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Abstract. A quasi-static mixed boundary value problem of elastic damage mechanics for a contin-
uously inhomogeneous body is considered. Using the two-operator Green-Betti formula and the fun-
damental solution of an auxiliary homogeneous linear elasticity with frozen initial, secant or tangent
elastic coefficients, a boundary-domain integro-differential formulation of the elasto-plastic problem
with respect to the displacement rates and their gradients is derived. Using a cut-off function ap-
proach, the corresponding localized parametrix of the auxiliary problem is constructed to reduce the
problem to a nonlinear localized boundary-domain integro-differential equation. Algorithms of mesh-
based and mesh-less discretizations are presented resulting in sparsely populated systems of nonlinear
algebraic equations for the displacement increments.

INTRODUCTION

Application of the Boundary Integral Equation (BIE) method (boundary element method) to linear
elasticity problems for homogeneous bodies has been intensively developed over recent decades, see
e.g. [1–4]. Using fundamental solutions of auxiliary linear elastic problems (with the initial elastic
coefficients), the elastic damage mechanics problems for homogeneous material also can be reduced
to non-linear boundary-domain integral equations with hyper-singular integrals, see [5]. However,
the fundamental solution is usually highly non-local, which leads after discretization to a system of
algebraic equations with a dense matrix. Moreover, the fundamental solution is generally not available
in an explicit form if the coefficients of the auxiliary problem vary in space, i.e. if the material is
inhomogeneous (functionally graded).

To overcome these effects, some parametrices (Levi’s functions) localized by cut-off function mul-
tiplication were constructed and implemented in [6] to a linear scalar (heat transfer) equation in
inhomogeneous medium. This reduced the linear Boundary Value Problem (BVP) with variable co-
efficient to a linear Localized Boundary-Domain Integral or Integro-Differential Equation (LBDIE or
LBDIDE), which leads after a mesh-based or mesh-less discretization to a linear algebraic system
with a sparse matrix. Some numerical implementations of the linear LBDIE were presented in [7].
Somewhat different linear LBDI(D)E formulations and numerical realizations were presented in [8,9].

Generalizing this approach to non-linear problems, the mixed BVP for a second order scalar quasi-
linear elliptic PDE with the variable coefficient dependent on the unknown solution was reduced to
quasi-linear LBDIDEs in [10, 11], while some quasi-linear two-operator LBDIDEs were obtained for
the case when the variable coefficient depends also on the BVP solution gradient in [12], [11]. The
approach was extended to the mixed BVPs of physically nonlinear elasticity (with small displacement
gradients) in [13] and for incremental elasto-plasticity in [14], both for continuously inhomogeneous
body.

Note that another approach based on local parametrices that are Green functions for an auxiliary
problem on local spherical domains was used in [15–18] reducing some linear and non-linear prob-
lems for a body with a special inhomogeneity to local boundary-domain integral equations solved
numerically by the mesh-less methods.

In this paper, we further extend the localization approach of [6, 10–14] to the mixed BVP of
elastic damage mechanics in the incremental form with small displacement gradients for continuously
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inhomogeneous (functionally graded) materials. First, we reduce the BVP to a direct two-operator
nonlinear BDIDE of the second kind for the displacement rates (or increments). The equation includes
at most the first derivatives of the unknown solution, weakly singular integrals over the domain and
at most Cauchy-type singular integrals over the boundary. Then we present a localized version of the
BDIDE and describe its mesh-based and mesh-less discretizations.

ELEMENTS OF ELASTIC DAMAGE MECHANICS

Let u(x) = ui(x) be the displacement vector in IRn, where n = 2 or n = 3,

εij(x, t) = [ui,j(x, t) + uj,i(x, t)]/2 (1)

be the small strain tensor, σij(x) be the stress tensor. The case n = 3 will describe the 3D, an the case
n = 2 the 2D (plane strain or plain stress) elastic damage mechanics problems. All the indices should
vary from 1 to n and summation over repeated indices is assumed from 1 to n as well unless stated
otherwise. The comma in front of a superscript means derivative with respect to the corresponding
coordinate.

