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Abstract 

This thesis investigates the evolution of two very different complex systems 

using network theory. This multi-disciplinary technique is widely used to model 

and analyse vastly diverse systems of multiple interacting components, and 

therefore, it is applied in this thesis to study the complexity of the systems. This 

complexity is rooted in the components’ interactions such that the whole system 

is more than the sum of all the individual parts. The first novelty in this research 

is the proposal of a new type of structural perturbation, cluster damage, for 

measuring another dimension of network robustness. The second novelty is the 

first application of a community detection method, which uncovers space-

independent communities in spatial networks, to airport and linguistic networks.  

A critical property of complex systems – robustness – is explored within a partial 

model of the Internet, by demonstrating a novel perturbation strategy based on 

the iterative removal of clusters. The main contribution of this theoretical case 

study is the methodology for cluster damage, which has not been investigated by 

literature on the robustness of complex networks. The model, part of the Internet 

at the Autonomous System level, only serves as a domain where the novel 

methodology is demonstrated, and it is chosen because the Internet is known to 

be robust due to its distributed (non-centralised) nature, even though it is often 

subjected to large perturbations and failures.     

The first applied case study is in the field of air transportation. Specifically, it 

explores the topology and passenger flows of the United States Airport Network 

(USAN) over two decades. The network model consists of a time-series of six 

network snapshots for the years 1990, 2000 and 2010, which capture bi-monthly 

passenger flows among US airports. Since the network is embedded in space, the 

volume of these flows is naturally affected by spatial proximity, and therefore, a 

model (recently proposed in the literature) accounting for this phenomenon is 

used to identify the communities of airports that have particularly high flows 

among them, given their spatial separation. 
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The second applied case study – in the field of language acquisition – 

investigates the word co-occurrence network of children, as they develop their 

linguistic abilities at an early age. Similarly to the previous case study, the 

network model consists of six children and three discrete developmental stages. 

These networks are not embedded in physical space, but they are mapped to an 

artificial semantic space that defines the semantic distance between pairs of 

words. This novel approach allows for an additional dimension of network 

information that results in a more complete dataset. Then, community detection 

identifies groups of words that have particularly high co-occurrence frequency, 

given their semantic distance. 

This research highlights the fact that some general techniques from network 

theory, such as network modelling and analysis, can be successfully applied for 

the study of diverse systems, while others, such as community detection, need to 

be tailored for the specific system. However, methods originally developed for 

one domain may be applied somewhere completely new, as illustrated by the 

application of spatial community detection to a non-spatial network. This 

underlines the importance of inter-disciplinary research. 
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Chapter 1                             

Introduction 

This chapter introduces complex networks and their generality for modelling 

complex systems. Two applied case studies are briefly described, providing the 

motivations behind this thesis. The aims are outlined.  

A common approach to dealing with complex systems is to make use of network 

theory to simulate symmetric or, more generally, asymmetric relations among 

discrete objects. Transportation, the Internet, mobile phone, power grid, social, 

and neural networks are just some examples of complex systems where network 

theory has been successfully applied. In fact, complex systems are often 

modelled as complex networks, i.e. graphs with non-trivial topological 

characteristics, because this provides a powerful abstraction that can eliminate 

the unnecessary complexity of the system while maintaining the key properties 

and interactions. Some networks have nodes and links arranged in physical 

space, in which case the topology alone does not contain all the necessary 

information to describe the network. Spatial constraints typically affect the 

structure and properties of spatial networks, and therefore, it is important to 

consider the physical distance between interacting nodes. 

Complex networks typically consist of numerous nodes and links, where the 

whole is more than the sum of all the parts. This means that the interactions 

emerging from network structure are driving the network function. For example, 

in computer networks two popular configurations are the client-server (Fig. 1.1) 

and the peer-to-peer (Fig. 1.2) architectures. In the former, there are relatively 

few server nodes, which are very well connected and provide most of the 

services, which are required by the less well connected client nodes. In the latter, 

communication is established between two nodes by setting up a path between 

them, which consists of other nodes and links in the network. In this architecture, 

each node has roughly the same number of links. The client-server and peer-to-

peer structures are very different in many ways. The former is a centralised 
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system where the network is completely dependent on the operation of one key 

node – the server, whereas in the latter all nodes are equal and if any one fails 

then the network re-configures itself. Therefore, it is more robust to node or link 

failure. In the context of complex systems, robustness (Atherton and Bates, 2005) 

is generally defined as the ability of a system to maintain its function in the 

presence of disturbances. Robustness is very important for both natural and 

engineered systems because all systems experience some sort of change or 

disturbance over their lifetime, and the better they are prepared to deal with this, 

the longer they will operate as required.  

 

Fig. 1.1. Client-server model (ibiblio, n.d.). 

 

Fig. 1.2. Peer-to-peer model (ibiblio, n.d.). 

Evolution-based modelling of a complex network can be defined as a process that 

takes as input some specific network data, and returns a complete network model 

of these data. In other words, all local interactions between pairs of nodes for 

some time period are mapped onto a global network model representing the 

structure and dynamics of the real complex network, for the period under study. 

In this way, it is possible to determine how the network is evolving over time, in 

terms of its topology and interactions. A network is essentially a set of nodes and 

links, so if data are in the form of node pairs (in most cases they are), it is easy to 
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build a network directly from the data: for each pair, insert a directed link from 

the source node to the target node, labelling the link with the given weight 

(representing strength of interaction), and hence, a snapshot of the evolving 

network is generated for each time slice of data. However, some complex 

systems may be more accurately described by networks containing nodes that 

interact not only in pairs but also in groups of multiple nodes. This network 

generalisation where a link connects more than two nodes is called a 

hypernetwork. 

The air transportation network of a country or region is a critical component of 

its infrastructure, with huge impacts on its economy, the transportation of people, 

cargo, and mail, as well as the potential for propagating negative effects, such as 

globally spreading diseases (Guimerà et al., 2005). Therefore, researchers from 

multiple disciplines have recently shown a lot of interest in this field, and with an 

abundance of available data, have made attempts to model and to analyse airport 

networks. This provides an understanding of how these networks operate; the 

critical airport nodes that connect otherwise distant locations; whether there are 

any naturally occurring community structures; and how the networks evolve over 

time. Depending on several key factors, such as geographical area, population, 

economic growth, tourism, and trade, the national airport network of a country 

may grow and change its topology considerably over time, driven mainly by the 

actions of the airlines that seek to increase their short-term profits. This means 

that an airport network is constantly developing, or more precisely, evolving in 

response to the growing demands of the people using the network either directly 

as passengers or indirectly as consumers of transported goods. Globalisation and 

the introduction of more long-distance direct connections between distant regions 

does however present a serious threat to public health, as a small outbreak of a 

disease in a remote region may quickly turn into a global epidemic. Hence, the 

aim of some transportation network models is to predict how a disease would 

propagate through the network and to identify critical regions that need to be 

isolated in order to prevent further spread.    

The ability of humans to communicate effectively through the use of a common 

language is remarkable. Even more impressive is the fact that young children, 
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when learning their first language, are able to pick it up so well, even in the 

presence of noisy input. When a child produces an incorrect utterance, there is 

rarely any corrective feedback, so it is up to the child to filter those out over time. 

Two opposing approaches try to explain this remarkable capability of children, 

and specifically, their syntax acquisition. Universal Grammar (UG) (Chomsky, 

1957) argues that certain rules and parameters for language are hard-wired in 

each and every one of us, and the process of acquisition is simply a tuning of 

those variables. A key argument for UG is the poverty of the stimulus argument: 

the input received by children contains numerous errors, false starts, unfinished 

sentences, and thus is not sufficient for inferring the rules of language. UG has 

generally been accepted as the de facto theory for syntax acquisition, but 

alternative theories (such as distributional analysis), loosely based on the 

empiricist tradition and developed in the 1990s, are gaining increasingly more 

support in recent years. There is increasing evidence that the environment 

provides much more information than had been assumed by Chomsky, and a 

number of simulation models have shown that much grammatical knowledge can 

be learnt from child-directed speech (Freudenthal et al., 2007; Redington, Chater 

and Finch, 1998). If one does not subscribe to UG’s assumptions of innate 

abstract knowledge, one has to identify the specific mechanisms employed when 

young children acquire their first language. This can be achieved by using 

models, such as Model Of Syntax Acquisition In Children (MOSAIC) 

(Freudenthal et al., 2007), which are trained with maternal utterances, and then 

produce utterances that can be directly compared to children’s utterances. By 

examining the quality of the obtained results, the aim is to identify which 

mechanisms account for the empirical data. However, data sets of utterances are 

typically very large, noisy, and difficult to compare directly. Therefore, a 

worthwhile approach is to extract key characteristics of corpora first. This is what 

network modelling offers. It holds the key to embed all the information contained 

in a data set in a network, which can be analysed and compared with similar 

networks. It is important to identify which network parameters represent a useful 

statistic of the raw data, so they can be extracted from the network for analysis 

and cross-comparison. 
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When children acquire their native language they have to deal with considerable 

complexity as the input is potentially noisy and inconsistent (Freudenthal, Pine 

and Gobet, 2006). Conventional linguistic theory has attempted to explain this 

phenomenon with the nativist theory, which proposes that children are born with 

a domain-specific knowledge of language (Pinker, 1984; Chomsky, 1981). 

However, recent work using computational modelling techniques has found that 

the level of detail that can be extracted by analysing the statistical properties of 

language is far greater than originally assumed by the nativist approach 

(Cartwright and Brent, 1997; Elman, 1993). In addition, research on infants’ 

distributional learning abilities has shown that children pick-up the statistical 

properties of the language they are exposed to (Gomez and Gerken, 1999; 

Saffran, Aslin and Newport, 1996). In other words, it is possible that some of the 

phenomena considered as evidence for innate linguistic knowledge in children 

can also be explained by the children’s distributional learning of statistical 

properties of the input language. The standard approach to explore this possibility 

is to test computational models that simulate linguistic development by 

distributional analysis of child-directed language. The main problem with this 

approach is that models need to simulate more directly the tasks carried out by 

children, using more realistic input data, thereby more precisely matching 

empirical observations (Christiansen and Chater, 2001). 

This research has four main aims:  

1. The first aim is to test a novel perturbation strategy, cluster damage, in a 

partial model of the Internet, in order to study a new dimension of 

network robustness. This is motivated by the lack of existing methods 

that investigate network robustness to the failure of various structural 

components.  

2. The second aim is to develop a comprehensive model of the evolving US 

airport network. This is motivated by the fact that this network is critical 

for the mobility of millions of people, and hence, it has a huge economic 

and health impact.  
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3. The third aim is to investigate the extent to which MOSAIC is able to 

simulate language acquisition in children. It is hypothesised that there 

will be significant similarity between its output and children’ utterances 

in terms of linguistic network models. This aim is motivated by the 

increasing evidence suggesting that the environment provides much more 

information than originally assumed by Chomsky, casting doubts on his 

well-established Universal Grammar theory.  

4. The fourth aim is to identify a more cohesive community structure in air 

transportation and language acquisition networks. This is motivated by 

the inaccuracy of general community detection methods that are widely 

used in the literature. 

The following is a brief outline of the remaining chapters.  

Chapter 2 reviews the complex networks literature in terms of network theory; 

robustness in systems and networks; air transportation; and language acquisition. 

Research problems and solutions are presented. A research methodology section 

discusses the solutions in more detail. 

Chapter 3 describes a novel approach to investigate network robustness by 

damaging entire clusters of nodes. A partial network model of the Internet at the 

Autonomous System level is presented. The robustness of the network to node 

and cluster damage is discussed. 

Chapter 4 presents the first applied case study on air transportation networks. US 

air travel and migration are introduced. An evolution-based model of the network 

is proposed. The general properties and the community structure of the network 

are presented. 

Chapter 5 presents the second applied case study on language acquisition 

networks. The main types of linguistic networks are introduced. A development-

based model of the networks is proposed. The general properties and the 

community structure of the networks are presented. 
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Chapter 6 discusses the general properties and the community structure of air 

transportation networks and language acquisition networks. The two applied case 

studies are compared for possible generalities. 

Chapter 7 concludes the thesis. The major contributions to research in the field of 

complex networks are summarised. Theoretical implications for each individual 

case study and for complex networks in general are drawn based on the analysis 

of the results. Recommendations for future work are provided. 
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Chapter 2                                                      

Literature Review 

This chapter reviews the complex networks literature on network theory, 

robustness, air transportation and language acquisition. In addition, the 

research problems and solutions are presented. The chapter concludes with a 

research methodology that describes the solutions to the research problems in 

more detail. 

In recent years, the availability of huge data sets has enabled researchers across 

many disciplines to model and understand exceedingly complex systems by using 

network modelling and analysis. For example, biological networks such as 

metabolic (Morine et al., 2009) and gene co-expression (Carter et al., 2004); 

technological networks such as the Internet (Alderson and Willinger, 2005), and 

the power grid (Carreras et al., 2002); and social networks such as friendship 

(Girvan and Newman, 2002), and co-authorship (Barthélemy et al., 2005), have 

been widely studied and interesting patterns have emerged. This research has 

shown that network modelling provides a powerful abstraction of networked 

complex systems in the real-world that is able to strip away the detail of 

individual systems, while retaining the core information, such as network 

structure (topology) and dynamics (link weights). Hence, it is possible to model 

the evolution of complex systems at a high level, and to identify common 

properties, as well as trends, over time. This leads to a better understanding of 

complex systems, with potential benefits to many areas, such as medicine, 

technology, and the social sciences, to name a few.  

2.1 Network Theory  

Network theory, also known as graph theory, is a powerful tool for analysing 

complex systems. One of the benefits of network modelling is that it facilitates 

inter-disciplinary research since systems from different domains are represented 

in the same way (as networks) and may be directly compared. 
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2.1.1 Definitions  

This section defines the core concepts from network theory that are used 

throughout this thesis: 

 A network is a set of nodes N and a set of links E that connect pairs of 

nodes of N. 

 The Giant Connected Component (GCC) of a network is the largest 

connected subnetwork. 

 A cluster of a network is a connected subnetwork. 

 Robustness is the ability of a network to maintain its function in the 

presence of disturbances. 

 A community of a network is a cluster with particularly strong internal 

and weaker external connections. 

2.1.2 Topology Classes 

In terms of the structure of connections, there are four classes of complex 

networks: regular, random, small-world and scale-free. Topology is defined by 

the connectivity distribution P(k), giving the probability that a node in the 

network is connected to k other nodes.   

 Regular Networks 

In order to describe regular networks, an essential concept of complex networks 

needs to be introduced. The clustering coefficient Ci of a node i is the average 

fraction of pairs of neighbours ni of i that are also neighbours of each other 

(Wang and Chen, 2003), e.g. in a friendship network, this would be the 

probability that two of your friends are also friends themselves: 

   
   

        
 (2-1) 

Where Ei is the number of edges that actually exist among these ni nodes from the 

total possible number ni(ni − 1)/2. Then, the clustering coefficient C of the whole 
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network is the average of all the clustering coefficients for all nodes. C is always 

less than or equal to 1, and equals 1 if and only if the network is globally 

coupled, i.e. every node is connected to every other node.  A popular regular 

network model is the nearest-neighbour coupled network (also known as a 

lattice), which is a regular graph where every node is linked to a few of its 

nearest neighbours (leftmost network in Fig. 2.4). The clustering coefficient of 

this type of network is approximately ¾, which means that lattices are typically 

highly clustered (Wang and Chen, 2003). However, their diameter is large. The 

diameter d is defined as the largest number of links that need to be traversed to 

get from one node to another.  

 Random Networks   

The complete opposite of a regular network is a random graph (Fig. 2.1), studied 

first by Erdös and Rényi (ER) in 1959 (Erdös and Rényi, 1959). This network 

has a P(k), which follows a Poisson distribution (Fig. 2.2), i.e. P(k) peaks at an 

average number of links <k> and decays exponentially for large or small k (<k> 

is standard notation for average node degree in network theory). This means that 

most nodes have <k> links and the rest have close to <k> links.   

 
 

Fig. 2.1. Random network (Albert, Jeong 

and Barabási, 2000). 

Fig. 2.2. P(k) of random network (Jeong 

et al., 2000). 

A random graph is generated as follows (Fig. 2.3): by starting with a set of N 

isolated nodes (there are no links between nodes), one connects each pair of 

nodes with probability p, forming a network with connectivity proportional to p. 
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The idea is to determine at what connectivity p a particular property of a graph 

will arise (Wang and Chen, 2003). Erdös and Rényi discovered that if p is greater 

than a specific threshold t ∼ (ln N)/N, then almost every random graph is 

connected, i.e. there are no isolated nodes. In a random network, the probability 

that a node has two neighbour nodes, which are connected, is no greater than the 

probability that two randomly chosen nodes are connected. Therefore, the 

clustering coefficient of a random graph is p = <k>/N. Hence, since (ln N)/N 

decreases as N increases, large-scale random networks may be connected, but 

they do not show high clustering like regular networks. 

 

Fig. 2.3. Evolution of a random graph consisting of 20 nodes: (a) initially the 

network is isolated; (b) with p = 0.1 there are three isolated nodes; (c) with p = 0.2 

there is one isolated node (Australian National University, n.d.). 

To investigate the structural robustness (to node removal) of random networks, 

Albert  (Albert, Jeong and Barabási, 2000) observed the change in diameter when 

a small fraction f of nodes is removed. They found that the diameter increases 

monotonically with f. Furthermore, it was discovered that there is no significant 

difference between removing nodes at random (errors) and targeting the most 

connected nodes (attacks). Both of these results are due to the homogeneity of the 

network. 

 Small-World Networks 

The small-world phenomenon (also known as six degrees of separation) is the 

idea that any two people are connected by an average of six friendship links, i.e. 

the global social network (with over six billion individuals) has a geodesic length 

of around six (Milgram, 1967). By analogy with this phenomenon, a small-world 
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network is a network in which any two nodes are connected by a relatively short 

path (Jeong et al., 2000), and hence, its diameter is small. As a consequence, 

infectious diseases are predicted to spread much more easily in a small world. A 

small-world network can be generated by the random rewiring of a regular 

network (Watts and Strogatz, 1998), where each node is rewired at random with 

probability r (Fig. 2.4). The key point is that for intermediate values of r this 

yields a small-world network with high clustering like a regular graph, yet with 

small diameter like a random graph. Examples of small-world networks include 

the neural network of the worm Caenorhabditis elegans, the power grid of the 

western United States, and the collaboration graph of film actors. 

 

Fig. 2.4. Random rewiring procedure for differentiating between a regular ring 

lattice and a random network, without changing the number of nodes or links in 

the network (Watts and Strogatz, 1998). 

 Scale-Free Networks 

The stability of complex systems is often attributed to redundant wiring of the 

network, i.e. by introducing more additional links the network connectivity is 

increased and hence, if a node is removed (along with its links), it is highly 

unlikely that the network will be affected since there are plenty of links left. 

However, error tolerance is not displayed by all redundant systems (Albert, Jeong 

and Barabási, 2000); it is shown mainly by a class of heterogeneously wired 

networks called scale-free networks (Fig. 2.5). These have a P(k), which decays 

as a power-law (Fig. 2.6), so most nodes have few links but some nodes have 

many links.  
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Fig. 2.5. Scale-free network (Albert, 

Jeong and Barabási, 2000). 

Fig. 2.6. P(k) of scale-free network 

(Jeong et al., 2000). 

Scale-free networks demonstrate a surprising degree of robustness to node failure 

(Albert, Jeong and Barabási, 2000), i.e. even when nodes are damaged, these 

local failures rarely lead to large-scale problems within the network. The Internet 

(Faloutsos, Faloutsos and Faioutsos, 1999), the World-Wide Web (Albert, Jeong 

and Barabási, 1999; Huberman and Adamic, 1999; Kumar et al., 1999), social 

networks (Wasserman and Faust, 1994) and metabolic networks (Jeong et al., 

2000) are particularly good examples of this phenomenon. In fact, all of these 

networks share similar scale-free topological properties with remarkable 

similarities in their organisation. However, as non-biological networks grow their 

diameter increases logarithmically with the addition of new nodes (Barabási and 

Albert, 1999; Barthélémy and Nunes Amaral, 1999; Watts and Strogatz, 1998), 

but the diameter of the metabolic networks of 43 organisms is found to be 

constant (Jeong et al., 2000), irrespective of the number of substrates (nodes) 

found in the given species. In other words, d is fixed for both small and large 

metabolic networks. This is only possible if with increasing organism (network) 

complexity, individual substrates (nodes) become increasingly connected to 

maintain a fixed d. This unique feature of metabolic networks is the key to 

designing non-biological networks with an optimal structural organisation with 

respect to network efficiency. For example, if a given system is expected to grow 

significantly in the near future, it is important to calculate the necessary increase 
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in connectivity that would be necessary in order to maintain its current 

performance.   

Although scale-free networks are robust against errors (removing random nodes) 

due to their heterogeneous connectivity distribution, it is this same property that 

makes them extremely vulnerable to attacks (targeting important nodes) (Albert, 

Jeong and Barabási, 2000). This is because when removing at random, there is a 

high probability of choosing a node with one link, so removing it will have no 

effect on the rest of the network. On the other hand, when targeting the most 

connected node, its removal will also knock out many links, resulting in 

decreased connectivity or even network fragmentation into disconnected clusters.   

2.1.3 Community Structure 

Concerning complex networks, it is of interest to look at their community 

structure, which is a prominent feature in many biological (Meunier, Lambiotte 

and Bullmore, 2010), social (Blondel et al., 2008) and technological (Blondel et 

al., 2008) complex systems. Community structure is defined as the presence of 

highly intra-connected modules of nodes that are loosely inter-connected to the 

rest of the network. In other words, nodes are organised in clusters and most links 

are inside those clusters. The reason for this phenomenon is that nodes that share 

functional similarity and/or dependency tend to interact more and therefore they 

should be more connected. There are two main advantages of this community 

architecture: the first is efficiency, as most interactions are within modules which 

are internally well-connected, thereby reducing the path length (the number of 

links that separate a pair of nodes); and the second is robustness, as entire 

modules may fail autonomously, without severely affecting the operation of other 

modules, and hence, the function of the entire network. Therefore, the emergence 

of community structures in complex networks has implications for their 

efficiency and robustness, as well as their particular characteristics.  

In recent years, research on complex networks has proposed many community 

detection methods (Lancichinetti and Fortunato, 2009) that aim to discover the 

most sensible partition of a network into communities. Most of them work on the 

principle of modularity (Newman and Girvan, 2004) optimisation, aiming to 
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maximise the modularity benefit function describing the quality of a network 

partition. The more links that fall within a community compared to an ensemble 

of benchmark random networks with the same community structure, then the 

more bias there is for links to connect to nodes belonging to the same 

community, and therefore the higher the modularity Q (Eq. 2-2). In essence, 

modularity measures how sharply the modules are defined.  

                                        

                                   

(2-2) 

The expected fraction of links within communities is calculated from an 

ensemble of random networks that resemble the network under scrutiny in terms 

of its strength (total weight on all adjacent links) distribution. In addition, it is 

necessary to quantify the average level of interaction between a pair of nodes, 

and this is achieved by defining a null model matrix Pij that describes the 

expected weight of a link between nodes i and j, over the ensemble. The standard 

choice for Pij, defined by Newman and Girvan (2004), preserves the strength of 

nodes in the random networks: 

   
   

    

  
 

(2-3) 

where ki is the strength of node i and m is the total weight in the network. A 

limitation of this null model, and of community detection methods that use it, is 

that only network topology and traffic are considered, but this is insufficient for 

networks embedded in space, such as the USAN. The reason for this is that most 

spatial networks (excluding the Internet for example) are very biased towards 

short-range connections due to the cost involved in long-range interactions in 

physical space. In terms of topology, an airport network is not a typical spatial 

network, as long-range connections are common. However, in terms of traffic, 

the higher financial and temporal costs involved in long-range travel play an 

important role for passengers, thereby affecting the flow on the network. Hence, 

standard community detection methods (typically based on the NG null model) 

discover communities of nodes that are spatially close, as opposed to 

communities that have particularly strong internal interactions (Ball, Karrer and 
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Newman, 2011; Calabrese et al., 2011; Lancichinetti et al., 2011; Almendral et 

al., 2010; Estrada and Hatano, 2009). To address this, Expert (2011) proposed an 

alternative null model for Pij that takes into account the effect of space by 

favouring communities of nodes i and j that are more connected than expected, 

given the physical distance dij between them: 

   
               (2-4) 

where Ni is the importance (typically the strength) of node i and f(dij) is the 

function that incorporates the effect of space. This so-called deterrence function 

describes the expected level of interaction between nodes i and j that are 

separated by some distance dij. In other words, the function defines how 

interaction decays, analogous to gravity, as distance between objects increases.  

2.2 Robustness in Systems and Networks 

2.2.1 Stability and Robustness 

The idea of stability originates from celestial mechanics and the study of the 

stability of the solar system in particular (Jen, 2003). A given state of a dynamic 

system is defined to be stable if small perturbations to the state result in a new 

state that is close to the original. In this context, perturbations refer to emerging 

changes in the actual state of the system. Hence, stability ultimately depends on 

the magnitude of these changes. In addition, a dynamic system is structurally 

stable if small perturbations to the system result in a new system with the same 

qualitative dynamics. Here, perturbations can take the form of changes in the 

external parameters of the system. Structural stability requires that certain 

dynamical features of the system, such as orbit structure, are preserved and no 

qualitatively new features emerge. A classic example of structural stability is the 

flow on the surface of a river. Assuming that flow depends on a single external 

parameter, such as wind speed, the flow is structurally stable if small changes in 

wind speed do not change the qualitative dynamics of the flow, i.e. do not 

produce an eddy for example.  
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It is widely accepted that both stability and robustness are only defined for 

specified features of a given system, with specified perturbations being applied 

to the system. Both concepts are meaningless without prior definition of the 

features and perturbations of interest. Also, both concepts are concerned with the 

persistence, or lack of, those features under the specified perturbations. Hence, 

the level of persistence is a direct measure of the level of stability or robustness. 

However, robustness is broader than stability for two reasons. Firstly, robustness 

may apply to a more varied class of systems, features and perturbations. 

