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ABSTRACT 

This thesis presents a collection of practical techniques for analysing various market properties in 

order to design advanced self-evolving trading systems based on neural networks combined with a 

genetic algorithm optimisation approach. Nonlinear multivariate statistical models have gained 

increasing importance in financial time series analysis, as it is very hard to fmd statistically significant 

market inefficiencies using standard linear modes. Nonlinear models capture more of the underlying 

dynamics of these high dimensional noisy systems than traditional models, whilst at the same time 

making fewer restrictive assumptions about them. These adaptive trading systems can extract 

information about associated time varying processes that may not be readily captured by traditional 

models. In order to characterise the fmancial time series in terms of its dynamic nature, this research 

employs various methods such as fractal analysis, chaos theory and dynamical recurrence analysis. 

These techniques are used for evaluating whether markets are stochastic and deterministic or 

nonlinear and chaotic, and to discover regularities that are completely hidden in these time series and 

not detectable using conventional analysis. Particular emphasis is placed on examining the feasibility 

of prediction in fmancial time series and the analysis of extreme market events. The market's fractal 

structure and log-periodic oscillations, typical of periods before extreme events occur, are revealed 

through recurrence plots. Recurrence qualification analysis indicated a strong presence of structure, 

recurrence and determinism in the fmancial time series studied. Crucial fmancial time series 

transition periods were also detected. 

This research performs several tests on a large number of US and European stocks usmg 

methodologies inspired by both fundamental analysis and technical trading rules. Results from the 

tests show that profitable trading models utilising advanced nonlinear trading systems can be created 

after accounting for realistic transaction costs. The return achieved by applying the trading model to 

a portfolio of real price series differs significantly from that achieved by applying it to a randomly 

generated price series. In some cases, these models are compared against simpler alternative 

approaches to ensure that there is an added value in the use of these more complex models. The 

superior performance of multivariate nonlinear models is also demonstrated. The long-short trading 

strategies performed well in both bull and bear markets, as well as in a sideways market, showing a 

great degree of flexibility and adjustability to changing market conditions. 

Empirical evidence shows that information is not instantly incorporated into market pnces and 

supports the claim that the fmancial time series studied, for the periods analysed, are not entirely 

random. This research clearly shows that equity markets are partially inefficient and do not behave 

along lines dictated by the efficient market hypothesis. 
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Chapter 1 

The Scope and Methods of Study 

1.1 Introduction 

The main areas of this research are the study and characterisation of financial time series 

in order to design advanced self-evolving trading systems based on neural networks and 

genetic algorithms. These powerful tools are used to discover the underlying structure 

and behaviour of fmancial time series. The trading systems are consequently used to 

establish whether stock returns are predictable to some degree, so that profitable trading 

systems can be designed after applying realistic transaction costs. Before attempting to 

apply prediction models to financial time series, an analysis of the underlying nonlinear 

systems is carried out in order to derive appropriate model parameters. 

As the title of this thesis suggests, the trading models in this research are based on 

predictions. Most professional investment practitioners avoid this word in their 

prospectuses and marketing material. Claiming that an investment strategy is based on 

the prediction of what is believed to be random and unpredictable may seem foolish and 

is very unlikely to raise money from investors. For this reason certain trend followers 1 

insist that purely riding the trend has nothing to do with prediction and they only follow 

and react to the current price. It could be argued that predictions are made by simply 

believing that the price is going to continue in the direction in which bets have already 

been placed. Assuming that trend following is a good strategy could be a prediction in 

itself, as this must be based on some historical analysis? 

The word 'betting' is also rarely used in finance and is replaced by "investment". 

However, the market is a zero sum game and for every winning trade, one looses, for 

every successful investor/ fund/investment company there are many unsuccessful ones. 

Are winners and losers decided upon purely by random events as suggested by some 

authors [55], or is there such a thing as competitive advantage? Can the existence of 

many hedge funds that have an outstanding performance for many years confirm the 

1 Trend following, Michael Covel, www.trendfollowing.com. 
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existence of competitive advantage? Or, are their returns a simple product of 

survivorship bias1 within a random process? Many highly successful hedge funds use 

quantitative models but do not publish any information publicly. Studies such as this 

one may help to demystify and broaden the knowledge about certain types of 

quantitative models that can be used successfully in trading and fund management. 

These advanced trading models can aid in discovering patterns and inefficiencies in the 

market and help to create trading strategies that can generate profits after corrections 

for risk and transaction costs. There is more likelihood of achieving this if problems are 

tackled from different angles using a variety of different fields, tools, techniques and 

technologies as opposed to using a single approach that may narrow the perspective and 

loose sight of the bigger picture. 

Most existing research in this area to date is based on linear or simple nonlinear models. 

These models are mathematically convenient and computationally inexpensive; however 

they cannot fully estimate the underlying parameters, especially if they are non­

Gaussian. This thesis aims to improve the system characterisation by using 

nonparametric models that can approximate any distribution type and continually evolve 

along with changing market conditions. Empirical evidence suggests that many financial 

markets are nonlinear dynamic systems generating prices which do not follow a random 

walk and cannot be modelled using the normal distribution. They are also much more 

volatile at the time than standard financial theory suggests and as a result the 

distributions of price returns have fat tails. These highly volatile periods are clustered in 

time, and the volatility (standard deviation) is constantly changing over time. In 

addition, many time series show a presence of memory, i.e. that prices are not 

independent of each other [50]. For these reasons, alternative forecasting methods are 

used in this research, based on nonlinear optimisation models that may exploit some of 

these market properties and inefficiencies. They may discover some neglected areas of 

the markets and reveal persistent systematic price discrepancies. 

The models are developed using a combination of Genetic Algorithms (GA) and 

different types of Neural Networks (NN) as they are very flexible tools that can model 

complex nonlinear problems without any assumption of the underlying distribution. 

These tools can utilise knowledge from various disciplines, mainly Computational 

1 See section 1.4.1 for more information on survivorship bias. 
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Intelligence, Statistics, Nonlinear Dynamics Fractals Chaos Theory Recurrence 
' ' ' 

Analysis, and Fuzzy Logic. 

Two outcomes of this research are to determine if the markets are efficient and random 
' 

preventing the creation of a profitable trading system, or inefficient, non-random with 

some predictable patterns, allowing the creation of profitable trading systems. Applying 

these models to a few time series would not be proof enough, as the results could be 

explained by chance alone. Instead, they are applied to a large number of stocks and test 

sets data, which should enhance the credibility of the results as will be discussed. 

1.1.1 Objectives of research 

This thesis describes research undertaken to examine and develop methodologies for 

prediction of complex real world time series, based on analysis of securities from US 

and European markets. The objectives of the experimental studies performed in this 

research are to evaluate the possibility of their predictability through trading simulation 

tests. The main areas that this thesis addresses are: 

• Evaluating whether the markets fluctuate randomly or not, and presenting some 

insights into fmancial market behaviour. 

• Characterising the financial time series in terms of their dynamic nature and 

determining whether they are stochastic, deterministic, or chaotic. 

• Calculating the dynamical invariants used for the estimation of the embedding 

dimension and time delay parameters. 

• Analysing other relevant dynamical properties such as the degree of 

determinism through Recurrence Plots (RP) and Recurrence Qualification 

Analysis (RQA). 

• Analysing market crashes using RP and the RQA. 

• Examining the feasibility of prediction in financial time senes, applying the 

most suitable prediction models and comparing their forecasting efficiency. 

• Testing of both univariate and multivariate statistical models. 

• Testing of both technical trading models and models based on fundamental 
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• 

variables. 

Modelling the financial time series with neural networks and genetic algorithms 

and assessing their ability to predict future events from past histories, and 

highlighting their limitations. 

Some models were tested using standard statistical error forecasting measures, whilst 

others were tested through trading performance and the evaluation of portfolio risk and 

returns. By analysing the root mean square error (RMSE) and similar statistical 

measures used to evaluate the performance of forecasting models, it is not possible to 

tell whether profitable trading strategies can be based upon the results. Instead, the 

emphasis has been placed upon the performance of trading strategies, which convert 

model predictions into recommendations for buy/ sell actions. In order to closely 

simulate real trading systems, most models are evaluated using realistic transaction costs 

and are tested on 5 to 10 years of 'unseen' (out-of-sample) data. These models use 

various advanced tools and techniques adapted and combined with new ideas for 

financial analysis of quantitative time series data, as well as fundamental information 

found in companies' financial reports. It is this successful adaptation and combination 

of techniques applied to different markets using novel trading models that add a 

contribution to the knowledge on this subject. Additionally, this research characterises 

some financial markets over time by evaluating their statistical properties and variations 

in efficiency and predictability. 

It is assumed that the US market is the most "efficient"1 world market, and if a trading 

model performs well in this market, then it should perform equally well, if not better in 

other markets. In this research different methods and models are compared with their 

individual and combined effects on the final results across different markets 

1.1.2 Research hypotheses 

The aim of this research is to determine whether financial equity markets are predictable 

to some degree so that profitable trading strategies can be created which take into 

account reasonable trading costs. 

1 The efficient market i~ difficult to 'beat' a~ there are very few opportunities to make profitable trading system,, 
because the market participants act very fast and iron-out any inefficiencies that can be exploited for protitable 

trading 
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The null hypothesis can be expressed as follows: 

• HO -Profitable trading models utilising advanced nonlinear trading systems and 

applied to equity markets, cannot be created after accounting for reasonable 

transaction costs. 

The corresponding alternative hypothesis is as follows: 

• H1 -Profitable trading models utilising advanced nonlinear trading systems and 

applied to equity markets, can be created after accounting for reasonable 

transaction costs. 

The rejection of a null hypothesis would indicate that the equity markets are not 

efficient or random, and predictable to a degree allowing for the creation of profitable 

trading systems. Whilst, the acceptance of the null hypothesis would conclude the 

opposite, i.e. equity markets are efficient, random and unpredictable, thus not allowing 

for the creation of profitable trading systems. 

In addition to the main hypothesis above we can formulate an additional hypothesis: 

• H2 - Neural networks represent superior forecasting models compared to other 

non-parametric approaches. 

1.1.3 Organisation of the thesis 

This thesis is presented in nine chapters: 

Chapter 1 - "The Scope and the Methods of Study", defines the research hypothesis and 

provides the necessary background into the research area, including an overview of 

traditional market models and insights into financial market behaviour. 

Chapter 2 - "Neural Networks and Genetic Algorithms", introduces key technologies 

and tools used in this research. It describes the general design features of neural 

networks and genetic algorithms and their practical implementation issues. 

Chapter 3- "Fractal Market Analysis", provides an introduction into the main properties 

of fractals and their relevance in finance. It also describes the technique for measuring 

the Hurst exponent and its use in deriving trading strategies. The trading simulation test 

applied to 30 components of the Dow Jones Industrial index is presented utilising the 
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Hurst exponent as an indicator for switching between different trading styles. 

Chapter 4 - "Chaos Theory and Finance", describes the essential properties that lie 

behind chaotic nonlinear systems and their application to finance. It also portrays 

calculation techniques for the estimation of parameters required for reconstruction and 

analysis of time series. The embedding dimension is calculated using the correlation 

integral and false nearest neighbour methods. The average mutual entropy approach 

was used to estimate time delay. These dynamical invariants and parameters were 

estimated for a well known chaotic time series, a logistic equation, as well as for a 

financial time series. The resulting estimates were consequently used to determine 

whether the time series were of stochastic, deterministic, or chaotic nature. 

Chapter 5 - "Nonlinear Systems Recurrence Analysis", introduces graphical, statistical 

and analytical methods for studying nonlinear dynamic systems, including state space 

plots, recurrent plots and recurrence qualification analysis. This chapter describes the 

use of these methods in analysing various dynamical properties such as the degree of 

determinism in financial time series, with particular emphasis on extreme market events. 

Chapter 6 - "Nonparametric Time Series Forecasting", focuses on "univariate" time 

series modelling and forecasting using the knowledge and findings from previous 

chapters. Several nonparametric predictive models such as locally weighted linear, 

locally linear, radial basis, kernel regression, nearest neighbour, locally constant and 

neural networks were applied to financial time series and their forecasting performance 

is compared against "unconditional mean" and the "random walk" reference predictors. 

Four different trading systems, all utilising Probabilistic Neural Networks (PNN) and 

optimised using Genetic Algorithm (GA) were applied to thirty constitutes of the Dow 

Jones Industrial index. 

Chapter 7 - "Neural Networks Models Based on Fundamental Analysis", reviews the 

concept of company's fundamental analysis and tests two different investing styles, the 

'value' and 'growth' on a portfolio of European stocks. This chapter also applies dozens 

of financial ratios derived from their financial statements to trading models and 

portfolio selection utilising linear regression and a neural networks approach. 

Chapter 8 - "Neural Networks Models Based on Technical Analysis", discusses the use 

of technical analysis in trading and highlights its advantages and disadvantages 
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compared to models based on fundamental analysis. It also presents the results of 

several neural networks based trading models applied to several hundred US stocks. The 

effect of trading costs was also evaluated. The final test in this research determines 

whether the return achieved by applying the neural network trading model to a portfolio 

of real price time series differs significantly &om that achieved by applying it to a 

randomly generated price time series, &om where conclusions that will support the 

thesis hypothesis are drawn. 

Chapter 9- "Conclusions and Future Research Recommendations" concludes the thesis 
' ' 

discusses the findings and envisages a roadmap for future research. 

All test results are presented at the end of the chapters or sections rather than at the 

end of the thesis for continuity and ease of interpretation. 

1.2 Background 

In the literature on this subject, a number of different methods have been applied in 

order to predict financial time series. These methods can be grouped in four major 

categories: 1) fundamental analysis, 2) technical analysis, 3) traditional time series 

forecasting and 4) machine learning methods. 

Fundamental ana!Jsis is the study of a company's financial condition, operation, its 

industry and competitors and the general economic environment in order to determine 

its 'real' or intrinsic value [26], [30], [34], [35], [36], [37], [38]. Typical fundamental 

analysts will buy/ sell shares in a company if the intrinsic value is greater/less than the 

market price. 

Technical ana!Jsis is one of the oldest methods and is based on the interpretation of 

patterns, trends, cycles, and formations that develop on charts, with a primary aim of 

identifying major turning points in the market [1 ], [3], [6], [7], [15]. 

In traditional time series forecasting an attempt to create linear prediction models to trace 

patterns in historic data takes place. These linear models are divided into two categories: 

the univariate and the multivariate regression models, depending on whether they use 

one of (or) more variables to approximate the financial time series. Current methods 

however do not fully characterise the financial prediction problem. 

Finally a number of methods have been developed under the common label, machine 
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learning, these methods use a set of samples and try to trace patterns in them (linear or 

nonlinear) in order to approximate the underlying function that generated the data. 

They include advanced modelling tools such as neural, genetic and fuzzy systems, which 

exploit nonlinear relationships and spot the recurring patterns in financial markets [8], 

[1 0][1 0], [11 ], [12], [13], [19], [24]. The level of success of these methods varies from 

study to study and is dependent on the underlying datasets and the way that these 

methods are applied each time. Nonlinear chaos theory and fractal statistics have been 

used to explain the seemingly random behaviour of economic time series [16], [17], [18], 

[23], [25], [41], [42], [43], [50], [53]. Though all these approaches seem different they are 

all interrelated and have many common features. For example, parts of the technical 

analysis of the Elliott Wave Theory and Fibonacci numbers can be explained as a result 

of the fractal nature of the markets. Nonlinear systems are an integral part of chaos 

theory. Chaotic systems generate fractals. Neural networks are efficient tools that can 

model nonlinear systems efficiently. There is therefore a common thread between all 

these areas which will be covered in this thesis. 

This research concentrates on machine learning Neural Networks (NN s) models, 

combined with fundamental analysis and technical analysis methods. In some cases the 

results are compared with traditional time series linear forecasting methods. There is a 

growing interest in the application of neural networks to financial engineering. Their 

ability to extract essential information buried in noisy data by nonlinear mapping of 

many input variables to one or many output variables and their fast response time in 

recall mode makes them an excellent tool for building real-time financial applications. 

NNs can be applied to many problems in finance where little is known about the 

relationship between variables and where it is not possible to derive a deterministic 

model. The most common analysis performed by NN s are continuous time series 

forecasting where they perform regression tasks, or solving classification problems 

where approximate probabilities of different categories are expressed as functions of 

input variables. 

A large number of academic research papers on this subject have been published, but 

very few by commercial investment companies. A credibility gap exists. It could be 

that there is a slow acceptance of this technology in the financial world or that there is 

an element of secrecy involved. The following are some examples of the few successful 
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commercial implementations that have been published. 

According to Loofbourrow, Fidelity Investment makes use of neural networks to 

manage a portfolio worth $3 billion [14]. Nikko Securities has implemented a hybrid 

neural network and fuzzy logic expert bond-rating system that has produced a better 

rating over long periods when compared to human expertise alone [14]. Citibank 

London has developed a foreign exchange trading system based on neural networks and 

genetic algorithm that guesses a 60 °/o directional change and makes a 15% yearly return 

[14]. 

One of main advantages of using such computerised models is that they introduce a 

stricter element of discipline in trading, removing elements of personal feeling or 

interpretation. 

On the subject of stock market prediction, researchers and academics tend to be divided 

into two groups: those who believe that the market is to a certain degree predictable; 

and those who believe that the market is efficient, purely random, reflecting all 

information in current prices, making any predictions that yield positive returns 

impossible, as described in Efficient Market Hypothesis (EMH). Furthermore, the latter 

believe that the stock market follows a random walk, which implies that the best 

prediction you can have about tomorrow's value is today's value. However, the EMH 

founded on random walk theory and linear models is not well supported by empirical 

evidence1 and has been questioned in recent years. Though EMH may not provide a full 

explanation of market behaviour, it is a good approximation of what occurs in the 

market most of the time. The main problem is that current market mathematical models 

ignore extreme situations of high volatility on the basis of a very low probable outcome. 

However, extreme movements in the market are relatively common. The assumption 

that the market is in equilibrium and that the past does not influence the present or the 

future is commonly held, but this could be far from reality. 

Before concentrating on neural networks, nonlinear systems and forecasting models, a 

brief outline of current financial models and their shortcomings will be presented. 

1 The distribution of financial returns exhibits fat tails and is not as uniform as the shape of the bell curve. .\ normal 
distribution is generally chosen for its analytical simplicity. 
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1.3 Traditional financial models and their limitations 

Bacheller [4] was the flrst to introduce the application of random theory based on 

normal distribution into fmancial market models. His work went unnoticed for over 

fifty years and only by the 19 50s and 60s was his work established as the bedrock of the 

Efficient Market Hypothesis. In the EMH model, price returns are independent of the 

previous day's returns, retaining no element of memory, akin to tossing a coin. Thus the 

best forecast of a future price is the current/today's price. The EMH assumes that all 

public information is already discounted in the price, that investors are rational, risk 

averse and react in the same linear fashion1
• However, this is far from reality as most 

investors do not react in the same way; some look to the short term and others follow 

long-term strategies. Speculators may do many trades a day, corporate treasurers may 

trade on weekly or monthly basis while central banks trade only occasionally. As well as 

operating on different time scales, the element of risk taking varies, with some investors 

reacting to information immediately and others waiting for it to accumulate and reach a 

"critical" point once a trend is conflnlled. This tendency to react in a nonlinear fashion 

may trigger chaotic behaviour in the markets. After all human nature is not perfectly 

rational, an example being the number of people that play the national lottery despite 

the remote probability of winning. 

Another assumption is that price changes are continuous, moving smoothly from one 

value to the next, not allowing for large jumps in either direction [53]. In a case such as 

this, continuous functions and differential equations could be utilised to model market 

behaviour. However, price jumps are very common in the flnancial market, from small 

ones caused for example by brokers skipping the intermediate values in their quotes, to 

large ones, often due to overnight "gaps" caused by strong positive/negative news 

reports. 

EMH also assumes that pnce changes follow Brownian motion, with a normal 

distribution and constant variance. However, the evidence of fat tails, short term and 

more recently long term dependence is mounting. Real flnancial data does not support 

those EMH assumptions, but at the same time the theory that fully explains the 

deviation is yet to be discovered. 

Traditional models, with their many assumptions, are relatively easy and convenient but 

1 Similar causes would produce similar reactions. 
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they do not fully capture and explain the complexity of market behaviour. They model 

investment behaviour by using simple linear differential equations with a single solution. 

Financial engineering was founded by Markowitz [82], [83] and in his market models 

every stock is described with two numbers, the mean and variance, representing reward 

and risk respectively. His later model, termed Modern Portfolio Theory (M:PT) and 

Sharpe's Capital Assets Pricing Model (CAP:M) [52] use the same principles. 

The MPT model is all about selecting a good mix of stocks to hold in a portfolio. 

Markowitz emphasised that investors ought to maximise expected returns on their 

investments for a given level of risk. He proposed the variance of returns of a portfolio 

as the measure of its risk, and the covariance of a stock's return with respect to the 

portfolio as a measure of how diversifying that stock would be for the given portfolio. 

His formulation led to a solution of the portfolio selection problem in terms of a 

quadratic optimisation problem, which is at the core of most portfolio management 

systems today. 

Sharpe criticized the MPT model, stating that: "If everybody in the market evaluated the 

same selection of stocks and used Markowitz's Modern Portfolio Theory they would 

arrive at the same portfolio, one portfolio for all." The CAPM is a model that grew 

from the MPT model and is based on the T -bill rate and stocks "beta" value, which 

measures the strength of the linear relationship between the asset value and the return 

of the market overall. This model was soon modified to include as many factors as 

required leading to the birth of the Arbitrage Pricing Theory (APT) model. In order to 

accommodate changes in volatility over time, economists devised a further model called 

GARCH. From here on models have been evolving whenever shortfalls appear. 

Black and Scholes [113] quantified the relationship between what is now a standard 

fmancial instrument called an "option" and the stock or other asset underlying it. Their 

option pricing formula had wide acceptance and its use in the rapidly growing 

derivatives segment of the fmancial markets is well established, and has also found wide 

use in other areas of finance. 

Some researches have since introduced different models; Mandelbrot's model of asset 

returns based on fractional Brownian motion and multifractal time [50], and Ross's 

Arbitrage Pricing Theory that handles nonlinear relationships [51]. 
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1.3.1 Market (in)efficiency and the distribution of financial returns 

An analysis of the Dow Jones Industrial (DJI) index shown in figure 1-2 highlights some 

of the problems faced by traditional models' assumptions. The price shown in the 

figure is the actual price, not the logarithmic price commonly used in financial charts. 

Understandably, an index with an exponential growth may look less extreme on the 

logarithmic plot. It took over sixty years for the DJI to reach the 2000 mark, and less 

than twenty years to break the 13000 level. 
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Figure 1-2. The Dow Jones Industrial index (01/10/1928- 01 / 05 /2007). 

Figure 1-3 shows the DJI daily return distribution compared to the normal distribution. 

The index has a very high peak, which reflects the high kurtosis of 26.78 (table 1-1). 

The extent of its fat tails are only obvious in chart B which is a magnified part of the 

distribution chart A. The normal distribution graph (in red) tails off rapidly showing no 

changes greater than 5 a, while the DJI distribution (in green) has many changes 

beyond 5 a including one at 22 0" . 

Table 1-1. DJI descriptive statistics. 

Mean 0.00008663 

Standard Deviation 0.00494912 

Sample Variance 0.00002449 

Kurtosis 26.78288073 

Skewness -0.66802262 
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Figure 1-3. The DJI price change distribution compared to normal distribution (A) and the fat tails 

(B). 

When comparing the following graphs in figure 1-4 the difference between the DJI 

changes and the normally distributed time series changes are very noticeable. The DJI 

changes are irregular, with alternatively narrow and widened parts and often highly 

volatile periods are clustered in time. There are too many very small price changes 

causing high kurtosis, and numerous big price changes causing fat tails, with few points 

in between. Whenever we have clustering, with many extreme and small variations of 

data as shown in figure 1-4 (DJI case), the overall mean measure does not make sense or 

simply does not exist. As we include more data, the sample mean either keeps increasing 

or decreasing. There is no one value that best describes the data as it extends over a 
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range of many different values. In further sections we will see that the ratio between big 

and small changes can be characterised by a parameter called fractal dimension. 
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Figure 1-4. DJI price changes compared to computer simulated randomly price changes. 

The media tends to give the average income in the financial City of London, but this 

figure is highly distorted by a few extremely large individual incomes. Similarly, the 

average distance between stars in the universe is a meaningless figure, as they tend to 

cluster in galaxies that are a huge distance apart. If the mean and the variance of the 

market time series are of a similar nature, then most of the current financial models are 

far from correct and reliable. 

In order to compare the risk of these two time senes, we measure the changes in 

standard deviation (o-) shown in figure 1-5. The DJI volatility is extreme and 

constantly changing over time compared to Brownian motion, which shows small and 

uniform changes. For normal distribution the probability of an event being larger than 

So- is 0.000000000001279. According to this, it should take around 1,555,000,000 

trading years for such an event to happen, but there have been 11 occurrences in DJI 
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during the last 78 years (1928-2006). Similarly the 5 a event should happen every 7,000 

years, and there have been 70 for the same period. Occurrences above 10 a in normal 

distribution are virtually nonexistent (one in 10 billion years y, so standard Gaussian 

tables don't even consider them. However, there were 6 such events, and on Oct 19rh 

1987, the DJI change was over 22a with the odds of that happening under Gaussian 

rule being less than one in 1050
• 

Table 1-2. Common "rare" events in DJI (1928-2006). 

Standard deviation (a) Number of occurrences in 
DJI (1928-2006) 

()" >5 70 

()" >6 44 

()" >7 24 

()" >8 11 

()" >9 10 

()" > 10 6 

()" > 20 1 

The example above clearly shows that DJI changes do not follow the normal 

distribution as described by the bell curve. It is interesting to note that the recent DJI 

price variability is similar to that which occurred 90 years ago, a time at which the 

markets were unregulated. 

Stocks, currencies and many financial instruments are much riskier and turbulent than 

current models indicate. Many financial organisations are aware of this but are reluctant 

to put in practice a more stringent risk management system, as this would necessitate 

larger cash reserves in order to cover up potential losses and consequently create stricter 

requirements upon business. Therefore, companies introducing this would be at 

comparative disadvantage. However, market bubbles and crashes are inherent to all 

markets and it is just question of bad luck and time as to who is going to be the next big 

looser, as was the case for Long-Term Capital Management, Barings, Amaranth and 

many others. 

1 Older than Big Bang? 
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Figure 1-5. DJI changes (in standard deviations), compared to Brownian motion. 

If markets are not purely random, but exhibit nonlinear behaviour expressed through 

market bubbles and crashes, it would be possible to create successful trading systems 

that could exploit market inefficiencies. The next section will describe the basic 

properties of a successful trading model. 

1.4 The two main components of a successful trading system 

Apart from risk management, the two most important ingredients of a successful 

trading system are the percentage of profitable trades and the average payoff ratio. The 

latter is derived from the average amounts of winning and losing trades. Having these 

principles right and armed with a good risk and money management system would put 

any trading strategy on a good track to perform well. Ideally, a winning probability 

should be more than 0.5 (50°/o) and the win/loss ratio should be above 1.0. Only by 

looking at these two measures jointly can we assess the performance of a trading system. 

Individually, they tell us very little, as there can be a good trading system with a 0.4 
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winning probability (figure 1-1, C), and a bad one with a 0.6 winning probability (figure 

1-1, D). Trend following systems usually have a winning probability ofbelow of0.5 and 

a win/loss ratio of above 1, whilst reversal systems have winning probability above 0.5 

and a win/loss ratio below 1. 
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Figure 1-1. Simulated performances of 30 time series randomly generated, using different 
winning probabilities and payoff ratios. 

Figure 1-1 shows the simulated performance of 30 time senes that are generated 

randomly using different winning probabilities and payoff ratios. The x -axis represents 

time and they-axis corresponds to a randomly generated value. All the graphs are 

generated for 453 bars 1 where the process of trading is absolutely random and the only 

difference is the one made by positive/ negative mathematical expectation determined 

by the win/loss ratio and the winning probability parameters. 

1.4.1 Survivorship bias 

If we assume that the time series presented in figure 1-1 represents the performance of 

30 funds, starting with an initial value of 100, that makes plot A's results very 

interesting. With a win probability of 0.5 and a payoff ratio of 1.0, we would expect 30 

1 Almost two trading years, assuming these are daily prices. The graphs are produced using the Java applet from 
http: / /www. hquotes.com/tradehard/ simulator.html. 
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funds to hover randomly around the 100 value line, but instead most of them depart far 

from the line symmetrically on each side. On average, they don't make a profit, but 

some individual funds have a staggeringly good performance (the best performing one 

with 56°/o profit), and some unlucky ones have a very poor performance (the worst one 

showing a -62°/o loss). Typically, investors pull their money out of the worst performers 

and pile it up in a number of top performing funds. The less fortunate funds close and 

are soon forgotten. This cycle is continuous and analysts follow the funds that survive, 

often omitting the funds that disappeared from their analysis. This situation is known as 

survivorship bias. 

