lagrangean relaxation procedure can be applied to the master problem

124

by dualising the cuts whereby the master problem can be processed by a network

solver.

• Instead of using the SSX procedures, the interior point method can be used to

exploit the EPN structure in LP problems. Todd [104] suggested computational

schemes which take advantage of specially structured constraints, especially vari­

ous upper bounding constraints, in a variant of Karmarkar's projective algorithm

for LPs. These constraints are used to generate improved bounds on the opti­

mal value of the problem and also to compute the necessary projections more

efficiently.

125

References

[1] Ahuja, R.K., Magnanti, T.L. and Orlin, J.B., Network Flows: Theory, Algorithms

and Applications,Prentice-Hall, (1993).

[2] Ali, A.I. and Thiagarajan, H., "A Network Relaxation Based Enumeration Algo­

rithm for Set Partitioning", European Journal of Operational Research, Vol. 38,

(1989), p. 76-85.

[3] Baker, B.M. and Maye, P.J., "A Heuristic for Finding Embedded Network Struc­

ture in Mathematical Programmes", European Journal of Operational Research,

Vol. 67, (1993), p. 52-63.

[4] Barr, R.S., Farhangian, K. and Kennington, J.L, "Networks with Side Constraints:

An LU Factorization Update", The Annals of the Society of Logistics Engineers,

Vol. 1, No.1, (1986), p. 66-85.

[5] Barr, R.S., Glover, F. and Klingman, D., "Enhancements of Spanning Tree La­

belling Procedures for Network Optimization", Infor, Vol. 17, (1979), p. 16-34.

[6] Bartholdi, J.J., "A Good Submatrix is Hard to Find", Operations Research Letters,

Vol. 1, (1982), p. 190-193.

[7] Baston, V.J.D., Rahmouni, M.K. and Williams, H.P., "The Practical Conversion

of Linear Programmes to Network Flow Models", European Journal of Operational

Research, Vol. 50, (1991), p. 325-334.

[8] Bazaraa, M.S., Jarvis, J.J. and Sherali, H.D., Linear Programming and Network

Flows, Second Edition, John Wiley and Sons, (1990).

126

[9] Beasley, J .E., "Lagrangean Relaxation" in Modern Heur'; t' rp h' {. C ' ~s lC .1. ec mques Jor om-

binatorial Problems, Ed. Reeves, C.R., Blackwell Scientific Publications, Oxford.

(1993).

[10] Belling-Seib, K., Mevert, P. and Muller, C., "Network Flow Problems with One

Side Constraint: A Comparison of Three Solution Methods", Computers and Op­

erational Research, Yol. 15, No.4, (1988), p. 381-394.

[11] Benders, J.F., "Partitioning Procedures for Solving Mixed-Variables Programming

Problems", Numerische Mathematik, 4, (1962), p. 238-252.

[12] Bixby, R.E., "Implementing the Simplex Method: The Initial Basis", ORSA Jour­

nal on Computing, Yol. 4, No.3, (1992), p. 267-284

[13] Bixby, R.E. and Fourer, R., "Finding Embedded Network Rows in Linear Programs

I. Extraction Heuristics", Management Science, Vol. 34, No.3, (1988), p. 342-376.

[14] Bixby, R.E. and Fourer, R., "Finding Embedded Network Rows in Linear Programs

II. Augmentation Heuristics", unpublished, (1995).

[15] Bixby, R.E., "Hidden Structure in Linear Programs", in Computer-Assisted Anal­

ysis and Model Simplification, Ed. Greenberg, H., Maybee, J., Academic Press,

New York, (1981), p. 327-360.

[16] Bixby, R.E. and Cunningham, W.H., "Converting Linear Programs to Network

Problems", Mathematics of Operations Research, Vol. 5, No.3, (1980), p. 321-356.

[17] Brearley, A.L., Mitra, G. and Williams, H.P., "Analysis of Mathematical Program­

ming Problems Prior to Applying the Simplex Algorithm", Mathematical Program-

ming, Yol. 8, (1975), p. 54-83.

