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Abstract—This paper introduces a tri-state logic Self Or-
ganising Map (bSOM) designed and implemented on a Field
Programmable Gate Array (FPGA) chip. The bSOM takes
binary inputs and maintains tri-state weights. A novel training
rule is presented. The bSOM is well-suited to FPGA imple-
mentation, trains quicker than the original SOM, and can
be used in clustering and classification problems with binary
input data. Two practical applications, character recognition and
appearance-based object identification, are used to illustrate the
performance of the implementation. The appearance-based object
identification forms part of an end-to-end surveillance system
implemented wholly on FPGA. In both applications, binary
signatures extracted from the objects are processed by the bSOM.
The system performance is compared with a traditional SOM
with real-valued weights and a strictly binary weighted SOM.

Index Terms—binary SOM, FPGA, object recognition, char-
acter recognition.

I. I NTRODUCTION

ONE of the original motivations for research into neural
networks is the observation that neural systems are

massively parallel and can therefore potentially escape some
of the inherent computational limitations of strictly serial
architectures. However, most neural network research uses
simulations on standard CPU architectures, and so does not
address the architectural issues found in real parallel hardware.
This paper introduces an architecture for self-organizingmaps
custom-designed for Field Programmable Gate Array (FPGA)
implementation, that is designed to exploit the fine-grained
parallelism of the FPGA while respecting its architecturallim-
itations. The FPGA platform is chosen as it is reconfigurable,
allowing easy custom-design of each implementation, and on-
chip integration with other system functions.

The original Self Organising Map (SOM) proposed by
Kohonen [1], [2] consists of two layers: the input and the
competitive layers. It is an unsupervised neural network with
competitive learning that captures the topology and probability
distribution of input data, and can be used for a wide range
of pattern recognition purposes including anomaly detection,
clustering and classification [3], [4], [5]. In the vast majority
of implementations the SOM input data and neurons are rep-
resented by real numbers (with floating-point representation),
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making it difficult to implement efficiently on FPGA, which
in general do not have specialized floating point hardware,
and therefore provide only inefficient implementations of real-
numbers.

Weightless Neural Networks (WNNs) [6] are an alternative
neural network architecture that directly exploit hardware
capabilities (commercially available Random Access Mem-
ory) and use binary inputs and outputs. Instead of adjusting
weights, learning is implemented by changing look-up table
entries, providing very rapid training [7]. In WNNs, memory
blocks play the role of the ‘neurons’ in the system. This
approach to neural networks was pioneered by Aleksander [8],
[9], and has since been further developed by Austin [10], and
others [11]. AnN input RAM node (RAM-based neuron) has
2N memory locations addressed by anN-bit binary string. An
N-bit binary input string will access only one memory location.
Learning in RAM node is accomplished by writing the desired
output into the corresponding look-up table. RAM networks
are taught to respond with a “1” output for those patterns in
the training set and only for those patterns. Generalization
is achieved by sub-sampling the input space with multiple
RAM-nodes (with cross-sampling of inputs), and aggregating
the RAM-node outputs. A limitation of RAM-nodes is that
a “0” output may be ambiguous, indicating either lack of
a corresponding training example or existence of a counter-
example [7].

To overcome this ambiguity Aleksander and Myers [12]
developed the Probabilistic Logic Node (PLN) system. The
PLN node uses a tri-state scheme with three levels (0, 0.5, 1)
in which the value of 0.5 means that an output of 0 or 1 can
be expected with equal probability if that node is addressed.
The three levels in PLN are represented using two bits. PLN
are initialized to 0.5 values; in training these are replaced
with 0’s or 1’s. A further development is the Probabilistic
RAM (pRAM) model [13] which uses fixed-point probability
estimates as weights, which approximate the range [0,1].
Similar to other RAM-based networks, anN input pRAM
node has 2N memory locations addressed by the input vector.
A number of nodes may be combined by aggregating the
probabilities. The probabilistic training is based on frequency
of class examples. In its basic form, the pRAM comprises
of a number of memory locations, a comparator and a noise
generator [14].

In SOM networks the neurons in the competitive layer
each have a “weight vector” which represent a position in the
input space, and therefore act as “prototype” vectors. During
training and execution the “winning” neuron is identified as
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that with the minimum distance from its prototype vector to the
input vector using an appropriate distance metric,D. During
execution, the winner-takes-all (WTA) algorithm is used and
the winning neuron stands for the input [1], [2]. During
training, the winning neuron and its topological neighbors’
prototype vectors are adjusted towards the input vector, sothat
the prototypes come to represent cluster centres. The Euclidean
distance is most frequently used as the distance metric.

Although the SOM uses real data inputs and outputs, in
some applications the data is either presented as a binary
string, or may be conveniently recoded as such (a “binary
signature”). For example, in image processing Haar filter
responses are often used to produce a (long) binary signature.
In this case the real-number representation of prototypes is
inefficient, and arguably inappropriate. Most proposed SOM
hardware implementations have adopted a real valued ar-
chitectural model, modified to utilize the parallel nature of
FPGAs [15]. Manolakos and Logaras [15] presented a parallel
SOM architecture design following the systolic model, which
is realized as a flexible soft IP core. Soft IP based FPGA
processor cores generally have lower performance levels and
higher resource utilization [16] than hard IP cores imple-
menting the same functions, but they are highly flexible and
can be customized for a specific application with relative
ease [17]. In contrast, hard processor IP cores are generally
highly-optimized and fine tuned, but difficult to port to other
targets with equivalent performance [16] and over-specified
for restricted tasks.

