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formulation for mixed type problems
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Abstract. Some modified direct localized boundary-domain integral equations (LBDIEs)
systems associated with the mixed boundary value problem (BVP) for a scalar “Laplace”
PDE with variable coefficient are formulated and analyzed. The main results established
in the paper are the LBDIEs equivalence to the original variable-coefficient BVPs and the
invertibility of the corresponding localized boundary-domain integral operators in appro-
priately chosen function spaces.
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1 Introduction

Partial Differential Equations (PDEs) with variable coefficients arise naturally
in mathematical modelling of non-homogeneous media (e.g. functionally graded
materials or materials with damage induced inhomogeneity) in solid mechanics,
electro-magnetics, thermo-conductivity, fluid flows trough porous media, and
other areas of physics and engineering.

The boundary integral equation method/boundary element method (BIEM/
BEM) is a well established tool for solution of boundary value problems (BVPs)
with constant coefficients. The main ingredient for reducing a BVP for a PDE to
a BIE is a fundamental solution to the original PDE. However, it is generally not
available in an analytical and/or cheaply calculated form for PDEs with variable
coefficients. Following Levi and Hilbert, one can use in this case a parametrix
(Levi function) as a substitute for the fundamental solution. Parametrix is usually
available much easier than a fundamental solution and describes correctly the main
part of the fundamental solution although does not have to satisfy the original PDE.
This reduces the problem not to a boundary integral equation but to a boundary-
domain integral equations (BDIEs) system, see, e.g., [10, 11]. The discretization
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of the BDIE leads then to a system of algebraic equations of similar size as in the
FEM, however the matrix of the system is not sparse as in the FEM, but dense and
thus less efficient for numerical solution.

The localized boundary-domain integral equation method (LBDIEM) emerged
recently [8, 12,13, 15, 16] addressing this issue and making the BDIE compet-
itive with the FEM for such problems. The LBDIEM employs specially con-
structed localized parametrices to reduce BVPs with variable coefficients to local-
ized boundary-domain integral or integro-differential equations. After a locally-
supported mesh-based or mesh-less discretization this ends up in sparse systems
of algebraic equations. Further advancing the LBDIEM requires a deeper analyt-
ical insight into the properties of the corresponding integral operators such as the
solvability of LBDIE, uniqueness of a solution, equivalence to the original BVPs
and the invertibility of LBDIEs. The analysis of non-localized segregated BDIEs
is presented in [1,2, 5] and that of united BDIDEs in [9].

The analysis of the LBDIE corresponding to the Dirichlet and Neumann BVPs,
based on a parametrix localized by multiplying with a cut-off function, were pre-
sented in [3] and [4].

In this paper we develop analysis of some direct segregated localized boundary-
domain integral equations system (LBDIEs) for mixed type BVPs. Our main goal
is to prove:

(i) the equivalence of the LBDIEs to the original mixed type BVPs;

(i1) the invertibility of the corresponding localized boundary-domain integral op-
erators in the appropriately chosen function spaces.

2 Formulation of the boundary value problem

Let T be a bounded open three-dimensional region of R3 and Q@ := R?3 \ﬁ
For simplicity, we assume that the boundary S := dQ™" is a simply connected,
closed, infinitely smooth surface, which is divided into two nonintersecting, sim-
ply connected sub-manifolds Sp and Sy with infinitely smooth boundary curve
y := 0Sp = dSy € C. Further let a € C®(R3), a(x) > 0 for x € R3 and
a(x) = const > 0 for sufficiently large |x]|.

In this paper we consider the localized boundary-domain integral equations as-
sociated with the following scalar elliptic differential equation:

3
Lu(x) := L(x,dx)u(x) := Zaxi (a(x)ox;u(x)) = f(x), x¢€ Qt,

i=1
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where u is an unknown function and f is a given function in QV; here 9; =
dx, = 0/0x;j (j = 1,2,3), 0x = (0x;, 0xp, Ox3)-

In what follows Hj3 (), Hj ,,.(27), Hy(S) denote the Sobolev—Slobodetski
(Bessel potential) spaces.

For S; C S, we will use the subspace ﬁ;(Sl) ={g:g€ H5(S),suppg C S1}
of Hj(S), while H5(S1) = {rg, & : § € H5(S)} denotes the space of restriction
on Sy of functions from H3(S), where rs, denotes the restriction operator on Sj.

loc

From the trace theorem (see, eg, [7]) for u € H21 (QT) (u € Hzl,loc(Q_)) it
follows that u|§ = rg.tu € H7(S), where rsi is the trace operator on S from

+

Q*. We will also use the notation u® or [u]* for the traces u|§, when this will

cause no confusion.
Foru € H22(Q+), we denote by T the corresponding co-normal differentia-
tion operator on S

3
[Tul® = T%u = T=(x.n(x). 9)u(x) := Y a(0)n; (x)[dxu()]*

= () [y ()] =

where n(x) is the exterior (to Q) unit normal vector at a point x € S and On(x)
denotes the normal derivative operator.
For

ue Hy*'(QF, L) :={we H}(QT) : L(x,d)w € Lo(27)}
and

ue Hyp (. L) :={we H} . .(27) : L(x,0x)w € L2 10c(R7)}

1
we can correctly define a generalized co-normal derivative T*u € H 5 2 (S) with
the help of Green’s formula,