Unfortunately, the hypothetical example shown in figure 1-1 (A) may represent a 

realistic picture of what happens in the fund industry most of the time. 

1.5 Conclusions 

This chapter presented evidence that markets are more volatile than standard financial 

theory suggests and as a result the distributions of price returns have fat tails. These 

highly volatile periods are clustered in time, and this makes the standard deviation 

change constantly. Preliminary data exploration indicates that markets exhibit nonlinear 

behaviour, with a probable chaotic element. If markets are not purely random and 

exhibit nonlinear behaviour expressed for example, through market bubbles and 

crashes, it would be possible to create successful trading systems that can exploit market 

inefficiencies. The basic requirements of such systems were presented. 

The next chapter will introduce key technologies and tools, i.e. neural networks and 

genetic algorithms that are subsequently used in this research to build trading models. 
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Chapter 2 

Neural Networks and Genetic Algorithms 

2.1 Introduction 

In the past, scientific research was mainly based on empirical and theoretical studies. In 

recent decades it is relying more on computational analysis and currently we see more 

research based on empirical data exploration, combining theory, experiments and 

computation with advanced tools and new algorithms. There are many time series 

found in finance and other disciplines that are impossible to analyse using conventional 

linear models, where nonlinear and non-parametric methods such as neural networks 

and genetic algorithms are more suitable. In this chapter these two key technologies 

and their practical implementations are described. Only concise and relevant description 

of them will be presented. 

2.2 Neural networks 

Artificial neural networks are very flexible tools that can model complex nonlinear 

problems and extract underlying functionality from data without any assumption of the 

underlying distribution. Their development is based on the basic understanding and 

functionality of biological neural networks. 

2.2.1 Biological neural networks 

The human cerebral cortex is made of complex network of cells called neurons. Their 

main role is to process and transmit neural information. Some estimates are that the 

brain contains between 10 billion and 1 trillion of these neurons [117]. A simplified 

biological neuron is shown in figure 2-1. 
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Nucleus 

- Axon terminal 

Figure 2-1. Neuron 1
• 

Each neuron consists of a cell body (soma) including nucleus, one or more long nerve 

branches called axons and a number of shorter and narrower extensions called 

dendrites. Among other functions dendrites act as receptors receiving impulses from 

other neurons and passing them on to the neuron's cell body. If stimulus from the 

dendrites reaches a certain threshold, the cell fires and generates an electrical impulse, 

which is conducted away from the cell body via the axon to a synaptic knob at its end, 

triggering the release of neurotransmitter molecules passing the impulse on to the 

neighbouring target cell. 

This very simplified description of neurons and their functions is the basis for artificial 

neural network development. Unfortunately, we are still in the early stages of 

understanding the complexities of brain function and far from creating artificial models 

with similar abilities. However, the advances in the pattern recognition applied to areas 

such as language, speech and vision are remarkable. 

2.2.2 Artificial Neural Networks (ANN) 

There are many types of artificial neural networks; some of them mimic basic human 

brain functions including memory, speech and the use of language, whilst other types 

are developed through a scientific engineering approach of pattern recognition, 

classification, and prediction. They attempt to duplicate the actual parallel processing 

1 Source: Royalty-Free Stock Photos, www.shutterstock.com. 

20 



capability of the nervous system at an elementary level. The ANN are composed of 

numerous interconnected simple computing elements (neurons) connected by many 

links of variable numerical weight associated with them. Positive weights activate the 

neuron whereas negative weights inhibit it. Statistically speaking, these weights 

represent free parameters in a complex nonlinear function and their values are set by 

means of regression. From an AI perspective they represent memory and the learning 

process is achieved through the adjustment of these weights. The ANN s are in essence 

statistical devices, consisting of a large set of interdependencies which may incorporate 

any degree of nonlinearity, allowing very general functions to be modelled [96]. This 

chapter focuses on feed-forward neural network models because they are simpler to use 

than others, better understood, and closely connected with statistical classification 

methods. 

2.2.2.1 The structure of a multilayer ANN 

Probably the most successful and widely used neural network type is the multilayer 

back-propagation network with a graphical representation shown in figure 2-2. 

Inputs Hidden Layer Output(s) 

XI 

Figure 2-2. A typical two-layer neural network. 

In this type of network the computational units are arranged into a sequence of layers; 

an input layer, one or more middle (hidden) layers and an output layer. The hidden 

layer gives the network the ability to generalise and find relevant answer from previously 
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unseen data. The inputs Xp x2 , • •• , x N are connected to neuron j with weights 

W 1J, X 21 , ••• , x NJ" Each network unit receives a number of signals from either the 

network inputs or the activations of incoming neurons. These signals are multiplied by 

the connecting weights, summed and passed through some form of a nonlinear 

threshold function which determines the neuron's activation level, and passed onto a 

next layer of neurons. These activation functions, also called squashing or transfer 

functions, usually map any real number into a bounded domain 0 to 1 or -1 to 1. The 

nonlinear transfer functions offer the possibility of building nonlinear models. The 

most commonly used activation functions are presented in table 2-1. 

Table 2-1 . Neuron activation functions. 

1 Step (Heaviside) f(x) =g if(x ~ O) 
j E (0,1) I I I I 

if(x < 0) ·2 ·1 1 2 

'I 
{ I if (x ?. 0) 

j E (-1,1) Sign f(x) = - 1 if (x < 0) I I I I 
-2 -1 1 2 

-1 

1 
j E (0,1) ~~ Sigmoid (logistic) f(x) = 1 -x 

+ e 
-1 

Sigmoid x -x k: e - e 
j E (- 1,1) (hyperbolic f(x) = 

X -X £3112 tangent - tanh) e + e -1 

2 j E (0,1) ~ Gaussian f(x) = e-x 
·1 

r 
if(x< - 1) 

IC: Semi-linear f(x) = ~ if(- l<x<l) j E (- 1,1) !J/1~ 
if(x > 1) -1 

f(x) = x 
f E (- oo,oo) v Linear 

-2 y 1 2 

-1 

Early ANN models, such as perceptron, used a simple step activation function which is 

appropriate for discrete neural networks. The sigmoid functions are more appropriate 

for analogous networks and are most commonly used due to the ease of computing 

their derivatives which are used in the learning phase. The Gaussian functions are 

mainly used in Radial Basis Function (RBF) networks. The linear function is mainly 
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used in output units and if used in other neurons, the network will only haYe a linear 

capability to fit functions. 

The output of the neuron j is specified by the following equation: 

(2.1) 

where~ is the activation function, w!i is the set of weights connecting all N inputs to 

the neuron;: X; are input values, and the term (}
1 

is subtracted from the weighted sum 

representing the threshold value of the unit j that the sum must exceed to make the 

neuron fire. 

In the case of the sigmoid activation function the equation can be written as follows: 

(2.2) 

In the so called feed-forward NNs the output signals are passed in one direction only, 

whilst Recurrent Neural Networks (RNN) may selectively route the unit output back to 

the earlier nodes, with the characteristics of a highly nonlinear system with feedback. 

This type of network is designed specifically to model time-varying patterns and it is a 

good choice in fmancial time series forecasting. 

2.2.2.2 Learning algorithms 

As the network's "knowledge" is stored in the weights, the learning process takes place 

during their updates. The learning or training algorithm finds a certain set of weights for 

the network to perform a desired task. Generally, there are two main approaches to 

learning in neural networks: 

• In supervised learning or associative learning, the network is presented with a 'teacher' 

representing a set of examples of corresponding inputs and desired outputs 

("targets"). The training algorithm works by minimising the error between the 

output and the target (actual) values and propagating the error back by adjusting 

the network weights. In the first instance, they are initialised into small random 

values and as the learning progresses they are increased to a larger positive or 

negative value. There are many variants of supervised training methods with 
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back-propagation often being used in multilayer networks [97]. In the forward 

pass, the outputs for a specific input pattern are calculated, and the error at the 

output unit is determined. The learning algorithm has to select the weights in 

order to optimise the match between output and target values, typically by 

minimising the total mean squared error E over all training examples P and the 

output units K : 

(2.3) 

where Tpk is a desired target value and Ypk is the network output value. In the 

backward pass, weights are modified with the amount proportional to the first 

partial derivative of the error with respect to the weight. 

BE 
Llwj,i = -7] aw .. 

j,l 

(2.4) 

This algorithm is called the gradient descent as it tries to move down the lowest 

value of an error surface. The 7] parameter, called learning rate, controls the size 

of the correction term that is applied to adjust the neuron weights during 

training. In other words, it determines the size of the descent step down the 

error surface. The small value of the learning rate increases the possibility of the 

model getting stuck at a local minima of the error surface. On the other hand, 

the large value may speed up the training time, but it may also cause the model 

to fail in fmding the optimal solution. 

The update rule can also be influenced by a momentum term, which is proportional 

to the size of the previous update. It acts as a smoothing parameter and helps 

the model to find the global error minima. 

For each input-output training example one forward and one backward pass is 

performed. One cycle or epoch is completed when all training samples have 

been presented to the network. The process is reiterated until a sufficiently low 

error is obtained or a maximum number of training cycles is reached. Networks 

can be trained incrementa!!J (on-line learning), where the weights are adjusted after 

each learning pattern presentation or in a so-called batch mode, in which the 
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weights are adjusted only after each epoch. 

When the error is within acceptable limits and the network has learned or 

memorised all training patterns to a certain degree, it can then be (and is) 

considered "trained". Any new data presented to the network will produce an 

output value that is simply a weighted average of the target values of training 

cases close to the given input case. 

In unsupervised learning or se!forganisation there is no pnory set of categories 

('teacher'); the network discovers clusters or patterns from the input data 

direcdy [98], [99]. Each of the sample inputs to the network is assumed to 

belong to a distinct class and is classified accordingly. Such models include 

Gaussian mixture models, that represent data in terms of a probability density 

function, and Kohonen networks, where data is modelled in terms of cluster 

centres and widths. 

2.2.2.3 AN"N Generalisation and over-fitting 

When forecasting real financial data, the most important issue is the quality of future 

predictions (i.e. generalisation) outside the training set; how well a model fits the training 

data is of less importance. One way to improve the generalisation is to use a second 

data set, the validation set, in addition to the training set. The validation set is used to 

test the model for its predictive ability and signal when to stop the training of the ANN. 

Each time the network weights are adjusted using the training set, their performance is 

measured against the validation set. With an increase in the model size and the training 

time, the fitting error of the model decreases. However, the validation test error of the 

forecasts beyond the training set will usually start to increase at some point because the 

model will be fitting extraneous noise in the system. This is called overfitting. 

The right network complexity and the training time must be found for the network to 

generalise well. Figure 2.3 illustrates the principle of generalisation and memorisation 

(over-fitting), which is also called bias and the variance problem. 
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Figure 2.3. The generalisation vs. overfitti.ng: case (a) is a typical example of poor generalisation 
due to an "under-trained" model or not complex enough model, (b) is a case of good 
generalisation, whilst case (c) is an example of an over-trained and complex model having poor 
generalisation. Source [100]. 

The over-fitting is usually controlled by cross-validation (or early stopping) (101], through 

the use of regularisation terms [102], and model complexity selection methods [103]. 

The early stopping or cross-validation method is an ad-hoc solution that monitors the 

training and cross-validation error at the same time and prematurely stops the learning 

algorithm that minimises the training error at the point where the cross-validation error 

starts to rise (figure 2.4). 

Cross-validation error 

---
. . _:::.;.--------Trammg Error---- -----·-

T:railliDg Time I Complexity 

Figure 2.4. An example of a training and the cross-validation error function. Source [100]. 

The regularisation methods introduce an element of bias in the training algorithm, that 

penalise some unwanted properties, for example, excessively large weights. This weight 

deccry method constrains the network by prohibiting weights from growing too large and 

adds an extra term to the cost function, which penalises large weights (1 08]. Another 
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simple way to avoid over-fitting is the use of large data sets. 

2.2.2.4 Neural network topology 

The structure of the Multi-Layer Perceptron (MLP) network is defined by the number 

of hidden layers and the number of neurons in each hidden layer. The model selection 

process should follow Occam's razor principle that gives preference to the simplest 

structures that have a minimum number of free parameters and yet model the data 

adequately [100]. There are a number of different ways to attempt to find an optimal 

network structure. 

One approach is to start with a large network and use a pruning algorithm, which reduces 

the size of the network by removing the unnecessary links or units while still preserving 

the model's accuracy. The algorithms that remove the links are Magnitude Based, Optimal 

Brain Damage (OBD) [105], and Optimal Brain Surgeon (OBS) [104], whilst the Skeletonisation 

[1 06] algorithm removes the units. 

The second approach starts with a minimal network size, consisting only of an input 

and an output layer, and the algorithm adds the hidden layer units until the test (and/ or 

cross-validation error) falls below a given value. This type of algorithm is known as the 

Cascade-Correlation (CC) method [1 07]. 

Apart from possible improvements in network generalisation ability, both approaches 

above may lead to a better and smaller fitting architecture, reducing the run­

time/ memory requirements and finding relevant input variables. 

There are no fixed rules in determining the network structure and its parameter values. 

The number of weights and hidden layers/nodes depends largely on the complexity of 

the function to be modelled, the number of training cases, the amount of noise present, 

the desired accuracy of generalisation and the type of activation functions used. A large 

number of ANN s may have to be constructed with different parameters and structures 

before determining an adequate model This trial and error process can be tedious and 

time consuming. All this indicates that finding a good network size is an optimization 

problem and the best probable way to do it is by using the Genetic Algorithm (GA). A 

more detailed description of GA is presented in the following sections. 
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2.2.2.5 ANN applications in finance 

ANNs can be applied to many problems m finance where little is known about the 

relationship between variables and where it is not possible to derive a deterministic 

model. The neural network prediction approach is to identify the present state of the 

system which is producing the time series, and search past history for similar 

states/patterns from which future information can be inferred. Given enough data and 

enough hidden neurons, neural networks are capable of approximating any continuous 

functional mapping. Their ability to extract essential information buried in noisy data by 

nonlinear mapping of many input variables to one or many output variables and their 

fast response time in recall mode makes them very good for building real-time financial 

applications. ANN s are very adaptive and handle noisy and incomplete data sets well, 

which makes them particularly useful in fmance, where the environment is potentially 

volatile and dynamic. 

Neural network outputs can be expressed as conditional probabilities if appropriate cost 

and activation functions are used [5]. In this way networks are used as classifiers, 

showing both the presence and the probability of class membership. They are usually 

trained by minimising the least square error function, but other cost functions can be 

used such as those that maximise risk adjusted return, the number of winning trades or 

any similar performance measure. 

ANN s can be applied to a wide range of tasks including pattern recognition, 

classification, interpolation, filtering, system estimation and forecasting. There are many 

areas in finance where ANN's are or could be used and some of them being: 

• Financial and econotnlc forecasting, trading, investing and portfolio 

management. 

• Risk management, credit authorisation screening, risk rating of fixed income 

investments, fraud detection and bankruptcy prediction. 

• Securities and derivatives pricing. 

The three main ANN types are Multi-Layer Perceptron (MLP), Radial Basis Function 

networks (RBF) and Self-Organising Maps (SO:M). The other networks are variants of 

these three main types. For example, Recurrence Neural Networks (RNN) is a variant 
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of MLP, General Regression Neural Network (GRNN) and Probabilistic Neural 

Networks (PNN) are variants of the RBF network, and the Learning Y ector 

Quantisation (L VQ) is a variant of SOM. In order to solve complex tasks, a 

combination of two or more of these types can be applied. Multiple neural network 

architecture can provide better results in the case of complex problems but requires a 

more detailed problem analysis. Complex problems can be divided into several sub­

tasks and modelled individually by different networks of the same or different types 

respectively. An example could be the use of different networks to model different time 

frames in a time series. Another is the use of different networks to model different 

probability distributions. 

The main practical applications of these neural network types and their strengths and 

weaknesses are presented in table 2-2. 

Table 2-2. Main applicability and properties ofMLP, RBF and SOM networks. 

Type Applications Strengths Weaknesses 

Discrimination analysis Suited to a wide range of Training algorithm can get 

Classification 
problems. stuck in local minima. 

Interpolation 
Interpolates and generalises Will not indicate when inputs 
well. are outside the scope of the l'vfLP 

Forecasting Can accept both continuous 
training data. 

Filtering and categorical inputs. 

Process modelling 

Discrimination analysis Can model local data more Not suited to applications 

Classification 
accurately than MLP. with a large number of inputs 

(curse of dimensionality) as 

Interpolation 
Can indicate novel inputs. number of hidden units 

Easier and faster to train than grows exponentially with 
Forecasting MLP. number of inputs. 

Filtering Greater nonlinear capability Poor at representing the 

RBF Process modelling than MLP. Can be trained global properties of data. 

using a mixture of labelled Limited interpolation 
and unlabelled data. capabilities. 

Models are formulated PNN cannot ignore 
entirely in probabilistic terms, irrelevant inputs without 
which facilitates the modifying basic algorithm. 
interpretation of confidence 
boundaries. 
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Discrimination analysis Can cope with individual Poor at representing the 

Classification classes when they have a rich global properties of data. 
variety of forms. 

Provide discrete rather than Data compression 
Generally better at continuous outputs, which 
discrimination than MLP limit their use to 
where there is a severe classification problems. 
imbalance in the number of 

Difficult to determine when examples from each class. 
SOM 

training is complete. 
Can be used to distinguish a 

Need to make assumptions signal from a noisy 
background where the noise about the dimensionality of 

comes from different the output map. 

sources. 

Does not need labelled 
training data, can be used 
when little is known about 
the data. 

The RNN networks are particularly suitable for univariate (single) time series forecasting 

as they store information about time, and they are a preferable choice of tool than MLP 

for this type of problem. However, MLPs are better for problems where prediction 

depends on both the time series in question and other related time series. 

The SOM network has a single layer of units (figure 2-5) and during training the clusters 

of units become associated with different classes that have statistically similar properties 

which are present in the data. 

Inputs 

~--

Figure 2-5. Example of a SOM neural network with nine neurons (classes). 
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This type of network is useful in applications where it is important to analyse a large 

number of examples and identify groups with similar features. They are particularly 

effective in applications where there is a severe imbalance in the number of examples 

from different groups that need to be identified. Typical examples are fault detection 

and risk analysis. The SOM network can also be used as a pre-processor for supervised 

learning to detect whether there is sufficient discriminatory information in a training set, 

i.e. selecting features as inputs, as well as for setting the centres of radial basis functions 

in an RBF network. 

Another ANN type not yet mentioned is the Auto-Associative Neural Network (AANN) 

which is a particular type of MLP. Its structure is made of two 1'ILP networks 

connected "back to back" (figure 2-6). Their main use is in data validation, fault 

detection and data compression. 

Inputs Outputs 

Figure 2-6. An example of an auto-associative neural network architecture. 

These networks are trained with a target data set that is identical to the input data set. 

The key part in this network is the middle layer, which has a smaller number of units 

compared to inputs and outputs. The network learns the relationships within the input 

data and compresses them to a number of parameters equal to the size of the middle 

layer. Once the network has been trained, i.e. all output values match the input values, 

it can be used for data validation. When valid data is presented to the network, the 

output values will be close to the input values. If one of the input parameters is invalid 
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the outputs will be significantly different from the inputs and the difference can be 

easily detected. For data compression, the two last layers can be removed from the 

trained network, leaving the middle layer to produce the compressed version of the 

input data. This is equivalent to the nonlinear version of Principal Component Analysis 

(PC A). 

2.2.3 Data selection and pre-processing 

Regardless of the methods used to obtain forecasts, approaches that put more emphasis 

on meaningful data selection and pre-processing produce better results. This is 

particularly important for financial data, as the inner workings of the financial markets 

are hidden and the inputs can be/ are obscure and difficult to select. The success of 

neural network applications in time series forecasting, as with any statistical modelling 

tool, depends heavily on the information within the data itself. This data needs to be 

pre-processed to a suitable form for use with neural networks. Pre-processing is needed 

in order to scale the data into a desired range, to reduce the number of inputs, remove 

noise, and for encoding textual (categorical) data. Examples of typical pre-processing 

can be simple noise filtering using moving averages or more complex tasks such as 

Fourier or Wavelets transforms. Care needs to be taken not to remove chaotic or 

nonlinear components from the time series by filtering, as these elements can improve 

model performance. Neural networks can also be used for the successful filtering of 

time series. Unlike polynomial and smoothing splines, they are easy to extend to 

multiple inputs and outputs without an exponential increase in the number of 

parameters. Another pre-processing concern is the handling of data outliers. Most 

financial models ignore them on the basis that volatility before and after a large shift in 

price is similar, but in practice a single outlier is often followed by several others in the 

same or opposite direction. By including these large values in the model without 

disturbing its properties, big losses can be prevented in volatile periods. Neural network 

models are highly nonlinear tools and they are capable of modelling extreme values. If 

these outliers disturb the property of the model, they could be scaled into a range, and 

then an extra variable added representing their presence (i.e., 0 for no outlier, -1 for the 

negative, and +1 for the presence of positive outlier). Another variable can also be 

added, indicating its size. 
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2.2.4 Limitations of neural networks 

One of the main criticisms levelled at neural networks is that they cannot easily justify 

their answers. This "black box" problem has been addressed by extracting the rules 

from the trained neural networks. Commercial tools have already been developed to 

solve this problem. More trust may be gained by a better understanding of the 

representation of neural network outputs. 

2.3 Genetic Algorithm (GA) 

A genetic algorithm is a computational method modelled on the Darwinian natural 

selection mechanism, specifically the survival of the fittest. The basic principles of GAs 

were proposed by Holland [109], and further developed by Goldberg [110] and Koza 

[111]. GAs solve problems by removing less fit members from the population and 

selectively breeding the fittest ones that in the previous generation had found the best 

solutions 1• The breeding procedure includes three basic genetic operations: reproduction, 

crossover and mutation. 

2.3.1 The basic genetic algorithm procedure 

The algorithm starts with the creation of an initial population (first generation) which is 

made of a number of randomly selected individuals. The fitness of each member is 

tested using an objective function known as fitness function. The population is also 

given an overall fitness rating based on the ratings of its members. The fitness value 

indicates how close an individual or population is to the solution. 

A new generation is formed based on the fittest individuals of the previous generation. 

The reproduction process selects a fit member from the previous generation and passes it 

to the new generation without applying any change to it. The crossover process randomly 

selects two fit parents from the survivors' pool and recombines some of their 

characteristics (genes) in a random way to produce two new offsprings. Both 

reproduction and crossover operations pass only the existing information from 

generation to generation. To introduce novelty an additional operation, mutation, is 

used. Mutation generates an offspring by randomly changing the values of genes at one 

1 The individuals (candidate solutions) arc usually represented as binary coded strings of ftxed length .. \position, or 
set of positions in an individual is called a gene. 
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or more gene positions of a selected individual. Though the mutations can cause some 

abnormalities to an offspring, they occasionally improve the fitness of the population. 

Each iteration in a genetic algorithm creates a new generation. With a pure replacement 

strategy, the whole population is replaced by a new one. With an elitist strategy, a 

proportion of the population survives to the next generation. After dozens or even 

hundreds of 'generations', a highly fit population eventually emerges representing near­

optimal solutions to the problem under consideration. The search is terminated after a 

number of evolution cycles (generations) are reached, when the amount of variation of 

individuals between two successive generations virtually disappears, or when a pre­

defined value of fitness function is reached. 

A flowchart of the GA operations described is shown in figure 2-7. 

Gen = Gen + 1 

ri'prcduction 

Insert Two 
Offspring 
into New 
Population 

individuals = individuals + 2 

Figure 2-7. Genetic algorithm flowchart. Source [111]. 
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The three operations, reproduction, crossover and mutation that produce a new population 

are applied according to a probabilistic schema. Each of them has its own 

corresponding probability values, and the sum of all three is equal to one. Therefore, 

the number of offspring derived from these operations is proportional to their 

probabilities respectively. 

2.3.2 Genetic algorithm properties 

GAs use a minimum of information about a problem, they only require a quantitative 

estimation of the quality of a possible solution. This makes them easy to use and 

applicable to most optimisation problems. Furthermore, they do not use an "exhaustive 

search" technique, meaning that every possible combination is tested to find the best 

one. For reasons of efficiency, the exhaustive search optimisers tend to limit the 

number of variables they use. The genetic algorithm, by contrast, does not try every 

possible combination and is usually much faster than exhaustive search algorithms. 

GAs do not require a continuous or differentiable search space. "Newtonian" or "hill 

climbing" type optimisers often do impose such conditions. Exhaustive search 

algorithms can only work in continuous spaces if they are instructed to search in 

increments and thus they are more likely to become stuck in local minima. 1 This is less 

likely for GAs because they are searching many points in the search space 

simultaneously, and are not searching in increments (i.e. "hill climbing"). Since GAs 

don't search in orderly increments, they never know when they have found the optimal 

solution. Therefore, they use arbitrary stopping criteria when some number of 

generations pass with no better solutions being found, or when some amount of time 

has passed. 

GAs cannot always be guaranteed to find the optimal solution because they are not 

trying every possible combination. However, trading models, estimated from the 

training set, usually do not require the optimal solution because it will most likely over­

fit and generalise poorly. 

Choosing the right population size can also be difficult, as a small population provides 

an insufficient sample size over the space of solutions for a problem, and a large 

population requires a lot of evaluation which makes its processing slow. 

1 A local minima is a solution that the optimiser can never get out of in order to find better ~olution~. 
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GAs can fail if the parameters they are given are too restrictive. Optimisation may end 

early if the genetic algorithm cannot reproduce, i.e. if there is not enough diversity in the 

optimisation parameter search space. This happens when too many parameter 

combinations yield the same result. 

In general GAs are a good optimisation choice in complex problems with a large 

number of parameters, when the objective function is not smooth (i.e., not 

differentiable) and where there are multiple local minima. 

2.3.3 Genetic algorithm application 

Genetic algorithms have been found to be very powerful in solving optimisation 

problems that appear to be difficult or even unsolvable by traditional methods. They 

have been applied to the two main topics of this research: machine learning and 

financial applications. GAs were used to determine the best neural network topology 

(architecture) as well as optimising the learning algorithm parameters. The procedure 

examines a large number of networks and selects the one expected to have the best 

possible performance. 

In finance GAs can be used in many innovative ways, for instance in portfolio 

optimisation, i.e. by minimising financial risk while simultaneously trying to maximise 

return. In this research they are mainly used to solve the following problems: 

• Finding optimal trading strategies by fmding the rules to predict a rise/ fall of the 

financial security. 

• Finding the best inputs to a neural network. 

• Optimising technical indicators (used as the neural network inputs) by finding 

the best parameters for the particular trading period. 

• Finding the best buy/ sell thresholds in trading rules for neural nets. 

• Finding the best parameters for indicators used in limit orders, stop orders, and 

stop limit orders. 
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2.4 Conclusions 

This chapter has provided an overv1ew of the structure and operation of neural 

networks and genetic algorithms and the reasons for their use in this research. .More 

powerful multi-layered networks, combined with genetic learning algorithms are 

particularly suited to complex financial problems for which conventional statistical 

models are not suited. Their combination can dramatically reduce the complexity of the 

solution and produce more robust models. To be able to create such models we have to 

be certain that such a task is feasible. If the market fluctuates randomly then there is no 

space for predictions. 

The next chapters will introduce fractal and nonlinear market analysis which will be used 

to study market properties that can be utilised and exploited by NN and GA tools. 

37 



Chapter 3 

Fractal Market Analysis 

3.1 Introduction 

In the previous chapter, neural networks and genetic algorithms were described as two 

good candidate technologies for discovering underlying patterns and the dynamics of 

nonlinear financial time series. This chapter will outline the principles of fractal market 

analysis and its relevance to this research. The central theme of this research is based 

around the assumption that financial markets are nonlinear dynamic systems, generating 

prices that do not follow the random walk and the normal distribution. Both fractals 

and chaos1 are hallmarks of nonlinear dynamic systems. The physics behind this is an 

area of intensive research in many branches of science. The primary focus of this 

chapter will be on the analysis of the qualitative properties of fmancial time series and 

testing their predictability, nonlinearity and complexity. Many financial time series show 

a presence of "memory" (long dependencies) when scrutinised carefully utilising the 

correct tools. Trends, fractal scaling and occasional erratic behaviour are all common 

features found in financial markets and are indications and characteristics of nonlinear 

dynamic systems. 

