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Introduction
Quantile regression models have been widely used for a variety 

of application [1,2]. It has attracted much interest in recent years 
because of the flexibility of quantile regression for modelling data 
with heterogeneous conditional distributions. In addition, a set of 
quantiles of the response variable (such as the first quartile, the median 
and the third quartile) may depend on the explanatory variables very 
differently from the center. Thus, a set of quantiles may give a more 
complete picture of the relation between the explanatory variables 
and the response variable than the mean regression. Furthermore, 
quantile regression makes very minimal assumptions on the error 
term distribution and thus its estimators may be more robust than the 
mean regression when the error term is non normal. Consequently, 
quantile regression has emerged as a useful supplement to standard 
mean regression models.

One of the serious challenges in quantile regression lies in analysis 
of longitudinal data in which repeated measurements are made on the 
same subject over time as well as in specification of quantile dependent 
prior distributions in quantile regression. There exists little literature 
for quantile regression in longitudinal data and we refer to [3-6].

This paper considers Bayesian quantile regression with random 
effects. We develop methods for eliciting prior distribution to 
incorporate historical data gathered from similar previous studies. 
The methods can be used either with no prior data or with complete 
prior data. The advantage of the methods is that the prior distribution 
is changing automatically when we change the quantile as well as 
precision. In addition, we propose Gibbs sampler for Bayesian quantile 
regression with random effects which is computationally efficient and 
easy to implement compared with expectation maximization algorithm 
proposed by [4] and Bayesian MCMC method proposed by [6].

The rest of this article is organized as follows. Section 2 introduces 
asymmetric Laplace as scale mixtures of normal distributions, we elicit 
power prior distribution, and describe Gibbs sampler (GS) for Bayesian 
quantile regression. In Section 3, we illustrate the Gibbs sampler by 
analyzing simulated data and compare our results with Bayesian 
MCMC and EM algorithm. Section 4 analyzes an age-related macular 
degeneration data set. We conclude with a brief discussion in Section 5.

Model and Methods
Random effects model for longitudinal data

 Suppose there are N subjects under study so that  y
ij

 denote the jth 

measurement on the ith subject, for i=1,..,N and j=1,...,ni. We start with 
the following latent regression model: 

= , =1,..., , =1,..., ,ij ij ij i ij iy x z b j n i Nβ ε′ ′+ +

where ijx′  and ijz′  are rows of the iX  and iZ  matrices, iX  is 
( 1)in k× +  and iZ  is in q× , β  and ib  are (k+1) and q -dimensional 

unknown parameters and random effects, respectively, and ijε  is 
the error term. We define the linear mixed quantile functions of the 
response  y

ij
 .

| ( | , ) = , =1,..., , =1,..., ,y b ij i ij p ij i iij i
Q p x b x z b j n i Nβ′ ′+ 	               (1)

where |y bij i
Q  is the inverse of the cumulative distribution function 

of yij given a vector of unknown subject-specific random effects ib
, ~ (0, )i qb N Λ , Λ  is a symmetric nonsingular matrix, and the 
pth quantile of the response y

ij 
 is ij p ij ix z bβ′ ′+ . We assume the 

conditional distribution of y
ij

 given ib , for =1,..., ij n  and =1,..., ,i N  

is an independent distribution according to the asymmetric laplace 
distribution, so that 

(1 )( | , , ) = exp{ ( )},ij ij p ij i
ij p i p

y x z bp pf y b
β

β σ ρ
σ σ

′ ′− −−
− 	               (2)

where > 0σ  is a scale parameter, and ( ,0)( ) = 1 ( )p w wp w wρ −∞− . The 
parameter p

 
determines the skewness of the distribution and the pth 

quantile of this distribution is zero.
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Let 1= ( ,..., ) ,i i ini
y y y ′  1= ( ' ,..., ' )Ny y y ′  and 1= ( ,..., )Nb b b′ ′ ′ . The 

complete data density of ( , ),y b  for =1,2,..., ,i N  is then given by 

( , | , , ) = ( | , , ) ( | )p pf y b f y b f bβ σ β σΛ Λ 	                                (3)

 There are several attractive properties of (3). First, it takes within 
subject correlation into account while allowing each individual to 
have a unique correlation subject. Second, it provides us a degree of 
shrinkage of the subject-specific regression lines toward the population 
line. Finally, a nice property of the asymmetric laplace distributions is 
that it can be represented as a scale mixture of normal distributions 
[7-10].