/i[vLu + E(u,v)]dx = £(T*u,vH)g, (2.1)
Q

Vue Hy(QY) [V e Hy (@],
where

3
E(u,v) := Z a(x)0x; u(x)0x; v(x),

i=1

_1 1
and (-,-)s denote the duality brackets between the spaces H, >(S) and H; (S)
which extend the usual L, (S) scalar product.
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In the case of a bounded domain Q1 and for u € H21’0(§2+, L) we have the
following Green’s formulas:

/ [vLu + E(u,v)ldx = (TTu,v")s Vve HI(QM), (2.2)
Q+
/ [vLu — Lvuldx = (T u,vF)s — (TTv,ut)sVv e H2(QF). (23)
Q+

We will consider the LBDIEs approaches for the following mixed type boundary
value problem: Find a function u € H}(27) satisfying the conditions

Lu=f inQT, (2.4)
rs,uT =g¢o onSp, (2.5)
rsy TTu =140 onSy, (2.6)
where
1 1
9o € H7 (Sp). Vo€ H, 2(Sy), f e HQT). 2.7)

Equation (2.4) is understood in the distributional sense, condition (2.5) is under-
stood in the trace sense, while equality (2.6) is understood in the functional sense
in accordance with (2.1).

We have the following well-known uniqueness and existence result (see,
e.g., [7]).

Theorem 2.1. (i) The homogeneous mixed BVP has only a trivial solution.

(i1) Let the inclusions (2.7) be satisfied. Then the corresponding nonhomoge-
neous mixed BVP is uniquely solvable.

Proof. The uniqueness result immediately follows from Green’s formula (2.2)
with v = u as a solution of the corresponding homogeneous boundary value prob-
lem. The existence result follows directly from the weak variational formulation
of the above problems and the Lax—Milgram theorem. |

As we have already mentioned in the Introduction, our main goal is to reduce
the mixed BVP to the equivalent localized boundary-domain integral equations
and prove the invertibility of the corresponding nonstandard integral operators in
appropriately chosen function spaces.
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3 Localized boundary-domain integral equations approach

3.1 Basic integral relations

Denote by P;(x, y) the parametrix (Levi function) of the operator L(x, dy) con-
sidered in [1],

1

- < > x’yER:;ax#y?
4ma(y)|x — y|

Pi(x.y) =
with the property
L(x,0x)P1(x.y) = 8(x —y) + Ri(x, y),

where §( ) is the Dirac distribution and

3
Xi = Vi da(x) 3
Ri(x,y) = E , ,y € R”, ,
1(x,y) £ 47m(y)|x—y|3 dx; X,y xXF#y

possesses a weak singularity of type @ (|x — y|~2) for small |x — y|.
Let X f be the subclass of cut-off functions introduced in [3,4].

Definition 3.1. We say that y € XX if

1eCE®?), k=0
¥(x)>0 VxeR3,
x0)=1, x(x)=0 forl|x|>e>0,

and y(x) =%(]x|), where ¥ is a non-increasing function on [0, +00).
Further we define a localized parametrix
P(x.y) = Py(x.y) = Pi(x.p)x(x = y). x,y €R’,

with y € Xk,
It is clear that

L(x,0x)P(x,y) =68(x —y) + R(x,y),
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where A is the Laplace operator, A = 9% + 93 + 93 and
R(x,y) = Ry(x,)

o Ag(x—y) = Oqlx—y) 3 1
_—47m(y){a(x)|: FTERED D s @x—yd

Jj=1
3

3200 8 pe—y)
Jj=1

, .y € R3. 3.1
dxj 0x;j Ix—yl} w G-D

We see that the function R(x, y) possesses a weak singularity @ (|x — y|~2).
For v(x) := P(x,y) and u € H21’0(9+), we obtain from (2.3) the third
Green'’s identities,

U+ Rou—V(ITtu)+wu')
Ryu—V(TTu)+ W)

Py(Lu) inQT, (3.2)
Pr(Lu) inQ7, 3.3)

where

Ve(y) = — fS P(x.)g(x)dS;.
We(y) = - /S [7(x.n(x). 0) P(x. »)]g (x)dSx.

Pet)i= [ Pygds, Regt)i= [ RGgdx

We denote by V, ‘W the direct values of the surface potentials, which generate the
boundary operators on S, i.e.,

Ve(y) = — /S P(x.)g(x)dS;.

We(y) = /S [7(x.n(x). 9) P(x. »)]g (x)dSs.

Moreover, let

Pe0)i= [ Perystodr. Re0)i= [ Ry

We(y) = /S [T(y.n(y). 8y) P(x. y)]g(x)dSs.

PEg = [TWg]f, Rfu = [¢R+u]§, JPfu = [{P+u]§:.

Due to the results obtained in [4] these operators are well defined. In the next
subsection we collect some auxiliary material needed in our analysis (for details
see [1,4]).
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3.2 Properties of potentials

Theorem 3.2. The operators
vV H;%(S) — H}(QF) with y € X,
W HZ%(S) — Hy(QF) with y € X2,
vV H}(S) — HZ(QF) with y € X2,

are continuous. Moreover, supp Vg and supp Wh are localized in the closed ¢

_1 1
neighbourhood of the surface S, and for g € H, *>(S) and h € Hy (S) we have,
L(y,dy)Vg € HY(QY) ify € X2 and L(y,dy)Wh e HY(QF) if y € X2.