Secondly, robustness naturally leads to concepts, which are beyond the scope of 

stability, such as: 

 The organisational architecture of a system 

 The relationship between organisation and dynamics 

 The link between evolvability and robustness 

 The ability of a system to switch among multiple functions 

 The anticipation of multiple perturbations in multiple dimensions 

Robustness is the ability of a system to maintain its function in the presence of 

structural disturbances, e.g. mutational robustness in biology. There are 

numerous classes of systems, which cannot be studied effectively using stability 

theory, and therefore require the concept of robustness. Firstly, systems that 

cannot be quantified (describing the dependence on numerical variables), cannot 

be associated with a numerical metric, such as a mathematical function, and 

hence, the level of persistence cannot be specified. Secondly, systems where the 

specified perturbations are not changes in internal or external parameters but 

changes in system composition, system structure, or in the assumptions regarding 

the environment in which the system operates, cannot be analysed in terms of 

stability. In addition, robustness is particularly good at capturing the behaviour of 

systems, which are dependent on the relationship between organisational 

architecture and dynamics. Furthermore, Krakauer and Plotkin (2005) suggest 

that in stability theory it is typical to concentrate only on a single perturbation, as 

opposed to robustness, which inevitably has to take into account multiple 
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perturbations in possibly multiple dimensions. For example, a biological 

signalling system may be robust to a whole set of disturbances, including 

fluctuations in molecular concentrations and the removal of entire groups of 

genes, which at first sight appear to be essential for the functioning of the system. 

There are also numerous classes of networks, which are difficult to represent 

using a stability framework. For example, heterarchies are interconnected, 

overlapping, usually hierarchical networks, with individual entities 

simultaneously belonging to multiple networks. The dynamics (behaviour) of the 

entire network of heterarchies, both emerges from, and controls the complex 

interactions between the individual networks. This idea can be easily illustrated 

by a closed feedback loop, as shown in Fig. 2.7. Standard examples of 

heterarchies are social networks where individuals are simultaneously members 

of many networks, such as familial, friendship, political, economic and 

professional, and the entire network of heterarchies represents human society as a 

whole. In this case, the economic growth of society depends on and also 

influences the intricate relationships between political and economic networks. A 

good example of this is the global financial crisis of 2008.  

 

Fig. 2.7. Global dynamics emerging from local interactions. 

Robustness in hierarchical and heterarchical systems makes no sense without a 

specified level of interest. For example, robust species may form an ecosystem, 

which is not robust itself due to competing interactions between the individual 

species. Conversely, fragile species may form a robust ecosystem, such as a 

school of fish or a flock of birds, through co-operative interactions. This means 

that robustness at any one level does not necessarily imply robustness at any 

other level. Typically, robust systems composed of fragile components need 

GLOBAL DYNAMICS 

LOCAL INTERACTIONS 

influence  lead to 
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some sort of self-organisation (Prehofer and Bettstetter, 2005) and are often 

called complex adaptive systems or self-adapting systems. However, the 

application of robustness to systems with strategic options (for responding to 

perturbations), requires a more context-specific definition of robustness. In this 

case, robustness can in fact be interpreted in two somewhat different ways. 

Firstly, it can be defined as the fitness of the possible strategic options, which 

have either emerged bottom-up or have been designed top-down for the system. 

Secondly, it can be defined as the ability of a system to switch among multiple 

strategic options, i.e. to perform multiple functions without any change in 

structure (this is also known as phenotypic plasticity). 

2.2.2 Robustness in Biological Systems 

Robustness does not mean staying unchanged in the presence of perturbations, 

such that the structure, components and operation of the system are unaffected. 

More precisely, robustness is the maintenance of specific functions of the system 

against perturbations, which often requires the system to change its mode of 

operation in a flexible way, i.e. robustness allows changes in the structure and 

components of the system as long as the functions are maintained (Kitano, 2004).  

 General Robustness 

According to Kitano (2004; 2002) there are five key mechanisms that enhance 

the robustness of a biological system: system control, redundancy, diversity, 

modularity and decoupling. System control is based on negative and positive 

feedback, which ensures that the system is constantly monitored and any changes 

in the output are instantly considered. Negative feedback is the main method for 

robust adaptation to perturbations, whereas positive feedback amplifies the 

stimuli, often resulting in bi-stability. For example, negative feedback is essential 

in bacterial chemotaxis (a phenomenon whereby organisms direct their 

movements according to certain chemicals in their environment), and positive 

feedback is used in signal transduction to form switch-like behaviour, such that 

there is a transition to a new state, which is more robust to noise and 

perturbations.  
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Redundancy (discussed earlier) is a simple concept, which generally refers to a 

situation where several identical or very similar components can replace one 

another if one of them fails. This method, however, is not practical in most 

engineered systems and tends to be costly and inappropriate. Diversity is the 

other extreme, which refers to a population of heterogeneous components. In this 

scenario, a given function can be achieved by different means available by 

utilising a range of components. This mechanism is essentially the same as 

distributed functionality. Modularity involves the partition of a system into 

somewhat separate modules in order to keep noise and damage localised, 

minimising the effect on the system. Modules are often observed in a range of 

organisms and systems, functioning as virtual design principles within biology or 

essential elements in engineering. An example of a module is a cell, which 

interacts with the environment and other cells within a multi-cellular system. 

Modules are often hierarchically organised, e.g. an organ is made up of tissues, 

tissues consist of cells, and cells are composed of organelles. Finally, decoupling 

isolates low-level variation from high-level functionalities in order to maintain 

the robustness of a system. For example, Hsp90 (heat shock protein 90) is a 

molecular chaperone (a protein that assists the non-covalent folding/unfolding in 

molecular biology), which decouples the genotype from the phenotype in order to 

cope with mutation while maintaining a degree of genetic diversity. 

 Mutational Robustness 

A biological system is robust to mutations if it continues to function normally 

after genetic changes in its parts, i.e. after permanent alteration in the wiring of 

the system (Wagner, 2005a). These changes can occur in two distinct ways. 

Firstly, one can perturb a part of an organism through intentional mutations. 

Secondly, there exist naturally occurring perturbations, i.e. mutations that occur 

by evolution over time. There are two principal mechanisms of mutational 

robustness in biological systems: distributed functionality and redundancy (a 

gene may be dispensable if the genome contains back-up copies). Furthermore, 

biological systems have evolved robustness for two reasons. Firstly, robust 

systems are easier to find in the search of evolution because the neutral space 
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associated with them is larger (a neutral space is a collection of equivalent 

solutions to the same biological problem). Secondly, natural selection further 

increases robustness by incremental evolution of a system within a neutral space. 

For example, genetic algorithms use evolutionary principles from biology to find 

optimum solutions to engineering problems. Wagner (2005a) investigates an 

application to integrated circuits to demonstrate mechanisms for evolved 

robustness. 

2.2.3 Robustness in Complex Networks 

There is a large body of literature investigating the robustness of numerous real-

world and artificial networks to various types and strategies of damage. For 

example, type typically refers to node or link damage, and strategy refers to the 

way in which components (nodes or links) are selected to be damaged (such as 

random failures or targeted attacks). As chapter 3 discusses a novel damage type 

called cluster damage, some related work dealing with various types of damage is 

briefly reviewed here first. In fact, the idea for cluster damage and the strategies 

employed in this thesis were motivated by this work.  

Newman (2003) systematically reviewed developments in the field of complex 

systems, including concepts such as the small-world effect, degree distributions, 

clustering, network correlations, random graph models, models of network 

growth and preferential attachment, and dynamical processes taking place on 

networks. Specifically, it is mentioned that “a particularly thorough study of the 

resilience of both real-world and model networks has been conducted by Holme 

(2002), who looked not only at vertex removal but also at removal of edges and 

considered some additional strategies for selecting vertices based on so-called 

betweenness (p. 190).”  

Holme studied the response of complex networks, which are subjected to targeted 

attacks on nodes (vertices) and links (edges). Four existing complex network 

models and two real-world networks are numerically investigated, and network 

performance is measured by the average inverse geodesic (shortest path) length 

(L) and the size of the largest connected component (GCC). Furthermore, four 

different attacking strategies are used: removing either by descending order of 
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degree or betweenness centrality, calculated either for the initial network or the 

current network. The correlation between the betweenness centrality and the 

degree in those networks is also studied.  

Criado (2005) considered the security and stability of complex networks, and 

reducing the risk and consequences of attacks or dysfunctions. They suggest that 

the concept of vulnerability helps to measure the response of complex networks 

subjected to attacks, and allows the identification of critical components of a 

network in order to improve its security. Hence, they introduce a definition of 

network vulnerability, which is directly connected with its topology and they 

analyse its basic properties.  

Whereas many studies have investigated specific aspects of robustness, such as 

molecular mechanisms of repair, Kaiser and Hilgetag (2004) focus more 

generally on how local structural features in networks may give rise to their 

global stability. In many networks the failure of single connections may be more 

likely than the extinction of nodes, and yet no analysis of edge importance has 

been provided so far for biological networks. They tested several measures for 

identifying vulnerable edges and compared their prediction performance in 

biological and artificial networks. Specifically, they say that “from theoretical 

studies it has been proposed for scale-free networks that edges between hubs are 

most vulnerable (Holme et al., 2002) (p. 316).” However, in the networks they 

analysed, both in the scale-free yeast protein interaction network and in cortical 

networks, edges that connected nodes possessing many connections (large 

product of degrees) were not particularly vulnerable. 

2.2.4 Mechanisms of Network Robustness 

There are four general mechanisms of network robustness: structure, redundancy, 

distributed functionality, and self-organisation.  

 Structure 

The structure, or topology, of a network defines the way in which nodes are 

interconnected by links. In other words, it describes the explicit relationships, 

which exist between the individual entities. For example, a random graph is a 
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very homogeneous network with a Poisson degree distribution (Fig. 2.2). 

Consequently, there is no centralisation and no successful way to damage 

specific network components with the intent to cause maximum network 

disturbance. In contrast, the scale-free network is the exact opposite in terms of 

this centralisation: it is built with preferential attachment (new nodes attach 

preferentially to high degree nodes), which results in a heterogeneous network 

with a power-law degree distribution, free of a characteristic scale. Hence, the 

hub nodes are responsible for keeping the network interconnected and if they are 

removed the entire structure would collapse.          

 Redundancy 

Redundancy ensures that if a component fails there is another identical or similar 

component, which can carry out the function of the former. In other words, 

redundancy is the duplication of critical network components with the aim of 

increasing network reliability. This mechanism is sometimes called fail-safe, but 

this is not entirely true. For example, if the network needs a critical node in order 

to function and nodes have a probability of failing p, then each redundant node 

merely decreases the probability of network failure. Specifically, if there are n 

redundant nodes the probability of network failure would be equal to the product 

of n individual probabilities p, assuming that components are independent of 

each other.     

 Distributed Functionality 

Distributed functionality involves multiple heterogeneous components with 

overlapping (distributed) functions. In other words, many nodes contribute to 

network function but all of them have different roles, i.e. no two nodes are 

identical copies of each other. When some node fails other nodes can compensate 

by modifying their behaviour in an appropriate way. Examples of systems with 

distributed functionality include biological systems, such as a gene regulatory 

network (a collection of DNA segments in a cell) and a metabolic network (the 

set of processes that determine the properties of a cell); and technological 

systems, such as the global telephone network and the Internet. Distributed 
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functionality and redundancy are the two core mechanisms of mutational 

robustness in genetic networks (Wagner, 2005b) (discussed later in detail). A 

genetic network is robust to mutations if it continues to function normally after 

genetic changes in its components, i.e. after permanent alteration in the wiring of 

the network. In addition, metabolic networks do not contain any redundant 

reactions, and yet, over 50% of these reactions can be removed without affecting 

the metabolic output (Wagner, 2005a). The reason for this is that the network is 

able to re-route metabolic flux through unaffected parts. Hence, robustness is due 

to the co-operation of enzymes with different, possibly overlapping activities; not 

due to redundancy.   

An important concept in control theory is the transfer function, which specifies 

how a system’s output behaves as a function of its input. General theorems in the 

subject imply that any redundant system can be re-designed into a non-redundant 

system with an identical transfer function (Leigh, 1992). This means that in 

theory any system with redundant parts can be replaced by a cheaper, more 

optimised system, which relies on distributed functionality as opposed to 

redundancy.  

 Self-Organisation 

A system is organised if it has a certain structure and functionality (Staab et al., 

2003). Structure means that the entities are arranged in a particular manner and 

interact in some way. Functionality means that the overall system fulfils a certain 

purpose. A system is self-organised if it is organised without any external or 

central dedicated control entity, i.e. the individual entities interact directly in a 

distributed, peer-to-peer fashion (usually localised). In other words, connections 

between pairs of entities give rise to a robust and self-adapting network. For 

example, ant pheromone trails are a classic model of self-organised animal 

behavior (Sumpter, 2006). However, self-organisation is more than just 

distributed and localised control: it is about the relationship between the 

behaviour of the individual entities and the resulting structure and functionality 

of the entire system. In self-organised systems the simple behaviour at the 

microscopic level leads to sophisticated organisation at the system level. This 
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phenomenon is known as emergent behaviour. Self-organisation can be defined 

as the emergence of system-wide adaptive structure and functionality, from 

simple local interactions between individual entities (Prehofer and Bettstetter, 

2005). 

2.2.5 Cascades 

Cascades in networks are an example of the robust yet fragile concept associated 

with many complex systems. A network may seem stable (robust) for long 

periods of time and then suddenly and unpredictably exhibit a large cascade 

(fragile), which may damage the network considerably. This concept is rooted in 

the infrastructure of the network. Even when the properties of individual 

components are well understood, cascades are very difficult to predict. For 

example, a single component failure will generally affect the network in some 

way but the precise possibility of subsequent failures (possibly leading to a 

global cascade) cannot be specified because of the dynamics of redistribution of 

flows on the network (Crucitti, Latora and Marchiori, 2004). However, two 

generic features of cascades can be explained with respect to the connectivity of 

the network: they occur rarely, but by definition are large when they do (Watts, 

2002). Cascading failures are common in the Internet, electrical power grids, 

social systems, and most communication and transportation networks.  

 Cascading Failures in Electrical Power Grids 

When a power line is damaged its load is automatically shifted to nearby lines if 

they are able to handle the extra load. However, if those lines are already 

operating at maximum capacity they must redistribute the extra load to their 

neighbours, and so on, until the power is distributed properly, or else a cascade 

occurs. In the latter case, a large number of power lines are overloaded and this 

will probably result in blackouts. This is a good example of the robust yet fragile 

concept because it illustrates the advantages of distributed functionality and the 

associated disadvantages of possible cascades. Crucitti, Latora and Marchiori 

(2004) propose a model based on dynamic redistribution of flow, which is 

triggered by the initial breakdown of a single component of the network. A key 
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concept of the model is the introduction of a tolerance parameter, which specifies 

the amount of extra load that each node can handle. In most cases, the removal of 

a node changes the shortest paths between nodes and consequently the 

distribution of the loads, which may create overloads on some nodes. In some 

cases, this overloading can trigger an avalanche, covering the whole network. 

Crucitti  suggest that small values of the tolerance parameter causes a decrease in 

network efficiency, but below a critical tolerance the network collapses. This is 

intuitive since the tolerance parameter is directly related to the capacity of the 

network to handle excess load. They also show that random networks are more 

resistant to cascading failures than scale-free networks, which is a very important 

result because it suggests that the robustness of networks may be enhanced by 

introducing random links. Furthermore, in scale-free networks random removals 

are far less likely to trigger cascades than load-based removals. This is due to the 

heterogeneous wiring of the network, and is also related to the error and attack 

tolerance of scale-free networks. Finally, they show that the removal of a single 

key node is sufficient to cause the entire grid to blackout. 

 Cascade Control and Defence 

In order to prevent a cascade from propagating through a network, Motter (2004) 

introduced a costless strategy of defence based on the selective further removal 

of nodes and links, after an initial attack or failure of a small fraction of nodes. 

According to Motter, a cascade consists of two parts: (1) the initial attack, where 

a fraction of nodes is removed; and (2) the propagation of the cascade, where 

another fraction of nodes is removed due to overloading. The intentional removal 

of components is performed between (1) and (2), resulting in a drastically 

reduced cascade with size proportional to the size of the largest connected 

component. This is achieved by removing nodes with small load and links with 

large excess of load, where load is defined as the total number of shortest paths 

that pass through a node or a link. 
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2.3 Air Transportation 

Transportation networks are a good example of spatial networks. Their network 

topology is not only characterised by spatial aspects such as the location of nodes 

and the length of links but also by the association of a transport cost to the link 

length; implying that longer links are typically balanced by some benefit, such as 

connecting to a high-degree node, or a node in an attractive location. 

Transportation networks typify the specific nature of spatial networks 

particularly with regard to issues such as congestion, fast-growing urban sprawl 

and disease propagation. Network structure and dynamics play a key role in 

most, if not all, of these challenges. Transportation networks can be planar, as in 

road and rail networks, or non-planar, as in airport networks. In addition, 

transportation networks are usually weighted, where the link weight describes the 

intensity of some form of interaction, e.g. the amount of traffic. Air 

transportation networks are an important example of spatial networks. Nodes 

identify airports and links represent the existence of a direct air service among 

them. Weights on links may represent the number of passengers flying on that 

connection, and the distribution of weights is an initial indication of the existence 

of possible strong heterogeneities. 

The existence of links among airports depends on factors related to both airline 

strategies and passenger demand. Airlines decide to operate at a given airport on 

the basis of a significant demand, allowing them to reach satisfactory load 

factors. Location and socio-economic characteristics of the airport catchment 

area are the key factors generating air traffic demand. The airport choice made by 

both airlines and travellers depends on factors that can be ultimately reduced to 

time and monetary costs. For example, reduced airport charges may help airlines 

to offer lower air fares to potential travellers, and hence to induce more flights. 

The airport network is an example of a heterogeneous network where the hubs 

have high connectivity, high weight (in terms of traffic) and long-distance links 

(Barrat et al., 2004). 

In recent years, the analysis of complex transport networks has received 

considerable attention, mainly in terms of commuting networks (De Montis et al., 
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2007; Patuelli et al., 2007; Rouwendal, 2004). Airport networks have also been 

studied to characterise their level of degree correlations and clustering, their 

evolution in time, and their potential scale-free properties (Wuellner, Roy and 

D'Souza, 2010; Guimerà et al., 2005; Amaral et al., 2000). In terms of network 

robustness, network failure due to external factors such as bad weather 

conditions, volcanic eruptions, and political or security issues, may have 

significant impact on the air traffic depending on the criticality of the involved 

nodes and the extent of their influence. In terms of socio-economic 

characteristics, the emergence of community structure depends on the location 

and distribution of relevant activities. Concentration of activities in a given area 

generally means concentration of short trips in that area, and this is a typical 

commuting pattern. For medium-long distance trips, the main contributing factor 

is mass migration rather than commuting, and air transportation plays an 

important role in facilitating easier migration of workers. Within larger countries, 

such as the United States, a new kind of commuting by air can be identified, as 

people working in different parts of the country during the week return home at 

weekends. The changes in the availability, frequency and cost of air travel 

facilitate trips for migrants located far from traditional gateways (large airports 

with hub functions (hub-and-spoke) and inter-continental links) (Button, 2010).  

2.4 Language Acquisition 

Research in children’s language acquisition has recently benefited from the 

application of network theory to large sets of empirical data, which has 

illuminated interesting patterns and trends. Network theory is an extremely 

powerful modelling and analysis tool, and its full potential in terms of extracting 

useful information from raw data has yet to be exploited. Researchers modelling 

language using network theory have experimented with a wide range of 

parameters, but there seems to be no consensus on which parameters are essential 

for understanding language acquisition, and which are merely providing some 

additional network information. Table 2.1 summarises the parameters used by 

recent research involving the network modelling of language, to give an idea of 

the most relevant network properties. The publications in the table were collected 
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by identifying seven key papers (1. (Ke and Yao, 2008); 2. (Cancho and Solé, 

2001); 3. (Motter et al., 2002); 4. (Solé et al., 2010); 5. (Corominas-Murtra, 

Valverde and Solé, 2010); 6. (Adamo and Boylan, 2008); and 11. (Liang et al., 

2009) in Table 2.1) on the modelling of language using network theory, and 

papers (7. (Haitao and Fengguo, 2008); 8. (Li and Zhou, 2007); 9. (Zhou et al., 

2008); and 10. (Shi et al., 2008) in Table 2.1) on the syntax of language that cite 

any one of the initial seven. The shaded entries correspond to the papers that 

investigate children’s language acquisition, as opposed to language in general. 

The research summarised in Table 2.1 typically focuses on three types of 

networks: co-occurrence, syntactic and semantic; and two languages: English and 

Chinese.  

Table 2.1. Parameters of interest in linguistic networks. 

 

A total of sixteen unique statistical parameters were investigated in these 

publications and they are briefly described below: 

1. Length of a linguistic data set may refer to the total number of characters, 

words, or utterances within the sample. 

2. Mean Length of Utterance (MLU) is the average number of words in an 

utterance. To be precise, Length and MLU are in fact data set parameters, 

but they are nevertheless treated like network parameters. 

3. Total number of network nodes N is the first most basic network measure. 

Ref. Network Type Language Length MLU N E GCC NCC <k> AC DC NN D L C P(k) P(f) P(b)

1 co-occurrence English x x x x

2 co-occurrence English x x x x x x

3 semantic English x x x x x x

co-occurrence

syntactic

semantic

5 syntactic English x x x x x x x x

6 co-occurrence English x x x x x

dependency

syntactic

8 char. structure Chinese x x x x x x x

9 co-occurrence Chinese x x x x x x x x x x

10 co-occurrence Chinese x x x x x x x x x x

Chinese

English

x x

x x

x

xxxx x xxxxx

x x x

x xxxx

4

7

11

English

English

co-occurrence
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4. Total number of network links E is the second most basic network 

measure. 

5. Giant Connected Component (GCC) represents the largest connected part 

of the entire network, i.e., the cluster with the highest number of nodes. In 

a connected network (where there are no isolated nodes or clusters of 

nodes), the GCC is identical to the original network. 

6. Number of Connected Components (NCC) is simply the number of 

network components that are disconnected from one another. 

7. Average degree <k> is the average number of links adjacent to a network 

node. This key parameter reflects the overall connectivity of the network. 

8. Assortativity Coefficient (AC) measures how assortative the network is, 

i.e., to what extent high-degree nodes are connected to other high-degree 

nodes. 

9. Degree Centralisation (DC) measures to what extent the links are 

centralised on a small number of high-degree nodes. 

10. Average nearest-neighbour degree NN of a node is the average degree of 

the nodes that are connected to the given node. 

11. Network diameter D is the length of the longest path between a pair of 

nodes, when the shortest possible paths are considered, i.e., containing the 

fewest links. 

12. Average geodesic length L is the average length of the shortest paths 

between all pairs of nodes. 

13. Clustering coefficient C, averaged among all nodes, measures the 

likelihood of the neighbours of a node being connected themselves. 

14. Node degree distribution P(k) is the probability distribution of a randomly 

chosen node with degree k. 

15. Similarly, node frequency distribution P(f) is the probability distribution 

of a randomly chosen node with frequency f. 
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16. Finally, node betweenness distribution P(b) is the probability distribution 

of a randomly chosen node with betweenness centrality b. 

The paper by Ke and Yao (2008) is particularly relevant for this research because 

it provides a comprehensive study of children’s word co-occurrence networks. 

Two kinds of networks are considered: accumulative networks that accumulate 

the data over time; and stage networks that model five independent (incremental) 

time-slices of the data. Accumulative networks are built for twelve children’s 

data and stage networks are constructed for four of them (two of whom are also 

modelled in this thesis: Carl and Anne), and their respective mothers. In addition, 

the authors propose the concept of hubs and authorities as measures for nodes’ 

importance, where a hub node has many outgoing links and an authority node has 

many incoming links. 

2.5 Research Problems 

Based on the findings of the literature review, this section describes the research 

problems to be solved. 

Possibly the most basic limitation of any network model is its inability to encode 

the properties of the real system with sufficient accuracy and detail. Models are 

typically developed to be as simple as possible due to lack of knowledge, 

uncertainty or complexity. However, although the latter two are more difficult to 

address, recent advances in data collection, storage and availability has 

significantly increased our knowledge, thereby allowing more detailed models to 

be developed. Data sets of greater breadth and depth can be used to build models 

incorporating more knowledge about the system under scrutiny.  

 Robustness 

Robustness, generally defined as the ability of a system to maintain its function 

in the presence of disturbance, is critical for the reliable operation of real-world 

networks. Since, the operating environment is typically uncertain and may also 

change considerably over time, it is important to consider many types of 

disturbances, in order to measure many dimensions of network robustness. The 

key problem here is that current research only focuses on node and link damage 



Chapter 2 Literature Review 

 

 

32 
 

 

as possible disturbances, but there may be more complex structural disturbances 

in a given context, such as cluster damage, that may affect the system very 

differently.  

 Air Transportation  

Air transportation has received considerable attention by the research community 

in recent years but most studies usually focus on a specific feature, when there 

are in fact multiple dimensions that should be modelled and studied in parallel, as 

this would reveal a more comprehensive picture of the huge complexity in the 

system. In other words, the emphasis of current research is more on depth instead 

of breadth, but it is important to have the breadth before going into more depth. 

For example, Bounova (2009) has used simple (unweighted and undirected) 

networks to model US airlines but these networks are insufficiently detailed for 

some analysis techniques, such as community structure detection. Moreover, 

since the USAN is embedded in space, topology alone cannot be used for the 

reliable detection of community structure, since the effect of space is non-trivial. 

However, no work addresses this issue so far apart from Expert (2011), who 

proposes a spatial null model for accurately detecting community structure in 

spatial networks. Another major issue in the study of networks developing over 

time is evolution. Clearly, systems that are constantly changing need to be 

studied in terms of these changes, in order to understand the dynamics of the 

system over time, at different time scales. However, most research tends to 

underestimate the significance of this important dimension, resulting in poor 

models that only capture a fixed snapshot of the continuous nature of dynamic 

systems. For example, Guimerà (2005) models the traffic in the world-wide 

airport network for a period of one year using a single network.  

Researchers working on airport networks have typically focused on the 

modelling of a national airport network, such as the Airport Network of China 

(Li and Cai, 2004), and the Airport Network of India (Bagler, 2008); or the 

World Airport Network (Guimerà et al., 2005), which is the global network of all 

airports. However, most studies so far have either investigated the evolution of 

the network over a not significantly long time period (Xu and Harriss, 2008; 
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Barrat et al., 2004; Amaral et al., 2000), or have not modelled in detail by 

ignoring link directionality and link weights (Bounova, 2009). Therefore, there is 

clearly a need for a more detailed model of the evolution of a complex airport 

network over a significant time period. The aim is to explore the development of 

the network, in order to expose growth patterns, and changes in structure as well 

as passenger demand. 