Our interest lies in the likelihood function of y given , ,pβ σ  and Λ. 
To induce the correlation structure on the responses, we integrate out 
the random effects 

( | , , ) = ( , | , , ) ,p pNqR
f y f y b dbβ σ β σΛ Λ∫ 	                                 (4)

 

=1 =1

= ( ( | , , ) ( | ) ),
nN i

ij p i i iqR
i j

f y b f b dbβ σ Λ∏ ∏∫
1

/2 2

=1

(1 )= {[ ] (2 ) | |
N

n qi

i

p p π
σ

−−−
Λ∏

1

=1

1exp{ ( ) } }
2

ni
ij ij p ij i

p i i iqR
j

y x z b
b b db

β
ρ

σ
−′ ′− −

′× − − Λ∑∫ 	              (5)

where NqR  and qR  denote the Nq and q-dimensional Euclidean space, 
respectively.

Model (2.5) is similar to the 2l -penalized check function proposed 
by [6] which extends the random intercept model proposed by [4] to a 
very general case.

Mixture representation

This section introduces Gibbs sampler as procedure to estimate 
the parameters of interest. We adopt a full Bayesian approach to 
quantile regression for longitudinal data. Consider the linear mixed 
quantile functions of the response yij 

(1), where the error term ijε  has 
asymmetric Laplace distribution with the p th quantile equal to zero.

Recently, [7-10] proved that the asymmetric Laplace distribution 
can be viewed as a mixture of an exponential and a scaled normal 
distribution. This can be recognized in the following lemma.

Lemma Suppose ijξ  is a standard normal random variable, ijt  is 
a standard exponential random variable and ijε  is a random variable 
follows the asymmetric laplace distribution with density 

(1 )( ) = exp{ ( )},ij
p ij p

p pf
ε

ε ρ
σ σ
−

−

 Then we can represent ijε  as a location mixture of normal given 

by = ,d
ij ij ij ijt tε σθ σϕξ+ 	                                                                    (6)

where 
21 2 2= and = .

(1 ) (1 )
p

p p p p
θ ϕ−

− −

 We assume andij ijtξ  are mutually independent. This mixture 
representation allow us to express a quantile regression model as 
a normal regression model. In addition, it provides an easy way to 
construct Gibbs sampler as well as saving time over sampling random 

effect.

We assume that yij conditionally on ib  and ijt , for =1,.., ij n  and 
=1,...,i N , are independently distributed according to the normal with 

mean ij p ij i ijx z b tβ σθ′ ′+ +  and variance 2 2
ijtσ ϕ . From now on, it is 

more convenient with Gibbs sampler to work with =ij ijv tσ  to avoid 
the scale parameter σ  appearing in the conditional mean of  y

ij 
[10].

Power prior distributions and Gibbs sampler

In this section, we address a quantile dependent prior in Bayesian 
quantile regression for longitudinal data. Since [11]. Bayesian inference 
quantile regression has attracted a lot of attention in literature includ-
ing [4-7,9,10,12-21]. However, almost all these models set priors inde-
pendent of the values of quantiles, or the prior is the same for model-
ling different quantiles [27]. This approach may result in an inflexibility 
in quantile modelling. For example, a 95% quantile regression model 
should have different parameter values from the median quantile, and 
thus the priors used for modelling the quantiles should be different 
[22]. In this paper, we address a quantile dependent prior for quantile 
mixed model. Our idea is to set priors based on historical data. The 
power prior by [23] is one of several methods to incorporate historical 
data into the analysis of currnt data. We adapt this prior distribution to 
be used in quantile regression.

Suppose there exists one historical data from a previous study. 
Let 0ijy  be the jth measurement 0( =1,..., )ij n  for the ith subject 

0( =1,..., )i N , 0ijx′  and 0ijz′  are rows of the 0iX  and 0iZ  matrices, 

0iX  is 0 ( 1)in k× +  and 0iZ  is 0in q× , and let 0ib  is a vector of un-
known subject-specific effects for the previous study. Denoting by 

0 0 0 0 0= ( , , , )D N y X Z  a historical data with 0N  subjects measur-
ing the same response variable and covariates as the current study 

where ′ ′ ′ ′ ′0 01 0 0 0 1 0 0 01 00 0 0
= ( ' ,..., ' ) , = ( ,..., ) , = ( ,..., )N i i in Ni

y y y y y y X X X  and 0 =Z diag

01 0 0
( ,..., )NZ Z . For the previous study, we assume 0 01 0 0

= ( ' ,..., ' )Nv v v , 

0 0 1 0 0
= ( ,..., )i i in i

v v v  and each 0 ~ Exp( ).ijv σ  For quantile mixed mod-
el, we define a prior distribution for pβ  taking the form 