Constitutive equations of the elastic damage mechanics can be written in the form (see e.g. [19]),

σij(x, t) = a′ijkl({ε(x)}(t), x)εkl(x, t), (2)

where the secant elastic stiffness tensor a′ijkl({ε(x)}(t), x) at a point x decreases due to the strain
tensor history {εqp(x, τ)}t

τ=−∞ at that point during all preceding time instants. If the loading (or
damage) is absent at instants τ ≤ 0, then a′ijkl(x, 0) = a0

ijkl(x), where the stiffness tensor of the virgin
inhomogeneous material (before loading) at a point x, a0

ijkl(x), is a known function of the coordinates
x, such that

a0
ijkl(x) = a0

jikl(x) = a0
ijlk(x) = a0

klij(x) (3)

εkla
0
ijkl(x)εkl ≥ 0 ∀εkl. (4)

Note that in the plane stress state, the tensors a′ijkl and a0
ijkl in (2) and further on are to be replaced

by corresponding combinations of their components.
Let the stiffness evolution due to damage be presented as follows,

ȧ′ijkl({ε(x)}(t), x) = −âijkl({ε(x)}(t), ε(x, t), x)H[gmsε̇ms(x, t)]gpq ε̇pq(x, t), (5)

gpq({ε(x)}(t), x) :=
∂F ({ε(x)}(t), e, x)

∂epq

∣∣∣∣
e=ε(x,t)

where the over dot means derivative with respect to time; âijkl({ε}(t), ε(t), x) and F ({ε}(t), ε(t), x)
are known functionals of the strain history {ε}(t) = {ε(τ)}t

τ=−∞, and functions of the currant strain
ε and the material point x; such that

âijkl = âjikl = âijlk = âklij ; (6)

F ({ε}(t), ε(t), x) = 1 is the currant damage surface in the strain space εij , and âijkl({ε}(t), ε(t), x) = 0
if F ({ε}(t), ε(t), x) < 1, that is if ε is inside the currant damage surface (e.g. during initial loading

stage or unloading); the multiplier with the Heaviside function, H[z] :=

{
1, z ≥ 0
0, z < 0

, is employed in

(5) to ensure that the damage increment is zero during unloading strain increment. Note that (5)
comprises damage rules, which may be not associated with the damage surface, as well as the strain
tensor decomposition on the positive and negative parts, c.f. [19, 20].

We will consider here the time-invariant damage models, where the damage depends not on the
physical time t but on the deformation history as a sequence of events. Thus the physical time t
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can be replaced by any monotonous parameter, and the rates by the (infinitesimal) increments, e.g.
Duk = u̇kDt.

Differentiating (2) and taking into account (5), we arrive at the incremental form of the Hook law
of the elastic damage mechanics,

σ̇ij(x, t) = aijkl({ε(x)}(t),∇u̇(x, t), x)u̇k,l(x, t), (7)

where

aijkl({ε(x)}(t),∇u̇(x, t), x) := a′ijkl({ε(x)}(t), x)−
âijpq({ε(x)}(t), ε(x, t), x)εpq(x, t)H[gms({ε(x)}(t), x)u̇m,s(x)]gkl({ε(x)}(t), x), (8)

is the tangent stiffness tensor discontinuous in ∇u̇ due to the Heaviside function, and coinciding with
the secant stiffness tensor for non-damaging strain increments. From (3) and (6), we have that a′ijkl

and aijkl have the similar symmetry properties.
The parameter t will be sometimes omitted for brevity further on.
Substituting (7) in the time derivatives of the equilibrium equation,

σ̇ij,j = ḟi, (9)

where fi(x, t) is a known volume force vector (taken with the opposite sign). Employing (7) also
in in the traction boundary conditions, we arrive at the following mixed boundary–value problem of
incremental elastic damage mechanics for a bounded inhomogeneous body Ω ∈ IRn,

[Lik({ε}, u̇)u̇k](x) :=
∂

∂xj

[
aijkl({ε(x)},∇u̇(x), x)

∂u̇k(x)
∂xl

]
= ḟi(x), x ∈ Ω, (10)

u̇i(x) = ǔi(x), x ∈ ∂DΩ, (11)

[Tik({ε}, u̇)u̇k](x) := aijkl({ε(x)},∇u̇(x), x)
∂u̇k(x)

∂xl
nj(x) = ťi(x), x ∈ ∂NΩ. (12)

Here ni(x) is an outward normal vector to the boundary ∂Ω; [T ({ε}, u̇)u̇](x) = [Tik({ε}, u̇)u̇k](x) is
the traction rate vector at a boundary point x, while T ({ε}, u̇) = Tik({ε}, u̇) is the nonlinear traction
differential operator; ǔ(x, t) and ť(x, t) are known displacement rate and traction rate vectors on the
parts ∂DΩ and ∂NΩ of the boundary, respectively. The BVP of elastic damage mechanics (10)-(12)
does not include time explicitly and one may replace there the rates u̇k by the differentials Duk = u̇kDt
and ḟi with dfi.