Denote by £y = aP the pseudodifferential operator of order —2 with the sym-
bol A(§),

Pog = FHAE T g}

_ s L x(x)y 1 L[,
M8=M@%Jm%PEWHJ——Eﬂ®HEﬁAX@N%ww@-

where ¥ and F ! are the direct and the inverse Fourier transform. For y € X!
this implies

il +ED72 < M@ < c2(1 + [ED 72, £ € R,
Then we have the representations

Vog = aVg = —F A F (g85)} = —Po(g8s). (3.4)
Woh = aWh = —F ~H{A(§) F [0, (ahds)]} = —Pol—-0n(ahds)],  (3.5)

where the singular distributions d, (a/ds) and gés are defined as follows [14]:

(On(ahds). @) s = —/ ahdnedS,
§ (3.6)
(885.¢) s = /SggodS Vo e DR?).
Further, denote by M the pseudodifferential operator of order 2, the inverse to 5,
1

Mg =F Hm@EFgh, mE) = o3
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The operators
M : HZ’(R3) — HZt_Z(Rs) for arbitrary ¢ € R,
S(R%) — S(R?),
§'(R%) — $'(RY),
Po : HZ’(R3) — H£+2(R3) for arbitrary ¢ € R,
S(R%) — S(RY),
8'(R%) — 8'(R?)
are invertible. Here § (R3) and 8’ (IR3) are the Schwartz spaces of rapidly decreas-

ing functions and tempered distributions respectively.

_1 1
Theorem 3.3. Let g € H, *(S), and h € H; (S). Then there hold the following
Jjump relations on S':

Vgl = Vg, xeXx,.
1

(Wht = Fh+ Wh, x€ X2,
1

[TVel* = g+ W, X € X2,

[TWhT —[TWh] =2 Th—% h= g—zh, x € X2
Theorem 3.4. The operators
ViHy t(S) > HES). ye Xl
W : Hj(S) — Hj(S), xe X2,
W HZ_%(S) — H;%(S), xe X2,
£t HZ%(S) — H;%(S), x € X2,
are cOntinuous.

Theorem 3.5. The operators
PrHXQT) - HZ(QT), yeXx]

Fold
Ry HYQT) — HY(QT), yeXZ,
Ry HY(QT) - HF(QT), yeX?,

are continuous.
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3.3 Auxiliary integral relations
Let us introduce the weighted function spaces
X(Q 7 L) = {w: (1+[x]) 2w e Ly(Q7), djw € Lr(Q7),
J=1,2,3, (1+ |xP)2Lw e Lo(Q7)),
Y(Q . L) :={w: (14 [xP)2w e Ly(Q7). (I + |x])2djw € Lo(Q7),
J=1,2,3, (1+ |x)2Lw € Lo(Q7)).

Denote by Z(')F the extension by the zero operator from Q1 onto ™ and by £, the
extension by the zero operator from 2~ onto Q.

Lemma 3.6. Letu € HO(QT, L) and v € X(~, L). Then the following rela-
tions hold:

Z(Tu + R(Zgu) = ?(Aﬁg(au)) — ?(KS'A(M)) — VT d,a),
Lov + R(Lyv) = P (AL, (av)) — P Ly A(v)) + V(v 0na),
where A(w) := wAa + Vw - Va withV = (d1, 92, 93).

Proof. Using formula (3.1), the properties of convolutions of distributions and the
integration by parts formula we derive

R(UFu) = /R3 R(x, y)Lgu(x)dx

1 rAx(x)
_m{[ H +2Vx(x) - Vl J*Z(')"(au)}
— PUTAW)) = V(uTdpa)
1 (A
= ~all f;(fc)“V (x) - Vﬂ+x(x)A| |]*eg(au)}

[ (ra ) 6 @] - Pef Aw) - Vit a

1 x(x)

= el () = 6 @] - s = £ @]
— PUFAW) = V(uTda)

= P(AL] (au)) — LFu — PLF A)) — V(uT,a).

Whence the first equality of the lemma follows. The second equality can be ob-
tained analogously. |
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Lemma 3.7. Letu € HY%(QT, L) and v € X(Q~, L). Then the following rela-
tions hold:

P(ALS (au)) = PUS Alaw)) + V(T Tu) + V(utopa) — Wu™),
P(ALly (av)) = Py Aav)) — V(T v) = V(v 0pa) + W(v7).

Proof. The condition of the lemma for u yields u € H'°(Q™, A). Therefore for
an arbitrary C ®°-regular test function ¢ with compact support (¢ € D(R3)) we
have Green’s second formula,

/ (uAQ — pAu)dx = / ut 0,0 — @[d,u]T)ds,
Q+ S
whence

/ (Z(}Lu)A(pdx—/ goﬂg'Audx = / u+8n<pdS—/[8nu]+g0dS. (3.7)
R3 R3 S S

With the help of formulas (3.6), the last equality (3.7) can be rewritten in the form

(AU, )y — (€5 (Au), @)y = —(3n (T 85), 9) s — ([9nul TS5, 0) 5
Ve DR,
which implies
AU u) = £ (Au) — 3, (u™8s) — [0au] TS5 (3.8)

in the distributional sense in the space of tempered distributions, §’(R3). Apply-
ing the operator J to equation (3.8) and taking into consideration formulas (3.4)
and (3.5) we get

P(AULgu) = Py (Aw) + V([05u] ") = W(a™ u]).