This paper presents a tri-state Self Organising Map (the
bSOM), which takes a binary input vector and maintains tri-
state weights. The design is implemented as a soft IP core
in Handel C, where the number of neurons, the number of
elements per input vector elements and the number of bits for
data and weights are all tuneable parameters, maximizing flex-
ibility and minimizing complexity. The architecture is well-
suited to FPGAs, achieving very high training and execution
speeds, and is easily integrated into a wider on-chip system.
The architecture may be used for various pattern recognition
tasks, including clustering and classification. We demonstrate
its use in two applications: hand-written character recognition
and moving object identification. In the latter applicationthe
bSOM is part of a larger on-chip system that includes feature
extraction from colour video sequences to produce binary
signatures.

Preliminary versions of this material have been presented in
conference papers [18] [19]; this paper extends and integrates
the presentation.

The remainder of this paper is divided into five sections.
Section II gives an overview of hardware solutions to the
implementation of SOM. This is followed by the details and
training rules of the proposed bSOM in section III. Section
IV describes the FPGA realisation of the proposed bSOM and
section V presents the two practical applications of the bSOM
with experimental results. We conclude in section VI with
suggested future work.

II. H ARDWARE ARCHITECTURES FORSOM

Hardware implementations of neural networks are essential
to take full advantage of the inherent parallelism of neural
network [20]. Software simulations are useful for investigating
the capabilities of neural network models, and creating new
algorithms, but they fall short where fast execution and training
is required [21], and fall short as problem size scales up,
creating a bottleneck [22]. There are two major approaches
to implementing neural networks in hardware: analogue and
digital implementations. Digital neural networks are more
popular due to their greater accuracy, flexibility and relatively
insensitivity to noise [23].

FPGAs provide an appealing platform for the implementa-
tion of digital neural networks, due to their reconfigurability
and consequently small non-recurring engineering (NRE) cost.
Neural architectures invariably need to be “tuned” for specific
applications (e.g. number of inputs); this is difficult to accom-
modate in a specialised neural ASIC chip, but easily handled
on an FPGA. Moreover, neural networks are rarely used alone,
and can be integrated directly on the chip with other system
functions (e.g. video or image input, feature extraction, control
functions).

However, a key limitation of FPGAs is the cost of imple-
menting arithmetic – particularly floating point operations –
and most traditional neural networks are designed around real-
valued arithmetic. This suggests that either efficient represen-
tations of real-values must be used, or that the problem should
be recast to use a binary representation.

A popular approach is to use fixed point arithmetic to
approximate real values. Pena and Vanegas [5] implemented a
fixed-point version of the SOM on FPGA. They simplified the
neighbourhood function and introduced a set of new learning.
Raygoza-Panduroet al. [24] presented a fixed-point SOM
based neuro-processor using a Xilinx Virtex II FPGA for the
analysis and classification of tension deformation patterns of
knee ligaments, capable of recognising different sequences of
movement patterns for a knee joint with damage to the anterior
cruciate ligaments.

Kurdthongmee [25] presented a modified SOM imple-
mented on FPGA, used for image quantisation. They used
unsigned integer arithmetic operations suitable for moderate
density FPGAs. A similar implementation where the distance,
neighbourhood and learning rate computation is replaced with
a simplified version, was presented by Changet al. [26] and
Porrmannet al. [27]. An efficient SOM architecture based on a
new Frequency Adaptive Learning algorithm, which efficiently
replaces the neighbourhood adaptation function of the original
SOM, was presented in [26]. The design was implemented on
a Xilinx FPGA and is capable of quantising a 512×512 pixel
colour image in about 1.003sec at 35MHz clock rate without
the use of sub-sampling.

A design based on the universal rapid prototyping system
RAPTOR2000 for the acceleration of SOM is presented in
[27]. Using Xilinx FPGAs, the implementation achieves a
speed-up of up to 190 times (with five FPGA modules on
the RAPTOR2000 system) compared to a software imple-
mentation on a state-of-the-art personal computer. A similar
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system implemented on a Xilinx Virtex II XC2V300, aimed
at reducing the training processing time of SOM, has been
presented in [28]. The design consists of 16 units in the input
layer. The number of neurons in the output layer is divided into
three sections: the processing unit array, the address generator
and the controller. Compared with a software implementation,
the design achieves approximately 89% speed-up. However,
these systems still have fairly low numbers of neurons and
modest speed-up, reflecting the significant amount of silicon
area required to deal with the fixed-point arithmetic.