0 0 0( | , , , , )p D a vπ β σΛ

0 0
0

0 0 0 0 0
=1 =1

( [ ( | , , , )] ( | ) )
N n i

a
ij p i ij i i

Rq
i j

f y b v f b dbβ σ∝ Λ∏ ∏∫ 	                (7)

where 0
0 0 0 0 0 0=1 ( | , , , ) = ( | , , , )

n i
ij p i ij i p i ij f y b v f y b vβ σ β σΠ  be the density 

for the ith subject given a vector of unknown subject specific effects 0ib
, and 00 1a≤ ≤ . There are several attractive properties of (7). First, the 
prior distribution (7) is dependint on the quantile. Second, it provides 
an easy way to construct Gibbs sampler via the mixture representation. 
We assume a0 as known parameter. The power parameter a0 represents 
how much data from the previous study should be used in the current 
study. The main role of a0 is that a0 controls the influence of the data 
gathered from previous studies that is similar to the current study. 
Such control is important when the sample size of the current data 
is quite different from the sample size of historical data [23]. Chen et 
al. [24] choose a0 as random to allow the flexibility in expressing our 
uncertainty about the power parameter via a prior mean and variance. 
The prior mean and variance is determined by the investigator. Recently 
[25,26] recognized that using a0 as random is inappropriate.

Neuenschwander et al. [25] shown that elicitation of specific values 
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of a0 can be done via expert opinions, or via a meta-analytic. Neelon 
et al. [26] recommend choosing a0 based on expert opinion about the 
commensurability of current and historical studies. The authors assign 
the power parameter a range of fixed values as part of a sensitivity 
analysis. If, for example, investigators are concerned about the similarity 
between the studies, they may choose 0 0.50a ≤ . On the other hand, if 
there is strong belief about the similarity between the studies, they 
may choose 0 > 0.50a . They also recommended conducting reference 
analyses in which a0 is set to 0 as lower bound and 1 as upper pound. 
In this paper, following [26] we take a range of values for a0  between 0 
and 1 based on expert opinion about the commensurability of current 
and historical studies.

In this paper, we assume 1= qc I−Λ , where c  is precision 
parameter. The prior specification is completed by specifying priors for 

,cσ  and pβ . We specify an inverse gamma (IΓ) prior with parameter 
01 01( , )l s  for σ , a gamma ( )Γ  prior with parameter 02 02( , )l s  for c, 

and multivariate normal prior with parameter 0 0( , )Bµ  for pβ . Thus, 
we define a joint prior distribution taking the form 

0 0 0( , , , | , )p c v D aπ β σ  

0 0
0

0 0 0 0 0 0
=1 =1

( [ ( | , , , )] ( | ) ( | ))
N n i

a
ij p i ij i i ijqR

i j

f y b v f b db vβ σ π σ∝ Λ∏ ∏∫ 	

1 11 0101 02
0 0 0 02

1 1exp{ ( ) ( )}( ) exp{ } exp{ }
2

l l
p p

s
B c csβ µ β µ

σ σ
+ −−′× − − − − × − 	                                   

                                                                                                                 (8)

We see that (8) will not have closed form in general because it 
depends on the prior that we choose. The joint posterior distribution of 

, , ,p c vβ σ  and 0v  is given by 

0 0 0( , , , , | , , )pf c v v D D aβ σ

=1 =1

( ( | , , , ) ( | ) ( | ))
nN i

ij p i ij i i ij
i j

f y b v f b db vβ σ π σ∝ Λ∏ ∏∫
0 0 0( , , , | , ),p c v D aπ β σ× 	                                                                     (9)

where = ( , , , )D N y X Z  represent the current study and  
, 1= ( ,..., ),i i ini
v v v  and each ~ Exp( ).ijv σ

Incorporating historical information into the analysis of new 
information through a prior distribution provides a natural framework 
for updating information across studies [26]. The most common 
way of combining the historical information into the analysis of 
new information is through hierarchical modeling. There are times, 
however, when investigators want to control the influence of the 
historical information on the new information. In this paper, we use 
the power prior distribution, because it introduces a power parameter 
that explicitly controls the amount of weight assigned to the historical 
data. Such control is important when the sample size of the current 
data is quite different from the sample size of the historical data or 
where there is heterogeneity between two studies [23]. In addition, this 
prior has an attractive property in Bayesian quantile regression as it is 
dependent upon the quantile level [27].