[18] Brown, G.G. and Olson, M.P., "Dynamic Factorization in Large-Scale Optimiza­

tion", Mathematical Programming, Vol. 64, No.1, (1994), p. 17-51.

[19] Brown, G.G. and Olson, M.P., "Dynamic Factorisation in Large Scale Optimisa­

tion", Technical Report, NPSOR-93-00B, (1993).

127

[20] Brown, G.G. and Wright, W.G., "Automatic Identification of Embedded Network

Rows in Large-Scale Optimization Models", Mathematical Programming, Vol. 29,

(1984), p. 41-56.

[21] Brown, G.G., McBride, R.D. and Wood, R.K., "Extracting Embedded Generalized

Networks from Linear Programming Problems", Mathematical Programming, Vol.

32, (1985), p. 11-31.

[22] Brown, G.G. and Wright, "Automatic Identification of Embedded Structure in

Large-Scale Optimization Models", in Computer-Assisted Analysis and Model Sim­

plification, Ed. Greenberg, H., Maybee, J., Academic Press, New York, (1981), p.

369-388.

[23] Brown, G.G. and Thomen, D.S., "Automatic Identification of Generalized Upper

Bounds in Large-Scale Optimization Models", Management Science, Vol. 26, No.

11, (1980), p. 1166-1184.

[24] Bryson, N., "Parametric Programming and Lagrangian Relaxation: The Case of

the Network Problem with a Single Side Constraint", Computers and Operations

Research, Vol. 18, No.2, (1991), p. 129-140.

[25] Bryson, N., "A Parametric Programming and Methodology to Solve the Dual for

Network Problems with Multiple Side Constraints", Computers and Operations

Research, Vol. 28, No.5, (1993), p. 541-552.

[26] Carstens, D.M., "Crashing Techniques", in Orchard-Hays, W., Advanced Linear

Programming Computing Techniques, McGraw-Hill, (1968), p. 131-141.

[27] Chartrand, G., Graphs as Mathematical Models, Prindle, Weber and Schmidt,

Boston, (1977).

[28] Chen, S. and Saigal, R., "A Primal Algorithm for Solving a Capacitated Network

Flow Problem with Additional Linear Constraints", Networks, Vol. 7, (1977), p.

59-79.

128

[29] Cormen, T.H., Leiserson, C.E. and Rivest R LInt d t· t Ai . h ' .., ro uc ton 0 gont ms, MIT
Press, Cambridge, (1990).

[30] Daniel, R.C., "A Generalisation of Variable Upper Bounding and Generalised Up­

per Bounding", European Journal of Operational Research, Vol. 2, (1978), p. 202-

206.

[31] Dantzig, G.B. and Van Slyke, R.M., "Generalized Upper Bounding Techniques",

Journal of Computer and System Sciences, Vol. 1, (1967), p. 213-226.

[32] Dantzig, G.B., Linear Programming and Extensions, Princeton University Press,

Princeton, New Jersey, (1963).

[33] Dantzig, G.B. and Orchard-Hays, W., "The Product Form of the Inverse in the

Simplex Method", Mathematical Tables and Aids to Computation, Vol. 8, (1954),

p. 64-67.

[34] Dantzig, G.B. and Wolfe, P., "Decomposition Principle for Linear Programs", Op­

erations Research, Vol. 8, (1960), p. 101-111.

[35] Darby-Dowman, K. and Mitra, G., "An Investigation of Algorithms Used in Re­

structuring of Linear Programming Basis Matrices Prior to Inversion", in Studies

on Graphs and Discrete Programming, Ed. Hansen, P., North Holland, (1981).

[36] Duff, S., Erisman, A.M. and Reid, J.K., Direct Methods for Sparse Matrices, Ox­

ford University Press, Oxford-London, (1986).

[37] Ellison, E.F.D., Hajian, M., Levkovitz, R., Maros, I. and Mitra, G., "A Fortran

Based Mathematical Programming System: FortMP", (1995), BruneI University

and NAG Ltd.

[38] Fisher, M.L., "The Lagrangean Relaxation Method for Solving Integer Program­

ming Problems", Management Science, Vol. 27, No.1, (1981), p. 1-18.

