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ABSTRACT 

An extension of acoustic emission technology was made which permits 

identification of probable source mechanisms for signals emitted during 

the failure of metals. This was achieved through the construction of a 

unique instrument and the development of special computer programs. The 

instrument permitted wideband digital waveform recordings to be made of 

both acoustic emission signals generated during the failure of a 

specimen, as well as calibration signals derived from a helium gas jet. 

These recordings were then processed by the computer programs to yield 

power spectra insensitive to specimen geometry, thus allowing the direct 

comparison of acoustic emissions from different specimens. A series of 

experiments conducted to test the instrument and the programs resulted 

in the conclusion that, at the 95% confidence level, acoustic emission 

caused by brittle particle fracture in 7039 aluminum could be 

differentiated from acoustic emission caused by the discontinuous 

movement of a crack in 4340 steel. Detailed descriptions of acoustic 

emission source modeling, transducer operating principles, calibration 

techniques and digital signal processing provide the necessary 

theoretical background for the reported technology extension, while a 

comprehensive review of the literature of acoustic emission places the 

experimental work into the proper context. 
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CHAPTER 1 

INTRODUCTION 

This chapter identifies a problem in the current acoustic emission 

technology, namely, that there is no method for distinguishing among the 

probable source mechanisms of signals emitted during the failure of 

metals. A review of the literature of acoustic emission shows that 

development of such a signal discrimination technique would extend the 

applicability of acoustic emission monitoring. 

1.1 Problem Identification 

Nondestructive testing is an area of technology whose function is 

to characterize materials and structures without rendering them unfit 

for their intended purpose. Most commonly, nondestructive testing is 

utilized for detecting the presence of defects which would cause a 

component or structure to fail prematurely during its service life, but 

many other applications exist as well. These include the measurement of 

basic material properties such as density, speed of sound, elastic 

modulus, electrical conductivity and magnetic permeability as well as 

process control variables such as coating thickness, degree of heat 

treatment and amount of surface roughness. As might be expected from 
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the diverse nature of these measurements, many different methods of 

nondestructive testing exist. For the primary task of detecting 

defects, however, the most popular nondestructive testing techniques are 

liquid penetrant, magnetic particle, penetrating radiation, eddy 

current, ultrasound and acoustic emission. 

Acoustic emission is the youngest nondestructive testing technique, 

although as is shown in Section 1.2 the phenomenon itself has been 

recognized for centuries. Specifically, acoustic emission is the name 

given to stress waves emitted when a material reacts to decrease its 

internal energy. The fact that a lowering of internal energy can result 

in stress waves is a consequence of the first law of thermodynamics 

(energy is conserved). Conservation of energy, however, does not 

guarantee that acoustic emission will occur when a potentially dangerous 

defect grows in a material that is being loaded because the mode of 

energy partitioning can vary. Indeed, the first question that must be 

answered by a nondestructive testing engineer attempting to apply 

acoustic emission is whether the phenomenon may be expected to occur 

prior to the fracture of the article which is to be monitored. An 

important point to notice is that because of the manner in which the 

signals are generated acoustic emission monitoring is generally 

partially destructive, e.g., the specimen must suffer some degree of 

damage if emissions are to be produced. 

The fact that acoustic emission is the result of processes 

occurring within a material has enormous practical significance which 

sets it apart from the other nondestructive defect detection methods 

-2-



mentioned previously. The other methods require that the article to be 

inspected be placed in an artificial environment in which an energy 

field is created for the purpose of establishing specific 

material-energy interactions which are perturbed by the presence of 

defects. Acoustic emission nondestructive testing, on the other hand, 

occurs in real-time and can be applied to an in-service article in its 

normal environment. Another important advantage is that the stress 

waves from the internal material processes can travel many meters 

(depending on the attenuation characteristics and geometry of the 

component). These two attributes theoretically permit all portions of a 

large structure in normal service to be continuously monitored for the 

presence of growing defects. 

One fundamental problem exists which prevents the technique of 

acoustic emission from being applied on a routine basis for the 

continuous detection of flaws in important structures. This problem is 

that the technology that is currently used for processing acoustic 

emission signals cannot discriminate between signals in a fashion that 

will allow the positive identification of the material process which is 

the source of the acoustic emission. In view of this difficulty it is 

reasonable to ask why acoustic emission monitoring is considered useful 

at all. The answer is that acoustic emission monitoring is so sensitive 

that it can detect the presence of a crack long before it would be 

possible to do so with any other nondestructive testing method. For 

example, Carlyle and Scott [Ref 1] were able to detect the presence of a 

fatigue" crack in a laboratory specimen by its acoustic emissions 100,000 

cycles before it could be confirmed visually. This was accomplished in 
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spite of the fact that acoustic emission from the testing machine's 

loading mechanism interfered with the acoustic emission from the crack. 

Carlyle and Scott did not discriminate between individual signals, but 

rather circumstantially associated a group of acoustic emission signals 

with the crack by using an instrument which they later patented [Ref 2]. 

There are, however, many situations in which continuous detection 

of defects is desirable and circumstances preclude the application of 

signal association methods. An example is the detection of cracks in 

the tubes of operating boilers. Such tubes typically become coated in 

service with a scale which cracks under the same conditions which can 

cause cracking of the tube itself. Another example is the detection of 

cracking in critical areas of aircraft structure. Cracks commonly start 

at fastener holes, but the same loading which causes cracks to form will 

usually cause fastener fretting first. Fretting is essentially harmless 

and is quite common, but the acoustic emission it generates cannot be 

readily differentiated from that caused by cracking. Without some means 

of signal source identification it would be impractical to apply 

acoustic emission monitoring in either of these example cases, since the 

boiler or aircraft would most probably be removed from service because 

of a benign process rather than a genuine crack which would warrant 

repair or retirement. 

The intent of the work described herein was to extend the 

technology of acoustic emission nondestructive testing by developing 

methods for discriminating between acoustic emission signals, thereby 

permitting the identification of the material processes which caused the 
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emitted acoustic emission signal. Such a technological extension would 

conceivably make economically feasible continuous defect detection in 

important structures, and thus prevent their possible catastrophic 

failure due to rarely occurring dangerous defects. Acoustic emission 

signal discrimination methods were developed by adapting digital signal 

processing techniques to the needs of acoustic emission technology. 

Since this had never been done before, it was necessary to build a 

unique acoustic emission system to acquire, digitize and record the 

signals. It was also necessary to write signal processing programs 

which yielded the desired discrimination. Finally, of course, it was 

necessary to prove through experimentation that the developed techniques 

worked. These major accomplishments are documented in Chapters 5 and 6, 

while the remainder of the thesis provides the reader with the requisite 

theoretical background. 

1.2 Historical Review 

A brief history of acoustic emission (taken from the author's 

master's thesis [Ref 3]) is appropriate to show the wide variety of 

situations in which the technique has been found useful. Applications 

for acoustic emission have been on the increase ever since 1950 when 

Josef Kaiser [Ref 4] published his pioneering work, but the phenomenon 

itself has been observed for hundreds of years. Tinsmiths have heard 

"tin cry" which is produced when the metal twins ever since ancient 

times, and steel workers have long noted audible clicks caused by 

martensitic transformations. Mine workers know well the ominous 
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creaking sounds heard immediately prior to a cave-in, while construction 

workers are familiar with the crackling sound associated with the 

impending failure of overloaded wooden structures. The most dramatic 

example of acoustic emission occurs in the field of seismology, though, 

where stress waves are used to characterize fault movement (earthquakes) 

in terms of energy release, location and depth. 

In materials research, the earliest mention of acoustic emission 

occurred in 1923 when the French metallurgists Portevin and LeChatelier 

[Ref 5J were studying the effects of large deformations on aluminum 

alloys. They noted that load drops which were accompanied by a Luder's 

line formation COincided with a specimen emitted noise; the 

"Portevin-LeChatelier effect" was subsequently found to occur in other 

metals which formed Luder's lines. Some time later Joffe and Ehrenfest 

[Ref 6J reported hearing noises from zinc and heated rock salt. They 

were studying shear deformation and discovered that as shear progressed 

in each material with a series of small jumps a noise like the tick of a 

clock was heard. Each tick could be correlated to a load drop and it 

was found that the rate of ticking was proportional to the applied load, 

with thousands of ticks occurring during a single test. 

The next reported experiment involving acoustic emission occurred 

in 1948 when Mason, McSkimin and Shockley [Ref 7J undertook the 

investigation of dislocation movements induced by twinning tin. Their 

work is well worth noting for the simple fact that it remains today as 

one of the only observations of what is perhaps a true acoustic emission 

waveform. This feat was achieved through careful experimental design in 
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which an acoustically matched sample and transducer were compressed 

between specially designed clamps to obtain an essentially broadband 

(resonance free) system. Their results are shown in Figure 1.1. Mason, 

McSkimin and Shockley concluded that the fine structure of the traces 

was characteristic of the twinning process, caused by the successive 

passage of twinning dislocations across the specimen at the speed of 

sound. This has never been confirmed, possibly because of the problems 

encountered in obtaining detectable signals with their system when using 

metals which do not twin as extensively as tin. 

Josef Kaiser's research [Ref 4J, published in 1950, is generally 

conceded to be the beginning of the present era in acoustic emission 

study because his work was the first investigation into the phenomenon 

of acoustic emission for its own sake. He employed transducers, 

amplifiers and oscilloscopes to study the faint noises he discovered to 

be present in polycrystalline zinc, steel, tin, brass, aluminum, copper 

and lead samples undergoing tensile tests. His conclusion that the 

emissions were produced primarily by grain boundary sliding has since 

been disproven, while his observation that the emissions were of two 

types, a low amplitude continuous sound with high amplitude bursts 

superimposed, has been confirmed many times. He also observed that the 

amplitude and frequency of the emissions were characteristic of the 

material and stress level. But perhaps his greatest contribution was 

the observation that acoustic emission activity appeared to be 

irreversible. Kaiser found that when a previously loaded sample was 

reloaded, no emissions were generated until the stress level exceeded 

its previous high. This behavior has been named the "Kaiser effect", 

-7-



... 
Q. 
:E 
c 

W 
Q 

::t ... ... 
Q. 
:E 
c 

o TIME 

EMISSION 

/ TYPE A 

EMISSION 

/ TYPE B 

TIMING 
/WAVE 

Figure 1.1. Characteristic emissions produced by the twinning of 
tin [Ref 7]. 

TIME 

SAMPLE 

LOAD 

EMISSIONS 

Figure 1.2. Emissions produced by Luder's line formation in soft 
steel [Ref 10]. 

-8-



and although a few materials (mainly composites) have since been found 

in which the effect does not occur, it is widely applicable and has been 

successfully utilized in determining the stresses which structures have 

undergone in service [Ref 8 and 9]. 

Kaiser's work was furthered in 1958 when the French metallurgists 

Lean, Plateau, Bachet and Crussard [Ref 10] reinvestigated the 

Portevin-LeChatelier effect using electronic instrumentation to record 

acoustic emission. They concluded that in soft steel emissions were 

generated at an early stage in Luder's line formation, since the noise 

was found to precede load drops by milliseconds as Figure 1.2 shows. 

Somewhat later Schofield [Ref 11] and Tatro [Ref 12] initiated research 

in the United States in an attempt to identify the sources of acoustic 

emission. Schofield [Ref 13] discovered that grain boundaries were not 

the sole sources of emissions since single crystals also emitted noise 

under stress. Further investigations using anodic etching techniques 

with polarity reversals and acoustic monitoring during twin formation 

lead him to conclude that dislocation motion was responsible for 

acoustic emission. Tatro and Liptai [Ref 14] supported this, suggesting 

that emission activity was related to the pile-up and breakaway of 

dislocations. They also reported that barriers to dislocation movement, 

such as surface oxide layers, changed the emission spectra. 

In the meanwhile, geologists had discovered that acoustic emission 

could be used to detect impending mine collapse [Ref 15]. A series of 

studies was carried out in the United States in the early 1940's in an 

attempt to prevent rock bursts through better mining techniques, and 
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similar studies were initiated in Russia in the late 1940's. The U.S. 

research efforts were discontinued around 1945, but in Russia the 

acoustic emission technique was adopted as standard mining practice and 

was used to identify geologically weak areas by the increase in 

emissions when a weak area was penetrated. The technique resulted in 

considerable economic benefits in the shoring requirements of mines, and 

improved operating safety at the same time. However, little interchange 

of information took place between materials engineers and geologists and 

it was not until 1964 that the "new" technique of acoustic emission was 

used to test the integrity of an engineering structure. This occurred 

when Green, Lockman and Steele [Ref 16] noticed that audible popping 

noises were emitted during routine hydraulic proof testing of Polaris 

rocket motors. Using accelerometers and frequency analysis equipment 

they devised two methods whereby the failure pressure of a rocket motor 

could be predicted. In the first method an average amplitude for the 

emissions which occurred during the first proof cycle was calculated and 

plotted against the burst pressure of the motor obtained during the 

second proof cycle. After a sufficient number of samples had been 

tested a curve was obtained which could be used to nondestructively 

determine the failure pressure of the rocket using only one proof cycle. 

Since there was a considerable amount of scatter in this method a second 

procedure was developed whereby a three-dimensional plot of emission 

amplitude at different frequencies as a function of hydraulic pressure 

was made during a proof test. This plot, coined a "missile-print" 

because of its close association with the voice-prints used in law 

enforcement, enabled better predictions of failure pressure to be made. 
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More significantly, it enabled Green, Lockman and Steele to predict the 

type of failure which would ultimately destroy the rocket by the 

patterns created in the plot. 

Acoustic emission applications developed rapidly from this point, 

partly because of the relative simplicity of the instrumentation needed, 

but also because the inherent sensitivity of the technique (detection 

thresholds on the order of femtometers for displacement and 

milli-Pascals for pressure) enabled many microscopic processes occurring 

in materials to be studied. Metallurgists used the phenomenon to study 

martensitic transformations [Ref 17], where they found that martensite 

plates forming in microseconds could be detected. Flawed materials 

undergoing fracture toughness tests were monitored acoustically to 

detect pop-in [Ref 18], a condition in which a crack suddenly forms in 

the highly stressed region around a flaw. Acoustic emission detection 

of pop-in is relatively easy as it is composed of high amplitude 

emissions, and the technique was welcomed by experimenters who were 

trying to accurately determine the driving force necessary to initiate 

failure in high strength materials. Plastic deformation at crack tips 

and other highly stressed regions was also studied, with one experiment 

[Ref 19] reporting that strain increments as small as 0.1 microstrain 

produced detectable emissions. Dislocation movements were studied as 

well and there is now considerable evidence that the cooperative 

movement of numbers of dislocations are needed to produce detectable 

stress waves [Ref 20]. 

A very important application for acoustic emission testing is the 
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detection of growing flaws. Laboratory studies have revealed that 

growing cracks occurring during hydrogen embrittlement, stress corrosion 

cracking, welding and low cycle fatigue can all be detected by 

continuous monitoring of acoustic emission. Moreover, in some cases it 

has proved possible to directly infer the amount of crack growth from 

the acoustic emission data [Ref 21]. Dunegan [Ref 22] has shown that 

flawed steel pressure vessels will generate emissions much earlier than 

unflawed ones, and has been able to diagnose the presence of potentially 

dangerous flaws at low stresses and make reasonably accurate failure 

pressure predictions at roughly 70% of the final failure pressure. This 

has enabled companies to evaluate pressure vessels during their working 

life by occasionally submitting them to a proof test, thus preventing 

accidents due to catastrophic failure. 

The atomic energy industry is particularly interested in the 

capability of acoustic emission to remotely detect flaws well before 

they become dangerous. Extensive research [Ref 23] has been performed 

in developing transducers which will operate in the hostile environment 

of a operating reactor and in determining whether or not growing flaws 

can be detected through the high background noise usually present. 

Several useful side effects of acoustic emission monitoring emerged from 

this research when it was found that boiling core coolant could easily 

be discerned, thus leading to better control of the reactor. Further, 

it was found that there was a sonic "signature" associated with each 

reactor that could be used to determine whether normal operation was 

prevailing. Having proved the feasibility and usefulness of the 

technique, considerable effort was then expended upon building systems 
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which could locate emission sources inside a reactor. Parry [Ref 24] 

reported the development of a four transducer system which utilized a 

computer to process emission arrival data into a location on the surface 

of a pressure vessel. His equipment could handle a million emissions 

per hour and was capable of locating sources with an accuracy of 2 

centimeters on vessels having a capacity of 25 kiloliters. 

Industrial applications for acoustic emission testing have also 

been reported. The work of Jolly [Ref 25] demonstrated the feasibility 

of in-process monitoring of welds. He was able to show sensitivity to 

weld cracking caused by contamination as well as being able to detect 

slag inclusions in submerged arc welds. Prine [Ref 26] successfully 

monitored production line submerged arc welds in steel tank cars. His 

acoustic emission results gave excellent correlation with radiographs on 

both artificially induced and natural defects even when noise from the 

welding arc and cracking slag caused some interference. In another area 

Hutton [Ref 27] proved that acoustic emission could provide process 

control information on metal drawing operations. His data on the 

forming of metal jackets for small arms bullets showed that the emission 

pattern was sensitive to a number of process variations which affected 

the final quality of the product. 

A large amount of work has been expended upon acoustic emission 

monitoring in composites since they were found to be copious emitters of 

acoustic emission. Rathbun, Beattie and Hiles [Ref 28] reported that in 

filament wound pressure vessels emissions were generated in areas where 

structural damage took place and specifically where filaments were 
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broken. Unlike the experience of Green, Lockman and Steele with the 

Polaris rockets mentioned previously, however, Rathbun, Beattie and 

Hiles concluded that there was no definite indicator in the emission 

pattern which would allow a prediction to be made of the burst pressure. 

Liptai [Ref 29], investigating tensile failures of filament wound rings, 

concluded that the failure followed a cumulative damage mode which could 

be studied with acoustic emission. Pattnaik and Lawley [Ref 30] 

reported that in AI-CuAI 2 composites emissions were the result of 

premature cracking of the CuAl 2 phase, but they were unable to develop a 

quantitative correlation between the amount of damage and the total 

acoustic emission. Harris, Tetelman and Darwish [Ref 31] on the other 

hand, were able to find such a correlation in their work on AI-AI3Ni. 