Substituting here au for u we get the first identity of the lemma. The second
identity can be obtained analogously. |

Further, we introduce a pseudodifferential operator R, o with the symbol u

(€)= Hg[ %(Af;(fhrzv )V I)]

Simple calculations lead to the equality

&

(€)= 57(@) sin(olé))do

|s|
|s|2 P2 ()+|§|2 / 270 cos(oléhdo. £ #0.  (39)
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Whence, if y € X 3, we conclude that ;1 is a C *-regular function in R3 decaying
as O(|€|72) at infinity. Therefore, the pseudodifferential operator R, o has order
—2, i.e., the operator

Ruo: HS(R?) — HT2(R?) VseR (3.10)
1s continuous.

Lemma3.8. Let y € X2 and (14]x]?)Y/2g € L, (R3). Then (1+|x|2)1/2,M£M,0g
€ Ly(R3).

Proof. Due to the conditions of the lemma we have
ge LR, xjgelR?, j=12.3. (3.11)
First we establish that
XjRuog € HF(R?), j=1,2,3. (3.12)
Note that the operator R, ¢ is representable as
Ru08 = Ty [1(E) Fy e gl.
where in view of (3.9)
W@l <c+[ED72 [u@El<c+[EDT2 j =123 @313

with some positive constant c.
Applying the Fourier transform properties we derive

X Ryu08 = X Fd (16 Fyeg] = —i FL [0 {n(E) Fymig)]
= i Tl [0 () Fyaeg) — i T L [1(6)dg, Fy o]
= —i 7} [0, W) Fysegl + F ) [0 Fyse (v 0.

Both summands in the last equality belong to the space H22 (R3) due to the bounds
(3.13) and inclusions (3.11). Thus (3.12) holds and

h:=Ruo0g € H¥(R?), x;h e HF¥(R?). (3.14)

Further, we recall that M is a pseudodifferential operator of order 2 whose symbol
m (&) has the properties

ct(1+[ED? < Im(®)] < c2(1 + £,

. (3.15)
0jm () < ca(l +[E]), j =1.2.3,
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with some positive constants cy, ¢z, ¢3. Therefore, applying the same manipula-
tions as above we easily derive

XjMh = xX; e ImE) Fyeh] = —i [0, {m(E) Fy e8]
= —i F L [0, m(E)yFyeh) — i F)  [m(§)dg; Fyeh]
= —i 7 (05, m(E) Fyeh] + Fi L [mEFy e ()]
In view of (3.14) and (3.15) we have that x; Mh € L(R?). Since Mh € L»(R3),
the proof follows. |
3.4 Reduction of the mixed BVP to LBDIEs

From now on we assume that y € X* with k > 3.
If u solves the differential equation (2.4), then from equations (3.2)—(3.3) we
get

U+ Ru—VITtu)+Wut)y =2, f inQT, (3.16)
Riu—V(ITTu)y+ Wut)y =P, f inQ, (3.17)

1
§u+ + RIu—V(T u)+ Wut) =2 f onS, (3.18)

1
ET+u +TTRiu—WT W)+ W) =T P f onS. (3.19)

To get a boundary domain integral formulation of the above mixed BVP we pro-
ceed as follows.1

Let &g € H2i (S) be the fixed extension of the given function ¢¢ from the sub-
manifold Sp onto }he whole of S (see the Dirichlet condition (2.5)). An arbitrary

extension ® € H2i (S) preserving the function space can be then represented as
~1
O =g+ ¢ withg € H5(Sy).
1

Analogously, let Wo € H, *(S) be the fixed extension of the given function g
from the sub-manifold Sy to thelwhole of S (see the Neumann condition (2.6)).
An arbitrary extension ¥ € Hz_ 2(S) preserving the function space can be then

__1

represented as W = Wy + ¢ with ¢ € H, *(Sp).

If o9 = 0 or Y9 = 0 then we take the canonical extension @9 = 0 or ¥y = 0
onS.

Now, let u be a solution of the mixed BVP. Evidently, we then have the equa-
tions

ut =g +¢, TTu= o+, (3.20)

~1 ~_1
with some ¢ € H; (Sy) and € H, *>(Sp).
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With the help of (3.16)—(3.19) we derive the following integral relations,

U+ Riu—Vy+Weo=Fy inQt, (3.21)
Rou—Vy+We=F, inQ, (3.22)
s, :“R:[u —rs, V¥ +rs, Wo =rg, FOJr —¢@o onSp, (3.23)

Tsy TYR u— Tsn Wy + Tsn LT = Tsn TYFy—vo onSy, (3.24)
where
Fo =P f + VW — W (3.25)

We can consider these relations as localized boundary-domain integral equations
(LBDIESs) system with respect to the unknown functions u, ¥, and ¢.

With the help of the properties of the localized potentials and invertibility of the
localized volume potential operator, we can easily show that the right-hand side
functions in the equations (3.21)—(3.24) vanish if and only if f = 0, g9 = 0,
Yo = 0, &9 = 0 and ¥y = 0, which along with Theorem 2.1, implies, similar to
proof of Theorem 3.10 below, the following equivalence of the above mixed BVP
and LBDIEs system (3.21)—(3.24).

Proposition 3.9. (i) If u solves the mixed BVP, then (u,V, @), where ¥ =
TYu— Wy and ¢ = ut — ®q, solves the LBDIEs system (3.21)—(3.24).