For brevity, we will often drop also the argument {ε} of the functionals gkl({ε(x)}, x),
aijkl({ε(x)},∇u̇(x), x) and operators L({ε}, u̇), T ({ε}, u̇) in the equations below but their dependence
on the process history and the currant strain will be meant nevertheless.

TWO-OPERATOR GREEN-BETTI IDENTITIES AND
BDIDE OF INCREMENTAL ELASTIC DAMAGE MECHANICS

Let us fix a point y and consider the following auxiliary differential operators of linear elasticity with
some coefficients a∗ijkl(y) independent of x,

[L(y)∗
ik vk](x) :=

∂

∂xj

[
a∗ijkl(y)

∂vk(x)
∂xl

]
, [T (y)∗

ik vk](x) := a∗ijkl(y)
∂vk(x)

∂xl
nj(x).

Under the coefficients a∗ijkl(y) frozen at a point y, one can understand either the initial elastic moduli
a0

ijkl(y) independent of the strain-stress history and the current strain rate, or the current secant
moduli a′ijkl(y, t) dependent on the strain-stress history but independent of the current strain rate,
or the current tangent moduli aijkl(∇u̇(y), y, t) dependent on both the strain-stress history and the
current strain rate. The same character of dependence on (or independence of) the strain-stress
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history and the current strain rate will then remain for all asterisk variables and operators below. The
particular choice of a∗ijkl(y) leads to three different versions of the integro-differential equations.

Integrating by parts, we have the first Green identities for the differential operators
[L(u̇)u̇](x) = [Lik(u̇)u̇k](x) and [L(y)∗v](x) = [L(y)∗

ik vk](x),
∫

Ω
vi(x)[Lik(u̇)u̇k](x)dΩ(x) =

∫

∂Ω
vi(x)[Tik(u̇)u̇k](x)dΓ(x)−

∫

Ω

∂vi(x)
∂xj

aijkl(∇u̇(x), x)
∂u̇k(x)

∂xl
dΩ(x),

∫

Ω
u̇i(x)[L(y)∗

ik vk](x)dΩ(x) =
∫

∂Ω
u̇i(x)[T (y)∗

ik vk](x)dΓ(x)−
∫

Ω

∂u̇i(x)
∂xj

a∗ijkl(y)
∂vk(x)

∂xl
dΩ(x),

where u̇(x) and v(x) are arbitrary vector-functions for that the operators and integrals in the above ex-
pressions have sense. Subtracting the identities from each other and taking into account the symmetry
of the tensor aijkl, we derive the two-operator second Green-Betti identity,

∫

Ω

{
u̇(x)[L(y)∗v](x)− v(x)[L(u̇)u̇](x)

}
dΩ(x) =

∫

∂Ω

{
u̇(x)[T (y)∗v](x)− v(x)[T (u̇)u̇](x)

}
dΓ(x) +

∫

Ω
[∇v(x)]ã(∇u̇(x);x, y)∇u̇(x)dΩ(x), (13)

where

ã(∇u̇; x, y) = ãijkl(∇u̇(x),∇u̇(y), x, y) := aijkl(∇u̇(x), x)− a∗ijkl(∇u̇(y), y) = a′ijkl({ε(x)}, x)−
âijpq({ε(x)}, ε(x), x)εpq(x)H[gms({ε(x)}, x)u̇m,s(x)]gkl({ε(x)}, x)− a∗ijkl({ε(y)},∇u̇(y), y).

If L(u̇) = L(y)∗, i.e. L(u̇) is a linear homogeneous elasticity operator without damage, then the last
domain integral disappears in eq (13), which thus degenerates into the classical second Green-Betti
identity.