 Language Acquisition  

Research on children’s language acquisition that is based on network modelling 

and analysis generally fails to exploit the full potential of network theory, by 

using simple network models and analysis techniques. For example, network 

models often neglect links’ weight or directionality, and the analysis of the 

networks only considers some of the parameters highlighted in Table 2.1, without 

employing more advanced techniques, such as community detection. For 

instance, the main drawback of the network models of Ke and Yao (2008) is that 

they neglect the statistical properties of the input data, such as frequency of co-

occurrence, which are very important in language acquisition. This is a good 

example of a thorough study, which, however, uses an over-simplified network 

model disregarding link weights. In addition, linguistic network models are either 

semantic or syntactic (word co-occurrence networks also model syntax), but not 

both, thereby failing to fuse together these two important properties of language. 

In addition to the network modelling and analysis problems outlined above, a 

second key issue in language is the validation of models of language acquisition, 

such as MOSAIC, which is important for understanding mechanisms of learning, 

and evaluating theories of learning, such as UG and distributional analysis. Based 

on MOSAIC’s previous success in modelling numerous phenomena of language 

acquisition, it is expected that the hypothesis that there will be significant 

similarity between its output and children’ utterances will be accepted. Hence, if 

MOSAIC performs well then there is reason to believe that the nativist theory 

may be inconsistent with empirical data reflecting children’s linguistic abilities.  
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2.6 Research Solutions 

This thesis addresses the problems outlined in the previous section by proposing 

a common methodology to both applied case studies that is based on network 

theory (Fig. 2.8). It is important to note that although the case studies (air 

transportation and language acquisition) appear very different with little in 

common, they can in fact be described and analysed using the same tools from 

network theory, which provide a logical abstraction of a complex system and 

serve to mediate the generality of this research. The following section discusses 

the proposed research solutions in more detail.  

 

Fig. 2.8. Common methodology for air transportation and language acquisition 

based on network theory.  

2.7 Research Methodology  

This section begins by describing the cluster damage method that addresses the 

robustness problem in complex networks. Furthermore, it describes in more 

detail the solutions to the research problems that are common to both domains: 

air transportation and language acquisition. Specifically, detailed network 

modelling, space-independent community structure, and dynamics and evolution 

have been identified as key solutions to the limitations and drawbacks of existing 

approaches that model and analyse complex networks.   
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2.7.1 Cluster Damage 

Cluster damage is a novel method to structurally disturb a network in order to 

measure another dimension of its robustness. A cluster is defined as a group of 

nodes interconnected with links. Note that this is not necessarily a community, 

since community structure requires particularly strong internal and weak external 

interactions maximising modularity, which is not the case for the type of clusters 

defined here.     

2.7.2 Detailed Network Modelling 

The models developed in this thesis are more detailed than existing models in 

both domains in terms of network dimensions. In other words, the networks have 

five dimensions: topology, link weights, link directionality, space and time. 

Topology refers to the structure of the network in terms of the connections. Link 

weights refer to the strength of some type of interaction among nodes. Link 

directionality refers to the directed nature of some relationships, e.g. A - B but 

not B - A. Space refers to the Euclidean distance between airports in the airport 

networks, and to the semantic distance between words in the language acquisition 

networks. Time refers to the dynamics of the networks that occur over a time 

period.        

Network theory offers numerous statistical parameters that usually measure some 

structural property of the underlying network, so the most prominent parameters 

are selected for analysis. Since they are quite general, they are often used across 

many disciplines that exploit the potential of network modelling and analysis. Six 

individual parameters are investigated: number of nodes (N); number of links 

(E); size of Giant Connected Component (GCC); average degree (<k>); 

characteristic path length (L); and clustering coefficient (C). In addition, three 

functions are computed: the in-degree distribution P(kin); the out-degree 

distribution P(kout); and the ranked weight distribution W(r) (Gegov et al., 2011) 

[P3], (Gegov et al., 2012) [P2]. It is worth mentioning that W(r) is an indicator of 

dynamics on the network, as opposed to the other indicators that measure some 

property of the network structure. It was chosen because it contains information 
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about the absolute value of the link weights and every link is explicitly present in 

the distribution. In the case study of air transportation, W(r) is used as a measure 

of the volume of passengers travelling between all connected airports instead of 

the commonly used (cumulative) probability distribution of link weights. 

However, W(r) has been neglected by the linguistic research community in recent 

years, but given its effectiveness in other research domains, such as air 

transportation, it is also expected to reveal useful information about linguistic 

networks, and therefore, it is also used in the case study on language acquisition 

networks. Since networks are a direct reflection of the properties and 

characteristics of the underlying data sets, analysing and comparing these 

networks (using the statistical parameters above) will reveal important 

information regarding the nature of these data. It is worth mentioning that this 

information (patterns or trends, for example) may remain hidden when analysing 

data using standard techniques at the microscopic level, but emerges only 

through the application of network theory at the macroscopic level.   

2.7.3 Space-Independent Community Structure 

In order to find more realistic community structure, Expert’s (2011) null model is 

coupled with the spatial dimension of the networks, producing very detailed and 

accurate information on the hidden community structure within (Gegov et al., 

2012; Gegov et al., to be published) [P4, P1]. The model is able to uncover 

space-independent community structure (as shown in Expert’s paper for the 

Belgian mobile network, compared to the NG null model), and hence, it is 

applied to both of the applied case studies – air transportation and language 

acquisition – each consisting of 18 network snapshots (representing topology and 

link weights). The inputs are the adjacency matrix Aij (encoding the snapshot), 

the distance matrix Dij (containing the Euclidean distance between all pairs of 

airports, or the semantic distance between pairs of words), the importance vector 

Ni (holding the passenger flow at each airport, or the occurrence frequency of a 

word), and the bin size, which is used to bin the data from the distance matrix. In 

order to obtain fair results, it is necessary to select a bin size such that the bins 

are sufficiently populated, without losing too much spatial resolution.  
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The bin sizes used are described in the respective chapters. The output of 

Expert’s (2011) null model is the modularity matrix: 

            
     (2-5) 

which is then fed into a community detection algorithm (Jutla and Mucha, n.d.) 

that searches for a network partition, maximising modularity. It is worth 

mentioning that this is the same algorithm used by Expert for the Belgian mobile 

network. The output of the community detection algorithm is a vector, assigning 

each airport/word to a specific community in which all members have 

particularly strong interactions in terms of passenger flows/co-occurrences, given 

their spatial separation. It is worth mentioning that since community structure 

relates to the cohesiveness of certain groups of nodes in terms of their strong 

internal relationships, link directionality does not play a major role in the 

identification of such groups (communities), as the main emphasis is on the 

strength and not the directionality of the relationships. Therefore, most 

community structure methods are designed to work with undirected networks, 

and for this purpose, all the networks presented in this thesis are converted from 

directed to undirected, for the detection of community structure. In other words, 

unidirectional and bidirectional links are replaced by undirected links that are 

weighted with the sum of the weights on the directed links.  

2.7.4 Dynamics and Evolution  

To investigate the time dimension, the model proposes eighteen network 

snapshots for each applied case study (air transportation and language 

acquisition), partitioned into three discrete developmental stages consisting of six 

networks (Gegov et al., 2011) [P5]. In other words, for air transportation, long-

term network evolution is captured by the stages and short-term network 

dynamics are captured by the snapshots within a stage. Note that in the language 

acquisition networks the snapshots within a stage are used to study the 

characteristics of the individual children, and aggregated stage networks are built 

to model the average child’s linguistic development over time. Aggregated 
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annual networks are not built for the USAN since they would only provide a 

more coarse-grained resolution on the seasonal flows within the network. 

2.8 Summary 

This chapter reviewed recent literature on complex networks, highlighting 

research problems in the field, and proposing solutions in the form of 

methodologies. The main idea is to use more advanced network modelling and 

analysis techniques to understand complex systems at an abstract level.
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Chapter 3                                      

Robustness to Cluster Damage 

This chapter describes a novel approach to investigate network robustness by 

damaging entire clusters of nodes. A partial network model of the Internet at the 

Autonomous System level is presented. The robustness of the network to node and 

cluster damage is discussed. 

This chapter is motivated by the fact that there is a large body of research on the 

error and attack tolerance of complex networks to node or link damage but not 

cluster damage (Gegov, 2009) [P6]. For example, in the Internet it may be the 

case that instead of a single server or communication channel, an entire local area 

network is damaged, either accidentally (error) or by  intention (attack).  

3.1 Methodology  

The standard method to test robustness is to iteratively remove network 

components according to various strategies, such as errors and attacks, which 

simulate random failure and targeted damage to components, respectively. This 

chapter proposes the use of clusters for the components being removed. The 

attacking strategy targets the most central clusters, i.e. those which are 

responsible for keeping the network interconnected. Here, it is necessary to 

define Cluster Betweenness Centrality (CBC), which is equivalent to node 

betweenness centrality in a network where each cluster is represented by a single 

node and all inter-cluster links are represented as normal links. Robustness is 

defined by the network’s ability to maintain its function, which is measured at 

each iterative step.  

In order to properly assess the robustness of a network it is essential to define 

first the type of damage being considered and the function of the network that is 

of primary interest. In this chapter, the severity of the damage caused by the 

proposed cluster failure type is measured by the number of nodes removed from 

the network. Since more important clusters are often larger (in terms of nodes), a 
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cluster attacking strategy will decrease the network size very rapidly compared to 

a random strategy. Hence, it is essential to compare results consistently by using 

the number of damaged nodes as a measure of the level of damage caused. The 

general level of tolerance (robustness) is measured by three parameters: number 

of links E; size of Giant Connected Component (GCC); and average geodesic 

length L.  

By definition, robustness is the ability of a system to maintain its function in the 

presence of disturbances. Hence, in the context of a network such as the Internet, 

the most fundamental function is to remain efficiently connected so robustness 

can be defined as the level of connectivity in the presence of structural damage 

(simulated by removing network components). The average geodesic length L is 

a good indicator of efficient connectivity as it increases to a maximum (the 

breaking point) as the network is progressively damaged, and then decreases 

when the GCC breaks up into smaller disconnected components. Therefore, the 

breaking point can be considered as the minimum connectivity for satisfactory 

network function. Based on this, specific threshold robustness is defined by the 

level of damage necessary to cause unsatisfactory network function, i.e. the 

percentage of nodes removed at the breaking point.  

The cluster damage (errors and attacks) methodology is summarised in the 

following algorithm: 

1. Partition network into clusters. 

2. Build network of clusters (for cluster attacks only). 

3. For cluster errors: select a cluster at random.  

For cluster attacks: identify node with highest betweenness centrality in 

network of clusters.  

4. Remove corresponding cluster in original network. 

5. Measure network parameters. 

6. Go to step 3 and repeat until the network is fragmented.    
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The network is first divided into similarly-sized modules (step 1) using spectral 

partitioning (Newman, 2006). This technique recursively bisects the network into 

equally-sized sub-networks by minimising the number of links that are cut. 

Therefore, the end result is a network partition into clusters that tend to have few 

links between them. Since the objective of this chapter is to present an 

application of the cluster damage methodology, it is not necessary to find the 

optimum network partition into meaningful communities, and therefore this 

spectral partitioning approach is sufficient in this context. 

3.2 The Internet 

The Internet is a real-world technological network. Specifically, it is a global 

network of interconnected computer networks called Autonomous Systems (ASs) 

(Fig. 3.1). Since the entire network is very large, it is usually studied at the AS 

level, as opposed to the individual computer level. For this theoretical case study, 

the network model was constructed using Internet traffic data that are publicly 

available from CAIDA (http://www.caida.org/home/). Only a small part of the 

Internet (1390 ASs) is captured by the network model due to the specific and 

partial traffic data that were used. However, this small snapshot represents the 

structure of the Internet well, due to its fractal nature. In the network model, a 

node represents an AS: a network under a single admin and routing policy; and a 

link represents a direct channel for traffic exchange. 

 

Fig. 3.1. Network of Autonomous Systems. 
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3.3 Results 

By tuning the recursion depth and the quality of partitions in the spectral 

partitioning algorithm, it is possible to obtain many different partitions into 

clusters using the same network model. Here, the model network is split into 

seven different partitions, each composed of a different number of clusters that 

have modularity values presented in Table 3.1. Note that the highest modularity 

of 0.7747 (very high for a real-world network) was obtained for 74 clusters. The 

lowest possible value of 0 was obtained for 1390 clusters, i.e. when every node is 

a cluster. For each partition (into a different number of clusters), a cluster is 

represented by a single node and inter-cluster links are represented by ordinary 

links, in a new network of clusters (step 2). This network is used to identify the 

most central modules in the original configuration (step 3) in order to target them 

first when simulating cluster attacks (step 4). 

Table 3.1. Summary of different network partitions into clusters.    

Clusters Modularity 

6 0.4925 

33 0.7522 

74 0.7747 

110 0.4844 

152 0.3773 

182 0.3248 

229 0.2648 

1390 0 

 

The highest modularity, attained for a partition into 74 clusters, implies that this 

is the most meaningful of the obtained partitions. Therefore, this particular 

partition is used to test the general robustness of the network to cluster damage. 

Figs. 3.2-3.4 show how the number of links E, the average geodesic L, and the 

Giant Connected Component (GCC) behave as a function of damage in terms of 

nodes removed from the network, i.e. the remaining nodes in the x-axes decrease 

from left to right as the network is progressively damaged. Node errors refers to 

the random removal of nodes; node attacks refers to the targeted removal of 

nodes; cluster errors refers to the random removal of clusters; and cluster attacks 

refers to the targeted removal of clusters. In addition, modularity (Table 3.1) and 
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specific threshold robustness (defined earlier) are presented in Figs. 3.5 & 3.6 as 

a function of the number of clusters obtained from the seven partitions. 

 

Fig. 3.2. Links E as a function of nodes N for 74 clusters.  

Fig. 3.2 shows how the number of links (AS connections) diminishes as the 

network becomes increasingly damaged. Clearly, the network best maintains its 

connections under cluster errors and attacks (equally well), which has two 

implications. Firstly, AS connections appear to be more robust to cluster damage 

(especially attacks). Secondly, AS connections appear to be equally robust to 

both cluster errors and attacks, suggesting that the betweenness of clusters is 

independent of the number of their internal links. In other words, there is no 

correlation between cluster importance and size (in terms of connections). It is 

assumed that the node errors strategy knocked out a high-degree node at an early 

stage, which is represented by the sudden dip in the blue curve in the top left. The 

node attacking strategy causes the most severe damage to the AS connections.           
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Fig. 3.3. Average geodesic L as a function of nodes N for 74 clusters.  

Fig. 3.3 displays how the average geodesic L behaves as the network becomes 

increasingly damaged. Node and cluster errors do not appear to affect L 

significantly, which means that random failures are unlikely to affect the 

efficiency and function of the Internet. This is in line with a large body of 

research in the field of Internet robustness. However, target attacks (by hackers 

for example) cause severe damage to the Internet, especially when they target 

specific critical network components. This is demonstrated by the two peaks in 

the attack curves, which represent the point where the network becomes 

fragmented into multiple small disconnected components. Note how the focused 

node attacks break-up the network very early on compared to the more 

distributed cluster attacks that disconnect the network at a much later stage after 

many more nodes have been removed.     
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Fig. 3.4. Giant Connected Component GCC as a function of nodes N for 74 clusters.  

Fig. 3.4 shows how the GCC decreases as the network becomes increasingly 

damaged. The trends are similar to those for the number of links E and therefore 

suggest a relationship between GCC and E. In other words, the number of links is 

positively correlated with the number of nodes as the network is damaged. This 

means that node/cluster errors/attacks knock out components with a similar ratio 

of nodes to links.   

  

Fig. 3.5. Modularity as a function of the number of clusters.  
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Fig. 3.5 presents the modularity Q of the seven network partitions into clusters 

(the exact values are shown in Table 3.1). Since spectral partitioning is not 

intended for optimising Q, its maximum value and corresponding partition is not 

discovered, but this is irrelevant for the purpose of this chapter. Fig. 3.5 is 

intended to show the range of the discovered partitions in order to identify a 

possible relationship between cluster modularity and robustness to cluster 

damage. The highest Q is obtained for a network partition into 74 clusters, after 

which Q predictably decays for partitions into more clusters.  

   

Fig. 3.6. Robustness to cluster attacks as a function of the number of clusters.  

Fig. 3.6 depicts the specific threshold robustness of the Internet as a function of 

the seven network partitions into clusters. This plot refers to the cluster attacking 

strategy, since the peak in L is reached after a considerable amount of damage, 

and hence, a significant robustness is observed. The node attacking strategy is not 

shown as the network is fragmented too early, resulting in 1% robustness, i.e. if 

1% of nodes are attacked then the network is fragmented. Moreover, there is a 

negative near-linear relationship between robustness and the number of clusters, 

as shown by the smooth curve in Fig. 3.6. In other words, robustness to cluster 

damage increases linearly with a decreasing number of clusters. Basically, fewer 

clusters are relatively larger so then the cluster damage is less focused, resulting 

in better robustness.  
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It is important to highlight that there is no meaningful observed relationship 

between modularity and robustness (see Fig. 3.7). This implies that cluster 

modularity does not affect robustness to cluster attacks. However, Kitano (2004) 

has shown that modularity does in fact facilitate network robustness to other 

types of damage, such as node damage. Therefore, this result suggests that the 

current theory cannot be extended to new types of damage, such as cluster 

attacks. This is an interesting finding but more results are necessary in order to 

draw firm conclusions. For example, detecting more meaningful clusters by 

applying more advanced community detection methods may reveal new trends in 

the analysis of robustness to cluster damage presented in the current chapter. In 

this context, chapters 4 and 5 present the application of one such novel 

community detection method that is able to identify communities based on the 

level of their internal interactions and the spatial distances between nodes.  

 

Fig. 3.7. Robustness to cluster attacks as a function of modularity. 

3.4 Summary 

This chapter presented a novel methodology for damaging clusters in order to 

measure a new type of network robustness. The methodology was applied to a 

simple model of the Internet at the Autonomous System level to serve as an 

example that validates the theory. The results suggest that the Internet, and 
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perhaps all networks, are less robust to more targeted attacks that seek to 

maximise their damage. 
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Chapter 4                                                       

Air Transportation Networks 

This chapter presents the first applied case study in this thesis on the US Airport 

Network. US air travel and migration are introduced. An evolution-based model 

of the network is proposed. The general properties and the community structure 

of the network are presented.    

4.1 Domain Description 

This chapter presents a case study of a continuously developing air transportation 

network that is vital for the mobility of millions of passengers per day. The 

USAN was chosen for several reasons. Firstly, it is large and growing, so it is 

clearly a good candidate for studying network evolution. Secondly, there are few 

detailed models that trace the network for more than a few years. Thirdly, there is 

a large quantity of available data, dating back to 1990, when the network looked 

very different to what it is today.  

Over the past few decades air travel in the US has changed considerably. Apart 

from the obvious increase in the number of airports, connections and passengers, 

the structure (topology) of the USAN has been transformed, thereby affecting all 

aspects of air travel. Up to the 1970s the USAN had mainly a hub-and-spoke 

architecture: flights coming from many origins (spokes) converge to the airport 

(hub) from which new flights start toward other destinations (spokes). The hub-

and-spoke architecture is characterised by a high spatial network concentration, 

and a time co-ordination of flights at the hub according to a flight wave concept 

(Burghouwt and de Wit, 2005). The ideal wave is the set of arriving and 

departing flights such that for each arriving flight there is a departing one 

allowing travellers to get an easy transfer to the final destination, and the 

integration of air services at the hub (e.g. baggage transfer). The main 

disadvantage of the hub-and-spoke architecture for passengers is that they would 

have to change flights at the hub, taking more time to reach their final 
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destination. Furthermore, passengers travelling between other destinations may 

experience poor service, including infrequent flights and many changes (Hsu and 

Wen, 2003). As a result, a number of low-cost airlines emerged in the 1980s, 

providing point-to-point direct services between poorly connected destinations. 

One example is JetBlue, which is still considered very successful even when 

compared against larger airlines, such as American Airlines and United Airlines 

(Bounova, 2009). Consequently, the resulting USAN topology is a combination 

of both hub-and-spoke and point-to-point architectures. 

Migration can be thought of as population redistribution within a country or 

between countries. It is often linked to an asymmetric distribution of employment 

and affluence: people are attracted to areas with better job markets, services and 

quality of life. These aspects relate to the concept of city competitiveness, in 

other words, attractive cities (or regions) are efficient, accessible and offer 

economic opportunities to both investors and workers (Bulu, 2012; 

Chorianopoulos et al., 2010; Camagni, 2002; Cervero, 2001). In terms of 

accessibility, attractive areas have efficient transport systems mainly in terms of 

external connections linking those areas to other parts of a large territory. In this 

context, air services can play an important role because they provide fast links 

among distant locations, even though there may be alternative forms of 

transportation. In large countries, such as the US, the domestic airport network is 

a key factor in facilitating domestic migration, i.e. the movement of people 

within the United States. Particularly, migrants are defined as people moving 

among states (inter-state migration). Incoming migration (in-migration) is 

defined as movements into an area during a given period, while outgoing 

migration (out-migration) is defined as movements out of an area during the 

same period. The fusion of air transportation with migration is an important 

novelty in the field of transportation since migration is a driving factor behind 

many passenger flows in an airport network.  

4.2 Data Set 

Firstly, it is necessary to decide which specific interactions in the airport network 

are of particular interest. For example, these can be the number of passengers 
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flying between airports, the number of aircraft flying between airports, or quite 

possibly any other metric describing the link between a pair of airports. Then, a 

long enough time interval is chosen, such that there are available data to be 

modelled, and the scale of the observed evolution is maximised. The chosen 

interval is partitioned into equal time slices, depending on the required level of 

granularity. In the case where a long interval and high granularity result in an 

unfeasible number of time slices, a sample of those can be selected for the actual 

modelling.  

The number of passengers flying from an origin to a destination airport was 

chosen as the variable for this study, because it is the common choice in the 

literature, and it is perhaps the most influential factor in the expansion and 

organisation of the network. The longest possible time period – from 1990 to 

2010 – was selected, based on the availability of data for this period. To 

investigate seasonal variation within a given year and to build more precise 

models of the network, time slices of length two months offer a good balance, so 

a year is divided in six equal parts. To reduce the huge amount of modelling (120 

networks) without losing too much information, only three years are modelled in 

this study: 1990, 2000, and 2010. These years capture the oldest, the 

intermediate, and the newest, open source states of the network. Data were 

obtained from the Bureau of Transportation Statistics (BTS) (Bureau of 

Transportation Statistics, n.d.), of the US Department of Transport. More 

specifically, data contained monthly records of origin-destination pairs of 

domestic airports and the number of passengers carried. 

4.3 Methodology 

The methodology consists of two parts: Network Modelling and Network 

Analysis. The former describes how the USAN time-series model is developed 

and the latter presents the network analysis techniques that are used to quantify 

various properties of the networks. 
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4.3.1 Network Modelling 

To investigate the evolution of the USAN from 1990 to 2010 the network is 

modelled in a discrete time-series consisting of three stages: 1990, 2000 and 

2010. Each of those is further split into six bi-monthly intervals, in order to 

capture finer temporal detail and to explore seasonal variations in the network. 

Hence, the network model consists of 18 network snapshots depicting topology 

and traffic for a two-month time-slice. Each network is defined by a set of nodes 

(the airports) and a set of directed, weighted links (the flight connections) 

representing topology. Link directionality reflects the difference in passengers 

flying from A to B and vice versa. Links weight represents the total number of 

passengers that flew on that connection within the specified time-slice. Each 

network includes a number of isolated nodes and self-loops. Isolated nodes 

denote airports that handled aeroplane departures and/or arrivals, but no actual 

passengers. Self-loops occur when an aeroplane takes off and lands at the same 

airport for some reason, such as an emergency.  

Using network modelling, both dynamics on the network in terms of traffic 

fluctuations and dynamics of the network in terms of topology fluctuations are 

studied. The more recent structure of the network (reference year: 2010) is 

compared with migration patterns among the four US macro-regions (West, 

Midwest, Northeast and South), in order to identify possible relationships. Fig. 

4.1 shows a map of the US regions and states, including the locations of the main 

airports in terms of 2010 passenger flows. 
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Fig. 4.1. US macro-regions and major airports in 2010 (Mackun et al., 2011). 

4.3.2 Network Analysis 

The analysis of the USAN involves simple statistical parameter analysis and 

more complex community structure analysis. The idea of the former is to identify 

general network properties of the USAN as a whole, such as the average number 

of airport connections <k>. The latter exposes specific traffic patterns at the 

airport level, thereby revealing deeper individual characteristics. For example, if 

New York and Los Angeles happen to be members of the same community, then 

this implies that there is significantly more air traffic between them than 

expected, given their distance apart.  

 Network Parameters 

In the USAN model, N is the total number of US airports; E is the total number 

of one-way domestic connections; GCC is the number of airports in the largest 

connected subnetwork; <k> is the average number of domestic connections per 

airport; L is the average number of flights that need to be taken to get from A to 

B; and C is the expected proportion of airport neighbours (all connected to the 
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airport) that are connected themselves. The latter two of those are calculated for a 

simple (unweighted and undirected) version of the network due to computational 

complexity but most connections are bidirectional anyway so the results should 

be fairly accurate. P(kin) and P(kout) are the probability distributions of a 

randomly chosen airport having kin incoming and kout outgoing connections, 

respectively. By extracting the first two data points (0 and 1 connection) and 

taking them as separate parameters p and q, the degree distributions are well-

approximated by a power-law fitting function of the form: 

         (2-6) 

where a is the scaling factor, k is in/out-degree, and n is the exponent. Fig. 4.2 

shows an example in-degree distribution for the Nov-Dec 2010 snapshot of the 

USAN. 

  

Fig. 4.2. In-degree probability distribution for Nov-Dec 2010 snapshot of the 

USAN. 
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Rank r 

W(r) is the rank-ordered passenger distribution on all network connections. For 

systematic analysis across all networks, W(r) is normalised to be in the range (0, 

1]. This function is well-approximated by a logarithmic fit of the form: 

              (2-7) 

where b is the scaling factor, Ln is the natural logarithm, r is the rank, and c is the 

intercept. In this context, b and c are the parameters that define the linear 

transformation needed to map the standard natural logarithm function onto the 

observed data. Therefore, they have no practical meaning but they are studied 

here in order to measure the change in the passenger distributions on  different 

network snapshots. Fig. 4.3 shows an example W(r) plot for the Nov-Dec 2010 

snapshot of the USAN. 