(ii) If the three vector (u,, ) solves the LBDIEs system (3.21)—(3.24), then u
solves the mixed BVP and relations (3.20) hold.

(ii1) The LBDIEs system (3.21)—(3.24) is uniquely solvable.

3.5 Modified localized boundary-domain integral equations system

In spite of Proposition 3.9, the invertibility of the matrix integral operator gener-
ated by the left-hand side expressions of system (3.21)—(3.24) is an open problem.
Evidently, the choice of the right function spaces and the proof of the invertibility
of the corresponding operator are very important from the point of view of stability
of solutions, which is crucial for numerical applications. To overcome this prob-
lem, in what follows we modify system (3.21)—(3.24) in such a way that the new
system would preserve the above mentioned equivalence to the mixed BVP and,
moreover, the corresponding new operator would be invertible in appropriately
chosen spaces.
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To this end, we introduce a new unknown function v in Q~ and consider the
modified system of localized boundary-domain integral equations (MLBDIE) with
respect to u, v, V¥, and @:

U+ Ru—Rv-—Vy+We=F inQ", (326
Riu—v—Rv—-Vy+Wp=F inQ", (3.27)
re, Riu—rg RXv—rg VY +ry, Wo=F; onSp, (3.28)
rsy TV Ryu—rg TTR v—rg Wy +rg £Yo=F, onSy. (329
We assume that
ue Hy'(QT, L), veX(Q L), ye ﬁ;%(SD), g e ﬁé(SN),
Fie H,°(QT, L), F,eY(Q7,L), F3¢ Hf(SD), Fy € H;%(SN).
We set
X = H%QT, L) x X(Q7, L) x ﬁ;%(sD) x ﬁé(SN),
Y = H)%(QF, L) x Y(Q7, L) x Hf(sD) x H;%(SN).

Evidently, X and Y are Hilbert spaces.
First we show that if

Fi=F inQ", F,=F inQ,
N N (3.30)
F3=rSDFO —¢@o onSp, F4=rSNT Fo—1vo onSy,

with Fy defined by (3.25), then the MLBDIE system (3.26)—(3.29) is equivalent
to the original mixed BVP (2.4)—(2.6) in the sense described by the following
assertion.
Theorem 3.10. Let conditions (3.30) be fulfilled.
(1) Ifu € Hzl (T) solves the mixed BVP (2.4)—(2.6), then the vector function
(u,0, ¥, p), where
V=T u—W,, ¢=u"—d; ons, (3.31)

solves the MLBDIE system (3.26)—(3.29).

(ii) If a vector function (u,v,vy,@) € X solves the MLBDIE system (3.26)—
(3.29), then u solves the mixed BVP (2.4)—(2.6), v = 0 in Q2~, and equali-
ties (3.31) hold.
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Proof. Let u be a solution to the mlxed BVP (2.4)-(2.6). It is ev1dent that u €

Hy%(Q*, L),y = THu—V, € H, Z(SD)andgo =ut—dg € H (Sy). Then
from (3.2)—(3.3) it directly follows that the vector function (u, 0, v, (p) solves the
system (3.26)—(3.29). Thus the item (i) is proved.

Now, let a vector function (u,v,V¥,9) € X be a solution to system (3.26)—
(3.29). Taking into account relations (3.30) we can rewrite the first two equa-
tions (3.26) and (3.27) as

U+ Riu—R v —VV* L WO* =P, f inQT, (3.32)
Riu—v—Rv—VI" 4+ WO* =P, f inQ~, (3.33)

where U* = Wy + ¢ and ®* = O* + ¢.
Since u € H21’0(9+, L) we can write Green’s identities (3.2)—(3.3). Taking
termwise differences from (3.32)—(3.33) and (3.2)—(3.3) we arrive at the equations

Rv—V({ITTu—¥*+Wut —0*) =Py (Lu— f) inQ", (3.34)
VR V—V(ITTu—-U*+Wut —d*) =Py (Lu—f) inQ~. (3.35)
Since v € X(27, L) there hold Green’s identities
v+ R v+ V(T7v)—Wh™)=P_(Lv) inQ", (3.36)
Rv+V(ITv)—Wh)=P_(Lv) inQ™T. (3.37)
Again by termwise subtraction from (3.34)—(3.35) and (3.36)—(3.37) we get
V(T u—V*+T7v)+Wut —o*+0v7)
=Pr(Lu—f)—P-(Lv) inQ~, (3.38)
V(T u—W*+T70)+Wut —0* +v7)
=P (Lu— f)—P_(Lv) inQ". (3.39)
Equations (3.38)—(3.39) can be rewritten as
V(T u—V* + T o)+ Wut — " +v7)
= P (Lu— f)—L5(Lv)] inR3*\'S. (3.40)

Applying the jump properties of localized potential operators, we derive from
(3.40)

—®*+v =0 onsS, (3.41)
TTu—W*+T v=0 onS. (3.42)
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Therefore, we get from (3.40)
Pl (Lu— f)—Ly(Lv)] =0 inR>.
Since P = alfPo is an invertible operator, we conclude that
e (Lu — f)—L5(Lv) =0 inR?,
1.€.,
Lu=f inQT, (3.43)
Lv=0 inQ". (3.44)

Further we derive the boundary conditions for # and v on §. From (3.26), (3.28)
and (3.29) we get

rs ut =90 onSp,  rg, TTu=1yo onSy. (3.45)
Consequently, from (3.41) and (3.42) we conclude

re vV =0 onSp, rSNT_v=O on Sy. (3.46)

Sp
Thus, from (3.43) and (3.45) it follows that u solves the mixed BVP (2.4)—(2.6),

while (3.44) and (3.46) show that v solves the homogeneous mixed exterior BVP
in Q7. Since v € X(27, L) we can write Green’s formula in Q7

/ [vLv + E(v,v)]ldx = —(T " v,v")gs,
o

which implies that v = 0 in 7. As a consequence, from (3.41) and (3.42),
equalities (3.31) follow. This completes the proof. |

Further, we show the following uniqueness result.