Recognising these issues, Yamakawaet al. [4] proposed a
binary weighted vector SOM based on FPGA. The proposed
SOM used binary data for both input and weight vectors.
The Hamming distance is used as the distance metric between
input and weight vectors. However, as their input data actually
consists of integers the weight vector was updated with priority
given to the most significant bit (MSB), thus attempting to
utilise a hybrid scheme that treats the weights as a direct
representation of integer values in some functions, and as
binary strings in others. This produces some peculiarities(e.g.
in treating the least- and most-significant bits equally in the
Hamming-distance calculation). Nonetheless, the implementa-
tion was five times faster than the real number weighted SOM
in software and140 times faster in hardware, and achieved
comparable results [4]. This highlights a key principle that the
most successful design will take account of the nature of the
hardware architecture, as demonstrated by Austin’s [22] ability
to implement a fast system on a low-cost digital hardware.

III. T HE TRI-STATE SOM

This paper introduces a tri-state SOM (the bSOM), which
combines concepts from the traditional SOM [1], [2] with the
tri-state logic pioneered in the PLN. The bSOM has the same
essential structure as a standard SOM – an input layer and
a competitive layer – and is capable of the same wide range
of applications as the SOM. The bSOM takes a binary vector
input and maintains tri-state prototype vectors “weights”with
{0, 1, #} as the possible values. We use # to represent a “don’t
care” state (signifying that the corresponding input vector bit
is matched whether it is set or clear). The resulting architecture
implements very efficiently on FPGA, and the additional logic
state significantly improves performance compared to a strictly
binary architecture. In comparison with WNNs, the weight
vectors have the same length as the input binary vector,
whereas a WNN uses 2N memory locations per logic node;
moreover there is no need to sub-sample the input space and
combine outputs in a pyramid structure, so the input part of
the architecture is relatively simple.

One of the functions of standard SOMs [1], [2] is to reflect
topological information prevalent in high dimensional input
data in the organization of the one or two dimensional map
of neurons [29]. Each neuron in a SOM has a topologi-
cal neighbourhood, typically one- or two-dimensional and
of a defined shape (e.g. circle, square or hexagon in two
dimensions), with size of the region specified by a “radius”
parameterr. For ease of hardware implementation we have
used a one-dimensional neighbourhoods in the bSOM. Given

a binary input vectorx = (x1, x2, . . . , xn), all the units in
the competitive layer are “connected” by corresponding proto-
type vectors,wj = (wj1, wj2, . . . , wjn). The bSOM training
algorithm is discussed below, and compared and contrasted
with the original SOM algorithm [1], [2] and Yamakawa’s [4]
implementation.

In contrast to Yamakawa [4], we assume that the input is
strictly binary, and we use a tri-state weight vector. We used
a specialised distance metric, and a specialised probabilistic
update rule during training, both of which are necessary
to reflect our tri-state weight structure. In contrast, in [4]
the basic Hamming distance is used as a distance metric,
despite its unsuitability for binary representation of fixed
point integer inputs, and the weightwj(t + 1) is updated
by wji(t + 1) = wji(t)⊗ xi, for i ∈ [0..N ] for N -bit input
vector, with⊗ representing the exclusive OR operation, but
with priority given to the MSB to reflect the integer encoding.

A. Distance Computation

We used a modified version of the Hamming distance to
compare input to prototype vectors, as shown in Equation 1,
for an input vectorx and weight vectorw .

H(x,wj) =

n
∑

i=1

{

0 if wji = #
(xi ∧wji) ∨ (xi ∧wji) otherwise

}

.

(1)
wherexi andwji are the bit inverse ofxi andwji respectively.

This equation implies that any input bit value “matches”
a ’#’ in the prototype vector. A consequence of this is that
prototype vectors may effectively represent a region rather than
a point or, viewed alternatively, may be selective to distance
in some dimensions while ignoring others. This is a powerful
feature of the approach. We may think of tri-state prototypes
as corresponding to schemata in Holland’s Genetic Algorithm
[30], and so we refer to the modified distance metric as the
Schema distance,D.

B. Winner Take All (WTA)

The unit with the smallest Schema distance to the input is
defined as the winning neuron. We use the #-count (number
of #’s in the weight string) as a tie-break when the Schema
distances of multiple neurons to the input vector are the same
– the winner is the neuron with the lowest #-count. This
implies that we prioritise prototypes with a more specific
representation.

C. Neighbourhood Selection and Weight Update

As in the original SOM and in [4], a neighbourhoodN of
neurons around the winning neuronw is selected and updated;
the size of the neighbourhood progressively decreases. We use
a probabilistic update rule, as follows:

• A bit in the weight vector is only updated if it is different
from its corresponding input vector bit.

• An update probability is used for each iteration during
training. This value decreases linearly as training pro-
gresses.
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 0 1 # 

0 0.5 0 0.5 

1 0 0.5 0.5 

# 0.5 0.5 0 

 0 1 # 

0 1-0.5p 0 0.5p 

1 0 1-0.5p 0.5p 

# 0.5p 0.5p 1-p 

a) T b) Te

Fig. 1. (a) Left: the conditional Markov transition matrix for an equi-probable
bit (T). (b) Right: the effective Markov transition matrix (Te).

T2

0.5000    0.2500    0.2500
0.2500    0.5000    0.2500
0.2500    0.2500 0.5000

T12

0.3335    0.3333    0.3333
0.3333    0.3335    0.3333
0.3333    0.3333 0.3335

T13

0.3334    0.3333    0.3334
0.3333    0.3334    0.3334
0.3334    0.3334 0.3333

T14

0.3334    0.3333    0.3333
0.3333    0.3334    0.3333
0.3333    0.3333 0.3334

Fig. 2. The conditional Markov transition matrix after different iterations.