For a fixed y, let F (y)∗(x, y) = F
(y)∗
km (x, y) be a fundamental solution for the linear differential

operator [L(y)∗
ik vk](x) with constant coefficients, i.e.,

[L(y)∗
ik F

(y)∗
km (·, y)](x) := a∗ijkl(y)

∂2F
(y)∗
km (x, y)

∂xj∂xl
= δimδ(x− y),

where δim is the Kronecker symbol and δ(x− y) is the Dirac delta-function.
If a∗ijkl(x) = a0

ijkl(x) and the material is isotropic, or either a∗ijkl(x) = a′ijkl(x) or a∗ijkl(x) = aijkl(x)
and the material is isotropic with isotropic damage, then

a∗ijkl(y) = λ∗(y)δijδkl + µ∗(y)(δikδjl + δilδjk), µ∗(y) > C > 0, λ∗(y) +
2
3
µ∗(y) > C > 0. (14)

In this case, F
(y)∗
im (x, y) is the Kelvin-Somigliana solution,

F
(y)∗
im (x, y) =

−1
4π

{−δim ln r − r,ir,m

λ∗(y) + 2µ∗(y)
+
−δim ln r + r,ir,m

µ∗(y)

}
(15)

for the plane strain state; for the plane stress, λ∗ in (14) and (15) should be replaced by 2λ∗µ∗/(λ∗ +
2µ∗). In the 3D case,

F
(y)∗
im (x, y) =

−1
8πr

{
δim − r,ir,m

λ∗(y) + 2µ∗(y)
+

δim + r,ir,m

µ∗(y)

}
(16)

Here r :=
√

(xi − yi)(xi − yi), r,i := ∂r/∂xi = (xi−yi)/r. For anisotropic material or for a∗ijkl(x) =
a′ijkl(x) and anisotropic damage, the fundamental solution can be written down in an analytical form
for arbitrary anisotropy in the 2D case and for some particular anisotropy in the 3D case; otherwise,
it can be expressed as a linear integral over a circle [21–23].
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Assuming u̇(x) is a solution of nonlinear system (10) and using the fundamental solution F (y)∗(x, y)
as v(x) in the Green identity (13), we obtain, similar to the linear homogeneous elasticity (see e.g. [1–4])
or partial differential equations with variable coefficients [24], the following non-linear two-operator
third Green identity,

c(y)u̇(y)−
∫

∂Ω
u̇(x)[T (y)∗F (y)∗(·, y)](x)dΓ(x) +

∫

∂Ω
F (y)∗(x, y)[T (u̇)u̇](x)dΓ(x)−

∫

Ω
[∇(x)F (y)∗(x, y)]ã(∇u̇; x, y)∇u̇(x)dΩ(x) =

∫

Ω
F (y)∗(x, y)f(x)dΩ(x), (17)

where cim(y) = δim if y ∈ Ω; cim(y) = 0 if y /∈ Ω̄; cim(y) = 1
2δim if y is a smooth point of the boundary

∂Ω; and cim(y) = cim(a(y), α(y)) is a function of the anisotropy tensor a(y) and the interior space
angle α(y) at a corner point y of the boundary ∂Ω.

Substituting boundary conditions (11), (12) into the integrands of eq (17) and using it at y ∈ Ω,
we arrive at a (united) nonlinear two-operator BDIDE for u̇(x) at x ∈ Ω,

c(y)u̇(y)−
∫

∂NΩ
u̇(x)[T (y)∗F (y)∗(·, y)](x)dΓ(x) +

∫

∂DΩ
F (y)∗(x, y)[T (u̇)u̇](x)dΓ(x)−

∫

Ω
[∇(x)F (y)∗(x, y)]ã(∇u̇; x, y)∇u̇(x)dΩ(x) = F(y), y ∈ Ω, (18)

F(y) :=
∫

∂DΩ
ǔ(x)[T (y)∗F (y)∗(·, y)](x)dΓ(x)−

∫

∂NΩ
F (y)∗(x, y)ť(x)dΓ(x) +

∫

Ω
F (y)∗(x, y)f(x)dΩ(x).

BDIDE (18) is the second kind equation, which includes at most the first derivatives of the unknown
solution u̇(x), both directly in the domain integral term in the left hand side and through the coefficient
a(∇u̇(x), x, y) in the operator T (u̇) and in the function ã(∇u̇; x, y). The function [∇(x)F (y)∗(x, y)] is
at most weakly singular in Ω. The boundary integrals have at most the Cauchy-type singularity.