Theorem 3.11. The homogeneous MLBDIEs system possesses only a trivial solu-
tion.

Proof. First let us recall that the right-hand side functions Fj, j = 1,4, given
by (3.30) vanish if and only if f = 0in QT, ¥g = Py =0o0n S, g = 0on Sp,
and Yo = Oon Sy.

Further, let (u, v, ¥, ¢) € X be a solution to the homogeneous MLBDIEs sys-
tem. Then Theorem 3.10(ii) yields that u solves the homogeneous mixed BVP,
relations (3.31) hold and v = 0 in Q™. Consequently, u vanishes in Q* due to the
uniqueness Theorem 2.1(i), ¢ = 0 and v = O on S in view of (3.31). O
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3.6 Existence results for the MLBDIEs system

Let us introduce the matrix operator generated by the left-hand side expressions of
the MLBDIEs system (3.26)—(3.29)

Fo+ U+ Ry) —r R o Voo W

Vo | e IR;,_ T (I+—|— R) —rg-V rg-W (3.47)
rs, Ry —rg, RT —rs,V rs, W
rey TT R+ —rg, TTR- —rg W org £T

First we show the following assertion.

Theorem 3.12. The operator
N:X—=>Y

is continuous.

Proof. Due to the properties of the localized potentials (see Theorems 3.2 and 3.5),
it suffices to prove that v + R—v € Y(Q7,L) and r, R_v € H0(Q™) for
veX(Q,L),ie,

Fo-(I+R-2): X(Q7,L) - Y(Q,L),

_ L0 et (3.48)
rQJrgR_:X(Q ,LYy—> H>P(Q™,L).
By Green’s formulas (3.36) and (3.37) we have
v+ R_v=P_(Lv)— V(T v)+Wr~) inQ, (3.49)
R_v=2P_(Lv)y—V(T"v)+ W) inQt. (3.50)

Evidently, V(T v) and W(v™) have compact supports and belong to the space
Y(27, L). Let us investigate the localized volume potential

P_(Lv) = PLy(Lv) inR3,

Clearly, £, (Lv) € HZZ(R3) since & is a pseudodifferential operator of order
—2and £y (Lv) € L»(R?). Set g = {5 (Lv). Thenv € X(Q™, L) yields

g€ La(R?), xjge L(R). (3.51)
Next we establish that

xjPge HZR?, j=12.3. (3.52)
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Note that the operator o = a as a pseudodifferential operator is representable
as

Pog = F ) [ME)Fyegl,
where the symbol A () has the properties (for details see [4])
L+ D72 < @] < e2(1 + EDT2,
0,2 <31+ 16D, j =123,

with some positive constants ¢y, ¢2, €3.
Applying the Fourier transform properties we derive

XjPog = x; Fi ) [ME) Fyosgg] = —i Tyt [0g, A (E) Fyoeg)]
= —i %) {0 M€ Fyegl — i F [M(E) Ve, Fy i g]
= —i L [0, MO Fymgg] + Fo b AE Fy e (0 2)).

The first summand in the last equality belongs to the space H23 (R3), while the
second one belongs to H22 (R3) due to bounds (3.53) and inclusions (3.51). Thus
(3.52) holds.

From the above inclusions and (3.49) it follows that

1+ xP2@ + Rov) € La(Q7),
(14 x)Y20;(v + R_v) € La(Q7), j =1,2.3,
(14 |x|)V2L(v + R_v) € Ly(27),

(3.53)

ie, v+ R_v e Y(Q™,L). Since Y(Q7,L) C X(27, L), as a consequence we
conclude that R_ : X(R7,L) - X(Q~, L).
The second mapping property in (3.48) immediately follows from (3.50). |

Next we prove the following basic invertibility result for operator (3.47).
Theorem 3.13. The operator
N:X—>Y (3.54)
is invertible.

Proof. From Theorem 3.11 it follows that operator (3.54) is injective. It remains to
show that the operator (3.54) is surjective, that is, the nonhomogeneous MLBDIEs
system (3.26)—(3.29), i.e., the vector equation

NU=F (3.55)
with U = (u, v, , go)T € X is solvable for arbitrary F = (Fy, F3, F3, F4)T eY.
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To this end, first we reduce equation (3.55) to the equivalent, uniquely solvable
two coupled mixed BVPs.