[39] Fisher, M., Jaikumar, R. and Wassenhove, L.N.V, "A Multiplier Adjustment

Method for the Generalized Assignment Problem", Management Science, Vol. 32,

No.9, (1986), p. 1095-1103.

129

[40] Fisher, M.L., "An Applications Oriented Guide to Lagrangian Relaxation", Inter­

faces, Vol. 15, No.2, (1985), p. 10-21.

[41] Ford, L.K. and Fulkerson, D.K., Flows in Networks, Princeton University Press,

New Jersey, (1962).

[42] Fragniere, E., Gondzio, J., Sarkissian R. and Vial, J., "Structure Exploiting Tool

in Algrebraic Modeling Languages", Logilab Technical Report, 1997.2, (1997).

[43] Gay, D.M., "Electronic Mail Distribution of Linear Programming Test Problems",

Mathematical Programming Society, Coal, Newsletter, Vol. 13, (1985), p. 10-12.

[44] Geoffrion, A.M., "Lagrangean Relaxation for Integer Programming", Mathematical

Programming Study, Vol. 2, (1974), p. 82-114.

[45] Geoffrion, A.M., "Elements of Large-Scale Mathematical Programming Part I:

Concepts", Management Science, Vol. 16, No. 11, (1970), p. 652-675.

[46] Geoffrion, A.M., "Elements of Large-Scale Mathematical Programming Part II:

Synthesis of Algorithms and Bibliography", Management Science, Vol. 16, No. 11,

(1970), p. 676-691.

[47] Glover, F. and Klingman, D., "The Simplex SON Algorithm for LP /Embedded

Network Problems", Mathematical Programming Study, Vol. 15, (1981), p. 148-

176.

[48] Glover, F. and Klingman, D., "Basis Exchange Characterizations for the Simplex

SON Algorithm For LP /Embedded Networks", Mathematical Programming Study,

Vol. 24, (1985), p. 141-157.

[49] Glover, F., Karney, D., Klingman, D. and Russell, R., "Solving Singly Constrained

Transshipment Problems", Transportation Science, Vol. 12, No.4, (1978), p. 277-

297.

[50] Graves, G.W. and McBride, R.D., "The Factorization Approach to Large-Scale

Linear Programming", Mathematical Programming, Vol. 10, (1976), p. 91-110.

130

[51] Greenberg, H.J., "A Functional Description of Analyze: A Computer Assisted

Analysis System for Linear Programming Models" ACM T: M th S.ff , rans. a . 0l"ware,
Vol. 9, No.1, (1983).

[52] Guignard, M. and Rosenwein, M.B., "An Application Oriented Guide for Designing

Lagrangean Dual Ascent Algorithms", European Journal of Operational Research,

Vol. 43, (1989), p. 197-205.

[53] Guignard, M., "A Lagrangean Dual Ascent Algorithm for Simple Plant Location

Problems" European Journal of Operational Research, Vol. 35, (1988), p. 193-200.

[54] Gunawardane, G., Hoff, S. and Schrage, 1., "Identification of Special Structure

Constraints in Linear Programs", Mathematical Programming, Vol. 21, (1981), p.

90-97.

[55] Giilplnar, N., Maros, I. and Mitra, G., "Detecting Embedded Pure Network Struc­

tures in Linear Programs", Technical Report, TR/20/96, BruneI University, (1996).

[56] Giilplnar, N., Gutin, G. and Mitra, G., "Detecting Embedded Pure Network Struc­

ture Using Independent Set Algorithms", Technical Report, TR/12/97, BruneI

University, (1997).

[57] Giilplnar, N., Mitra, G. and Maros, I., "Computational Solution of Large Scale Pro­

grams Exploiting Embedded Network Structures", Technical Report, TR/04/98,

BruneI University, (1998).

[58] Giilplnar, N., Maros, I. and Mitra, G., "Detecting Embedded Pure Network Struc­

tures in LP Problems", TOP Operational Research in Practice Journal, Vol. 6, No.

1, (1998), p. 67-95.