• A bit is updated by changing its value from 1 to #, 0 to
# or # to (0 or 1) depending on the input bit value.

The behaviour of an individual bit can be modelled as a
Markov chain with a conditional Markov transition matrix
(T ). Figure 1(a) illustrates the case where the probability
that a particular bit is set, when that neuron wins, is 0.5. If
the probability of applying the conditional Markov transition
matrix is given asp = 1−α (whereα is the update rate), the
resulting effective Markov transition matrix (Te) for a bit to
change is as shown in Figure 1(b). IfT is a regular transition
matrix, then asn approaches infinity,T n → S, whereS is
a matrix with constant vectors, as shown in Figure 2. The
illustrated transition matrix settles after the 12th iteration.
This supports the observation that the bSOM requires few
iterations to converge, as compared to the original SOM and
that presented in [4].

Network Size 40 neurons
Input vectors 784 bits
Neuron vectors 784 bits
Initial weights Random
Maximum neighbourhood 4 neurons

TABLE I
SPECIFICATION OF THE BSOM AS IMPLEMENTED ON FPGA.

IV. T RI-STATE SOM ON FPGA ARCHITECTURE

The most critical aspect of any hardware design is the
selection of an architecture which provides the most efficient
and effective implementation [26]. The specifications of the
circuit implemented on FPGA is given in Table I, with its
corresponding block diagram in Figure 3. The circuitry is
made up of five basic blocks: the weight initialisation, pattern
input, Winner Take All, neighbourhood update and display

Fig. 3. A block diagram of the bSOM design on FPGA.

blocks. The circuitry is parameterized by the input bit width,
N , and requires only a simple reconfiguration for a different
design. Three of the five blocks run in parallel: the pattern
input, Winner Take All and display (output) block. The weight
initialisation block is triggered only at start-up. Similarly, the
neighbourhood update block is triggered when a winning node
is identified for an input binary vector. Details of the five basic
blocks are presented in the following sections.

A. Weight Initialisation block

This block is used to randomly initialize all the weight
vectors in the network. All the neurons in the network are
initialised in parallel bit-by-bit; hence, it takes as manyclock
cycles as there are bits in the binary input vector to complete
the initialisation. The hardware architecture presented here has
been tested with binary image characters of size28 × 28,
totalling N = 784 bits (and also with binary signatures from
moving objects with N = 768 bits). The sizes of the input and
weight vectors are all set toN bits and can easily be altered
for any input size. The presented implementation takes exactly
N clock cycles to completely initialise all the neurons.

B. Pattern Input block

This block is used to acquire the binary input vector (or
binary image) from an external source. The size of the input
vector,N , is pre-configured and the input is complete when a
total of N bits is read from the input source. This binary data
is stored in the input vector and then passed onto the schema
distance computation unit for further processing.

C. Winner Take All block

This block is made up two parts, the distance computation
unit and the winning neuron unit. The distance computation
unit is used to compute the Schema distance between the
input binary vector and all neurons in the bSOM. The Schema
distance between the input vectorx and a neuronwj , as
shown in Equation 1 is a bitwise operation, and hence takes
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Fig. 4. Structure of the minimum Schema distance unit in the WTA unit.

as many clock cycles as there are bits in the input vector.
Since the Schema distances for all the neurons are computed
in parallel, it takes exactlyN clock cycles to complete the
distance computations for all the neurons in the network.

The winning neuron unit uses the results from the Schema
distance computed in the distance computation unit to identify
the winning neuron. The design, as shown in Figure 4, uses a
tree-structured series of comparators to select the minimum of
a pair of two inputs. For an implementation with40 neurons,
the design takes exactly seven clock cycles to compute the
node with the minimum Schema distance.

D. Neighbourhood update block

This block is used to select the neighbourhood of the
winning neuron and to update the neurons in the specified
region. The size of the neighbourhood reduces as training
progresses. In the hardware implementation the neighbourhood
size is initialized to 4, and decrements everyI/4 iterations
until it reaches a minimum of 1, whereI is the total number
of iterations. The update requires a random number generator,
which is complex to implement in hardware and computa-
tionally expensive. To avoid these costs, a look-up table with
2000 randomly generated numbers has been implemented on
the FPGA. For a mismatched bit between the input vector
and the neuron to be updated, one of the 2000 values is
selected using the iteration count. If the number of iterations
exceeds 2000, the last 10 bits of the iteration count is used to
address the random number in the LUT. Mismatching bits in
the neuron vector are updated as discussed in Section III-C.
A # is implemented as binary ‘10’.

E. Output display blocks

The output display block displays the neurons (weights) as
an image on an external Video Graphics Array (VGA) for
visual verification. It runs in parallel with the input and WTA
blocks, at the refresh rate for the VGA used (typically 60Hz).

F. Implementation Platform

The bSOM architecture discussed here has been imple-
mented on a Xilinx Virtex-4 FPGA chip (XC4VLX160) with
approximately 152,064 logic cells with embedded RAM to-
talling 5,184 Kbits. The design and verification was accom-
plished using the Handel-C high level descriptive language.
Compilation and simulation were achieved using the Agility
DK design suite. Synthesis – the translation of abstract high-
level code into a gate-level net-list – was accomplished using
Xilinx ISE tools.