Before going into more detail on this subject an introduction to the concept will be 

made, using simple examples that are relevant to real financial data. 

3.2 Fractals 

A fractal is a shape or pattern whose parts, property or structure is similar to the whole 

[53]. It has a special kind of invariance or symmetry that is present in the whole and its 

parts. They are found throughout nature, examples being clouds, lightning patterns, 

trees, human lungs and snail shells. Fractals are an important discovery because they 

change the way in which we analyse and understand experimental data. The notion that 

nonlinear dynamic systems create fractals will be discussed further ahead. 

1 Nonlinear behaviour that appears erratic and random. 
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Peters [17] gave a good explanation saying that they give structure to complexity, and 

beauty to chaos. 

Until recendy, scientists described nature using Euclidean geometry and the continuous 

mathematics of smooth forms made of lines, curves and planes. We tend to think in a 

'three dimensional way', which is a gross simplification of the real, rugged character of 

nature, where most things are not three dimensional. Through the introduction of 

fractal geometry founded by Mandelbrot [46], [47], which deals with the ruggedness of 

structures, we are able to study jagged and irregular objects that have a fractal 

dimension, a numerical measure of "roughness". 

3.2.1 The fractal dimension 

A fractal dimension is the measure of how much a multi-dimensional space is occupied 

by an object. For example, a jagged line like a coasdine has a fractal dimension of 

between 1 and 2, whilst a sheet of paper crumpled roughly into the shape of a ball has a 

dimension of between 2 and 3. The fractal dimension characterises how the property 

measured depends upon the resolution at which it is measured. It could be argued that 

the fractal dimension could be a better choice than volatility in assessing the 

"roughness" of financial time series. Essentially, it describes the changes in the 

variability of a measurement across a range of sample sizes in terms of a power law 

scaling relation. This could be compared to taking measurements of a coastline's length 

using different sized rulers and recording how the length changes as the ruler size 

changes. 

In order to estimate the fractal dimension of a time series, methods such as rescale 

range analysis and the correlation dimension are often applied. These methods will be 

discussed in more depth in the following sections. 

3.2.2 Randomness, determinism and fractals 

In order to produce a fractal object, there must be a combination of local randomness 

and an element of global determinism. The first introduces innovation and variety, 

whilst the second represents the rule or hidden order that 'shapes' this stochastic 

process. It is amazing to find how the combination of these two properties in their 

simplest form can produce astonishingly complex structures. Figure 3-1 illustrates how 
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trees, that appear to be complex natural objects, can be generated easily by an iterated 

process using simple equations, whose constants are randomly drawn from pre-specified 

values found in a number of different sets. There is no way to replicate the similar tree 

structure using Euclidean geometry. 

y n+l = ex n + dy n + f 

xn+l = rcos(B)xn -ssin(tp)Yn +e 

y n+l = r sin(B )xn - s cos(tp )y n + f 

Figure 3-1. Computer generated fractal trees\showing the power of fractals and chance working 
together. 

It can be noted that each tree branch is different, but shares certain global properties, so 

that small branches are similar to bigger ones, and to the tree as a whole. This "self­

similarity" is more obvious in symmetric fractals, like the Sierpinski triangle (figure 3-2). 

Self-similar fractals scale the same way in all directions. The fractals that scale more in 

one direction than another are called self-affine. 

Figure 3-2. Self-similar fractal properties. 

1 Source: http:/ /local.wasp.uwa.edu.au/ -pbourke/ fractals/ 
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Barnsley [48] developed Iterated Function Systems for generating fractal shapes. Using a 

simple deterministic rule and randomness, a Sierpinski gasket can be generated by 

drawing a starting point anywhere inside the triangle, and iterating each following point 

half way to the randomly drawn triangle corner A, B or C. After 10,000 iterations a 

clear pattern emerges, as shown in figure 3-3. 
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Figure 3-3. The random generation of a Sierpinski triangle. 
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Just by looking at these fractal objects, a repeating pattern can be recognised by the 

naked eye. 

3.3 Fractals and financial time series 

The two main elements of the system that create fractal objects, local randomness and 

global determinism, can both be found in financial markets. Randomness is generated 

by a myriad of traders and investor's actions. National and international rules and 

financial institutions' internal restrictions create global determinism. These restrictions 

can be of a legal nature or rooted in the investor's own investment strategy. As a result, 

financial time series are generated with a hidden order in the shape of probability 

distributions and fractal time. When looking at price charts without the identifying 

legend one cannot tell if the data covers a single day, week, month, year or decade. In 

order to acquire a better understanding of how real financial time series are generated, 

fractal shapes can be used to create time series that very closely resemble reality [16]. 

West and Goldberger [45] postulated that the fractal structure is nature's way of creating 

stable and more error-tolerant 'systems'. Power low scaling is a distinctive feature 

found in many of these systems. For example, the average diameter of the lung's 
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altWays progressively scales down according to a power law. Peters [18] made an 

interesting analogy with this fractal structure, with power scaling, global determinism 

and local randomness as the cause of stability in the fmancial markets. This scaling was 

discovered by the Italian economist V. Pareto in the 19th century whilst using it to study 

population wealth distribution. 

3.3.1 Hurst exponent 

In the early nineteenth century Harold Edwin Hurst, a hydrologist, spent many years 

studying the flood records of the river Nile in order to build a dam high enough to 

regulate its level and provide enough water during dry years. He noticed that the 

sequence of rainy and dry years did not appear to be random; larger than average water 

levels were more likely to be followed by even larger levels. Then the reverse would 

happen, lower than average water levels were followed by even lower water levels. 

Following this, he devised the rescaled-range R/S statistics (40] to capture this effect. 

The method provides a relatively simple and robust procedure for studying anomalies in 

random events. It is a non-parametric test which makes no assumptions about data 

under investigation. The equation for calculating R/ S is: 

Max{±(xi-xn)}-Min{±(xi-xn)} 
t::;;k::;;n i=l t::;;k::;;n i=l 

(3.1) 

The numerator1 R(n) is the range from peak to trough in the summed deviations from 

the mean, and the denominator S(n) is a standard deviation of the data series. Hurst 

1 A breakdown of the steps required to calculate the R(n) numerator. 

Calculate the mean over the entire data sample. 

:;-n = (1 I n )( X I + X 2 + . . . + X n ) 

Calculate the deviation from the mean for each data value. 

YJ =XI - Xn ' Y2 = x2 - Xn ' .... Yn = xn - Xn 
Calculate the running sums of the above differences up to each point in time series. 

J?;=y!, Y2=Y1+y2, ... Yn=Y1+Y2+ ... +yn 

The numerator range is R(n) = Max(~)- Min(~) 
l~k~n !~k~n 
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found that R/ S was governed by the power law found in many natural phenomena of 

the form: 

(3.2) 

where Cis a constant and His a Hurst exponent. In practice, the His estimated by 

calculating the average rescale range over multiple sections of data 1• 

as n ~ oo (3.3) 

The estimate of His obtained from the slope of the regression line of R/ S values 

against the window size n in log-log space. 

log(R(n) I S<n)) =log( C)+ H log(n) (3.4) 

In his experimental study, using Monte Carlo simulation, Hurst found that for random, 

independent white noise processes of ordinary Brownian motion, H is equal to ~' 

therefore values different to Yz suggest the presence of long-term dependence. William 

Feller [44] mathematically proved that for Gaussian series the R/ S statistic would 

increase in proportion to n/i for large values of n. Note that the efficient market 

hypothesis assumes that H has a value of ~. In general H can take values in the 

range 0 ::::; H ::::; 1, where H > Y2 is indicative of persistent, trend reinforcing series with a 

positive long range correlation, while H < Y2 suggests anti-persistent, mean reversion 

series with negative autocorrelation (figure 3-4). The further H is from ~, the stronger 

the indication of trend reinforcement or mean reversion and long-term dependence. 

1 Wavelets analysis is a novel technique which generally fares well in comparative studies 1-1-31. 
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Figure 3-4. Graphical representation of the R/ S analysis. 
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The Hurst pattern plays a crucial part in fractal analysis and has been observed in many 

financial markets. In the early seventies Mandelbrot [41], [42] used it in his studies of 

long-term dependence in economics and financial time series. The distribution of DJI 

returns, shown previously, mimics the distribution of data that Hurst found in water 

levels. There are many small variations around the mean, such as common market 

rallies (river floods) and market crashes (river droughts). The sequence of these events is 

of even greater significance than the variations themselves in causing long-term 

correlations that cannot be observed using standard statistical tests. Due to this long­

term memory, the past continues to influence present fluctuations. It can take anything 

from days to decades for this effect to fade away. 

Figure 3-5 shows the Hurst exponent*' calculated for the Dow Jones Industrial index 

(1930-2007) for rolling windows of different length. The sensitivity to the number of 

points used is clearly visible from the graphs. The more data used, the better an 

estimate of H* can be achieved. For a window of short size, the H* value is 

overestimated. 

1 Note that the Hurst exponent* in this case is an estimate for a single particular window length and is not constant. 
The real H exponent is a constant, representing the slope of the regression line between R/S values plotted against 

the window size n in log-log space. 
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Figure 3-5. The Hurst exponent* calculated using daily data from the DJI (1930-2007) on a rolling 
window of different data points. The graph of the DJI index is shown at the bottom. 

From the last plot (window size n= 4096) we can extrapolate that the value of H declines 

from 0.6 towards the 0.5 mark, which could be an indication of the market becoming 

more efficient and random. The Hurst exponent is less volatile and drops off 

asymptotically as the size of the window data is increased to reach a 'real' value (figure 

3-6). 

45 



The tw · llin · · · · o vert:lca es Jouung the D J I mdex plot and the H exponent plots in the figure 

3-5, indicate the times just before the market crashes of Oct 1987 and Jan 2000. In 

both cases the H exponent declined just before the crash and rose after the crash (for a 

short time in the case of the low resolution (n=4096) plot and for a longer 

duration/time in the higher resolution (n=1024) plot). These low values of H could be 

explained by the nervous state of the market just before dramatic changes occur. In this 

type of unsettled market, the correlation could be lower resulting in low values of H. 

0.70 

0.68 1n=64 l 

0.66 
,-
~ -----

n 128 

0.64 

~ __.- I n-256 I 
0 .62 n 5128 

~ / H' 0 .60 n=1024 

0.58 ~ / 
0 .56 

.....____ 
-- ..------. --.j-0 .54 n-2048 ,..,. 

rn=4096 1 I 0.52 

0.50 

4.00 5.00 6 .00 7.00 8 .00 9.00 

ln(n) 

Figure 3-6. The Hurst exponent plot against the natural logarithm of data set size. 

We saw earlier that fractal objects exhibit 'self-similarity'. In the case of time series, we 

can recognize fractal characteristics when we find that certain properties do not change 

with different time scales. In the case of R IS analysis, the Hurst exponent is the 

invariant value. It is estimated from varied sized data sets which have similar statistical 

properties, a fact confirmed by the constant Hurst exponent. The H exponent is 

related to the fractal dimension by way of the following relation: 

D=2-H (3.5) 

The fractal dimension is an important concept in fractal geometry and represents the 

measure of roughness of an object or, in this case, of a time series. It is also widely 

used in nonlinear chaos theory as an estimation of the complexity of the system under 

investigation. 

The next section will investigate whether the Hurst exponent can be used to gain a 

statistical edge in forecasting stock price time series. 
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3.3.2 The Hurst exponent as the measure of predictability 

It has been widely reported that most economic and financial time series are persistent 

and trend reinforcing with H > Yz . The persistent changes reinforce each other causing a 

trend (up or down) that once started tends to keep going. This property could be 

exploited by trend following trading strategies that are very popular amongst many 

traders. On the other hand, for time series with H < Y2 , their anti-persistent changes 

contradict each other and any trend started is likely to reverse itself. In that case price 

reversal trading strategies can be used successfully. Either way, prices series are not 

purely random and they may have at least some degree of predictability. 

Mandelbrot sees these types of technical trading systems as fool's gold [53]. He claims 

that the apparent patterns observed in financial time series are typical occurrences in 

data that scales according to a power law and that they cannot be predicted. Events can 

unexpectedly appear to form patterns and cycles that are the properties of most long­

term memory processes in which seeming patterns appear and disappear and cannot be 

used for profitable trading. However, in his seminars he admits that several individuals 

claim to use his research to trade successfully. 

The two views put forward in the last couple of paragraphs appear contradictory. If 

time series exhibit long lasting trends, a simple trend following strategy such as a 

moving average crossover one would be profitable. Trending strategies enter positions 

after a trend has developed and tend to go with the momentum. A similar approach 

can be made in the case of oscillatory time series where price reversal trading strategies 

can be applied. Reversal strategies enter positions when a price move is about to occur, 

or when a new trend is about to start. They try to anticipate a change in momentum 

toward the long term trend. The main challenge is knowing when it is most 

advantageous to apply the trend following or the trend reversal strategy. 

One way to test this is to use the Hurst exponent to classify financial time series, and 

accordingly specify the most suitable trading strategy. The idea is to apply two basic 

trading strategies, the trend following and the reversal trading strategy to a number of 

stocks and use the Hurst exponent as a trending/ reversal indicator to switch between 

these two strategies accordingly. If the combined strategy performs better than either 

individual one it would indicate that the use of the Hurst exponent gives an extra edge 
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and predictive power. In the case of the trend following strategy, a simple .tvfoving 

Average (MA) crossover trading strategy was used, and for the reversal strategy, the 

Relative Strength Index (RSI) was used. Both of these strategies can be utilised in either 

trend following or reversal systems depending on the choice of parameters used. Using 

shorter parameter periods would track short term trend changes and act as a reversal 

system while the use of longer periods would mimic the trend following strategy. The 

five following systems were tested: MA .rystem, RSI .rystem, Expert System 1, Expert System 

2A and Expert System 2B. 

The MA .rystem is a basic crossover trading system where the buy/ sell signals are 

generated when the fast~ moving average crosses above/below the slow moving average 

as shown in figure 3-7. 
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- - - - ------ ~- - ------- - ---------- ~ - --------------- - ---:-------------------- ~----------------- 1 26 
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Figure 3-7. An example of the MA crossover trading strategy. The buy/ sell signals are generated 
when the fast moving average (blue line) crosses above/bellow the slow moving average (red 
line). 

The Moving Average (MA) crossover system 1s used to determine the start of an 

uptrend/ downtrend. Comparing a short period MA to long period MA provides a 

means of measuring how short term prices fluctuate compared to longer term prices. A 

short term MA crossing above a longer term MA indicates a possible up trending 

market and the opposite applies for a downtrend market. In this case, the MA 

crossover trading strategy enters a long position when the 5 day MA crosses above the 

1 The fast moving average uses less periods (days) in calculations, whilst the slow one uses more periods. 
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22 day MA and the sell signal is generated when the 5 day MA crosses below the 22 day 

MA. As long as the time series has long trends, this simple trend following trading 

strategy will be profitable. Many frequent reversals will cause this strategy to fail, due to 

late buy/ sell signals introduced by the time lag in moving averages. 

The RSI !)'Stem is based on an indicator representing a measure of investor sentiment, 

and as such is used to forecast turns in the market. The RSI indicator oscillates in the 

range of 0 to 100 based on changes in price over time, but it typically takes up a value of 

between 20 and 80. It is a normalised ratio of the sum of the up-moves to down­

moves. The closer the index is to 100, the stronger the indication of an overbought 

market. The closer the index is to 0, the stronger the indication of an oversold market. 

Figure 3-8 shows an example of the RSI crossover trading strategy. 

RSI Crossover Trading Strategy • Buy Signal 't' Sell Signal 
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Figure 3-8. Example of the RSI crossover trading strategy. The buy signal is generated when the 
10 day RSI crosses above 40 and the sell signal is generated when the RSI crosses bellow 60. 

The traditional concept behind the RSI as a trading strategy is to signal the purchase of a 

security when the RSI crosses above 30 and to sell when the RSI crosses below 70. 

However, the interpretation of the RSI indicator depends on the particular time series 

characteristics. It can be noted that the signals generated in this example are closer to 

the turning points. There is no lag, as in the case of the MA system, indicating that this 

system is more suitable for a time series that has many reversals. The specified 

parameters shown in the MA and RSI systems are only there for illustration purposes; 
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the actual parameters utilised are found using a genetic algorithm for each individual 

stock and trading period. 

The Expert System 1 is a combination of the two systems above. It uses the Hurst 

exponent of 0.7 as a fixed threshold value to switch between the .NfA .rystem signals and 

the RSI .rystem signals. If the average H* value1 of the time series is above 0. 7 then lvlA 

.rystem trading signals were used, otherwise RSI .rystem trading signals were used. 

The Expert System 2A is essentially the same as the Expert System 1, except that the H* 

threshold value is not fixed. A genetic algorithm was used to find the optimal value for 

H* threshold value as well as for the other indicators' parameters. 

The Expert System 2B is the same system as the Expert System 2A except that the genetic 

algorithm used the validation set in addition to the training set to find the best model. 

The optimised model that performed best on the validation set was used and tested on 

one year's out-of-sample tests. 

All five systems above were tested on 30 stocks that comprise the Dow Jones Industrial 

index over 10 years of daily data. All the systems traded long and short and all stocks 

were continually in the markef. The "optimal" parameters of these technical indicators 

were selected using a genetic algorithm optimisation method based on three years of 

historical data and out-of-sample tests were recorded for the following year. In order to 

test the performance over an extended period, the moving windows approach was used 

in which a pair of training/ out-of-sample testing windows were advanced by a number 

of years. This process was repeated ten times by shifting the training and test windows 

by one year at a time, producing ten years of long out-of-sample tests for all five 

systems. All trading tests presented in this research use a similar moving window 

training/test approach which is shown schematically in figure 3-9. 

1 The H* was calculated as the average of three values, estimated using rolling window size~ of 30, 60 and 90 Jar,. 

2 All stocks were always either in long or short position. 
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Training set 1 Test set 1 

Training set 2 Test set 2 

Training set 3 Test set 3 I etc. 

Figure 3-9. Training and out-of-sample tests illustration. 

The advantage of using a moving window approach over using a single training/ test 

cycle one is that it allows for the fact that the prediction model may change over time. 

Training strategies that were optimal in the past may not be optimal when projected too 

far into the future. 

The performance of all five systems, compared to the buy and hold strategy, 1s 

presented in figure 3-10. 
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It should be noted that this test was not performed with the aim of creating a good 

trading system; it was only used to compare the relative performance of these different 

trading strategies and to see if the use of the Hurst exponent can improve their 
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performance. From the graph, we can conclude that all three 'Expert' models, using the 

Hurst exponent outperformed the individual MA and RSI models, indicating that the 

Hurst exponent has an impact on portfolio returns. The best performers were the 

Expert SyJtem 2 B and the Expert SyJtem 1. 

All five systems used transaction costs of 0.1 °/o per trade and $0.01 per share. 

Coming to a conclusion is somewhat difficult in that a comparison is made between 

different systems. Systems 1, 2A and 2B could be showing a better performance simply 

because they are more complex/have more parameters to optimise. 

3.4 Conclusions 

This chapter presented the main properties of fractals and their relevance in finance. 

Characteristics of nonlinear systems such as fractal scaling, trending and erratic 

behaviour are common features found in financial markets. The two main elements of 

the system that create fractal objects, local randomness and global determinism, can 

both be found in fmancial markets. Randomness is generated by the actions of many 

investors, whilst national and international rules and financial institutions' internal 

restrictions create global determinism. Fractal structures and power scaling cause 

stability and resilience in nature, and could be said to do the same in finance. 

It has been shown that the Hurst exponent can be used as a measure of predictability 

and as an indicator in switching between different trading strategies. A trading 

simulation test was applied to 30 constitutes of the Dow Jones Industrial index, over ten 

years, utilising the Hurst exponent. It has been found that this strategy performs better, 

indicating that the use of the Hurst exponent improves predictive power. 
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Chapter4 

Chaos Theory and Finance 

4.1 Introduction 

This chapter describes the essential properties that lie behind chaotic nonlinear systems 

and their application to fmance. Both fractal analysis and chaotic systems are used in 

this research to gain a better understanding of the financial markets, and the findings are 

consequently used in developing AI based trading models. Various calculation 

techniques for the estimation of parameters required for the reconstruction and analysis 

of time series are presented and consequently used to determine whether the time series 

are of stochastic, deterministic, or chaotic nature. 

Historically, nonlinear dynamic systems known as deterministic chaos have been studied 

in the physical sciences but they have recently been receiving a great deal of attention in 

the field of fmance and economics. Chaotic processes are typically produced by 

nonlinear feedback systems and analysed in so-called state-space', which is a dynamical 

plot of variables that defines the system. A low dimensionaF chaotic system can mimic 

stochastic behaviour and can produce data that may look random and unpredictable, 

though there is a clear deterministic formula behind it. This chapter will investigate the 

presence of the chaotic deterministic components that may be buried deep in noisy real­

world financial time series. Before an attempt is made to model and predict such series, 

tests will be performed on a logistic equation; a simple and well-known chaotic 

nonlinear system that is used to model population growth. This simple nonlinear 

equation can generate complicated time series that cannot be modelled by linear 

approximation and a more general framework is required. It was impossible to model 

and predict the behaviour of similar systems until the emergence of nonlinear models 

such as neural networks that can adaptively explore a large area of potential models. 

The characterisation methods that can extract some of the essential properties which lie 

1 ,\!so known as phase-space modelling. 

2 , \ system with a few degrees of freedom, i.e. the system can be described with small number (less than ten) of 

differentiable equations. 
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behind chaotic nonlinear systems will be demonstrated and used as a guide for further 

analysis and modelling. Most tests in the following sections will be conducted on four 

time series; the artificially generated logistic map chaotic time series and the three pre­

processed variants of the Dow Jones Industrial (DJI) index. 

4.2 The logistic equation 

The logistic equation was discovered 1n 1845 by the Belgian mathematician Piette­

Francois Verhulst and was used to model the growth of populations. It is probably the 

simplest representation of a nonlinear dynamical system capable of complex chaotic 

behaviour, and is described by the following formula: 

(4.1) 

The formula is very basic, but it can exhibit unusually diverse regimes and provide some 

clear guidelines and resemblance to the behaviour of financial markets. 

a) 
1.0 .--------.,----,-------,----.-----, 

b) 
1 .0 r------r-----,--..:.__-,----,-------, 

0.8 .. A.= 2.8 0.8 

x(k) x(k) 

A.= 3.2 
0.2 0.2 ....... ·-:·- ... -. :· 

0.0 L__ _ __J __ __,_ __ _,_:--_ __._ _ _ __, 

0.0 L_---'-----'-------'-:::-------'-----' k 1 DO 
0 20 k 80 1 DO 0 20 80 

c) 
1.0 .-----r------.,----,------r----, 

0.8 .l 

~ 
0.8 ... ~ ~ I 

A. = 4.0 
x(k) x(k) f I I 

0.2 A.= 3.5 0.2 

0 .0 L----''------'------'------:-'---~ 
80 100 k 0 20 

Figure 4-1. The logistic map, first 100 points using initial value x(O) = 0.1and different A values. 
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These regimes show stable, bifurcating, intermittent and completely chaotic behaviour 

that will be described in later sections. The transitions between them are controlled by a 

single growth parameter A. Figure 4-1 presents the dynamic of the logistic equation 

created using different values for the A parameter. 

For the value of A= 2.8 (graph a.) the process settles to a unique stable equilibrium1
; for 

A = 3.2 (graph b.) the system oscillates between two states; for A =3.5 (graph c.) the 

system oscillates between four states; and for A =4 (graph d.) the system has an infmite 

number of solutions, it is aperiodic, appearing random and unpredictable, but in fact it 

is completely chaotic, unstable and deterministic at the same time. In the case of a), b), 

and c) the system is globally stable and will converge to one or more steady state 

solutions irrespective of the initial starting value. However, m case d.), a small 

perturbation of the initial condition will cause it to move widely at an unpredictable 

future time. In this chaotic state, the processes may appear as pure noise, as shown in 

figure 4-2. 

0 500 1000 k 2000 2500 3000 

Figure 4-2. The f1.rst 3000 points of the logistic equation appear to be randomly distributed for 

the chaotic case (A = 4). 

The dots in the picture resemble random behaviour; the whole space appears uniformly 

filled, similar to the way in which gas would fill a container. But if we examine the 

distribution of dots closely, there are noticeably more dots closer to the lower and upper 

I . I I . , \ stng e so ut1on. 
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bounds. This is clearly visible in the frequency distribution diagram (figure 4-3). 
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Figure 4-3. Frequency distribution diagram of the logistic map, A= 4, x(0)=0.1, 100000 
iterations. 

The frequency distribution contains fat tails, and is not flat, as would be the case with 

uniformly distributed white noise. It is an example of stable distribution. The process is 

entirely non-stationary; the mean and variance are undefined, and they keep changing 

constantly as we add more observations. The chaotic system does not have a steady 

equilibrium state; in fact there are indefinitely many states. This is also visible from 

figure 4-4, showing steady equilibrium solutions of all systems defined by the 

2.8::::; A::::; 4 parameter range. 

Three different regions are distinguishable: the region of convergence for parameter 

values less than 3, the periodic region for parameter values in the interval [3, 3.56], and 

the chaotic region for values in the interval [3.57, 4]. 
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Figure 4-4. Logistic map bifurcation diagram. 
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We can see that the map branches into two, then four, then eight and so on. The 

sequence follows a geometric progression, but soon looks a mess. These transitions, 

through a period doubling mechanism, which often lead from order (determinism) into 

chaos, are called bifurcations. Bifurcations follow a pattern, occurring closer and closer 

together to infmitum. The right hand side of the picture shows the chaotic regions of 

many solutions that are cyclically interspersed with clear "windows of stability" with a 

small number of solutions. This alternation between stability and chaos is called 

intermittency. 

We can also observe from the logistic map bifurcation diagram that chaotic systems 

show self-similarity and fractal patterns. The big picture and the two squares within the 

picture are self-similar, being the same map at different scales. The relative separation 

between the bifurcations is a constant value known as a Feigenbaum constant. 

rl r2 rn 
F =-=-=- = 4.669201. .. 

r2 r3 rn+l 
(4.2) 

The time series produced by chaotic systems are highly sensitive to initial conditions. 

Even slight changes in the initial values can produce very different outcomes and make 
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long term predictions impossible. In the case of the logistic equation this is visible after 

only twenty iterations. Figure 4-5 shows two paths, starting from two initial values that 

differ only in the sixth decimal place. 

--- x(O)= 0.100000 

1.2 ---------------- --+-x(O)= 0.100001 

1.0 ----------------------------------

0.8 

x(.k)o.6 

0.4 

0.2 

1 2 3 4 56 7 8 g 101112131415161718192021 
.k 

Figure 4-5. Logistic map sensitivity to initial values, A = 4. 

Often, time series characterisation is carried out in a frequency domain which is 

applicable to simple and linear problems. For such systems spectral (Fourier) analysis is 

useful, and it is possible to derive the number of degrees of freedom of the system from 

the number of peaks (modes), see figure 4-6 a), b) and c). However, these conventional 

methods are ineffective for nonlinear chaotic processes as they have a continuous 

broadband Fourier spectra instead. As the parameter ll is increased, more and more 

sub-harmonics appear until deterministic chaos is reached. This implies that ft.ltering by 

frequency cannot be applied to discrete chaotic time series since a signal and noise have 

similar spectral properties. 

This is illustrated in the figure 4-6 d). 
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Figure 4-6. Logistic Map Fourier Analysis; initial value x(0)=0.1; discard first 1000, display next 
3000 iterations. 

In addition to linear tests, such as spectral analysis and autocorrelation functions, 

various other methods have been developed for nonlinear time series characterisation. 

These include state-space1 embedding, calculation of correlation dimension D, 

Lyapunov exponents, entropies and mutual information. These techniques can discover 

regularities that are completely hidden in the time series and are not detectable to 

conventional analysis, as in the case of Fourier transform. These properties characterise 

useful concepts of the underlying system that have practical implications and will be 

discussed in more detail in following sections. 