 

 

Fig. 4.3. Ranked weight (normalised frequency of passengers) W(r) for Nov-Dec 

2010 snapshot of the USAN. 
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networks are analysed in terms of six individual parameters (denoted by capital 

letters and <k>), and ten function parameters (denoted by lower case letters). In 
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addition, the correlation coefficient R – which measures how well the best-fit 

approximates the real data – is calculated. The individual parameters are 

calculated using Network Workbench; the degree distributions are fitted using 

the EzyFit toolbox for Matlab; and the ranked weight distributions are fitted in 

SPSS. For each parameter and for each of the three years (1990, 2000, and 2010), 

the mean parameter value and the Standard Error of the Mean (SEM) of all six 

network snapshots were calculated. The SEM indicates the amount of bi-monthly 

variation.  

 Community Structure 

Since distance is expressed in terms of degrees of arc length where one degree is 

approximately 60 miles, the largest distance in the distance matrix is 149. The 

bin populations and the deterrence function were checked for bin sizes 0.1, 1, 2 

and 3, and 1 was chosen as it provided balanced bin populations and a smooth 

deterrence function. 

There is potentially a large number of nearly-optimal partitions (Good, De 

Montjoye and Clauset, 2010), and therefore, a non-deterministic implementation 

of the algorithm is applied twice to each USAN network snapshot, in order to 

discover better partitions and to check their stability (similar partitions for the 

same snapshot). This is achieved using Normalised Variation of Information 

(NVI) (Meila, 2003), which measures the distance between two partitions in the 

range 0-1 (0 if they are identical, approaching 1 if they are very different). The 

average NVI values across the six snapshots for the years 1990, 2000 and 2010 

are 0.40, 0.34 and 0.26, respectively. These values indicate that the community 

detection is considerably stable.  

4.4 Results 

Over the past twenty years, the USAN experiences dramatic growth: airports 

triple from about 350 to over 1,100, and direct connections double from 5,000 to 

10,000. 
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4.4.1 Network Parameters 

Figs. 4.4-4.19 illustrate the trend of each parameter average over the twenty-year 

period, and the vertical error bars (where visible, due to higher variance) indicate 

the SEM. Figs. 4.4-4.9 present the six individual network parameters in green. 

Figs. 4.10-4.17 show the eight degree distribution parameters in blue for in-

degree and orange for out-degree. Figs. 4.18 and 4.19 report the ranked weight 

distribution parameters, b and c, in red. The results are discussed in section 6.1.1. 

                

Fig. 4.4. Number of airports as a 

function of time. 

Fig. 4.5. Number of connections as a 

function of time.

 

                

 

Fig. 4.6. Number of connected 

airports as a function of time. 

Fig. 4.7. Average connections per 

airport as a function of time. 
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Fig. 4.8. Average geodesic length as a 

function of time. 

 

Fig. 4.9. Clustering coefficient as a 

function of time.

 

      

 

Fig. 4.10. Probability(0 connections 

in) as a function of time. 

Fig. 4.11. Probability(0 connections 

out) as a function of time.

 

 

19
90 

20
00 

20
10 

19
90 

20
00 

20
10 

1
9
9
0 

2
0
0
0 

2
0
1
0 

1
9
9
0 

2
0
0
0 

2
0
1
0 

A
ve

ra
ge

 g
eo

d
es

ic
 le

n
gt

h
 

1990   2000        2010 

C
lu

st
e

ri
n

g 
co

ef
fi

ci
en

t 

1990   2000        2010 

P
ro

b
ab

ili
ty

(0
 c

o
n

n
ec

ti
o

n
s 

in
) 

         1990          2000        2010 

P
ro

b
ab

ili
ty

(0
 c

o
n

n
ec

ti
o

n
s 

o
u

t)
 

         1990          2000        2010 



Chapter 4 Air Transportation Networks 

 

 

59 
 

 

      

 

Fig. 4.12. Probability(1 connection in) 

as a function of time. 

Fig. 4.13. Probability(1 connection 

out) as a function of time.

 

      

 

Fig. 4.14. Scaling factor ain as a 

function of time. 

Fig. 4.15. Scaling factor aout as a 

function of time.
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Fig. 4.16. Exponent nin as a function 

of time. 

Fig. 4.17. Exponent nout as a function 

of time.

 

      

 

Fig. 4.18. Scaling factor b as a 

function of time. 

Fig. 4.19. Intercept c as a function of 

time.

4.4.2 Community Structure 

Figs. A.1-A.18 (see Appendix) represent the USAN at various stages over time, 

where each airport is denoted by a circle with a surface area that is directly 

proportional to the passenger flow (inbound and outbound passengers), and the 

colour represents the community. Airport connections and airport-to-airport 

flows are not shown for clarity, and colour is not consistent across the networks 

as it is only used to differentiate between different communities in a single 

network (the software used does not allow the user to consistently assign colours 
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to communities). In other words, the figures depict the size of airports by 

passengers handled, and the groups of identically coloured airports that have 

particularly strong passenger flows between them. Alaska, Hawaii and the 

Mariana Islands are not shown here but they represent a very small fraction of the 

network. The airport in the bottom right is for the Virgin Islands. In the following 

analysis of results, the term hub is used to describe an airport that handles a high 

volume of passengers, and the terms community and cluster are used 

interchangeably.  

 Year 1990 

In Jan-Feb (Fig. A.1) there is a well-defined cyan community of west-coast 

airports, such as Los Angeles (LA) and San Francisco, together with Chicago, 

indicating high passenger mobility between those locations. In Fig. A.2 the 

network for Mar-Apr implies a particularly large community (light-green) of the 

main US airports. This means that there were particularly active interactions 

between all the light-green locations during this time, in contrast to the previous 

image for Jan-Feb. May-Jun in Fig. A.3 displays a geographically clustered set of 

communities in the east, together with the largest community in red which spans 

almost the entire US. In other words, the geographically clustered communities 

represent the regions where passengers mainly flew locally, and the red 

community refers to long-distance passengers. Jul-Aug (Fig. A.4) shows a very 

inter-mixed network, with significant long-distance travel suggested by the 

spatial spanning of the communities. However, the cyan Dallas cluster is an 

exception, as it covers only Dallas and small nearby airports. Sep-Oct (Fig. A.5) 

sees an overall decline in air travel flagged by the noticeable reduction in general 

size of circles, matching the end of the tourist season, and two large communities 

in blue and green. In Fig. A.6 Nov-Dec has no major change in traffic patterns 

apart from the fact that Chicago (a key US hub) is taken over by the spanning 

blue community, implying that it was used extensively for air travel, particularly 

among these blue regions. 
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 Year 2000 

Jan-Feb in Fig. A.7 displays a prevailing cyan community of most major airports 

dominating the west and a large part of the rest of the US. In Fig. A.8, Mar-Apr 

displays a very similar pattern but the number of passengers has increased, which 

is reflected by the larger circles. In particular, yellow Atlanta (ATL) is clearly the 

leading US airport in terms of passengers handled during this period. May-Jun in 

Fig. A.9 suggests that Dallas and Chicago have separated from the largest 

community in the previous image, forming their own community (in blue) with a 

few more airports in the north-east. Again, Atlanta is nearly the only member of 

its yellow cluster, but its size implies that it plays the role of the main hub in the 

US, connecting many of the other regions. This is explored in more detail in the 

discussion section. Jul-Aug (Fig. A.10) appears similar to the networks for Jan-

Apr, with a main green cluster covering most of the US and Atlanta still on its 

own. In Fig. A.11 Sep-Oct the number of passengers has predictably decreased. 

The east appears to be mixed while the west, Dallas and Chicago are all part of 

the same red cluster. Nov-Dec in Fig. A.12 is similar to the previous network for 

Sep-Oct. 

 Year 2010 

Fig. A.13 Jan-Feb has two large clusters in red and green covering the west and a 

large part of the US, respectively. Atlanta (blue) is still the largest hub but 

passenger demand is low due to the low season. Mar-Apr in Fig. A.14 shows an 

increase in passengers and a clearly dominating red community in the west. The 

south is covered by the pink Dallas cluster, and yellow Atlanta and light-green 

Chicago are the first and second largest hubs, respectively. May-Jun in Fig. A.15 

is different in two respects. Firstly, Chicago has formed a yellow cluster covering 

the south-west and the east, and secondly, orange Dallas has separated from the 

south cluster, so it has become more of a long-distance travel airport than in the 

previous two months. Atlanta is still the largest airport by far, providing the 

connections for many more passengers than any other airport in the US. Jul-Aug 

(Fig. A.16) is very similar to May-Jun. This means that there is a particularly 

high volume of travellers among the east coast, the west coast and Chicago. Sep-
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Oct (Fig. A.17) has a good mix of many clusters, suggesting that during these 

months there has been more long-distance travel within the US. The green, 

yellow and blue communities are particularly well spread out, highlighting the 

extent of long-range travel. Nov-Dec (Fig. A.18) is similar to the previous two 

months but now the Chicago and LA clusters have merged again (see May-Jun 

and Jul-Aug), forming one of the two largest clusters (red and green). 

4.5 Summary 

This chapter presented the first applied case study on the US Airport Network. 

The key contribution of this chapter is the first application of space-independent 

community detection in air transportation. Specifically, Expert’s method found 

high-resolution non-trivial communities of airports with particularly high-traffic 

internal connections. In addition, a comprehensive study of US air travel in the 

last two decades revealed detailed trends and relationships among US airports. 
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Chapter 5                                      

Language Acquisition Networks 

This chapter presents the second applied case study on language acquisition 

networks. The main types of linguistic networks are introduced. A development-

based model of the networks is proposed. The general properties and the 

community structure of the networks are presented.    

5.1 Domain Description 

As discussed in the literature review, there are three main types of linguistic 

networks: co-occurrence, syntactic and semantic. Since the co-occurrence 

network is more general than the latter two in the sense that it can be used to 

extract both syntactic and semantic content, it is more suitable for modelling 

language at a high level. This is in line with the main goal of this chapter, which 

is to provide evidence that MOSAIC is a good model of language acquisition. 

The main novelty here is the formal validation of MOSAIC that is based on co-

occurrence network analysis. In addition, the relationship between mothers and 

their children is also investigated. Since English is a word-based language, the 

most meaningful linguistic chunks are words, and therefore, word co-occurrence 

networks are used to model language in this thesis. These networks are easy to 

build, simple to understand, and contain a lot of encoded information that can be 

obtained with suitable analysis techniques. Specifically, a word co-occurrence 

network is defined by a set of nodes representing words (the vocabulary), and a 

set of directed links representing the flow of words within utterances, i.e. these 

networks show how words are linked in sentences in terms of the order of 

occurrence. The key idea is that when large linguistic data sets are modelled, the 

statistical properties of the data emerge in the model, which aggregates all pairs 

of adjacent words into a network. 

Network analysis is expected to reveal interesting new insights such as trends and 

patterns in children’s distributional analysis of language, which is reflected by 
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their own linguistic production. In addition, the detection of community structure 

has not yet been applied to linguistic networks and should expose specific 

linguistic properties in terms of the clustering of frequently co-occurring words. 

Another key point is the fact that standard community detection methods are only 

suitable for non-spatial networks and although co-occurrence networks fit this 

requirement it is possible to extend them into a non-physical space by 

introducing an additional parameter describing a non-physical distance between 

words. For example, apart from the frequency of co-occurrence, the links can 

also be weighted by the semantic distance between words, thereby incorporating 

a second dimension of information within the network. In other words, the co-

occurrence network describing syntax can be extended to also describe 

semantics. Then, the semantic distance plays the role of a spatial distance for the 

purposes of the community structure model by (Expert et al., 2011), which finds 

communities based on three characteristics of the networks: topology (co-

occurrence structure), link weight (frequency of co-occurrence), and spatial 

separation (semantic distance).  

5.2 Data Sets  

This section describes four sources of data: mothers, children, MOSAIC and the 

baseline.  

5.2.1 Mothers and Children 

The mothers’ and the children’s data come from the Manchester corpus of the 

CHILDES database (Theakston et al., 2001; MacWhinney, 2000), which holds 

large files of logged conversations between mothers and their children, produced 

while they are interacting at home. Over a significant developmental time period, 

the children are regularly visited by an experimenter that records all the 

interactions for a fixed time period. The utterances are recorded on audio tapes 

that are transcribed to text files by keeping all clearly audible utterances and 

ignoring anything inaudible. The children’s files are partitioned into three 

discrete, non-overlapping stages of development, and all the files for a given 

stage are combined to produce three data sets: stage 1, stage 2 and stage 3. The 
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ages of the children at the start of the stages are presented in Table 5.1. For each 

mother, the files at the three stages are combined to produce just one data set, as 

their language should remain fairly stable.  

Table 5.1. Age of children at start of stages in years;months.days.  

 Stage 1 Stage 2 Stage 3 

Ann 1;10.7 2;3.20 2;8.24 

Ara 1;11.12 2;1.28 2;4.20 

Bec 2;0.7 2;2.22 2;5.8 

Car 1;8.22 1;11.12 2;1.25 

Dom 2;1.11 2;4.4 2;9.19 

Gai 1;11.27 2;2.12 2;4.28 

5.2.2 Model Of Syntax Acquisition In Children 

Model Of Syntax Acquisition In Children (MOSAIC) is a computer model of 

language acquisition that simulates the development in children’s linguistic 

capabilities (Freudenthal, Pine and Gobet, 2006). MOSAIC uses distributional 

analysis to capture precise statistical properties in child-directed speech, such as 

the location of specific word classes within a sentence. It takes as input 

transcribed utterances and learns to output progressively longer utterances that 

can be directly compared to children’s utterances over their early linguistic 

development. MOSAIC is based on a discrimination network consisting of nodes 

connected by test links. The network always has an empty root node but the other 

nodes hold words or phrases. Links define the difference between the contents of 

two nodes. The model encodes utterances by parsing them left-to-right. As the 

network receives input it creates new nodes below the root. Level 1 nodes (just 

below the root) are primitive nodes. As more input is received, new nodes are 

added at deeper levels. The model has two learning mechanisms. The first, based 

on discrimination, adds new nodes and links to the network probabilistically. The 

second, based on similarity, adds generative links between nodes holding phrases 

encountered in similar contexts. MOSAIC is an extension of CHREST (Chunk 

Hierarchy and REtrieval STructure), which is in the EPAM (Elementary 

Perceiver And Memoriser) group (Feigenbaum and Simon, 1984). CHREST 

models have been successful in simulating novice–expert differences in chess 
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(Gobet and Simon, 2000), memory for computer programs, and language 

acquisition (Freudenthal, Pine and Gobet, 2001; Croker, Pine and Gobet, 2000).  

 Example 

An empty network receives the utterance did he go so the first input is the word 

did. As the network is empty there are no test links and the model therefore 

creates a test link and a node under the root node (the model is learning the 

word). Now the new node and test link both hold did. The next input is he and 

the model checks the links from the root but since did and he are different the 

model now creates a second link and node below the root that encode the word 

he (similarly for go). Fig. 5.1 shows the network at this stage. 

 

 
 

Fig. 5.1. MOSAIC network after one appearance of did he go (Freudenthal, Pine and 

Gobet, 2006). 

If the network receives the same utterance once again, it finds a link for did (the 

model recognises the word), follows it down, and moves on to the next input he. 

The network now considers test links originating from the did node but as there 

are none and as he has already been learnt as a primitive, a new test link and node 

is created below the did node. The link holds the word he and the node holds the 

phrase did he. Next, the network recognises go but does not learn it since there is 

no input remaining. When the same utterance is presented a third time, the model 

parses it until reaching the did he node and finds that there is no go link, so it 

creates one under the did he node, thereby recording the fact that it has seen the 

utterance did he go. In addition, it also records that he has been followed by go 

into the primitive node he. Hence, on this pass the model has encoded that did he 

has been followed by the word go, as well as the fact that he has been followed 

by the word go. Fig. 5.2 shows the network at this stage. 
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Fig. 5.2. MOSAIC network after three appearances of did he go (Freudenthal, Pine 

and Gobet, 2006). 

Suppose the model now sees the phrase he walks. It first recognises the word he. 

When it reaches walks it tries to create a new test link under he. However, there 

is no primitive walks node so the model creates one. When seeing the phrase he 

walks again, it creates the test link walks (and node he walks) below the he node. 

Now the he node has two links encoding that he has been followed by go and 

walks. Fig. 5.3 shows the network at this stage. 

 

 



Chapter 5 Language Acquisition Networks 

 

 

69 
 

 

 
 

Fig. 5.3. MOSAIC network after three appearances of did he go and two 

appearances of he walks (Freudenthal, Pine and Gobet, 2006). 

Even though in the example so far consecutive nodes differ by only one word, 

the model can also represent larger phrases as a single unit. If the model in Fig. 

5.3 were to learn the word does and then sees does he go, it can create a does he 

go node below the does node. Since the model already has a node encoding he 

go, it can recognise this phrase as one unit. This chunking mechanism enables the 

model to learn frequent phrases quickly.  

In the above example nodes are always added when possible, but in the actual 

model the addition of nodes is determined by a Node Creation Probability (NCP) 

(Freudenthal, Pine and Gobet, 2006). When NCP = 1, a node is always created (as 

in the above example), but when NCP < 1 a node may or may not be created. In 

other words, the lower the NCP, the less likely it is that a node is created. This 

probabilistic node creation has two advantages. Firstly, a lower NCP value 

reduces the learning rate of the model, which prevents it from learning long 

utterances too quickly. Secondly, a lower NCP value makes the model more 

frequency sensitive. To simulate the range of MLUs of young children and to 

generate enough output, the NCP is set to monotonically increasing values as the 

network grows. This is in line with empirical observations confirming that 

children learn new words faster as their vocabulary size increases (Bates and 
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Carnavale, 1993). In addition, nodes for longer phrases have a lower creation 

probability. Eq. 2-8 defines the NCP:  

     
 

 
 
 

 
(2-8) 

Where M is a constant (70,000), N is the number of nodes (N ≤ M), and W is the 

length of the phrase in words. Hence, in a small network learning is slow but as 

the network grows the learning rate increases. The exponent W simply reduces 

the probability of adding nodes for longer phrases. 

 Generative Links 

MOSAIC’s more advanced learning mechanism is based on the creation and 

removal of generative links. These are created between phrases that share a 

context overlap in terms of the preceding and the following words within the 

utterance. Since new nodes are constantly added, the percentage overlap between 

two phrases may drop below a threshold (typically 10%), resulting in the link 

being removed. If two words belong to the same word class, they are likely to be 

in the same position in a sentence, so they are preceded and followed by similar 

words.  

 Producing Utterances 

Utterances are produced by traversing the network from the top and reading the 

contents of the links. By following only test links, the model only produces rote-

learnt utterances that were present in the input. By also following generative 

links, it also produces novel generated utterances (Fig. 5.4). For example, since 

she and he have a generative link, the model can output the novel utterance she 

sings.  
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Fig. 5.4. MOSAIC network with a generative link (arrow) (Freudenthal, Pine and 

Gobet, 2006). 

 The Utterance-Final Constraint 

MOSAIC’s output is restricted in order to be more realistic. Specifically, an 

utterance is produced only if the final word in the utterance was the final word in 

an input utterance. This is encoded in the model by adding an end marker to 

utterance-final phrases, ensuring that the output consists only of utterance-final 

phrases and utterances produced by substituting a word into an utterance-final 

phrase though a generative link. Based on empirical data, research suggests that 

children are particularly sensitive to utterance-final phrases in terms of learning 

and understanding (Naigles and Hoff-Ginsberg, 1998).   

 Training and Output 

MOSAIC was trained by iteratively (due to relatively small corpora) presenting 

the entire corpus of the mother until the model reached an MLU that is close to 

the MLU of the corresponding child, for a given stage. The output generated by 

exhaustively traversing MOSAIC’s discrimination network was recorded on file, 

and was later processed as described in 5.3 Methodology.     

5.2.3 Baseline 

The baseline model is a simple model based on the maternal data. It is developed 

in four steps, as shown in Fig. 5.5.  
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Fig. 5.5. Steps of building the baseline co-occurrence networks. 

 Input Utterances 

To begin with, the maternal data sets are transformed in two ways. Firstly, each 

data set is reduced to 1000 utterances that are randomly selected from the entire 

set. The reason for this is twofold: to ensure that all inputs to the baseline model 

are of equal length for consistency; and to enforce a mechanism of selective 

reproduction, since the baseline reproduces utterances with every possible co-

occurrence that was present in the input. Secondly, each maternal utterance is 

marked by a beginning marker (a marker here is just an ordinary word and the $ 

sign is used to differentiate it from the normal words) $BEG and an end marker 

$END, to denote the start and finish of an utterance. The purpose of this is to 

enable the baseline to produce utterances that only start with a word that was 

itself a start word in the maternal utterances, and end on a word that was an end 

word in the maternal utterances. This simple rule has two benefits. The primary 

one is that it forces the baseline to mimic the language acquisition of young 

children, who tend to focus on, remember, and reproduce the beginning and end 

words of utterances they hear. The secondary one is that it restricts the number of 

possible utterances that the baseline can produce, which filters out a lot of 

syntactically incorrect utterances. The transformed maternal utterances are 

henceforth referred to as input utterances for the baseline model (step 1 in Fig. 

5.5).  

1. Input utterances 

2. Input network 

3. Output utterances 

4. Output network 
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 Input Network 

In step 2, the input utterances are converted to a word co-occurrence network – 

an input network to the baseline model – as described in section 5.3.2. 

Construction of Networks. Note that the input network is a little different to the 

ordinary word co-occurrence networks, since it contains two special nodes – a 

$BEG node and an $END node – that each have a unique property. The former 

has no incoming links, but it has outgoing links equal to the number of unique 

starting words that appear in the maternal utterances. Similarly, the latter has no 

outgoing links, but it has incoming links equal to the number of unique ending 

words present in the maternal data. The network appears in step 2 of Fig. 5.5. 

 Output Utterances 

In step 3, the input network is used to generate the output utterances of the 

baseline model using Depth First Search (DFS). A Matlab m-file is written to 

search for all possible paths (utterances) between the $BEG node and the $END 

node, below a given length. Note that the $BEG and $END nodes are not part of 

the path itself. Since all the sources’ MLU for a given stage should be more or 

less the same for consistency in the analysis, the maximum recursion depth (path 

length) of the DFS is set to either 3 or 4, yielding utterances with MLU just 

below 3 or 4, respectively. The reason for this is that there are many more paths 

with length x+1 than with length x that outweigh the shorter paths. The stage 1 

scenario is not modelled using the baseline because the children’s MLU is 2.27 

so the maximum recursion depth must be set to 2, but in this case the entire 

output consists of unique utterances of length 1 or 2, resulting in no repeated 

word co-occurrence, which is a trivial scenario. The output utterances generated 

by the baseline model are represented by step 3 in Fig. 5.5. 

 Output Network 

In the final step 4, the output utterances are converted to an output word co-

occurrence network –an output network of the baseline model (step 4 in Fig. 5.5) 

– as described in 5.3.2 Construction of networks. 
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5.3 Methodology 

In order to test MOSAIC, and hence, children’s distributional analysis ability, 

language acquisition networks built from data sets of the real children’s 

utterances can be directly compared with networks built from utterances 

produced by MOSAIC. However, it would be difficult to determine the statistical 

significance of these results alone, as there is no scale to define the level of 

overlap between MOSAIC and children. Therefore, it is also necessary to test the 

second linguistic simulation model (the baseline) in order to be able to quantify 

the quality of MOSAIC’s output in relation to the baseline. Then, it would be 

possible and fair to say exactly how well MOSAIC performs, and therefore, how 

well it replicates real children’s linguistic development (based solely on mothers’ 

child-directed speech). In addition, it is expected that the more basic baseline 

model will display a much poorer resemblance to the children.  

The methodology is composed of three parts: Filtering and reduction, 

Construction of networks, and Analysis. Filtering and reduction explains the 

various filtering techniques used to ensure that the data are consistent for network 

modelling and analysis. Construction of networks presents the steps involved in 

the creation of word co-occurrence networks from the data. Analysis describes 

the statistical analysis techniques that are used to measure and to compare the 

networks.  

5.3.1 Filtering and Reduction 

Since the raw output of a data set consists of a long list of utterances, some of 

which have duplicates, those duplicates are removed in order to obtain consistent 

networks. The reason behind this is that the focus of this work is on the language 

acquisition of children, and more precisely, the pattern of combining pairs of 

words together to form sentences. If duplicate utterances – which are mainly 

caused by the highly repetitive nature of mother-child interactions – are allowed, 

they would introduce a lot of noise in the data. The baseline model, however, 

does not produce any duplicate utterances so it needs no filtering. After they are 

filtered, all the data files’ lengths – in terms of the number of utterances they 

contain – are recorded. For a given stage, it is noted that the children’s data files 
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are always the shortest, except for MOSAIC’s stage 1 data file for Carl. This 

result is a little surprising but it is reasonable to assume that it is due to the fact 

that for stage 1, MOSAIC is lacking output due to a lack of input data, while Carl 

is surprisingly talkative at such an early stage. Again, to make the data files as 

consistent as possible for later systematic analysis, all longer files (except the 

maternal, since they do not correspond to any of the 3 stages) are randomly 

reduced to the length of the shortest file for a particular stage. The reduction is 

done using Matlab’s random permutation function, which assigns each utterance 

a unique natural number between 1 and the total number of utterances. Then, to 

complete the reduction, all utterances that were assigned a number that is larger 

than the size of the required data set are discarded. To check the quality of the 

reduction, the MLU of the reduced data sets is re-calculated and the obtained 

differences are negligible.   

5.3.2 Construction of Networks 

Word co-occurrence networks are built using the data in a process consisting of 

four stages. Fig. 5.6 illustrates a simple version of such a network for the 

following two sentences: The cat sleeps. The dog wakes the cat.  

 

Fig. 5.6. Simple word co-occurrence network. 

In the first stage, the utterances are split into overlapping pairs of adjacent words, 

such that each co-occurrence is represented by a single pair. For example, the 

first two pairs in this sentence are “For example” and “example the”, when 

ignoring any punctuation marks. Also, single word utterances are kept unchanged 

because they become isolated nodes in the final network, if they do not appear in 

any pair elsewhere. In stage two, the pairs are transformed into a corresponding 

network of nodes and links using a simple mapping: for every pair, insert a 
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directed link from the first word to the second word. The network is represented 

as a list of nodes and links, where the nodes are trivially obtained by taking all 

words from the pairs, and removing duplicates. However, this network is a 

multidigraph, i.e. there exist multiple links from a source to a target node, which 

can be simplified to an equivalent network representation by using link weights. 

Therefore, in stage three, the network is converted to a weighted digraph – with 

no parallel links – where the weight (frequency) of a link denotes the original 

number of links from the source to the target node in the multidigraph. This 

digraph is used in all of the analysis except for the calculation of two network 

parameters – the average geodesic length and the clustering coefficient – which 

require a simple graph, i.e. an unweighted, undirected graph with no self-loops. 