To derive the corresponding differential equations and boundary conditions we
rewrite the first two equations (3.26)—(3.27) in the form

uU—F1)+Rt(u—F1)—R_-(v+ F)—-Vy+Wop

=—R FI-R_F, inQT,
Ri(u—F)— W+ F)—R_(v+ F)—Vy +Wo

=R FI—R_F, inQ",

1.€.,

Ufu—F1) + RE§(u—Fr) =Ly (v + F2) — Ry (v + F2) = Vi + Wo
=—RUIF1— REGF, inR*\S. (3.56)

We have the formulas (see Lemma 3.6)

U —F1) + REG(u— Fr) = P(ALL [au — F1)]) — PG A — Fr))

—V((u— F1)"0,a), (3.57)
Lo (v + Fo) + Ry (v + F2) = P(Alyla(v + F2)]) — Py A(v + Fy))
+ V((v + F2) " 0na). (3.58)

Moreover, as in the proof of Lemma 3.6, it immediately follows that

RUE F1 = Ry (aFr)) — PUEA(FL)) = V(F[na), (3.59)
Rl Fr = Rl (@F2)) — P (bg M(F)) + V(Fy dna). (3.60)
where aR;, = R0, and R, o is a pseudodifferential operator of order —2 with

the symbol () (see Subsection 3.3).
With the help of the equalities (3.57)—(3.60) we get from (3.56)

PAL la(u — F1)]) = P(Lg Aw)) — V't dya)
- P(Alyla(v + F2)]) + P Ly A() = V(v™0na) = V() + W(p)
= —Ru(f @F1) — Rty (@Fy)) inR3\S. (3.61)
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In accordance with the formulas (see Lemma 3.7)
P(ALS [a(u — Fr)]) = PU§ Ala(u — F)]) + V(T u—TTFy)
+ V(ut — F"opa) — Wut — FH), (3.62)
P(ALy (a(v + F))) = Pty Ala( + F))) = V(T v+ T~ F)
— V(™ + F5)dna) + W™ + Fy),  (3.63)
we get from (3.61)
PUSAla@u— F)) + V(Ttu =TT F) + V(@ — F[H)dna)
—Wut = F) = P AW) =Vt opa) — Py Ala(v + F2)])
+ V(T v+ T F)+ V(v + F)da) — W™ + F5)
+ Py A(w)) = V(v 0na) = V() + W(p)
= —Ru (s @F1) — Rty @Fy)) inR?\S.
Whence, using the notation
U=T%—TYF — Fya+T v+ T Fy+ Fy dpa—,
S=ut —Ft+v + F —o,
we get
PUTAla( — F)) + V8 - WS — P(UTAW)) — P Ly Ala(v + F2)))

+ Py A)) = —R,u(Uf (@F1)) — Ryl (@F2)) inR3\S.
(3.64)

Taking the difference of interior and exterior traces on S, from this equation we
obtain ® = 0 on S. Further, the difference of interior and exterior co-normal
differentiation operators, 7%, of the same equation gives ¥ = 0 on S. Thus

v =T u—T"F — F"0,a+ T v+ T F>+ F; 0,a, (3.65)
pg=ut —F+v 4+ F;. (3.66)

In view of these equalities, multiplying (3.64) by a and recalling that Py = a P,
we get

Pold Ala(u — F1)]) — Po(lg Aw)) — Polg Ala(v + F2)]) + Po(ly A(v))
= —Ru ol (aF1)) — Ruolly(@Fz)) inR>. (3.67)
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Since the pseudodifferential operator M is inverse to $p, from (3.67) we derive
CEAla(u — F1)] =45 Au) — Ly Ala(v + F2)] + £y A(v)
= —MRuolld (@F1) + €y (aF2)] inR>. (3.68)
Note that
A(aw) = Lw + A(w). (3.69)
Therefore we can rewrite (3.68) as

Ui Lu— gLy = LS LF + Ly LF, + L5 A(Fy) + {5 A(Fy)
— MRy olld (@F1) + {5 (aFy)] inR,

whence taking restrictions on Q1 and Q™ we finally arrive at the differential equa-
tions
Lu = G with

G = LF1+ A(F1) =1, MRy ollg (aF1) + €5 (@F)] inQF,  (3.70)
Lv = Q with

Q =—LF>— A(F2) + rg- MRy o[l (aF1) + {5 (aF)] inQ™. (3.71)

Further, from the first, third and fourth equations of the MLBDIEs system (3.26)—
(3.29) we obtain the boundary conditions

rs,ut =g1 with gy =rg, F;"— F3onSp, (3.72)
Tsy THu=g, withg, = Fsy TTF, — Fyon Sy. (3.73)

With the help of equalities (3.65)—(3.66) and (3.72)—(3.73) we have

rs,V- =q1 Wwithqy = —g1 +rg, F1+ — g, F, onSp, (3.74)
Isy T v=gqy withgy = —g> + sy TYF — Isy T F»
+rg (F{" — Fy)da on Sy. (3.75)

Thus we have proved that if (u, v, v, (p)T solves MLBDIEs (3.26)-(3.29), then
relations (3.65)—(3.66) hold, and u and v are solutions of the following mixed
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BVPs:
Lu=GinQ", GelLyQ™M), (3.76)
rSDu+ =gyonSp, g€ Hz%(SD), (3.77)
Fsy THu = gaonSy, gr€ H;%(SN), (3.78)
and
Lv=0inQ", (1+[x»)V20 e LyQ), (3.79)
s, v =qionSp, g€ Hz%(SD), (3.80)
rsyTTv=qaonSy, q2€ H;%(SN). (3.81)

Inclusion (3.79) for Q follows from Lemma 3.8.