4.3 State-space embedding 

The basic idea behind state-space embedding is that we can use the current and the 

lagged values of a single time series, which is produced by a multidimensional chaotic 

system, to reconstruct the dynamics of that underlying process without knowing the 

equation of motion. The idea may seem farfetched, but it has been proven 

mathematically, by Takens [56], that it is possible to reconstruct the entire dynamics of a 

1 Also called phase-space embedding. 
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chaotic system from a relatively small number of observables 1• This is because the 

combined effect of many degrees of freedom of a nonlinear dynamical system are 

buried in the observable time series through the main state vector components. So we 

need to embed a univariate time series into a sufficiently high-dimensional space of 

delay coordinates in order to recover the full geometrical structure of a nonlinear 

system. The number of minimum lags required to model the underlying process is 

called embedding dimension, and the time lag is termed embedding separation or time defqy. 

Given a time delay r and embedding dimension m, the reconstructed state space is 

obtained from a delay coordinate vector: 

(4.3) 

The model is defmed as a function of the delayed vector: 

(4.4) 

It has been shown earlier that a chaotic time series looks random when plotted in time 

domain. However the same series shows a clear pattern when viewed in state-space 

plot, which removes the time element. For two and three dimensional systems we can 

visually inspect the data through a state-space portrait of the system. The higher 

dimensional cases can be also explored using applications specifically developed for 

multivariate data visualizations2
• The two dimensional case is illustrated for the Logistic 

Map by plotting the pairs of points x(t-I) and x(t) shown in figure 4-7. 
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Figure 4-7. Logistic equation state-space plot. 

1 Note that Takens' theorem assumes a purely deterministic noiseless system. Before the Takens proof Ruelle [58], 
[65] and Packard et a!. [59] used embedding for analysing chaotic time series. 

2 ,\good example is XGobi, freely available from http:/ /www.research.att.com/areas/stat/xgobi/ 
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The well defined structure of a reconstructed state space becomes Yisible in the 

geometric shape of a parabolic curve. However, the position of each point is entirely 

irregular, jumping all over the curve in a random manner, with no point visited twice. 

The geometric shape, or state space trajectory that dynamics evolve toward, is common 

to chaotic systems and is denominated the strange attractor. This shape is the equilibrium 

of the system, which is dynamic and constandy changing, but is bound to a region 

defmed by the attractor. The cycles of the attractor are non-periodic and their 

trajectories in state space never intersect. Often chaotic attractors are self-similar and 

have a fractal Hausdorff dimension2
• 

A state space trajectory that is properly embedded will have the same dimension as the 

attractor of the underlying system. As we increase the embedding dimension, the 

dimensionality of the attractor should not change, as long as the embedding dimension 

is higher than the attractor's. This is because the attractor's points are correlated and 

clamped together. 

The time series embedding approach can be useful in the modelling of complex systems 

such as financial markets that are influenced by a large number of factors. In such 

applications, it is fundamental that the embedding dimension and time delay are chosen 

appropriately. The system of heuristics developed for detecting nonlinearity and chaos 

in time series, as well as for calculating the suitable embedding dimension and an 

adequate time delay will be explained in following sections. 

4.4 Estimating the embedding dimension 

The embedding dimension should be chosen sufftciendy high to capture the complexity 

of the system and influence the main participating variables. Using a dimension larger 

than the minimum required by the data will lead to excessive requirements in terms of 

the number of data points and computation time. Furthermore, the noise by definition 

has an infmite embedding dimension so an excessively large value would inflate the 

noise to the level of masking the true signal of the process. If the dimension is set too 

small, the dynamic system in question will be under-determined. 

1 They are also called fractal or chaotic attractors. 

2 Two characteristics mentioned previously, local randomness and global determinism that joint!\' produce fractal 
shapes arc demonstrated here. The local uncertainty of where the point at any time is bound by the global shape of 

the parabolic curve. 
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Several statistical techniques have been developed to estimate the dimensionality of a 

system that generates an experimental time series. One way to estimate it is to use the 

Akaike Information Criterion (AIC) (57], but this measure relies heavily on linearity 

assumptions. For nonlinear systems, methods based on box counting, correlation sum 

techniques (62] or k-nearest-neighbour distances [61] are preferable. 

4.4.1 Correlation dimension analysis 

The method that is often used to estimate the optimal embedding dimension is through 

the calculation of the correlation integral, which counts the number of points enclosed 

in a hyper-sphere that is centred in a state-space, whilst letting the radius of the hyper­

sphere grow until all points are enclosed. The correlation integral C m (£)is calculated 

for the range of dimensions musing the following equation: 

(4.5) 

Where: 0(c,xi,x) = 1 if (e-ll xi- xj II)> 0; 0 otherwise1 

N is the number of observations. 

£ is the distance (scale length) 

The C m ( & ) value represents the probability that two randomly selected points in state 

space are less than & units apart. As the value of £ is increased, the C m (£)will grow at 

the rate of &D. 

(4.6) 

The slope of the linear regression line produced by plotting log( C m) against log(£) 

will estimate the correlation dimension2 D of the reconstructed state space for the 

embedding dimension m . If we calculate the correlation dimension D for the number 

of successive embedding dimensions m we can distinguish three important cases: 

a. If with the increase of the embedding dimension m , the estimate of the 

correlation dimension D increases to infinity or to an extremely large value, then 

1 8(·) is known as the Heaviside Function. 

2 
1\ non-integer value for the correlation dimension is called a fractal dimension. 
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the time series is Gaussian and random. In this case, there are no predictable 

variations around a trend and any forecasting attempt is bound to fail. .-\ 

reconstruction of the Brownian motion in phase space would lead to an 

attractor with an infinite correlation dimension. This is illustrated in figure 4-8 

where the correlation dimension is calculated for the embedding dimension 

range from 1 to 20. 

b. If with the increase of the embedding dimension, the correlation dimension also 

increases, but remains much below the embedding dimension, then the time 

series observations are non-random and correlated. For such time series, the 

Hurst exponent, described previously, is not equal to 0.5. In this case, the 

possibility of long-term predictions are possible. 

c. If by increasing the embedding dimension, the correlation dimension starts to 

saturate, then the time series is most probably chaotic [72]. As mentioned 

before, the reason for this saturation is that the attractor's fractal dimension 

does not change as long as the embedding dimension is higher than the 

attractor's. In this case accurate short-term predictions are attainable within a 

future period specified by the largest Lyapunov exponent. The converging value 

of D is the estimated value for the "true" fractal dimension of the underlying 

attractor. 
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Figure 4-8. Case a.), the correlation dimension for Brownian motion grows to inflnity as the 
embedding dimension increases. 

From these cases, we can see that in addition to estimating the optimal embedding 
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dimension (the number of variables required to model the underlying system), the 

correlation integral can be used to distinguish between random and nonlinear chaotic 

systems. In case c.), we can estimate the optimal embedding dimension m according to 

Takens theorem. The time series needs to be embedded in a m -dimensional space such 

as m ~ 2D + 1 in order to reconstruct the dynamics of the underlying attractor. 

However, given enough data, Sauer et al. [73] have shown that the estimated embedded 

dimension m is equal to the smallest integer greater than or equal to the fractal 

dimension D of the attractor. The logistic map's calculated correlation dimension for 

the increasing embedding dimension is shown in figure 4-9. The correlation dimension 

analysis shown in the graph confirms the fact that the logistic equation is one­

dimensional. The estimated correlation dimension remains close to one, despite the 

increase in the embedding dimension m . 
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Figure 4-9. The logistic map's correlation dimension calculated for the increasing embedding 
dimension. 

In addition to the logistic map, the correlation dimension and other tests are applied to 

the Dow Jones Industrial (DJI) financial index series. Seventy-five years of monthly 

data (1932-2007) were used in this study. The reason for using the monthly data is 

because the index was adjusted for inflation in order to detrent time series and to show 

realistic growth. The shortest period for which inflation data is available is on a 

monthly basis. This may not be much of a problem, as will be observed later, in 

nonlinear analysis it is better to decrease the number of observations by reducing the 

sampling rate rather than the observation time. Consumer Price Index monthly data 

64 



were gathered and the inflation effect was removed from the DJI using the following 

formula: 

DJJ* = ln(DJlr )-(a ·ln(CPlr )+C) (4.7) 

where DJJ* is adjusted DJI in month r 

DJIT is the price ofDJI in month T 

CP IT is the Consumer Price Index in month T 

a and Care constants derived by regressing the log of DJI against the log of 
the CPl. 

Figure 4-10 shows the inflation adjusted DJI* plot and its smooth version (DJI*-F). 

The illtered version is created by removing noise, using a General Regression Neural 

Network, although any adaptive moving average illter can produce similar results. 
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Figure 4-10. An inflation adjusted logarithm of the DJI and its smooth version. 

Both time series exhibit long trends, even after removing the inflationary influence. As 

the analysis of nonlinear systems, especially chaotic ones, is mainly based on trajectories 

and cycles of the underlying attractor, we remove the trend from the FJI*-F time series 

by eliminating the 20 month moving average from it. The resulting de-trended time 

series, which we will call DJI*-FD, has visible cycles of different lengths and is shown in 

figure 4-11. 
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Figure 4-11. The DJI*-FD time series, a de-trended version of the DJI*-F time series produced 
by removing the 20 month moving average. 

The correlation dimension estimate for all three time series for the range of embedding 

dimensions (1-20) and time delays (1-5) is shown in figure 4-12. The DJI* correlated 

dimension starts to saturate from embedding dimension 5 onwards, therefore, the 

estimated embedding dimension of 2.64 was calculated as the average value for all five 

time delays and the embedding dimension varying from 5 to 20. For DJI*-F the time 

series average estimated correlation dimension was 1.43, which suggests that only two 

variables are required to reconstruct this time series. As the correlation dimension is a 

fractal dimension, which measures the variability and complexity of the underlying 

system, it is expected that a system with less noise will produce a lower correlation 

dimension. The complexity of the DJI*-FD time series lies between the other two time 

series and it's estimated correlation dimension value is 2.40. 

The presence of a low fractal correlation dimension indicates that all these time series 

have a low dimensional attractor, and as a result could be classified as chaotic. 
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Figure 4-12. The correlation dimension estimates for DJI*, DJI*-F and DJI*-FD time series for 
varying embedding dimensions (1-20) and time delays (1-5) . 

The estimated optimal embedding dimension for all three time series is shown in table 

4.1. 
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Table 4.1. The estimated embedding dimension from the correlation dimension for DJI* DJI·-
F and DJI*-FD time series. ' 

Estimated D Takens's upper Sauer et al. 
bound (next higher 
m ~ 2D+l integer) 

DJI* 2.64 7 3 

DJI*-F 1.43 4 2 

DJI*-FD 2.40 6 3 

In practice, the use of the theoretical limit m ~ 2D + 1 is the preferred option for noisy 

time series. The next higher integer of the estimated correlation dimension can be used 

for noiseless low-dimensional chaotic systems. Some research use the embedding value 

m at which point the correlation dimension D starts to saturate. According to these 

findings, the underlying system that produced all three DJI time series above has 

approximately 6 to 7 active degrees of freedom. In other words, it would be justified to 

mathematically model the market activity with no more than 7 first-order ordinary 

differential equations. 

However, there are a few drawbacks to this method. Theiler et al. [75] have shown that 

the long-term memory time series1 can be classified as nonlinear and chaotic, even if 

produced by a linear process. The correlation dimension is well defined only in the case 

of stationary time series generated by a low-dimensional dynamical system. 

4.4.2 False nearest neighbours method 

An alternative approach often used to estimate the optimal embedding dimension is the 

False Nearest Neighbours (FNN) technique, introduced by Kennel et al. (64]. This 

method uses trial embedding and for each m -dimensional vector 

it = (xt-(m-!)r , ... , Xt-r, Xt) the nearest neighbouring vector j\ = (Yt-(m-!)r , ... , Yt-r, Yt) is 

found, based on the Euclidean distance2
• From here, the embedding dimension is 

expanded by one for both vectors and the new distance is calculated. If the expanded 

dimensional vector is large enough for the attractor to unfold, then the new distance 

I . 
, \lso called long coherence tune. 
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should be small and similar to the one measured previously. If not, the neighbour is 

classified as being a "false neighbour". A simple example of this is illustrated in figure 

4-13 showing how two nearby points in a one-dimension view (line) are wide apart 

when seen on a true attractor (circle) in a two-dimensional space. 

A 

AB 
•• 

Figure 4-13. False nearest neighbour graphical interpretation. 

When the embedding dimension is sufficiently large, the fraction of vectors that have a 

false nearest neighbour converges to zero. Results obtained with the false nearest 

neighbour method for the logistic function is shown in figure 4-14 and for all three 

financial time series are shown in figure 4-15. As expected, for the logistic function the 

number of false nearest neighbour drops to zero for the embedding dimension m = 1 . 
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Figure 4-14. The false nearest neighbour method as an estimator of the optimal embedding 
dimension for the logistic function time series. 

For fmancial time series DJI*, DJI*-F and DJI*-FD the number of false neighbours 
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approaches zero around embedding dimension of 3, 2 and 3 respectively. 
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Figure 4-15. The false nearest neighbour method as an estimator of the optimal embedding 
dimension for DJI*, DJI*-F and DJI*-FD time series for varying embedding dimensions (1-10) 
and time delays (1-5). 

These results are equal to the estimates obtained using the next higher integer of the 
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correlation dimension as shown on page 68 (table 4.1 ). 

Table 4-2. The estimated embedding dimension using the false nearest neighbour method for 
DJI* , DJI*-F and DJI*-FD time series. 

Estimate of D using the FNN method 

DJI* 3 

DJI*-F 2 

DJI*-FD 3 

Both the correlation integral and FNN methods require the time delay to be specified 

and they have both produced similar results for the different time lags. They work well 

on stable systems with low noise, but when presented with real data, including short, 

noisy, or non-stationary data sets, both methods are fraught with problems. In order to 

estimate the accurate embedding dimension, a large amount of data is required, and 

most importandy it should be for long time periods. Having 75 years of monthly data 

may model these time series better than using many thousands of daily data values. For 

financial time series that exhibit a long term memory effect, more time rather than more 

data is required. 

The FNN method calculates the number of false neighbours globally, however, the local 

dynamic of the attractor can be modelled using a slighdy smaller or larger embedding 

dimension. Both methods also require a degree of subjective interpretation. 

For optimal embedding, apart from estimating the embedding dimension, we also need 

to estimate the optimal time delay. For noise-free data, the choice of time delay is of less 

importance. However, in the case of noisy financial time series the choice is of increased 

relevance. It is usually better to overestimate the embedding dimension, but not so high 

as to amplify the noise. 

4.5 Estimating the appropriate time delay 

Estimating the correct time delay is essential for a correct reconstruction of the 

underlying time series dynamic. Choosing a value which is too small results in slow 

changes of a set of very similar delayed vectors, whilst a large value creates a set of 
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uncorrelated vectors making the reconstructed state space look random. A suitable time 

delay has to be large enough that the information we get from the new delayed vector is 

significandy different but still correlated to the vector measured previously. 

Unfortunately, there is no rigorous way to determine the optimal value of time delay. 

Two common ways of selecting an appropriate delay include finding the first minimum, 

in either the (linear) autocorrelation function or the (nonlinear) mutual information 

function. The use of a classical autocorrelation function is not appropriate for nonlinear 

systems as it only detects linear correlations. 

Wolf et al. [66] have shown that the appropriate time delay for a given embedding 

dimension can be estimated from the following relation: 

(4.8) 

where m is the embedding dimension 

Q is the average cycle period. 

Q can be estimated using the rescale range (R/S) analysis presented in section 3.3.1. 

The average cycle period is equal to a time at which the R/S plot changes its slope. 

A preferable way to compute a time delay is by using the average mutual information 

function\ which detects both linear and nonlinear correlations. Fraser and Swinney [76] 

first used this information-theoretical measure to find the optimal time delay, which 

corresponds to the first minimum of the mutual information between the time series 

x(t) and the delayed time series x(t- r). The mutual information is estimated from 

entropies of these two time series. 

The entropy of the distribution of the discrete random variable X; with probability 

distribution p x ( x;), i = l, ... N is defined as2
: 

N 

H(x,N) =-LPx(x;)log2 (px(x;)) (4.9) 
i=l 

The entropy value represents the average number of bits required to describe an isolated 

1 This concept originates from the application of information theory developed by Shannon [67]. 

2 , \ssuming that the discrete variable X; has been digitised to integer values lying between 1 and N, then the 

probability of the particular value xi that has been observed n times is p X (xi) = n I N . 
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observation xi and can range from 0 to log2 N. The mutual information between the 

two time series, x(t- r) and x(t), is the difference between the sum of their individual 

entropies and the joint entropy: 

(4.10) 

where the individual entropies are: 

N 

H (x1_,, N) = - I p(x(t-r) )log2 (p(x(r-r) )) (4.11) 
x1_r=l 

N 

H(xt' N) =-I p(x1 ) log2 (p(X1 )) (4.12) 
x,=l 

and the joint entropy is: 

N N 

H ( X1_,, X1 , N) = - I I p(x(r-r), X1 )log2 (p(x(l-r), X1 )) (4.13) 
x,_r=l x,=l 

The mutual information measures in bits the degree to which the knowledge of one 

variable specifies the other. If there is no dependence among these variables then the 

mutual information will approach zero. In other words no knowledge can be gained for 

the second sample by simply knowing the first. 

Figure 4-16 shows the average mutual information values calculated for the DJI*, DJI*­

F and DJI*-FD time series. 
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Figure 4-16. Average mutual information method as an estimator for the optimal time delay of 
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DJI*, DJI*-F and DJI*-FD time series. 

As can be seen from the graphs, the mutual information reaches its first minimum at the 

time delay of 13 months for the DJI* time series. For the DJI*-F time series the first 

local minimum is at 11 months and for DJI*-FD it is at 8 months. These estimates 

seem larger than they should be. Even for the logistic equation that has an optimal time 

delay of 1, the estimate using this approach was 10 (figure 4-17). 
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Figure 4-17. The average mutual information method as an estimator for the optimal time delay 
of the logistic map time series. 

Typically the time delay should be selected in order to minimise the interaction between 

the points of the time series considered, but in practical forecasting applications this 

value may not necessarily be the best one. 

The false nearest neighbours and average mutual information techniques can be used in 

the first indication of embedding dimension and time delay, respectively. Often, smaller 

values of time delay and larger embedding dimension estimated using the above 

methods are more appropriate values. We will see later on that for discrete systems a 

time delay of 1 usually works well, while continuous systems should have larger values. 

Ideally, both embedding dimension and the time delay should be estimated together in 

one procedure that yields the best predictive model. The way in which neural networks 

and genetic algorithms can estimate these parameters will be shown later. 
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4.6 Lyapunov exponents 

As the dynamic of the attractor evolves in time, the nearby geometry of the cloud of 

points diverge away and converge back again. The Lyapunov exponents measure the 

average local exponential rates of divergence or convergence of neighbouring 

trajectories' points. The exponents can be calculated for each dimension of a dynamic 

system or a reconstructed model. The presence of at least one positive Lyapunov 

exponent confirms sensitivity to initial conditions, this being a hallmark of nonlinear 

systems that are a necessary prerequisite for deterministic chaos1• This implies that the 

trajectories diverge from each other rapidly, and make long term predictions 

impossible2
• The magnitude of the positive exponent reflects the time scale at which 

system dynamics become unpredictable. Whilst the positive exponent measures how 

rapidly nearby points diverge from one another, the negative exponent measures the 

contraction of the state space's time scale. 

There are now a variety of algorithms for estimating Lyapunov exponents from time 

senes. An early algorithm developed by Wolf et al. [66] is in wide use for calculating 

the largest Lyapunov exponent using experimental data. Other techniques fit various 

forms of functions to the embedded data and calculate the local divergence of these 

functions. The exponents can also be estimated using a neural network [69], [70]. 

In the particular case of the logistic map, the Lyapunov exponent is derived from the 

equation: 

1 N 
a= lim-Ilog2 1 -1(1-2xi)l 

N~oo N i=] 

(4-14) 

For convenience the exponents are measured in bits per time interval- a legacy of the 

Shannon [67] information theory. 

The Lyapunov exponents graph of the logistic map for the range of A values is shown 

in the figure 4-18. 

1 Not all systems that are sensitive to the initial condition are chaotic. 

2 
, \ good example is the weather forecast. 
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Figure 4-18. Logistic Map Lyapunov Exponents for the range oO. values; initial value x(0)=0.1; 
discard first 100, display next 400 iterations. 

If we compare this picture to the logistic map figure 4-4 we can see how the exponent's 

values dip into negative territory for the non-chaotic regions ('clear windows'), while 

they are positive in the chaotic regions. 

The final values of the estimated largest Lyapunov exponent for the three financial time 

series is presented in table 4-3 and how it evolves over time is shown in figure 4-19. 

Table 4-3. The estimated largest Lyapunov exponents for DJI*, DJI*-F and DJI*-FD time series using 
Wolf at al. method. 

DJI* DJI*-F DJI*-FD 

Largest Lyapunov exponent 0.01046 0.00684 -0.00109 

For the DJI* and DJI*-F time series the exponent is positive over the whole period 

while the DJI*-FD exponent takes both positive and negative values. These results 

indicate that the DJI* and DJI*-F possess properties typical of deterministic chaotic 

signals, while the DJI*-FD oscillates between chaotic and non-chaotic periods. 
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Figure 4-19. The largest Lyapunov exponent ofDJI*, DJI*-F and DJI*-FD time series. 

Knowing the largest Lyapunov exponent value is of practical importance as it can be 

used to estimate the ability to forecast future time periods reliably. However, it is very 

difficult to correctly estimate the Lyapunov exponents from noisy and short time series. 

The correct estimate of the largest Lyapunov exponent can be undetectable due to the 

autocorrelation present in the series under study, and therefore, the time series can be 

wrongly labelled as chaotic [9 5]. 

Also, the Wolf et al. algorithm requires a large amount of data when applied to complex 

systems. The minimum number of necessary data is estimated at 10° , where Dis the 

dimensionality of the attractor. This would require a million data points for a six 

dimensional system, which could present a problem for the analysis of what are often 

short financial time series. 

To resolve the shortfalls of the Wolf et al. model, Kantz [84] and Rosenstein et al. [85] 

independently developed an algorithm that allows a robust estimation of the maximal 

Lyapunov exponent of noisy and short time series. The algorithm tests the exponential 

divergence of nearby trajectories directly by calculating: 

S(~n) = l ± log(_l Ll in'+&~- in+&~ 1] 
N - m n=m+I un X •E u 

II II 

( 4-15) 

for different embedding dimensions m , neighbourhoods of different sizes £ and a few 

hundred different reference trajectories. The in is a delay vector of dimension m, and 
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un is the set of all other delay vectors xn. in an & - neighbourhood of xn. The 

number of elements in the un set is denoted un. 

The slope of the linear part (if it exists) of the S(&z) function is interpreted as the 

largest Lyapunov exponent. The function S(&l) for the three financial time series is 

calculated for embedding dimension of 1 to 10 and is presented in figure 4-20. 
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Figure 4-20. The function S(,1n) calculated for the DJI*, DJI*-F and DJI*-FD time series and 

embedding dimension 1 to 10. 

The function shows a rather robust positive linear slope for all three time senes, 

confirming the existence of the positive Lyapunov exponent for each tune senes, 

indicating that they could be chaotic (table 4-4). 

Table 4-4. The estimated largest Lyapunov exponents for DJI*, DJI*-F and DJI*-FD time series 
using S(n) function. 

DJI* DJI*-F DJI*-FD 

Largest Lyapunov exponent 0.05816 0.05717 0.03222 

4. 7 Alternative methods 

The reliable estimate of the dynamical invariants of the financial time series can be a 

difficult task due to the presence of serial correlations, noise, and the relatively short 

length of data. Those parameters required for successful modelling of nonlinear 

systems could be found experimentally through the use of neural networks. The 

degrees of freedom of the system can be estimated by training many neural networks 

using a different number of neurons in the hidden layer. The number of hidden units 

when the minimum error is reached can be seen as the number of degrees of freedom. 

An equivalent procedure can estimate the embedding dimension by varying the number 
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of input units. The Lyapunov coefficient can be estimated by looking at out-of-sample 

errors as a function of future prediction time. The interpretation of these figures can be 

a problem as NN s can produce different results depending on the NN types being used. 

From the perspective of applied analysis, the best parameters are those that give the best 

prediction results when used in the forecast model. The complexity of those models 

used for predictions may not be related to the complexity of the system that produced 

the time series. 

4.8 Conclusions 

This chapter showed some similarity between the typical properties of well known 

chaotic time series and the fmancial time series. Several methods for nonlinear time 

series characterisation have been applied in order to discover regularities that are 

completely hidden in these time series and are not detectable to conventional analysis. 

The correlation integral was used to estimate the appropriate embedding dimension of 

three pre-processed variants of the DJI time series. This method found that these time 

series are possibly generated by a low-dimensional chaotic system. The false nearest 

neighbour method confirmed these results. This technique was used to estimate the 

appropriate embedding dimension, while the average mutual information method was 

used to estimate time delay. The Lyapunov exponent estimate confirmed sensitivity to 

initial conditions, indicating that financial time series are produced by a nonlinear 

system. However, the correct estimate of these parameters can be difficult for short, 

noisy, or non-stationary financial time series. 

Ideally, both the embedding dimension and the time delay should be estimated together 

in one procedure to yield the best predictive model. These properties characterise useful 

concepts of the underlying system that have practical implications which will be used in 

the following chapters. 
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Chapter 5 

Recurrence Analysis of Nonlinear Systems 

5.1 Introduction 

The previous two chapters presented methods for analysing financial time series and 

estimated the embedding parameters required for the reconstruction of dynamical 

systems. Those methods gave us an insight into the characteristics of financial systems 

that generate the time series under study. Further knowledge can be gained through the 

use of recurrence analysis, an elegant and very intuitive method for analysing the 

behaviour of dynamical systems. Using such tools such as state space and recurrence plots, it 

is possible to visualy assess the properties of the underlying system at a glance. More 

detailed information of the system's behaviour can be gained using recurrence qualification 

ana!Jsis. This chapter describes the use of these methods in analysing various dynamical 

properties such as the degree of determinism, with particular emphasis on extreme 

market events. 

5.2 State space plots 

As was shown earlier, state space plots can be used to visualise the spatial structure of 

the dynamical system. As the correlation dimension calculated for the smoothened 

version of DJI (DJI*-F) was 1.43, we can assume that only two variables (i.e. the next 

larger integer, Sauer et al. [73]) are required to model the underlying dynamics. If this 

estimate is correct then the two-dimensional state space plot may reveal more insights. 

Figure 5-1 shows the state space plots for the DJI*-F time series reconstructed using the 

increasing time delay. The small circles/ ellipses and dents visible on the charts 

represent small cycles and the large ones represent big cycles. In between these big 

cycles we have a long period of a trending market represented by an almost straight line. 

Are these cyclical parts chaotic regions that are separated by periods of calm and stable 

trending markets, or as explained earlier is intermittency at play? 
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A B 

c D 

Figure 5-1. State space plots of filtered DJI*-F time series using time delays of 5 ("-\.), 10 (B), 20 
(C) and 30 (D) months respectively. 

It would be interesting to compare the length of these long periods of cyclical and 

trending markets in order to find some scaling invariant, but unfortunately, we do not 

have enough of them to make any viable conclusion. Using the seventy five years of 

monthly data, we only have two examples of each, with a possible third cyclical period 

in the starting phase. Will this current third cycle starts to spiral backwards as the 

previous ones, indicating a market downturn that may last decades? It would be of 

interest to see the development of this plot in the long term. The shortage of a long 

span of data highlights a common problem with financial data analysis. 

The way in which this plot evolves in real time is represented by the different colours. 

Just to illustrate the dynamics of the state space trajectory in the middle part of figure 5-

1 B, the middle and the top parts are enlarged and shown in figure 5-2 for the time delay 

of 10 months. The thin red line is a hypothetical continuation of the future that mimics 

what happened in the graph above it, representing the 1960's to 1980's period, where 
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the trajectory was circling backwards in four/ five cycles of different sizes, encompassed 

by a large cycle lasting for about twenty years. The example is given only to visualise the 

trajectory path of the previous period. 
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Figure S-2. DJI*-F state space dynamics showing irregular cycles. The time delay used is 10 
months. The top graph represents the 1960-1980 period. The bottom graph is the current state 
(blue line), and the hypothetical future development of the plot (red line), shown only to clarify 
the dynamics of the plot above. 

As has been shown before, the attractor is a defined shape, a spatial pattern that the 

trajectory is evolving around. By examining the top plot in figure S-2, we can notice 

three small dents (cycles) highlighted in green, and three bigger cycles highlighted in 

pink, almost equally spaced apart. The green dents represent the DJI cycles formed in 

an upward trend, whilst the pink circles represent bigger cycles from a downward slope. 
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The trend presented in this time series causes these cycles to be apart. By removing the 

trend from the time series, the dents would get close in space and so would the circles, 

resembling a more defined attractor. Figure 5-3 shows a state space plot of a de-trended 

DJI*-F time series. The aperiodic cycles are clearly visible in the graph. 

x(t) 

Figure 5-3. State space plot of a de-trended DJI*-F time series. 