The right hand side of BDIDE (18) is independent of ∇u̇ if the auxiliary tensor a∗ is chosen as the
initial elastic tensor a0 or the current secant tensor a′. Otherwise, when a∗ is chosen as the tangent
stiffness tensor a, the dependence will present.

Some other (e.g. segregated) BDIDEs can be obtained if one substitutes ǔ(x) for u̇(x) also in the
out-of-integral term of (18) at y ∈ ∂DΩ, considers the unknown boundary displacement rates u̇ on
∂NΩ and/or traction rates T (u̇)u̇ on ∂DΩ as new variables formally segregated from u̇ in Ω, or applies
the boundary traction operator to (18).

BDIDE (18) can be reduced after some discretization to a system of nonlinear algebraic equation
and solved numerically. The system will include unknowns not only on the boundary but also at inter-
nal points. Moreover, since the fundamental solutions, c.f. (15), (16), are highly non-local, the matrix
of the system will be fully populated and this makes its numerical solution more expensive. To avoid
this difficulty, we present below some ideas of constructing localized parametrices and consequently
Localized BDIDEs (LBDIDEs).

LOCALIZED PARAMETRIX AND LBDIDE OF INCREMENTAL ELASTIC
DAMAGE MECHANICS

Let χ(x, y) be a cut-off function, such that χ(y, y) = 1 and χ(x, y) = 0 at x not belonging to closure of
an open localization domain ω(y) (a vicinity of y), see Fig.1, and let P

(y)∗
ω (x, y) = χ(x, y)F (y)∗(x, y).

The simplest example is

χ(x, y) =
{

1, x ∈ ω̄
0, x /∈ ω̄

⇒ P (y)∗
ω (x, y) =

{
F (y)∗(x, y), x ∈ ω̄(y)
0, x /∈ ω̄(y)

(19)

Other examples of the cut-off functions having different smoothness are presented in [6,7,11] for some
shapes of ω.
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Figure 1: Body Ω with localization domains ω(yi)

Then P
(y)∗
ω (x, y) is a localized parametrix (localized Levi’s function) of the linear operator L(y)∗,

i.e.,
L

(y)∗
ik P

(y)∗
kmω(x, y) = δimδ(x− y) + R

(y)∗
imω(x, y),

where the remainder

R
(y)∗
imω = −L

(y)∗
ik ((1− χ)F (y)∗

km ) = a∗ijkl(y)

[
F

(y)∗
km

∂2χ

∂xj∂xl
+

∂F
(y)∗
km

∂xj

∂χ

∂xl
+

∂F
(y)∗
km

∂xl

∂χ

∂xj

]

is at most weakly singular at x = y if χ is smooth enough on ω̄(y). The parametrix P
(y)∗
ω (x, y) has

the same singularity as F (y)∗(x, y) at x = y. Both P
(y)∗
ω (x, y) and R

(y)∗
ω (x, y) are localized (non-zero)

with respect to x only on ω(y).
Suppose χ(x, y) is smooth in x ∈ ω̄(y) but not necessarily zero at x ∈ ∂ω(y), c.f. (19). Then

P
(y)∗
ω (x, y) is a discontinuous localized parametrix at x ∈ IRn and P

(y)∗
ω (x, y) = R

(y)∗
ω (x, y) = 0 if

x /∈ ω̄(y). Substituting P
(y)∗
ω (x, y) for v(x) in eq (13), replacing Ω by the intersection ω(y) ∩ Ω

and repeating the same arguments as for the fundamental solution above, we arrive at the localized
parametrix-based two-operator third Green identity on ω̄(y) ∩ Ω̄,

c(y)u̇(y)−
∫

ω̄(y)∩∂Ω

{
u̇(x)[T (y)∗P (y)∗

ω (·, y)](x)− P (y)∗
ω (x, y)[T (u̇)u̇](x)

}
dΓ(x)−

∫

Ω∩∂ω(y)

{
u̇(x)[T (y)∗P (y)∗

ω (·, y)](x)− P (y)∗
ω (x, y)[T (u̇)u̇](x)