Gibbs sampler by [28] is very popular method for constructing 
a Markov chain in Bayesian inference, and it is used to generate 
a sequence of samples from the full conditional distribution. We 
use Gibbs sampling in Bayesian quantile regression to estimate the 
parameters of interest from our mixture representation. Thus, the fully 

conditional posterior distributions of all unknown parameters are 
needed and each of these distributions can be obtained by regarding 
all other parameters in (9) as known. The efficient Gibbs sampler works 
as follows: 

1. Fix the value of p and a0  so that the pth quantile and the weight of 
the historical data are modelled.

2. Simulate the scale parameter σ σ: | . ~  Inverse Gamma 1 1( , )d f
where 

0

1 01 0 0
=1 =1

= ( ),
NN

i i
i i

d l n a n+ +∑ ∑ 	                                                   (10)

 and 

1 01
=1 =1

= ( )
nN i

p ij ij p ij i
i j

f s y x z bρ β′ ′+ − −∑∑
0 0

0 0 0 0 0
=1 =1

( ).
N n i

p ij ij p ij i
i j

a y x z bρ β′ ′+ − −∑∑
3. Simulate | . ~ijv  Generalized Inverse Gaussian 

2 2
1( , , ), =1,..., , =1,...,
2 id f i N j n , where 

2 2

2 22 2

( ) 2= and = ,ij ij p ij iy x z b
d f

β θ
σσϕ σϕ

′ ′− −
+ 	               (11)

where the probability density function of Generalized Inverse Gaussian  
(r, f2, d2) is given by 

2

1 2 1 22
2 2 2 2

2 2

2 2

( )
1( | , , ) = exp{ ( )},

2 ( ) 2
> 0, < < , , 0,

r

r

r

d
f

f x r f d x f x d x
C f d

x r f d

− −− +

−∞ ∞ ≥
 and (.)rC  is a modified Bessel function of the third kind [29]

4. Simulate 0 | . ~ijv  Generalized Inverse Gaussian
0

3 3 0 0
2

( , , ), =1,..., , =1,...,
2 i
a

d f i N j n
− ,

where 

	
2 2

0 0 0 0 0 0
3 32 2

( ) 2= and = .ij ij p ij ia y x z b a
d f

β θ
σσϕ σϕ

′ ′− −
+

 5. Simulate the fixed effect parameters | . ~ ( , )p p p
N β ββ µ Σ , where 

2
=1 =1

( )
= {

nN i
ij ij ij i ij

p p
iji j

x y z b v

v
β β

θ
µ

σϕ

′− −
Σ ∑∑

0 0
0 0 0 0 0 1

0 0 02
0=1 =1

( )
},

N n i
ij ij ij i ij

iji j

x y z b v
a B

v

θ
µ

σϕ
−′− −

+ +∑∑
0 0

0 01 1
0 02 2

0=1 =1 =1 =1

= .
n N nN i i

ij ij ij ij
p

ij iji j i j

x x x x
a B

v v
β

σϕ σϕ
− −′ ′

Σ + +∑∑ ∑∑
 6. Simulate the random effect parameters | . ~ ( , )b bb N µ Σ , where 

β θ
µ

σϕ

′− −
Σ ∑∑ 2

=1 =1

( )
= { },

nN i
ij ij ij p ij

b b
i j ij

z y x v

v  

σϕ
− ′

Σ +∑∑
1

2
=1 =1

and = .
nN i

ij ij
b

i j ij

z z
cI

v
 7. Simulate the random effect parameters 0 0 0

|. ~ ( , )b bb N µ Σ , 
where 
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0 0
0 0 0 0

0 20 0
0=1 =1

( )
= { }, and

N n i
ij ij ij p ij

b b
iji j

z y x v
a

v

β θ
µ

σϕ

′− −
Σ ∑∑

0 0
0 01

0 20
0=1 =1

= .
N n i

ij ij
b

iji j

z z
a cI

vσϕ
− ′

Σ +∑∑
8. Simulate the random effect precision parameter 

0 0 0
02 02

'
| . ~ Gamma( , ).