One cautionary note, searching for patterns in graphs and plots could be very subjective 

and dangerous. Spurious patterns can be found in many different shapes that are 

actually irrelevant. The next figure 5-4 is an unfiltered (with noise) DJI* state space plot 

for the same period and a delay time of 15 months. The first half of the picture in red 

resembles a sitting dog with a visible tail on the left, legs, fur, head, and a long snout. 

This does not sound very scientific but it highlights a common problem with data 

mining, which can find many patterns where there aren't any. 

x(t) 

Figure 5.4. State space plot of the DJI* with noise and time delay of 15 months. 
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There is a limit to the information that can be derived from state space plots, as we can 

only observe two and thee dimensional graphs. To accommodate for these shortfalls a 

much more powerful and versatile technique was introduced called Recurrence Plots 

(RPs) and Recurrence Qualification Analysis (RQA). 

5.3 Recurrence analysis 

Recurrence analysis is a graphical, statistical and analytical method for the study of 

nonlinear dynamical systems. Recurrence plots were introduced by Eckmann et al. [77] 

in order to provide a comprehensive image of the dynamics of a given system at a 

glance. They are graphical rectangular plots consisting of pixels whose colours 

correspond to the magnitude of data values in a two-dimensional array and whose 

coordinates correspond to the locations of the data values in the array. These array 

values represent encoded distances between all delayed vectors of the reconstructed 

time series. The RP is an excellent tool that can be used to visualise the evolution and 

recurrence of trajectories in state space. Essentially, it is the graphical representation of 

a correlation integral explained in section 4.4.1, but unlike the correlation integral, the 

RP preserves both temporal and spatial dependence in time series. RPs are especially 

suitable for the analysis of complex, short and non-stationary time series and can be 

applied to numerous scientific fields. The RP does not use any assumptions about data 

and is not constrained to any type of statistical distribution. 

The following sections will demonstrate the use of recurrence plots and recurrence 

qualification analysis to detect various properties of the financial time series including 

the start period of extreme events. 

5.3.1 Recurrence Plots (RPs) 

As shown in the previous sections, the dynamical system can be represented by the 

trajectory of the embedding vector {.X;} for i = 2, ... , Nina D- dimensional space. The 

RP plot is a two-dimensional graphical representation of the matrix of these vector 

distances within a cut-off limit: 

i,j = l, ... N (5.1) 

where & is a predefined threshold limit and 0 is a Heaviside function, as in the 
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correlation integral. The norm function geometrically defines the size and shape of the 

neighbourhood surrounding each reference point. The most common norms used to 

calculate distance are shown in figure 5-5. The diamond shape is the minimum norm, 

the square is the maximum and the circle is the middle (Euclidian) norm, which is used 

in the following examples. 

Figure 5-S. Common norms used to calculate distance in RPs. 

The graphical representation in RPs is obtained by encoding the distances between the 

pairs of vectors into black (if the distance is below the threshold) and white dots 

(distance is equal or above the threshold). Often, the threshold parameter is not used 

and the distances are encoded into a dark (cold) and light (hot) colour scheme. These 

are known as global recurrence plots or distance plots. Usually the colour scheme used 

is shown on the right hand side of the RPs. The RP plot shows different structures 

depending on the nature of the underlying time series. 

5.3.2 Interpretation of recurrence plots 

By visually inspecting the typology and texture of a recurrence plot, properties of the 

system such as stationarity and determinism can be assessed. The RP obtained from 

purely random systems do not show distinguishable patterns. They appear as a cloud of 

evenly distributed coloured points with no apparent structure as in the case of white 

noise (figure 5-6 A/. By contrast, the sine wave (figure 5-6 B) produces a clear pattern 

of many white/yellow diagonal lines that are an indication of a deterministic process. 

The more structured the RP is, the more deterministic the signal is. 

Both these plots have a homogenous structure indicating that the data sets originated 

from a stationary process, whilst a non-homogenous structure indicates that which is 

non-stationary in the system (figure 5-6 C, D & F). 

1 The software used for creation of RP is the Visual Recurrence 1\nalysis (VRA). 
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Figure S-6. Recurrence plot examples and their corresponding time series for: A -white noise, B 
- sine wave, C - Lorenz time series, D - sun spots time series, E - Brownian motion, and F -

Microsoft share price. The embedding was not used i.e. ( m = 1, r = 0 ). 

The diagonal lines are an indication of recurring cyclical or deterministic system 

behaviour and their length and distribution patterns can be used to classify the system 

further into being simple, complex or chaotic. The longer the diagonal lines, the more 

deterministic the signal is. It should be noted that there are no diagonal lines in the pure 

stochastic system (plot A). The distance between the lines is determined by the 

periodicity cycle of the sine wave. The line of identity (LOI), the main diagonal line 

from the bottom left hand corner to the top right hand corner, is clearly visible in all 

plots. This line can be ignored as it represents the zero distance of the vectors 

compared with themselves. Both parts of the RP image on each side of the LOI are a 

mirror image of each other. The RPs presented in figure 5-6 are an example of global 

distance recurrence plots. These RPs don't use the threshold value 8 , as all distances 

between vectors are encoded using different colours. Often they reveal more structure 

and patterns and are supposed to show a full picture of the underlying dynamical 

system. However, in some cases this type of plots can hide important diagonal features 
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of the plot, as they emphasise vertical and horizontal lines. This is clearly illustrated in 

figure 5-7, which shows global distance RPs in the case of white noise (Al and A2) and 

the logistic function (B1 and B2). The A2 and B2 RPs are enlarged squares (a zoomed 

in area from point 400 to 600) of A1 and Bl respectively. 

1000 

900 

800 

700 

600 

500 

~00 

300 

200 

100 

1000 

900 

800 

700 

600 

500 

~00 

300 

200 

100 

Figure 5-7. Global distance RPs of white noise (.Al and .A2 (zoomed in area)) and the logistic 
function (Bl and B2 (zoomed in area)). The expected diagonal structure is not visible in the 
logistic function B 1 & B2 plots, both panels A & B appear to be produced by the same or similar 

process. The embedding was not used i.e. ( m = 1, r = 0 ). 

By examining figure 5-7 it is not possible to distinguish between the purely random 

process (panel A) and the low dimensional chaotic system (panel B). It is only when the 

upper distance bound is considerably reduced that these two panels looks very different 

(figure S-8). The short diagonal lines of the logistic function plot, that are an indication 

of a low-dimensional chaotic system, are clearly visible in panel B. 
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Figure S-8. RPs of white n01se (Al and A2 (zoomed in area)) and the logistic function (Bl and 
B2 (zoomed in area)) produced using the 0.05 value as an upper distance bound (all distances 
above this value are shown in grey) . T he expected diagonal structure is clearly visible in the 
logistic function panel B. Short diagonal lines forming different patterns are common features of 

chaotic time series. The embedding was not used i.e. ( m = 1, r = 0 ). 

Two trajectories that move parallel to each other in the same direction produce a line 

parallel to the LOI (figure S-9), and the trajectories that move in an opposite direction 

produce a line perpendicular to the LOI. 

FigureS-9. A diagonal line in RP corresponds to trajectories passing in the same region of the 
state space at a different time, within a & distance. 1 

1 Source: [90] . 
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The length of the line depends on how long these trajectories move together. In the 

case of the sine function, two points move continuously at the same distance apart, so 

the resulting lines have no gaps. This is not the case for chaotic systems as the 

trajectories, though they have periodicity diverge apart quickly, resulting in many 

diagonal and vertical lines of different length (figure 5-6 C, Lorenz time series). For 

chaotic systems, the length of the largest diagonal segment is inversely proportional to 

the largest Lyapunov exponent and can be estimated directly &om the RPs1 [80]. 
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Figure 5-10 Trajectory examples that generate diagonal lines parallel to the LOI (a) and (b), lines 
perpendicular to the LOI (c), and horizontal and vertical lines (d).2 

The chaotic time series exhibit non-stationarity which is clearly visible from plots C and 

D, compared to the uniform, symmetric and stationary time series shown in plots A and 

B. The RPs of chaotic systems also show a certain regularity but with more complex 

features. The vertical and horizontal lines are more pronounced indicating that the 

system state is stable or changes very slowly in time. This is typical behaviour of non­

stationary processes with a drift. 3 The RP darkens or pales (depending on the colour 

scheme) away of the LOI. 

Dark blue and black dots represent long distances and isolated states, and therefore the 

dark bands indicate rare or extreme events which are visible in figure 5-6 F (the 

Microsoft share price). A better example of similar extreme events are demonstrated in 

figure 5-12, the market crash in 1929 and the technology bubble burst in the year 2000. 

1 1\s mentioned before the largest Lyapunov exponent measures the average divergence rate of the nearby trajectories. 
, \bo, many other dynamical invariants can be estimated from the RPs: Hausdorff fractal dimension [79], multi­

fractal properties of return time statistics [81], entropies etc. 

2 Source: [89]. 

3 ,\bo known as laminar or intermittency states. 
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It is remarkable how these two events that are seventy years apart, resemble each other. 

The white square patterns seen on the RPs are a sign of market periodicity, i.e. sideways 

moves. These white squares appear on different scales in a similar fashion, as we zoom 

into the highlighted square area shown in the panel above. The corresponding "zoomed 

in" area is shown in the B and C panels below. This illustrates the typical fractal 

property of financial time series. 

Another interesting property can be observed from the plots. As we zoom into smaller 

squares we can see that the distance between the white/yellow squares (representing 

oscillations) are getting closer as their size (amplitude) is decreasing, which is a typical 

property of log-periodic oscillations (figure 5-11). It is a well known fact that these log­

periodic oscillations are often observed before extreme events occur, such as in the case 

of an earthquake. Mirror image dynamics can be observed after a market crash. 

A 
D 

D 

D 

Figure 5-11. The white square areas (.A) visible in RPs represent log-periodic oscillations (B) and 

are seen before market crashes. 
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DJI Crash- 1929 
NASDAQ Crash - 2000 

50001-r----------.-------~ 

350 

Figure 5-12. "Fingerprint" of DJI market crash in 1929 (A1, B1 & C1) and NASDAQ 2000 (.-\.2, 

B2 & C2). The embedding parameters used are m = 1, r = 0. 
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The dark bands corresponding to the crash periods are clearly visible in the recurrence 

plots (figure 5-12 A1 & A2). More interestingly, these bands are visible prior to the 

market crash and can be a warning sign of an unstable market and a possible sharp 

downturn. As the dark red/black smudges or bands start to narrow, the likelihood of a 

crash is more eminent. This is illustrated in figure 5-13, showing the recurrence plots of 

the NASDAQ three, two and one month before the crash (top panel) and the index at 

the peak, two and three months later (bottom panel) . The yellow/white arrow shaped 

patterns are a sign of non-stationarity and a strong trend in time series. 
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Figure 5-13. The RPs of the NASDAQ three, two and one month before the crash_(top panel) 
and the index at the peak, two and three months later (bottom panel). The embedding 

parameters used are m = 1, r = 0 . 

The global recurrence plots of DJI*, DJI*-F and DJI*-FD time senes are shown in 

figures 5-14, 5-15 and 5-16 respectively on the left side, whilst the 'thresholded' plots are 

shown on the right hand side. The RPs of the DJI* (figure 5-14) and filtered DJI*-F 

time series (figure 5-15) are very similar, except that the first one is sharper and more 
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detailed. The filtering effect produced a blurred and less detailed RP (DJI:t -F). 
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Figure 5-14. Global distance recurrence (on the left) and the 'threshold' plot (on the right) of the 

DJI* time series. The embedding parameters used are m = 3, r = 1. 
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Figure 5-15. Global distance recurrence (on the left) and the 'threshold' plot (on the right) of the 

DJI*-F time series. The embedding parameters used are m = 3, r = 1. 

The RPs show oscillatory periods represented as the white/yellow wide areas and the 

trending periods shown as narrow white/yellow bands along the LOI line. The DJI* 

and the DJI*-F time series exhibit larger drifts, while the DJI*-FD (figure 5-16) 

recurrence plot show more structure and complexity. There is a period (650-800) in this 
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plot that stands out. It represents the DJI behaviour from 1987 to 2000, where the 

operating market regime looks different compared to the other periods. 

Figure 5-16. Global distance recurrence (on the left) and the 'threshold' plot (on the right) of the 

DJI*-FD time series. The embedding parameters used are m = 3, r = 1. 

To show the relevance of the order of the data points in the financial time series two 

RPs are generated, one using the original DJI*-FD time series, and the second using a 

randomly shuffled sample of the same time series. The resulting plots are shown in 

figure (figure 5-17). The new re-shuffled time series preserved the same mean and 

standard deviation values, but completely destroyed the RP structure of the original time 

senes. 

Figure 5-17. An example of the global distance RP of the randomised DJI*-FD time series (A) 
and the 'threshold' plot of the same time series (B). 
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The problem with RPs is that they can often be misinterpreted. The number of vertical 

and diagonal lines increases as the embedding dimension grows. These can be 

misinterpreted as the presence of an extreme event and determinism. A large time delay 

together with noise can amplify the number of vertical lines. A more reliable 

interpretation of RPs is obtained by means of the Recurrence Quantification Analysis, 

which mathematically quantifies many important features of the RP. 

5.4 Recurrence Quantification Analysis (RQA) 

To avoid sole reliance on the visual interpretation of RPs that may result in inconclusive 

results, the RQA was introduced by Zbilut and Webber [78] and developed further by 

Marwan et al. [87]. They introduced a set of statistical measures from which more 

objective information can be derived than purely from visual analysis. Some of the 

important features that these statistics can quantify are the deterministic structure, 

stationarity, periodicity and complexity of the plot. They can also help to analyse 

changes in the state of a dynamical system as it evolves over time. 

5.4.1 RQA Measures 

The starting point for RQA is the equation (5.1 ), rewritten in a more intuitive form, 

which identifies whether a point is recurrent or not: 

(5.2) 

The RQA statistics that are based on the distribution of the length of diagonal 

structures in the RP are: 

• Recurrence Rate (REC) or percentage recurrences count the number of black 

dots (recurrence points) in the RP. 

1 N 

REC=-~R (&) 
N 2 .L....J l,J 

i,j=l 

(5.3) 

In order to calculate the above statistic it is necessary to specify a threshold 

distance & , which is a crucial parameter for a correct interpretation of RPs. If 

the threshold is either too small or too large, the number of recurrence points 

would also be too small or too large, leading to erroneous conclusions. The 
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selection of £ depends mainly on the time series in question. Some authors 

propose a constant value proportional to the standard deviation of data [88], 

some as a proportion of the average distance of vectors [78] and others require 

that a minimum number of points enter the neighbourhood of each vector [77]. 

If the radius is equal or larger than the maximum distance in RP, then every 

point will be recurrent and both REC and DET (see the next measure) will 

saturate at 1 00°/o. The £ threshold can be selected to give a REC value of 

between 0.1 °/o and 2.0°/o and the larger values of up to 5°/o can be used to obtain 

values for the LAM and IT measure presented below. This would ensure that 

the trajectories being compared are close in distance, but are above the noise 

floor. 

The following formulas presented here are functions of £ but for the sake of 

simplicity, £ will not be specified, i.e. P(c,l) is written as P(/) etc. 

• Determinism (DEI) represents the percentage of recurrent points that form 

diagonal lines of a minimum specified length /min. This measure is important, 

as it quantifies the amount of determinism (or predictability) in the time series 

and is equal to the ratio of recurrence points that form diagonal lines (of at least 

length /min) and all the recurrence points. 

N 

LIP(!) 
DET = -'=~'m~in -­

N 

LIP(!) 
1=1 

(5.4) 

Where P(l) represents the probability of finding a diagonal line of length l in 

the RP. This distribution is defined as: 

N ~ 

P(l) = L (1- Ri-1,}-1 XI- Ri+1,j+1 )TI Ri+k,j+k (5.5) 

iJ~ k~ 

The DET value for the stochastic processes tend to be low and high for periodic 

deterministic processes, but it is largely dependent on the choice of /min . If /min 

is equal to one, than the DET is equal to one. A large value of /min causes the 

histogram P(l) to be too sparse and the derivation of D ET can be unreliable. 
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The average diagonal line length is defined as: 

N 

ItP(l) 
L = _1=....:::/m.:::....in __ 

N 

IP(l) 
(5.6) 

/=/min 

• Ratio (RATIO) is defined as the ratio between DET and REC. These two 

measures should be closely correlated. Any departure from the correlation i.e. 

the REC decreases whilst the DET increases or does not change, and is 

highlighted by the RATIO measure which can be used to discover certain types 

of transitions in the system's behaviour [92]. 

N 

ItP(l) 
RATIO= N2 -'=_.:::'m=-in __ 

(ttrV>)' 
(5.7) 

• The longest diagonal line ( Lmax) apart from the LOI is defined as: 

Lmax = max{l;) i = 1, ... N1 (5.8) 

where N 1 = L t> 
1 

. P(l) is the total number of diagonal lines. It has been 
- mm 

shown that Lmax is sensitive to the stability of the system in question. The 

larger the Lmax, the more stable the system. 

The inverse of Lmax is a measure of divergence of nearby trajectories and is 

linked to the largest positive Lyapunov exponent. 

DIV=-
1
-

Lmax 
(5.9) 

A higher value of DIV implies faster divergence and shorter diagonal lines, 

which are typical characteristics of chaotic systems. 

• Entropy (ENTR) is a Shannon entropy of the frequency distribution of 

diagonal lines in RP and is recognised in the variety of RP structure. 

N 

ENTR = LP(l)ln(p(l)) (5.10) 
/=/min 
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where p(/) = P(l) I I:, . P(l) is the probability of finding a diagonal line of 
mm 

length l in RP. This measure quantifies the complexity of the deterministic 

structure in the RP in both a space and time domain. It compares the global 

distribution of recurrence points over the entire RP with the distribution of 

recurrence points over each diagonal line. The higher the differences the more 

structured the image is. A high entropy means the absence of structure (uniform 

distribution and randomness), whilst a low entropy implies structure (distinct 

patterns and predictability). The reconstructed time series would have entropy 

near its minimum for the optimal embedding parameters, and therefore, 

experimenting with different values that yield the lowest entropy can help to 

select a good embedding dimension and time delay. However, for a non­

stationary time series with trend this measure could be misleading. 

• Trend (TREND) is a linear regression coefficient (or slope of line) of best fit 

through a recurrence rate (REC) as a function of displacement (or time distance) 

from the main diagonal line. 

N I& -N/2XRECi -(RECi)) 
TREND= i=l -

N 

I&-Rf 
(5.11) 

i=l 

The formula excludes the edges of the RP ( N < N) because of an insufficient 

number of recurrence points in this region [91]. The TREND measures a fading 

of the patterns of RP away from the LOI and is used to detect drift and non­

stationarity in a time series, in which case the value becomes strongly negative. 

If the density of recurrence dots decreases away from the LOI line, it is because 

there is a drift in the time series' mean. It should be noted that the LOI line 

corresponds to the same time and the dots away from the central diagonal line 

represent a deviation in time. 

An analysis of the vertical structure in RPs can be used to detect chaos-chaos transitions 

as they occur. The latest RQA measures based on the distribution of the length of the 

vertical structures in the RP are: 

• Laminarity (IA.M) is analogous to DET, and is defined as the percentage of 
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• 

recurrence points that form a vertical line of a minimum specified length v min • 

This measure quantifies the occurrence of laminar (slow changing) states in a 

given trajectory. 

N 

IvP(v) 
LAM = _v=~:m=in __ 

IvP(v) 
(5.12) 

v=l 

Where P(v) represents the probability of finding a vertical line of length v m 

the RP. The histogram of a vertical line length is defined as: 

(5.13) 

Trapping Time (TI) 1s analogous to L, representing the average length of 

vertical structures. 

N 

IvP(v) 
TT = _v=-..!V~=in __ (5.14) 

IP(v) 

IT estimates the mean time of a system being trapped in a particular state. 

• The longest vertical line ( Vmax) is defmed as: 

Vmax =max( vi) i = l, ... Nv (5.15) 

where Nv = L P( v) is the total number of vertical lines. 
v2:= vmin 

Measures based on vertical structure are used to uncover chaos-chaos [87] and chaos-

order transitions [90], [93]. 

5.4.2 RQA analysis of financial time series 

The RQA measures above can be calculated for the entire RP window (whole time 

series) as well as many smaller and overlapping squares. The large window measures 

focus on global dynamics, whereas smaller windows (termed epochs) focus on local 

dynamics and changes in RQA measures over time. A graphical illustration of the 
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epoch construction is shown in figure 5-18. 
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Figure 5-18. Example of a time series divided into four epochs. 

The results of the RQA variables for DJI*, DJI*-F and DJI*-FD computed on the 

whole time series are presented in table 5-1. All three time series are comprised of 873 

monthly recordings. The standard parameters required for the RQA calculations for the 

whole and the epoch-by-epoch basis are set as follows: 

• The embedding dimension m of 3 was used for all three time series which are based 

on the correlation dimension and the false nearest neighbour estimates. As 

shown in sections 4.4.1 and 4.4.2 both these methods estimated a correct 

dimension in the case of logistic function. 

• The time defqy r of 1 is used in all calculations. This rather low value is used for 

several reasons. Firstly, the average mutual information estimates for the time 

delay calculated in section 4.5 were found to be unreliable, even in the simple 

case of the logistic function. Secondly, the sampling frequency for the financial 

time series in question is sparse (on a monthly basis), and some authors suggest 

that for discrete systems a r value of 1 is appropriate [78]. This low value is 

particularly important in the event that these time series are generated by chaotic 

systems, which are intrinsically unpredictable and lose memory of the initial state 

as the time delay is increased. For shorter sampling frequencies measured in 
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• 

days, hours or minutes, a longer time delay would be more appropriate. 0 

The RP matrix was derived using the Euclidian distance norm and rescaled to a 

maximum calculated distance. 0 

• For comparative reasons, the radius for each time senes was chosen such to 

produce the same value of REC (2.0°/o) for all three time series. 0 

• Line length specifies the number of consecutive recurrent points required to 

define a line segment. Often, the line length is set at 2 points, but in this case a 

more conservative value of 5 was used. 0 

Table 5-1. RQA measures of DJI*, DJI*-F and DJI*-FD calculated for whole time series. 

DJI * DJI*-F DJI*-FD 

Mean value -1.114 -1.167 0.035 

Standard deviation 0.912 0.900 0.063 

Mean rescale distance 27.250 29.334 26.097 

Embedding dimension ( m ) 3 3 3 

Time delay ( r ) 1 1 1 

Line length 5 5 5 

Radius (E) 1.0863 0.5891 1.5934 

REC 2.000 2.000 2.000 

DET 39.337 72.664 44.698 

RATIO 19.671 36.327 22.346 

Lmax 42 450 65 

ENTR 2.865 3.925 2.922 

TREND -7.127 -7.340 -2.012 

LAM 35.982 70.760 32.543 

TT 7.297 9.096 7.332 

Vmax 33 23 16 

All three time series show the presence of deterministic features, in particular the DJI*­

F time series having a DETvalue of 73°/o. The reason for this higher value compared to 

the other two time series could be the filtering that has been applied to this time series. 

The smoother time series have consequent points closer in space, causing more 

recurrent points as illustrated in figure 5-10 case (b), or simply this signal is more 

deterministic when compared to the other two. Likewise, the high LAM values reveal a 
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significant structuring of recurring dynamical features in the vertical plane. "\s expected, 

both the DJI* and the DJI*-F time series exhibit a stronger trend than the DJI*-FD 

time series. The high value of Lmax for the DJI*-F indicates more stability present 

within the time series. 

To show the relevance of the order of the data points in these time series, the same 

RQA statistics were calculated for randomly reshuffled samples of the same time series. 

The results are presented in table S-2. These new re-shuffled time series preserved the 

same mean and standard deviation values, but completely destroyed the deterministic 

structure of the original time series causing all RQA measures to be virtually zero. 

Table 5-2. RQA measures of DJI*, DJI*-F and DJI*-FD calculated for randomised time series1• 

DJI* DJI*-F DJI*-FD 

Mean value -0.114 -1.167 0.035 

Standard deviation 0.912 0.900 0.063 

Mean rescale distance 39.129 38.143 36.882 

Embedding dimension ( m ) 3 3 3 

Time delay ( T ) 1 1 1 

Line length 5 5 5 

Radius (E) 1.0863 0.5891 1.5934 

REC 0.009 0.002 0.010 

DET 0.000 0.000 0.000 

RATIO 0.000 0.000 0.000 

Lmax 0 0 0 

ENTR 0.000 0.000 0.000 

TREND -0.009 0.009 0.007 

LAM 0.000 0.000 0.000 

IT 0.000 0.000 0.000 

Vmax 0 0 0 

The RQA is carried out next on an epoch-by-epoch basis, with the aun that the 

changing values of RQA variables in the subsequent windows will allow for the 

detection of abrupt changes in the dynamical regime of the signal. The analysis was 

carried out using the same parameter setting used for the whole time series, except the 

I The softwares used for RQ 1 \ are Visual Recurrence Analysis (VRA) and Recurrence Quantification Analysis. 
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radius was set larger (3.5 for DJI* and DJI*-F and 2.47 for the DJI*-FD)' in order to 

gain values for most RQA measures in all epochs. Each epoch length was set to 120 

points (10 years) with an overlap of24 points (2 years) between consecutive windows. 

The results of the epoch-by-epoch RQA analysis is presented in figure 5-19. The first 

row shows RPs of the whole DJI*, DJI*-F and DJI*-FD time series, which are shown 

in the fourth row respectively. For comparative purposes the second row shows the 

original DJI time series and the its logarithm is presented in the third row. The RQA 

measures REC, DET, RATIO, Lmax, ENTR, TREND, LAM, IT and Vmaxare shown 

in the 5th to 13th row respectively. 

Following the DET variations it is possible to distinguish several levels and to study 

how the forecasting capability would change according to the level of DET observed in 

the time series. The DJI* time series has higher values during the trending periods, with 

peaks in epoch 9 and 30. The filtered DJI*-F time series exhibits two plateaus of high 

DET that coincide with strong trending periods in log(DJI) series (epochs 9-13 and 26-

30), whilst the DJI*-FD time series has a high value in DET during the oscillatory 

period of log(DJI) (epochs 14-18). This highlights the need for adequate pre-processing 

of time series depending on the type of forecasting model used. 

It is noticeable that high values of REC, DET, Lmax, ENTR and the absolute value of 

TREND are associated with more deterministic periods, and most importantly, the 

lowest values of these measures (in particular Lmax) can be used to identify transition 

periods. Note that these measures take the lowest values at the beginning of the 

transition period in epochs 3-5 and 19-21, just before the start of a big upward rally in 

the DJI index. The RATIO measure is important as it can also detect transitions 

between states. This ratio has abrupt jumps in transition periods and settles down when 

a new 'steady' state is achieved. Two peaks in epoch 21 for DJI* and epochs 19-20 for 

DJI*-FD coincide with the above findings. 

1 The radius value for all three time series was set as the average of the three estimates: 5 a , 10% of the mean 

rescaled distance and the radius value that generates a REC of 10%. 
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Figure 5-19- RQA measures (REC, DET, RATIO, Lmax, ENTR, TREND, LAM, TT and 
Vmax) for DJI* (panel A), DJI*-F (panel B) and DJI*-FD (panel q. :_ 
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The ENTR value is more stable and also higher for the DJI*-F and DJI*-FD time series 

indicating a higher complexity of these two time series. 

All three time series are non-stationary, which can be observed directly from RPs and 

verified by a changing and a strong negative value of the TREND measure over time. 

The stationary time series have TREND values close to zero. 

Chaotic behaviour is characterised by a high value of DET and REC and a small value 

of Lmax and ENTR [86], [94] . There are no clear epochs that satisfy these criteria, 

though the DJI*-FD epochs 26-28 exhibit a similar behaviour, indicating the possibility 

of this region being chaotic. Interestingly, the vertical structure measures, LA..J\;1, IT 

and V max show visible peaks in the same epochs (26-28). These statistics show a 

distinct maxima at the chaos-chaos transitions and fall to zero in periodic regions, 

indicating chaos-order transitions [87]. But, L4M, IT and Vmax also attain large values 

during extreme events and in regions of intermittency (i.e. laminar states)'. 