Starting with the knowledge of the number of cracked fibers as a 

function of strain (which was determined by optical examination of the 

surfaces of strained samples), they derived an equation relating the 

number of acoustic emission counts to the strain in the specimen. 

Balderston [Ref 32], working with boron fiber reinforced plastic, 

reported success in predicting the lifetimes of tensile specimens 

through observation of the acoustic emission count rate during the test. 

Carlyle [Ref 33] was able to predict the failure of graphite fiber 

reinforced plastic tensile specimens through the sudden reduction in the 

acoustic emission count rate. This was found to be caused by the 

cessation of one of two simultaneously occurring failure mechanisms 

immediately prior to final fracture. Mullin and Mehan [Ref 34] 

performed preliminary experiments in boron fiber reinforced plastic in 

an attempt to develop a relationship between dominant frequencies 
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observed in emissions from the material and particular failure 

mechanisms. Speake and Curtis [Ref 35] extended this work by using a 

foil transducer which reportedly had a flat response over the frequency 

range of 10 kHz to 5 MHz. They concluded that while some correlation 

between dominant frequencies and specific failure mechanisms did exist, 

more work was required to eliminate the extensive effects of material 

and geometry upon the emissions. 

Clearly, acoustic emission testing has applications in a variety of 

fields, from basic research into the properties of materials to flaw 

detection in large engineering structures. However, as was stated in 

Section 1.1, the fundamental problem of not being able to identify the 

failure mechanism which caused the acoustic emission signal prevents the 

technique from being more widely utilized. The remainder of this thesis 

is devoted to developing signal processing techniques which will allow 

this problem to be overcome. 
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CHAPTER 2 

FUNDAMENTALS 

This chapter develops the theoretical background for acoustic 

emission. Material processes which generate acoustic emission are 

described, models which predict the specimen surface response resulting 

from the operation of such sources are reviewed, signal propagation 

effects which modify the acoustic emission waveform are examined and the 

operating principles of transducers are discussed. 

2.1 Sources of Acoustic Emission 

As was made clear in the previous chapter, the phenomenon of 

acoustic emission occurs in many different materials. What has not been 

pointed out is that the amount of acoustic emission generated by a 

material is highly dependent upon parameters such as composition, grain 

Size, impurity content, the deformation process, the fracture mode, and 

even its prior stress history. Indeed, the amount of acoustic emission 

received from a specimen can be dependent upon the direction in which it 

is stressed [Ref 36]. The explanation for this behavior lies in the 

nature of the microscopic processes which are ultimately responsible for 

the creation of acoustic emiSSion, and in the fact that more than one 
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process can contribute to the observed acoustic emission output during a 

test. 

Single crystals have been investigated by several workers with 

regard to their acoustic emission response. The advantage of working 

with single crystals is that there are no grain boundaries to complicate 

data interpretation, and as long as care is taken to merely plastically 

deform the specimen and not to fail it, the acoustic emission activity 

can only be caused by dislocation movements. Schofield [Ref 13] studied 

aluminum single crystals and concluded that the source of acoustic 

emission was the unpinning of dislocation pileups. His experiments 

indicated that barriers to dislocation movement such as oxide surfaces 

significantly increased acoustic emission activity, and that a minimum 

energy release was required via dislocation unpinning to produce an 

acoustic emission signal. Fisher and Lally [Ref 19] showed a strain 

rate dependence for the acoustic emission from magnesium single 

crystals, and suggested that discontinuous microplastic deformation was 

responsible for acoustic emission. James and Carpenter's work [Ref 20] 

on sodium chloride, lithium fluoride and zinc single crystals indicated 

that the acoustic emission rate was proportional to the change in the 

mobile dislocation density rate. Similarly to Schofield, they 

subscribed to the theory that dislocation breakaway from pinning sites 

was responsible for acoustic emission. They proposed a concept of 

stimulated breakaway of dislocations, whereby the freeing of one or two 

dislocations would trigger the unpinning of others. This concept was 

used to explain the discontinuous nature of plastic deformation of the 

sort noted by Fisher and Lally. The concept could also be used to 
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explain the two basic types of acoustic emission, since a homogeneous 

spatial distribution of pinned dislocations would result in continuous 

emission while a segregation of pinned dislocations would result in 

burst emission behavior. Kiesewetter and Schiller [Ref 37], using 

aluminum single crystals, found that acoustic emission was proportional 

to the strain rate, and proposed that the source of the emission was 

elastic radiation accompanying dislocation acceleration and 

deceleration. Using this acoustic version of "bremsstrahlung" they 

showed that the strain rate dependence was due to the reduction in 

ultimate size of the area of Frank-Read generated dislocation loops. 

Such a reduction would result in a shorter dislocation line length, 

hence less dislocation energy, and therefore less acoustic emission 

energy would be created when the dislocation started or stopped. 

Polycrystalline materials allow a restriction to be placed on the 

movement of dislocations, and therefore should result in acoustic 

emission being dependent upon grain size. Kiesewetter and Schiller [Ref 

37] report such a relationship in 99.99% pure aluminum, with acoustic 

emission activity increasing with increasing grain size up to an upper 

limit defined by the emission behavior of a single crystal, as shown in 

Figure 2.1. They explain this result by pointing out that dislocations 

in one slip system can be stopped from moving by interactions with 

dislocations in another slip system. As the grain size is decreased 

more interactions are to be expected, thus the slip area of the 

dislocation and hence its associated energy are reduced, resulting in 

less acoustic emission. Frederick [Ref 38] obtained results in 99.99% 

pure aluminum which somewhat contradict this. As Figure 2.2 depicts, he 
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found that as the grain size increased to 350 microns the acoustic 

emission also increased, but when the grain size grew larger than 350 

microns the emission output fell. The behavior when the grain size was 

less than 350 microns was explained by the increasing dislocation slip 

area with increasing grain size, in agreement with Kiesewetter and 

Schiller above. However, when the grain size was larger than 350 

microns, Frederick attributed the decrease in acoustic emission to a 

decrease in grain boundary dislocation sources caused by the decreasing 

grain boundary area. Tandon and Tangri [Ref 39] reported in Fe-3.0 

weight percent Si a similar behavior to that found by Frederick in 

99.99% pure aluminum, i.e., an increase in acoustic emission with 

increasing grain size up to a maximum of 400 microns followed by a 

decrease in acoustic emission as the grain size increased further. 

It is reasonable to conclude from the foregoing that dislocation 

movement is responsible for the acoustic emission generated by the 

deformation of single crystals and polycrystalline materials. However, 

the particular aspect of the dislocation movement which is actually 

responsible for the generation of the acoustic emission under a given 

circumstance is still in doubt, primarily because of difficulties in 

interpreting the complex interactions between experimental testing 

variables and potential changes in deformation behavior. For example, 

Tandon and Tangri's result above was reversed, i.e., increasing grain 

size in Fe-3.0 Si caused a decrease in acoustic emission when the test 

included the acoustic emission output up to 2.5% total plastic strain. 

This occurred because Luders' band formation above 90% of yield limited 

the slip area of dislocations, and since larger grain sizes allowed more 
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extensive Luders' band formation the acoustic emission output fell with 

increasing grain size. Carpenter and Heiple [Ref 40] show that other 

parameters in addition to grain size, surface condition and strain rate 

discussed above can affect the acoustic emission output observed during 

deformation of materials. They cite such things as test temperature, 

sample purity, crystal structure, stacking fault energy, prior 

mechanical work, heat treatment, and sample size which have also been 

found experimentally to have a bearing on acoustic emission behavior. 

Notwithstanding these complications, it is concluded on the basis of the 

evidence presented that acoustic emission generated during the plastic 

deformation of single crystals and polycrystals is governed by the glide 

distance and length of moving dislocations, by the number of 

dislocations which move simultaneously, or both. 

To this point the discussion has been limited to the deformation of 

relatively pure materials. However, since alloys are of more 

engineering interest, it is useful to consider how the addition of 

impurities affects acoustic emission behavior. The work of Wadley and 

Scruby, et. ale [Ref 41 to 43] is instructive for its systematic 

approach in explaining the sources of acoustic emission in aluminum 

alloys as a function of alloying elements. They first assumed that the 

source of the acoustic emission was an expanding dislocation loop 

inclined at 45 degrees to the surface normal, which they modeled through 

the use of two orthogonal force dipoles. Following a procedure 

described by Burridge and Knoppoff [Ref 44], they showed that the 

vertical displacement at the epicenter of such a dislocation loop due to 
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the first arrival longitudinal pulse was given by: 

o = 
3 o C, 

( 2.1) 

where c, is the longitudinal wavespeed, Cs is the shear wave speed, b is 

the dislocation Burgers' vector, D is the depth of the dislocation loop 

below the surface, a is the radius which the loop expands by, and v is 

the velocity at which the loop expands. Using values typical of their 

material and transducer, they calculated that only dislocation motions 

for which the product of a and v was above 0.036 meters2 per second 

could be detected during their experiments. 

The results obtained by Wadley and Scruby in 99.999% pure single 

crystal and polycrystalline aluminum are shown in Figure 2.3, along with 

a schematic showing how the product of a and v was expected to vary with 

applied strain and thus control the acoustic emission activity. For the 

single crystal material, dislocation motion was restricted by forest \ I 

interactions after yield and for the polycrystalline aluminum 

dislocation movement was restricted by the grain boundaries and 

interactions between multiple slip systems, as postulated by Kiesewetter 

and Schiller. The expanding dislocation loop model required that for a 

given strain rate the total acoustic emission energy released during a 

test should increase with increasing grain size, and that the emission 

power should vary linearly with strain rate for a given grain size. 

Significantly, both of these requirements were experimentally observed. 

However, when 1.3 weight percent of magnesium was added to otherwise 

pure aluminum to form a precipitation and segregation free solid 
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solution, these relationships were profoundly affected, as shown in 

Figure 2.4. This behavior was explained through increased dislocation 

slip area as the grain size was increased to 80 microns, followed by a 

reduced number of dislocations which could move due to the increasing 

flow stress as the grain size increased from 80 microns. One other 

important effect which the solid solution had on acoustic emission 

activity was the replacement of continuous emission by burst emission. 

This was presumed to be due to the pinning of dislocations caused by 

solute atom diffusion, with a discontinuous escape of the dislocations 

as the applied stress exceeded the drag stress. 

The effect of precipitation on acoustic emission activity was 

investigated by Wadley and Scruby by adding 4 weight percent of copper 

to pure aluminum and studying the effect of isothermal aging. Figure 

2.5 shows their results. Acoustic emission in the quenched material is 

low because the copper is in solid solution. With 1.5 hour 170°C 

aging, fine precipitates form which initially impede dislocation 

movement, but which soften as they are sheared by dislocations at higher 

applied stresses. This results in an avalanche of dislocations as a 

slip band is formed, resulting in high energy burst emissions. With 

increasing aging time the precipitates grow larger and stronger. 

Dislocations are no longer able to shear the precipitates, thus no 

discontinuous deformation occurs and the acoustic emission activity 

reduces. Further study of the effect of precipitates by Wadley and 

Scruby using AI-5.5 Zn-2.5 Mg and AI-5.5 Zn-2.5 Mg-1.6 Cu (weight 

percentages) revealed somewhat different results. In the quenched 

condition acoustic emission was governed by dislocation breakaway from 
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the pinning solute. Short aging times created small precipitates which 

limited dislocation velocity and thus reduced the emission output from 

the quenched condition. Longer aging times were characterized by 

vigorous burst emission of much higher amplitude than in the quenched 

material, which was believed to be due to cooperative dislocation 

movement caused by softening of the precipitate structure on a glide 

plane, but which could also have been caused by intergranular fracture. 

The effect of precipitates on the acoustic emission behavior of 

aluminum alloys has also been investigated by Cousland and Scala [Ref 

45]. They studied 7075 aluminum (AI-6.2 Zn-2.2 Mg-2.3 Cu-0.1 Cr, weight 

percent) and 7050 aluminum (AI-6.2 Zn-2.2 Mg-2.3 Cu-0.1 Zr, weight 

percent), both in the T7351 condition. The essential difference between 

these alloys and those used by Wadley and Scruby is the addition of the 

zirconium or chromium and the fact that the material received a 2% 

strain before final aging. They performed both tension and compression 

tests, and obtained little or no acoustic emission during compression 

but copious emission during tension, with the "dirtier" 7075 emitting 

more than the "cleaner" 7050. They argued that since the deformation 

processes would be similar in tension or compression while particle 

fracture would be expected only during tensile testing that the source 

of acoustic emission had to be due to the fracture of brittle 

precipitates. Support for this hypothesis came from the fact that no 

slip band formation (which would be associated with dislocation 

avalanches and burst acoustic emission) was observed despite careful 

examination of both tension and compression specimens, that the amount 

of acoustic emission received from a tensile specimen correlated with 
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the amount of large inclusions in that speCimen, and that the amount of 

acoustic emission was dependent upon the cross-sectional area of 

particles normal to the applied load. One potential problem with their 

claim that particle fracture is the sole source of acoustic emission in 

these alloys is that the distribution of burst emission is relatively 

uniform from just prior to yield until failure. Because of normal 

particle size variations in metals it would be expected that particle 

fracture acoustic emission would follow a Gaussian distribution instead 

of remaining constant as their data shows. 

If particle fracture acts as a source of acoustic emiSSion, it is 

reasonable to assume that the fracture of the metal itself generates 

acoustic emission, and indeed this is the case as will now be shown. 

Fracture is a complicated process whose details depend upon the specific 

material, its structure, impurity content, temperature, heat treatment, 

environment, geometry, stress state, and loading history. However, a 

relatively simple process underlies acoustic emission generation during 

fracture, namely, the motion of the crack tip. Byerlee and Peselnick 

[Ref 46] demonstrated this in their study of acoustic emission in glass. 

Glass is brittle, thus no deformation would be expected during the short 

testing period, and this was proven by subjecting unslotted specimens to 

compressive loads greater than those used during fracture testing of 

slotted specimens without generating acoustic emission. Compressive 

testing of slotted specimens produced acoustic emission only upon the 

appearance of a crack. Significantly, no acoustic emission was produced 

during stable, i.e., constant velOCity, crack growth. The parallel with 

acoustic emission generation via dislocation movement during deformation 
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is exact, in that only the starting and stopping of the crack tip during 

fracture will create acoustic emission, just as does the starting and 

stopping of a dislocation during deformation. 

In metals, where fracture does not Occur in such a brittle fashion 

as in glass, the generation of acoustic emission via crack acceleration 

and deceleration still occurs, but much more subtly. For example, 

McBride, MacLachlan and Paradis [Ref 47] performed a study on 7075 

aluminum containing different inclusion sizes using 0 (annealed) and T6 

(aged) heat treat conditions to determine the source of acoustic 

emission during slow crack growth caused by fatiguing. Their results 

show a direct dependence of the emission upon the size of the inclusions 

which fractured in the material, and it was shown that crack growth and 

not manufacture was responsible for the presence of the fractured 

inclusions. Furthermore, acoustic emission was not detected if the 

strength of the material surrounding the inclusions was too low. From 

these results, McBride, MacLachlan and Paradis concluded that the 

acoustic emission response from 7075-T6 aluminum could be predicted from 

the distribution of the cross-sectional area of the inclusions. It is 

clear that the movement of the main crack tip in the aluminum itself is 

not directly responsible for the acoustic emission, but the result of 

such movement causes discontinuous crack growth in the inclusions along 

the main crack front if the metal/particle interface is suitable. It is 

the discontinuous movement of these small cracks which is directly 

responsible for the observed acoustic emission. 

Nozue and Kishi's work [Ref 48] provides further support for the 

-29-



discontinuous movement of cracks being responsible for generating 

acoustic emission during fracture. They studied the tensile failure of 

4340 steel (Fe-0.4 C-1.8 Ni-0.81 Cr-0.78 Mn-O.3 Si-0.19 Mo, weight 

percentages) tempered at various temperatures. Stable crack growth in 

the specimen with the highest tempering temperature produced no acoustic 

emission, and microscopic examination showed that the fracture surface 

consisted entirely of dimpled ductile fracture. Specimens tempered at 

lower temperatures produced acoustic emission during stable crack growth 

which was inversely related to the tempering temperature. The fracture 

surfaces showed varying amounts of intergranular brittle fracture. 

Nozue and Kishi were able to obtain a linear relationship between the 

cumUlative squared emission voltage and the cumulative area of 

intergranular cracking on the fracture surface. Since discontinuous 

crack movement is associated with brittle cracking while continuous 

crack velocity is associated with ductile cracking, it has once again 

been shown that acoustic emission during fracture is generated by 

changes in the velocity of cracking. 

2.2 Source Models 

It was shown in the previous section that the ultimate source of 

acoustic emission is the acceleration and deceleration of either 

dislocations or cracks. The purpose of this section will be to show how 

these phenomena can be modeled to predict how the surface of the 

material will react. 

The movement of a dislocation during deformation or the lengthening 
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of a crack during fracture can both be considered relaxation processes 

since their operation tends to lower the stored energy of the material. 

This relaxation will be accompanied by a spherical acoustic wave whose 

energy density is given by Stone and Dingwall [Ref 49] as: 

E = 
2 

2 e c o 

1 + c
2 

2 2 2 w r 

(2.2) 

where Po is the acoustic pressure, eo is the density of the material, c 

is the wave speed, w is the angular frequency, and r is the distance 

from the source. Beyond one wavelength the second term may be 

neglected, and since: 

P -o -

2 e C 0 (1 o 
E 

where 0 (1 is a stress drop and E is Young's modulus, the energy density 

in the acoustic wave is approximated by: 

2 2 e C (0 (1) o 

Now, the elastic energy density in a material is given by: 

u = 
2 

(1 

2 E 

(2.4) 

(2.5) 

where (1 is the stress. If it is assumed that the stress drops slightly 
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by 0 (1 which is much less than (1, then: 

o U = 
0(1 
2 E (2 (1 - 0 (1) (2.6) 

The second term of (2.6) may be neglected for a first approximation. 