}
dΓ(x)−

∫

ω(y)∩Ω

{
[∇(x)P (y)∗

ω (x, y)]ã(∇u̇; x, y)∇u̇(x)−R(y)∗
ω (x, y)u̇(x)

}
dΩ(x) =

∫

ω(y)∩Ω
P (y)∗

ω (x, y)f(x)dΩ(x). (20)

The second term in the last integral in the left hand side of (20) disappears if χ(x, y) is given by (19).
Substituting boundary conditions (11) and (12) into the integral terms of eq (20) and employing it

at y ∈ Ω, we arrive at the united formulation of nonlinear two-operator Localized Boundary-Domain
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Integro-Differential Equation (LBDIDE) of the second kind, for u̇(x), x ∈ Ω,

c(y)u̇(y)−
∫

ω̄(y)∩∂NΩ
u̇(x)[T (y)∗P (y)∗

ω (·, y)](x)dΓ(x) +
∫

ω̄(y)∩∂DΩ
P (y)∗

ω (x, y)[T (u̇)u̇](x)dΓ(x)−
∫

Ω∩∂ω(y)

{
u̇(x)[T (y)∗P (y)∗

ω (·, y)](x)− P (y)∗
ω (x, y)[T (u̇)u̇](x)

}
dΓ(x)−

∫

ω(y)∩Ω
[∇(x)P (y)∗

ω (x, y)]ã(∇u̇;x, y)∇u̇(x)dΩ(x) +
∫

ω(y)∩Ω
R(y)∗

ω (x, y)u̇(x)dΩ(x) = Fω(y), y ∈ Ω, (21)

Fω(y) :=
∫

ω̄(y)∩∂DΩ
ǔ(x)[T (y)∗P (y)∗

ω (·, y)](x)dΓ(x)−
∫

ω̄(y)∩∂NΩ
P (y)∗

ω (x, y)ť(x)dΓ(x) +
∫

ω(y)∩Ω
P (y)∗

ω (x, y)f(x)dΩ(x).(22)

If a cut-off function χ(x, y) vanishes at x ∈ ∂ω(y) with vanishing normal derivatives, then the
integral along Ω ∩ ∂ω(y) disappears in eq (21).

DISCRETIZATION OF NONLINEAR TWO-OPERATOR LBDIE
OF INCREMENTAL ELASTIC DAMAGE MECHANICS

To reduce quasi-linear LBDIDE (21) to a sparsely populated system of quasi-linear algebraic equations
e.g. by the collocation method, one has to employ a local interpolation or approximation formula for
the unknown function u̇(x), for example associated with a mesh-based or mesh-less discretization.

Mesh-based discretization Suppose the domain Ω is covered by a mesh of closures of disjoint
domain elements ek with nodes set up at the corners, edges, faces, or inside the elements. Let J be
the total number of nodes xi (i = 1, 2, ..., J). One can use each node xi as a collocation point for
the LBDIDE with a localization domain ω(xi). Let the union of closures of the domain elements
that intersect with ω(xi) be called the total localization domain ω̃i, Fig. 2(a). Evidently the closure
ω̄(xi) ∩ Ω̄ belongs to ω̃i. If ω(xi) is sufficiently small, then ω̃i consists only of the elements adjacent
to the collocation point xi. If ω(xi) is ab initio chosen as consisting only of the elements adjacent to
the collocation point xi, then ω̃i = ω̄(xi). Let u̇{ω̃i} be the array of the function values u̇(xj) at the
node points xj ∈ ω̃i and Jω̃i be the number of those node points.

Ω∂

ω∂

ω~∂
x i

(x i)

i

(a)

Ω∂

ω~∂

ω∂ (xi)

i

xi

ω0(x)

(b)

Figure 2: Localization domain ω(xi) and a total localization domain ω̃i associated with a collocation
point xi of a body Ω for (a) mesh-based and (b) mesh-less discretizations

Let u̇(x) =
∑

j u̇(xj)φkj(x) be a continuous piece-wise smooth interpolation of u̇(x) at any point
x ∈ Ω along the values u̇(xj) at the node points xj belonging to the same element ēk ⊂ Ω as x, and
the shape functions φkj(x) be localized on ēk. Collecting the interpolation formulae, we have for any
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x ∈ ω̃i,

u̇(x) =
∑

xj∈ω̃i

u̇(xj)Φj(x), Φj(x) =
{

φkj(x) if x, xj ∈ ēk

0 otherwise
(23)