5.5 Conclusions 

This chapter applied visualisation and analytical tools in the analysis of several chaotic 

and financial time series. It has been shown that state-space and recurrence plots can be 

used to characterise and recognise different regimes within a time series. The RPs 

preserve both temporal and spatial dependence in the time series and don't use any 

assumptions about the data, i.e. they are not constrained to any type of statistical 

distribution. Two market crashes, 1929 and 2000, were analysed showing very similar 

behaviour. The markets fractal structure and log-periodic oscillations, typical of periods 

before extreme events occur, have been revealed through recurrence plots. Also, the 

dark bands that are a warning sign of extreme market levels are visible prior to market 

crashes. 

The RQA analysis can be used as a powerful tool to detect hidden properties driven by 

nonlinear mechanisms. The RQA analysis indicated the presence of determinism in all 

three financial time series studied. Crucial transition periods were also detected just 

before the start of a big upward rally in the DJI index. The typical values of the RQA 

measures that are common to chaotic behaviour are not present in the results (figure 5-

19), though there are some indications that they may exist during shorter periods of 

1 Long periods of relative stability, interrupted by fairly short periods of chaos. 
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time. 

The procedure is robust to noise, and it does not impose any kind of restrictions on the 

data. Although the operation of the programs is straightforward, the selection of RQA 

parameters and the interpretation of RQA variables can be difficult especially in the case 

of complex financial time series. 

The next chapter will examine how neural networks can be used to forecast low­

dimensional chaotic time series as well as complex real-world financial time series. 
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Chapter6 

Nonparametric Time Series Forecasting 

6.1 Introduction 

Forecasts play a big part in life and we use them all the time to guide our decisions. 

Companies forecast using various measures to guide their decisions in marketing, 

strategic planning and control. Governments around the world routinely forecast major 

economic variables to guide their monetary and fiscal policies. Financial institutions 

have great interest in this area and use forecasting techniques in their trading and 

financial risk management. However, there is endless debate about the success of 

financial time series forecasts as they are very difficult to predict. Simple and widely 

available methods for forecasting usually have litde success, but new and sophisticated 

techniques have a higher chance of uncovering and exploiting previously unnoticed 

patterns in financial data. This effect usually only lasts for a limited period as other 

market participants catch on. The existing models and their parameters need to be 

adjusted regularly and replaced with new ones from time to time. 

The previous chapter showed that the financial time series examined do not fluctuate 

randomly, and on the contrary, they exhibit a certain amount of determinism. The 

methods that can be used to estimate model's parameters from the historical data 

observed were also highlighted, such as the embedding dimension, time delay, the 

forecasting horizon and the complexity of the model. In this chapter we will apply that 

knowledge and compare several non-parametric forecasting methods to our three 

financial time series. Their predictions will be used to derive and evaluate the trading 

models. 

In general, financial prices are influenced by a myriad of external influences, but in the 

case of embedding, an attempt is made to discover the self-referential hidden rules 

within the price movement itself. This chapter will focus on "univariate" modelling, 

where a single variable is predicted solely on the basis of its own past. The next chapter 

will present some "multivariate" models, where the time series forecasts are based on 

107 



their own data, as well as other data variables. The univariate approach may seem 

simplistic, however, the previous chapter has demonstrated that the dynamics of the 

chaotic time series can be forecasted successfully by means of proper embedding. 

6.2 Non parametric and local modelling 

This research focuses on nonparametric time series predictions, which do not make any 

assumptions about the functional form of the process that generate the observable time 

series. The models and their parameters are derived directly from data using various 

optimisation techniques, including neural networks models. In addition to NNs, other 

closely related local linear and nonlinear models are tested and their performance is 

compared. The local models fit many simple models to small portions of the data set, 

instead of fitting one complex model with many coefficients to the entire data set. 

These local models change their parameters adaptively depending on the geometry of 

the dynamical system's local neighbourhood. Essentially they are regression models 

whose parameters change over time. Most of these models use a similar approach; the 

only difference is in the choice of function that is used to map the input to the output 

values, and in some cases, the weighting function (kernels) that assigns the contribution 

of each neighbour to the prediction. 

Essentially the prediction of next value x,+1 starts with last known state of the system, 

as represented by the delay vector x, = (xr-(m-I)r , ... , x,_r, x,), where m is the embedding 

dimension and r is the time delay. Then the algorithm searches the time series to find 

similar k states (nearest neighbours) that have occurred in the past, based on the 

distance between vector X
1 

and its neighbour, vector y
1

• If the observable time series 

was generated by some deterministic process, then X1+1 can be estimated by 

approximating the function X1+1 = f(xt' y1 ) that maps the similar states y, onto their 

immediate values. 

As shown in the previous chapter, short-term predictions of low-dimensional chaotic 

time series are possible. This is demonstrated in the example of the logistic equation 

shown in figure 6.1. This approach can reliably forecast chaotic time series one step 

ahead, using a neural network model. The model was optimised over 2000 data points 
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and out-of-sample predictions were generated for the next 1000 points with only 200 

predictions shown in the graph for reasons of visual clarity. An embedding dimension 

of 2 and a time delay of 1 were used to reconstruct the dynamics of time series. 
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Figure 6-1. An example of a one step ahead out-of-sample forecast of the Logistic Map chaotic 

time series (A= 4, x(0)=0.1) using the neural network model. 

6.3 Performance measures 

In order to evaluate the performance of forecasting models, the accuracy of the 

predictions generated are compared, with two reference predictors: the unconditional 

mean and the "random walk" predictor. These performance measures are known as the 

Normalised Mean Square Error (NMSE), where in the previous case, our prediction 

error is normalised with a squared error of the mean predictor: 

N 

I(x, -x;Y 
NA1SE1 =~';~

1 ------- (6.1) 

I(x, -x~Y 
1=1 

In the second case the prediction error is normalised with a "random walk" predictor 

which assumes no change, i.e. the next value will be the same as the last known one: 

N 

I(x1 -x;Y 
NA1SE2 = -N=I=:.._I ------- (6.2) 

I(x, -X1_ 1y 
1=1 

Where x, is the actual value, x; is the out-of-sample predicted value, and x, is the 

average actual value over the out-of-sample period t = 1, ... , N. 

The model performance measure is compared to the best performing reference 
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predictor and is defined as: 

NMSE = max(NMSE1, NMSE
2

) 
(6.3) 

The model can be considered useful only if it can outperform these two reference 

predictors, which in the case of financial time series is very difficult. By definition, the 

minimum value of NMSE is 0 representing an exact match between the actual and 

predicted values. The higher the NMSE, the worse the prediction is compared to the 

reference predictors. If the NMSE is equal to 1, the prediction is equal to the 

performance of the best reference predictor. If the NMSE is greater than 1, the 

prediction is worse than the prediction of at least one of the reference predictors. 

The Root Mean Square Error (RMSE) will also be presented, which is defined as: 

RMSE= 1=1 

N 
(6.4) 

The model's predictions for the logistic function are very accurate, the NMSE for the 

prediction of 1000 points one step ahead is only 0.003705 and the RMSE is 0.0214. 

That means that our predictive model explains about 99.63% of the variance in the 

series, confirming that it is possible to obtain accurate short-term predictions for the 

chaotic and low-dimensional time series. As explained earlier, reliable long-term 

forecasts are impossible to achieve due to sensitivity to the initial conditions and 

different parameter values causing the prediction error to increase exponentially in time. 

6.4 Financial time series prediction 

The results from the previous chapter have shown that three financial series (DJI*, 

DJI*-F and DJI*-FD) are generated from a low-dimensional system and the Recurrence 

Quantification Analysis confirmed the presence of a strong deterministic structure 

within them. We have also seen that the chaotic properties of a time series are of 

practical value for predictions, as their short term forecasts can be achieved by using 

time lagged vectors. 

In this section a forecasting test of the fmancial time series will be performed using 

different local prediction models as well as the neural network approach. The local 

predictors evaluated are: the local!J weighted linear, the local!J linear, the radial basis, the kernel 
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regression, the nearest neighbour and the locai!J constant model. The first test was performed 

using the ftxed neighbourhood size which was set to 10. All model parameters were 

optimised using 772 points (months), and the out-of-sample test was created on the 

next 120 points (10 years). An embedding dimension of 3 and a time delay of 1 was 

used in all models. Table 6-1 shows results for the models that could be estimated 

successfully to produce a low out-of-sample error measure. In the case of the kernel 

regression, the locai!J weighted linear ant the radial basis models, the Gaussian weighting 

function (kernel) was used. There are only three examples (highlighted in bold) where 

the estimated models outperformed the reference predictors; the locai!J weighted linear 

model in the case of the DJI*-FD time series and the locai!J linear model in the case of 

the DJI*-F and DJI*-FD time series. 

Table 6-1. The performance of different predictive models using the 10 nearest neighbours and 
applied to the DJI*-F, DJI*-F and DJI*-FD time series. 

k 
DJI* DJI*-F DJI*-FD 

NMSE RlvfSE NMSE RMSE NMSE RlvfSE 

Locally weighted linear 10 5.2330 0.10293 2.4436 0.01566 0.6101 0.00345 

Locally linear 10 9.7880 0.14077 0.7972 0.00895 0.5462 0.00327 

Radial basis 10 - - - - 1.0638 0.00456 

Kernel regression 10 - - - - 1.7098 0.00578 

Nearest neighbour 10 - - - - 2.4838 0.00697 

Locally constant 10 - - - - 2.4838 0.00697 

The neighbourhood size value of 10 may not be an optimal choice for all predictors and 

time series. These predictive models are very sensitive to this neighbourhood 

"bandwidth" parameter which may drastically affect their performance. For the very 

large values of k, the local predictor becomes a global one, since it considers many 

points in the data set. In this case the generated predictions will be more stable and 

have lower variance, but their accuracy may also be low due to a large bias. If on the 

other hand, the bandwidth is very small, the predictor simply interpolates between 

points and the predictions generated may quickly diverge from the actual values after an 

initial period of higher accuracy. Though this parameter is set to a ftxed value, the size 

of the actual neighbourhood depends largely on the shape of the attractor, i.e. the 

111 



neighbourhood will be larger in the sparse regions of the attractor and smaller in the 

dense region. 

One way to find a good estimate for this value is a simple trial and error approach. In 

this particular case it is done through experiments that test the performance of many 

models using the first 54 years of monthly data points and the different neighbourhood 

size value (1 to 30). The ones that produced the best performance measure on the 

validation set of 120 months were selected. As in the previous experiment, these 

models were tested on a further 10 years out-of-sample period (120 points), but on this 

occasion using the estimated neighbourhood size. Table 6-2 presents the results of this 

test showing a large improvement and much lower error performance measures. The 

number of cases where the models also outperformed the reference predictors doubled, 

from 3 to 6. The estimated neighbourhood size is shown in the k column for each 

model/ time series. 

Table 6-2.The performance of the predictive models using the estimated number of nearest 
neighbours from the validation set and applied to DJI*-F, DJI*-F and DJI*-FD time series. 

DJI* DJI*-F DJI*-FD 

k NMSE RMSE k NMSE RMSE k NMSE RMSE 

Locally weighted 
22 1.9534 0.62888 10 2.4436 0.01566 18 0.4568 0.00299 

linear 

Locally linear 22 1.5564 0.05613 10 0.7972 0.00895 13 0.4791 0.00306 

Radial basis - - - - - - 16 0.7394 0.00380 

Kernel regression - - - - - - 4 0.9712 0.00436 

Nearest 
4 1.2500 0.00494 - - - - - -

neighbour 

Locally constant - - - - - - 4 1.2500 0.00494 

A further test was made by applying the neural network forecasting model to the same 

time series. As in the previous example, the model was trained using the first 772 points 

and the out-of-sample test was created on the next 120 points (the last 10 years). The 

same embedding dimension of 3 and time delay of 1 were used. The prediction error 

results of this model are presented in table 6-3. 
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Table 6-3. The performance of the neural network model. 

DJI* DJI*-F DJI*-FD 
NMSE RMSE NMSE RMSE NMSE &.\fSE 

Neural network 1.0835 0.04684 0.0864 0.00289 0.3193 0.00248 

The neural network model outperformed the reference models in the case of DJI*-F 

and DJI*-FD time series. In the case of DJI* time series, the NN model was very close 

to the performance of the 'random walk' predictor reference model. This model had 

lower errors than any local model. 
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Figure 6-1. The actual and the predicted value of the localfy linear non-parametric model applied to the 

DJI*, DJI*-F and DJI*-FD time series. 

The actual and the prediction graphs of the best performing locai!J linear non­

parametric model and the neural network model are shown in figure 6-1 and figure 6-2 

respectively. 
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Figure 6-2. The actual and the predicted value of the neural network non-parametric model applied 
to the DJI*, DJI*-F and DJI*-FD time series 

From the above experiments we can form several conclusions: 

The neural network was the best predictive model, outperforming all the other models. 

The neural network D JI* predictions were as good as the reference predictors and the 

DJI*-F and DJI*-FD time series prediction error is astonishingly small, indicating that 

these time series have a large degree of determinism. Interestingly, the quality of these 

predictions go in line with the RQA measure of determinism (DEI) found previously; 

39.3°/o for DJI*, 72.7% for DJI*-F, and 44.7°/o for DJI*-FD (table S-1, page 101). The 

best prediction results are achieved with DJI*-FD time series which has the highest 
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DET meassure. 

• 

• 

In some cases the local non-parametric models perform better than the 

reference predictors. 

The noise reduction technique (DJI*-F and DJI*-FD case) has significantly 

improved the predictability of the signals in question. The same underlying 

model with a different representation can differ widely in its prediction 

efficiency. 

• The use of the validation set to estimate optimal model parameters has 

improved the out-of-sample performance. 

6.4.1 DJI index trading models 

The obvious question that arrives is whether the successful predictions of these pre­

processed time series can be successfully translated into profitable trading strategies 

applied to the real DJI index. To test this, a trading strategy is created based on the 

predictions of pre-processed time series and the strategy is applied to the raw DJI index. 

The buy or sell signals are simply generated according to a 'month ahead' prediction of 

the underlying pre-processed time series. Three models were evaluated for each DJI*, 

DJI*-F and DJI*-FD underlying time series. The trading strategy was evaluated with 

the trading costs of 0.15°/o per transaction and without it, and both were compared to a 

simple buy-and-hold strategy. The trading cost depends mainly on the number of 

transactions, thus the buy-and-hold strategy produces the lowest trading cost of only 

0.15°/o of the initial trade. The trading performance of these models is presented in 

figure 6-3 and table 6-4. 
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Table .6-4. The trading performance measures of the systems including the transaction cost. The 
B&H 1s the buy-and-hold trading strategy performance. 

DJI* DJI*-F DJI*-FD B&H 

Annualised Return 4.34% 2.66% 3.67% 8.14% 

Cumulative Return 43.37% 26.63% 36.68% 81.45% 

Annualised Volatility 14.50% 17.66% 14.39% 18.91% 

Sharpe Ratio 1 
0.30 0.15 0.25 0.44 

Maximum Monthly Profit 14.79% 13.04% 14.79% 13.04% 

Maximum Monthly Loss -8.24% -17.47% -10.03% -17.47% 

Maximum Drawdown -25.23% -51.92% -38.18% -50.77% 

Number of Trades 35 5 13 1 

Number of Winning Trades 18 2 7 N/A 

Number of Losing Trades 17 3 6 N/"\ 

Percent Profitable Trades 51.43% 40.00% 53.85% N/"\ 

"\verage Trade Gain/Loss Ratio 1.68 3.38 1.85 N/"\ 

These results do not look too exciting, indicating that good predictions of the pre­

processed time series do not translate equally well in predicting the original time series. 

Although these strategies did not outperform the long only buy-and-hold trading 

strategy, they have produced positive returns overall. The long-short trading strategies 

are by default less risky and usually are not correlated with the long only trading strategy. 

For example, the correlation between the DJI*-FD trading system return time series 

(red line, bottom graph) and the buy-and-hold return (blue line) is 0.17, whilst their 

monthly returns are negatively correlated (-0.53). This indicates that a similar trading 

strategy could perform equally well in the case of a declining market, so they can be 

used to preserve capital. As their risk is lower, the return can be improved by an 

increase in the leverage. Additionally, the illtering of the original time series introduces 

the lag that causes late buy/ sell signals. Further experiments are required using different 

types of @tering that introduce smaller lags or none at all. 

1 In this case the Sharpe Ratio is a simple performance measure calculated by dividing the system return by its 

volatility (standard deviation). 
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6.4.2 DJI stocks neural networks trading models 

In order to test predictions of financial time series further, usmg the embedding 

method, a larger test is performed whereby thirty constitutes of the DJI index are 

predicted using daily data, and trading strategies are devised accordingly. Four different 

trading systems, all utilising Probabilistic Neural Networks (PNN) and optimised by 

means of Genetic Algorithm (GA) were tested. The network structure, optimal lag and 

the future prediction period were found using a genetic algorithm. The GA tests 

competing models using a different number of lags and chooses the one with the best 

performance. 

The main differences between these systems are the way the inputs and the outputs are 

pre-processed, and by the way the neural networks are optimised. 

System A uses five logarithmic price inputs ln(pt I Pr-r), where the time delay r for 

each input is selected using a GA from the range of 1 to 10. The output is the same 

logarithmic price predicted n days ahead, where n is found by a GA using the range 1 

to 5. 

System B is the same system as above, except five price differences Pr - Pr-r were 

used instead, for both the input and output value. Similarly the optimal values of r and 

n are found by GA. 

System C used five raw price Pr-r lagged values for the inputs and the price change 

percentage (Pr - Pr-r I Pr-r) x 100 as the output. 

System D is the same as system C except the GA optimiser fmds the single set of 

parameters that performs best across all 30 stocks. Note that in the case of systems A, 

B and C each stock has its own set of optimal parameters. 

All the systems wer~ optimised using three years of daily data and a one year out-of­

sample test was produced. This procedure was repeated ten times on sliding windows 

in order to produce a ten years out-of-sample test. All four systems apply a long-short 

trading strategy, generating buy/ sell signals when the predicted output value crosses 

above/below a certain threshold found by GA. The trading costs of 1 cent per share 

and 0.1 °/o per trade were used. The performance of these systems and the buy-and-hold 
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strategy is shown in figure 6-4. 

-System A 
1 40 -r------___;_-----~ - System B 
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Figure 6-4. PNN trading systems applied to the portfolio of 30 DJI stocks. 

From the graph we can see that all four systems produced a positive return, though the 

overall performance is not too exciting. This illustrates the difficulty of forecasting 

noisy financial time series by using past values only. Their poor predictability indicates 

that these time series are not produced by chaotic systems and that they have a strong 

stochastic component. Simple state-space forecasting becomes problematic for 

nonstationary and very noisy time series. 

6.5 Conclusions 

In this chapter several nonparametric predictive models, including neural networks were 

examined and compared to an "unconditional mean" and the "random walk" reference 

predictors. The neural network was the best predictive model, outperforming all the 

other models. The prediction error of the financial time series under study was very 

low, outperforming the "random walk" predictor and confirming the high value of 

determinism (DEI) found through RQA analysis. 

Four different trading systems, all utilising Probabilistic Neural Networks and optimised 

using Genetic Algorithm (GA) were applied to thirty constitutes of the Dow Jones 

Industrial index over ten years. Nonlinear dynamic theory will play a big part in 

analysing and the characterisation of financial markets, but its use for forecasting 
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utilising the univariate time delay embedding method is not clear. Although these 

strategies did not outperform the long only buy-and-hold trading strategy, they ha,-e 

produced positive returns overall with much lower risk. 

The main focus in this chapter was mainly on univariate time senes modelling and 

predictions. Using data from a single time series without any additional information can 

be a very restricting. The next chapter will employ a multivariate fundamental analysis of 

stocks that studies the interdependence between several time series. 
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Chapter 7 

Neural Networks Models Based on Fundamental 

Analysis 

7.1 Introduction 

An analysis of a company's financial condition, its operations, the industry it is in, its 

competitors, and the general economic environment in order to determine a 'real' or 

intrinsic value of the company is termed in finance as fundamental ana!Jsis. The intrinsic 

value of a share is what the 'fundamentals' indicate it is worth. Most of the time this 

value is not the actual market share price. Typically, a fundamental analyst will buy/ sell 

shares in a company if the intrinsic value is greater/less than the market price. 

This research uses internal company information only, i.e. its assets, liabilities, income, 

profitability, operations and management performance figures collected from a 

Datastream source. In other words, it focuses on the "basics" of the business. From 

these current and the historical figures many financial ratios can be calculated which are 

used to estimate a company's future prospects, its potential returns and the risk 

behaviour of its shares. 

An example of IBM fmancial reports are attached in the Appendix A. 

7.2 Fundamental vs. technical analysis 

Most trading strategies are based on some sort of fundamental, technical or combined 

analysis. Whilst fundamental ana!Jsis relies on variables representing the general state of 

the economy, industry and individual companies, technical ana!Jsis focuses exclusively on 

time series statistical properties derived from price, volume', and highest and lowest 

prices in the trading period. Technical analysts disregard a company's fmancial 

statements and rely instead on market trends and different recurring patterns present in 

time series. 

The fundamental followers assume that prices should eventually reflect a fundamental 

1 In the case of ~tacks, volume can be defined as the number of shares traded on a specific day. Technical analy,ts 
often use it to confmn a specific pattern (i.e. trend), and believe that volume often precedes the price movement. 
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value and are not overly concerned with day-to-day stock pnce fluctuations that 

technical traders follow. For them, the value and price are not the same thing, and the 

day-to-day stock price fluctuation says more about volatility than value. A single price 

per share figure (market price) means little to the fundamental analyst. It only becomes 

useful when combined with other fundamental data like the number of shares 

outstanding1
• The fundamental analysis approach may seem more rational compared to 

the technical approach which is based on the assumption that the markets are 

responding more to speculative forces rather than fundamental forces. Technical 

analysts, made up largely of followers of the efficient market hypothesis, believe 

fundamental analysis to be redundant, as prices already take into account company 

fmancial data, information that is widely available. 

Many followers of these different analysis types criticise and dismiss each other's 

approach, finding evidence to support their beliefs. For instance, at the height of the 

'dot com' era, almost all technology companies were hugely overpriced2
, and their 

fundamental valuation confirmed this. On the other hand, it is a common occurrence 

to see a stock with strong fundamentals whose share price falls for no apparent reason 

and the opposite situation, where a company share price rises over time on poor 

fundamentals. However, these could just be temporary discrepancies that correct 

themselves in the end, as was the case of the 'dot com' companies. It can be said that 

fundamental analysis is more relevant to a long term market investment style, whilst 

technical analysis is more to with day to day trading. It is also plausible to say that in 

normal circumstances, prices are driven more by fundamental forces and it is only when 

speculations start that technical forces becomes more dominant. 

7.3 The advantages and disadvantages of fundamental analysis 

Fundamental analysis provides a systematic approach to analysing companies and it 

provides additional information which may not generally be available to technical 

analysts. Using fundamental analysis a company can be compared with others in its 

industry. This type of analysis is also more suitable for long term forecasting and may 

indicate major price changes well in advance. By understanding the underlying 

1 
, \ product of the two is the company market capitalisation value. 

2 
, \t the Internet bubble peak, the Cisco Systems P /E ratio was above 130, implying huge earnings, which in ten 
years, assuming the same growth rate, would have exceeded US Gross National Product. 
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fundamentals, the investor may adopt a more aggress1ve position and can ass1st 1n 

deciding when to stay with a winning trade. 

A major problem with fundamental analysis 1s that the figures found in financial 

statements cannot be fully trusted, due to manipulation in accounting. Some companies 

avoid disclosing certain information in their reports, thus making it difficult to make a 

fare assessment without certain relevant information. Even companies that comply with 

the generally accepted accounting principles (GAAP) are no exception. Probably one of 

the most misused fundamental figures is EBITDA\ which is a very simple measure 

showing the profits that a company can generate if it doesn't have to pay interest, 

expenses or taxes and decides not to reinvest depreciation2 and amortisation3• This 

variable is often misrepresented as profit from operations in the company's fmancial 

report headlines, but it should be used with great caution as organisations can use this 

measure or some variane of it as an accounting gimmick to dress up a company's 

earnings. Therefore, the EBITDA is a misleading measure of profitability and a poor 

basis for valuation due to its lack of consistency of calculation amongst companies and 

from one period to the next. When using this metric, it is important for investors to 

focus on other performance measures to make sure the company is not trying to hide 

information through the EBITDA. 

7.4 Value vs. growth fundamental analysis 

Typical equity fundamental analysis tries to determine how much stocks and businesses 

are worth. There are many types of fundamental analysis, the main ones being value and 

growth, the former places more emphasis on the company's value whilst the latter on the 

potential growth. The difference between the two in practice can be very blurred, as 

growth investors focus on the company's value on an ongoing basis. The growth at 

reasonable price (GARP) fundamental model attempts to combine the two approaches. 

Contrary to popular belief, many studies have shown that value stocks produce better 

investment returns over time than growth stocks. This fmding has been tested and 

1 Acronym for earnings before interest, taxes, depreciation and amortisation. 

2 ,\n expense recorded to reduce the value of a long-term tangible asset. Since it is a non-cash expense, it increases 
free cash flow while decreasing reported earnings ([31]). 

3 The deduction of capital expenses over a specific period of time. Similar to depreciation, it is a method of 
measuring the consumption of the value of long-term assets like equipment or buildings [31]. 

4 Some companies exclude some or all exceptional items such as incentive compensation, bonuses, pension deficit 
when calculating EBITDA. 
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documented in different fmancial world markets. Dimson, Nagel and Quigley [30], 

found a strong value premium in the U.K. market for the period 1955-2001 among 

small-caps as well as amongst large-caps. They also found that the dividend yield as a 

measure of value produces very similar results. This finding may be an explanation for 

the apparent success of the well-known 'Dogs of the Dow' investment strategy'. Dunis 

et al. [32] analysed the FTSE All-Share index returns during the 2000-2002 period, along 

five different value/ growth techniques and found that the value stocks outperformed 

growth stocks in all examples. Capaul, Rowley and Sharpe [33] found similar evidence 

in the US market, while Fama and French [34], [35] expanded their study to twelve 

maJor world markets for the 197 5-199 5 period confirming the value premium 

internationally. They argued that the reason for the value premium is as a compensation 

for the risk missed by the capital asset pricing model and not because the market 

undervalues value (distressed) stocks and overvalues growth stocks. 

There are a few different models used to calculate the value of a company, the major 

ones being the cash flow discount model and the dividend discount model. 

Some practitioners complain that there is a lack of clear and well-defined models similar 

to the Black and Scholes model to calculate company value. However, this model is 

extremely difficult to develop for many reasons. First, there are so many potential 

fundamental variables that can play a part in the model and choosing the right ones is a 

daunting task. Even worse, most of these variables are rough estimates, like earning 

estimates and it is almost impossible to create a reliable model based on poor data. In 

addition, there are so many qualitative factors such as a company's management and its 

competitiveness, which is very difficult to quantify. It is most likely that we will see 

many different models developed in the future, applied to different markets and 

comparues. However, one can always develop a solid fundamental model for 

investment purposes without the need to know the 'real' value of the company. 

7.5 Fundamental financial ratios 

Some general state of the economy models may use fundamental variables such as 

interest rates, inflation rates, gross domestic product and money supply; however this 

1 This is a very simple strategy in which an investor buys and rebalances a yearly portfolio consisting of the ten 
highest dividend paying Dow Jones Industrial (DJI) stocks. These companies tend to have lower prices compared 
to other Dow components and are called the dogs of the Dow. This strategy was ftrst popularised by Michael 
O'I Iiggins in his 1991 book 'Beating The Dow' and historically has been outperforming D JI index. 
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research will only concentrate on quantitative information from company financial 

reports. 

The fundamental variables and the ratios considered in this research are listed below. 

They cover various aspects of fundamental analysis including profitability, financial 

leverage I liquidity and operating efficiency. These fundamental variables are arbitrary 

measures and do not necessarily represent the optimal set of variables. 

• Price to Book Ratio (PB) is one of several variables that can be used to 

separate value stocks from growth stocks. This ratio compares the market 

valuation of a company (share price) to the latest quarter book value (total assets 

minus intangible assets and liabilities). Value stocks tend to have a low P /B ratio 

whilst growth stocks tend to have a high PB ratio. The equivalent reciprocal 

measure is known as the Book to Market (BM) ratio and is often used. 

• Gross Profit Margin (GPM) is calculated as a ratio of gross profit (company's 

total revenue minus the cost of producing its goods or services) and the revenue 

(sales). A company with a higher gross profit margin than its competitors is 

more efficient. It is a stable measure over time and any large fluctuations from a 

historical average can be an indication of fraud or accounting irregularities. 