2 2
q q b b b b

c l s
′+ +

+ + 	                             (12)

Some extensions

Using the power prior distributions depend on the availability of the 
historical data. In the previous part we elicited power prior distribution 
from one historical data and this prior can be easily generalized to 
multiple historical data. To generalize the power prior (8) to multiple 
historical data we assume there are M historical studies denoted by 

0 01 0= ( ,..., )MD D D  where 0 0 0 0 0= ( , , , )k k k k kD N y X Z  represent the 
historical data based on the kth study, =1,...,k M . We define 0ka  and 

0ijkv  to be the fixed power parameter and an exponential variable, 
respectively, for the k th study, 0 01 0= ( ,..., )Ma a a . Hence the prior can 
be generalized as 

2
0 0 0( , , , , | , )p b v D aπ β σ σ ρ

	 0 0
0

0 0 0 0 0 0
=1 =1 =1

[ ( | , , , )] ( | ) ( | )
N nM k ik

a k
ijk p ik ijk ik ik ijk

k i j

f y b v f b db vβ σ π σ
 
 ∝ Λ  
 

∏ ∏ ∏∫
11 0101

0 0 0
1 1exp{ ( ) ( )}( ) exp{ }
2

l
p p

s
b B bβ β

σ σ
+−′× − − − −

102
02exp{ }

l
c cs

−
× − 	                                                                   (13)

where 0ijky  and 0ikb  denote the jth measurement on the ith
 subject and 

vector of unknown subject specific random effects for the kth study. On 
the other hand, sometimes the historical data is not available and in this 
case we put a0, the historical data is excluded altogether, and the prior 
(8) reduces to the initial prior. Finally, in case the historical data is not 
available and the current data is independent, the Bayesian quantile 
estimates by using prior distribution [8] are closed to [9] estimates, and 
there is code in R (MCMCquantreg) to obtain these estimates.

Simulation study

In this section, we compare the performance of the proposed 
Bayesian inference and EM algorithm used by [4] and Bayesian MCMC 
method proposed by [6]. We use the simulation random intercept 
model of [4]. Thus, a data set of N=100  subjects in which each subject 
had 23 scheduled longitudinal measurements was generated from the 
model. 

=1 2 , =1,...,23, =1,...,100,ij ij i ijy x b j iε+ + + 	            (14)

where = , =1,2,...,23ijx j j , is constant throughout the simulation study 
and =1q . We generated the random effects from the standard normal 
distribution. For the historical data we use the same model with  N0 
=25 subjects, 0 0= = 23in n , 00( ) = 2pβ  and 01( ) = 2.5pβ , where 00( )pβ  
and 01( )pβ  represent the intercept and the slope for the historical 
study. Like Geraci and Bottai (2007), we simulated the error term 
from three different distributions: the standard normal, the Student’s 
t distribution with three degrees of freedom, and the chi-square with 

3 degrees of freedom. We use initial prior N(0,106) for each regression 
parameters, 3 3(10 ,10 )− −Γ  for the scale and precision parameter. We 
estimate the parameters of interest by using our Gibbs sampler and we 
simulated 1000 replications for each distribution for the error term. 
We run our Gibbs sampler for 5000 iterations with an initial burn-in 
of 1000 iterations. We conduct sensitive analyses with respect to three 
different choices for a0. We assumed a range of values for a0 (a0= 0, 
0.50 and 0.95). We compared the estimates of parameters in terms of 
relative bias averaged and relative efficiency by different algorithm: 
Gibbs sampler (GS), EM algorithm and Bayesian MCMC. The relative 
bias averaged over the simulations and the relative efficiency for EM 
and Bayesian MCMC were calculated by, respectively, 

1000

=1

ˆ1ˆbias( ) =
1000 | |

r
pm pm

pm
pmr

β β
β

β

−
∑
2

2
=00

ˆ( )ˆeff ( ) = ,ˆ( )
EM pm

EM pm
GS pma

S

S

β
β

β

2

2
=00

ˆ( )ˆeff ( ) = .ˆ( )
MCMC pm

MCMC pm
GS pma

S

S

β
β

β

where ˆ , = 0,1r
pm mβ  is the estimate quantile for the rth replication 

and pmβ  is the true value. 
10002 2

=1

1ˆ ˆ( ) = ( )
1000

r
pm pm pmr

S β β β−∑  and 
1000

=1

1 ˆ=
1000

r
pm pmr

β β∑ . Furthermore, we conduct sensitive analysis 

by comparing the Gibbs sampler where a0 = 0 with the Gibbs sampler 
where a0 = 0.50

 
 and a0 = 0.95

The estimates of the relative bias averaged and relative efficiency 
for different error term distributions and quantile models are reported 
in Table 1.