G. Training Speed

To compare the training speeds of bSOM and cSOM on the
FPGA architecture, a simplified version of the cSOM has been
implemented on the Xilinx Virtex-4 FPGA. In the simplified
version of the cSOM the Manhattan distance is used instead
of the Euclidean distance. Also to accommodate the fine grain
learning in cSOM, 8 bits are used to represent values ranging
from 0 to 1 in fixed point format. The design for the bSOM
can be clocked at 40MHz and 25MHz for the cSOM. The
resource utilisation of the two implementations are given in
table II. The cSOM implementation takes 3 times as many
clock cycles as the bSOM, due to the intermediate arithmetic
operations required for updating the 8-bit fixed point memory
locations. At 25MHz the cSOM is capable of training the
system with approximately 10,000 patterns per second. Also,
at 40MHz the bSOM implementation can be trained with
approximately 25,000 patterns per second; representing a 2.5
fold improvement over the training time of the cSOM on
FPGA. The clock frequencies of 40MHz and 25MHz also
include the design for controlling the external logic for the
VGA and the camera. This is the actual hardware test and
the most stable clock frequencies for the two implementations.
The frequencies could be much higher without the requirement
to interface these devices. Table II gives the details of the
resource utilisation of the FPGA implementations for the 784-
bit character recognition problem.

Resource bSOM cSOM
Name Total Used Per.(%) Used Per.(%)
Flip Flops 135,168 4,095 3 7,522 5
4 input LUTs 135,168 18,387 13 35,947 26
bonded IOBs 768 147 19 147 19
Occupied Slices 67,584 11,468 16 23,413 34
RAM16s 288 43 14 64 22
BlockRAM 5,184 790 15.25 1,145 22.09

TABLE II
RESOURCE UTILISATION OF BSOM AND CSOM,USING V IRTEX-4

XC4VLX160, PACKAGE FF1148AND SPEED GRADE-10.

V. A PPLICATIONS AND EXPERIMENTAL RESULTS

The performance of the bSOM has been verified using two
practical applications: handwritten character recognition, and
moving object identification. To verify the performance of the
bSOM, the MNIST database of handwritten digits [31], sample
shown in Figure 5, was used to test the implementation both
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Fig. 5. Sample of the MNIST database.

in PC simulations and on the FPGA hardware architecture. A
comparison on the PC between the original SOM as presented
by Kohonen in [1], [2] (herein referred to as the cSOM), a
strictly binary SOM (BSOM) and the proposed tri-state SOM
(bSOM) algorithms is also given in this section. Although the
bSOM is meant for hardware implementation, it has been im-
plemented on a PC using MATLAB to enable comparison with
the original SOM. To illustrate the importance of the tri-state
(0, 1,#) rather than binary(0, 1) representation, the BSOM
version uses the Hamming distance metric, but otherwise is
implemented with the same parameters as the bSOM.

A. Handwritten Character Recognition

To illustrate the comparative performance of the bSOM in
cluster analysis and topological ordering, we have tested the
system on the MNIST handwritten character dataset [31]. To
evaluate how effective the clustering is, after training the neu-
rons were visually inspected and labels (0 to 9) were assigned
to each neuron. A labelled independent test data (10,000
numeric characters) was then used to test the classification
accuracy of the three hand-labelled SOMs.

The software based simulation of the bSOM was achieved
on a PC with a general purpose processor clocked at 2.8GHz
and 2GB of SDRAM. Initial experiments were conducted to
empirically select control parameters – number of neurons,
neighbourhood size and learning rate – for all three models,
to determine the number of neurons required to represent all
60,000 patterns in the dataset (see Figure 5).

Table III illustrates the influence of the different parameters
of the cSOM and bSOM performance. Although the bSOM
performs better than the cSOM, there is significant improve-
ment in performance for the cSOM as the number of iterations
increases. Increasing the number of neurons in the network
increases the performance of both the cSOM and bSOM, with
some of the neurons left unused for larger networks.

Experiments were conducted with the number of neurons
ranging from 10 to 100 in steps of 10. The bSOM results
improve with increasing numbers of neurons until performance
plateaus at 80 neurons (with minimal improvement thereafter).
The initial neighbourhood size (4) was determined using the
cSOM, and adopted for the other implementations.

After empirically selecting parameter values, tests were
conducted to compare the convergence of the bSOM, cSOM
and BSOM at 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200
and 500 iterations. The experiment was repeated ten times at

Iterations No. of Nodes Correct Classification (%)
cSOM bSOM

1 100 11.35 59.8
2 100 67.47 77.82
3 100 74.36 76.37
4 100 75.95 81.15
5 100 78.38 81.69
6 100 79.49 82.86
7 100 79.87 81.22
8 100 78.96 80.87
9 100 79.64 81.43
9 200 86.27 88.30
9 300 86.81 89.46
10 50 75.67 76.22
10 60 76.20 75.29
10 70 76.71 76.11
10 80 77.90 77.97
10 90 78.82 80.35

TABLE III
THE PERFORMANCE OF THE CSOM AND BSOM FOR VARIOUS NETWORK

SIZES AND NUMBERS OF ITERATIONS.
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Fig. 6. Performance of the three different SOM implementations for different
iteration counts. The average correct classification rate is illustrated with error
bars.

each iteration count with the exception of 500, which (due to
computational load) was repeated only five times. In the case
of the original SOM, repetitions did not make any significant
difference to the results, whereas the results of the strictbinary
and tri-state SOM showed some variability.