• Net Profit Margin (NPM) is a similar profitability measure calculated as a ratio 

of net profit after taxes (net income) and revenues. It is an indicator of 

company effectiveness and cost control. Profit margins are industry specific and 

it is a good sign if a company's profit margin is higher than that of its 

competitors. Some retailers and low budget airlines have very low profit 

margins as a result of their pricing strategies. 

• Asset Turnover (AT) is a ratio of total sales (revenue) and total assets. This 

measure represents a firm's efficiency in using its assets in generating sales. 

Companies with low profit margins tend to have a high asset turnover and vice 

versa. The higher the figure the better and as is the case with most financial 

ratios, investors must make comparisons within the same industry. 

• Return on Assets (ROA) is calculated as the ratio of a company's fiscal year 

earnings (net profit) and its total assets (the shareholders' capital plus short and 

long-term borrowed funds). It is a useful indicator and a measure of a 
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company's profitability, asset intensity and management of a business and can be 

decomposed as a product of the two ratios above, net profit margin (ratio of 

earnings and sales), and asset turnover (ratio of sales and assets). This measure 

is industry specific as companies in manufacturing and telecommunication 

sectors (usually have a ROA below 5%) are very asset-intensive compared to 

advertising agencies and software companies (the ROA can be above 20° 1o). 

• Return on Equity (ROE) is calculated as the ratio of a company fiscal year's 

earnings (net income) and the shareholders' equity (assets that have actually been 

generated by the business representing total assets minus total liabilities). Similar 

to ROA it is a profitability measure that reveals how much profit a company 

generates with the money shareholders have invested. But at the same time it is 

an asset management and ftnancialleverage measure as it can be decomposed as 

a product of the ROA and the financial leverage ratio (total assets/total equity). 

Companies without debt will have ROE and ROA figures that are equal. 

Investors prefer companies having a high and growing ROE. 

• Inventory Turnover (IT) is a measure showing how fast the inventory is 

'turned over' (sold and replaced) in a period or fraction of a year measuring how 

long an average item remains in inventory. It is calculated either as the ratio of 

company annual sales and inventory or the ratio of the cost of goods sold 

(COGS) 1 and average inventory. The cost of sales is considered to be a more 

accurate input than sales alone because it is recorded by the company rather 

than the marketplace, as in the case of sales. The average inventory is used 

instead of the year ending inventory level to minimise seasonal factors. A low 

turnover implies inefficiency in a product line or marketing effort, poor sales or 

excess inventory, whilst a high ratio implies the opposite. Dividing 365 days by 

this ratio gives the number of days it takes a business to clear its inventory. This 

number varies gready by industry. 

• Debt to Equity (DTE) ratio is a measure of a company's financial leverage, 

indicating what proportion of equity and debt the company is using to fmance 

its assets. It is calculated as a ratio of long-term debt and common shareholders' 

equity. Sometimes the company's total liabilities (including short-term and long-

1 
( :ost of sale~. 
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term debt) are used instead of long-term debt in the calculation. Companies 

with a high ratio can be risky to invest in, especially in times of high interest 

rates resulting in volatile earnings. The accepted level of debt to equity has 

changed over time, and depends on both economic factors and society's general 

feeling towards credit. However, it is a delicate balance, especially if the cost of 

debt financing is larger than the returns that the company generates which can 

lead to bankruptcy. The measure is very dependent on the industry in which the 

company operates. 

• Dividend Yield (DY) is a financial ratio that shows how much a company pays 

out to its shareholders in the form of dividends each year relative to its share 

pnce. It is calculated as a ratio of annual dividends per share and the price per 

share. Similar to the PB ratio, this measure can be used to classify a company 

into a value or growth group. Young and growth-oriented companies tend to 

have lower dividend yields, whilst mature and well-established companies tend 

to have a higher one. For most small growing companies this ratio is missing, as 

they do not pay dividends at all. 

• Operating Margin (OM) 1 is a ratio used to measure a company's management 

(operating) efficiency and pricing strategy. It is calculated as a ratio of net 

income2 and net sales3 showing how much a company makes (before interest 

and taxes) as a proportion of sales. It is best to look at the change in operating 

margm over time and to compare the company's figures to those of its 

competitors. A higher operating margin gives management more flexibility in 

determining prices and extra security during tough economic times. 

• Current Ratio (CR)4 is a measure of a company's financial strength and its 

ability to pay short-term obligations. It is calculated by dividing total current 

assets by total current liabilities. The higher the ratio, the more liquid the 

company is. A high ratio may suggest that a company has too much cash and is 

doing a poor job of investing it and expanding the business. A ratio under one 

1 1\lso known as operating profit margin or net profit margin. 

2 Operating income or operating profit is a measurement of the money that company generated from its own 
operations and is equal to gross profit less operating expenses. 

3 Sales amount after the deduction of returns, allowances and any discounts. 

4 ,\!so known as liquidity ratio or cash asset ratio. 
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is not a good sign but it does not necessarily mean that the company will go 

bankrupt. An acceptable current ratio varies by industry. There are a few 

variations and derivatives of this measure, one being the Quick Ratio (acid-test 

ratio) which is simply current assets minus inventories divided by current 

liabilities. Also, the components of current ratio (current assets and current 

liabilities) are used to derive working capital, which is the difference between the 

two. A ratio of working capital and sales (working capital turnover ratio) 

provides information as to how effectively a company is using its working 

capital to generate sales. 

• Price to Cash Flow (PCF) is a measure of the market's expectations of a firm's 

financial strength, calculated as a ratio of share price and operating cash flow per 

price1
• It is often used to classify companies along the value-growth line where a 

low PCP indicates a value stock. Operating cash flow (OCF) refers to how 

much cash a company generates out of revenues2 and excludes costs that are not 

a part of the on-going operation. 

• Earnings per Share (EPS) is an indicator of a company's profitability and is 

calculated as a ratio of net earnings and the number of average outstanding 

shares. This is probably the most common single variable used by analysts in 

determining a share's price. There are two types of EPS, diluted and basic, 

depending whether the stock options, convertibles and warrants are included in 

the outstanding number of shares. The EPS is calculated for each major 

category in the income statement: continuing operations, discontinued 

operations, extraordinary items, and net income. A trailing EPS is calculated for 

the previous fmancial year, while the current and forward EPS are estimates for 

the current and the coming year. An important aspect of EPS that is often 

overlooked is the amount of capital that is required to generate earnings (net 

income) in the calculation. Two companies may have the same EPS number, 

but the one with less equity (investment) would be more efficient at using its 

capital to generate income. Another issue that makes a comparison of EPS 

amongst different companies difficult is the fact that they have a different 

number of outstanding shares. One way to check the quality of the EPS is to 

1 It can also be calculated by dividing a company's market capitalisation by the company'~ operating cash tlow. 

2 OCF = Earnings before interest and taxes + Depreciation- Taxes 
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compare it to the operating cash flow per share (OCFPSY. The reported EPS 

figure is of high quality if it is smaller than the OCFPS, otherwise it means that 

the company is generating less cash than is suggested by the EPS. There may be 

reasons for this discrepancy, such as for young companies, economic cycles or 

financing investment for future growth, but if the company is to survive, the 

discrepancy cannot last long, as was the case for many dot com companies that 

went bust. 

• Sales per Share (SPS)2 is used to evaluate a company's business activities in 

comparison to its share price. It is calculated by dividing total revenue by the 

weighted average of shares outstanding. The higher the ratio, the more active 

the company is. A derivative of this ratio is the Price to Sales ratio (PS) 

calculated by dividing the current stock price by the sales per share and is often 

used for the evaluation of young and unprofitable companies. 

The main measures used to distinguish between value and the growth stocks are the 

book to market or price to book ratio, price to earnings ratio, price to cash flow, 

dividend yield and market capitalisation. The traditional value investor would look for 

companies with any one or all of the following attributes: low price to book value, low 

price to earnings ratio, low price to cash flow ratio and high dividend yield and the 

growth investor would look for the opposite. 

7.6 Use of price-to-book ratio in portfolio selection 

Several studies found a strong correlation between the price to book ratio3 and future 

stock performance [32]-[39]. These tests have been applied to major world markets on a 

large number of companies and data histories and in some cases the data was free from 

survivor bias4
• This research will test whether the effect of the PB ratio on the portfolio 

return confirms these fmdings when applied to a randomly selected portfolio of forty 

eight companies drawn from a pool of European stocks that are quoted on the US 

market. The fundamental ratios of these companies were taken from a DataStream 

source representing yearly data from 1990 to 2005. 

1 Operating cash flow divided by the number of shares used to calculate EPS. 

2 Also known as the 'sacrifice ratio' and 'revenue per share'. 

3 A PB reciprocal value Book to Market (BIVI) is often used. 

4 The portfolio includes historical data of closed companies. 
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In order to assess the relationship between the price-to-book ratio and the portfolio 

return a simple trading strategy is devised based on the single PB ratio value. Each year 

the portfolio is divided into four groups based on the PB percentile ratio value (i.e. 0-25, 

25-50, 50-75 and 75-100) and the performance of each group is recorded. The graphs 

shown in figure 7-1 confirm the positive correlation between a low PB ratio and future 

stock performance. The portfolio belonging to the lowest PB ratio percentile (0-25, i. e. 

value stocks) is found to be the best performer. This portfolio return is based on a 

trading strategy with a single rule, to enter a long trade (buy shares) if the PB ratio is 

between 0 and 25, and if otherwise, to exit a long trade. Note that this is only in the 

case of a long strategy, as short selling1 is not used. The other three portfolio returns 

were generated in the same manner, using different PB thresholds. The portfolio 

consisting of a high PB (75-100, i.e. growth stocks) is the second best performer. Less 

well known is the fact that the long term return of traditional value stocks is better than 

the return of new and highly promising growth stocks, confirmed in this experiment 

and in agreement with findings in [32]-[39]. 
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Figure 7-1. The price-to-book trading strategy performance. 

The transaction costs were not included, though they should not be high as portfolios 

are rebalanced on a yearly basis. It is important to note that we were only interested in 

1 Selling the borrowed stock expecting that price will fall and pro fit is made when the stock is bought back at a lower 

pnce. 

130 



the comparison between different portfolio strategies and their returns, rather than their 

absolute performance. In some cases the buy-and-hold strategy with a considerably 

higher risk profile produces the best returns compared with other strategies. 

In order to examine a long-short investment strategy based on the PB ratio, we expand 

the trading strategy above to include two rules: to buy the low value PB stocks and to 

sell short the high PB value stocks. The PB range value used for the long entry is 0-25, 

and for the short entry 75-100. Long and short exits are generated if the PB value is in 

the 25-7 5 range. These strategy portfolio returns are presented in figure 7-2. A reverse 

trading strategy of buying high PB stocks (75-100) and selling low PB stocks (0-25) 

produce a negative return and is the mirror image of the blue portfolio curve. 
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Figure 7-2. The effect of a low /high PB value 

As in the previous example, the strategy that invests in low PB value stocks produces a 

positive return, whilst the portfolio of high PB value stocks does the opposite. It is 

worth mentioning that analysts usually neglect these low PB value firms, making their 

recommendations and forecasts rarely available. Instead, they tend to favour high PB 

momentum driven growth companies with strong recent performance, despite their 

inferior overall performance. The reason for this could be due to marketing, as it is 

easer to catch investors' attention by recommending exciting growth stocks that may 

promises high short-term returns. 
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7. 7 Trading systems utilising financial ratios 

It has been shown that by utilising only the price to book ratio in the simple trading 

strategy, there would have been an improvement in portfolio performance (figure 7-1 ). 

A natural extension to this approach is to add some of the financial ratios described 

earlier. As the value of the company and its share price can be difficult to ascertain, 

emphasis is not put on calculating the intrinsic value of a company, instead the aim is to 

identify patterns and key drivers that have a positive/negative influence on company 

returns and to devise a trading strategy accordingly. 

Instead of comparing the above ratios between companies in the same industry they are 

compared to their previous values and if the change reflects a positive outcome the 

indicator value is set to one otherwise to zero [37], [38]. This approach can be seen as a 

quantitative analysis of financial ratios; an application of technical analysis utilising 

fundamental data. 

7. 7.1 Defining indicators from financial ratios 

Twelve binary signals are derived from the above ratios and the sum of them is used to 

measure the overall strength of a ftrm's financial position. These indicators measure 

different aspects of the company's financial health, where the value of one represents 

the desired outcome and a zero value a negative outcome. 

• Profitability signals 

I-1. If the Return on Assets (ROA) is positive (ROA > 0), set to one, otherwise, 

set to zero. 

I-2. If the L\ROA is positive, set to one, otherwise set to zero, where L\ROA is 

defmed as the difference between the current and the previous year's ROA. 

I-3. If the L\ROE is positive, set to one, otherwise set to zero, where the L\ROE is 

defmed as the difference between the current and the previous year's Return 

on Equity (ROE). 

I -4. If the EPS is larger than the SPS, set to one, otherwise set to zero, where the 

EPS represents the Earnings per Share and the the SPS the Sales per Share. 

I-5. If the PCP is positive, set to one, otherwise set to zero, where the PCP is the 

Price to Cash Flow. 
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• Operating efficiency signals 

I -6. If the M T is positive, set to one, otherwise set to zero, where the AA. T is 

defmed as the difference between the current and the previous year's Asset 

Turnover (AT). 

I-7. If the AIT is positive, set to one, otherwise set to zero, where the .1IT is 

defmed as the difference between the current and the previous year's 

Inventory Turnover (IT). 

I-8. If the .1GPM is positive, set to one, otherwise set to zero, where the .1GPM 

is defined as the difference between the current and the previous year's Gross 

Profit Margin (GPM). 

I-9. If the OM is larger tan the NPM, set to one, otherwise set to zero, where the 

OM represents Operating Margin and the NPM Net Profit Margin. 

• Leverage, liquidity and dividends signals 

I-10. If the .1DTE is negative, set to one, otherwise set to zero, where the .1DTE 

is defined as the difference between the current and the previous year's Debt 

to Equity (DTE) ratio. The reduction of debt indicates a positive signal. 

I -11. If the CR is positive, set to one, otherwise set to zero, where the CR is the 

Current Ratio. 

I-12. If the DY is positive, set to one, otherwise set to zero, where the DY is the 

Dividend Yield. 

The twelve indicators above are summarised in table 7-1. 
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Table 7-1. Twelve performance indicators derived from financial ratios. If the condition is 
satisfied the indicator value is set to 1 otherwise to 0. 

Signal category Condition Variable(s) used Value 

I-1 ROA > 0 Return on Assets 1 

I-2 L\ROA > 0 Return on Assets 1 

I-3 Profitability L\ROE > 0 Return on Equity 1 

I-4 EPS > SPS Earnings per Share, Sales per Share 1 

I-5 PCF > 0 Price to Cash Flow 1 

I-6 MT>O Asset Turnover 1 

I-7 L\IT > 0 Inventory Turnover 1 
Operating 

I-8 efficiency L\GPM > 0 Gross Profit Margin 1 

I-9 OM >NPM Operating Margin, Net Profit 1 
Margin 

I-10 
Leverage, L\DTE < 0 Debt to Equity 1 

I-11 liquidity and CR > 0 Current Ratio 1 

I-12 
dividends signals 

DY> 0 Dividend Yield 1 

7. 7.2 Use of financial indicators in portfolio selection 

The total rank (I-R) is derived as the sum of the I-1 to I-12 binary indicators 

representing the overall company quality. To test whether this rank can be used as a 

means of selecting a portfolio of stocks, a few simple trading strategies are evaluated 

based on the rank value. The test results of three trading strategies are presented in 

figure 7-5. The portfolios are rebalanced on a yearly basis based on the I-R rank value. 
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Figure 7-5. Rank based strategy portfolio's performances 1991-2005. 
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The three trading strategies are defined as follows: 

a. The long-short strategy, comprising of buying high-ranking stocks and selling 

low-ranking stocks. The rank range value used for the long entry is above the 75th 

percentile, and for the short entry, below the 25th percentile. Long and short exits 

are generated if the rank value is in the 25th- 75th percentile range. 

b. The long only trading, strategy, comprising of buying high-ranking stocks where 

the rank is above the 75th percentile. 

c. The long only trading strategy, comprising of buying low-ranking stocks where 

the rank is below the 25th percentile. 

We can see from the graphs that the rank representing the sum of the twelve binary 

indicators has a significant effect on the different portfolio returns. The long portfolio 

of high-ranking stocks (b) generates much larger returns than the long portfolio of low­

ranking stocks (c), whilst the less risky long-short strategy (a) is right in the middle. 

7.7.3 Neural network models based on fundamental ratio indicators 

The previous examples did not use any optimisation or statistical models, instead thy 

use the PB ratio and the rank indicator derived from fundamental financial ratios 

directly in order to create different portfolios and test their performances. In the next 

tests a neural network model is used to see if it can further improve portfolio 

performance. These models require data to be divided into training and the test set, so 

we use the first ten years (1990-2000) for the training set and five years (2001-2005) for 

assessing the out-of-sample performance. 

In order to compare these new models with the previously presented PB and rank based 

portfolios results, these are shown with the last five years (2001-2005) results. The last 

five years of PB ratio portfolio performance is shown in figure 7-4 and the rank based 

portfolio is presented in figure 7-5. 

We can see a similar pattern where low-ranking PB portfolios outperform the high­

ranking ones and the high-ranking I-R portfolios outperform the low-ranking ones. 

These portfolios are also less risky as their volatility and draw-downs are much smaller. 
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Figure 7-4. The price-to-book trading strategy performance (2001-2005). 
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Figure 7-5. Rank based strategy and portfolio's performances 2001-2005. 

In the next experiment we feed the above twelve individual binary inputs into an 

advanced statistical regression model using the neural network and genetic algorithm 

optimisation approach in order to predict a stock return one year ahead. A simple long­

short trading strategy is created, whereby the stock is bought if the predicted return is 

positive and sold if negative. In order to reduce the model's complexity and to avoid 
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over-optimisation, the genetic algorithm was instructed to use a maXltnum of fiye 

inputs. These inputs are estimated to be the most relevant and have the largest 

influence on the stock return. All the models are trained using ten years of historical 

data and test results are produced on the following five years out-of-sample data. Four 

different models are evaluated, depending on the approach in which the model 

parameters are estimated: 

a. A simple buy-and-hold strategy 

b. A linear model where the neural networks regression parameters (weights) are 

estimated without using the 'nonlinear' hidden layer neurons'. Also, the model 

parameters are derived for each individual stock independently of other stocks, so 

that each stock has its own model with the 'optimal' sets of parameters. 

c. The same linear model as in b. except that one set of model parameters are 

estimated using the data from all stocks. 

d. A nonlinear model where the neural networks regression parameters (weights) are 

estimated using up to five nonlinear hidden neurons. The model parameters are 

derived for each individual stock independently. 

e. The same nonlinear model as in d. except that one set of model parameters are 

estimated using the data from all stocks. 

The results of the four models are presented in figure 7-6. From the graph we can 

conclude that the performance of the models in which the parameters are estimated 

using data of a particular stock only (case b. and d.) performed better than the global 

models, that used one set of estimated parameters derived using data from all stocks 

(case c. and e.). Also, nonlinear models slightly outperformed the linear models, but 

more importantly all the statistical models did much better than the PB and I-R rank 

models tested previously, showing a more than double increase in portfolio returns. 

1 
, \ neural network model without the nonlinear hidden layer (i.e. input nodes are directly connected to the output 
nodes) is equivalent to a linear regression model. 

137 



30 
--a. Buy & hold 

/~ --b. Linear model1 
20 -----c. Linear model2 

a 

-- d. Non-linear m odel1 

---- e. Non-linear m odel 2 
.... 

10 

~ 
ILl 0 ~ 

"$. 2005 

-10 

-30~--------------------------------------------------

Figure 7-6. Neural networks model portfolio performances using the binary signals. 

Converting fundamental variables into the binary inputs may eliminate potentially useful 

information. To examine this issue another test has been carried out replacing the 

binary signal inputs with a yearly percentage change of the raw fundamental ratios 

(ROA, PB, PCF, DY, SPS, CR, DTE, GPM, OM, NPM, ROE, AT and IT). The 

portfolio performance of the previously described neural network model applied to 

these variables is presented in figure 7-7. The model regression parameters (weights) are 

derived for each individual stock independently of the other stocks. 
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Figure 7-7. Neural network models portfolio performance using 'raw' inputs. 
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The question arises whether similar quantitative strategies can be used instead of human 

analysis. These "artificial analysts" may or may not do as well as people, but can make 

up for it in volume and save on operating costs. The next chapter will test the use of 

technical analysis in trading, and will highlight its advantages and disadvantages when 

compared to models based on fundamental analysis. 
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As in the previous tests, two different models were examined, linear and nonlinear. The 

nonlinear model (c) that used up to five neurons in the hidden layer has a slighdy better 

performance than the linear model (b). However, this portfolio performance test was 

considerably worse if compared to the previous tests where the binary inputs were used 

instead. The reason for this could be that by encoding the fundamental inputs into the 

binary signals using prior knowledge to derive the positive/negative outcomes, 

representing direct 'hints' to the system which can simplify and improve the model 

generalisation. On the other hand a good model should be able to extract those rules 

from the data direcdy, but it would require a much larger and more representative data 

set than was used in this case. In addition, the inputs used representing the yearly 

percentage change may mot be the best choice. 

7.8 Conclusions 

From the tests performed in this chapter we can conclude the following: 

• Portfolios made of stocks with a low price-to-book ratio (value stocks) 

outperformed the portfolios with a high price-to-book ratio (growth stocks). 

• The market does not fully process the fundamental financial information and 

incorporate it into prices in a timely manner. Higher returns can be achieved by 

utilising the models based on fundamental measures found in the company's 

financial statements. The overall rank measure derived from fundamental ratios 

has a significant effect on the different portfolio returns. 

• The use of neural network improved the performance of the models that are 

based on ranking information only. 

• More complex nonlinear models outperformed the linear one, indicating their 

better suitability for modelling financial time series and the possible presence of 

nonlinearity in them. 

• Individual stock models in which parameters are optimised using data of the 

particular stock, performed better than global models that used one set of 

estimated parameters for all stocks. 

• Models that used pre-processing of data to include prior knowledge performed 

better. 
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ChapterS 

Neural Networks Models Based on Technical 

Analysis 

8.1 Introduction 

One of the most controversial and oldest schools of thought in the analysis of future 

prices is technical analysis. Over the last century much research has been performed by 

statisticians, financiers and economists in the search for lucrative formulas that may earn 

them fame and fortune. Technical analysis has, to some degree, been used over the last 

two centuries and has increased significantly since the 1980s due to technological 

developments. Early implementation goes back to the 1700s, where the plotting of price 

charts in the Japanese rice market was recorded. In the late 1800s and early 1900s the 

famous "Dow Theory" was coined, which is the foundation of technical analysis. 

This chapter will put to the test the use of technical analysis combined with neural 

networks and genetic algorithms in portfolio trading. 

8.2 Technical analysis 

Technical analysis is based on the interpretation of patterns, trends, cycles, and 

formations that develop on charts with the primary aim of identifying trends and major 

turning points in the market. Followers of this strategy believe that prices 1 and trading 

volume offer all necessary information for trading [115]. They have over a thousand 

technical indicators2 to choose from in order to monitor changes and derive trading 

models. There are many different approaches to technical analysis, though most of 

them rely upon the assumption that the stock market moves in trends and that history 

repeats itself [114]. These trends are assumed to last until the supply-demand balance 

changes and noticeable patterns appear, indicating the beginning or end of a trend. 

Supply and demand determines whether the buying or selling pressure is gaining a 

predominant position. The fact that too many investors base their expectations on 

1 Prices used are opening, closing, highest and lowest price in the period. 

2 Mathematical/ statistical formulas derived from price and volume data. 
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historical prices and act on these expectations has a direct influence on future prices. 

8.3 The advantages and disadvantages of technical analysis 

Though technical analysis has many indicators, the ultimate source of data is very small, 

due to the assumption that all other information is reflected in the market price. This 

simplifies the modelling process as it does not require the gathering and modelling 

interaction of many fundamental variables. Both technical analysis and the efficient 

market hypothesis coincide in the assumption that all information is reflected in the 

price, yet the assumption leads to different conclusions. The EMH states that markets 

are unpredictable, whilst technical analysts believe that they can predict the future price 

by observing the historical price and other trading variables. Technical analysis assumes 

that price behaviour is influenced by an underlying mass psychology, which leads to 

predicting a rise or fall in price. For that reason, many technical analysts are also market 

timers, who believe that technical analysis can be applied just as easily to the market as a 

whole, as well as to an individual stock. Technical analysts don't analyse a company's 

fundamental qualitative data. In some cases, when fundamental information contradicts 

price level expectations 1, the technical analyst is most likely to make the right decision. 

Also, turns in prices can be detected earlier by looking at the charts rather than 

following fundamentals and the news. 

The major criticism of technical analysis is that the method makes use of a huge number 

of highly subjective tests in order to determine the behaviour of future market price. 

The interpretation of the various patterns, formations and cycles is viewed by many as 

art rather than science, and it is very possible that different analysts may interpret the 

same chart quite differently. Many trading systems based on technical analysis under 

perform the simple buy and hold trading strategy after trading costs are considered, 

though this is also true for many other investment approaches. 

8.4 Trading models based on technical indicators 

The use of technical indicators as an investment tool has been extensively studied by 

1 ,\ good example of this is the question raised by a technical analysis follower on www.trendfollowing.com. 
"Chipmaker l\farvell Technology Group (N.\SDAQ:MRVL) breezed past Thomson First Call ~onsensus estt~atcs 
in each of the past 13 quarters, by 2% to 11%. Earnings bounded 50% or more and sales 31 Yo and higher 1n the 
past eight quarters. Double-digit earnings and _sales growth_ are expected ;hrough ~ext ye~r. P_rofi~' margms have 
also been strong, while cash flow has been growmg. So why is the stock 52 Yo below its all-ttme high? 
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Brock, Lakonishok and LeBaron [7]. They applied 26 simple trading rules to 90 years of 

daily Dow Jones Industrial Average data and found that every single rule outperformed 

the benchmark of holding cash. Sullivan, Timmermann and White [22] expanded this 

study by applying 8,000 parameterisations of trading rules over 100 years of DJI and 

Standard and Poor's (S&P) daily data and concluded that the best technical trading rules 

are capable of generating superior performance even after removing the effect of data­

snooping. However, they also found that for the last 10 years of test data (1987-1996) 

the trading rules did not outperform the benchmark. 

Many algorithmic trading systems rely on underlying technical analysis. However, it is 

preferable not to rely on a single technique to provide market forecasts, but rather to 

use a variety of techniques in order to obtain multiple signals. Neural networks (NN) 

can be trained by both technical and fundamental indicators to produce trading signals. 

One advantage of NN systems is that they remove the need for human interpretation of 

charts or a series of rules for generating entry/ exit signals. 

Very few trading models based only on simple technical analysis manage to produce 

positive returns consistently. A better use of technical indicators can be made as data 

pre-processing elements for a NN system. It is well known that some types of 

indicators perform better when the market is in an upward or downward trend, while 

others do so when the market is in an oscillatory state with many turning points. Two 

different sets of indicators are required to model these two scenarios and create trend 

following or reversal trading strategies. Choosing the right indicators and their 

appropriate parameters by a trial and error process can be complicated and time 

consuming, with the added difficulty of choosing the appropriate model for the specific 

time period. It is difficult, if not impossible, for technical analysts to detect the 

relationship between many different indicators and strategies in order to derive a 

complex trading model. 

In order to find optimal solutions to the above problems, a combination of neural 

networks and genetic algorithm are applied. The graphical representation of the system 

used is presented in figure 8-1. 
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Figure 8-1. An example of a computerised trading system. 
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Generally, investments tend to be more biased towards buying rather than selling. This 

could possibly be due to the relatively recent rapid growth in western economies and 

even to the predominantly optimistic side of human nature. In times of crisis and 

economic slowdown very few investment companies manage to avoid making big 

losses, let alone making a profit. In order to avoid making big losses and possibly 

making a profit during 'bear markets'', a less risky long-short trading strategy is applied 

in most tests. Though this strategy will generally not outperform the market during a 

'bull'2 period, it will definitely reduce the risk profile and the maximum drawdown of the 

system. 

Once these models and their parameters are estimated usmg the training set, their 

performance is validated on the out-of-sample test. Applying these models to a few 

time series would not be proof enough, as the results could be explained by chance. 