Clearly, the relative biases due to the three approaches are more 
or less the same, while the GS yields positive biases more than the EM 
and Bayesian MCMC which have sometimes negative biases. However, 
in general, the absolute bias in our algorithm is very small compared 
with the absolute bias by EM and Bayesian MCMC. In addition, the 
relative efficiency shows that our algorithm is more efficient than EM 
and Bayesian MCMC. Moreover, we see that as the weight of historical 
data increases the bais becomes smaller and the efficiency increases too.

Table 2 summaries the posterior means for β0 and β1  where the 
error is normal at two different quantiles, namely 25%  and 50% with 
respect to five different choices for a0. We assumed a range of values 
for a0  (a0 = 0, 0.25, 0.50, 0.75 and 1). We see that as the weights for 
the historical data increases the posterior means for (0.25)β  and (0.50)β  
increase and the 95% credible intervals get narrower.

Analysis age-related macular degeneration data

We use quantile regression methods to analyze the Age-Related 
Macular Degeneration data (ARMD) previously analyzed by [30]. 
There are 203 patients were randomly selected from three cities 
(centers) in the United Kingdom to measure the treatment effects of 
teletherapy on the loss of vision associated with the progress of age-
related macular degeneration. The sample consists of 70 patients from 
London, 84 from Belfast and 49 from Southampton. Of which, 101 
patients were randomly assigned to a treatment medication group and 
102 to a control group.
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 Model  p  bias β0  Efficiency β0  Bias  β1 Eefficiency  β1

 ε~N(0,1) 
GS a0=0.00
GS a0=0.50
GS a0=0.95
MCMC
EM

0.25
0.25
0.25
0.25
0.25

0.00027 
 0.00013 
 0.00011 
 0.00517 
 0.00240 

1.00000 
 0.87132 
 0.82339 
 6.55291 
 4.93114 

0.00009
 0.00007
 0.00002
 0.00053
 0.00000

1.00000 
0.73221 
0.71291 
4.81135 
3.19351 

GS a0=0.00
GS a0=0.50
GS a0=0.95
MCMC
EM

0.50
0.50
0.50
0.50
0.50

 0.00006 
 0.00005 
 0.00002 
 0.00736 
 0.00820 

 1.00000 
 0.96027 
 0.90345 
 4.09938 
 3.99210 

0.00012 
0.00010 
0.00013 

 -0.00024
 0.00000

 1.00000
 0.87130
 0.65734
 3.89316 
 2.31730 

ε~t3
GS a0=0.00
GS a0=0.50
GS a0=0.95
MCMC
EM

0.25
0.25
0.25
0.25
0.25

0.00008 
 0.00003 
 0.00005 
 0.27739
 -0.13920

1.00000 
 0.91247 
 0.91136 
 3.56667 
 3.64298 

0.00017
0.00011 
0.00008 

 -0.00195 
 0.00010 

1.00000
 0.82553
 0.79735
 2.95862 
 2.76704 

GS a0=0.00
GS a0=0.50
GS a0=0.95
MCMC
EM

0.50
0.50
0.50
0.50
0.50

 0.00012
 0.00002 
 0.00006 
 0.00391
 0.00430

 1.00000 
 0.95731 
 0.94618 
 1.20034 
 3.54281 

 0.00007 
 0.00002 
 0.00003 
 0.00029 
 0.00010 

 1.00000
 0.91337
 0.86935
 1.33942
 2.70529

ε~x3
GS a0=0.00
GS a0=0.50
GS a0=0.95
MCMC
EM

0.25
0.25
0.25
0.25
0.25

 0.00000 
 0.00005 
 0.00008 
 -0.00771 
 0.02680 

 1.00000 
 0.99589 
 0.92721 
 2.24711 
 4.59660 

0.00006
 0.00009
 0.00004
 0.00032
 -0.00010

1.00000 
0.88395 
0.83557 
 2.41503 
 3.99103 

GS a0=0.00
GS a0=0.50
GS a0=0.95
MCMC
EM

0.50
0.50
0.50
0.50
0.50

 0.00013 
 0.00029 
 0.00018 
 0.00835
 0.01920

 1.00000 
 0.92774 
 0.89447 
 2.31421 
 3.75119 

0.00000 
 0.00007
 0.00002
 0.00017
 0.00000

1.00000 
0.73221 
0.63291 
 2.53098 
 2.15328 

Table 1: Estimated bias and relative efficiency for different error distribution by using Gibbs sampler (GS), Bayesian MCMC, and EM algorithm.