∇u̇(x) =
∑

xj∈ω̃i

u̇(xj)∇Φj(x), ∇Φj(x) =
{ ∇φkj(x) if x, xj ∈ ēk

0 otherwise
(24)

Consequently, Φj(x) = ∇Φj(x) = 0 if x ∈ ω̃i but xj /∈ ω̃i.
Since interpolation (23) is piece-wise smooth, expressions (24) deliver non-unique values for ∇u̇(x)

on the element interfaces and particularly at the apexes xi of different adjoint elements ek. This brings
no complications for the choice of the auxiliary elastic moduli as a∗ijkl(y) = a0

ijkl(y) or a∗ijkl(y) = a′ijkl(y)
since they and consequently all other asterisk variables and operators do not depend on ∇u̇(y), which
then appears either in the domain integrals or in the boundary integrals with the gradients taken from
the corresponding side of the boundary. On the other hand, for the auxiliary elastic tensor chosen
as the current tangent tensor, a∗ijkl(y) = aijkl(∇u̇(y), y), one has to estimate ∇u(y) to calculate the
coefficient a(∇u̇(y), y) and, consequently ã(∇u̇;x, y), T (y)∗(u), P (y)∗(u; x, y) and R(y)∗(u;x, y) at the
collocation points y = xi. A possible way out is to assign

∇u(xi) :=
∑

ēk3xi

αk(xi)
α(xi)

∇uk(xi), ∇uk(xi) :=
∑

xj∈ēk

u(xj)∇φkj(xi), (25)

where αk(xi) is an interior space angle at the apex xi of the element ek and α(xi) =
∑

ēk3xi αk(xi).
Substituting interpolation formulae (23)-(24) in LBDIDE (21), we arrive at the following system

of J × n quasi-linear algebraic equations for J × n unknowns u̇m(xj), xj ∈ Ω, m = 1, ..., n,

c(xi)u̇(xi) +
∑

xj∈ω̃i

Kij(u̇{ω̃i})u̇(xj) = Fω(xi), xi ∈ Ω, no sum in i. (26)

For fixed indices i, j, the n× n tensor Kij(u̇{ω̃i}) is

Kij(u̇{ω̃i}) = −
∫

ω̄(xi)∩∂NΩ
Φj(x)[T (xi)∗P (xi)∗

ω (·, xi)](x)dΓ(x)+
∫

ω̄(xi)∩∂DΩ
P (xi)∗

ω (x, xi)[T (u̇{ω̃i})Φj ](x)dΓ(x)−
∫

Ω∩∂ω(xi)

{
Φj(x)[T (xi)∗P (xi)∗

ω (·, xi)](x)− P (xi)∗
ω (x, xi)[T (u̇{ω̃i})Φj ](x)

}
dΓ(x)−

∫

ω(xi)∩Ω

{
[∇(x)P (xi)∗

ω (x, xi)]ã(u̇{ω̃i}; x, xi)∇Φj(x)−R(xi)∗
ω (x, xi)Φj(x)

}
dΩ(x). (27)

The approximate coefficient ã(u̇{ω̃i}; x, xi) and traction operator T (u̇{ω̃i}) in (27) are expressed
in terms of the set of unknowns u̇{ω̃i} := {u̇(xj), xj ∈ ω̃i}. The expressions are obtained after
substituting interpolation formulae (24) for ∇u̇(x) in the coefficient a(∇u̇(x), x) in the definitions for
ã(∇u̇; x, y) and T (u̇).

Note that the term with R
(xi)∗
ω disappears in the last integral in the right hand side of (27) if the

parametrix P
(xi)∗
ω (x, xi) is given by (19). On the other hand, if the cut-off function χ(x, xi) and its

normal derivative are equal zero at x on the boundary ∂ω(xi), then the third integral (along Ω∩∂ω(xi))
disappears in the right hand side of (27).