Instead they are applied to a large number of stocks which should enhance the 

credibility of the results. Several experiments have been conducted on a large number 

of stocks and their results are presented in the following sections. All the results were 

obtained on out-of-sample testing where model parameters were optimised on 'training' 

period data and tested on new data 'unseen' by the model. 

8.4.1 The NN trading model applied to major US stocks 

The aim of the first test is to select a representative set of US market stocks and 

examine their predictability through simulated trading models. The model was applied 

to all stocks in the NASDAQ 100, Standard & Poor's 100 (S&P 100) and the Dow 

1 Declining market for a prolonged period. 
2 Rising market for a prolonged period. 
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Jones 30 Industrial Index (DJI 30) daily data, representing 230 stocks in totaP. If the 

model has any predictive power then we would except to see an overall positive 

portfolio performance sliding upwards, similar to figure 1-1 C. 

Figure 8-2 shows the systems performance applied to a portfolio of NASDAQ 100 

stocks and compared to the index's return for the period (20/08/1998 to 16/08/2001). 

Similarly, the system's performance applied to all S&P 100 and 30 DJI stocks are shown 

in figure 8-3 and figure 8-4 respectively. This test period is particularly interesting as the 

time series are roughly split in half between the bull and the bear market. It covers the 

final years of the rise and 'bubble burst' of the NASDAQ stock market, so that most 

time series charts look like an inverted letter V. The NN based trading models showed 

a steady and positive performance over both periods. This demonstrates the great 

adaptability of these models to changing market conditions. 
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Figure 8-2. System performance applied to all stocks in the NASDAQ 100 compared to the 
index return. 

1 The results of this test were published in Risk & Reward magazine, Sep 2001 [116] . 
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Figure 8-3. System performance applied to all stocks in S&P 100 compared to the index return. 
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Figure 8-4. System performance applied to all stocks in DJI compared to the index return. 

Figure 8-5 shows system performance for all stocks in all three indexes. 
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Figure 8-5. System performance applied to all stocks in all three indexes compared to the 
indexes' return. 

All the results were obtained from an out-of-sample test where model parameters were 

optimised over three years of historical data and tested on three months of new data, 

'unseen' by the model. In order to produce three years out-of-sample data these periods 

were shifted repeatedly. 

The three-year indexes and the system's returns, including annual volatilities, are shown 

in table 8-1. 

Table 8-1. The three-year indexes and the system's returns with annual standard deviations 

Three- Avg. Index Three- Avg. System 

Year Yearly Annual Year Yearly Annual 

Index Index Volatility System System Volatility 

Return Return (%) Return Return (%) 

(%) (%) (%) (%) 

S&P 100 11.97 3.99 28.21 59.65 19.88 9.77 

NASDAQ 100 12.43 4.14 96.01 141.59 47.19 24.13 

DJI 30 20.68 6.89 23.05 76.37 25.45 11.29 

From the above charts and tables, it can be observed that the system's performance is 
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very stable, has low volatility, stnall drawdown and steady performance. As a result, it 

delivers consistent returns with a low risk of loss. 

Table 8-2, 8-3, and 8-4 show the yearly index and the systetn returns including annual 

volatility figures, whilst table 8-5 shows the performance of the portfolio comprising all 

stocks frotn all three indexes. 

Table 8-2. The yearly NASDAQ 100 and the system's returns including annual volatility. 

~ Annual Return Annual Volatility Year 

ry 62.98 49.13 1989 

--<o 109.3 Clo 
C/J.-o 

121.99 2000 
--< -159.8 101.26 2001 z 

63.47 20.42 1989 
E v 62.44 23.23 2000 ...... 
"' >-. 

C/) 
15.67 28.11 2001 

Table 8-3. The yearly S&P 100 and the system's returns including annual volatility. 

~ Annual Return Annual Volatility Year 

27.72 24.72 1989 
0 
0 

2000 ...... 23.36 30.72 p.... 
~ 
C/) -39.11 28.77 2001 

30.43 11.35 1989 
E 

20.67 8.91 2000 v ...... 
"' >-. 

C/) 
8.54 9.77 2001 

Table 8-4. The yearly DJI and the system's returns including annual volatility. 

~ Annual Return Annual Volatility Year 

27.32 21.13 1989 
0 

2000 f<") 1.35 24.69 -5' -7.98 23.05 2001 

36.90 12.39 1989 
E 

25.25 11.46 2000 v ...... 
"' >-. 

C/) 14.22 9.86 2001 
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Table 8-5. The yearly system's returns for all stocks in the three indexes including annual 
volatility. 

Annual Return Annual Volatility Year 

45.82 14.36 1989 

38.87 13.45 2000 

11.79 15.82 2001 

The system generates both long and short trades. Transaction costs are not included in 

the results. The average number of trades per stock for the three-year period is shown in 

table 8-6. 

Table 8-6. Trade statistics. 

--------------= 
All Trades Long Trades Short Trades 

Average number of 
192 96 96 trades 

Average number of 
110 57 53 winning trades 

""\ verage number of 
82 39 43 losing trades 

Percent profitable 
57.29% 59.38% 55.21% trades 

The overall system performance is summarized in the table 8-7. 

Table 8-7. Portfolio statistics. 

Average yearly return 32.16% 

Average monthly return 2.68% 

Three-year system return 96.47% 

Average annual volatility 14.54% 

Sharpe ratio with zero risk-free rate 2.35 

Best month 8.60% 

Worst month -5.99% 

Profitable months 77.77% 

Worst peak-to-valley draw-down -12.32% 

Length of worst peak-to-valley draw-down in months 2.16 

Recovery time from worst draw-down in months 0.87 

Maximum time to new peak in months 3.03 
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From the graphs presented and the statistics shown in the tables, it can be concluded 

that the system clearly outperforms all indexes, achieving it with much lower risk, 

indicating that there is a strong element of predictability in these financial time series. It 

can also be observed that the system performs well in both bull and bear markets, as 

well as in a sideways market, showing a great degree of flexibility and adjustability to 

changing market conditions. The system exploits both the trend and the cyclical mean­

reverting behaviour, aiming to eliminate market directional risk by offsetting long and 

short positions. The NASDAQ portfolio was the best performer with an average yearly 

return of 4 7°/o before trading costs and 32°/o net of trading costs. The reason for the 

NASDAQ portfolio's superior performance is most probably the presence of high 

volatility in this time series. 

8.4.1.1 The effect of trading costs 

The system undoubtedly has a predictive power, indicating that the time series under 

study are not random. The key question is whether these systems would still be 

profitable after applying the associated trading costs. The average number of trades per 

stock per year is 64, making this trading strategy turnover-intensive. A high turnover 

trading strategy can erode a portfolio's return dramatically. Assuming an average 

transaction cost of 0.1% per trade, the yearly equivalent cost would be 0.1% x 64 = 
6.4°/o. If we add another 6°/o for the bid/ ask spread cost and another 2-3% for 

financing and stock borrowing costs, this trading strategy can easily hit yearly costs of 

15°/o. This would reduce a portfolio's returns considerably, questioning the viability of 

trading the S&P 1 00 portfolio as similar returns can be achieved from risk free 

investment. Table 8-8 shows the estimated net return for all three index portfolios and 

the overall portfolio. 

Table 8-8. The estimated portfolio yearly returns after applying trading costs. 

~ 
NASDAQ S&P 100 DJI 30 All Stocks 

100 

Estimated yearly return 
32% 5% 10% 17% 

after trading costs 

These results were achieved on a fixed portfolio comprising all stocks in the three US 

indexes. The portfolio returns could be improved by advanced stock screening 

150 



methods and portfolio optimisation. This would create a smaller, but a more profitable 

portfolio. 

8.4.2 The NN trading model applied to the 320 largest NASDAQ stocks 

In the previous experiment the NN/GA trading model applied to NASDAQ stocks was 

found to perform particularly well. In order to test this trading system's performance 

further, the model was applied to an expanded universe of stocks, comprising of the 320 

largest NASDAQ companies based on their capitalisation value. The transaction costs 

were applied directly during model optimisation in order to reduce the number of trades 

and consequently the overall trading cost. The system's performance was analysed 

using the equity curve under different transaction costs and compared to the NASDAQ 

500 index return. 

The two year test period (01/03/2002- 25/03/2004) follows the test period in the first 

experiment. The results of the out-of-sample test are shown in figure 8-6. As in the 

first experiment, the long-short strategy was used where the universe of 320 stocks have 

either a long or short position. 

Long-Short Strategy ( l..hiverse of 320 largest NASDAQ stocks) 

-No Cost (YR 25.75- Vol6.74- Sharp 3.82) 

- Cost 10 bps (YR 17.19- Vol6.73- Sharp2.55) 

- Cost 15 bps (YR 12.92- Vol6.73- Sharp 1.92) 

- VIIIfAP + 0 bps (YR 21.81 - Vol6.63- Sharp 3.29) 

,.... 
-~~~_Q~~~~~_Q~~~~~~~~~~~~~o~~~~~~~=-

-~t-------------~~-----------------------------------

.roL----------------------------------------------------

Figure 8-6. The trading system's performance applied to the 320 largest N~\SDAQ stocks using 
different costs. 

151 



The blue equity curve represents the trading system's performance without costs and 

the other four curves use different costs: 10 basis points (0.1 0%) per trade, 15 basis 

points per trade, simulated Volume Weighted Average Price (VWAP) 1, simulated 

VW AP plus 5 basis points. The simulated VW AP in this test was calculated as the 

average of the opening, high, low and closing price. The VW AP plus 5 basis points cost 

or the 10 basis points cost is a representative estimate of the real transaction cost. The 

information shown in the legend represents: Yearly Return (YR), Yearly Volatility 01 ol) 

and the Sharpe Ratio (Sharp). 

The trading model dynamically adjusts the number of long and short positions and on 

average the portfolios were around 15°/o long. Figure 8-7 shows a graphical example of 

a long invested value vs. a short invested value over time. 

% long/Short 

Figure 8-7. The percentage ratio of a long portfolio value vs. a short portfolio value 

This test confirms that profitable trading strategies can be designed and applied to a 

large portfolio of major NASDAQ stocks, even after applying reasonable transaction 

costs. The data used in the performed tests was obtained from Yahoo.com. 

8.4.3 The NN trading model applied to random vs. equity time series 

The following test was conducted to determine whether the return achieved by applying 

the neural network trading model to a real price series differs significantly from that 

generated by applying it to a pseudo price series. The fact that the system return 

1 Investors that trade a large volume of stocks during day often opt to u:;c the \'W, \ P price which i:; calculated by 
Bloomberg (and other companies) at the end of day as the average trading price weighted by the trading volume. 
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achieved using the original price series is significantly different to the return achie,~ed 

using the randomly generated time series provides strong support against the efficient 

markets hypothesis. 

Two different 'anonymous' data sets, consisting of seventy-four time series each, were 

provided by an established hedge fund. The above NN model was applied to both 

portfolios and tested on five and a half years of out-of-sample data sets (03/12/98 to 

09 /06/04). The NN trading model was applied to both sets. The model applied to the 

first set produced an average yearly return of 4.07%, whilst the second set produced an 

average yearly return of 26.61% over the five year period. The six monthly portfolio 

accumulative returns were recorded and shown in figure 8-8. 

140% 

120 % 

100% 

80% 

60% 

40% 

20% 

0% 

-20% 

-a- Set 1- Portfolio Return 
1-

- Set 2- Portfolio Return 

~ 
/ 

/ 
00 CD CD 
CD CD CD 
6 .:.. Q 
Ql 0.. ~ 
0 <( ""' 

/ 
_/ 

CD 0 0 0 
CD 0 0 0 
6 .:.. Q 6 

~ :t ~ ~ 

.. 

,... ,... ,... 
0 0 0 
.:.. Q 6 

:t ~ ~ 

..... 
~ 

~ 

- ...... __..--

Figure 8-8. The system portfolio return for 74 European equities (Set 2) and for 74 randomly 
generated time series (Set 1). 

The transaction costs of 0.1 °/o per trade and 1 cent per share (a rough total cost of 15 

basis points) were applied to both data sets. After producing the results, it was revealed 

that the first portfolio (Set 1) was randomly generated and the second portfolio (Set 2) 

was made up of transformed European equity prices. The real European equity 

portfolio return is significantly different to that of a randomly generated portfolio. It 

can be concluded with a high degree of certainty that these time series are not random 

and have some serial dependence and patterns, allowing for the creation of profitable 

trading systems. In addition, it seems that European markets are less efficient and more 

predictable than US markets. 
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8.4.4 Conclusions 

In this chapter three tests were performed. The first test was designed to assess the 

predictability of a large number of US stocks through the use of a neural network 

trading system without applying transaction costs. This test confirmed that the neural 

network trading system clearly outperforms all indexes, showing that there is a strong 

element of predictability in these financial time series. Based upon the results of this 

test we can reject the null hypothesis. The NN trading system performs well in both 

bull and bear markets, as well as in a sideways market, demonstrating a great degree of 

flexibility and adjustability toward changing market conditions. The NASDAQ 

portfolio was the best performer, with an average yearly return of 4 7% before trading 

costs and 32°/o net of trading costs. However, the yearly S&P portfolio return was 20°/o 

before applying trading costs and only 5°/o net of trading costs. This highlights the point 

that the trading system does not perform equally well in all sectors or industries. 

The second test evaluated the trading model's performance applied to an expanded 

universe of the 320 largest NASDAQ companies based on their capitalisation value. 

The transaction costs were applied directly during model optimisation in order to reduce 

the number of trades and consequently the overall trading cost. This test confirmed that 

profitable trading strategies can be designed and applied to a large portfolio of major 

NASDAQ stocks, even after applying realistic transaction costs. This test, once more, 

confirms market inefficiency and strongly supports the rejection of null hypothesis in 

this thesis. 

The most convincing test against market inefficiency was the European equity market 

test. The European equity portfolio return was significantly different to that of a 

randomly generated portfolio. It can be concluded with a high degree of certainty that 

those time series for the period tested were not random, allowing for the creation of 

profitable trading systems. 
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Chapter 9 

Summary, Conclusions and Recommendations 

9.1 Introduction 

This chapter presents an overall summary of the research. Discussions and conclusions 

of the most prominent ftndings are made and some areas for future research are 

identifted. The main areas of this research have been the study and characterisation of 

ftnancial time series in order to design an advanced self-evolving trading system based 

on neural networks and genetic algorithms, and subsequently establish whether stock 

returns are predictable enough to create profttable trading strategies. 

9.2 Hypotheses rejections I acceptances 

The test results performed in this research showed that profttable trading models 

utilising advanced nonlinear trading systems and applied to equity markets can be 

created after accounting for reasonable transaction costs, thus rejecting the null 

hypothesis (H1). This indicates that equity markets are not fully efftcient and random, 

but to the contrary, they are nonlinear and to some degree predictable. This 

predictability is not uniformly spread; some markets, some time series within the same 

market and some time periods within the same time series are more predictable than 

others. It is possible to devise trading strategies that exploit the predictability in each of 

these levels or with a combined approach. 

The H2 hypothesis is accepted, i.e. neural networks represent supenor forecasting 

models compared to other non-parametric approaches tested: nearest neighbour, kernel 

regression, locally constant, locally linear, locally weighted linear, and radial basis 

models. The neural network model also outperforms the "random walk" and 

unconditional mean reference models in the case of ftltered DJI*-F and DJI*-FD time 

series achieving a small level of error, indicating that these time series have a large 

degree of determinism. The neural network DJI* predictions were as good as the 

reference predictors. 
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9.3 Summary conclusions 

The main conclusions from this research can be summarised as follows: 

9.3.1 Market characteristics and fractal properties 

This research has found that financial markets are more volatile than is generally 

assumed. These volatile periods are clustered in time, and the volatility (standard 

deviation) is constantly changing over time. The rescale range analysis and the Hurst 

exponent indicated the presence of memory in financial time series and showed that 

prices are not independent of each other and do not rise or fall by the mathematical 

rules of chance. The Hurst exponent was also used to characterise time series and 

utilised in trading strategies accordingly. 

9.3.2 Extreme events 

The existence of fat tails in the distributions of financial returns is widely known, but 

the great risk they represent is underestimated by most market practitioners. Economic 

bubbles and crashes are not new phenomena, they go way back in history, but seem to 

be soon forgotten, with few lessons learned. They are inevitable and probably will 

always exist, mainly due to investors' greed and to 'herd' behaviour within human 

nature. These are major factors influencing the nonlinear behaviour of financial markets. 

If market bubbles and crashes are inevitable at times, mechanisms should be in place in 

order to control them better, slow them down and minimise their effect. This can only 

be done through the development and implementation of adequate risk models by all or 

at least the majority of market players. Currently very few financial organisations have 

adequate risk models to prevent and cope with these extreme situations. With a better 

understanding of market behaviour, new models need to be developed to include 

historic data covering market bubbles and crashes. Fractal market models and their 

variants show a promising approach in analysing extreme events. This research has 

shown that recurrence plots can be used to discover fractal properties within financial 

time series and to anticipate the onset of extreme events. Market crashes play such a big 

part in the fmance, and despite this, it is a subject hardly covered in business schools 

and fmance programs. 

A detailed analysis of nonlinear dynamical systems and the calculation of their invariants 

have been presented in chapter four. It has been shown that the characterisation of 
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dynamical time series and the estimation of their invariants work well on stable systems 

with low noise, but when presented with real fmancial data these methods are fraught 

with difficulties. This is mainly due to serial correlations, noise and non-stationarity 

present in fmancial time series. Ideally both the embedding dimension and time delay 

should be estimated together in one procedure that yields the best predictive model. 

These parameters required for the successful modelling of nonlinear systems could be 

found experimentally through the use of neural networks. Both of the methods used to 

estimate the largest Lyapunov exponent confirmed the presence of chaos in the time 

series. Even the successful short-term predictions of these time series give a strong 

indication that they can be chaotic. However, the RQA analysis did not confirm this. 

9.3.3 Nonlinear analysis and financial predictions 

The RQA analysis found a strong presence of structure, recurrence and determinism in 

the fmancial time series studied. The structure and the measures were completely 

destroyed by randomly re-shuffling the financial time series in a way that the mean and 

standard deviation were preserved. Crucial transition periods were also detected just 

before the start of a big upward rally in the DJI index. The typical values of RQA 

measures that are common to chaotic behaviour were not present in the results overall, 

though there are some indications that they may exist during shorter time periods. It 

has been shown that RQA analysis can be used as a powerful tool to detect hidden 

properties driven by nonlinear market mechanisms. The measure of determinism 

estimated by RQA coincides with the forecasting ability of the successive prediction 

models, i.e. a higher DETvalue yields a better prediction. 

Nonlinear dynamic theory plays a big part in the analysis and characterisation of 

fmancial markets, but its use in forecasting, utilising the univariate time delay embedding 

method, is not clear. Using data from a single time series without any additional 

information can be very restricting. Despite this, trading systems based on a single time 

series and its past data have produced positive portfolio returns. Even limited 

additional information in the form of opening, closing, high and low prices, including 

volume, can drastically improve a model's performance. The superior performance of 

multivariate nonlinear models is demonstrated in this research. 
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9.3.4 Fundamental forecasting models 

This research has shown that higher returns can be achieved by utilising models based 

on fundamental measures found in a company's financial statements. The overall rank 

measure derived from fundamental ratios has a significant effect on the different 

portfolio returns. Portfolios comprising stocks with a low price-to-book ratio (value 

stocks) outperformed those made up of high price-to-book ratio stocks (growth stocks). 

The use of neural network models further improved these models. More complex 

nonlinear models also outperformed simple linear ones, indicating their suitability in 

modelling financial time series, and a presence of nonlinearity in data. Individual stock 

models, where parameters are optimised using data from the particular stock only, 

performed better than global models that used one set of estimated parameters which 

are derived using data from all stocks. Also, the fundamental models that used a pre­

processing of data to include prior knowledge performed better. 

9.3.5 Technical forecasting models 

Several tests utilising neural networks and a technical analysis approach confirmed that 

profitable trading strategies can be designed and applied to a large portfolio of major US 

stocks, even after applying reasonable transaction costs. These systems outperformed 

the benchmark (indexes) returns with much lower risk, indicating that there is a strong 

element of predictability in these financial time series. They also performed well in both 

bull and bear markets, as well as in a sideways market, showing a great degree of 

flexibility and adjustability to changing market conditions. 

The tests applied to European equities and a randomly generated portfolio were even 

more convmcmg. The return achieved in the case of the equity price series is 

significantly different and larger than the return obtained using a randomly generated 

time series, providing strong support against the efficient market hypothesis and a 

rejection of the null hypothesis. 

These multivariate statistical models performed significantly better when compared to 

the univariate models. The quality of predictions and ultimately the system performance 

largely depended on the stocks analysed, i.e. the more volatile NASDAQ stocks showed 

a better performance. 
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9.3.6 Overall conclusion 

The dynamics of financial markets will never be an exact science however from the 
' ' 

experiment results presented in this research we can conclude that the markets are 

predictable to a different degree at different times and this presence of predictable 

components can lead to a rejection of the null hypothesis, which also implies the 

rejection of the Random Walk Hypothesis. It must be stressed that no trading system 

can predict future prices accurately, but what can be estimated is the probability of 

future price movements. This approach would improve the odds of making a profitable 

trade in much the same way that a casino makes money from its roulette wheel. The 

number that will come up next is unknown, but the odds are such that the casino will 

make money in the long run. After all, predictability is the main reason and driving 

force behind the existence of many investment funds. If financial markets were 

perfectly efficient and random, there would be little reason to trade and they could 

eventually collapse. In fact, most natural and man made systems/processes are far from 

being perfectly random and efficient, though they may seem to be. Even what is 

designed to be random, in reality it is rarely the case. Being able to forecast prices does 

not imply that the markets are not functioning well, and not being able to forecast prices 

does not imply the opposite. These market inefficiencies and profit opportunities must 

be big enough to compensate for the cost of trading and information gathering. 

Opportunities are in general created by competitive advantage, based upon superior 

information and fmancial innovation and technology. 

The future of trading is moving slowly towards technology. More and more traders will 

be replaced or supported by computerised trading systems. Many of these will be 

largely based on artificial intelligence (AI) tools such as neural networks. It is vital to 

choose the correct combination of these processing technologies within a model, as this 

can simplify solutions and improve performance. A good understanding of AI tools is 

necessary, but a good knowledge of trading systems and techniques is equally important. 

In current market conditions it may be anticipated that traditional and hedge fund 

managers will learn to rely on such new trading and analytical tools. 

9.4 Future recommendations 

The obvious extension to this research is to create new trading models that combine 
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fundamental and technical analysis. The selection of fundamental factors could be 

extended to include macroeconomic variables. Technical analysis should explore other 

ways of data pre-processing, such as wavelets analysis. Employing architectures that 

also allow for stretching and compressing of time series (fractal feature) can be of 

particular value. 

In addition to the above suggestions, the next stage of this research could be the 

application of Natural Language Processing (NLP) tools to the analysis of the vast 

amount of fmancial textual information. Also, the use of artificial agents in order to 

model market behaviour can be explored. 

The models may be expanded to other financial instruments, such as currencies, 

commodities and certain derivatives. 
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Appendix A 

Examples of yearly IBM fmancial statements1• 

IBM Income Statement Annual data, all numbers in thousands 

PERIOD ENDING 31-0~-06 31-Dec..05 31-~-04 
Total Revenue 91,424,000 91,134,000 96,293,000 
Cost of Revenue 53,129,000 54,602,000 60,261 .000 
Gross Profit 38,295,000 36,532,000 36,032,000 

Operating Expenses 

Research Development 6,107,000 5,842,000 5,673,000 
Selling General and Administrative 20,259,000 21 ,314,000 19,384,000 
Non Recurring (900,000) (1 ,169,000) 
Others 

Total Operating Expenses 

Operating Income or Loss 12,829,000 9,376,000 12,144,000 

Income from Continuing Operations 

Total Other Income/Expenses Net 766,000 3,070,000 23,000 

Earnings Before Interest And Taxes 13,595,000 12,446,000 12,167,000 

Interest Expense 278,000 220,000 139,000 

Income Before Tax 13,317,000 12,226,000 12,028,000 

Income Tax Expense 3,901 ,000 4,232,000 3,580,000 

Minority Interest 

Net Income From Continuing Ops 9,416,000 7.994,000 8,448.000 

Non-recurring Events 

Discontinued Operations 76,000 (24,000) (18,000) 

Extraordinary Items 

Effect Of Accounting Changes (3S,OOO) 

Other Items 

Net Income 9,492,000 7,934,0~0 8,430,000 

Preferred Stock And Other Adjustments 

Net Income Applicable To Common Shares $9,492,00.0 $7,934,000 $8,430,,000 

1 Source Yahoo. 
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IBM Balance Sheet Annual data , all numbers in thousands 
PERIOD ENDING 31-0ec-06 31-Dec..05 31-0ec-04 

Assets 

Current Assets 

Cash And Cash Equivalents 8,022,000 12.568,000 10,053.000 
Short Term Investments 2.634,000 1.118,000 517.000 
Net Receivables 28,655,000 26,193,000 30.365,000 
Inventory 2,810,000 2.841 .000 3.316 000 
Other Current Assets 2.539,000 2.941 ,000 2.719,000 

Total Current Assets 44,660,000 45,661,000 46,970,000 
Long Term Investments 18,449,000 14,602,000 16,418,000 
Property Plant and Equipment 14,439,000 13,756,000 15,175,000 
Goodwill 12,854,000 9,441 ,000 8,437,000 
Intangible Assets 2,202,000 1,663,000 1,789,000 
Accumulated Amortization 

Other Assets 10,629,000 20,625,000 20,394,000 
Deferred Long Term Asset Charges 

Total Assets 103,23.3,000 105,748,000 109,183,000 

liabilities 

Current Liabilities 

Accounts Payable 18,006,000 17,292,000 24,524,000 

Short/Current Long Term Debt 8,902,000 7.216,000 8,099,000 

Other Current Liabilities 13,182,000 10,644,000 7.175,000 

Total Current liabilities 40,090,000 35,152,000 39,798,000 

Long Term Debt 13,780,000 15,425,000 14,828,000 

Other Liabilities 17,690,000 22,073,000 24,810,000 

Deferred Long Term Liability Charges 3,167,000 

Minority Interest 

Negative Goodwill 

Total Liabilities 74,n7,ooo n,65o,ooo 79,43G,OOO 

Stockholders· Equity 

Mise Stocks Options Warrants 

Redeemable Preferred Stock 

Preferred Stock 

Common Stock 31 ,271 ,000 28,926,000 18.355,000 

Retained Earnings 52,432,000 44,734,000 42.464,000 

Treasury Stock (46,296,000) (38,546,000) (31 ,072,000) 

Capital Surplus 

Other Stockholder Equity (8,901 ,000) (2,016,000) 

Total Stockholder Equity 28,506,000 33,098,000 29,747,000 

Net Tangible Assets $13,450,000 $21,994,000 $19,521,000 
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IBM Cash Flow Annual data , all numbers in thousands 
PERIOD EliDING 

--~----
31-Dec-06 31-Dec-65 31 -Dec-04 

Net Income 9,492,000 7,934,000 8,430,000 

Operating Activities, Cash Flows Provided By or Used In 
Depreciation 4,983,000 5,188 000 4,915,000 
Adjustments To Net Income 2,323,000 1,736,000 1,681 .000 
Changes In Accounts Receivables (512,000) 2,219,000 2,613 000 
Changes In Liabilities (729,000) (219,000) (476.000) 
Changes In Inventories 112.000 202,000 (291 ,000) 
Changes In Other Operating Activities (662,000) (2, 186,000) (1,567,000) 
Total Cash Flow From Operating Activities 15,007,000 14,874,000 15,323,000 

Investing Activities, Cash Flows Provided By or Used In 

Capital Expenditures (4,362,000) (3,842,000) (4,368,000) 
Investments (3,013,000) (346,000) 112,000 
Other Cashflows from Investing Activities (4, 174,000) (235,000) (1 ,090.000) 
Total Cash Flows From Investing Activities (11 ,549,000) (4,423,000) {5,346,000) 

Financing Activities, Cash Flows Provided By or Used In 

Dividends Paid (1 ,683,000) (1 ,250,000) (1 , 174,000) 
Sale Purchase of Stock (6,399,000) (6,506.000) (5,418.000) 
Net Borrowings (122,000) 609,000 (1 ,027,000) 

Other Cash Flows from Financing Activities 

Total Cash Flows From Financing Activities {8,204,000) (7,147,000) (7 ,619,000) 

Effect Of Exchange Rate Changes 201 ,000 (789,000) 405,000 

Change In Cash and Cash Equivalents ($4,545,000) $2,515,000 $2,763,000 
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