Figure 6 illustrates the results. The BSOM has markedly
inferior performance. The cSOM and bSOM appear to have
similar performance at high iteration counts; however, the
bSOM performs better at low iteration counts and plateaus
around 50 iterations; increasing the number of iterations
beyond this point does not make a significant difference. The
cSOM appears to plateau after 700 iterations (not illustrated)
with a performance level of89%; it took approximately 50
hours to complete one training run at this number of iterations,
and we did not repeat the experiment.

Samples of the resulting topological maps with 100 neu-
rons in each network (after 100 iterations) are illustratedin
Figure 7 for cSOM, BSOM and bSOM. We note that the
specific assignment of neurons to patterns is not significant,
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Fig. 7. Results of the three implementations using the [31] dataset. Left:
original SOM (cSOM); middle: tri-state SOM (bSOM); right strict binary
SOM (BSOM). In cSOM grey-levels are used to illustrate weight magnitude;
in BSOM # is represented by mid-grey.

Iter. MNIST dataset Binary Signatures
cSOM bSOM BSOM cSOM bSOM BSOM

10 78.38% 81.86% 70.28% 81.84% 84.41% 68.92%
20 79.57% 81.35% 69.89% 83.06% 84.56% 68.99%
30 79.91% 82.15% 71.18% 84.50% 84.85% 75.81%
40 80.38% 82.24% 72.12% 84.05% 84.05% 69.00%
50 80.84% 83.54% 71.94% 83.98% 85.03% 74.49%
60 82.34% 83.62% 72.25% 84.70% 85.91% 77.94%
70 82.96% 83.60% 72.28% 85.03% 85.74% 79.80%
80 83.03% 83.08% 71.86% 85.01% 84.58% 70.35%
90 83.43% 83.21% 73.82% 85.20% 84.40% 77.12%
100 83.58% 83.63% 72.38% 85.15% 84.58% 76.79%
200 83.77% 83.69% 72.86% 84.68% 86.44% 76.13%
300 – – – 86.71% 84.23% 69.17%
400 – – – 87.33% 86.05% 83.17%
500 84.59% 84.57% 73.68% 87.42% 86.89% 78.56%

TABLE IV
LEFT: AVERAGE PERFORMANCE OF THE THREESOM IMPLEMENTATIONS

FOR 12 DIFFERENT ITERATION COUNTS USING THEMNIST DATASET [31].
RIGHT: AVERAGE PERFORMANCE FOR14 DIFFERENT ITERATIONS USING

THE TARGET IDENTIFICATION DATABASE.

although the one-dimensional topological ordering is reflected
(neighbourhood runs across rows in a scan-line fashion) in the
clustering. The cSOM captures ambiguities well (appearingas
“blurring” of the pattern in some nodes). The bSOM can also
achieve this to some extent, whereas the BSOM reflects only
specific patterns. It is the ability of the bSOM to capture at
least some level of ambiguity which distinguishes it from the
BSOM in terms of performance.

Table IV (left hand side of table) shows the average perfor-
mance level from figure 6 numerically. Although in this exper-
iment the SOM’s have been used for clustering and a post-hoc
analysis of correct classification conducted, for comparison we
list the performance of various classifiers on this dataset,as
presented in the literature. Reported accuracy levels are88%
using a linear classifier (1-layer NN) [31],84% using Sparse
Distributed Memory [32],94% using Support Vector Machine
and99.5% using a two stage pattern recognition architecture
using feature extraction (a large convolutional neural network
with unsupervised pre-training) [33].

The performance measure in table IV is the object level
classification measure. Table V gives the pixel level accuracy
measure using the MNIST dataset for four different iterations
with the three implementations. This is the pixel level com-
parison of the 10,000 test data and the represented neurons.
Table V also gives two statistical measures derived from
the False Negative (FN), False Positive (FP), True Negative

Iter. FN% FP% TN% TP% PCC% JC%

tSOM 10 3.64 2.89 82.72 10.75 93.47 62.24
cSOM 10 4.23 3.36 82.25 10.16 92.42 57.27
BSOM 10 5.22 5.64 79.97 9.17 89.15 45.82
tSOM 100 3.58 2.91 82.70 10.81 93.51 62.50
cSOM 100 4.16 3.42 82.19 10.23 92.43 57.49
BSOM 100 5.27 5.37 80.24 9.12 89.36 46.18
tSOM 200 3.59 2.87 82.73 10.81 93.54 62.56
cSOM 200 4.18 3.40 82.21 10.21 92.42 57.39
BSOM 200 5.16 5.76 79.85 9.23 89.08 45.84
tSOM 300 3.63 2.87 82.73 10.77 93.50 62.37
cSOM 300 5.25 5.31 80.29 9.15 89.44 46.41
BSOM 300 5.15 5.75 80.03 9.07 89.10 45.41

TABLE V
THE PIXEL LEVEL ACCURACY MEASURE FOR DIFFERENT ITERATIONS

USING THE 3 IMPLEMENTATIONS. ITER. IS THE NUMBER OF ITERATIONS.