Dividing (2.4) by (2.6) will relate the energy carried by the acoustic 

wave to the energy release caused by the stress change: 

Ed rv eo c
2 

0 (1 = K 0 (1 
c5U 2E(1 (1 

(2.7) 

The meaning of (2.7) is that the energy carried by an acoustic emission 

waveform is not a constant proportion of the released stored energy, but 

is dependent upon the magnitude of the stress drop and the stress at 

which the drop occurs. Pollock [Ref 50] in a separate analysis has 

confirmed the stress dependence of the acoustic emission waveform as 

given by (2.7) and, as shown in Figure 2.6, experimental verification 

for (2.7) is obtainable as well. 

It is instructive to consider the shape of the stress wave near the 

source so that estimations of the frequencies contained in the stress 

wave may be made. Stephens and Pollock [Ref 51] argued intuitively that 

the basic shape of the stress wave was a pulse, because such a waveform 

would decay to change the static stress level within a specimen, and it 

has (according to their analysis) associated with it a step displacement 

waveform which would alter the length of the specimen after it decayed. 

An oscillatory stress waveform, on the other hand, has a mean value of 

zero and thus would not change the static stress in a specimen, nor 
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would the associated (according to their analysis) pulse displacement 

waveform be able to change the specimen length because a sign change 

upon reflection from a surface would imply a mean value of zero. Using 

as a hypothetical stress pulse a Gaussian waveform given by: 

(2.8) 

as shown in Figure 2.7, Stephens and Pollock calculated an energy 

spectral distribution of: 

A (f) = exp [- (2.9) 

where y is the height of the displacement step on the surface. 
D 

Equation (2.9) is plotted in Figure 2.8. It can be seen that it is a 

Gaussian waveform and that roughly two-thirds of its energy is below a 

frequency given by 1/{1~T. Carlyle [Ref 3] has shown from energy 

considerations that the minimum lower limit for the duration of an 

acoustic source when the source waveform is a Gaussian is given by: 

T = d (2.10) 

where d is the diameter of the source. For steel, with c = 5900 meters 

per second and assuming a source diameter of 130 microns, (2.10) and 

(2.9) imply that two-thirds of the acoustic emission energy will occur 

between DC and 26 MHz. 

Ono [Ref 52], following an approach suggested by Malen and Bolin 
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[Ref 53], derived a different expression for the stress waveform. Malen 

and Bolin had shown that the stress at a distance r from the source had 

an angular frequency given by: 

a (r, w) = 
2 w 

Sm (11" 0 (w) __ 1_) 
jW 

(2.11) 

where j is';::;, Sm is the magnitude of the source function, and 0 (w) is 

Dirac's delta function. The quantity in brackets is the response 

function of the medium in which the wave propagates, while the remainder 

of the right-hand side of (2.11) represents a step source function. 

Through Fourier transformation and the replacement of the Dirac delta 

function with the Gauss error function in order to examine rise-time 

effects, Ono expressed the stress at a distance r as a function of t as: 

-5 [~-f 
a (r, f) = 3~ m

2 
2 ---:;c __ 

8V1l"rc 7 27 

(..r. _ t)2 ] 
exp (- C 2 ) 

4 7 
(2.12) 

where 7 is one-quarter of the time it takes the Gauss error function to 

increase from 0.1 to 0.9 of its final value. The terms in the brackets 

of (2.12) determine the shape of the stress pulse, which is plotted in 

Figure 2.9. Ono expressed the magnitude spectrum as: 

S w 
m 0 

2 
4 11" r c 

where Wo is the reciprocal of 7. This is plotted in Figure 2.10. 

(2.13) 

It can be seen that Figure 2.9 and Figure 2.7 do not agree with one 

another in spite of the fact that similar displacement waveforms were 
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used to obtain them. The reason for this seeming contradiction is that 

the problem posed by Stephens and Pollock is incomplete because they do 

not specify the forces acting at the source, nor do they specify where 

they measure the stress pulse. Ono's derivation, while more complete 

than Stephens and Pollock's treatment, is also lacking since his theory 

is based on propagation in an infinite medium and does not treat the 

effect of surfaces. Pao, Gajewski, and Ceranoglu [Ref 54J have done 

theoretical work to show the effect of different forces measured at 

various points in a plate. Figure 2.11a shows their results for a 

buried vertical monopole force with a step-function time dependency 

producing a displacement (which must be integrated to obtain stress) at 

the epicenter of the plate, with Figure 2.11b showing the result when 

the displacement due to this force is measured six plate thicknesses 

away from epicenter. Figure 2.12a shows the epicentral response of a 

buried dipole force with a step-function time dependency, while Figure 

2.12b shows the same epicentral response of the same buried dipole 

force, but this time with a parabolic ramp-function time dependency. 

Figure 2.12c shows the result when this last force is measured six plate 

thicknesses away from epicenter. These figures make clear that the 

results of Stephens and Pollock and of Ono are specific cases of the 

complete problem and highlight the necessity for being rigorous when 

attempting to analyze elastic waves emitted by a source in a material. 

The propagation of waves in elastic bodies has been studied 

extensively by seismologists since the problem was first addressed by 

Lamb in the early part of the twentieth century [Ref 55J. Breckenridge, 

Tschiegg, and Greenspan [Ref 56J were the first to utilize the formalism 
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of seismology and apply it to acoustic emission. Their interest was in 

calibrating transducers and, as will be shown in Section 3.1, they were 

quite successful. Their idea of using seismological concepts to study 

acoustic emission was furthered by Hsu and Hardy [Ref 57], who, as shown 

in Figure 2.13, were able to obtain excellent agreement between 

experimental results and numerical results calculated using the theory 

of the generalized ray (the same seismological theory used by Pao, 

Gajewski and Ceranoglu to produce Figures 2.11 and 2.12). 

The essence of the generalized ray theory is that the displacement 

response u in a specific direction i at a position x and time t is given 

by the convolution with respect to 7 of the material response function G 

with a source function S operating in direction j at position y: 

00 

U j (x, t) = J J 
- 00 V 

3 G .. (x, t-7; y) 5.
1 

(y, T) d y d T 
I I 

(2.14) 

The material response function Gj j(x,tiY) is known as the dynamic 

elastic Green's function (or transfer function) and has been calculated 

for an infinite space, an infinite half-space and an infinite plate. 

Although these are all physically unrealizable objects, the results of 

the calculation will also be valid in a finite plate from time zero to a 

time immediately prior to the arrival of any waves reflected from the 

edges of the plate. Another problem is that (2.14) is not capable of 

analytic solution, but needs to be evaluated numerically through an 

algorithm. Although the algorithm is capable of being solved for an 

arbitrary number of reflections from the plate surfaces, round-off 

errors and computer run-time costs will place an upper limit on the 
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number of surface reflections which can actually be used. Thus the 

generalized ray theory is constrained by specimen size and computer 

limitations to the first few (typically 10) microseconds of displacement 

at a location typically within six plate thicknesses from the epicenter 

of the source. 

In spite of the limitations of the generalized ray theory just 

mentioned, it provides a very useful tool for performing basic studies 

for source characterization of acoustic emission. To prove this 

contention, Hsu and Hardy obtained the comparison in Figure 2.13 by 

breaking a glass capillary on a plate. The excellent agreement between 

theory and experiment convinced them that the breaking capillary was 

acting like a step displacement (since that was what had been assumed in 

the theory) and also that the Green's function was correct for their 

experimental conditions. They could therefore deconvolve (2.14) to 

obtain the source force-time function for the glass capillary, and 

thereby produced Figure 2.14. Another experiment in which a 1.5 mm 

steel ball was dropped 5 cm produced the deconvolved source force-time 

function shown in Figure 2.15. Both of these force-time functions are 

precisely what such mechanisms should produce. The important point is 

that they were deduced from a displacement measurement made remotely 

from the point of application of the force, said displacement being 

caused by the propagation of a stress wave through the material. 

Building on these simulated source results, Wadley and Scruby [Ref 

58] investigated actual acoustic emission sources caused by cracking in 

iron and steel. In order to accomplish this task, they modeled the 
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crack as a combination of three orthogonal force dipoles as suggested by 

Burridge and Knopoff [Ref 44]: 

D .. = 
-II [: 

o 
A 
o 

~:J boA 

where A and ~ are Lame's constants, b is the Burgers vector of an 

(2.15) 

equivalent edge dislocation loop and 0 A is the area of the equivalent 

edge dislocation loop (see Figure 2.16). Using the formalism of 

equation (2.14) and assuming a step function crack opening, Wadley and 

Scruby calculated the displacement-time function at epicenter. This 

function is also shown in Figure 2.16, and can be seen to consist of a 

singularity when the longitudinal wave arrives followed by an increasing 

ramp whose maximum corresponds to the arrival of the shear wave. The 

area of this singularity is proportional to the source strength, and is 

given by: 

11 = (2.16) 

where x3 is the depth of the source below the surface and ci is the 

longitudinal wavespeed. Of considerable importance is the fact that 

real cracks will open in a finite time. This will have the effect of 

widening the singularity and thus giving a means of measuring the time 

over which the source operates. 

It is possible to use (2.16) to arrive at an expression which will 

allow an estimate of a minimum detectable crack size and velocity to be 
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made. Assume that the area of the crack, 0 A, is ~a2 where a is the 

crack radius. Further assume that the crack grows to radius a in a time 

T equal to a/v, where v is the crack velocity. Differentiating (2.16) 

once with respect to T, it can be shown that the maximum displacement 

for the singularity is given by: 

u _ 
max - (2.17) 

Wadley and Scruby show that the relationship between the crack volume 

and crack radius due to an applied stress is: 

boA = 
2 3 81r(l-II)aa 

3 E 
(2.18) 

where II is Poisson's ratio, E is Young's modulus, and a is the applied 

stress. Substituting (2.18) for boA in (2.17) yields: 

u = max 

2 2 
80-II)aa v 

3 E c1 x3 
(2.19) 

which is the desired expression. By inserting typical values for the 

specimen and knowing the minimum detectable displacement for the 

transducer, an estimate of the minimum detectable a 2v product can be 

obtained. 

Wadley and Scruby performed their experiments in electrolytic iron 

and mild steel, and obtained numerous acoustic emission displacement 

waveforms from microcracking sources. They then deconvolved these 

displacement waveforms using equation (2.14), and obtained results which 
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showed how the crack volume varied as a function of time (see Figure 

2.16). It is clear that the agreement with theory is not exact, but 

this is explainable because their detection system was band-pass 

filtered between 35 kHz and 25 MHz. Loss of DC coupling caused the 

displacement curve to not produce the expected ramp before the shear 

wave arrival, with the resulting "droop" in the calculated source 

volume. 

2.3 Propagation Effects 

The source models discussed in the previous section presuppose a 

lossless media in which the stress wave propagates. Real materials are 

not lossless, however, and it is necessary to understand the various 

mechanisms by which the wave energy is lost in order to predict how 

acoustic emission signals might be affected during actual experiments. 

The first component of attenuation which is important to acoustic 

emission signals is geometrical spreading. Because acoustic emission 

comes from a point source rather than a line or an area, the stress wave 

will propagate as a diverging spherical wave. Kinsler and Frey [Ref 59] 

give the spherical wave equation as: 

(2.20) 

where r is the radius, p is the pressure, c is the wave speed, and t is 

the time. For a diverging spherical wave having harmonic vibrations, 
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the solution to (2.20) is: 

p = ~ exp (j (w t - k r)) (2.21) 

where A is the amplitude, j is veT, w is the angular frequency, and k is 

wlc, the wavelength constant. Thus, a given diameter transducer 

sensitive to force would have an electrical output inversely 

proportional to its distance r from the source simply due to the 

spreading of the wavefront. 

In general, the amplitude of the wave will not be constant as 

indicated in (2.21), but will instead decrease: 

A = A exp (- ex r) 
o (2.22) 

where ex is the attenuation coefficient. The attenuation is due to two 

general processes, namely absorption, wherein the acoustic wave performs 

work as it propagates and thus loses energy, and scattering, whereby 

part of the energy in the wave is reflected out of the path of 

propagation. The value of the attenuation coefficient is a function of 

the material, its homogeneity, its temperature, and the frequency 

content of the acoustic wave. 

Absorption in metals at room temperature for frequencies around 1 

MHz can be divided into losses due to hysteresis and losses due to 

relaxational processes. Hysteresis refers to the lag between the 

applied stress and the resulting strain when a material is cycled from a 

positive stress to the negative of that stress and back again. One 
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mechanism for hysteresis loss occurs when an ultrasonic wave interacts 

with the stress field of a pinned dislocation [Ref 60]. At low strain 

amplitudes (about 1 microstrain) the attenuation resulting from this 

mechanism is proportional to frequency, while at higher strain 

amplitudes the attenuation is frequency independent. Relaxational 

losses can occur when there is anisotropy in the structure causing 

strain variations, and thus heat flow from highly strained regions to 

lesser strained areas. Relaxation losses can also occur when the 

acoustic pressure forces atoms into vacant lattice positions against 

resisting interatomic forces; this is called structural relaxation. 

Both of these processes are frequency dependent because of the finite 

relaxation time needed for energy to flow from one position to another. 

If it is assumed that the acoustic frequency is less than the reciprocal 

of the relaxation time, then it can be shown according to Blitz [Ref 61] 

that the attenuation will be proportional to the square of the 

frequency. The total attenuation due to absorption will be the sum of 

the attenuations produced by the three absorption mechanisms discussed 

above: 

(2.23) 

where the c's represent constants. 

Scattering results when the sound wave encounters inhomogeneities 

such as inclusions, pores and flaws. Since, in general, the scatterer 

will have a different acoustic impedance than the main material, 

reflection and refraction will occur and energy will be directed out of 

the path of propagation of the acoustic wave. The amount of scattering 
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which will occur in a given situation depends upon the frequency of the 

sound, the cross-sectional area of the scatterer which is normal to the 

sound propagation direction and the shape of the scatterer. Figure 2.17 

shows the kind of behavior obtained from a spherical scatterer by 

Hochschild [Ref 62]. For a given cross-section of scatterer, the 

Rayleigh region occurs at low frequencies, where the scattering power is 

low and varies as the fourth power of the frequency. As the frequency 

increases the Mie or resonance region occurs, where oscillations in the 

scattering power occur. At high frequencies the optical region occurs, 

where the scattering power is constant. The attenuation coefficient due 

to scattering, as depicted in Figure 2.17, has been expressed by 

Filipczynski, Pawlowski and Wehr [Ref 63] as: 

as = c4 d3 f4 

as = cS/d 

(d < < >.) 

(d > > >.) 
(2.24) 

where d is the diameter of the scatterer and >. is the wavelength of the 

sound. 

In addition to the straight forward energy loss caused by wave 

spreading and attenuation discussed above, an apparent energy loss can 

Occur if energy is channeled into propagation modes which the transducer 

cannot detect. Such a phenomenon is called mode conversion. It occurs 

at boundaries where there is an acoustic impedance mismatch. The 

physics behind mode conversion has been discussed by Carlyle [Ref 3], 

and is shown in Figure 2.18a, where a longitudinal wave exerts a force F 

on a boundary between a solid and air. Resolving F into components Fx 
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and Fy ' it can be seen that Fy must be balanced partly by a 

compressional force Fa in air and partly by the elastic reaction Fs of 

the solid, while Fx must be entirely balanced by a shear force in the 

solid since air cannot support a shear stress. Assuming for the moment 

that a small isolated element is located at the boundary, it will be 

subjected to both shear and compressional forces and will therefore 

become a Huygen's source of both shear and compressional waves. The 

angles that these waves make with a normal to the surface can be found 

using Snell's law: 

sin a 
c
'o 

= 
sin (3 

css 

= sin 'Y 
cis (2.25) 

where a, (3 and 'Yare defined in Figure 2.18b, c
'o 

and cis are the speeds 

of longitudinal waves in air and in the solid, respectively, and c
ss 

is 

the speed of shear waves in the solid. In addition to the types of 

waves mentioned, surface waves may also be produced in the solid. 

To this point only propagation energy loss mechanisms have been 

discussed. However, there is at least one other propagation effect of 

importance to acoustic emission work, namely, dispersion. Dispersion 

will cause a spreading or broadening of a pulse in the time domain 

through frequency dependent velocities of various components of the 

wave. The effect is caused by interference of the wave with itself due 

to geometry, and is most apparent in Lamb waves in plates. Figure 2.19, 

due to Krautkramer [Ref 65J, shows the complex relationship between 

plate thickness, sound frequency and velocity. Restricting attention 

for the moment to the fundamental, or zero order waves, it can be seen 
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that the antisymmetric wave propagates slower than the symmetric wave at 

low values of the plate thickness-sound frequency product, but the 

situation reverses as this product gets bigger. At any given frequency 

several orders of both types of Lamb waves can propagate, all at 

different velocities. 

The practical implications of Figure 2.19 have been demonstrated by 

Elsley and Graham [Ref 66]. The physical arrangement and velocities of 

propagation, along with the velocity versus frequency curves for the 

specimen used are shown in Figure 2.20. Also appearing in Figure 2.20 

is an equation that they used to calculate the ray path lengths, the 

first six values of which are 103, 123, 168, 210, 244, and 291 mm. 

Through appropriate computer programs, they obtained the plots of Figure 

2.21, which show a pulse dispersing as it propagates as an 

antisymmetrical Lamb wave and as a symmetric Lamb wave. It is easy to 

see in the symmetric Lamb wave plots how the high frequency components 

arrive later than the low frequency components, with the effect becoming 

more pronounced as the path length increases. Dispersion in the 

antisymmetric Lamb wave plots is not so easily seen because a 100 kHz 

high pass digital filter was used. Of more importance than the 

graphical illustration of the effects of dispersion is the result 

obtained when all of the plots in Figure 2.21 are added together to 

construct a theoretical multipath dispersed waveform. This is shown at 

the bottom of Figure 2.22, along with a real acoustic emission signal at 

the top of the graph. The real signal had as its source a crack growing 

at (xO'YO) in Figure 2.20, and it was recorded at (x 1,y,), precisely the 

same spot where the theoretical waveform was constructed. Considering 
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that there are probably many more paths and higher orders of Lamb waves 

contributing to the real signal, that the shape of the crack stress wave 

is probably different from the pulse assumed for the theoretical 

calculations, and that the transducer averaged the response over an area 

instead of producing an output from a point as the computer did, the 

agreement is remarkable. 