Hence, for the final stage four, the weighted digraph is converted to a simple 

graph by erasing all link weights, converting all links from directed to undirected 

(and removing duplicates), and removing all self-loops. 

5.3.3 Network Analysis 

The goal of this analysis is to carry out a thorough comparison of all word co-

occurrence networks by employing a number of established statistical analysis 

techniques. Furthermore, the results of this analysis will highlight specific 

features of the networks, such as their power-law ranked frequency distribution. 

These features will be used to compare MOSAIC with the simple baseline model, 

in terms of their ability to simulate language acquisition in children. 

 Network Parameters 

Parameter analysis involves the calculation and analysis of the selected network 

parameters that are described in more detail below (most of them were briefly 

described in section 2.4): 

1. MLU 

The Mean Length of Utterance (MLU) is the average number of words in a 

sentence within a data set. Therefore, this parameter measures the length of the 

produced utterances. The MLU is perhaps the most basic parameter since it is a 

measure on the data set, not on the network. It is frequently used to define the 
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level of language development, and therefore, it is used in this research to 

classify the data sets into three developmental levels, in order to be able to 

analyse and compare data sets belonging to the same discrete level.  

2. N 

The number of nodes N in a word co-occurrence network simply reflects the 

number of unique words, which were produced within a data set. It is a typical 

measure of vocabulary size. 

3. E 

The number of links E in the network measures the number of unique word co-

occurrences that were produced within a data set.  More links indicate that more 

diverse utterances were created.   

4. GCC 

The Giant Connected Component (GCC) is the largest connected subnetwork of 

the original network. Therefore, the size of the GCC represents the number of 

core words, which are commonly used to form sentences.  

5. <k> 

The average degree <k> is the average number of links adjacent to a node. This 

parameter represents the complexity of the vocabulary, since a higher <k> means 

that more unique co-occurrences are produced. The average degree is a function 

of the number of nodes and links within the network, and therefore it provides a 

good relative measure of the diversity of the utterances. 

6. L 

The average geodesic length L is the average number of links on the shortest 

paths between all pairs of nodes. This parameter is calculated for a simple graph 

and gives an indication of how well-interconnected the graph is. The shorter the 

length, the quicker you can get from word A to word B. The typical average 

geodesic in co-occurrence networks for natural language is low.  

7. C 
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Roughly speaking, the clustering coefficient C is a measure of the redundant 

links in the network. More precisely, it is a measure of how many neighbours of 

a node are directly connected themselves. This parameter is also calculated for a 

simple graph and gives an indication of how clustered the graph is. High 

clustering implies that diverse utterances are produced using a small number of 

words, suggesting more advanced language skills. Note that there is an important 

distinction between C and community structure as C measures general clustering 

but community structure reflects the modular nature of certain groups of nodes 

within the network.   

8. P(k) 

Since the networks are directed the degree distribution consists of the in-degree 

P(kin) and out-degree P(kout) distributions. P(kin) is the probability distribution of 

a given node having some number of links pointing to it. A high in-degree node 

has many other nodes pointing to it and hence, the word represented by the node 

has been preceded by many other words in the respective utterances. P(kout) is the 

probability distribution of a given node having some number of links pointing 

away from it. A high out-degree node points to many other nodes and hence, the 

word represented by the node has been followed by many other words in the 

respective utterances. Fig. 5.7 shows an example in-degree distribution for the 

Ann stage 3 network. 

9. W(r) 

W(r) is the rank-ordered frequency distribution on all network connections. It 

shows how the magnitude of link frequencies decreases when the frequencies are 

sorted in descending order. To compute this function, all the links of the given 

network are ranked in order of frequency. This frequency is then normalised for 

consistency to a value between 0 and 1 by dividing all frequencies by the highest 

frequency in the network. The distribution is defined as the normalised frequency 

as a function of the rank. This distribution is particularly interesting for studying 

language because previous research (Corominas-Murtra, Valverde and Solé, 

2010) has shown that P(f) – the probability distribution of a node with frequency 

f – in children’s syntactic networks follows a power-law. Fig. 5.8 shows an 
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example W(r) from our maternal results, which also appears to follow a power-

law, i.e. most co-occurrences have low frequency of repetition whereas some 

particular co-occurrences have exceptionally high frequency of repetition. A 

power law is usually described by two parameters: a scaling factor a and an 

exponent n: 

         (2-9) 

The scaling factor simply determines how much the function is shifted along the 

y-axis. The exponent controls the slope of the function; thus, a higher n (in 

absolute sense) results in a more skewed distribution. In a co-occurrence 

network, the presence of a power law means that language productivity is very 

biased towards some word co-occurrences, which are produced much more often 

than other co-occurrences. Based on this, n is expected to increase over 

incremental stages of linguistic development. 

 

Fig. 5.7. In-degree probability distribution for Ann stage 3 network. 
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Rank r 

 

 

Fig. 5.8. Ranked weight (normalised frequency) distribution W(r). 

The flowchart in Fig. 5.9 describes the process of analysing the word co-

occurrence networks. The analysis begins with a decision. If a single parameter is 

being analysed, the value of this parameter is used and the fitting step (described 

next) is by-passed. By contrast, if a function (i.e. the frequency distribution or the 

degree distribution) is being analysed, it is necessary to fit a best-fit curve to the 

data so that the parameters of the function can be used for further analysis. Both 

functions are fitted using a power-law fit of the form of Eq. 2-9 where a is the 

scaling factor and n is the exponent. In the frequency distributions, x represents 

the rank and f(x) represents the normalised frequency for that rank. In the degree 

distributions, x represents the degree and f(x) represents the probability of a 

randomly chosen node with degree x. The correlation coefficient R – which 

measures how well the best-fit approximates the real data – is also calculated. 

Then, the analysis process follows each of two branches. The first branch is 

concerned with the average for a given source and stage, thereby ignoring the 

specifics of the individual children. For each parameter, the average value across 

the stage is calculated and a summary plot is produced. The second branch of the 

analysis involves the correlations between pairs of sources for a given child and 

stage thereby focusing on the details of the individual children. Therefore, all the 

parameters are tabulated and pair-wise correlations are calculated for all possible 

pairs of data: children-MOSAIC, children-baseline, children-mothers, MOSAIC-

baseline, MOSAIC-mothers, and baseline-mothers. The purpose of the 
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correlations is to identify common properties and characteristics among networks 

from different sources. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.9. Analysis flowchart. 
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were checked for bin sizes 0.5, 1, 2, 3, 4, 5, 10, 20, 25 and 34. Bin size 2 

provided balanced bin populations and a smooth deterrence function so it was 

used in all applications of the spatial null model.   

5.4 Results 

5.4.1 Network Parameters 

The results obtained from the parameter analysis are discussed in three parts. Part 

A addresses the individual parameters, which are based on the global structure of 

the entire network. Part B covers the degree distribution parameters, which 

describe the structure of the word co-occurrence networks in terms of the number 

of unique words that co-occur with each word. Part C focuses on the weight 

distribution parameters, which highlight the high heterogeneity in the words’ 

frequency of co-occurrence with other words. All of the parameters obtained are 

presented in tables. The summary plots that follow present the averages for a 

given source and stage. Each parameter is presented on a single plot showing the 

change of the parameter value over the three discrete stages. Each of the four 

sources is associated with a specific colour and symbol. The data points represent 

the mean parameter value over all six children, and the vertical error bars 

represent the Standard Error of the Mean (SEM). The mothers’ results are shown 

next to the other sources’ stage 3 results for comparison. Finally, correlations 

between all pairs of sources are reported in order to identify which parameters, if 

any, from one source resemble those from another source. Again, the mothers’ 

parameters are classified as stage 3. Overall, some of the correlations are 

moderate (0.30 ≤ r < 0.50) or even strong (r ≥ 0.50), to use Cohen’s criteria 

(Cohen, 1988). However, given the small number of observations (6) and hence 

degree of freedom (n = 4), none of the correlations are statistically significant. 

The quality of all best-fit functions is checked by computing the correlation 

coefficient R between the real data and the fitted function, in order to check the 

accuracy of the fit. For the degree distribution fits all correlations are above 0.98, 

indicating an almost perfect power-law relationship in the data. For the weight 

distribution fits all correlations are above 0.81, which is good.  
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  Individual Network Parameters 

The individual network parameters of the word co-occurrence networks are 

summarised in Table 5.2. 

Table 5.2. Individual network parameters. 

    MLU N E GCC <k> L C 

                  

Mothers 

ann 5.13 3286 23375 3093 14.23 2.74 0.43 

ara 6.11 4669 33964 4604 14.55 2.77 0.45 

bec 5.01 2696 16765 2588 12.44 2.79 0.41 

car 4.56 2428 15340 2297 12.64 2.80 0.38 

dom 5.26 2845 19314 2702 13.58 2.80 0.42 

gai 4.86 4179 22123 3913 10.59 2.87 0.43 

                  

Children 

ann 1 2.14 764 1429 556 3.74 3.39 0.19 

ann 2 3.32 1384 4942 1205 7.14 2.97 0.33 

ann 3 3.44 672 1678 594 4.99 3.32 0.17 

ara 1 2.43 643 1660 487 5.16 2.95 0.34 

ara 2 3.16 725 2119 651 5.85 3.00 0.33 

ara 3 3.84 1408 5254 1309 7.46 2.96 0.32 

bec 1 1.92 754 1020 498 2.71 3.76 0.15 

bec 2 2.74 956 2330 824 4.87 3.22 0.20 

bec 3 3.59 1385 5407 1245 7.81 2.96 0.31 

car 1 2.45 467 1188 385 5.09 3.07 0.29 

car 2 2.66 714 2578 628 7.22 2.93 0.33 

car 3 3.58 1203 5948 1138 9.89 2.76 0.38 

dom 1 2.43 650 1738 558 5.35 3.13 0.25 

dom 2 3.29 1227 5039 1087 8.21 2.98 0.30 

dom 3 3.38 510 1296 449 5.08 3.21 0.15 

gai 1 2.27 889 1381 622 3.11 3.53 0.14 

gai 2 3.05 1005 2415 865 4.81 3.26 0.19 

gai 3 3.41 1397 4200 1230 6.01 3.11 0.29 

                  

MOSAIC 

ann 1 2.11 602 1285 376 4.27 3.28 0.20 

ann 2 3.14 1142 4436 984 7.77 3.01 0.28 

ann 3 3.97 735 2146 715 5.84 3.06 0.21 

ara 1 2.13 718 1382 419 3.85 3.40 0.24 

ara 2 3.12 1013 2695 892 5.32 3.24 0.26 

ara 3 3.88 1541 5754 1463 7.47 2.95 0.35 

bec 1 1.96 499 816 249 3.27 3.49 0.26 

bec 2 3.02 732 2255 614 6.16 3.05 0.25 

bec 3 3.71 1173 5178 1084 8.83 2.84 0.33 

car 1 1.82 503 726 245 2.89 3.60 0.25 

car 2 2.82 767 2634 644 6.87 3.02 0.24 

car 3 3.57 1189 6190 1092 10.41 2.79 0.30 

dom 1 2.12 585 1303 349 4.45 3.13 0.26 

dom 2 3.22 964 4318 833 8.96 2.88 0.29 

dom 3 3.84 668 1780 637 5.33 3.23 0.18 

gai 1 2.07 567 1006 281 3.55 3.49 0.25 
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gai 2 2.65 916 2104 698 4.59 3.22 0.20 

gai 3 3.32 1308 4364 1168 6.67 3.10 0.27 

                  

Baseline 

ann 2 2.93 613 1759 611 5.74 3.21 0.15 

ann 3 3.90 484 1352 481 5.59 3.02 0.21 

ara 2 2.94 538 1446 538 5.38 3.07 0.22 

ara 3 3.92 698 2227 698 6.38 2.94 0.31 

bec 2 2.93 531 1364 529 5.14 3.14 0.20 

bec 3 3.90 689 2066 689 6.00 3.09 0.23 

car 2 2.92 524 1418 519 5.41 3.15 0.18 

car 3 3.90 670 2072 669 6.19 3.08 0.22 

dom 2 2.92 570 1770 570 6.21 3.13 0.18 

dom 3 3.91 436 1256 436 5.76 2.95 0.26 

gai 2 2.93 556 1385 556 4.98 3.15 0.19 

gai 3 3.90 682 1912 682 5.61 3.08 0.24 

The table of network parameters is large, and therefore, this section highlights the 

most notable observations before each of the four sources is individually 

described. An interesting observation of Table 5.2 is that (for all multi-stage 

sources) the stage 3 networks for Anne and Dominique (represented as ann 3 and 

dom 3 in the table, respectively) are smaller than the corresponding stage 2 

networks, which is unexpected for two reasons. Firstly, the stage 3 networks are 

based on a later stage of linguistic development, so it is highly likely that the 

vocabulary (number of nodes) grows and linguistic complexity (<k>) increases. 

Secondly, stage 3 is defined by a higher MLU, which means that the data files 

have longer utterances – containing more words and co-occurrences – so the 

number of unique words (nodes) and distinct co-occurrences (links) should 

increase. In particular, those stage 3 networks are smaller in terms of the number 

of nodes and links, the GCC and <k>. Furthermore, L increases and C decreases, 

except for the baseline model, which displays the opposite trend, possibly 

because its <k> does not drop that much compared to MOSAIC and the children.  

The following summary briefly describes the individual sources. All the maternal 

networks are relatively similar in terms of network parameters, but some are 

larger than others in terms of nodes and links, and hence, in GCC. Compared to 

the other sources’ networks, the maternal have the highest MLU, the most nodes 

and links, the largest GCC, the highest <k>, low L and high C. This is rooted in 

the mothers’ experienced use of language. The children’s networks differ mainly 

across the three stages. In general, for higher stages the MLU is higher (this is in 
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fact always true for all sources, since the MLU defines the stage of development), 

the network is bigger (more nodes and links), the GCC is larger, and <k> is 

higher. MOSAIC’s networks also generally differ across the stages, with higher 

stages having larger networks, larger GCC, and higher <k>. Similarly to the 

previous two sources, by comparing the two stages of the baseline, it is easy to 

see that the stage 3 networks are generally larger, with a bigger GCC, higher 

<k>, lower L, and higher C. Note that the baseline is the only source from the 

three multi-stage sources to display a consistent drop in L and rise in C, for all six 

children.  

Figs. 5.10-5.16 present the summary plots for MLU, N, E, GCC, <k>, L and C, 

respectively.  

 

Fig. 5.10. Summary plot for MLU.  

Fig. 5.10 shows the steady increase in MLU for the three stages of linguistic 

development. Note that, except for the mothers, the sources are close to each 

other for a given stage, highlighting the fact that they are closely matched 

according to MLU, in order to provide as accurate results as possible. The 

maternal MLU is clearly much higher, due to the longer sentences produced by 

the mothers. 
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Fig. 5.11. Summary plot for N. 

MOSAIC and the children clearly correlate very well on the number of nodes 

(unique words), whereas the baseline seems to underperform, and the mothers are 

way above the others (Fig. 5.11). Also, the vocabulary seems to grow more 

between stages 1 and 2 than between stages 2 and 3.  

 

Fig. 5.12. Summary plot for E. 
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The number of links grows in a similar manner to the number of nodes, but this 

time the baseline model performs more like the children and MOSAIC (Fig. 

5.12). This trend implies that as children grow, they not only increase their 

vocabulary, but also produce new word co-occurrences. The extent to which 

these new co-occurrences are a direct effect of the increasing vocabulary can be 

determined by the average node degree, <k>, which is summarised in Fig. 5.14.  

 

Fig 5.13. Summary plot for GCC. 

The size of the giant connected component appears to be behaving in a similar 

fashion to the number of nodes and links, but in fact, for the children and 

MOSAIC, the fraction of the network that is connected (GCC/nodes) increases 

over time (Fig 5.13). In addition, the mothers, and especially the baseline, have a 

particularly high GGC/nodes ratio approaching 1. 
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Fig. 5.14. Summary plot for <k>. 

The average degree <k> is clearly increasing over time for all multi-stage 

sources, which means that there are more links per node (Fig. 5.14). This implies 

that new co-occurrences are being produced not just as a result of the increasing 

vocabulary, but also as a result of the developing ability to produce linguistic 

diversity in the form of unique co-occurrences, and hence, novel utterances. 

Again, note how well MOSAIC mimics the children in this respect. 
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Fig. 5.15. Summary plot for L. 

In the children’s and MOSAIC’s networks, the average geodesic, L, drops quite 

significantly from stage 1 to stage 2, but then relatively little, from stage 2 to 3 

(Fig. 5.15). Naturally, since <k> is increasing, L should decrease at a similar rate 

if the proportion of shortcut links (that connect otherwise distant nodes) remains 

steady. Therefore, since the drop in L is much larger compared to the rise in <k> 

from stage 1 to 2, it must be due to an increased proportion of shortcut links. In 

other words, in stage 1 there is a lower fraction of co-occurrences between words 

that are otherwise far apart, i.e., connected by a long chain of co-occurrences. 

Something interesting to note here is that if L continued to drop at the same rate 

between stages 2 and 3, then it would be very close to the maternal L, meaning 

that the children and MOSAIC produce utterances by combining words from 

different contexts more frequently than the mothers, and thus greatly reducing L, 

without a significant increase in <k>. 
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Fig. 5.16. Summary plot for C. 

The clustering coefficient, C, of the children’s networks does not behave in an 

expected fashion, since it peaks for stage 2, after which it drops slightly for stage 

3 (Fig. 5.16). By inspecting the other network parameter summary plots and the 

other sources’ C values on this plot, it is clear that C should be monotonously 

increasing. This implies that there are three possible cases: either, the children’s 

clustering for stage 2 is too high, or, the children’s clustering for stage 3 is too 

low, or both. In any case, the clustering is relatively high in general, meaning that 

all networks are small-world networks, since their average geodesic is low.  

In summary, the children’s networks suggest that MLU, N, E, GCC, <k> and L 

are behaving predictably with respect to the developmental stage of the children 

– the former five are increasing and L is decreasing because the networks are 

becoming more connected. On the other hand, C drops slightly in stage 3, 

suggesting that the children probably experimented with a wider variety of 

utterances, resulting in fewer word co-occurrence loops. This curvilinear function 

is interesting and is in line with what was found for the n parameter of the ranked 

frequency distribution.  

The correlations between all pairs of the four sources are calculated and 

presented in Table 5.3. In the table – and all subsequent tables of correlations 
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between the sources – the values above 0.7 are highlighted since they are 

particularly high, and of primary interest for this analysis.   

Table 5.3. Correlations of individual network parameters.  

  MLU N E GCC <k> L C 

Child-MOSAIC               

stage 1 .06 .08 .89 .26 .24 .21 -.04 

stage 2 .55 .59 .96 .56 .89 .45 .60 

stage 3 .24 .94 .99 .93 .98 .83 .88 

Child-Baseline               

stage 2 .23 .91 .98 .92 .92 -.02 -.23 

stage 3 .61 .99 .97 1.00 .77 -.35 .08 

Child-Mother               

stage 3 .62 .39 -.02 .39 -.14 -.19 -.39 

MOSAIC-

Baseline               

stage 2 .09 .84 .99 .78 .93 -.43 -.34 

stage 3 .46 .94 .97 .92 .66 -.52 .34 

MOSAIC-

Mother               

stage 3 .58 .58 .06 .63 -.23 .18 -.02 

Baseline-Mother               

stage 3 .91 .32 .20 .33 .35 .41 .63 

From the table, it is possible to identify the sources that correlate well by 

scanning down the rows and focusing on those with the highest correlation 

parameters. It is clear that stage 3 MOSAIC has excellent correlation with the 

children on all network parameters except for the MLU, which is, in fact, a data 

set parameter. Nevertheless, the network similarities for this particular pair of 

sources are astonishing, and none of the other pairs display such high positive 

correlation on six network parameters. For example, the second highest 

correlating pair is the stage 2 child-baseline pair, which correlates well on four of 

the parameters, but not on the average geodesic and the clustering coefficient.  

 Degree Distribution Parameters 

After the node in-degree and out-degree distributions were calculated, it was 

found that the first data point (representing in/out-degree 0) is far from a power-

law fit due to its unique nature, and therefore it is regarded as an additional 

parameter p. The reason for this behaviour is that the in/out-degree 0 nodes 
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decrease as the network becomes increasingly connected. The parameters of the 

in-degree and out-degree distributions are summarised in Table 5.4. The first 

parameter, p, is the actual value of the first data point, i.e. the probability of a 

node having in/out-degree 0. The second and third parameters (a and n), are the 

parameters of the best-fit of the degree distribution without the first data point. 

The fourth parameter R is the correlation between the data and the fit.  

Table 5.4. Parameters of the best-fit of the in-degree and out-degree distributions. 

    In-degree   Out-degree 

    p a n R   p a n R 

                      

Mothers 

ann 0.09 0.36 -1.40 1.00   0.25 0.29 -1.39 1.00 

ara 0.03 0.42 -1.50 1.00   0.17 0.36 -1.51 1.00 

bec 0.07 0.38 -1.41 1.00   0.24 0.32 -1.47 1.00 

car 0.08 0.38 -1.47 1.00   0.27 0.29 -1.39 1.00 

dom 0.08 0.40 -1.53 1.00   0.23 0.33 -1.53 1.00 

gai 0.10 0.43 -1.58 1.00   0.30 0.33 -1.61 1.00 

                      

Children 

ann 1 0.45 0.29 -1.68 1.00   0.47 0.29 -1.72 1.00 

ann 2 0.21 0.36 -1.49 1.00   0.42 0.29 -1.65 1.00 

ann 3 0.21 0.43 -1.72 1.00   0.40 0.31 -1.75 1.00 

ara 1 0.35 0.31 -1.59 1.00   0.44 0.28 -1.60 1.00 

ara 2 0.16 0.43 -1.58 1.00   0.38 0.32 -1.69 1.00 

ara 3 0.13 0.42 -1.57 1.00   0.33 0.33 -1.61 1.00 

bec 1 0.47 0.30 -1.71 1.00   0.55 0.25 -1.71 1.00 

bec 2 0.24 0.40 -1.67 1.00   0.48 0.28 -1.87 1.00 

bec 3 0.15 0.38 -1.45 1.00   0.42 0.28 -1.67 1.00 

car 1 0.30 0.32 -1.49 1.00   0.45 0.27 -1.63 1.00 

car 2 0.23 0.30 -1.32 1.00   0.39 0.27 -1.51 1.00 

car 3 0.09 0.37 -1.38 1.00   0.33 0.28 -1.42 1.00 

dom 1 0.24 0.34 -1.42 .99   0.46 0.25 -1.53 1.00 

dom 2 0.18 0.34 -1.41 1.00   0.39 0.28 -1.57 1.00 

dom 3 0.18 0.44 -1.70 1.00   0.39 0.29 -1.59 1.00 

gai 1 0.45 0.32 -1.85 1.00   0.50 0.29 -1.85 1.00 

gai 2 0.23 0.44 -1.78 1.00   0.45 0.30 -1.86 1.00 

gai 3 0.19 0.43 -1.67 1.00   0.44 0.30 -1.76 1.00 

                      

MOSAIC 

ann 1 0.50 0.22 -1.48 1.00   0.59 0.20 -1.89 .99 

ann 2 0.26 0.28 -1.28 .99   0.40 0.25 -1.43 1.00 

ann 3 0.12 0.44 -1.55 1.00   0.35 0.33 -1.65 1.00 

ara 1 0.55 0.21 -1.55 1.00   0.59 0.22 -1.94 1.00 

ara 2 0.25 0.37 -1.55 1.00   0.39 0.32 -1.69 1.00 
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ara 3 0.14 0.38 -1.41 .99   0.31 0.34 -1.61 1.00 

bec 1 0.62 0.18 -1.54 1.00   0.63 0.20 -2.07 .99 

bec 2 0.28 0.31 -1.40 .99   0.41 0.26 -1.49 1.00 

bec 3 0.16 0.32 -1.29 .99   0.34 0.25 -1.29 .99 

car 1 0.66 0.15 -1.48 1.00   0.65 0.17 -1.68 .99 

car 2 0.29 0.28 -1.32 1.00   0.42 0.24 -1.48 1.00 

car 3 0.18 0.26 -1.14 .98   0.32 0.24 -1.23 .99 

dom 1 0.54 0.18 -1.36 .99   0.57 0.20 -1.63 .99 

dom 2 0.25 0.26 -1.20 .99   0.37 0.22 -1.28 1.00 

dom 3 0.18 0.43 -1.63 1.00   0.31 0.36 -1.71 1.00 

gai 1 0.60 0.18 -1.51 1.00   0.64 0.19 -2.04 .99 

gai 2 0.37 0.32 -1.58 1.00   0.51 0.22 -1.50 1.00 

gai 3 0.22 0.36 -1.47 1.00   0.40 0.27 -1.47 .99 

                      

 Baseline 

ann 2 0.15 0.45 -1.65 1.00   0.41 0.27 -1.56 1.00 

ann 3 0.14 0.47 -1.70 .99   0.38 0.29 -1.58 1.00 

ara 2 0.11 0.49 -1.69 1.00   0.47 0.23 -1.47 1.00 

ara 3 0.07 0.51 -1.72 1.00   0.33 0.34 -1.71 1.00 

bec 2 0.13 0.49 -1.77 1.00   0.48 0.22 -1.50 1.00 

bec 3 0.08 0.52 -1.80 1.00   0.36 0.31 -1.64 1.00 

car 2 0.11 0.47 -1.65 1.00   0.48 0.22 -1.47 1.00 

car 3 0.07 0.50 -1.71 1.00   0.33 0.33 -1.75 1.00 

dom 2 0.08 0.45 -1.57 1.00   0.40 0.24 -1.38 1.00 

dom 3 0.09 0.53 -1.93 1.00   0.38 0.27 -1.43 1.00 

gai 2 0.14 0.51 -1.95 1.00   0.49 0.23 -1.54 1.00 

gai 3 0.11 0.53 -1.89 1.00   0.36 0.33 -1.74 1.00 

Figs. 5.17 and 5.18 report the summary plots for parameter p of the in-degree and 

out-degree distributions, respectively. Likewise, Figs. 5.19 and 5.20 present the 

summary plots for parameter a of the in-degree and out-degree distributions, 

respectively. Finally, Figs. 5.21 and 5.22 show the summary plots for parameter 

n of the in-degree and out-degree distributions, respectively. 
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Fig. 5.17. Summary plot for parameter p of the in-degree distribution. 