1
0

1 1 1 0 1 0 1 0 1 1 0 0 0 0 1 0

1
0

1 1 1 0 1 0 1 0 1 1 0 0 0 0 1 0

Mean 
value

Fig. 8. A sample 16 bin histogram. The binary signature is extracted by
thresholding at the mean bin frequency value.

(TN) and True Positive (TP). The Jaccard Coefficient (JC)
neatly characterizes the performance in a single measure
that takes into account both FP and FN errors and it is
computed as TP

TP+FP+FN
. Percentage Correct Classification

(PCC), a widely used method for assessing a classifiers
performance has also been give in table V and is computed as

TP+TN
TP+FP+TN+FN

x100.

B. Target identification.

Our second implementation illustrates the bSOM as a
component of a surveillance system. The system, fully im-
plemented on FPGA, analyzes real-time video, applies back-
ground differencing [34], segments multiple objects and tracks
them. The tracking and segmentation modules yield individual
objects, represented using a bounding box. The bSOM is used
to perform appearance-based target identification – a number
of known objects (individuals) are learned by the system, and
during tracking the bSOM is used identify which object(s)
is/are in view.

The objects are represented using a simple binary signature,
extracted from the colour histograms – this is frequently
sufficient to identify individual objects from a reasonablysmall
set. However, the approach generalises to more sophisticated
feature extraction techniques. A 768 bin histogram is gener-
ated; 256 bins for each of the RGB colour components. To
convert this into a binary signature the average bin frequency,
µbin, is computed; any bin with a value greater than or equal
to µbin is represented as binary 1, 0 otherwise (see Figure 8).

A binary feature vector (binary signature),
x= {x1, x2, . . . , xN} for N = 768 is generated as in
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Fig. 9. Processing of objects for identification. The tracking system detects
objects and constructs a bounding box. A binary signature isextracted from
the colour histogram of each object, and fed to the bSOM for identification.

Equation 2.

xi =

{

1 if bini >= µbin

0 otherwise
. (2)

To test the short term-recognition of the bSOM with signa-
tures extracted from the colour histogram, a limited number
of objects (nine people) have been used to train a fixed size
bSOM. The bSOM is trained using binary signatures collected
from all moving objects in a training sequence. The number
of unique objects that appear in the scene determines the
number of neurons required in the bSOM. Ideally, the number
of neurons should be the same as the total number of unique
objects. However, due to partial occlusion, camera jitter,over
segmentation and under segmentation, the appearance and
hence the histogram for an object may vary from frame to
frame, so that each individual is represented by multiple nodes.

After training the network with binary signatures extracted
from 2, 248 manually-labelled objects, we use a win-frequency
based algorithm to automatically label nodes for object iden-
tification. For each node, we count how many of the train-
ing patterns for which it “wins” the competition correspond
to each known object. The node is labelled as the most
frequently-assigned object. To test the performance,1, 139
manually labelled independent test data are used. During the
testing phase, the winning neuron is identified. If the minimum
Schema distance exceeds a threshold value set during training
the object is classified as unknown; otherwise it is identified
using the node label.

The object identification system has been tested with video
data recorded over a period of two hours with a total of 18,122
frames. The video was recorded in an indoor environment,
very close to the exit of a building. Typically people enter
the building and leave at the same exit point. The scene has
normal office furniture, which partially occlude the moving
object in some locations. There is some variation in lighting
conditions, particularly around the wide transparent windows,
see Figure 9. Frames from the first 30 minutes with nine
different persons entering the building were used to train the
system. A tracking system is used to segment and extract the
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Fig. 11. Performance of the three different SOM implementations for 10,
20, 30, 40, 50, 60, 70, 80, 90, 100, 200, 300, 400 and 500 iterations using
binary signatures extracted from the colour histogram for nine objects.

pixels of all moving objects as shown in figure 9. Objects with
less than 768 pixels are filtered as noise, which also avoids
values ofµbin less than1 in Equation 2. Figure 10 shows three
of the nine objects used to train the bSOM. In the figure, the
actual object being tracked is shown to the left with its binary
signatures over the period of time that it appears in the scene
shown to the right. The binary signatures are shown as images
and each row in the image to the right corresponds to the 768
bits representing the binary signature for its colour histogram.

Tests were conducted with the number of neurons ranging
from 10 to 100 in increments of 10. For networks with more
than 50 neurons, the recognition level for both the bSOM
and cSOM exceeds 90%, but some neurons do not get used;
40 neurons was adequate for good performance. There were
nine distinct objects, therefore roughly four neurons per object
in this environment. The average performance of the cSOM,
bSOM and BSOM using 40 neurons are presented to the right
of Table IV; these figures are also illustrated in figure 11.
The performance is consistent with the overall observations on
the MNIST dataset; the bSOM and cSOM have comparable
performance; BSOM has significantly worse performance; the
bSOM trains relatively quickly, although the difference isnot
so marked on this dataset.