Mesh–less discretization For a mesh–less discretization, one needs a method of local interpola-
tion or approximation of a function along randomly distributed nodes xi. We will suppose all the
approximation nodes xi belong to Ω̄ and will use them also as collocation points for the LBDIDE
discretization. Let, as before, J be the total number of nodes xj (i = 1, 2, ..., J). Let us consider



S.E.Mikhailov 9

a mesh–less method, for example, the moving least squares (MLS) (see e.g. [25]), that leads to the
following approximation of a function u̇(x)

u̇(x) =
∑

xj∈ω0(x)

û(xj)Φj(x), x ∈ Ω. (28)

Here Φj(x) are known smooth shape functions such that Φj(x) = 0 if xj /∈ ω0(x), ω0(x) is a localization
domain of the approximation formula, and û(xj) are unknown values of an auxiliary function û(x) at
the nodes xj , that is, the so-called δ−property is not assumed for approximation (28).

Let ω(xi) be a localization domain around a node xi. Then for any x ∈ ω̄(xi), the total approxi-
mation of u̇(x) can be written in the following local form,

u̇(x) =
∑

xj∈ω̃i

û(xj)Φj(x), ∇u̇(x) =
∑

xj∈ω̃i

û(xj)∇Φj(x), x ∈ ω̄(xi), (29)

where ω̃i := ∪x∈ω̄(xi)∩Ω̄ω0(x) is a total localization domain, Fig. 2(b). Consequently, Φj(x) =
∇Φj(x) = 0 if x ∈ ω̄(xi) and xj /∈ ω̃i. Let Jω̃i be the number of nodes xj ∈ ω̃i and û{ω̃i} be
the array of the function values û(xj) at the node points xj ∈ ω̃i.

After substitution of approximation (29) in LBDIDE (21), we arrive at the following system of
quasi-linear system of J × n algebraic equations with respect to J × n unknowns ûm(xj), xj ∈ Ω̄,
m = 1, ..., n,

∑

xj∈ω̃i

[
c(xi)Φj(xi) + Kij(û{ω̃i})] û(xj) = Fω(xi), xi ∈ Ω̄, no sum in i. (30)

For any i, j, the n× n tensor Kij in (30) is given by expression (27) with the shape functions Φj

from (29), u̇{ω̃i} replaced by û{ω̃i}, and the term with sum replaced by zero since approximation (29)
for u̇ is smooth and its gradient approximation in (29) is continuous. Expressions for ã(û{ω̃i};x, xi)
and T (û{ω̃i}) in terms of the set of unknowns û{ω̃i} := {û(xj), xj ∈ ω̃i} in (27) are obtained after
substituting interpolation formulae (29) for ∇u̇ in the coefficient a(∇u̇(x), x) in the definitions for
ã(∇u̇; x, y) and T (u̇).

CONCLUSION

Nonlinear BDIDE (18) and LBDIDE (21) are integro-differential reformulations of the BVP of elastic
damage mechanics for increments, (10)-(12). Depending on the choice of the auxiliary elastic tensor a∗

as the initial elastic, current secant, or currant tangent stiffness tensor, one can obtain three different
versions of the BDIDE and LBDIDE. Different strategies can be chosen for the BDIDE or LBDIDE
solution to obtain the complete evolutionary solution of the problem. One of them is to split the process
into the time steps ti and solve either of the integral equations with respect to the displacement rate
u̇k(x, ti) employing the necessary strain history field {ε(x)}(ti) obtained at the previous step. Then
one find the stiffness tensor rate from (5) and approximate the displacement increment during the
time step as ∆uk(x, ti) = u̇k(x, ti)(ti+1 − ti) and strain, stress and stiffness increments similarly. This
allows to calculate the stress an strain field at time ti+1.

While solving numerically LBDIDE (21), we have from the definitions in both mesh-based and
mesh-less methods that Φj(x) = ∇Φj(x) = [T (u̇)Φj ](x) = [T (y)∗Φj ](x) = 0 if x ∈ ω̄(xi) but xj /∈ ω̃i.
Consequently Kij = 0 if xj /∈ ω̃i, and moreover, Kij depend only on u̇{ω̃i} or û{ω̃i}, respectively.
Thus, each equation in (26) and (30) has not more than Jω̃i × n ¿ J × n non-zero entries, i.e. the
systems are sparse.

The second kind structure of the nonlinear LBDIDE and of the corresponding mesh-based discrete
system look very promising for constructing simple and fast converging iteration algorithms of its
solution without preconditioning, thus outperforming other available numerical techniques.
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