Evidently, p is decreasing with time, indicating a reduction in the proportion of 

starting words, which do not appear anywhere else but at the very beginning of 

an utterance (Fig. 5.17). Furthermore, MOSAIC is clearly approaching the 

children over time, whereas the baseline is lower and closer to the mothers, 

possibly because it is so heavily based on the maternal data. Note that for stage 3 

the difference between MOSAIC and the children is negligible, highlighting the 

accuracy of the model in this case. 
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Fig. 5.18. Summary plot for parameter p of the out-degree distribution. 

Again, p is decreasing with time, but there are some notable differences (Fig. 

5.18). Firstly, the parameter values are generally higher than those for the in-

degree, meaning that there are more end words than start words. Secondly, the 

children follow a more linear decrease in p than before. Also, MOSAIC is closest 

to the children at stage 2 instead of 3, and the baseline is closer to MOSAIC 

instead of the mothers. 
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Fig. 5.19. Summary plot for parameter a of the in-degree distribution. 

Parameter a is the probability of degree 1, obtained from the best-fit curve (Fig. 

5.19). Clearly, it is increasing with time, and MOSAIC is steadily converging on 

the children, which approach the mothers in the final stage 3. This is another 

good example of how MOSAIC outperforms the baseline model in terms of 

simulating syntax acquisition in children. 



Chapter 5 Language Acquisition Networks 

 

 

97 
 

 

 

Fig. 5.20. Summary plot for parameter a of the out-degree distribution. 

Again, a is increasing with time (Fig. 5.20), but here, all four sources are much 

closer to each other and the probabilities are slightly lower than for the in-degree.  

 

Fig. 5.21. Summary plot for parameter n of the in-degree distribution. 
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The exponent n is the most important of the degree distribution parameters, since 

it specifies the slope of the best-fit curve, i.e., how extremely the probabilities 

decay towards 0 (Fig. 5.21). Note that the error bars in Fig. 5.21 – which 

represent the standard error of the mean – are relatively long, implying that the 

variance within each data set is high. Nevertheless, MOSAIC is following the 

same trend over time as the children, but since the trend is non-linear, it is not 

certain whether the baseline does too, as there are only two data points for it.  

 

Fig. 5.22. Summary plot for parameter n of the out-degree distribution.  

Unexpectedly, for the out-degree the children follow quite the opposite trend 

over time (Fig. 5.22). The exponent first drops and then rises slightly, whereas 

MOSAIC and the mothers are far from this trend for all stages. There are two 

interesting observations, however. The baseline is almost identical to the children 

for stage 3 and to MOSAIC for stage 2.  

In summary, by examining the in-degree and out-degree distributions, the 

children’s networks suggest a clear decrease in p and a small increase in a, but 

non-linear behaviour in n. However, the magnitude of these changes in parameter 

n is small. Also, the children appear to be close to the mothers with respect to all 

three degree distribution parameters. This leads us to believe that children in 
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general produce utterances that are statistically similar to adults, in terms of the 

bias to particular word usage. In addition, the standard deviation of both mothers 

and children is significantly different from 0, for all 15 parameters under study. 

For 9 of the parameters, the SEM, and therefore, the variability of the children, is 

greater than that of the mothers. Specifically, for the more complex parameters 

(L, C, n (in-degree), n (out-degree), and n (frequency)), the children have a 

significantly higher variability compared to the mothers, and vice versa, for the 

more simple parameters (MLU, N, E, GCC), the mothers have higher variability. 

For the moderately complex parameters (<k>, p (in-degree), p (out-degree), a 

(in-degree), a (out-degree), and a (frequency)), the children and the mothers have 

relatively similar variability.  

The correlations between all pairs of the four sources are calculated and 

presented in Table 5.5.  

Table 5.5. Correlations of best-fit parameters of the in-degree and out-degree 

distributions. 

    In-degree   Out-degree 

    p a n   p a n 

Child-MOSAIC                 

stage 1   -.03 -.58 .63   .37 -.11 .74 

stage 2   .66 .74 .76   .52 .65 .34 

stage 3   -.08 .91 .96   .74 .69 .40 

Child-Baseline                 

stage 2   .56 .73 .88   .39 .17 .53 

stage 3   .89 .08 .42   .75 .09 -.12 

Child-Mother                 

stage 3   .43 .41 .32   .54 .54 .41 

MOSAIC-Baseline                 

stage 2   .56 .66 .80   .58 -.07 .40 

stage 3   -.26 -.19 .52   .31 -.57 -.65 

MOSAIC-Mother                 

stage 3   .49 .02 .32   .79 .50 .25 

Baseline-Mother                 

stage 3   .52 .66 .67   .31 .09 -.01 

 

MOSAIC and the children appear to correlate well in terms of their stage 3 

degree distributions. The parameters of the in-degree best-fit have particularly 
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high coefficients (both above 0.9), suggesting that MOSAIC is imitating the 

children quite well in terms of in-degree. This is not the case for the out-degree, 

since the exponent n has a low correlation of 0.4. It is interesting that for stage 1, 

this correlation is in fact 0.74. The parameters of the in-degree best-fit for stage 2 

are also well correlated for the Child-MOSAIC pair, as well as the Child-

Baseline pair. The fact that the simple baseline model based on DFS is able to 

reproduce such a good in-degree distribution is somewhat of a mystery, and the 

most reasonable explanation for it is that perhaps children at stage 2 produce 

utterances similarly to the baseline, at least in some sense. Note that for stage 3, 

the Child-Baseline pair is also correlating well in parameter p, for both the in-

degree and out-degree distributions, meaning that the baseline is producing 

beginning and end words with a similar frequency to the children. 

 Weight Distribution Parameters 

The parameters of the best-fit of the ranked weight distribution are summarised 

in Table 5.6. 

Table 5.6. Parameters of the best-fit of the ranked weight distribution. 

    a n R 

          

Mothers 

ann 1.37 -0.62 .97 

ara 1.01 -0.65 .98 

bec 1.23 -0.64 .98 

car 1.04 -0.63 .99 

dom 1.80 -0.58 .92 

gai 1.35 -0.60 .96 

          

Children 

ann 1 0.86 -0.50 .98 

ann 2 1.49 -0.54 .96 

ann 3 1.33 -0.47 .96 

ara 1 1.23 -0.56 .98 

ara 2 1.33 -0.59 .96 

ara 3 1.13 -0.60 .99 

bec 1 0.71 -0.42 .94 

bec 2 1.38 -0.51 .97 

bec 3 1.55 -0.56 .95 

car 1 1.25 -0.55 .98 

car 2 0.90 -0.57 .99 
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car 3 1.42 -0.58 .95 

dom 1 0.95 -0.62 .98 

dom 2 0.84 -0.65 .98 

dom 3 0.90 -0.56 .99 

gai 1 1.12 -0.52 .98 

gai 2 0.77 -0.62 .96 

gai 3 0.91 -0.61 .98 

          

MOSAIC 

ann 1 1.51 -0.44 .95 

ann 2 1.42 -0.61 .97 

ann 3 1.23 -0.53 .98 

ara 1 1.06 -0.49 .98 

ara 2 1.05 -0.56 .99 

ara 3 0.93 -0.58 .99 

bec 1 0.97 -0.55 .98 

bec 2 1.17 -0.65 .97 

bec 3 1.21 -0.61 .99 

car 1 1.03 -0.45 .97 

car 2 1.37 -0.57 .97 

car 3 1.00 -0.63 .99 

dom 1 1.11 -0.48 .97 

dom 2 1.57 -0.53 .94 

dom 3 1.04 -0.48 .98 

gai 1 1.33 -0.51 .96 

gai 2 1.12 -0.55 .99 

gai 3 1.20 -0.54 .98 

          

 Baseline  

ann 2 2.08 -0.40 .86 

ann 3 1.60 -0.38 .91 

ara 2 1.88 -0.37 .87 

ara 3 1.92 -0.41 .87 

bec 2 1.78 -0.37 .86 

bec 3 1.31 -0.43 .91 

car 2 1.57 -0.39 .88 

car 3 1.30 -0.43 .89 

dom 2 2.01 -0.38 .81 

dom 3 1.33 -0.39 .93 

gai 2 1.71 -0.37 .86 

gai 3 1.51 -0.42 .89 

 

It is worth mentioning that the baseline model’s ranked weight distributions do 

not follow a perfect power-law, since the lowest correlation with the best-fit is 

0.81, which is significantly lower than the other sources’ correlations. This is 
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possibly due to fact that the baseline model is a very simple model based on 

Depth First Search (DFS), with no built-in mechanisms to simulate the natural 

acquisition of language in young children. Nevertheless, 0.81 is still a relatively 

good correlation, meaning that the baseline model is able to reproduce words 

with a power-law-like distribution of co-occurrences. This is achieved in two 

steps. Firstly, the input networks (built from the maternal utterances) have a set 

of beginning nodes and a set of end nodes, and output is generated by finding all 

unique paths between all pairs of beginning and end nodes. Secondly, the DFS 

algorithm is exhaustive so it finds all unique paths. Hence, it is inevitable that the 

search visits some key links very frequently, but most links are visited 

infrequently (when searching down a new branch, for example), resulting in a 

power-law-like frequency of co-occurrences.  

Figs. 5.23 and 5.24 present the summary plots for parameters a and n, 

respectively. These plots demonstrate the effectiveness of the ranked frequency 

distribution in capturing patterns in linguistic development.  

 

Fig. 5.23. Summary plot for parameter a. 
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From Fig. 5.23 it is apparent that MOSAIC and the children follow a similar 

trend, approaching the mothers in their final stage 3. The baseline, however, does 

not display this property. 

 

Fig. 5.24. Summary plot for parameter n. 

Again, MOSAIC and the children are close, with virtually identical parameter 

values and variations for stages 2 and 3 (Fig. 5.24). The baseline, however, is 

much further away.  

The correlations between all pairs of the four sources are calculated and 

presented in Table 5.7.  

Table 5.7. Correlations of best-fit parameters of the ranked weight distribution.  

    a n 

Child-MOSAIC       

stage 1   -.13 -.54 

stage 2   -.23 -.96 

stage 3   .21 .29 

Child-Baseline       

stage 2   .47 -.18 

stage 3   -.23 .69 

Child-Mother       
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stage 3   -.56 .06 

MOSAIC-

Baseline       

stage 2   .41 .05 

stage 3   -.30 .82 

MOSAIC-

Mother       

stage 3   .28 .82 

Baseline-Mother       

stage 3   -.39 .49 

From the table it is clear that for stage 3 MOSAIC has high correlation (0.82) in 

parameter n with the baseline model. This relationship is interesting because it 

means that a simple baseline model performs similarly to MOSAIC for later 

stages of language acquisition. Also, MOSAIC has high correlation (0.82) in 

parameter n with the mothers. This suggests that MOSAIC produced realistic 

output that is similar to grown-ups’ output. In addition, for stage 3 there is good 

correlation (0.69) in parameter n between the children and the baseline. This 

suggests that for later developmental stages, the baseline model produces output 

with a rank-frequency curve exponent n that is similar to the children’s, which is 

remarkable given the simple nature of the model. This may be explained by the 

fact that the baseline only repeats co-occurrences that were present in the 

mothers’ input data (without generating any new ones), leading to a more robust 

but less realistic output.  

5.4.2 Community Structure 

Community structure is investigated for two types of network: the aggregated 

type contains all six children’s data and the individual type contains each child’s 

data. Hence, the aggregated networks give a general overview of the average 

linguistic development whereas the individual networks provide specific detail 

for the given child.        

Figs. 5.25-5.27 present the aggregated children’s community structure at each of 

the three stages, where the font size is proportional to the square root of the 

occurrence frequency (since the range of frequencies is large this ensures more 

balanced font sizes that are more clearly visible). The axes dimensions represent 
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two semantic categories: goodness and size (in absolute terms, in the sense that 

good/bad and big/small are not distinguished) on the y and x-axis, respectively. 

The semantic distance (calculated by DISCO (Kolb, 2008)) between each word 

in the networks and each of the two dimensions is used to plot the data. Only the 

words good and big were used in the calculations as the semantic distance does 

not distinguish between synonyms and antonyms (hence the absolute values).  

The colour represents the community assignment. Words located at the origin 

(bottom-left) are not shown since they lack semantics according to the axes. For 

better clarity, only the largest 50 words (in terms of font size) are shown in each 

respective plot, and the axes are in the range 0-50% semantic similarity since 

there are very few words that appear outside this range. Furthermore, word 

connections and co-occurrence frequencies are not shown, and colour is not 

consistent across the networks as it is only used to differentiate between different 

communities in a single network. By observing the distribution of words relative 

to the dashed diagonal line it is possible to determine the bias towards goodness 

or size related words in the utterances produced. To summarise, the figures depict 

the word occurrence frequency by their font size, and groups of identically 

coloured words have particularly high frequencies of co-occurrence, given their 

semantic distance. Figs. B.19-B.36 (see Appendix) present the individual 

children’s community structure at each of the three stages. 
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 Stage 1 Aggregated Children 

 

 

Fig. 5.25. Community structure in aggregated children in stage 1.  

 Stage 2 Aggregated Children 

 

 

good/bad 

big/small 

good/bad 

big/small 
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Fig. 5.26. Community structure in aggregated children in stage 2.  

 Stage 3 Aggregated Children 

 

 

Fig. 5.27. Community structure in aggregated children in stage 3. 

5.5 Summary 

This chapter presented the second applied case study on language acquisition 

networks. The key contribution of this chapter is the validation that MOSAIC is a 

good model of children’s syntax acquisition, which supports the Distributional 

Analysis theory in language. In addition, the proposed semantics-independent 

community structure revealed interesting patterns in children’s word co-

occurrence networks, opening up a new horizon for further study. 
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Chapter 6                                        

Discussion 

This chapter discusses the general properties and the community structure of the 

air transportation networks and language acquisition networks. The results of 

Expert’s spatial and Newman’s non-spatial community detection methods are 

compared. The two applied case studies are also compared and generalities are 

presented.   

6.1 Air Transportation Networks 

6.1.1 Network Parameters 

The results obtained from the parameter analysis are discussed in three parts. The 

first part addresses the individual parameters, which are based on the global 

structure of the entire network. The second part covers the degree distribution 

parameters, which describe the structure of the air transportation networks in 

terms of the airports’ number of incoming and outgoing connections from/to 

other airports. The final part focuses on the weight distribution parameters, which 

highlight the high heterogeneity in the number of passengers on different 

connections. 

 Individual Network Parameters 

Figs. 4.4-4.6 show the growth of the network in terms of airports, connections, 

and connected airports. Clearly, the expansion is much larger from 2000 to 2010, 

indicating a non-linear growth process. This observed behaviour is not unusual, 

as any transportation network is constantly affected by economic decisions, 

supply and demand, and many other factors. What is rather unusual is the fact 

that the average number of airport connections, Fig 4.7, displays a linear decline 

in time, due to the faster increase in number of airports compared to the number 

of airport connections. This means that many (probably small size) airports were 

introduced but they were not interconnected that well, unless already established 
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airports lost some connections. Because of this rapid growth, the average 

geodesic length (Fig. 4.8) between any two airports in the US jumped from 2.5 to 

3.5, within the past ten years.  However, this does not imply that the average 

journey would need more changes; to the contrary, the network was optimised 

over time to reduce the changes of the average passenger by interconnecting 

airports with higher passenger demands, and disconnecting those less profitable. 

This is evident from the recent boom in low-cost airlines, providing many point-

to-point flights between poorly connected destinations. Based on these facts, it is 

natural to assume that the clustering in the network increases, but Fig. 4.9 

contradicts this; again, this must be due to the huge number of new airports. All 

these parameters have confirmed the immense development of the USAN, 

particularly in the first decade of the 21
st
 century, and the next section explains 

this phenomenon in more detail.                    

 Degree Distribution Parameters 

Figs. 4.10 and 4.11 show the probability of an airport having zero incoming and 

outgoing connections, respectively. In other words, this parameter measures the 

proportion of very remote airports that only have some arrivals, or departures, per 

two months. Clearly, the fraction rises from 1990 to 2000, indicating a significant 

increase in such poorly connected airports, but more interesting is the 2000 to 

2010 period, which experienced no major change. Figs. 4.12 and 4.13 present the 

fraction of airports with just one incoming and outgoing connection, respectively. 

Again, these trends quantify the presence of minor airports, which increases 

linearly over the two decades. Figs. 4.14 and 4.15 report the fitting functions’ 

estimates for the parameters from the previous two figures. Basically, they 

confirm that the fits are not able to approximate (especially for the year 2000) the 

first two data points that were extracted as p and q, since they do not obey the 

power-law relationship that the rest of the data do. The key parameter in a power-

law is the exponent, as it controls the skew of the distribution. Therefore, 

between 1990 and 2000, Figs. 4.16 and 4.17 suggest an increasing exponent in 

absolute terms, since the scale of the figures is negative. This implies stronger 

preferential attachment, which means that already highly connected airports 
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obtained more connections, while poorly connected airports received few new, or 

even lost existing, connections. The fact that the change between 2000 and 2010 

is small, suggests that although there was a lack of point-to-point flights in the 

90s, it may have been resolved in the 00s. 

 Weight Distribution Parameters 

The ranked passenger distribution is the only characteristic of the dynamics on 

the network that is considered in this thesis, and as such, cannot be taken as a 

complete description of the function of the network. Nevertheless, the results are 

interesting, and can be used as a basis for further analysis. Figs. 4.18 and 4.19 

depict the two parameters of the logarithmic fit, and although further work is 

necessary to arrive at more precise conclusions, one thing is certain: the USAN 

exhibits considerable passenger variability over the course of a year. This is 

demonstrated by the error bars in the figures.  

6.1.2 Community Structure 

First of all, it is important to highlight the fact that some communities have 

airports that are very far apart, suggesting that spatial community detection 

discovers more meaningful communities that are not occupying a single region 

on the map. The seasonal variation within each of the three years and the long-

term evolution of the network between those years are explored in the following 

two sections. In addition, the obtained space-independent community structure is 

validated through comparison to the standard space-dependent community 

structure. 

 Seasonal Variation 

The seasonal variation in passenger flows within each year is investigated 

qualitatively by visually examining the obtained community structure, and 

quantitatively, using Normalised Mutual Information (NMI) (Danon et al., 2005).    

In terms of qualitative analysis, there appear to be significant changes in the 

community structure of the USAN in 1990. In other words, there were 

considerable seasonal variations in the volume of passengers on network 
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connections. Specifically, Jan-Feb had a very mixed structure, Mar-Apr had a 

large (green) super-cluster, and the rest of the year was mixed again, with some 

similarities between May-Jun and Sep-Oct. In the last two months of the year, 

Chicago joined the blue LA cluster, forming a similar structure to Jan-Feb, which 

indicates the presence of an annual cycle of passenger demand. Throughout 2000 

(apart from May-Jun), the community structure remained fairly stable, implying 

low seasonal variation. In particular, the network had a large super-cluster 

covering most of the US, and Atlanta was the super-hub. May-Jun, however, was 

different as Dallas and Chicago were in a separate cluster of their own, so there 

was a particularly strong passenger flow between them and other smaller airports 

in the north-east during these months. In 2010, similarly to 1990, there were 

notable fluctuations in the community structure of the network. Jan-Feb was 

mixed, Mar-Apr had a dominant red cluster, and in the rest of the year there were 

two dominant clusters (Denver and Chicago). LA and San Francisco formed their 

own community in green in Sep-Oct.  

Quantitative analysis of network snapshots involves NMI, which measures the 

similarity between two network partitions (in this case two consecutive 

snapshots), returning 1 if they are identical and 0 if they are completely 

independent. It is typically used to quantify the stability of community structure 

over time, but it is also used in tests of community detection algorithms 

(Lancichinetti and Fortunato, 2009). In order to calculate NMI, it was necessary 

to filter airports that do not appear in all snapshots for a given year. These few, 

small airports are rarely used and their traffic is very low, so their effect on the 

network is insignificant.  
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Fig. 6.1. Normalised Mutual Information (NMI) of consecutive network snapshots. 

Fig. 6.1 presents NMI over time. For example, JAN-APR refers to the stability of 

the community structure in the period January to April, using the NMI of the 

partitions for Jan-Feb and Mar-Apr. The connecting lines do not indicate 

continuity, but are there to facilitate interpretation of the graph. Fig. 6.1 suggests 

that in general, the community structure is fairly stable over the course of a year 

as the NMI is always above 0.5. In addition, annual stability has increased over 

the three years investigated as the average NMIs for 1990, 2000 and 2010 are 

0.63, 0.68 and 0.71, respectively. Specifically, for May-Aug and Jul-Oct the 

network has shown consistent improvement in stability over its evolution, 

whereas for Jan-Apr it has become more unstable. The intervals Mar-Jun and 

Sep-Dec are virtually unchanged over the two decades. In particular, Jan-Apr 

2000 and May-Aug 2010 were highly stable (NMI > 0.8), while 1990 was a 

relatively unstable year. The existence of an annual cycle is confirmed and 

quantified by calculating the NMI of the pair Jan-Feb and Nov-Dec, which is 

0.69, 0.79 and 0.52 for the years 1990, 2000 and 2010, respectively. In other 

words, in terms of community structure, Jan-Feb resembles Nov-Dec (not so 

much in 2010), indicating the presence of an annual cycle of passenger demand.  
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 Evolution 

This part describes the evolution of the USAN from 1990 to 2010 by focusing on 

three key issues: volume of air travel, bi-monthly snapshots, and the main hub 

Atlanta. In addition, the migration levels between, and within, the four US 

macro-regions are discussed.  

The quantity of domestic air traffic can be described by the total number of 

passengers carried across the USAN. Since the surface area of the airport nodes 

in Figs. 4.20-4.37 is proportional to the number of passengers, it is easy to 

determine the volume of air travel by observing the size of the nodes. The 

volume of air travel grew significantly from 1990 to 2000, with a particularly 

strong concentration of travellers via Atlanta. The first decade of the 21
st
 century, 

however, did not see a significant increase in air travel, which, to a certain extent, 

may have been caused by key events, such as the September 11 terrorist attacks 

in 2001, and the start of the global economic recession in 2008. It is interesting 

that although most airports did not grow much from 2000 to 2010, there are 

some, such as Denver, that did experience a steady growth in terms of 

passengers. The specific changes in passenger distribution among airports are 

highlighted by the changes in the size of circles in Figs. 4.20-4.37.  

In addition to the analysis of seasonal variation, it is also necessary to study long-

term evolution, by focusing on individual bi-monthly snapshots and observing 

the changes in the network from 1990 to 2000, and from 2000 to 2010. 

Therefore, each of the six bi-monthly periods is analysed separately in order to 

illustrate the precise changes in passenger flows and community structure for the 

specified period, that have occurred in each of the two decades. 

January-February: In terms of community structure, 1990 has a mixed pattern of 

clusters apart from the south (Fig. A.1), 2000 has a large cyan super-cluster 

covering all of the US (Fig. A.7), and 2010 again has a mixed structure (Fig. 

A.13). This indicates that in 1990 and 2010 there were numerous popular 

connections that saw a large number of air passengers, but in 2000 the passengers 

were more evenly distributed among the possible connections, resulting in a 
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single super-community. In addition, Atlanta and some airports in the south and 

north-east had their own specific traffic patterns, as shown in Fig. A.7.  

March-April: Generally, the community structure for this period is stable, but 

from 2000 to 2010 there is a clear transition of two hubs – Chicago and Dallas – 

from the main cluster to their own local-scale clusters (Figs. 4.27 & 4.33). In 

other words, these two airports became regional hubs in the first decade of the 

21
st
 century, at least for the months of March and April. 

May-June: Community structure changes significantly for the period 1990-2010, 

highlighting the specific changes in passenger trends over the years. In particular, 

1990 is composed of one large red cluster covering all but the south, one 

medium-sized pink cluster in the south, and several regional clusters (Fig. A.3). 

This structure indicates that the red airports are the national long-range hubs, the 

south is somewhat more isolated, and the rest of the airports provide more local 

services. On the other hand, in 2000 Chicago and Dallas belong to the same 

cluster, and Atlanta is by far the top airport in the US (Fig. A.9). In 2010, there 

are two main clusters – the Chicago cluster in yellow, and the Denver cluster in 

blue – that cover the US together with Atlanta and Dallas, acting as national 

super-hubs (Fig. A.15). 

July-August: Community structure in July-August suggests that in 1990 

passengers preferred specific long-range connections (Fig. A.4). Most clusters 

cover large areas of the US, so many people travelled all over the US, 

specifically among airports of the same colour. On the other hand, in 2000 

passengers were more evenly distributed within the green cluster, and more 

intricately concentrated on certain routes only in the north-east (Fig. A.10); while 

in 2010 the picture is, again, completely different, with two large clusters in red 

and pink, and two key hubs – Atlanta and Dallas – in blue and green, respectively 

(Fig. A.16). 

September-October: The network in 1990 (Fig. A.5) is mainly composed of the 

blue LA cluster and the green Dallas cluster, with Chicago and Atlanta as hubs, 

and the usual mix of clusters in the densely populated north-east. In 2000, 

however, there is one red super-cluster, Atlanta is the main hub, and there is also 
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a lot of activity in the Chicago region, as illustrated by the many colours that 

indicate the specific passenger trends in September-October (Fig. A.11). 2010 

has a mix of multiple large clusters revealing new passenger flows (Fig. A.17). 

This is a sign of long-range travel among community members that are far apart. 

November-December: In 1990 (Fig. A.6) the USAN is split into a large blue 

cluster and a yellow Dallas cluster in the south, but in 2000 (Fig. A.12) they have 

converged to a single yellow super-cluster, covering all but some regions in the 

north-east and the main hub Atlanta. In 2010 (Fig. A.18), the super-cluster has 

broken down, leaving Dallas as a national hub, and two red and green clusters 

spanning a large part of the US. 

The role of Atlanta (ATL) as a leading US airport depends on factors, such as air 

services and their locations, as well as investments into growth and development. 

In 1967, the city of Atlanta and the airlines began to work on a master plan for 

the future development of the airport. Many investments were made in the 

following years, leading to new passenger terminals, runways, and facilities both 

inside (such as the people mover system linking parts of the terminal), and 

outside (such as the Red/Gold rail line, operated by the Metropolitan Atlanta 

Rapid Transit Authority, linking the airport to the counties of Fulton and DeKalb, 

in addition to Atlanta itself). ATL is also the primary base of many airlines, such 

as Delta Air Lines, who built one of the world’s largest airline bases in 1930. 