a0 P mean β0 (95%CrI) mean β1 (95% CrI) 

0.00
0.25
0.50
0.75
1.00

0.25 
0.25 
0.25 
0.25 
0.25

 0.3361 (0.2246, 0.4721)
 0.5895 (0.4631, 0.7007)
 0.6478 (0.5301, 0.7642)
 0.8391 (0.7258, 0.9435)
 0.8660 (0.7568, 0.9544)

 2.0000 (1.9763, 2.0033)
 2.0010 (1.9968, 2.0137)
 2.0032 (1.9994, 2.0161)
 2.0073 (1.9930, 2.0093)
 2.0120 (1.9939, 2.0101)

0.00
0.25
0.50
0.75
1.00

0.50
0.50
0.50
0.50
0.50

 1.1035 (0.8732, 1.3551) 
 1.5101 (1.2353, 1.6460) 
 1.5657 (1.3439, 1.7164)
 1.6722 (1.6347, 1.7409)
 1.7371 (1.6944, 1.7749)

 1.9987 (1.8973, 2.1814) 
 2.0880 (1.9391, 2.2060)
 2.1290 (1.9399, 2.2061) 
 2.1421 (1.9677, 2.2171) 
 2.1558 (1.9934, 2.2276)

Table 2: Posterior means and 95% credible intervals (CrI) for β0 and  β1 for the simulated data.

The response variable, the change in Distance Visual Acuity (DVA), 
of each patients was measured four times over a two year period, on 
the 3th, 6th, 12th and 24th months [30]. The data set contains 84 male 
and 115 female. For the purposes of illustration, we use the female as 
the historical data, from which we will construct our prior, and we use 
the data for the male as the current data. Figure 1 displays the change 
in distance visual acuity for each center, by studying visit and group 
(treatment group or control group) for the male and female. Since 
the plots indicated extensive between groups heterogeneity, both at 
baseline and over visit, we used the linear mixed quantile model (1) 
to show how the distance visual acuity is affected by five covariates 
and an intercept term: the actual time of the visits of each patient on 
the 3th, 6th, 12th and 24th months, age of the patient, centre (Belfast, 

Southampton, and London), treatment (treatment group or control 
group) and the visit × group interaction (the readers may refer to [30] 
for some details about this experiment). We take 2~ (0, )ib N I  is a 2 1×  
vector comprising specific intercept and slope parameters and = (1,ijz  
visit ) .ij ′  We proposed a similar regression model for the historical 
study (female). We use initial prior 6(0,10 )N  for each regression 
parameters and 3 3(10 ,10 )− −Γ  for the scale and precision parameter. 
Under specific quantile level, we estimate the power parameter that 
calibrate the power prior distribution in quantile regression to a 
corresponding hierarchical model. We obtain 0ˆ = 0.23, 0.31a  and 
0.21  for = 0.25, 0.50p  and 0.75,  respectively. Table 3 summaries the 
relative bias for Bayesian MCMC and Gibbs sampler with several values 
of 0a , including a0  = 0â . In addition, Table 3 summaries the relative 
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Figure 1: The change in distance visual acuity for each center, by study visit 
and group, where the solid curve is for London, the dotted curve is for Belfast 
and dashed curve is for Southampton. The figure depict heterogeneity in both 
intercepts and slopes, justifying the use of the proposed random effects model.

 

efficiency comparison between Bayesian MCMC and our Gibbs sampler.

Again, the relative biases due to both approaches are more or 
less the same, while the GS yields more positive biases than Bayesian 
MCMC which sometimes gives negative biases. Most noticeably, 
when = 0.50p  the absolute bias generated by GS for all parameters 
is less than the absolute bias generated by Bayesian MCMC and the 
gap in terms of mean squared error between GS and Bayesian MCMC 

decreased compared with first and third quartile. When estimating the 
first quartile, the loss of efficiency of the Bayesian MCMC, with respect 
to GS, was 118% for the intercept and more than this value for the 
slopes. It can be argued that the performance of Gibbs sampler is better 
than Bayesian MCMC may be due to the fact that Bayesian MCMC 
assumed improper prior distribution (uniform) for all regression and 
scale parameters. This reason becomes clear with informative prior, 
we see that as the weight of historical data increases the bias becomes 
smaller and the efficiency increases too.