2.4 Signal Detection 

Once an elastic wave from an acoustic emission has propagated to 

the surface of the specimen it must be detected if any use is to be made 

of its information content. Detection is commonly accomplished with a 

transducer, which performs its function by converting a particular 

component of the mechanical elastic wave into an electrical signal which 

can be conveniently amplified, recorded and processed. Many design 

requirements must be considered in the selection of a suitable 

transducer for acoustic emission work, including broad bandwidth, high 

sensitivity, high response fidelity, small element size, low acoustic 

impedance, omni-directional reception, and wide dynamic range. These 

requirements are in some cases mutually exclusive, as for example a 

broad bandwidth with a high sensitivity, so most often a compromise is 

necessary. 

Three of the design criteria can be treated without consideration 

for the specific type of transducer to be used; these are 

omni-directional reception capability, element size, and acoustic 

impedance. With regard to omni-directional reception, the only optiou 
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available is to design the transducer to respond to the particle 

displacement normal to the surface of the specimen and to give the 

element a circular shape when viewed along the specimen normal. Since 

the response of most transducers is the average value of the 

displacement over their area, it can be shown according to Kino [Ref 67J 

that the response of the transducer to the normal displacement caused by 

a surface wave is given by: 

(2.26) 

where ks is 2~/As' a is the radius of the transducer, and J 1 (x) is a 

Bessel function of the first kind. The 3 dB points of (2.26) occur 

when: 

alAs = 0.24 (2.27) 

For a longitudinal wave the response can be calculated from: 

[ 
J 1 (k lOS i n 0) J 

VI = 2 cos 0 k . 0 
1 05m 

(2.28) 

where kl is the wave number for longitudinal waves and 0 is measured 

from the surface normal. Using (2.27) and assuming that kl = 0.5 ks ' 

(2.28) can be solved to show that the 3 dB points for longitudinal waves 

are 0 = + 45 degrees. For a transducer which must respond to 

frequencies up to 2 MHz mounted on aluminum where cs = 3 km/s, (2.27) 

requires that the transducer diameter be 0.75 mm. This dependence of 

the transducer response upon the ratio of the transducer diameter to 
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sound wavelength is termed the aperture effect. 

Acoustic impedance is defined as the product of the density of the 

media, e, and the speed of sound in the media, c. Using the acoustic 

impedances of the transducer and the solid in which the acoustic 

emission propagates, it has been shown by Frederick [Ref 68] that the 

power transmission coefficient of a longitudinal wave arriving at a 

boundary at normal incidence is given by: 

T = (2.29) 

Assuming that media 1 is aluminum with elc1 = 17.3 x 10 6 kg/m 2s, and 

media 2 is a PZT-5 transducer with e2c2 = 28 x 10 6 kg/m 2s, then only 94% 

of the incident sound power in the area under the transducer is 

transmitted into the transducer. Note that this is the maximum amount 

of power which can be transmitted; at angles other than normal mode 

conversion occurs and less power gets into the transducer. 

One of the most popular types of transducer is the piezoelectric. 

Piezoelectricity was discovered by the Curie brothers in 1880, and 

refers to the production of electric charges on the surface of crystals 

that do not possess a center of symmetry which have been deformed by 

mechanical pressure. A schematic representation of the effect as 

described by Hueter and Bolt [Ref 69] is shown in Figure 2.23. Four 

different constants are used to characterize piezoelectricity; these are 

d, the strain developed in an unloaded crystal for a given electric 

field; e, the stress developed by a given electric field when the 
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crystal is clamped; g, the open circuit electric field developed for a 

given stress; and h, the open circuit electric field developed for a 

given strain. These constants are not independent, and according to 

Mason [Ref 70] are related in tensor notation as follows: 

T 9mj 
d 

Emn E 
= = e ni s .. 

nj 47r " 
ES h mj E 1 to 3 mn d m, n = e = = ni c .. 

nj 47r " (2.30) 

4 7r {3 T d h 0 i, j = 1 to 3 
9nj = mj = ni s .. mn " 
h 4 7r {3 S 0 

nj = e mj = 9ni c .. mn " 
where the superscripts T, S, E, and D mean constant stress, strain, 

electric field and electric displacement, respectively, E is the 

permittivity, s is the elastic compliance, c is the elastic stiffness, 

and {3 is the dielectric impermeability. 

The piezoelectric g constant has the useful property of predicting 

the minimum detectable displacement a crystal can sense. By definition: 

E m = 9mn Tn = (2.31) 

where ~ is the displacement and I is the thickness of the crystal. 

Solving Equation (2.31) for displacement: 

~m = 
v 

m 
9mn cmn 

According to Frederick [Ref 68], PZT-5 has g33 = 0.0248 mV/N and 
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C 33 = 67.5 GN/m2. Assuming a high impedance amplifier (so as not to 

disturb the open circuit condition) with an input noise voltage of 10 

pV, PZT-5 can theoretically detect a minimum displacement of 5.97 

femtometers! 

To obtain a complete description for the behavior of a 

piezoelectric crystal, it is necessary to consider the internal energy 

stored in various forms such as mechanical, electrical, and thermal. 

Mason shows that it is possible to use the elastic enthalpy function to 

define the relationship between independent variables such as T 

(stress), D (electric displacement), and a (entropy): 

dH = .. S. d T. 
I I 

+ 
E dO m m 

471" 
+ 0 d a (2.33) 

where 0 is the temperature, and derive the constitutive equation for a 

piezoelectric crystal in terms of the dependent variables Sand E (0 is 

not shown because isothermal adiabatic conditions are assumed in Mason's 

derivation) : 

E . E n, m = 1 to 3 T. = c .. s. - e 
I II I ml m (2.34) 

471" e . S. + 
5 E i, i = 1 to 6 0 = Emn n nl I m 

Equation (2.34) can be solved subject to Newton's second law 

(~ = Q ~ where e is the density) and one of Maxwell's equations 
iJ Xk i) , 

( 
i) D. 

---L = 
i) Xi 

0) along with suitable boundary conditions to obtain a complete 

solution for the behavior of the piezoelectric crystal in a particular 

situation. 
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The approach just outlined is seldom attempted. Instead, it has 

been found easier to develop equivalent circuit models for the 

piezoelectric transducer and solve the resulting circuit equations to 

predict the behavior of the transducer. Vahaviolos [Ref 71] used the 

equivalent circuit of Figure 2.24 to derive an expression for the 

voltage output of an air-backed piezoelectric crystal operating at its 

resonant frequency. In Figure 2.24, Co represents the static 

capacitance of the transducer, which is equal to the product of the 

electroded area, A, the dielectric constant of the crystal, and the 

permittivity of free space, divided by the thickness of the crystal, I. 

(For a 1 cm diameter crystal of PZT-5 three mm thick Co is 400 pf). 6C 

is a variable capaCitor used to control the gain of the FET amplifier in 

conjuction with CF' and RL is the output resistance of the circuit. The 

output voltage of the circuit in Figure 2.24 is given by: 

T 

J (a
1 

(t) - a2 (t)) d t (2.35) 

o 

where a
1 

is the stress induced by the media in the crystal, a2 is the 

stress induced by the air backing on the crystal, vt is the velOCity of 

the wave in the crystal, and T is the duration of the acoustic pulse. 

The assumptions of air backing and resonant operation were used by 

Vahaviolos because he was interested in obtaining maximum sensitivity. 

The shape of the waveform was not important to him as his work was 

concerned with estimating the energy content of an acoustic emission 

waveform, which he proved could be done using a narrow band transducer. 

Identification of the mechanisms which cause an acoustic emission, 

-64-



however, requires a broad bandwidth since information content is 

proportional to bandwidth. Further, flatness of response over the 

operating bandwidth is desirable, which cannot be obtained using an air 

backed transducer. This fact may be appreciated from Figure 2.25, which 

compares the response of an air backed transducer and a terminated 

transducer to identical inputs. It is obvious from the oscillations 

that the air backed transducer must have a peak in its frequency 

response. The penalty for wide bandwidth is also clear in Figure 2.25, 

in that the terminated transducer's response is about 3 dB less than the 

air backed transducer. Kino [Ref 67] has investigated the more general 

problem of a terminated transducer using the equivalent circuit shown in 

Figure 2.26. For a transducer backed with a sUbstance that perfectly 

matches the acoustic impedance of the transducer, the output voltage is 

given by: 

h 
j W 

2 Z 
1 (2.36) 

where w is the angular frequency, h is the piezoelectric open circuit 

strain constant, Zl is the acoustic impedance of the solid in which the 

acoustic emission propagates, and v1 is the particle velocity of the 

acoustic emission waveform. At resonance the output is: 

2h --
1(' 
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Figure 2.25. Time domain response of an air-backed transducer 
(top) compared with that of an acoustically terminated transducer 
(bottom) [Ref 72]. 
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and as the frequency goes to zero the output approaches: 

~ ~) ~ -Z ...... 1-
2

-:.....:1:...-.Z 0- (2.38) 

For a transducer backed with air the output as given by Kino is: 

- h = 
j W (2.39) 

At resonance the air backed transducer produces a voltage: 

j7r 
(2.40) = 

4 h I 

and as the frequency goes to zero the output approaches: 

(2.41 ) 

It can be seen from (2.41) that the response of an air backed 

transducer falls off at low frequencies. This occurs because the back 

is free to move with the front surface, so at low frequencies there is 

no net applied strain. Thus, an air backed transducer is an inferior 

choice when broad band response is desired. It should also be noted 

that equations 2.36 through 2.41 show that the output of a piezoelectric 

transducer is proportional to the particle velOCity of the acoustic wave 

rather that the particle displacement. Since particle velocity is equal 

to jwU where u is the particle displacement, it follows that a 
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piezoelectric transducer's response to displacement will vary linearly 

with frequency. 

Another type of transducer used for acoustic emission work is the 

capacitive transducer. In its simplest form, it is a polished disc of 

area A suspended over the specimen at a distance I. The capacitance of 

such a transducer is: 

c = Q = A fo 

V 

where Q is the charge, V is the operating voltage and fo is the 

(2.42) 

permittivity of free space. Differentiating (2.42) with respect to 

distance yields the charge sensitivity: 

dQ = dl (2.43) 

and it is easy to derive the voltage change for a given displacement as: 

dV = dQ -Vdl 
= = .. Edz (2.44) c 

where E is the electric field in the transducer. Using a potential of 

50 volts and a separation of 2 microns, a 10 pV output would be produced 

for a 0.4 picometer displacement. This is two orders of magnitude less 

sensitive than a piezoelectric transducer. However, the capacitive 

transducer has the advantage that its output is directly proportional to 

displacement, and is independent of frequency. A further advantage of 

the capacitive transducer is that it is non-contacting and thus does not 
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acoustically load the specimen. All of these qualities make the 

capacitive transducer ideally suited for calibration work. 
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CHAPTER 3 

CALIBRATION TECHNIQUES 

This chapter discusses the two most common techniques used to 

calibrate acoustic emission transducers. Three different system 

calibration methods which eliminate response variations due to sample 

geometry are also presented. 

3.1 Transducer Calibration 

Although acoustic emission experiments can be performed using 

uncalibrated transducers, it is wise to attempt to obtain a calibration 

because of the benefits to be obtained by doing so. These include the 

potential ability to quantitatively compare results with either 

theoretical predictions or the work of other experimenters, the ability 

to match an appropriate sensor for a task based on experimental 

conditions and desired response characteristics and the ability to 

replace an accidentally damaged transducer in the middle of a test 

series while maintaining overall data integrity. Useful as it may be, 

though, calibration is not an easy undertaking, and a complete absolute 

calibration is an ideal. Any practical calibration procedure utilizes 

certain assumptions, the nature of which affect not only the results 
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themselves but also limit the conditions under which the calibration can 

be used. 

Sachse and Hsu [Ref 73] have described some of the assumptions 

commonly made to obtain a practical calibration of a sensor placed on a 

solid. The first assumption is that the pressure of the sensor does not 

significantly affect the distributed mechanical field vector quantities 

(which are traction, or force per unit area, and particle velocity) in 

the solid near the transducer. The second assumption is that the 

transducer detects stress waves of a single mode, i.e., only 

longitudinal or shear waves, which is equivalent to writing the 

mechanical field vectors as scalars. The third assumption is that the 

traction and velocity fields are uniform over the region next to the 

transducer, which means that the traction and velocity fields depend 

only upon time. The fourth assumption is that the transduction process 

itself is linear. The fifth assumption is that the calibration medium 

and the excitation are fixed, i.e., the mechanical loading is constant. 

All of the above assumptions taken together result in the 

transduction relation becoming a transfer function equation which is 

given by a real convolution integral in the time domain or by a complex 

multiplication in the frequency domain: 

V(w) = T(w) U(w) 

where V is the output voltage, U is the displacement, and T is the 

transfer function. Equation (3.1) is valid for all frequencies, but 

recording devices work over a fixed time interval. Thus, practical 
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calibration procedures will result in a bandwidth limited transfer 

function, which is usually represented as an amplitude spectrum and a 

phase spectrum over the frequencies of interest. It should be noted 

that because of the assumptions outlined above questions such as the 

effect of different media on the transducer response, or the effect of a 

velocity input on the response as opposed to a displacement input, or 

the detection capability of a transducer to surface waves as opposed to 

longitudinal waves are unanswerable using the transfer function from one 

calibration procedure. The transfer function, then, represents only a 

partial calibration for a transducer. 

With the limitations of calibration clearly defined the two general 

methods of calibration, namely reciprocity and comparison, can be 

described. Reciprocity is a technique which requires that a transducer 

be reciprocal, i.e., that it be linear and capable of transmitting and 

receiving and that the ratio of its receiving sensitivity to its 

transmitting response be constant. This constant is termed the 

reciprocity parameter. It depends on the acoustic media, the frequency, 

and the boundary conditions, but is independent of transducer design. 

As pointed out by Bobber [Ref 74], not all transducers are reCiprocal, 

and no absolute method exists for determining if a transducer is 

reciprocal. The best that can be done is to infer reciprOCity from 

additional measurements, or by comparing a reciprOCity calibration with 

a comparison calibration. If the results agree, it is evidence that all 

of the assumptions made doing both calibrations were correct and that 

the transducer is reCiprocal. However, evidence is not proof, and it is 

possible both methods were wrong and that the errors were COincidentally 
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equal. 

The reciprocity method of calibration can be demonstrated using a 

procedure outlined by Bobber for hydrophones. Figure 3.1 shows the 

three necessary arrangements and measurements, along with a fourth used 

for checking the reciprocity of the reversible transducer, T, which is 

used as both a projector of sound and as a receiver. Sensor P in Figure 

3.1 is only used as a projector of sound for the reciprocity 

calibration, and H is the receiving transducer under calibration. The 

distance d
1 

between the projector and the hydrophone in Figure 3.1 is 

such that only direct spherical waves impinge on the hydrophone 

(free-field far-field conditions). Derivation of the free-field voltage 

sensitivity of the hydrophone, M H , proceeds by driving the projector 

with a current ip • During the first measurement, the output voltage e pH 

of the hydrophone is given by: 

MH ip S d P 0 

where Pp is the free-field pressure of the projector, Sp is the 

transmitting current response of the projector, and do is the reference 

distance specified for Sp. During the second measurement the output 

voltage e pT of the reciprocal transducer is given by: 

e = MT Pp PT = 

where MT is the free-field voltage sensitivity of the reciprocal 

transducer. From the definition of reciprocity (MT/ST = J) and the 
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Figure 3.1. Physical ar!angement and measurements needed for a 
reciprocity calibration, (d) can be omitted since it is only used 
as a check of the reversibility of transducer T [Ref 74]. 
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Figure 3.2. Physical arrangement used for comparison calibration 
using the helium gas jet [Ref 77]. 
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relations shown in (3.2) and (3.3), the following can be derived: 

(3.4) 

In the third measurement, the reciprocal transducer is driven with a 

current iT to produce an output voltage eTH from the hydrophone 

according to the relationship: 

where ST is the transmitting current response of the reciprocal 

(3.5) 

transducer. Solving (3.5) for MH and multiplying this result by (3.4) 

yields: 

(3.6) 

For the free-field far-field condition assumed, J is given by: 

where e is 

free-field 

J = 
2d o 

ef 

the density of the media and f is the frequency. 

far-field voltage sensitivity of the hydrophone 

MH (~ eTH epH r = 
ef epT iT 

Thus the 

is given by: 

(3.8) 

which is the reciprocity calibration. As a check for reciprocity the 
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fourth measurement in Figure 3.1 can be made, it can then be shown that: 

MH (~ eTH e pH r (3.9) == ef eTP ip 

Equation (3.9) provides additional confidence in the value for M
H

• It 

can be seen that only electrical quantities need to be measured during a 

reciprocity calibration, which are easier to conduct than mechanical 

measurements. 

The derivation of reciprocity calibration just given is for a 

transducer sensitive to longitudinal waves operating in free-field 

far-field conditions. Leschek [Ref 75] used equation (3.8) to calibrate 

a primary sensor which was then used as a reference standard for 

obtaining calibrations of general acoustic emission sensors when they 

were mounted on a steel block in which a random frequency ultrasonic 

generator produced a diffuse acoustic field. He recognized the 

limitations of his approach and suggested that research be done to 

derive a diffuse field reciprocity parameter which would be valid for 

compressional and shear waves in a bounded media. About a year later, 

Hatano and Mori [Ref 76] developed a reciprocity calibration procedure 

using Rayleigh wave excitation in a steel block. To do so, they first 

defined the free-field voltage sensitivity as the ratio of the open 

circuit receiving voltage to the vertical component of the Rayleigh wave 

particle velocity at the receiver. They then derived the reciprocity 

parameter H as the product of a constant (computable from the elastic 

constants and the density of the media) and the frequency to the 

three-halves power divided by the square root of the separation 
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distance. Finally, they assumed that all three of the transducers to be 

used were reciprocal and obtained the free-field voltage sensitivity for 

the sensor of interest: 

(~ (3.10) 

where zf(n) is the free impedance of transducer n, Er is the constant 

transmission voltage, and En is the received output voltage of 

transducer n. 