Delta was an early adopter of the hub-and-spoke system, with Atlanta as its 

primary hub between the Midwest and Florida. This gave it an early competitive 

advantage, as Florida has been an attractive destination within the US for many 

decades. Although there is a decrease in the volume of migration in recent years, 

Florida and the South are still very popular destinations. In 1990, Atlanta was 

one of the three leading US airports for domestic flights. By 2000 it became the 

top airport (Figs. 4.20-4.37). Atlanta is also the only significant member in its 

community for all three years. This implies that it is equally well connected to 

other airports, thereby possibly serving as a national hub. Since ATL handles so 

many passengers but there are no other major airports of the same colour, it 

follows that all ATL connections have relatively similar traffic loads, with longer 

connections having less traffic due to the effect of spatial separation. Therefore, 
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ATL has no strong preferential attachment to any other major airport. To verify 

that Atlanta is a national hub, it is also necessary to check its number of direct 

connections. Table 6.1 summarises ATL’s number of connections and the highest 

number of connections for the months Jan-Feb, in each of the years studied. 

Table 6.1. Atlanta’s connections. 

 1990 2000 2010 

Atlanta 101 142 167 

Max 139 142 172 

Clearly, Atlanta ranks very high in terms of connections, so it has a direct 

influence on a large part of the US territory. For example, in Jan-Feb 2010, ATL 

handled 10.7 million passengers (top in the US) on 167 connections, with an 

average of 64,000 passengers per connection, compared with the US highest 

figures of 172 and 73,000, respectively. In summary, ATL became the top US 

hub for domestic flights by the year 2000.  

According to recent figures and US Census data (United States Census Bureau, 

n.d.), American people move many times during their adult lives, mainly in their 

twenties. Preferred destinations of domestic migration were Southern states, 

mainly Florida, possibly because they are considered attractive places to live and 

work. Although US domestic migration has fallen noticeably since the 1980s, it 

is still higher than that within most other developed countries and during the 

period 2000-2004 it continued to redistribute the country’s population (Perry, 

2006). Nevertheless, the current slowdown in domestic migration due to the 

impact of the economic situation has changed the picture of movements within 

the US. In-migration towards states like Arizona, Florida and Nevada has slowed 

down, while Massachusetts, New York and California now have considerably 

less out-migration (Internal Revenue Service (IRS), n.d.; United States Census 

Bureau, n.d.). In the years 2009 and 2010 mobility among states slowed 

nationwide and only a small percentage difference was observed during the two-

year period (Table 6.2). Migration is considered only for 2010 as this is the most 

recent year in the airport network model but a comprehensive investigation into 
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the long-term relationships between migration and air travel is beyond the scope 

of this work.   

Table 6.2. In-migration, representing the number of people migrating to specific US 

states in 2009-2010 (United States Census Bureau, n.d.).  

State 

Year 

2010 

Year 

2009 Diff % 

 

State 

Year 

2010 

Year 

2009 Diff % 

Alabama 108,951 124,658 -0.14  Montana 35,641 31,015 0.13 

Alaska 36,345 40,474 -0.11  Nebraska 51,290 53,214 -0.04 

Arizona 223,324 226,457 -0.01  Nevada 103,179 109,257 -0.06 

Arkansas 79,214 85,857 -0.08  New Hampshire 39,423 37,940 0.04 

California 445,972 460,161 -0.03  New Jersey 130,101 136,212 -0.05 

Colorado 187,240 182,854 0.02  New Mexico 74,237 64,797 0.13 

Connecticut 79,360 81,546 -0.03  New York 276,167 277,482 0.00 

Delaware 31,713 35,085 -0.11  North Carolina 265,206 284,171 -0.07 

District of 

Columbia 
5       1,244              38,907                 0.24 

 
North Dakota 30    30,100      29,970      0.00 

Florida 495,857 475,871 0.04  Ohio 174,773 171,894 0.02 

Georgia 250,469 280,221 -0.12  Oklahoma 106,720 117,850 -0.10 

Hawaii 53,581 53,270 0.01  Oregon 117,521 127,489 -0.08 

Idaho 55,871 57,790 -0.03  Pennsylvania 241,855 232,316 0.04 

Illinois 206,014 206,151 0.00  Rhode Island 32,335 32,108 0.01 

Indiana 127,925 132,755 -0.04  South Carolina 152,710 33,616 0.78 

Iowa 72,706 74,704 -0.03  South Dakota 25,777 145,873 -4.66 

Kansas 95,127 102,695 -0.08  Tennessee 159,778 29,632 0.81 

Kentucky 118,622 122,184 -0.03  Texas 490,738 168,174 0.66 

Louisiana 98,291 90,957 0.07  Utah 78,163 511,166 -5.54 

Maine 27,962 24,672 0.12  Vermont 22,529 90,375 -3.01 

Maryland 165,096 174,958 -0.06  Virginia 260,813 19,390 0.93 

Massachusetts 143,247 148,500 -0.04  Washington 191,784 271,600 -0.42 

Michigan 117,581 118,054 0.00  West Virginia 39,791 192,654 -3.84 

Minnesota 89,911 90,944 -0.01  Wisconsin 93,586 50,155 0.46 

Mississippi 73,135 67,245 0.08  Wyoming 28,046 95,475 -2.40 

Missouri 146,093 150,271 -0.03  Puerto Rico 31,732 30,889 0.03 

Despite the current tendency to stagnancy, the role of the airport network in the 

context of US domestic migration is important. Since an airport network is 

continuously evolving depending on passenger demand, it is increasingly well-

optimised for a number of functions, such as carrying more passengers, 

minimising flight changes for the average passenger, and making profit. As the 

USAN has evolved to attract passengers that are typically travelling to popular 

destinations, it is directly facilitating migration. Although most passengers fly for 

short-term business or leisure, there is evidence that a significant fraction of 

passengers are in fact migrating with a migration probability inversely 
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proportional to the distance (Levy, 2010; Schwartz, 1973). According to Census 

data, Figs. 6.2-6.4 show the migration patterns for the years 1990, 2000 and 

2010. Data refer to people that are moving to a given macro-region or within it. 

The scale is relative to the maximum value and therefore not consistent across 

the three years, but they are comparable, in order to identify any potential 

variations in migration patterns over the two decades. Migration within the 

macro-regions is higher than that among them (decay of interaction as distance 

increases), and migration within the South is the highest, suggesting strong 

dynamics among the member States. Furthermore, the South region attracts the 

most people from outside for all three years. This is in line with the fact that 

Atlanta airport (located in the South) has the highest passenger flow, as discussed 

above, but it does not necessarily follow that the entire flow is related to the 

South, as many of the passengers change flights in Atlanta en route to other 

regions. Nevertheless, the migration patterns do have a clear overlap with the 

community structure discovered in the USAN.  

 

Fig. 6.2. 1990 migration patterns among the four macro-regions: West, Midwest, 

Northeast and South. 

from

West
from

Mid-W
from

North-E
from

South

to West

to Midwest

to Northeast

to South



Chapter 6 Discussion 

 

 

119 
 

 

 

Fig. 6.3. 2000 migration patterns among the four macro-regions: West, Midwest, 

Northeast and South. 

 

Fig. 6.4. 2010 migration patterns among the four macro-regions: West, Midwest, 

Northeast and South. 

 Comparative Validation  

The purpose of this section is to demonstrate and to evaluate the effectiveness of 

Expert’s (2011) space-independent community structure detection in comparison 

to Newman and Girvan’s (2004) general community detection. To this end, 

Newman’s method (referring to the null model proposed by Newman and 
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Girvan) was applied to all eighteen network snapshots of the USAN in order to 

compare the communities obtained. In addition, Ball, Karrer and Newman (2011) 

have identified an overlapping community structure in the USAN but the 

resolution of the communities is low since only two major communities are 

identified (splitting the US into east and west). This, however, does not provide 

any detailed information regarding particularly high-traffic connections in the 

US, as identified by Expert’s null model in this thesis. Regarding the application 

of Newman’s method to the networks presented in this thesis, Fig. 6.5 shows the 

NOV-DEC 2010 snapshot, which is representative of all eighteen snapshots (see 

Figs. C.37-C.54 in Appendix). In comparison, Fig. 6.6 shows the same snapshot 

for Expert’s method. Here, the communities are not region-based but cover a 

large area of the US, exposing particularly high-traffic connections, given their 

distance.  

 

Fig. 6.5. Community structure in USAN in NOV-DEC 2010 identified using 

Newman’s method (same as Fig. C.54 in Appendix).  

 

Fig. 6.6. Community structure in USAN in NOV-DEC 2010 identified using 

Expert’s method (same as Fig. A.18 in Appendix). 
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All partitions identified using Newman’s non-spatial NG null model reveal an 

identical and trivial community structure within the USAN. Specifically, there 

are four main regional communities that always cover the same region within the 

US: the east, west, north or south. These isolated communities of airports only 

provide a very low-resolution picture of the major flows within the US, based 

solely on the passenger volumes among airports, and disregard the non-linear 

spatial influence on passenger flows. In summary, Expert’s spatial null model has 

revealed many particularly high flows among distant airports within the US, but 

Newman’s general null model only reveals four regions of high internal traffic, 

which results from the spatial networks bias towards stronger short-range 

interactions in terms of passenger flows. 

In order to provide a quantitative comparison of the results obtained using 

Expert’s (Expert et al., 2011) and Newman and Girvan’s (2004) null models, it is 

possible to use a community structure comparison measure, such as Normalised 

Mutual Information (NMI) or Normalised Variation of Information (NVI). Since 

the purpose of this section on comparative validation is to highlight the 

contribution of Expert’s spatial null model, NVI is a better candidate since it 

measures the difference between two partitions (in this case Expert’s and 

Newman’s), thus quantifying the significance of using spatial information in the 

detection of communities. 

NVI for Expert’s (2011) and Newman and Girvan’s (2004) community structure 

is shown in Fig. 6.7 where each trend represents the NVI over the course of a 

given year. Basically, the plot shows by how much Expert’s and Newman’s 

results differ over time, in each of the three years studied. High NVI means high 

variation (large difference) between the two partitions. Hence, since NVI ranges 

from 0 to 1, values above 0.5 are large and therefore the plot suggests that there 

are large differences in the community structure obtained by Newman’s method 

and Expert’s method. Specifically, 1990 generally has the highest NVI 

(especially JUL-AUG); 2000 is almost identical apart from a much lower NVI in 

JUL-AUG; and 2010 generally has the lowest and steadiest NVI. In summary, 

quantitative comparison of the communities obtained using Expert’s and 

Newman’s null models suggests that there is a significant difference between the 
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partitions obtained. This means that there is indeed a need to use tailored spatial 

community detection techniques for spatial networks, as the results obtained 

would be very different. Assuming that Expert’s model accurately captures the 

bias in the spatial networks, it follows that the higher the NVI, the better Expert’s 

model performs in comparison to Newman’s model.  

 

Fig. 6.7. Normalised Variation of Information (NVI) among community structure 

identified using Expert’s and Newman’s null models.  

6.2 Language Acquisition Networks 

6.2.1 Network Parameters 

This section discusses the ranked weight distribution parameters in Figs. 5.23 and 

5.24 by comparing two pairs of sources: mothers and children; and MOSAIC and 

children. The reason for the former is that the relationship between mothers’ 

child-directed speech and their children’s speech is a key issue in linguistics. 

Specifically, the linguistic research community is very interested in the level of 

dependence of children’s linguistic abilities and characteristics on their mothers’ 

speech. The reason for the latter is that in order to test the hypothesis of section 

2.5 it is necessary to evaluate MOSAIC’s performance in relation to the baseline 

model. This is achieved by comparing how well the two models simulate the 

children’s speech in terms of similar network parameters. Note that whereas the 
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significantly differentiate MOSAIC and the baseline model, the ranked weight 

distribution did. In other words, it was demonstrated that W(r) of a word co-

occurrence network is a powerful tool that can provide deeper insights into the 

language acquisition of young children. Therefore, its use in future research in 

this field is encouraged and the language acquisition community should exploit 

its full potential.  

Regarding the correlations that were obtained between the sources, the 

coefficients are difficult to interpret without strong a priori theoretical 

hypotheses, which are beyond the scope of this thesis. In addition, the small 

number of degrees of freedom means that it is very difficult to reach the 

significance level, which none of the correlations did. Thus, research with larger 

samples must be awaited before stronger conclusions can be made about the 

meaning of these correlations.  

 Mothers and Children 

Fig. 5.19 suggests that the scaling factor a of the children is increasing in time in 

a linear fashion, converging to the mothers’. Here, a is the best-fit estimate of the 

top-ranked normalised frequency. Therefore, it should be close to 1, and the fact 

that it is increasing above 1 over the three stages implies that the best-fit is 

diverging from the data for the top-ranked frequency, in order to provide a better 

fit to the rest of the data. This suggests that over the stages, the top frequency is 

falling below the expected power-law frequency. In other words, the most 

common pair of words occurs a little less frequently than a power-law would 

predict. However, the exponent n is in fact the key parameter in a power-law, as 

it controls how skewed the function is. Therefore, an increasing n in absolute 

terms (decreasing in Fig. 5.20 due to negative sign), implies more bias towards 

certain pairs of words in language productivity. Note that the mothers are well-

aligned with the children of stages 1 and 2, but the stage 3 children have in fact 

diverged completely from the expected linear trend. This is a clear indicator that 

in terms of word combinations, children are still developing their linguistic skills 

at this stage 3. It is suspected that the children probably experimented with a 

variety of new, or relatively new, word combinations when producing utterances, 
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thereby reducing the frequency of the more common word pairs, which are 

already well-known. Even though the other network parameters (except C) and 

the previous two stages for this parameter suggest otherwise, the exponent of the 

ranked frequency distribution has uncovered something very surprising. This 

result is also supported by the trend in C, but more importantly, the frequency 

distribution is a function parameter of the link weights, so it is telling us a lot 

more about the dynamics on the network.  

 MOSAIC and Children 

Fig. 5.19 clearly implies that MOSAIC and the children are close in terms of 

parameter a of the ranked weight distribution. The baseline, on the other hand, is 

much further away. This suggests that MOSAIC is significantly outperforming 

the baseline in this respect. In terms of parameter n (Fig. 5.20), MOSAIC and the 

children are very close, with virtually identical parameter values and variations 

for stages 2 and 3. Note that n is the exponent in the power-law of the fit to the 

ranked frequency distribution, which means that it determines the slope of the 

curve, i.e. the decay of the frequencies. This result is impressive because it 

implies that MOSAIC produces co-occurrences with frequencies that are very 

similar to the children’s. The baseline, however, does not. In addition, both the 

children and MOSAIC follow an interesting but unexpected trend over time for 

n: whereas they steadily approach the mothers for a (Fig. 5.19), they diverge for 

n (Fig. 5.20), but the mothers are exactly where the children are expected to be 

by linear extrapolation (Fig. 5.20).  

It would be useful to compare directly the main findings for MOSAIC and the 

children, and hence, Table 6.3 summarises the main qualitative and quantitative 

properties of the networks. 

Table 6.3. Main findings in MOSAIC and children. 

Property MOSAIC Children 

Degree distribution Power-law Power-law 

Weight distribution Power-law Power-law 

Average <k> 5.92 5.81 

Average L 3.16 3.14 

Average C 0.26 0.26 
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The degree and weight distributions of MOSAIC and the children all follow a 

power-law, confirming the ability of MOSAIC to simulate real children’s 

syntactic acquisition. In addition, the average <k>, L and C across all eighteen 

networks are also very similar for MOSAIC and the children. The average <k> 

validates the ability of MOSAIC to simulate the connectivity of children’s word 

co-occurrence network. The average geodesic length L is low for all networks 

and again MOSAIC’s L is very close to that of the children. The average 

clustering coefficient C is identical for MOSAIC and children. Since a thorough 

comparison to an ensemble of random networks in terms of L and C has not been 

carried out, it is not possible to state with certainty whether any of the networks 

obey the small-world property of low L and high C, but the values clearly show 

that the networks at least resemble a small-world.   

In summary, the hypothesis in section 2.5 has been verified, i.e. MOSAIC 

significantly outperforms the baseline at simulating children’s linguistic 

development. Therefore, it is a good model of language acquisition, which draws 

two conclusions. Firstly, MOSAIC should be developed and exploited further in 

order to reveal deeper insights into children’s language acquisition. Secondly, 

MOSAIC has illustrated the mechanisms involved in children’s distributional 

analysis of language. Therefore, it supports the distributional analysis theory 

where children’s linguistic abilities are shaped by their external environment. It 

would be interesting to see whether supporters of the nativist theory are able to 

explain these phenomena. In general, then, network analysis provides powerful 

constrains for theories of language acquisition.   

6.2.2 Community Structure 

Similarly to the discovered community structure in the air transportation 

networks, it is important to note that in the children’s networks some 

communities have words that are very far apart, suggesting that spatial 

community detection discovers more meaningful communities that are not 

occupying a single region on the map. In the following two sections the obtained 

community structure is discussed. For each of the three developmental stages, the 

individual children are analysed using the individual networks. General linguistic 
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development in the children is addressed by analysing the growing complexity of 

the aggregated networks. It is important to note that no linguistic pre-processing 

has been applied and so all of the obtained results are extracted directly from the 

networks using the community detection. In addition, the space-independent 

community structure detection is validated through comparison to the standard 

space-dependent community structure detection.    

 Dynamics and Evolution of Individual Children’s Networks 

This section discusses the community structure obtained for the individual 

children (see Appendix). Firstly, each of the three individual stages is 

qualitatively described. Then, linguistic development is quantitatively assessed 

by calculating the NMI of the community structure of each of the children over 

the three stages.   

Fig. B.19 (Ann 1) shows a large pink community of words including Anne, I, 

find, get, put, take, brush and others, suggesting a particularly high use of active 

verbs together with Anne and I, which means that she was most probably doing 

something herself during the data collection. Fig. B.20 (Ara 1) contains a large 

cyan community of dump, truck, door, boat, and other nouns and verbs, which, 

again, point to the focus of the child’s interaction with their mother. Fig. B.21 

(Bec 1) has a number of communities but they are relatively small in terms of 

frequency. Fig. B.22 (Car 1) has a large pink community including nana, man, 

bridge, apple, and train, which makes sense since some of them are clearly 

related, thereby confirming the quality of the obtained partitions. Fig. B.23 (Dom 

1) shows very high frequency words in various colours, such as I and play in 

pink, mummy and get in blue, car and a number of colours in red, and lorry and 

bridge in cyan. These are some very interesting word pairs that perfectly 

illustrate the emergence of statistically significant and meaningful patterns in 

children’s utterances. Fig. B.24 (Gai 1) does not appear to have a dominating 

community of words but there are individual communities that include words that 

are clearly related, which is an encouraging result. In summary, in stage 1 Bec 

did not produce any word with particularly high frequency, whereas Ara and 

Dom repeated certain words a lot, as illustrated by their dense plots.   
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Fig. B.25 (Ann 2) has words such as I, come and sleep in dark green, put and get 

in light green, and bit and baby in red. Fig. B.26 (Ara 2) has I and get in cyan, 

and a large red community of tractor, train, bus, car, come, back, sit and others. 

Fig. B.27 (Bec 2) has I and find in brown and multiple other communities of low 

frequency words. Fig. B.28 (Car 2) has I, draw, get, find and mummy in black, 

and daddy, baby, car and truck in pink. Fig. B.29 (Dom 2) has very high 

frequency words, such as I, play and eat in red, going, gone and car in brown, 

and get, come and back in pink. Fig. B.30 (Gai 2) has I, put, take, wear and 

mummy in the largest community in black. In summary, in stage 2 Bec continued 

with low frequency words, as well as Gai, whereas Dom (but not Ara) continued 

with high frequency words.  

Fig. B.31 (Ann 3) has unexpectedly low frequency words with no significantly 

large communities. Fig. B.32 (Ara 3) has I, put, get, going and eat in the top 

black community, and bricks, toys, back, train, car, horse, stuck and sit in the 

second largest light green community. Fig. B.33 (Bec 3) has I as a particularly 

high frequency word, get, going, and doing in pink, and put, back, stand and eat 

in black. Fig. B.34 (Car 3) has many high frequency words, such as I and get in 

light green, going in blue, and train, car, back, water, bridge, under and trucks in 

black. Fig. B.35 (Dom 3) has particularly low frequency words and no 

dominating community. Fig. B.36 (Gai 3) has I, going, find and take in blue, 

come, put and open in light green, get, right and look in black, and bit in red. In 

summary, in stage 3 Ann and Dom (Dom previously produced very high 

frequency words) began to produce low frequency words, whereas Car began to 

produce high frequency words. This is a very interesting phase transition in 

Dom’s language that suggests that the bias towards the repetition of specific 

words has been lost.  

By observing the distribution of words relative to the diagonal, it is clear that 

generally, children’s linguistic production focused more on size related words 

(since the majority of words are concentrated in the bottom right half of the plots) 

apart from Dom 2, Car 2, and Car 3 who produced more balanced utterances. 

This makes sense since young children have a better understanding of the simple 

notion of size, as opposed to the more complex concept of good and bad.  
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To calculate NMI it is necessary to compare community structure of the same 

input network, i.e. having the same nodes or words in this case. Therefore, for 

each child only the words present in all three stages are extracted and their 

community membership is used to measure NMI. Table 6.4 summarises the 

number of words in each of the networks as well as the number of common 

words that are used for the NMI. Although the number of common words is low 

compared to some of the bigger networks, the number is stable across the six 

children and the words are stable over the three stages, so these are the most 

significant words to study using NMI.  

Table 6.4. Number of words in children’s networks and number of common words 

present in all three stages.  

 
ann ara bec car dom gai 

Stage 1 556 487 498 385 558 622 

Stage 2 1205 651 824 628 1087 865 

Stage 3 594 1309 1245 1138 449 1230 

Common 246 276 291 236 253 309 

Fig. 6.8 shows the NMI of the community structure of consecutive stage 

networks of individual children. The two data points per child represent the NMI 

of community structure of stage 1 compared to stage 2 and stage 2 compared to 

stage 3. Generally, the values are low (NMI ranges from 0 to 1), especially when 

compared to NMI for the seasonal variation in the air transportation networks, 

suggesting that there is little common in the community structures obtained for 

consecutive stages. The most contrasting communities are those found in Ara’s 

stage 1 and stage 2 networks (NMI = 0.1 in bottom left), suggesting that she 

significantly changed her word co-occurrence frequencies during this time. The 

other children have relatively similar and low NMI values. Specifically, Gai 

appears to develop steadily over the three stages; Ann and Dom slightly decrease 

their rate of change over time (NMI increases); and Bec and Car slightly increase 

their rate of change over time (NMI decreases).  
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Fig. 6.8. Normalised Mutual Information (NMI) of consecutive stage networks of 

individual children. 

The NMI values presented in Fig. 6.8 are also particularly important because they 

do not agree with Chomsky’s theory of Universal Grammar. Assuming that UG 

parameters are set at an early age before the beginning of stage 1, UG would 

predict a high NMI since the theory suggests that once the parameters for 

language are set, linguistic production should not be affected by the environment 

and therefore the community structure of the networks should remain stable over 

time, resulting in high NMI. However, the fact that the networks represent 

observed interactions means that they are biased towards the statistical 

irregularities of the empirical data, so the communities are not a pure function of 

knowledge, but also of the nature of the specific data set obtained. Therefore, it is 

necessary to normalise for this effect, for example by ignoring the frequency of 

co-occurrence (i.e. the link weights), resulting in an unweighted network. In this 

case, however, the quantity of empirical data would determine the presence or 

absence of links since the more data is modelled the more likely it is that more 

unique links exist. Hence, it would be difficult to determine how much data to 

use and therefore it is not possible to make any solid conclusions regarding the 

agreement of UG with the NMI values obtained.   

In summary, Fig 6.8 confirms the dynamic nature of children’s language 

acquisition by exposing the long-term evolutionary changes in the community 
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structure of word co-occurrence networks incorporating both syntax and 

semantics.  

 Dynamics and Evolution of Aggregated Children’s Networks  

This section discusses the community structure obtained for the average child 

(see aggregated networks in Figs. 5.25-5.27) in each of the three stages, and the 

main changes in the networks that took place during this developmental period. 

NMI has not been calculated for the aggregated networks as it is simply the 

average of the NMI of the individual networks.  

Fig. 5.25 (stage 1) shows a pink community of the words Anne, I, put, play, get, 

mummy, find, please, eat and open, which are mostly verbs describing the actions 

performed by the children and/or the mothers. The blue community of car, door, 

truck, daddy, baby and gone (nouns and gone) clearly illustrates the child’s 

observation of something going (car is the largest so car gone is definitely the 

main pair in this community). There is also a light green community of man, 

train, nana and tractor, and a dark green community of bridge, lorry, take, hat 

and horse. For stage 1 the phrase I get is particularly popular.  

Fig. 5.26 (stage 2) shows a dark blue community of mummy, daddy, baby, drink, 

draw, truck, and a number of colours. Drink and draw are clearly the main family 

activities at this stage since they are in the same community as baby, mummy and 

daddy. Truck is probably the most common toy and the colours probably relate to 

the truck or to draw. There is a light blue community of going, gone, car, train, 

come, back, and play, which suggests that the child talked about a car or a train 

going or coming back or being played with. The red word get is particularly 

popular (second highest frequency after I) but there are no other red words 

visible in the figure which means that it was widely used in combinations with 

many other less frequently occurring words. The brown community of I, put, eat, 

take, sit, find, done, dolly, does and crash indicate the main actions of I and dolly. 

For stage 2 the pair I put is particularly popular.  

Fig. 5.27 (stage 3) shows a dark blue community of I, get, put, mummy, eat, take, 

play and many other verbs, so the children were able to describe more of the 
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activities that they became involved in, thanks to their continuous acquisition of 

language skills. The brown community of going, gone, come, back, bit, doing, 

daddy, think, round and fall mainly describes something or someone in motion 

since the top frequency word in the community is going. In other words, 

community detection has discovered two main communities that represent two 

very important but distinct types of verb: the blue community refers to actions 

carried out by the child (I), whereas the brown community refers to actions 

carried out by others (going) since going is probably the simplest verb to learn 

and the easiest action to observe. The red community of train, car, baby, 

naughty, man, found, ones and a number of colours is also interesting. In stage 3 

the phrase I get has returned to be the most popular pair as it was in stage 1.  

The total frequency of the top 50 words remains fairly stable over the three 

stages, as illustrated by the colour density in the plots, but clearly certain words’ 

frequency changes over time, as depicted by the font sizes and the presence or 

absence of given words (each word has a single, unique location in the semantic 

space plots based on its semantic distance to each of the two dimension’s 

semantic categories). As observed for the individual children’s networks, the 

aggregated children’s networks clearly show a bias towards words that are 

semantically closer to size, as opposed to goodness (most words are below the 

diagonal). It is interesting how for stage 1 the most popular pair of words (given 

their semantic distance) is I get, then for stage 2 it is I put, and then again for 

stage 3 it is back to I get. 