C. Statistical Significance of Results

This section examines the statistical significance of the per-
formance of the three SOM implementations (cSOM, bSOM
and BSOM) presented in the sections V-A and V-B. We used
the Wilcoxon rank-sum test to determine whether there is any
significant difference between the classification performance
of the three algorithms. A one-tailed test was used to test
whether higher average performance by one algorithm over
another was statistically significant.

Table VI shows the Wilcoxon statistic (z),̺ (the asymp-
totic significance) values and the significance for all the 12
iterations for the MNIST dataset. The̺values from Table VI
suggest that bSOM significantly outperform cSOM for itera-
tions less than 80 at the5% significance level. There is no
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Fig. 10. Sample binary signatures from three of the nine moving objects. A representative frame for each object is shown to the left. The corresponding
binary signature and its time evolution is shown to the right; each 768-bit wide row represents the signature on a single frame. The signature varies over time
but shows fairly high level of consistency, and signatures of different objects are distinctly different.

Mean Rank Significance
Iter. cSOM bSOM Rank Sum z 1-tailed (̺ )
10 5.50 15.50 55 -3.99 0.000 ≻

20 5.50 15.50 55 -3.99 0.000 ≻

30 5.50 15.50 55 -4.01 0.000 ≻

40 5.50 15.50 55 -4.01 0.000 ≻

50 5.50 15.50 55 -4.01 0.000 ≻

60 5.50 15.50 55 -3.99 0.000 ≻

70 6.50 14.50 65 -3.19 0.000 ≻

80 10.50 10.50 105 0 0.519 −

90 12.50 8.50 125 1.58 0.057 −

100 12.50 8.50 125 1.57 0.057 −

200 11.50 9.50 115 0.7673 0.222 −

500 10.50 10.50 105 0 0.519 −

TABLE VI
WILCOXON RANK-SUM TEST FOR THEMNIST DATASET. SIGNIFICANT

DIFFERENCES ARE INDICATED BY̺ LESS THAN0.05, ≻ INDICATES

WHERE BSOM OUTPERFORMS CSOM;− INDICATES NO SIGNIFICANT

DIFFERENCE BETWEEN BSOM AND CSOM.

statistical significance between the performance for iteration
greater than or equal to 80. This test shows that bSOM trains
more quickly than cSOM, but that ultimate performance is
comparable.

Table Table VII shows the Wilcoxon rank-sum test re-
sults for the object identification problem. As with MNIST,
bSOM outperforms cSOM for smaller iterations (10–70), with
the exception of iteration 40. However, cSOM outperforms
bSOM for higher iterations (80–500), with the exception of

Mean Rank Significance
Iter. cSOM bSOM Rank Sum z 1-tailed (̺ )
10 5.50 15.50 55 -4.00 0.000 ≻

20 6.50 14.50 65 -3.19 0.000 ≻

30 5.50 15.50 55 -4.00 0.000 ≻

40 12.50 8.50 125 1.66 0.041 ≺

50 6.50 14.50 65 -3.19 0.000 ≻

60 5.50 15.50 55 -4.00 0.000 ≻

70 6.50 14.50 65 -3.19 0.000 ≻

80 15.50 5.50 155 4.00 0.000 ≺

90 14.50 6.50 145 3.19 0.000 ≺

100 12.50 8.50 125 1.58 0.057 −

200 5.50 15.50 55 -4.00 0.000 ≻

300 14.50 6.50 145 3.19 0.000 ≺

400 15.50 5.50 155 4.00 0.000 ≺

500 15.50 5.50 155 4.00 0.000 ≺

TABLE VII
WILCOXON RANK-SUM TEST FOR THE OBJECT IDENTIFICATION BINARY

SIGNATURES. SIGNIFICANT DIFFERENCES ARE INDICATED BY̺ LESS
THAN 0.05, ≻ INDICATES WHERE BSOM OUTPERFORMS CSOM;−

INDICATES NO SIGNIFICANT DIFFERENCE BETWEEN BSOM AND CSOM;
≺ INDICATES CSOM OUTPERFORMS BSOM.

iteration 100 and 200. There is no statistically significant
difference at iteration 100. We conclude that bSOM trains
more quickly than cSOM on this dataset, but ultimately cSOM
has marginally higher performance.
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VI. CONCLUSION

We have presented a new neural network architecture, the
tri-state self-organising map, which is suitable for clustering,
anomaly detection and classification. By utilising the concept
of tri-state logic, originally presented in weightless neural
networks, we can produce an efficient system which has
comparable performance to a traditional real-valued SOM in
handling binary input data (in contrast to a simple binary
system using the Hamming distance), with significantly greater
computational efficiency. The bSOM is particularly well-
suited to an FPGA platform, trains in less iterations than
the original SOM and has a much lower implementation
foot-print. We have demonstrated the potential use of the
bSOM in hand-written character recogntion, and in security
surveillance systems as an object identification system using
binary signatures extracted from colour histograms. The work
presented here forms part of an end to end surveillance system
fully implemented on FPGA. In the future we will demonstrate
further applications of the tri-state SOM, integration with
more sophisticated binary signature extraction algorithms, and
integrated self-optimisation, including on-line learning.
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