As was pointed out before, the reciprocity technique depends on the 

fact that at least one transducer must be reciprocal, a condition which 

cannot be absolutely proven but only inferred. To avoid this 

difficulty, calibration by comparison with a standard transducer is 

preferred. One of the earliest experiments in which this was done was 

reported by Mcbride and Hutchison [Ref 77], Figure 3.2 shows the test 

arrangement they employed. The calibration itself is performed by first 

recording the frequency spectrum of the helium gas jet as detected by a 

5 MHz quartz crystal over the range of 0.2 to 1.0 MHz. Next the quartz 

crystal is replaced by the transducer to be calibrated and a similar 

spectrum is obtained. The calibration of the transducer is then defined 

as the ratio between the transducer output and the quartz crystal at 

each frequency. Although the technique is quite easy to perform, it has 

several drawbacks. First, it is impossible to obtain the phase response 

of the transducer being calibrated since there is no way to obtain a 

reference signal from the gas jet. Second, it is not clear what the 

excitation mode is at the sensor and therefore it is impossible to 
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predict the calibrated transducer's response to a specific mechanical 

input. Finally, the calibration is relative to a quartz crystal whose 

absolute response is unknown, although evidence is presented to show 

that it is frequency independent. 

Another technique for calibration by comparison has been described 

by Hsu and Breckenridge [Ref 78]; they have termed it the step-force 

calibration. The unique feature of their method is the fact that the 

conditions of the calibration procedure have been chosen so that 

theoretical results can be used to validate the results of the 

calibration. The theory is due to Pekeris [Ref 79], and predicts the 

value of vertical displacement on the surface of a semi-infinite 

isotropic solid at a distance from a step-force function which has been 

applied to the same surface of the solid in a direction normal to the 

solid surface. The theory assumes no loading of the block where the 

displacement is to be measured, which can be accomplished by using a 

capacitive transducer of the type described in Section 2.4. A 

contacting transducer will load the specimen and any calibration of it 

will include this loading effect as part of the calibration. 

The step-force calibration is performed using the arrangement shown 

in Figure 3.3. A glass capillary of 0.2 mm diameter, B, is placed on 

the test block, A, and is broken by tightening screw C. The step-force 

released (with a rise time of approximately 0.1 ~S) is measured by load 

cell D, and displayed on the storage oscilloscope F after passing 

through the charge amplifier E. The surface displacement caused by the 

step-force is measured at symmetrical pOints by two transducers, with 
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Figure 3.3. Physical arrangement used for comparison calibration 
using the step-force method [Ref 78]. 



the true displacement detected by capacitive sensor G and the 

transducer-loaded displacement detected by the sensor under calibration, 

H. The transducer voltage outputs are digitized by recorders, I, and 

stored in the computer, J. 

Using the equipment in Figure 3.3, remarkably good agreement can be 

obtained between the theory of Pekeris and the output of the capacitive 

transducer, as can be seen in Figure 3.4. The two areas of 

disagreement, namely the finite displacement and fall time of the drop 

associated with the arrival of the Rayleigh wave in the experiment, as 

well as the jog near the end of the experimental trace, are due to 

experimental constraints. Specifically, the finite area of the 

capacitive transducer creates most of the disagreement prior to the 

Rayleigh wave arrival and the finite dimensions of the block itself lead 

to reflections, the first of which causes the jog near the end of the 

oscillogram. 

Since the agreement between theory and experiment is so good, the 

response of the capacitive transducer can be used as a standard 

traceable to basic physical quantities. Figure 3.5 shows the amplitude 

spectrum and the phase spectrum of the capacitive transducer caused by 

the step-force function. When similar spectra obtained from the 

transducer under calibration are divided by the information in Figure 

3.5 on a frequency by frequency basis, the amplitude and phase response 

spectra of the transducer relative to the capacitive sensor are 

obtained. These latter spectra are the transfer function T(~) in 

equation (3.1). Amplitude and phase spectra relative to the standard 

-81-



I . 

. 8 

.6 

I~O ., . 
I 

I 

I 
I 
j 

, I 

I ; 

-
1 

! 10 
I 

0"., .. ' 
. 
; 

1 

, 
.4 .5 

t p 

5n V 

... . . .. . 

... , .... 

I 
.6 

... . 

. '" 

, 
.7 

... . 

, " 

I I I I I 1 
.8 .9 1.0 1.1 1.2 1.3 

1 
S 

t 
R 

T "'ct/r 

I I~,t I 
; 

. ... . , .... . , ,I 
j 

! 

I 
j 

I 

~ 

.., 
.... .... '" . .... " . I 

I ; 

Figure 3.4. Comparison between theoretical vertical displacement 
(top) and experimental vertical displacement (bottom) achieved in 
the step-force calibration method [Ref 78]. 

-82-



-CD 
~ -w 

o 
lID 

VELOCITY RESPONSE 

Q 0 
:;) . 
~ -z 

" 4( 

~ 0 ., 

~~--------~--------~------~------------------~--------~------~ 

-• 

• • 

0.0 0.2 0.4 0.1 0.8 1.0 1.2 
FREOUENCY (MHz) 

VELOCITY RESPONSE 

~~ ________ ~ ________ ~ ______ ~ ________ -L ________ ~ ________ ~ ______ __ 

• 
0.0 0.2 0.4 0.1 0.1 

FREOUENCY (MHz) 
1.0 1.2 

Figure 3.5. Amplitude spectrum (top) and phase spectrum (bottom) 
of NBS standard capacitive transducer to step-force function [Ref 
80]. 

-83-



-GO 
'a -W 
C 
::l 
t--Z 

" < 
~ 

-." 
C 
IS -~ 
ca 
~ -UJ 
(/J 

< :x: 
Q. 

VELOCITY RESPONSE 
0 

0 
'P" 

• 
0 
N • 
O 
C') 

• 
0 
~ 

• 
0 

0 
~ 

• 0.0 0.2 0.4 0.8 0.8 1.0 1.2 
FREQUENCY (MHz) 

0 
~ 

0 VELOCITY RESPONSE 
C') 

0 
N 

0 
'P" 

~ 

0 ... 
• 

0 
N • 
0 
C') 

• 
0 
~ • 
0.0 0.2 0.4 0.8 0.1 1.0 1.2 

FREQUENCY (MHz) 

Figure 3.6. Amplitude spectrum (top) and phase spectrum (bottom) 
of a modified S9201 transducer to step-force function [Ref 80]. 

-84-



capacitive transducer for the type of transducer used in the experiments 

reported upon in Chapter 6 are shown in Figure 3.6. 

The particular transducer for which the response is shown in Figure 

3.6 is owned by the National Bureau of Standards, and is a 

Dunegan/Endevco model S9201, serial number AD52. According to 

Breckenridge [Ref 80] it has been modified by machining off the plastic 

surrounding the wear face, and the wear face itself has been optically 

ground and polished to be flat within a few light fringes. It was held 

down during the calibration on the NBS block with a force of one 

kilogram using clock oil as a couplant, and a 100 pF cable (which is 

part of the calibration) connected the transducer to the electronics. 

Note that the spectra are velocity responses; they were obtained by 

multiplying the displacement spectra by jW. This operation is 

equivalent to differentiating the time displacement signal, as can be 

easily shown using equation 4.7. The zero dB level represents 44.2 dB 

above 1 VS/m. 

It must be reiterated that the calibration curves of Figure 3.6 

constitute a partial calibration because of the assumptions used in 

deriving them. For example, the transducer was assumed to respond to a 

single mode, it was assumed to be a linear device, it was assumed that 

the mechanical fields were uniform over the transducer face, and it was 

assumed that the transducer was to be used on a medium which 

mechanically loaded it like the calibration block. It is important to 

keep these points in mind when interpreting test results, otherwise 

gross misunderstandings can result. 
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3.2 System Calibration 

The use of a calibrated transducer by itself does not mean that the 

results of an acoustic emission experiment will be reproducible by other 

experimenters. All transducer calibration guarantees is that a known 

output will be produced when any transducer so calibrated is mounted in 

a specific location on a specific specimen in which a known force 

operates at a specific locatlon. To obtain more flexibility it is 

necessary to devise procedures whereby a variation in specimen geometry, 

transducer location or source location can be corrected for in the 

output data set. The easiest way to accomplish this task is to adopt a 

similar approach to that outlined by Sachse and Hsu [Ref 73] in Section 

3.1 for calibrating transducers and apply it to the whole system of 

specimen, couplant and transducer. The output of the system will then 

be given by: 

Y(w) = H(w) X(w) 

where X(w) is the input to the system and H(w) is the transfer function 

of the system. 

There are several implications to equation (3.11). First, if the 

transducer is calibrated and the input is known and reproducible, the 

system transfer function can be obtained. This approach must be 

performed with caution, however, since as was shown in Section 3.1 many 

assumptions are made in calibrating a transducer which will clearly bear 

on any experimentally derived transfer function. Perhaps significantly, 

there has been no research reported in the literature regarding this 
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approach to date. Second, if a known and reproducible signal is used to 

obtain a spectrum at a specific location and that spectrum is divided 

into the spectrum caused by a real acoustic emission at the same 

location, the result will be the source spectrum of the real acoustic 

emission referred to the constant source spectrum of the standard 

signal. This approach to system calibration has received attention from 

several experimenters, and there are several candidates for a standard 

input. 

The simplest technique for creating a standard input is the 

breaking of a modified mechanical pencil lead as patented by Hsu [Ref 

81]. The modification consists of mounting the pencil on a stand as 

shown in Figure 3.7 to allow the generation of both vertical and 

horizontal components in the stress pulse. By restricting the selection 

of lead to a single manufacturing lot, Hsu has shown that the generated 

signal displacement is reproducible, as shown in Figure 3.8. Advantages 

claimed for the pencil acoustic emission simulator are realistic stress 

wave generation via a sudden release of a slowly built-up static stress 

field which can easily be oriented to create particular wave modes, 

simplicity, ruggedness, portability, convenience of use and 

inexpensiveness. Hsu further claims that the slight variation in signal 

displacement shown in Figure 3.8 can be compensated for by measuring the 

exact breaking load with a force gauge, thus allowing the possibility of 

absolute calibration. Two disadvantages which Hsu does not address are 

the monopolar nature of the stress pulse, and the fact that the 

displacement amplitude is some five orders of magnitude (100 dB) above 

the minimum detectable displacement of a PZT-5 transducer. 
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Figure 3.7. Modified mechanical pencil used for generating a 
standard acoustic emission source [Ref 81]. 
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A second technique that is being used for generating a standard 

signal is transient localized heating caused by a pulsed laser beam. 

Scruby, Wadley, Dewhurst, Hutchins and Palmer [Ref 82] have reported on 

the use of a Q-switched Nd-YAG laser for such a purpose, their 

experimental arrangement is shown in Figure 3.9. In operation, a 24 nS 

duration optical pulse of 1.06 microns wavelength generated by the laser 

was applied to the surface of a test specimen through a 3 mm aperture, 

resulting in an energy of 41 mJ at the surface. Figure 3.10 shows the 

waveforms detected using a capacitance transducer at the epicenter of 

the optical pulse, it is clear that there is good agreement between 

theoretical prediction and experimental results and that the pulse to 

pulse variation is small. The stress wave generated by the action of 

the laser is explained as resulting from thermal gradients set up within 

3 microns of the specimen surface during the laser pulse period. The 

resulting thermal transient causes expansion and thus stresses which are 

primarily parallel to the surface since the surface is unconstrained. 

Unlike the breaking pencil lead simulator just described, the laser 

generated stress wave can be considered to be the result of dipole 

forces, which are similar to the stresses around a crack or dislocation 

loop. In addition to realistic simulation of real acoustic emission 

sources, the laser pulse stress wave has the advantage that it is 

non-contacting and can be focussed on an area of interest that may be 

out of reach or in a hostile environment. Further, the energy imparted 

to the specimen can be readily reduced in a quantitative manner through 

the use of neutral density filters in the laser beam to be consistent 

with the energy released from a real acoustic emission source. Two 

-89-



I 
\.0 
o 
I 

PREAMPLIFIER 

TRANSFER 
BLOCK 

APERTURE BEAM I SPLITTER a - SWITCHED 

Nd: VAG LASER -l------#~ .. --, ~--------------

DIGITAL 

WAVE FORM 

RECORDER 

TRIGGER 

PULSE 

PHOTODIODE 

-~---

TAPE RECORDER 

DIGIT AL 

COMPUTER 

Figure 3.9. Schematic diagram of pulsed laser apparatus used for 
generating a standard acoustic emission source [Ref 82]. 



100 (Q) WAVEFORM FROM THERMOELASTIC SOURCE 

LASER ENE RGY 1.1 m J, 3 mm APERTURE 

5 6 7 8 9 0 

E TIME /}Js 
Q. -.... 
z -100 
iLl 
~ 
iLl 
U 
< 
...J 

-200 D.. 
en 
0 
iLl 
u 

-300 
~ 
a: 100 ::> 
en (b) AVERAGE OF 50 WAVEFORMS 
-J 

< 
~ 5 6 7 8 9 a: 0 0 z TIME l}Js 
0 
iLl 
a: 
::> 
en -100 

< 
iLl 
~ 

-200 

-300 

(c) T HEORE TICAL MODEL OF THERMOELASTIC SOURCE 

3 5 6 7 8 9 

TIME l}Js 

t t 
L 

Figure 3.10. Comparison of theoretical and experimental vertical 
epicentral displacements produced with apparatus of Figure 3.9 
[Ref 82]. 

-91-



disadvantages to the technique are the expense of the equipment 

necessary to generate and control the pulses and the safety precautions 

required to protect personnel from eye damage. 

The third technique of system calibration uses the helium gas jet 

technique described by McBride and Hutchison [Ref 77] as a standard 

input. As described in Section 3.1, this technique consists of causing 

helium gas emerging from a capillary tube to impinge on the surface of a 

specimen to produce a continuous acoustic signal. Bentley and Green 

[Ref 83] found that it was necessary to restrict certain operating 

variables to specific values in order to obtain a reproducible output, 

Table 6.1 (on page 161) summarizes their conclusions. Green and 

Dingwall [Ref 84] later showed that it was possible to use the helium 

gas jet technique to correct for the effect of grossly dissimilar 

transducer characteristics on a received signal. Figure 3.11a shows the 

responses of a wide-band sensor and a narrow-band sensor to a repetitive 

4 pS pulse. The familiar sin x/x shape of a square pulse is evident in 

the wide-band response, but is not so noticeable in the narrow-band 

plot. When these responses are respectively divided by the spectrum 

recorded for the gas jet input to each transducer, Figure 3.11b results. 

The discrepancy at 780 kHz is explained as being due to a response 

difference between the transducers to the particular mode of excitation 

produced by the pulse at that frequency. To prove this contention, 

Green and Dingwall used two dissimilar wide-band transducers in a 

similar experiment and produced Figure 3.12, which does not contain such 

a discrepancy. 
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The advantages of the helium gas jet technique are simplicity, 

portability, inexpensiveness and ease of use. Counteracting these 

attributes are the facts that it does not produce a transient pulse like 

a real acoustic emission, that phase information cannot be obtained and 

that the mode of excitation at the transducer cannot be predicted. 

Nevertheless, the helium gas jet technique is the only system 

calibration method which has been reported in the literature as allowing 

the quantitative comparison of acoustic emission spectra recorded by 

various experimenters (including the author) [Ref 85]. In this article, 

ten different laboratories in different countries recorded acoustic 

emissions from two dissimilar specimen geometries in which two different 

failure modes were operating using different transducers and recording 

systems. Raw acoustic emission data obtained in two laboratories is 

shown in Figure 3.13a, while Figure 3.13b shows the same data after 

normalization with the appropriate helium gas jet data. Figure 3.13b 

should be contrasted with Figure 3.14, which shows normalized data 

obtained by the author at a third laboratory under similar test 

conditions to those used in producing Figure 3.13b. The fact that 

Figure 3.13b and Figure 3.14 quantitatively agree to within 5 dB is 

evidence of the fact that the transducer, couplant, recording system and 

experimental technique differences can effectively be eliminated with 

the helium gas jet system calibration technique. 
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CHAPTER 4 

SIGNAL PROCESSING CONCEPTS 

This chapter describes common pitfalls caused by the improper 

application of digital signal processing techniques. Practical methods 

are presented for digitally calculating the Fourier transform. 

4.1 Data Acquisition 

Once an acoustic emission source has been detected by a calibrated 

sensor the experimenter must have ready a suitable instrument to both 

record the output of the transducer and to process the signal so as to 

extract the information of interest. Carlyle [Ref 3] has summarized 

some of the equipment used in the past for acoustic emission work, 

Figure 4.1 shows the kinds of information which have been obtained using 

such equipment. For the experimental work described in this thesis more 

intricate hardware was required. Therefore, a substantial effort was 

expended in constructing an advanced acoustic emission system, details 

of which are given in Section 5.1. It is sufficient for the present to 

describe the equipment by stating that the transducer output was 

amplified, converted to a digital signal through the use of an analog to 

digital converter, and recorded on digital magnetic tape. This tape was 
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then read by a digital computer and processed using a number of computer 

programs written by the author, which are described completely in 

Section 5.2. Of particular interest in this section is the analog to 

digital conversion process itself - the kinds of errors which it causes 

and anomalies which might be expected in the data. 

A typical analog to digital converter is shown in Figure 4.2. The 

analog signal which is to be converted is input to the sample and hold, 

and upon the reception of a pulse from the external sampling control 

circuit a voltage measurement of the analog input signal is made. 