Discussion

In this paper, we have introduced quantile regression for 
longitudinal data using the asymmetric Laplace distribution from a 
Bayesian point of view. The methods for eliciting prior distributions 
can be used either with no prior data or with complete prior data. The 
methods have been outlined for unknown parameters. We compared 
our Gibbs sampler with Bayesian MCMC and EM algorithm by using 
the relative bias averaged and the estimated relative efficiency. We have 
found that the bias in our algorithm is very small compare with the 
bias by Bayesian MCMC and EM algorithm. In addition, the relative 
efficiency showed that our algorithm is more efficiency than Bayesian 
MCMC and EM algorithm. Finally, we have showed that the behaviour 
of the power prior is clearly with different weights of the power 
parameter. Incorporating historical information gathered from similar 
previous studies into the analysis of current study through a prior 
distribution provides a natural framework for updating information 
to yield better results. In particular, the power prior can be used to 
incorporate the historical data for updating information across studies.

 Variable p Parameter Bias
MCMC

efficiency 
MCMC 

 bias 
GS a0=0.0

Efficiency 
GS a0=0.0

Bias
GS a0=â

Efficiency 
GS a0=â

Bias 
GS a0=0.50

Efficiency 
GS a0=0.50

Bias  
GS a0=0.95

Efficiency 
GS a0=0.95

 Intercept 0.25 β0  0.0018 2.1771 0.0015 0.9713 0.0011 0.9548 0.0003  0.9263 0.0007  0.7511 

 Time 0.25  β1 0.0015 4.2531 0.0019 0.9910 0.0015 0.9625 0.0013 0.9226 0.0004  0.8162 

Age 0.25  β2 0.0052 3.6621 0.0008 1.0007 0.0013 0.9162 0.0003 0.8541 0.0000  0.7381 

Center 0.25 β3  0.0031 4.1954 0.0037 0.9568 0.0025  0.9417 0.0011  0.9771 0.0007  0.8572 

Treat 0.25 β4 0.0028 2.3718 0.0021 0.9936 0.0017 0.8611 0.0009  0.8819 0.0003  0.8338 

Visit × 
Group 0.25 β 5 -0.0033 3.6931 0.0013 1.0125 0.0009 0.9352 0.0008  0.8926 0.0011  0.8811 

Intercept 0.50 β0 0.0082 1.6416 0.0005 1.0173 0.0003 0.9812 0.0001  0.8115 0.0004  0.7739 

 Time 0.50  β1 0.0071 1.4358 0.0012 0.9972 0.0012  0.8714 0.0009  0.8909 0.0000  0.8162 

Age 0.50  β2 -0.0018 1.8871 0.0007 0.9615 0.0012 0.8759 0.0000  0.7791 0.0005 0.7150 

Center 0.50 β3 -0.0021 2.2701 0.0009 0.9926 0.0004 0.9157 0.0008  0.8183 0.0001  0.7962 

Treat 0.50 β4  0.0033 1.3277 0.0013 0.9732 0.0010  0.9456 0.0010 0.8317 0.0006  0.8110 

Visit × 
Group 0.50 β 5 -0.0041 2.7140 0.0011 1.1704 0.0011  0.9627 0.0007  0.9122 0.0003  0.7155 

Intercept 0.75 β0 0.0015 3.1147 0.0009 1.0063 0.0011 0.8931 0.0004 0.8102 0.0009  0.7107 

 Time 0.75  β1 0.0027 3.8031 0.0016  1.126 0.0010 0.8825 0.0010  0.8339 0.0006  0.7263 

Age 0.75  β2 0.0017 2.5731 0.0021 1.0286 0.0023  0.9345 0.0006  0.8513 0.0015  0.6610 

Center 0.75 β3 -0.0019 5.1703 0.0024 1.1351 0.0019 0.9132 0.0017  0.7959 0.0008  0.7289 

Treat 0.75 β4 -0.0014 2.3319 0.0009 0.9938 0.0012  0.8627 0.0005  0.8208 0.0002 0.7338 

Visit × 
Group 0.75 β 5 0.0026 3.4265 0.0014 1.0346 0.0016 0.8236 0.0009 0.7107 0.0005  0.6619 

Table 3: Estimated bias and relative efficiency by using Gibbs sampler GS and Bayesian MCMC for the real data.
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