Now we show the inverse. Let (Fy, F2, F3, F4)T € Y be an arbitrary vector
function and u € H21’0(52+, L) and v € X(R27, L) be solutions to the mixed
BVPs (3.76)—(3.78) and (3.79)—(3.81) with the given functions G, g1, g2, O,
q1, q» defined by the above equalities (3.70)—(3.75). Further, construct the func-
tions ¥ € H~2(Sp) and ¢ € H 2 (Sy) by equalities (3.65)~(3.66). In what fol-
lows we prove that the vector function (u, v, ¥, (p)T € X solves MLBDIEs (3.26)—
(3.29).

Rewrite equations (3.76) and (3.79) as

L(u—F1) = A(F1) = —r, MRp0llg (aF1) + {5 (@F)] inQF,
L(v+ F2) + A(F2) = ro- MRy olld (aF1) + {5 (aF2)] in Q™.
With the help of identity (3.69) we get
Ala(u— F))] = Aw) = —r_, MRy ollg (aF1) + €5 (aF2)] in QF,
—Ala(v + F2)] + AQ) = —ro- MR 0lld (@F1) + £y (aF2)] inQ,
whence employing the extension by zero operators Z(jf we can write
L Ala(u — F)] =5 Au) = —L§ MRy olld (@F1) + €y (aFy)] inQT,
—Ly Ala(v + F2)] + Ly A(v) = —Lg MRy olld (@F1) + {5 (aFp)] in Q™.

We can rewrite these equations as

L Ala(u — F1)] =45 Au) — L5 Ala(v + F2)] + £y A(v)
= — MR 0l (aF1) + Ly (aF2)] inR3.

since the right-hand side is an L, function in R3.
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Apply the operator P = %J’o to this equation and take into consideration that
P is the inverse to M
PG Ala(u — F1)]) = P L5 Aw) = P Ly Ala(v + F2)]) + P Ly Av))
= —Rulty (@F1) + Ly (aFz)] inR3. (3.82)

Determine & (Z(')F Ala(u— F1)]) and P (£, Ala(v + F2)]) from formulas (3.62)-
(3.63) and substitute into (3.82)

PN [au— F)) = V(THu—TTF) = V(@ — F;")dna)
+ Wt - FH) — P Aw) — P(Alylaw + F2)]) = V(T v+ T~ F)
— V(™ + F5)dna) + W™ + Fy) + Pl Av))
= —Ru(F@F1) — Ruly@F)) inR3. (3.83)

In view of equalities (3.65)—(3.60) it is easy to check that in (3.83) the densities of
the single and double layer potentials are — —u ™" d,a—v~d,a and @, respectively.
Therefore we arrive at the equation

P (AL [au — F)]) — PG Aw) — V(T dpa)
— P(Alyla(v + F2)]) + PUgA@) — V(v dpa) — Vi + Wo
= —Ru( (@F1) — Ry (@Fz)) inR>. (3.84)
Add to both sides of the equation the expression
PUEA(F)) + V(F[Fana) + Py A(Fa)) — V(F5 dna)
to obtain
P(ALg [a(u — F))) — P (g A — F1)) = V(™ = F{")dua)
— P(Alyla( + F2))) + Py A(v + F2)) — V((v™ + Fy)dna) — Vi + Wo
= —Ru(ly @F1)) + P(Lg A(F1)) + V(F[ 0na)
— Ry (@F2)) + P(ly A(F2)) — V(Fy dpa) inR3.

From this equation with the help of (3.57)—(3.60) we get

UFu—F1) + RE§(u— F1) — Ly (v + F2) — Ry (v + Fo) = Vi + Wo
= —RUF1 — REGF, inR3.
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Restrictions of this equation on QT and Q~ give
U+ Riu—Rv—Vy+Wp=F inQ", (3.85)
Ryu—v—Rv-=Vy+Wp=F inQ,

which coincide with the first two equations in the MLBDIEs system (3.26)—(3.29).
Now from equations (3.72), (3.77) and (3.85) it follows that

re ut = Tsp Fif— (rs, Riu— rs, REtv— rs, V¥ +rs, Wo).

D

+

— +
rspu’ =rg, Fit — F3,

Sp
which coincides with the third equation in the MLBDIESs system (3.26)—(3.29),
s, Riu —Ts, REv— rs, V¥ +rs, Wo = F3 onSp.
Analogously, from equations (3.73), (3.78) and (3.85) we get
Fsy THu = Fsy TTF — (rsy TTRyu— Fsy TTR_v— rey Wi +rg, £19),
rs TTu=rg TTF1— Fy,
which coincides with the fourth equation in the MLBDIEs system (3.26)—(3.29),
Fon TTRiu— Fon TTR_v— roy WY +rg, £Tp=F; onSy.

Thus we have shown that the MLBDIESs (3.26)—(3.29) are equivalent to the coupled
mixed BVPs (3.76)—(3.78) and (3.79)—(3.81) in the above described sense.

Now the surjectivity of the operator (3.54) easily follows from the fact that the
mixed BVPs (3.76)—(3.78) and (3.79)—(3.81) are solvable due to the Lax—Milgram
theorem in the spaces H21 ’O(Q+, L) and X (27, L), respectively, for arbitrary data

(see, e.g., [6])
GeLQY), (1+|x)20 e Ly27),
g1,491 € H%(SD), g2.42 € H_%(SN)-

This completes the proof. i
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