Simultaneously, the digital counter is reset to zero. The counter then 

commences to accumulate the pulses coming from the internal clock 

through the AND gate. The digital output of the counter is converted 

back into an analog signal by the D/A converter, whose output is 

compared to the voltage being held by the sample and hold. When the 

voltage produced by the D/A converter just exceeds the output voltage of 

the sample and hold, the AND gate blocks further clock pulses from 

incrementing the counter and signals that the conversion is complete. 

The external circuit then stores the digital representation of the 

sampled analog waveform and produces another sample contr'ol pulse, 

causing the cycle to repeat. 

According to Otnes and Enochson [Ref 86], several types of errors 

may occur during the analog to digital conversion process just 

described. The first type, called aperture error, arises from the fact 

that the sample and hold works over a finite time interval termed an 

aperture. If it is possible for the analog signal to vary in the 

-98-



~ui .. CLOCK 

i i 
JL SAMPLE 

0 -- AND ~ HOLD 

-V 
Jlr-

D/A ~ CONVERTER 

JIIIIIIIIII 

AND 

COUNTER t:T 

-" - IA .. PLE 
COIITlIOL 

COllVER.I011 
COIIPLETR 

"LAG 

DIGITAL 

0tITPUT --
Figure 4.2. Schematic diagram of an analog to digital converter. 

Interval = /) 

Figure 4.3. Aperture error arising from the signal changing 
during the sampling period [Ref 87]. 

-99-



aperture, then what is measured is not the magnitude of the signal at 

the start of the aperture (the ideal situation) but rather the average 

of the signal's magnitude during the aperture, as illustrated in Figure 

4.3. Clearly, the way to reduce this error is to make the aperture 

small compared to the reciprocal of the highest frequency in the analog 

signal. 

The second type of error in an analog to digital conversion, called 

jitter, is caused by random variations in the length of time between 

samples. The effect of jitter is twofold - it introduces spurious 

frequencies into the sampled data which will manifest themselves in 

spectral plots and it introduces errors in the phase information of high 

frequency signals which can cause problems with deconvolution. Jitter 

can be reduced by using a stable crystal controlled pulse generator to 

produce the sampling commands. 

Another type of error associated with analog to digital conversion 

is non-linearity. This has several causes, most of which are traceable 

to the analog to digital converter being out of adjustment or to some 

portion of it being inoperative. An example of an adjustment 

non-linearity is non-uniform spacing of the quantization levels. In 

Figure 4.2, such an error would be traceable to the D/A converter, the 

comparator, or the sample and hold. An example of a non-linearity 

caused by circuit malfunction is bit dropout. This can occur when one 

of the digital output data lines "sticks" on an intermittent or regular 

basis; in Figure 4.2 such a malfunction could occur only in the counter. 

The process of quantization has been shown by Beauchamp [Ref 87] to 
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introduce noise into a signal. This arises from the fact that the 

signal is continuous, while the quantized representation has discrete 

steps of size q. The relationship between the input signal x(t) and the 

quantized output xq(t) can be expressed as: 

(4.1) 

where f is an error term whose magnitude lies between -q/2 and +q/2. 

Assuming for the moment that q = 1, the probability density function for 

the error, p(x), is uniform for the range -0.5 ~ x ~ +0.5 and zero 

otherwise, and the mean value of the error is zero. Thus, the variance 

of the error is given by: 

2 
(J = 

00 

f (x:xi p(x) dx = 
- 00 

0.5 

f x2 dx = 
12 (4.2) 

-0.5 

which yields the standard deviation for one unit of quantization as 

1/J12 = 0.29. For a signal quantized using 8 bits (256 levels), the 

Signal to noise ratio introduced by the process of quantization will be: 

= 256 _ 60dB 
0.29 

Several pOints need to be emphasized regarding quantization signal 

to noise ratios calculated using (4.3). The first point is that if care 

is not taken to amplify the analog signal properly so as to utilize all 

of the bits available in the analog to digital converter, the Signal to 

noise ratio calculated using the maximum number of bits in (4.3) will be 

too high. The true value of the Signal to noise ratio will be given by 

(4.3) only when q is equal to the exact number of levels used for 
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digitizing the analog signal. The second pOint concerns the 

determination of the proper number of quantization levels needed for a 

particular application. In this decision the experimenter needs to be 

guided by the analog signal to noise ratio at the input to the 

quantizer. Use of a quantizer with a vastly better signal to noise 

ratio than the analog signal possesses will merely produce a better 

representation of the noise in the analog signal, while reducing the 

maximum sampling speed because of the increased time necessary to 

digitize with greater precision. 

Sampling speed is a very important quantity in digital processing 

because of an effect known as aliasing, caused by sampling a signal at 

too slow a rate to resolve its highest frequency. Figure 4.4 shows a 

dramatic example, where improper sampling causes a high frequency sine 

wave to be represented (aliased) as a low frequency signal in the 

computer. It is clear from Figure 4.4 that the high frequency sine wave 

could be correctly reconstructed if it had been sampled at least twice 

per period. This observation has been formalized as the Nyquist 

criterion (or sampling theorem): 

2~t 
(4.4) 

where f is the Nyquist or folding frequency, and ~t is the sampling 
N 

interval. 

A familiar example of aliasing is the reversal in rotation 

direction of a stage coach wheel in a cowboy film as the coach 
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accelerates through a certain speed. At this speed the wheel has 

reached an angular frequency which is an integral multiple of the 

Nyquist frequency defined by the reciprocal of twice the sampling 

interval of the camera. The rotation reversal occurs because as the 

angular frequency increases beyond the Nyquist frequency an alias 

appears at a frequency as far below the Nyquist frequency as the real 

frequency is above the Nyquist frequency, as shown in Figure 4.5. To 

illustrate this more completely, assume that the high frequency sine 

wave in Figure 4.4 has a 100 Hz frequency. The sampling rate in Figure 

4.4 is 120 Hz, which corresponds to a NyqUist frequency of 60 Hz. 

Subtracting the Nyquist frequency from 100 Hz yields 40 Hz, and 

subtracting 40 Hz from the Nyquist frequency results in an alias 

frequency of 20 Hz, which is exactly the frequency of the dotted sine 

wave in Figure 4.4. 

AliaSing can be prevented in one of two ways - either the sampling 

rate can be increased so that the Nyquist frequency is above the highest 

frequency in the Signal, or the analog signal can be low pass filtered 

to remove all frequencies above the NyqUist frequency. If the first 

method is used, it must be remembered that high frequency noise 

components will be aliased within the Nyquist bandwidth, thus decreasing 

the signal to noise ratio. For this reason the second method is 

preferred. However, practical anti-aliasing filters do not abruptly 

attenuate signals to zero at their cut-off frequency, but rather have a 

finite attenuation per octave characteristic. In general, this trait of 

filters will require that the sampling rate be higher than necessary to 

insure that no aliasing occurs. 
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The fact that a digital representation of a signal has a finite 

length can create some problems if a periodic signal is being digitized, 

as illustrated in Figure 4.6. In Figure 4.6a a cosine wave with a 4 

second period is shown in both the time and frequency domains. Note 

particularly that the only lines which appear in the frequency domain 

are at 0.25 Hz, which is the frequency of the cosine wave. Suppose that 

the experimenter elects to record 10 seconds worth of data by 

multiplying the cosine wave by the rectangular window shown in Figure 

4.6b. In the time domain this yields 2.5 cycles of the cosine wave, as 

shown in Figure 4.6c. The result of the data recording in the frequency 

domain is very complicated, but can be explained by saying that it 

results from convolving the frequency spectrum of the cosine wave in 

Figure 4.6a with the spectrum of the rectangular pulse in Figure 4.6b. 

Digitization consists of sampling the waveform of Figure 4.6c using the 

N impulses shown in Figure 4.6d, this results in the windowed and 

sampled cosine wave shown in Figure 4.6e. In the frequency domain, 

digitization consists of convolving the spectrum of Figure 4.6c with the 

spectrum of Figure 4.6d, which results in the spectrum depicted by the 

dashed line in Figure 4.6e. Because the digitization occurs during a 

finite period, however, the continuous dashed line of Figure 4.6e cannot 

be resolved. Instead, points in the frequency domain spread 1/N~t Hz 

apart result, as actually shown in Figure 4.6e. Note that no line 

appears at 0.25 Hz as it should, but that instead power has "leaked" 

into the closest available lines to 0.25 Hz. 

The leakage effect just described results entirely from choosing to 

digitize a non-integral number of periods of the original cosine wave. 
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Although not shown explicitly in Figure 4.6, the digitization of a 

signal over a finite time period results in an implied periodicity. 

Reproduction of the time domain waveform in Figure 4.6e on both sides of 

the one shown would clearly result in a discontinuity at 0 and 10 

seconds. The effect of this discontinuity in the frequency domain is to 

produce unwanted high frequency components. Elimination of these 

unwanted frequencies can be accomplished by digitizing an integral 

number of periods to eliminate the discontinuity. However, non-periodic 

waveforms can be affected by leakage, too. For example, acoustic 

emission waveforms are not periodic, but if the whole transient waveform 

is not digitized the implied periodicity caused by the digital recording 

will result in a similar discontinuity to that just described for the 

cosine wave. In this event it may be useful to try a technique called 

windowing. 

The windowing technique seeks to eliminate discontinuities by 

forcing the beginning and the end of the data to have the same value. 

This is accomplished by replacing the rectangular recording window shown 

in Figure 4.6b with a more favorably shaped window such as the ones 

shown in Figure 4.7. As can be seen in Figure 4.7, the essence of the 

windowing technique is to reduce the sidelobes of the window in the 

frequency domain, thus directly affecting unwanted high frequencies of 

the sort shown in Figure 4.6e. The price that is paid for the sidelobe 

reduction, however, is that the main lobe is broadened. Thus, although 

frequencies far from the major true frequency will contain less power as 

a result of windowing, more frequencies adjacent to the true frequency 

component will contain power and the spectrum will be smeared. Clearly, 
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L j-T~1/'---1 
A=l 

for t=O to T T -13.2 0.86/l 6 

Extended Cosine Bell A=O.S (1-cos 21TSlIT) 
for t=O to TIlO 

~~ J \ and t=9T/10 to T 
0.9 T -13.5 0.9S/l 18 

A=l (beyond S/l) 
for t=T/10 to 9TI10 

Half Cycle Sine 

~ 
A=sin 21T0.SVT 

~ for t=O to T 0.64 T -22.4 1.1S/l 12 

Triangle A=211T 
for t=O to T 12 

~ ~ 0.5 T -26.7 1.27/l 12 
A= -2VT + 2 

for t=T/2 to T 

Cosine (Hanning) 

~ ~ 
A=0.S(1-cos 2rrt1T) 

0.5 T lor t=O to T -31.6 1.39/l 18 

Hall Cycle Sine 

A A=sin' 21T0.SVT 

~ 
0.42 T -39.5 1.61,8 24 for t=O 10 T 

Hamming 

~ ~ 
A=0.08 - 0.46 (1-cos 2mlT) 

0.S4 T -41.9 1.2613 6 
for 1=0 10 T (Beyond S{3) 

Cosine' 

A 
A=(O.S(1-cos 21TVT»' 

~ 
0.36 T -46.9 1.79/l 30 

for 1=0 10 T 

Parzen A=1-6(21:'T-1>''''6 2VT-1i I 
for I=Tf4 to 3Tf4 

A A=2(1- 1211T - 11)' ~ 
0.37 T -S3.2 1.81/l 24 

lor t=O to T/4 
and 1=3T/4 10 T 

Figure 4.7. Window functions used to control leakage [Ref 88]. 
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if at all Possible it is best to avoid the need for windowing by 

digitizing the entire acoustic emission transient. 

4.2 Spectral Analysis 

The discussion of data acquisition in Section 4.1 touched on the 

concept of spectral analysis when aliasing and windowing were explained 

by hinting that the knowledge of the frequency content of a signal was 

important. This importance arises because the manner in which the 

frequency spectrum displays information will often reveal details of a 

signal that are too subtle to observe in the time domain, in spite of 

the fact that the frequency spectrum of a signal has no more information 

in it than the time domain signal. For example, Figure 4.8 shows what 

appears to be a sine wave in the time domain, but the frequency spectrum 

clearly reveals that the signal is composed of one large sine wave and 

several smaller sinusoidal components. This analytical power of 

spectral analysis makes it an attractive technique for characterizing 

acoustic emission signals because each source mechanism should have a 

characteristic frequency spectrum based upon its size and speed of 

operation. 

Spectral analysis grew out of heat conduction studies performed by 

Jean-Baptiste Fourier in the early nineteenth century. Fourier was able 

to obtain a solution for his heat flow problem in the form of a 

trigonometric series which now bears his name. Of importance to this 

thesis is the fact that the Fourier series can be used to obtain the 

frequency components of a periodic waveform that meets three conditions. 
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First, the waveform must have a finite number of discontinuities in any 

period. Second, the waveform must have a finite number of maxima and 

minima in any period. Third, the integral of the function with respect 

to time over one period must be finite. If these conditions (known as 

the Dirichlet conditions) are met, then the Fourier series exists for 

the periodic waveform and is given by: 

x(t) = ~ 2 + 
00 

1: (a cos 27rnf t + b sin 27rnf t) 
n=l non 0 

(4.5) 

where f is the reciprocal of the period, T, and: 0 

T 

a = 2 f x(t) dt 
0 T 0 

T 

an = 2 f x(t) cos 27rnf t dt n = 1,2,3 ... (4.6) T 0 
0 

T 

b = 2 f x(t) sin 27rnf t dt n T 0 
0 

The a coefficient is the average value of the waveform and thus is the o 

DC term in the frequency domain. The a and b terms are the frequency 
n n 

coefficients, implying that the frequency spectrum of a periodic 

waveform consists of discrete lines in the frequency domain. 

Often it is desirable to obtain the frequency spectrum of a 

transient waveform. This can be done using the Fourier integral, which 

can be derived from the Fourier series by assuming that the period of 

the transient waveform is infinite [Ref 88]. Once again the Dirichlet 

conditions must be satisfied in order for the Fourier integral to 
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eXist, but assuming that this is the case then the following is true: 

00 

x(t) = J X(f) e J"2rlt df 
- 00 

(4.7) 

where: 

00 

X(f) = J x(t) e -j2rlt dt (4.8) 
- 00 

Equations (4.7) and (4.8) are known as the Fourier transform pair, with 

(4.7) generally called the inverse transform and (4.8) the direct or 

forward transform. Note that in contrast to the situation discussed 

above for periodic waveforms the frequency spectrum of a transient 

waveform is a continuous function. 

The Fourier series and Fourier integral just explained are 

extremely useful mathematical tools and as such can be used to obtain 

the frequency spectra of periodic and transient time functions that are 

mathematically describable. From a practical standpoint, however, 

signals encountered in the laboratory are rarely analytic functions of 

time. Another problem is that no real waveform can be considered to be 

periodic from a mathematical standpoint over the time span of negative 

infinity to positive infinity, and thus strictly speaking the Fourier 

series is never usable on practical signals. To handle these problems, 

an approximation of the Fourier transform which uses a digitized 

approximation of the time waveform has been developed. This 

approximation to the Fourier transform is known as the discrete Fourier 
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transform, and is given by: 

N-l 

X(n) = 1: x(k) exp (-j27rkn) 
k==o N 

(4.9) 

where N is the number of samples in the digitized waveform, n is the 

frequency domain index and k is the time domain index. The inverse 

discrete Fourier transform is: 

x(k) = (4.10) 

where the scaling factor of 1/N should be noted. Together, Equations 

(4.9) and (4.10) form a Fourier transform pair for digitized waveforms. 

Although Equation (4.9) represents a practical means of 

approximating the frequency spectrum of real signals, it requires a 

substantial amount of calculation to accomplish this goal. 

Specifically, N2 multiplications are required to obtain the frequency 

components of a time domain signal which has been digitized into N 

samples. Fortunately, there is a means whereby the number of 

multiplications can be dramatically reduced to a number given by N log2N 

instead of N2• This feat is accomplished by exploiting certain 

periodicities and symmetries in the discrete Fourier transform, 

resulting in algorithms which are known generically as fast Fourier 

transforms. The relative calculation advantage of fast Fourier 

transforms over the discrete Fourier transform may be appreciated in 

Figure 4.9, which shows that for a time waveform with 1024 samples the 

discrete Fourier transform will take approximately 200 times longer than 
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the fast Fourier transform. 

The details of how one fast Fourier transform algorithm 

accomplishes its calculation speed increase over direct computation are 

discussed in Appendix A. The algorithm is complicated, and perhaps 

because of this has been subject to modification by various authors. 

The modified algorithms have in turn been implemented in various forms 

by programmers to take advantage of the peculiarities of a particular 

computer architecture or programming language. Thus an experimenter 

wishing to perform digital spectral analysis will discover that he needs 

to choose a particular fast Fourier transform program from among a dozen 

or so possibilities. 

The crucial step in making an informed choice of a particular fast 

Fourier transform program is to rank the relative importance of the 

final result precision, execution speed and memory requirements for the 

task at hand. This ranking will of course depend upon the computer on 

which the program is to run, and a program which may be an excellent 

choice for use on one machine may not provide optimal results in 

another. In the present case a 16 bit machine was to be used and fast 

Fourier transform programs were available which used integer numbers or 

floating point numbers for the input and output data. It was decided 

that a floating point routine was required since the integer routines 

limited the dynamic range of the data to go dB with the 16 bit word 

size. This choice meant that additional memory would be required since 

a floating point number requires twice the storage space of an integer 

number, but this was acceptable because sufficient memory space was 
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available. However, this choice also meant that the execution time 

would be longer since floating point arithmetic takes more time than 

integer arithmetic. This, too, was deemed acceptable since real-time 

results were not required and longer program execution times could 

therefore be tolerated. 

The considerations just described lead to the selection of a fast 

Fourier transform program named FOUR2, whose source code appears in 

Appendix B. The main advantage which FOUR2 provided was a dynamic range 

of about 640 dB, which meant that sharp anti-resonances in the frequency 

spectra would be preserved. This was important to the experimental 

program since it was known that deconvolution by means of power spectral 

division would be necessary during gas jet normalization, and any loss 

of anti-resonances would lead to sharp spikes in the final spectrum. 