[59] Giilplnar, N., Gutin, G., Mitra, G. and Maros, I., "Detecting Embedded Net­

works in LP Using GUB Structures and Independent Set Algorithms", Accepted

for publication in Computational Optimization and Applications.

131

[60]

[61]

Giilplnar, N., Mitra, G. and Maros I. "Creating Ad d B f L ' , vance ases or arge-Scale

Linear Programs Exploiting Embedded Network Structure" Submitted to Compu­

tational Optimization and Applications.

Gutin, G., Giilpmar, N., Mitra G and Zverovl·ch A "Ext t· P N t k , . ,., rac mg ure e wor

Submatrices in Linear Programs Using Generalised Signed Graphs", Submitted to

Mathematical Programming.

[62] Gutin, G., Giilplnar, N., Mitra, G. and Zverovich, A., "Extracting Pure Network

Submatrices in Linear Programs Using Generalised Signed Graphs", Technical Re­

port, TR/14/98, Brunel University, (1998).

[63] Gould, N.I.M. and Reid, J.K., "New Crash Procedures for Large Systems of Linear

Constraints", Mathematical Programming, Vol. 45, (1989), p. 475-501.

[64] Hansen, P., "Labelling Algorithms for Balance in Signed Graphs." in Problemes

Combinatoires et Theorie des Graphes (Colloq. Internat., Orsay, 1976), p. 215-217,

Colloques Internat. du CNRS, 260, Paris, (1978).

[65] Harary, F., Norman, R.Z. and Cartwright, D., Structural Models: An Introduction

to the Theory of Directed Graphs, John Wiley and Sons, (1965).

[66] Harary, F., "On the Notion of Balance of a Signed Graph", Michigan Mathematical

Journal, Vol. 2, (1954), p. 143-146.

[67] Harary, F. and Kabell, J.A., "A Simple Algorithm to Detect Balance in Signed

Graphs", Mathematical Social Science, Vol. 1, (1980), p. 131-136.

[68] Hartman, J.K. and Lasdon, 1.S., "A Generalized Upper Bounding Algorithm for

Multicommodity Network Flow Problems", Networks, Vol. 1, (1972), p. 333-354.

[69] Held, M. and Karp, R.M., "The Travelling Salesman Problem and Minimum Span­

ning Trees", Operations Research, Vol. 18, (1970), p. 1138-1162.

[70] Held, M. and Karp, R.M., "The Travelling Salesman Problem and Minimum Span­

ning Trees, Part II". Mathematical Programming, Vol. 1, (1971), p. 6-25.

132

[71] Held, M., Wolfe, P. and Crowder, P., "Validation of Subgradient Optimisation",

Mathematical Programming, Vol. 6, (1974), p. 62-88.

[72] Hellerman, E. and Rarick, D., "Reinversion with the Preassigned Pivot Procedure".

Mathematical Programming, Vol. 1, (1971), p. 195-216.

[73] Hsu, A.C. and Fourer, R., "Exploiting Network Structure for Solving Large Scale

Linear Programming Models", Working Paper, January (1996).

[74] Hultz, J. and Klingman, D., "Solving Singularly Constrained Generalized Network

Problems", Applied Mathematics and Optimization, Vol. 4, No.2, (1978), p. 103-

119.

[75] Infanger, G., "Planning Under Uncertainty: Solving Large Scale Stochastic Linear

Programs", Boyd and Fraser, Danvers, M.A., (1994).

[76] Khanna, S., Motwani, R., Sudan, M. and Vazirani, U., "On Syntactic Versus Com­

putational Views of Approximability", Proceedings Symposium on Foundations of

Computer Science, (1994), p. 819-830.

[77] Kennington, J.L. and Helgason, R., Algorithms for Network Programming, John

Wiley and Sons, New York, (1980).

[78] Klingman, D. and Russell, R., "Solving Constrained Transportation Problems",

Operations Research, Vol. 23, No.1, (1975), p. 91-114.

[79] Lasdon, L. S., Optimisation Theory for Large Systems, Collier-Macmillan Limited,

London, (1970).