 Comparative Validation 

Similarly to the comparative validation section within the air transportation case 

study, the goal of this section is to demonstrate and to evaluate the effectiveness 

of Expert’s (2011) space-independent community structure detection (Spa) in 

comparison to Newman and Girvan’s (2004) general community detection (NG) 

for the language acquisition case study. Again, Newman’s method was applied to 

all eighteen of the children’s networks to compare the communities obtained. It is 

worth mentioning that at the time of writing this thesis community structure had 

not yet been identified for any linguistic network and therefore there was no 
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previous work to compare against. However, the partitions obtained using the 

two null models are significantly different to allow a comparison among the two, 

and to reveal the advantages of Expert’s model that also uses semantics in the 

community detection to identify more coherent communities. Fig. 6.9 shows the 

network of Gai at stage 3 and all eighteen networks are presented in the 

Appendix (see Figs. D.55-D.72).  

 

Fig. 6.9. Community structure in Gai 3 identified using Newman’s method (same as 

Fig. D.72 in Appendix).  

By visually comparing the community structure obtained using Expert’s and 

Newman’s null models it is clear that there is significant overlap in the partitions, 

even though the colours denoting communities may be inconsistent. Specifically, 

Ara 1’s partitions are particularly similar, suggesting that the semantic distance 

between words did not affect their co-occurrence frequency significantly enough 

to be picked up by Expert’s null model.  

In order to demonstrate the benefits of using semantics in Expert’s (2011) null 

model it is necessary to focus on the differences between partitions. For example, 

Bec 3’s NG partition has I, going and get in pink, whereas the Spa partition has 
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going and get in pink but I in brown. This means that although I, going and get 

interacted strongly on a syntactic level, when also considering the linguistic bias 

towards stronger interactions for lower semantic distances (i.e. higher co-

occurrence frequency if words are more similar semantically), then Spa places I 

in another community of particularly highly interacting words. Car 2’s NG 

partition assigns all colours to a light green community whereas Spa assigns 

black and green to two different communities. This means that Spa differentiates 

these two colours from the rest thereby revealing new relationships among these 

two individual colours and other co-occurring words. Car 3’s NG structure has 

coming, train and car in pink, whereas Spa has coming and round in cyan but 

train and car in black. In other words Spa has disentangled coming from the 

vehicles and has revealed an important connection coming round that is 

especially popular in this child’s linguistic production. Finally, to provide the last 

example of some of the main differences between NG and Spa, Dom 2’s NG plot 

has going and gone in cyan but car in pink, while Dom 2’s Spa plot has going, 

gone and car in brown. This example shows how Spa has picked up on the fact 

that car going and car gone are particularly regular when semantics is also 

considered. In summary, Expert’s model has revealed some specific particularly 

high-frequency co-occurrences among words, given their semantic similarity. On 

the other hand, Newman’s model only reveals the pure communities based solely 

on the co-occurrence frequencies, without considering the semantic similarity 

between the co-occurring words.  

To quantify the exact difference between the results of Expert’s (2011) and 

Newman and Girvan’s (2004) models, the NVI in the language acquisition 

networks in presented in Fig. 6.10. Here, each trend represents the NVI of a child 

over the three stages of development. Since the values calculated are between 0.3 

and 0.6, they are lower than those for air transportation, but they are nevertheless 

significant. Therefore, the plot suggests that, again, there are considerable 

differences in the community structure obtained by Newman’s method and 

Expert’s method. Interestingly, NVI variation among the children is lower at 

stage 2, meaning that the difference between Expert and Newman is more stable 

across the children at this stage. Specifically, two of the trends go up, two go 
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down, and two are inverted, over time. Ann and Car go down, Ara and Bec go 

up, and the other two criss-cross. Dom first goes up then down, but Gai first goes 

down then up. These interesting patterns in the trends reveal the performance of 

Expert’s model in comparison to Newman’s, as the higher the NVI, the higher 

the impact of semantics in the community structure detection. 

In summary, quantitative comparison of the communities obtained using Expert’s 

(2011) and Newman and Girvan’s (2004) null models suggests that there is a 

considerable difference between the partitions obtained. In other words, it is 

necessary to use semantics for community detection in language acquisition 

networks. Again, assuming that Expert’s model accurately captures the bias 

towards more co-occurrences of semantically similar words, it follows that the 

higher the NVI, the better Expert’s model performs in comparison to Newman’s 

model.  

 

Fig. 6.10. Normalised Variation of Information (NVI) among community structure 

identified using Expert’s and Newman’s null models.  

6.3 Comparison and Generalities 

Now that the results of the two applied case studies have been individually 

discussed, it is appropriate to address them together in order to reveal their 

specifics, similarities, differences, and generalities. Fig. 6.11 (same as Fig. 2.8) 

shows the basic structure of this research: case studies in air transportation and 

language acquisition are both modeled using network theory, and this section 
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discusses the overlap among the two domains using the results of the analyses of 

the network models, as well as their generalities, such as common findings, 

trends, patterns, and relationships. It is important to mention that the common 

ground among the two applied case studies has been intentionally emphasized 

where possible, to facilitate comparison and to identify potential similarities. For 

example, apart from the model structure (3 stages, 6 networks per stage) and 

common network modeling methodology, the network analysis techniques are 

also kept as consistent as possible. A good example of this is the spatial 

community structure detection, which is applied to a specifically augmented 

language acquisition network that contains both syntax and semantics (semantics 

playing the role of spatial distance for the community structure identification).  

 

Fig. 6.11. Comparison and generalities of air transportation and language 

acquisition using network theory. 

Although air transportation and language acquisition appear to have little in 

common at first, this thesis shows that in fact they do have a lot in common at a 

high abstract level. In addition to the common network modelling methodology 

that was used to analyse complex systems within each field, numerous common 

network analysis tools (such as statistical parameters and community structure 

detection) are also employed to study these systems. In terms of results of these 

analyses, one cannot expect any level of common trends or patterns in the 

properties of two networks that are so distinct. However, what both types of 

network definitely have in common is continuous dynamics of the network. In 
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other words, they may be growing, changing, developing, or even shrinking, but 

they are always evolving, driven by the environment that they interact with. For 

example, children’s linguistic networks are constantly shaped by the children’s 

social interactions, and air transportation networks are shaped by the interactions 

between airlines’ flights supply and the passenger demand. Another interesting 

commonality between these two networks (and many other types of network) is 

that they are both formed as a result of the flows on the networks. For example, 

in language the flow is the order of the words in utterances and in air 

transportation the flow is the passengers flying from A to B. However, the real 

complexity emerges only when the flows begin to interact on the network, and 

this complexity has been revealed and discussed in this thesis. 

It would be useful to compare directly the results obtained in each of the two 

applied case studies, and hence, Table 6.5 summarises the main qualitative and 

quantitative findings in children’s language acquisition and air transportation. 

Here, only the actual children are compared, as the mothers, the baseline and 

MOSAIC are all related to the children, who are the primary source of interest in 

the language acquisition case study. 

Table 6.5. Main findings in air transportation and children’s language acquisition.    

Property Air transportation Language acquisition 

Degree distribution  Power-law Power-law 

Weight distribution  Logarithmic Power-law 

Community structure Distributed  Distributed  

Average <k> 26.64 5.81  

Average L 2.88 3.14 

Average C 0.66 0.26  

Networks from both domains are scale-free since all in-degree and out-degree 

distributions follow a power-law of the form f(x) = ax
n
. This means that 

connections are distributed in a highly non-uniform manner with preferential 

attachment to a small number of key nodes. However, the weight distributions 

are different since the passengers follow a logarithmic trend but the co-

occurrence frequencies follow a power-law. This means that the passenger 

distribution is less skewed than the co-occurrence distribution, suggesting 

stronger preferential interactions in the language acquisition networks. The 
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identified space-independent community structure in both domains is distributed 

as opposed to regional, in the sense that community members are dispersed over 

large distances as opposed to being concentrated within a single region in space. 

This suggests that the communities found have particularly high internal 

interactions given the distance between them (which is the main aim of 

community detection). This is in contrast to previous community structure 

identified in the USAN (Ball, Karrer and Newman, 2011), which has been 

largely affected by the short-range interaction bias in spatial networks.  

The average <k> over all airport and children’s networks reveals the high 

connectivity of US airports compared to words in children’s word co-occurrence 

networks. The average geodesic length L is low and similar for networks of both 

domains. This means that it is very easy to get from any one node to another 

node in terms of the number of links that need to be traversed. However, the 

average clustering coefficient C is much higher in the USAN compared to the 

language acquisition networks, meaning that there are much more closed 

triangles of connections. This is most probably due to the higher density of 

connections in the USAN, which is reflected by the higher average <k>. As 

stated earlier in the case for language, since a thorough comparison to an 

ensemble of random networks in terms of L and C has not been carried out, it is 

not possible to state with certainty whether any of the networks obey the small-

world property of low L and high C, but the values clearly show that the 

networks at least resemble a small-world. 

6.4 Summary 

This chapter discussed the main results in air transportation and language 

acquisition. A comparison of the two domains revealed some emerging 

generalities that highlight the common ground among them. In summary, this 

chapter has shown that network theory can provide a useful abstraction of a 

complex system that reveals valuable domain-specific knowledge, while bridging 

the gap among distant disciplines. 
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Chapter 7                                          

Conclusion 

This chapter concludes the thesis. The major contributions to research in the 

field of complex networks are summarised. Theoretical implications for each 

individual case study and for complex networks in general are drawn based on 

the analysis of the results. Recommendations for future work are provided at the 

end.   

7.1 Research Contributions 

This section summarises four theoretical contributions of this thesis to general 

research in the field of complex networks: cluster damage; detailed network 

modelling; space-independent community structure; and dynamics and evolution. 

Cluster damage is a novel approach to test the robustness of complex networks to 

cluster failure. Detailed network modelling refers to the models developed in this 

thesis that are more detailed than existing models in terms of the number of 

network dimensions (topology, link weights, link directionality, space and time). 

The latter two more complex dimensions are especially neglected by the complex 

systems research community but they are important so they have been addressed 

by the two contributions that follow. Space-independent community structure 

refers to community detection methods that are tailored specifically for spatial 

networks. Dynamics and evolution refers to the topological and flow changes of 

the USAN both on short (dynamics) and long-term (evolution) time scales, and 

also the changes in children’s language in the short (dynamics) and long-term 

(evolution).  

In addition, there are two applied contributions to the fields of air transportation 

and language acquisition. They highlight the benefits to science of multi-

disciplinary research which facilitates the cross-fertilisation of ideas and methods 

among distant subjects.  
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 Cluster Damage 

This theoretical contribution presents the robustness of the Internet to cluster 

damage at the Autonomous System level. Since existing approaches only 

investigate simple node or link damage, they do not consider scenarios where 

nodes within a cluster are so entangled that the failure of a small number of 

nodes can knock out the entire cluster. For example, if the cluster hubs within a 

cluster of the USAN are congested or not available, a cascade of congestion and 

flight cancellations may sweep across the entire cluster, or even across the entire 

network depending on the severity of the affected traffic. Therefore, when 

investigating robustness it is important to consider the possible failure of entire 

clusters, especially when the network is highly modular. The benefit of this 

contribution to science is that it presents a generalisation on the standard strategy 

for robustness testing.  

 Detailed Network Modelling 

Since some research still does not consider even the first three basic dimensions 

(topology, link weights and link directionality) even though they may be 

important for the given context, the fact that they are incorporated in this work is 

a contribution in its own right within each of the two applied case studies 

presented in this thesis. The benefit of this contribution to science is that it has 

shown how more comprehensive models are able to reveal much more 

information about the object being modelled.  

 Space-Independent Community Structure 

The detection of meaningful community structure is of great significance for the 

understanding and analysis of complex systems of any type. Therefore, this thesis 

has confirmed that spatial networks need tailored community detection methods, 

such as the null model proposed by Expert (2011). The main contribution here is 

the application of this novel null model to two very different case studies that 

were developed in this thesis. It is important to stress that there is no alternative 

method for uncovering space-independent community structure and Expert’s 

method has only been applied to the Belgian mobile network. The benefit of this 
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contribution to science is that it has shown how the same method can be applied 

to very different problems as long as they are represented in the same way (in 

this case in the form of networks). This suggests that not only should methods be 

developed to be as generic as possible, but also problems should be encoded in a 

format that is as generic as possible (e.g. network model), in order to facilitate 

the application of methods in order to solve problems.     

 Dynamics and Evolution 

The short and long-term dynamics of an evolving complex network are important 

since they reveal trends in the network and allow the forecasting of future 

behaviour based on historical data. However, most research in complex networks 

does not address this essential issue. The benefit of this contribution to science is 

that the time dimension has been shown to be of significant importance in the 

study of systems that change over time.  

 Seasonal Variation and Evolution in Air Transportation 

The fact that the networks from language acquisition are partitioned into three 

stages of six children suggested an analogous treatment of the data from air 

transportation. In other words, the language acquisition case study was developed 

first and the structure of the model was applied for the first time in the field of air 

transportation, and specifically to the USAN case study, since it offered a much 

deeper insight into the evolutionary dynamics of the network. The key 

contribution here is the analysis of both seasonal variation within a calendar year 

and long-term evolution over two decades. The benefit of this contribution to 

science is that it shows how different time scales reveal different insights about 

the changes that occur in evolving complex systems, such as air transportation 

networks.   

 Syntax and Semantics in Language Acquisition 

Since the spatial community structure detection was first investigated for the case 

study on air transportation, it sparked an interesting idea for the language 

acquisition networks. Even though the word co-occurrence networks are not 
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embedded in space, they were extended to a virtual semantic space (i.e. first 

application of semantics in a syntax network), thereby incorporating an 

additional dimension of information in the form of semantics. Then, this fits 

perfectly with the spatial community detection, allowing the discovery of more 

meaningful communities based on both syntax in the form of word co-occurrence 

frequencies, and semantics in the form of semantic distances between words. The 

benefit of this contribution to science is that it reveals the significance of 

modelling mutually dependent variables, as opposed to neglecting one of them, 

such as semantics in word co-occurrence networks.  

7.2 Theoretical Implications 

The general robustness of part of the Internet has been shown to be very 

dependent on the kind of perturbation being considered. Specifically, the removal 

of two types of components (nodes and clusters) according to two strategies 

(errors and attacks) has revealed high heterogeneity in the robustness of the 

network. In other words, the robust yet fragile property common to many 

different complex networks has been exposed in the Internet. In addition, the 

obtained specific threshold robustness suggests that when larger clusters are 

attacked, the network is more robust since the attacks are less focused and more 

distributed, and hence, less effective since more nodes need to be damaged in 

order to damage the critical nodes. Therefore, in order to protect against targeted 

component attacks, the results suggest that by coupling nodes into dense clusters 

that need to be taken down as one whole (i.e. where individual internal nodes 

cannot fail without the entire cluster failing) would result in a more robust 

network configuration. In summary, the proposed network perturbation strategy 

based on the removal of entire clusters of nodes has been successfully applied to 

a partial model of the Internet at the AS level. The results have revealed an 

intuitive relationship between robustness and perturbation focus, which is also 

expected to hold for other kinds of real-world and computer-generated complex 

networks.  

The USAN is a complex system that is continuously evolving to meet the 

growing demands for air travel. Investigating the community structure within has 
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illuminated important hidden characteristics of the network’s topology and 

dynamics. Specifically, the findings reveal high heterogeneity in both space and 

time. In other words, the network is non-uniform (in space) and non-linear (in 

time) in terms of its connections and traffic. In addition, spatial community 

detection has identified a more realistic picture of the intricate structure within 

the network, which is invaluable for understanding this critical transportation 

system. Furthermore, this network model may be used for forecasting future 

trends in the USAN. For example, the identification of reliable communities can 

be the first step to study how external factors, such as natural disasters (e.g. 

tornados, which are common in large parts of the US), affect the function of the 

network. Moreover, the communities emerging from socio-economic 

interactions, as in the case of migration, reflect both the social influence radii and 

the activity system configuration (the distribution of activities in terms of 

location). Variations in the activity system will possibly modify such 

relationships and the resulting community structure. Finally, there is a clear 

relationship between domestic US air travel and migration. In particular, the 

identified community structures map well onto the migration patterns among the 

four macro-regions and within the region.  

Young children’s first language acquisition is a complex process that is 

continuously driven by the immediate environment, and specifically, by the 

social interactions with parents or other children. This has been confirmed by the 

language acquisition network analyses, such as the evolving community structure 

identified, which reveals the heterogeneity in children’s word combinations 

captured by the word co-occurrence frequencies in the networks. In addition, the 

extension of the syntactic language acquisition networks to enable the modelling 

of semantics for the application of spatial community detection has allowed a 

deeper and more accurate understanding of the particularly strong word 

interactions in the language produced. In addition, the network model can be 

used for the development of growth models that simulate the development of 

language acquisition networks, and also for predicting future properties and 

trends in the language of children that are currently learning (and hence there are 

no data of future networks yet). The identification of reliable communities can 
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also be used to study how external factors, such as parent’s language, the social 

environment, or even linguistic disabilities, affect the structure and dynamics of 

language acquisition networks, thereby revealing the intricate effects on 

linguistic production. The key conclusion of this case study, however, relates to 

the hypothesis that MOSAIC is a good simulation tool for children’s syntactic 

acquisition. Specifically, the results of the network analyses suggest that 

MOSAIC performs very well indeed, implying that language acquisition is 

definitely affected by the environment and specifically child-directed speech. 

This, in turn, questions the validity of the mainstream Universal Grammar theory 

proposed by Chomsky. In summary, based on the findings of this research it is 

fair to say that perhaps the best explanation for children’s extraordinary ability to 

learn their first language is that they both have an innate predisposition for 

language and built-in mechanisms for analysing (and learning from) the 

statistical properties of the language they are subjected to.             

Evolution-based modelling of networks promises to be a useful tool for 

extracting detailed information about the complex interactions in networks that 

are typically growing, as demonstrated by the applied case studies presented in 

this thesis. Specifically, where possible, it is recommended to study complex 

networks in line with the contributions outlined above: cluster damage has to be 

considered; models need to be sufficiently detailed; spatial networks deserve 

special attention; and network evolution also needs to be considered. In addition, 

both seasonal variation and evolution should be investigated in air transportation 

models; and both syntax and semantics should be combined in language 

acquisition models. It is worth mentioning that the approach described in this 

thesis is simple and straightforward, and may be applied to the study of any 

transportation or language acquisition network, and more generally, to any 

evolving complex network.  

7.3 Future Work 

Future work in the general field of complex networks needs to propose new 

theoretical methods for the analysis and understanding of complex systems, and 

new simulation models that display the behaviour of empirical models of 
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complex systems. Specifically, it is necessary to develop and evaluate alternative 

methods for the discovery of space-independent community structure. One 

important question regarding the application of Expert’s (2011) method is exactly 

how much bias there is towards stronger short-range interactions in the network 

being studied. Also, it is important to identify new network parameters that 

describe sufficiently well both dynamics on and of the network. Finally, given 

the proposed evolution-based network models, it would be useful to forecast 

potential future trends in the networks.  

Future work in the more specific fields of robustness, air transportation and 

language acquisition has to address a number of issues. First of all, the proposed 

cluster damage strategy should be tested for clusters that are identified using a 

community detection method (thus becoming community damage) in order to 

generalise the current findings to the failure of meaningful communities (as 

opposed to the more trivial clusters), which is more appropriate for simulating 

real world failures. Regarding air transportation, the relationship between 

migration and air travel in the US needs to be explored further as the preliminary 

results in this thesis suggest that inter-state migration may be a significant 

contributing factor to US air travel in general. Regarding language acquisition, 

clearly it is necessary to increase the number of observations (only 6 children in 

this thesis) in order to identify statistically significant correlations among 

multiple subjects. In addition, there are currently no network growth models that 

aim to simulate the development of children’s language acquisition networks 

(e.g. word co-occurrence), which would be useful for the study of language 

acquisition (there exist growth models for air transportation). Another 

particularly useful extension is to identify the community structure in MOSAIC’s 

networks in order to compare the extent of overlap among MOSAIC and the 

children in terms of communities of densely interacting words.  

The author looks forward to exciting new developments in the multi-disciplinary 

field of complex networks and hopes that in time they will help to solve ever-

more challenging problems. 
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Appendix A                           

USAN Community Structure by 

Expert’s Method 

The following figures depict the community structure found in the USAN using 

Expert’s method. In each figure, all community members are assigned the same 

colour. 

 Year 1990 

Figs. A.1-A.6 depict bi-monthly snapshots of the USAN for the year 1990. 

  

Fig. A.1. JAN-FEB 1990 community 

structure with Expert. 

Fig. A.2. MAR-APR 1990 community 

structure with Expert. 

  

Fig. A.3. MAY-JUN 1990 community 

structure with Expert. 

Fig. A.4. JUL-AUG 1990 community 

structure with Expert. 

  

Fig. A.5. SEP-OCT 1990 community 

structure with Expert. 

Fig. A.6. NOV-DEC 1990 community 

structure with Expert. 
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 Year 2000 

Figs. A.7-A.12 depict bi-monthly snapshots of the USAN for the year 2000. 

  
Fig. A.7. JAN-FEB 2000 community 

structure with Expert. 

Fig. A.8. MAR-APR 2000 community 

structure with Expert. 

  
Fig. A.9. MAY-JUN 2000 community 

structure with Expert. 

Fig. A.10. JUL-AUG 2000 community 

structure with Expert. 

  
Fig. A.11. SEP-OCT 2000 community 

structure with Expert. 

Fig. A.12. NOV-DEC 2000 community 

structure with Expert. 

 Year 2010 

Figs. A.13-A.18 depict bi-monthly snapshots of the USAN for the year 2010. 

  
Fig. A.13. JAN-FEB 2010 community 

structure with Expert. 

Fig. A.14. MAR-APR 2010 community 

structure with Expert. 
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Fig. A.15. MAY-JUN 2010 community 

structure with Expert. 

Fig. A.16. JUL-AUG 2010 community 

structure with Expert. 

  
Fig. A.17. SEP-OCT 2010 community 

structure with Expert. 

Fig. A.18. NOV-DEC 2010 community 

structure with Expert. 
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Appendix B 

Children’s Community Structure by 

Expert’s Method 

The following figures depict the community structure found in the children using 

Expert’s method. In each figure, all community members are assigned the same 

colour. 

 

Fig. B.19. Ann 1 community structure with Expert.  
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Fig. B.20. Ara 1 community structure with Expert. 

 

Fig. B.21. Bec 1 community structure with Expert. 
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Fig. B.22. Car 1 community structure with Expert. 

 

Fig. B.23. Dom 1 community structure with Expert. 
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Fig. B.24. Gai 1 community structure with Expert. 

 

Fig. B.25. Ann 2 community structure with Expert. 
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Fig. B.26. Ara 2 community structure with Expert. 

 

Fig. B.27. Bec 2 community structure with Expert. 
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Fig. B.28. Car 2 community structure with Expert. 

 

Fig. B.29. Dom 2 community structure with Expert. 
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Fig. B.30. Gai 2 community structure with Expert. 

 

Fig. B.31. Ann 3 community structure with Expert. 
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Fig. B.32. Ara 3 community structure with Expert. 

 

Fig. B.33. Bec 3 community structure with Expert. 
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Fig. B.34. Car 3 community structure with Expert. 

 

Fig. B.35. Dom 3 community structure with Expert. 
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Fig. B.36. Gai 3 community structure with Expert. 
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Appendix C                                          

USAN Community Structure by 

Newman’s Method 

The following figures depict the community structure found in the USAN using 

Newman’s method. In each figure, all community members are assigned the 

same colour. 

 Year 1990 

Figs. C.37-C.42 depict bi-monthly snapshots of the USAN for the year 1990.  

  

Fig. C.37. JAN-FEB 1990 community 

structure with Newman. 

Fig. C.38. MAR-APR 1990 community 

structure with Newman. 

  

Fig. C.39. MAY-JUN 1990 community 

structure with Newman. 

Fig. C.40. JUL-AUG 1990 community 

structure with Newman. 
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Fig. C.41. SEP-OCT 1990 community 

structure with Newman. 

Fig. C.42. NOV-DEC 1990 community 

structure with Newman. 

 Year 2000 

Figs. C.43-C.48 depict bi-monthly snapshots of the USAN for the year 2000. 

  

Fig. C.43. JAN-FEB 2000 community 

structure with Newman. 

Fig. C.44. MAR-APR 2000 community 

structure with Newman. 

  

Fig. C.45. MAY-JUN 2000 community 

structure with Newman. 

Fig. C.46. JUL-AUG 2000 community 

structure with Newman. 

  

Fig. C.47. SEP-OCT 2000 community 

structure with Newman. 

Fig. C.48. NOV-DEC 2000 community 

structure with Newman. 
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 Year 2010 

Figs. C.49-C.54 depict bi-monthly snapshots of the USAN for the year 2010.  

  

Fig. C.49. JAN-FEB 2010 community 

structure with Newman. 

Fig. C.50. MAR-APR 2010 community 

structure with Newman. 

  

Fig. C.51. MAY-JUN 2010 community 

structure with Newman. 

Fig. C.52. JUL-AUG 2010 community 

structure with Newman. 

  

Fig. C.53. SEP-OCT 2010 community 

structure with Newman. 

Fig. C.54. NOV-DEC 2010 community 

structure with Newman. 
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Appendix D                                               

Children’s Community Structure by 

Newman’s Method 

The following figures depict the community structure found in the children using 

Newman’s method. In each figure, all community members are assigned the 

same colour. 

 

Fig. D.55. Ann 1 community structure with Newman.  
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Fig. D.56. Ann 2 community structure with Newman. 

 

Fig. D.57. Ann 3 community structure with Newman. 
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Fig. D.58. Ara 1 community structue with Newman. 

 

Fig. D.59. Ara 2 community structure with Newman. 
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Fig. D.60. Ara 3 community structure with Newman. 

 

Fig. D.61. Bec 1 community structure with Newman. 
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Fig. D.62. Bec 2 community structure with Newman. 

 

Fig. D.63. Bec 3 community structure with Newman. 
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Fig. D.64. Car 1 community structure with Newman. 

 

Fig. D.65. Car 2 community structure with Newman. 
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Fig. D.66. Car 3 community structure with Newman. 

 

Fig. D.67. Dom 1 community structure with Newman. 
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Fig. D.68. Dom 2 community structure with Newman. 

 

Fig. D.69. Dom 3 community structure with Newman. 
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Fig. D.70. Gai 1 community structure with Newman. 

 

Fig. D.71. Gai 2 community structure with Newman. 
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Fig. D.72. Gai 3 community structure with Newman. 

 

 