Another advantage which FOUR2 possessed was that it used a radix 4 + 2 

factoring scheme instead of the more common radix 2 factoring described 

in Appendix A. This meant that the input data set was factored by 4 

with any remainder being factored by 2. This procedure made the 

calculation of the Fourier transform of the input data execute 

approximately 25% faster than normal. Actual use of FOUR2 in the 

programs written for this thesis (described in Section 5.2) revealed 

that it required 6358 words of program memory (including 4096 words used 

for the 2048 floating point data array) and executed a 2048 point 

transform in 1.19 seconds. 
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CHAPTER 5 

INSTRUMENTATION CONSTRUCTION 

This chapter discusses the design and operation of a unique 

acoustic emission system built for signal identification research. 

Computer programs developed to provide an acoustic emission source 

discrimination capability using data from this system are described. 

5.1 Hardware 

Although acoustic emission has been recognized as a distinct 

nondestructive testing technique since the mid 1960's when the first 

commercial acoustic emission equipment became available, laboratory 

quality instrumentation is not readily obtainable. The experimenter 

must therefore assemble his own system to meet his particular 

requirements. In the present case the requirement to make broadband 

waveform recordings of acoustic emission signals for source 

identification purposes meant that a unique instrument would have to be 

built. This was done by making substantial modifications to a multiple 

channel source location system (manufactured by the Trodyne Corporation) 

which was known as the MSCD system. 
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In its original state the MSCD system had twelve channels whose 

band-limited outputs were processed by a non-programmable logic circuit 

to obtain a planar or a linear source location as well as conventional 

acoustic emission parameters such as oscillation count and peak voltage. 

The modifications consisted of adding a programmable microprocessor, a 

twelve channel broadband switch, an analog to digital converter, a 

digital magnetic tape recorder, a converter-recorder interface and 

modems. This resulted in a system with separated data acquisition and 

data processing sections which could make broadband digital acoustic 

emission waveform recordings in environments hostile to computer 

operation while simultaneously performing source location. A block 

diagram of the system after modification is shown in Figure 5.1. 

Numerous problems were encountered during the construction of the 

system. One of the most troublesome was an intermittent cor~uption of 

the waveform recorded by the analog to digital converter when the 

waveform was stored on magnetic tape at the command of the 

microprocessor. The solution to this problem came about when it was 

finally noticed that it was data dependent, thus providing a means of 

getting a regular failure. Subsequent trouble shooting of the data path 

from the analog to digital converter to the magnetic tape recorder 

revealed that an improper choice of biasing resistors in the interface 

data lines had created an impedance mismatch which caused oscillations 

when the data had a particular value. A simple change of resistors was 

sufficient to eliminate the problem. This is a particularly significant 

problem because it is one which can easily occur in any digital system 

assembled using equipment built by different manufacturers, and is most 
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difficult to solve because of the intermittent occurence of the data 

corruption. 

The capabilities of the modified system can best be understood by 

explaining the way it handles an individual acoustic emission Signal 

propagating through a specimen. Although the acoustic emission Signals 

must first enter the sensors, which could therefore form a legitimate 

part of the system, sensors will not be discussed as if they were part 

of the system design because they can readily be changed to meet 

different needs. Thus for the purposes of this discussion the first 

system component the Signals must enter is the preamplifier. 

The preamplifiers which are employed in the system are notable for 

their bandwidth, which extends from 10 kHz to 15 MHz at the 3 dB points. 

This is not common practice, as it is usually desirable to reduce 

thermal noise to a minimum. Thermal noise in RMS volts is given by 

Skolnik [Ref 91] as: 

V
N 

= ,../ 4 R k T B (5. 1) 

where R is resistance, T is temperature in degrees Kelvin, k is 

Boltzmann's constant, and B is the bandwidth over which the noise is 

measured. Thus the preamplifiers used in this acoustic emission system 

generate about 4 times more noise that the typically employed 1 MHz 

bandwidth acoustic emission preamplifiers. The increased noise was felt 

to be an acceptable penalty, however, since the increased bandwidth 

provided more information which signal processing routines could utilize 

for source characterization. One problem with the preamplifiers was 
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their 10 kilohm input impedance which loaded the sensors and reduced the 

output. As described in Section 6.2 this loading was eliminated by 

building a FET impedance converter to effectively make the preamplifier 

impedance 1 megohm. 

The preamplified acoustic emission signals are input simultaneously 

into two separate sections of the system, where different parameters are 

derived. In the main path, the signals from all channels are filtered 

between adjustable limits (typically 100 - 300 kHz) before an event 

detector produces a pulse for each event. In the other path, all of the 

signals in their unfiltered state are passed through a switch which when 

activated will allow only one channel to be input to the analog to 

digital converter. This switch, which was built as part of the 

modifications to the MSCD system, attenuates the 11 inactive channels by 

60 dB when it is activated by the microprocessor. This occurs after the 

microprocessor determines that the signal being detected is the first 

arrival of a new acoustic emission event. The two path concept is used 

in an attempt to avoid problems in locating with dispersive waves. As 

described in Section 2.3, various modes of plate waves travel at 

different speeds as a function of frequency and plate thickness. 

Judicious selection of the filter bandwidth for a particular application 

allows the event pulse to be derived from a particular constant velocity 

component of the acoustic emission signal. 

After the event pulses are generated from the narrowband data a 

programmable microprocessor controls the acquisition of the wide band 

data and the transmission of the entire data set to the data processing 
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section. This microprocessor is another modification of the MSCD system 

and is crucial to the operation of the system because it controls the 

acoustic emission data collection. The microprocessor does this by 

means of a program named MSCD, whose source code appears in Appendix B. 

The writing and debugging of MSCD accounted for most of the time spent 

in modifying the original acoustic emission system, because MSCD had to 

be written in ASSEMBLY language and installed in an EPROM chip to be 

tested. Provisions were made to accomodate numerous error conditions 

and timing difficulties in MSCD. A complete diagram of the logic it 

incorporates is shown in flow chart form in Figure 5.2. Starting with 

the system in a quiescent state the first event pulse starts two arrival 

time clocks running, values corresponding to the channel number, the 

time of day, the load on the structure and the number of fatigue cycles 

are saved, and the wide band switch is activated to allow only the 

presently active channel to be recorded by the analog to digital 

converter. The arrival of the second event causes the first arrival 

time clock to be stopped and the channel number of the second event to 

be saved with similar action taking place when the third event is 

detected. 

The MSCD program now must determine if the acoustic emission signal 

which has just been processed has propagated out of the monitored area 

(or has been attenuated sufficiently) so that the next detected event 

pulse will correspond to the first arrival signal of a new acoustic 

emission source. This is done by combining all of the event pulses onto 

one signal bus and measuring the time separation between the pulses. 

When this value is greater than the maximum time of propagation between 
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Figure 5.2. Flow chart of logic employed by microprocessor used 
in experimental acoustic emission system. 
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adjacent sensors on the structure, it is physically impossible for the 

old signal to be present (at least at an amplitude that matters) and so 

the system can get ready to reset and begin the cycle again. (It should 

be pointed out that this procedure can result in missed data if the 

acoustic emission bursts occur at different locations but happen to 

overlap one another in time. If this is the case, the experimenter must 

either move the sensors closer together or modify the loading on the 

structure to cause emission at a lower rate.) 

Prior to the occurrence of the reset the data which has been 

collected is examined for errors. For example, if either arrival time 

clock has exceeded a preset value which corresponds to the maximum time 

of propagation over the entire monitored area, or if the arrival 

sequence of the events was such that the participating channels were not 

adjacent to one another (as determined by programming variables prior to 

the experiment), the data set is considered invalid. If this is the 

case the reset will occur immediately and new data will be recorded 

directly over the invalid data. Another error which could occur is if 

the analog to digital converter did not complete a recording after the 

arrival of the first event pulse but prior to the arrival of the second 

event pulse. If this occurred the waveform recording would be erased, 

but the rest of the data would be treated normally. 

Assuming that no error conditions existed, the MSCD program would 

initiate a transfer of all of the data. Because of transmission line 

speed restrictions the waveform data is stored locally on 9 track 

digital magnetic tape while the rest of the data is transmitted via a 
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modem link over telephone lines to the minicomputer data processing 

section. The transmitted data set contains such items as an indicator 

showing that a broadband waveform recording was made, the sensor arrival 

sequence of the acoustic emission signal, two arrival time differences, 

the elapsed test time, the structural load, the fatigue cycle count, the 

narrowband signal oscillation count, and the narrowband signal peak 

voltage. When the transmission has been initiated, the MSCD program 

checks to see if one of a pair of local data buffers is available to 

receive new data. If a buffer is available an immediate reset occurs 

and data collection can start, otherwise the program waits. This double 

buffering concept helps to smooth out the process of data acquisition 

since one buffer is usually available to receive data. 

The crucial factors limiting the performance of the acoustic 

emission data collection system are the times required to transmit the 

data set from the microprocessor to the minicomputer and to transfer the 

waveform data from the analog to digital converter to the 9 track 

digital magnetic tape recorder. In the current implementation of the 

system these times are 0.2 Sand 0.15 S, respectively. The reset 

concept employed in this system requires that the wave propagate a 

minimum of 1.5 times the sensor spacing before the next event can be 

recorded, which would require a time of 1 mS if the sensor spacing were 

2 m and the propagation velocity were 3 km/S. Although it is clear that 

substantial room for improvement is available, it was not done with this 

version of the system since a virtual boost in performance can be 

realized by slowing the loading rate, and because the necessary 

electronics to transfer the data faster would have been prohibitively 
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expensive. 

After the data set reaches the data processing section many 

different options can be selected which will determine exactly what 

happens. Typically, the data will be coming from a test in which it is 

desired to anticipate failure and perhaps save the specimen. In this 

case, the data set will first be checked for a proper sensor arrival 

sequence and the arrival time differences will be checked to insure that 

they do not exceed the maximum permissible limits. Although this seems 

redundant, it is not, because the time resolution in the data collection 

section is rather coarse and the arrival sequence programming is not too 

sophisticated. Thus, the MSCD program could validate a data set which 

upon further inspection with finer time resolution and more intricate 

adjacent sensor definitions would not be legitimate. 

Assuming that the data passes these first two checks, though, the 

arrival time differences and the sensor arrival sequence would be used 

by the minicomputer to calculate a source location. The locus of a 

constant difference between two points forms a pair of curves called 

hyperbolae, thus the two arrival time differences result in four curves. 

Each intersection point represents a possible source location, the 

correct one is chosen using the information in the sensor arrival 

sequence. This concept is illustrated in Figure 5.3. Although it is 

possible to have an intersection point lying outside of the area bounded 

by the sensors, the present acoustic emission system does not handle 

this situation. Instead, adjacent triangles must be built using 

additional sensors and at least one or two of the sensors pictured in 

-125-



Locua of (T1-Ta'= conatent 8 

.enaor 1 
, 

I 
I 

Senaor 3 

I 

, 
Locua of (T1-T2, = conatent A 

.enaor 2 

Figure 5.3. Schematic demonstrating how to locate an acoustic 
emission source. Arrival time differences yield four possible 
sites, the correct one is selected using the sensor arrival 
sequence data. 
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Figure 5.3. Any physical situation in which an intersection point could 

be constructed outside of the largest triangular area in Figure 5.3 

would now result in the sensors of the adjacent triangle containing this 

intersection point detecting the signal first, and similar logic to that 

used in Figure 5.3 would be sufficient to resolve the true source 

location. 

Two error conditions can result from the calculation of the source 

location. First, a mathematical error might occur due to truncation. 

To check for this condition the inferred source location is used to 

calculate arrival time differences. If these differences do not agree 

with the measured arrival time differences to within 10%, an error is 

declared. Secondly, a physical source might lie entirely outside any 

areas bounded by three adjacent sensors. As mentioned previously this 

situation is not legal under the present location logic and thus an 

error would be declared. 

Once a data set is validated and a source location is calculated 

the data processing section records the entire data set along with its 

associated calculated values on a disc drive and then displays certain 

subsets of the data. It is possible to obtain anyone of three 

tabulated displays of sequential data sets or anyone of three graphical 

schematics of the specimen with source locations superimposed as the 

data is acquired. 

One of the tabulated displays is shown in Figure 5.4. This 

version, termed the raw data display since it shows the values which are 

being received from the remote acoustic emission data acquisition 
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Figure 5.4. Example of a raw data display obtained during a test. 
Typically used for operational check of equipment prior to a test. 
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section, is useful mainly in the initial setting up of experiments. It 

is convenient to use this display to check the physical limits of the 

monitored area (through the use of the error code), to equilize overall 

amplifier gains in each channel (through the use of oscillation counts 

and peak voltages in response to a calibrated input), to check for the 

proper calculation of the parametric value (coefficients for a second 

order equation are entered to obtain an engineering response from a 

voltage input that is generated by a load cell, pressure transducer, 

strain gauge, etc.), to insure that the cycle counter is advancing 

properly (with changes in load, pressure, strain, etc.), and to help 

diagnose transmission line problems. 

The remaining two tabulated displays are used to obtain information 

on individual acoustic emissions while the test is in progress. An 

example of one of these displays is shown in Figure 5.5, the other is 

identical except that it shows the parametric cycle count instead of the 

parametric value. The primary intelligence to be gleaned from these 

displays is the amount of energy carried by individual emissions as a 

function of either specimen load or fatigue cycles. Energy is 

proportional to the product of the oscillation count and the peak 

voltage. In general, the energy is indicative of the amount of damage 

that is occurring in the specimen, so it is instructive to look for 

rapid increases in acoustic emission energy at specific locations or 

groups of locations. 

The graphical displays are used to help the experimenter quickly 

locate areas on the specimen where damage is occurring, as evidenced by 
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3~6 2 1 3 21.2 17.~ 7113 12.0 4.8 4133.0 
337 2 3 1 25.0 18.2 827 12.13 1.9 4135.0 338 2 :3 1 24.3 17.8 ~3 12.e 2.13 413!i.e 
3~ 2 3 1 24.4 17.7 926 12.13 2.1 4136.9 
34-e 2 :3 1 24.5 17.9 979 12.13 1.7 4137.8 341 1 2 :3 13.7 14.3 7ee 13.13 ~.e 414e.0 
342 2 5 3 6.0 7.13 567 13.e B.e 4141.8 1 343 2 3 4 38.~ 29.1 787 13.13 4.4 4142.0 
344 2 3 4 39.3 27.5 8ge 15.0 ~.0 4143.13 
!A5 .., 3 1 24.7 17.6 980 15.0 4.8 41~.0 -346 2 3 1 24.5 17.5 1087 15.0 5.8 4153.13 
347 2 3 1 24.5 17.5 ge9 15.e 4.9 4153.0 
3413 2 3 5 13.a 0.13 e 15.0 0.0 13.0 2 
349 2 3 1 24.3 18.8 1121 16.8 4.4 4166.8 
3!"..e 2 3 4 39.3 27.8 772 1~.8 1.2 4168.0 
~1 2 3 1 24.1 17.9 771 16.0 4.9 4163.8 
3~2 2 3 1 26.0 17.0 le'31 16.0 5.13 4171.S 
3~ 3 2 1 31.9 17.13 2132 16.0 4.2 4174.8 
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Figure 5.5. Example of a tabulated data display obtained during a 
test. Typically used for monitoring energy carried by individual 
emissions. 
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either large numbers of events or large amounts of energy release. The 

two dimensional planar version is shown in Figure 5.6. The crosses 

correspond to the transducer locations, the upper number in each box 

represents the number of valid events which have occurred within the 

box, the lower number in each box is the cumulative magnitude of the 

valid events which have occurred within the box, the letter E is the 

total number of events in the monitored area, the letter R is the number 

of events which have been rejected due to errors and the letter P is the 

current parametric value. The one dimensional linear graphs are similar 

except that only the valid events or only the cumulative magnitudes of 

the valid events are displayed at anyone time. 

So far the discussion of the data processing section operation has 

been limited to situations in which a test is being monitored and it is 

necessary to have information immediately available so as to predict 

failure. However, it is also possible to process the acoustic emission 

data sets recorded during a test after the test is history. This can be 

accomplished in several ways. The most straightforward is to use the 

same program described above for real time data set processing except 

that input is specified from the disc instead of from the remote 

acoustic emission data acquisition section. The program will convert 

the recorded data back into raw data exactly like it was originally 

received and then process it using new information and re-record it on 

the disc. In this manner one can investigate the effects of changing 

the acoustic emission propagation velocity and the coefficients of the 

second order parametric voltage conversion equation. 
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Figure 5.6. Two dimensional graphical display obtained during a 
test. Typically used to locate areas where damage is occurring. 
Top number in boxes is the number of events at the location, 
bottom number is the cumulative magnitude of those events. 
Letters are multipliers with A = 1 and B = 10. 
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Another method of post test processing can be utilized which will 

produce graphical displays and tabulated data very similar to that 

obtainable during test monitoring except that upper and lower acceptance 

limits can be specified for the parametric value, the peak voltage, the 

location, the event number, the parametric cycle count and the elapsed 

time. Each data set is compared to these limits and only those sets 

which meet the criteria are plotted or tabulated. This capability has 

two important uses. First, it allows the experimenter to analyze a 

completed test in segments. For example, if acoustic emission activity 

occurred at several locations at different times the experimenter could 

specify location limits and time limits which would enable him to plot 

each source's activity during the entire test. Or, he could produce 

plots showing each source's behavior during a portion of the test when 

the parametric value reached a critical limit. The second use is to 

produce statistics for each acoustic emission source which are used as 

inputs to yet another post test processing program. 

The final post test processing program has as its purpose the 

production of functional relationships between various parameters. It 

can produce graphs of the parametric value versus elapsed time, 

occurrence versus elapsed time, occurrence rate versus elapsed time, 

magnitude versus elapsed time, magnitude rate versus elapsed time, 

occurrence versus magnitude, occurrence versus parametric value, 

magnitude versus parametric value, occurrence versus parametric cycle 

count, magnitude versus parametric cycle count and occurrence versus 

first arrival sensor. All of these graphs are subject to the same 

limits mentioned previously. 
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The technology of acoustic emission instrumentation was advanced by 

the building of this system for several reasons. First, it made 

Possible the broadband digital recording of acoustic emission waveforms. 