[80] Lucas, C., Messina, E. and Mitra, G., "Risk and Return Analysis of a Multi-period

Strategic Planning Problem" , in Stochastic Modelling in Innovative Manufacturing

Lecture Notes in Economics and Mathematical Systems 445, Ed. Christer, A. and

Osaki S., (1995).

[81] Markowitz, H.M., "The Elimination Form of the Inverse and its Application to

Linear Programming", Management Science, Vol. 3, (1957), p. 255-267.

133

[82] Maros., I., "A Practical Anti-Degeneracy Row Selection Technique in Network

Linear Programming", Annals of Operations Research, Vol. 47, (1993), p. 431-442.

[83] Maros, I. and Mitra, G., "Strategies for Creating Advanced Bases for Large-Scale

Linear Programming Problems", Informs Journal on Computing, Vol. 10, No.2,

(1998), p. 248-260.

[84] Maros, I. and Mitra, G., "Simplex Algorithms", in Advances in Linear and Integer

Programming, Ed. Beasley, J., Oxford University Press, (1996), p. 1-46.

[85] Maros, I. and Mitra, G., "Finding Better Starting Bases for Simplex Method",

in Operations Research Proceedings 1995, Ed. Kleinschmidt, P., Springer Verlag,

(1996), p. 7-12.

[86] Maros,J., "Performance Evaluation of the MINET Minimum Cost Netflow Solver",

DIMACS Series in Discrete Mathematics and Theoretical Computer Science, Vol.

2, (1993), p. 199-217.

[87] Maros, I., "A Structure Exploiting Pricing Procedure in the Primal Network Sim­

plex Algorithm", Rutcor Research Report, 18-91, (1991).

[88] Marsten, R.E., Hogan, W.W and Blankenship J.W., "The Boxstep Method for

Large-Scale Optimization", Operations Research, Vol. 23, No.3, (1975), p. 389-

405.

[89] Mashc, H.V., "The Cyclic Method of Solving the Transshipment Problem with an

Additional Linear Constraints", Networks, Vol. 10, (1980), p. 17-31.

[90] Mitra, G. and Tamiz, M., "Alternative Methods for Representing the Inverse of

Linear Programming Basis Matrices", in Recent Developments in Mathematical

Programming, Ed. Kumar, S., (1991), p. 273-301.

[91] McBride, R.D., "Solving Embedded Generalised Network Problems", European

Journal of Operational Research, Vol. 21, (1985), p. 82-92.

[92] Paschos, V.Th., "A ~/2-Approximation Algorithm for the Maximum Independent

Set Problem", Information Processing Letters, Vol. 44, (1992), p. 11-13.

134

[93] Reeves, C.L., Modern Heuristic Techniques For Combinatorial Problems, McGraw­

Hill Book Company, (1995).

[94] Rogers, D.F., Plante, R.D., Wong R.T. and Evans J R "A t· d D· , , . ., ggrega IOn an IS-

aggregation Techniques and Methodology in Optimisation", Operations Research,

Vol. 39, No.4, (1991), p. 553-582.

[95] Saab, Y., "Iterative Improvement of Vertex Covers", Information Proceedings Let­

ters, Vol. 55, (1995), p. 5-98.

[96] Sharda, R., Linear and Discrete Optimisation and Modelling Software, Unicorn

Seminars Ltd, Lionheart Publishing, (1993).

[97] Schrage, L., "Some Comments on Hidden Structure in Linear Programs", in

Computer-Assisted Analysis and Model Simplification, Ed. Greenberg, H., May­

bee, J., Academic Press, New York, (1981), p. 389-395.

[98] Schrage, L., "Implicit Representation of Generalized Variable Upper Bounds in

Linear Programming", Mathematical Programming, Vol. 14, (1978), p. 11-20.

[99] Schrage, L., "Implicit Representation of Variable Upper Bounds in Linear Pro­

gramming", Mathematical Programming, Vol. 4, (1975), p. 118-132.

[100] Shapiro, J.F., Mathematical Programming: Structures and Algorithms, John Wi­

ley and Sons, (1979).

[101] Shapiro, J.F., "A Survey of Lagrangean Techniques for Discrete Optimization",

Annals of Discrete Mathematics, Vol. 5, (1979), p. 113-138.

[102] Shetty, B., "A Heuristic Algorithm for a Network Problem with Variable Upper

Bounds", Networks, Vol. 20, (1990), p. 373-389.

[103] Todd, M.J., "Large-Scale Linear Programming: Geometry, Working Bases and

Factorizations", Mathematical Programming, Vol. 26, (1983), p. 1-20.

[104] Todd, M.J., "Exploiting Special Structure in Karmarkar's Linear Programming

Algorithm", Mathematical Programming, Vol. 41, (1988), p. 97-113.

135

[105] Truemper, K., "Unimodular Matrices of Flow Problems with Additional Con­

straints", Networks, Vol. 7, (1977), p. 343-358.

[106] Venkataraman, M.A., Dinkel, J.J. and Mote, J., "A Surrogate and Lagrangian

Approach to Constrained Network Problems", Annals of Operations Research, Vol.

20, (1989), p. 283-302.

[107] Zaslavsky, T., "Signed Graphs", Discrete Applied Mathematics, Vol. 4, (1982), p.

47-74.

[108] Zaslavsky, T., "How Colorful the Signed Graph?", Discrete Mathematics, Vol. 52,

(1984), p. 279-284.

136

	286820_0001
	286820_0002
	286820_0003
	286820_0004
	286820_0005
	286820_0006
	286820_0007
	286820_0008
	286820_0009
	286820_0010
	286820_0011
	286820_0012
	286820_0013
	286820_0014
	286820_0015
	286820_0016
	286820_0017
	286820_0018
	286820_0019
	286820_0020
	286820_0021
	286820_0022
	286820_0023
	286820_0024
	286820_0025
	286820_0026
	286820_0027
	286820_0028
	286820_0029
	286820_0030
	286820_0031
	286820_0032
	286820_0033
	286820_0034
	286820_0035
	286820_0036
	286820_0037
	286820_0038
	286820_0039
	286820_0040
	286820_0041
	286820_0042
	286820_0043
	286820_0044
	286820_0045
	286820_0046
	286820_0047
	286820_0048
	286820_0049
	286820_0050
	286820_0051
	286820_0052
	286820_0053
	286820_0054
	286820_0055
	286820_0056
	286820_0057
	286820_0058
	286820_0059
	286820_0060
	286820_0061
	286820_0062
	286820_0063
	286820_0064
	286820_0065
	286820_0066
	286820_0067
	286820_0068
	286820_0069
	286820_0070
	286820_0071
	286820_0072
	286820_0073
	286820_0074
	286820_0075
	286820_0076
	286820_0077
	286820_0078
	286820_0079
	286820_0080
	286820_0081
	286820_0082
	286820_0083
	286820_0084
	286820_0085
	286820_0086
	286820_0087
	286820_0088
	286820_0089
	286820_0090
	286820_0091
	286820_0092
	286820_0093
	286820_0094
	286820_0095
	286820_0096
	286820_0097
	286820_0098
	286820_0099
	286820_0100
	286820_0101
	286820_0102
	286820_0103
	286820_0104
	286820_0105
	286820_0106
	286820_0107
	286820_0108
	286820_0109
	286820_0110
	286820_0111
	286820_0112
	286820_0113
	286820_0114
	286820_0115
	286820_0116
	286820_0117
	286820_0118
	286820_0119
	286820_0120
	286820_0121
	286820_0122
	286820_0123
	286820_0124
	286820_0125
	286820_0126
	286820_0127
	286820_0128
	286820_0129
	286820_0130
	286820_0131
	286820_0132
	286820_0133
	286820_0134
	286820_0135
	286820_0136
	286820_0137
	286820_0138
	286820_0139
	286820_0140
	286820_0141
	286820_0142
	286820_0143
	286820_0144
	286820_0145
	286820_0146
	286820_0147
	286820_0148
	286820_0149
	286820_0150
	286820_0151
	286820_0152