Second, it permitted the broadband waveform recordings to be associated 

with a planar or a linear source location even in dispersive structures. 

And third, it allowed acoustic emission data to be gathered from 

specimens in environments that had previously precluded such monitoring 

because the delicate data processing minicomputer was physically 

separated from the data acquisition section. 

5.2 Software 

The experimental acoustic emission instrument described in detail 

in Section 5.1 produces digital magnetic tapes containing acoustic 

emission waveforms. To obtain the desired source identification 

information from these tapes it was necessary to write computer programs 

to process them. It was decided that the most useful information 

contained in the acoustic emission signals would be found in the time 

and frequency domains so major emphasis was placed on writing plotting 

programs that would produce graphs of these domains. It was also 

necessary because of the large amount of data to write the programs to 

run with a minimum of operator guidance. Additionally, methods were 

needed to deconvolve the data using gas jet information and also to 

calibrate the output using engineering units so that results would be 

directly comparable to the work of other experimenters. 

Before describing all of the programs in detail, mention must be 
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made of the computer system that was utilized for the experiments. As 

can be seen on the system block diagram in Figure 5.7 the main processor 

was a Hewlett Packard 2117F. It had 192 kilowords of random access 16 

bit semiconductor main memory, two channels of direct memory access, a 

floating point processor for enhancing floating point arithmetic 

operations, dynamic memory mapping to allow direct addressing of up to 1 

megaword of memory and 268 recognized instructions including some 

deSigned to enhance trigonometric and logarithmic calculations, FORTRAN 

operations and matrix manipulations. The main mass storage unit 

consisted of a HP 7906 disc drive capable of storing 20 megabytes, 

complemented by a HP 7970B magnetic tape unit utilizing a 9 track 800 

bpi IBM compatible NRZI format. Acoustic emission data was input 

through a Vadic 3415A modem operating at 1200 baud, while plotting was 

done on a Tektronix 4010-1 graphics terminal. A Lear Seigler ADM-31 

terminal served as the main system console and a Houston Instrument 8210 

line printer provided the program listings. All of these devices (plus 

several others which appear on Figure 5.7) operated under the control of 

a Hewlett Packard program named RTE-IVB. This is a multi-programming, 

multi-tasking operating system which allows program scheduling by 

interrupt, time of day, operator request, or program request. Program 

execution is dependent both upon the state of the system resources and 

the priority of the program relative to other programs already executing 

or scheduled. It is possible that two equal priority programs can 

execute concurrently via a central processing unit time-slicing feature. 

RTE-IVB supports several high level languages including BASIC, 

PASCAL, ASSEMBLY and FORTRAN. It was decided that the acoustic emission 
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Figure 5.7. Block diagram of computer system and peripheral 
equipment used for signal processing in this thesis. 
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signal processing programs would be written in FORTRAN primarily because 

of programmer familiarity, available callable subroutine libraries and 

execution speed, but also because the readability of FORTRAN provided an 

easy means for debugging, modifying and maintaining the programs. 

Input/output operations and disc file read/write requirements were 

handled using HP supplied routines, both because of the detailed device 

control offered by this method and because of the efficiency of 

execution. Thus, extensive use of subroutines such as EXEC, CREAT, 

READF, WRITF, PURGE and CLOSE were made in the writing of the acoustic 

emission signal processing programs. Tables 5.1 and 5.2 provide a 

summary of the use and function of these HP peculiar utilities; more 

detailed information is contained in the RTE-IVB system manuals [Ref 92 

through 95]. 

Computer systems are oriented towards the production of listings, 

which do not provide the most useful form of information for signal 

processing work. Graphs are much more desirable because of the manner 

in which they can compress information into a relatively small area, 

because they allow easy comparison between different experimental 

results, and because they help define data trends as a function of 

several variables. To produce graphs using the system in Figure 5.7, 

however, it was necessary to write some software because equipment from 

two different manufacturers was involved. The routines were written in 

HP ASSEMBLY language [Ref 96] because the table accesses and memory 

location manipulations that were required proved difficult to perform 

under FORTRAN. Two subroutines were written, named PLOT and SYMB. (See 

Appendix B for their source code.) Together they allow the programmer 
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Table 5.1 
INDEX TO EXEC CALLS 

Format 

CALL EXEC (lCODE, ICNWD, IBUFR, IBUFL) 

Parameters 

ICODE - Type o' operation desired (1 - Read, 2 - Write, 3 - 1/0 Control) 

ICNWD - Operation subde'lnltlon (FFOOB + LUB) 

LUB - Octal device logical unit 

FFOOB - Octal sub'unctlon code, depends on ICODE 

ICODE - 1 or 2 FFOOB - 100B (Binary mode select) 

(Keyboard Input printed) 

(Write EOF) ICODE - 3 

- 400B 

FFOOB - 100B 

200B (Backspace record) 

300B (Forward space record) 

- 400B (Rewind) 

600B (Dynamic status) 

- 1300B (Forward space file) 

- 1400B (Backspace .lle) 

IBUFR - Buffer which contains or will receive data (lCODE - 1 or2) 

IBUFL - Length o. IBUFR (n :;;; words, -2n = bytes) 



NAME 

CLOSE 

CREAT 

LOCF 

OPEN 

PURGE 

READF 

RWNDF 

WRITF 

Table 5.2 

INDEX TO FMP CALLS 

FORTRAN CALL FUNCTION 

CALL CLOSE(lDCB,IERR,ITRUN) Close file NAME to further 
access by caller. 

CALL CREATtIDCB,IERR NAME,ISIZE,ITYPEJSECU~IDCBS Create file NAME of size 
• ) ISIZE, tVl>e ITYPE. 

CALL LOCF(IDCB1ERR,IREC,um,IOFF, Returns information on open file; next record in 
JSEC. JLU.JTY,JREC) - IREC,next block aRB), next word (JOFF) , etc. 

CALL OPEN(IDCB,IERR,NAME,IOPTN ,1SECU ,ICR,IDCBS) Open file NAME for access 
by calling program. 

CALL PURGE(lDCB,IERR,NAME,ISECU ,ICR) Purge me NAME and its 
extents from disc. 

CALL READF(IDCB,IERR,IBUF ,IL,I..EN,NUM) Read record from open file 
to buffer (IBUn 

CALL RWNDF(IDCB,IERR) Rewind or position to first 
record in file. 

CALL WRITF<lDCB,lERR,IBUF ,!b,NUM) 
Write record from 
(lBUF) to file. 

COMMON PARAMETERS 

mUF UAer.oefined integer array UBe<l as readlWTite buffer for READF and 
WRITF calls 

ICR OD~word integer variable set to cartridge reference number of cartridge 
containing file: 

positive integer: cartridge label 
negative integer = logIcal unIt number 

IDeB UAer-defined integer array (Data Control Blockl containmg file control 
information on open file (16 words, plus packing buffer for dat.a transfer 
(minimum 128 words), lDeB llS8umed to be 144 words unless IDCBS is 
llpeCified 

IDCBS one·word integer variable containing exact number of words in IDCB 
when lDeB greater than 144. 

IERR one·word variable where negative error code is returned, or for suceessful 
OPEN, file type, for successful CREAT, number of 64·word sectors. 

NAME 3·.,ord integer arTay containing legal 6-character file name, must not 
begm with blank or number; no embedded blanks; use any print.able 
ASCII character 

ISECU on~word &eCUrity code; integer or two ASCn characters: 

positive = write protected 

negative= readlWTite protected 

zero = not protected 

OPTIONAL PARAMETERS IN FORTRAN CALLS ARE UNDERLINED. 
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to draw line segments, input cross-hair cursor intersection coordinates 

to interactively designate and quantify points of interest, draw 

alphanumeric symbols of any size and orientation to label the plot, 

erase the plot and produce hard copies of the plot. 

With the basic tools developed work began on the actual acoustic 

emission signal processing routines. The first program, designed to be 

used after the generation of the acoustic emission signal magnetic tape, 

is named PLTME for "plot time domain". (See Appendix B for its source 

code.) It can be used in one of two modes, one of which allows viewing 

any particular acoustic emission signal recorded during an experiment 

and contained within one file on the tape. The other mode views all 

acoustic emission signals recorded during any experiment in sequence 

until the end of file is reached, allows the operator to select 

waveforms worthy of further processing, and writes the waveform number 

of the selected signals into a disc data file. Additional features of 

PLTME are its automatic vertical scaling which works in a 1, 2, 5 

multiplication sequence to show as much detail on the plot as possible, 

its vertical and horizontal labelling sections which produce 

automatically labelled plots over a full scale range of 0.01 to 500 

volts and 20.4 to 409 microseconds, respectively, and its automatic 

association of the plot with the particular acoustic emission waveform 

number that produced it. 

The disc data file produced by PLTME has a specific flexible format 

that permits the experimental conditions to be retained as the signals 

are processed. An example of such a file appears in Figure 5.8. The 
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0001 "7039 SCC EXPERIMENT (K=31)" 
0002 "EMISSIONS GATHERED OVER A 55 MINUTE PERIOD" 
0003 "TOTAL OF 60 AE SIGNALS RECORDED" 
0004 "GOOD SIGNALS WERE DETERMINED FROM VISUAL APPEARANCE" 
0005 "PREAMP GAIN = 36 DB, BIOMATION ATTENUATOR = 0.05 VOLTS" 
0006 "TRIGGER SETTING = +0.06, PRETRIGGER, 1.80 TRIGGER DELAY" 
0007 "GAIN CORRECTION FACTOR ="0.05,"SAMPLING RATE ="0.1 
0008 "RAW DATA TAPE FILE NUMBER ="3 
0009 "GOOD TAPE RECORDS FOLLOW:" 
0010 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20 
0011 21,22,23,25,26,27,28,29,30,31,32,33,34,35,36,37,38 
0012 39,40,41,42,43,44,45,46,47,48,49,50,51,52,54,55,56 
0013 57,58,59 

Figure 5.8. Disc data file produced by program PLTME. 

"1 ~lHZ PULSE AS RECEI'JED BY D/E S92e1" 
BIOMATION RECORDING 1 
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.eee 41.e 81.9 123. 164. 
MICROSECONDS 

Figure 5.9. Time domain plot produced by program PLTME. 
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first line becomes the title that PLTME and other programs will place on 

graphs. It can contain any ASCII character with the exception of double 

quotes, which are used as delimiters to start and end the string. 

Subsequent lines have the same content restriction, the difference is 

that they will not be processed by PLTME or other programs unless they 

contain a non-zero number outside of the double quotes. When this 

happens, as in line 7 of Figure 5.8, PLTME interprets the left most 

number outside of the double quotes as a scaling factor for the 

ordinate. If there is a second number separated by a blank space, a 

comma or a delimited string it will be used as a scaling factor for the 

abscissa, otherwise a value of zero will be used as the abscissa scaler. 

The next line must then contain a non-zero integer outside of a 

delimited string to be used as the tape file number. Any other 

descriptive lines that the experimenter wishes to record can now be 

entered provided that they begin and end with double quotes, for once 

another non-zero integer outside of a delimited string is encountered by 

programs subsequent to PLTME it will be interpreted as a valid acoustic 

emission record number. 

With the entry of the data file header information completed, PLTME 

produces time domain plots of acoustic emission signals similar to the 

example shown in Figure 5.9. If the operator judges the signal to be 

worthy of further processing he presses the G key (for "good") when the 

cross-hairs appear and the record number of the signal is written to the 

disc data file. Any other key simply causes the next signal to be 

plotted. The sequence continues until the end of file on the magnetic 

tape is reached, signifying the end of the acoustic emission experiment 
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and causing PLTME to terminate. As mentioned previously, Figure 5.8 is 

an exam~le of the data file output produced by PLTME. Such a file does 

not have to be produced. Should the operator chose to simply view 

acoustic emission waveforms he merely enters the appropriate scaling 

factors, tape file number and waveform number when prompted by PLTME to 

do so. When the cross-hairs appear after the time domain plot is drawn, 

typing a Q (for "quit") will cause program termination while any other 

response causes PLTME to ask for another waveform number. 

Having run PLTME, the operator now possesses time domain plots of 

all of the acoustic emission signals he wishes to analyze and also has a 

file containing the waveform numbers of those signals along with 

relevant experimental documentation. Program AENOR, which stands for 

"acoustic emission normalization", is now scheduled to produce a data 

file containing frequency domain information. (See Appendix B for its 

source code.) AENOR will first request the name of the waveform data 

file produced by PLTME and then will request a name for a file in which 

to write the frequency domain data. The header information in the PLTME 

output file will be transferred verbatim to the frequency domain file, 

thus insuring that experimental conditions are kept with experimental 

results. Next, the magnetic tape containing the acoustic emission 

signals will be read using the tape file number and the signal numbers 

in the PLTME output file for positional information. A power spectrum 

will be calculated for each signal number in the PLTME output file and 

the resulting spectrum will be written to disc along with a 

normalization factor and the appropriate signal number. The 

normalization factor is defined as the ratio of the total energy in the 
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first signal encountered by AENOR to the total energy in the signal 

presently being processed. This factor provides a convenient way for 

subsequent programs to produce "constant energy" spectral plots of 

acoustic emisSion waveforms in a particular experiment to simplify 

spectral shape comparisons. AENOR terminates when all of the signal 

numbers in the PLTME output file have been processed. 

One of the prime concerns in writing AENOR was that it produce a 

power spectrum calibrated in engineering units. This requirement was 

met through careful attention to detail in lines 166 through 180 of 

AENOR (see page 272), which are responsible for the calculation of the 

power spectra. The process starts with obtaining the real and imaginary 

parts of the frequency spectrum from the time domain data, this is done 

using subroutine FOUR2 in line 166. This particular subroutine performs 

a base 4 + 2 FFT which results in approximately 25% faster execution 

than a straight base 2 FFT. (See Section 4.2 and Appendix A for more 

discussion on the FFT.) Lines 170 and 171 correct for the fact that 

FOUR2 scales the spectral data by the dimension of the transform. Line 

172 calculates the power spectrum from the complex frequency spectrum by 

multiplying each complex frequency component by its complex conjugate. 

Line 173 reflects the fact that the most commonly used 0 dB reference 

level is 1 milliwatt into a 50 ohm impedance, while the power spectrum 

calculated in line 172 uses as a 0 dB level 1 watt into a 1 ohm 

impedance. The final correction, made in line 174 of AENOR, is made 

because the mathematical definition of a Fourier transform requires 

integration over time from negative infinity to positive infinity which 

results in frequencies from negative infinity to positive infinity. 
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Negative frequencies have no physical meaning, but the power carried in 

these frequencies must be accounted for. Because of the symmetry of the 

power spectrum about 0 Hz when analyzing real (as opposed to complex) 

time domain Signals, it is only necessary to double the power in the 

positive frequency band to produce a plot of total power versus the 

absolute value of frequency. 

Verification of the output of AENOR was accomplished by creating an 

artificial pulse with an amplitude of 0.5 volts, a duration of 12.8 

microseconds and a repetition rate of 204.8 microseconds on magnetic 

tape. A header file was created as if PLTME had been run and AENOR was 

called to process the magnetic tape. The output file of AENOR was 

plotted using a program which will be described shortly and Figure 5.10 

resulted. The amplitude of each Fourier component of a square pulse is 

given by Seely [Ref 97J as: 

C(n) = Eo 
T 

sin 7I"no/T 

7I"no/T 
(5.2) 

where E is the amplitude of the pulse, a is the duration of the pulse, T 

is the pulse repetition rate and n equals 0, 1, 2, etc. The power in 

each Fourier component is found by squaring c(n) for each n and dividing 

by the impedance. For a 50 ohm impedance it is easy to prove that the 

DC level (n = 0) of the pulse should be -17.09 dBm, the first sidelobe 

(n = 23) should be -30.36 dBm, the second sidelobe (n = 39) should be 

-34.94 dBm and the third sidelobe (n = 56) should be -37.92 dBm. Since 

Figure 5.10 agrees with these values it can be concluded that AENOR is 

indeed calibrated. 
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As was explained in Section 3.2 a helium gas jet can be used to 

remove the effects of system variables on experiments. The process of 

doing so, however, requires that a power spectrum be developed which 

describes the long term frequency content of the gas jet signal. For 

this purpose program GASJT was written. (See Appendix B for its source 

code.) In operation this program will creat a header file exactly as 

does PLTME so that the experimental conditions will be recorded. Once 

the tape file number is entered, however, GASJT proceeds immediately to 

process every time domain signal in that file on the magnetic tape. For 

each signal it will calculate a calibrated power spectrum in a manner 

similar to that described for AENOR and add each succeeding power 

spectrum on a frequency by frequency basis to the sum of all previous 

power spectra. When the end of file of the magnetic tape is reached the 

totalized power spectrum is divided by the total number of signals 

processed to form an averaged power spectrum for the experiment. 

The information contained in the data files produced by AENOR and 

GASJT is most useful in graphical form. To produce the graphs program 

PLFFT, for "plot FFT", is used. (See Appendix B for its source code.) 

The operator is prompted to enter the name of the file containing the 

acoustic emission signal FFT information. If he so chooses the name of 

the gas jet power spectrum file can be entered next in order to produce 

normalized plots. PLFFT then prompts the operator to enter the waveform 

number he desires to plot and also asks if "constant energy" plots are 

desired. If this feature is selected all of the plots will contain the 

same energy as the first plot of the file, otherwise every plot will be 

calibrated with a log reference level of 0 dB equal to 1 milliwatt into 
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a 50 ohm impedance. The program then proceeds to produce a graph 

similar to the example shown in Figure 5.10. When the cross-hairs 

appear typing in a Q (for "quit") will cause program termination. 

Typing in a # causes PLFFT to request another waveform number, while 

typing in a M (for "magnify") causes the program to magnify the plot by 

a factor of 1, 2 or 5 depending on the operator's choice. PLFFT employs 

automatic vertical scale ranging to insure that the maximum amount of 

detail is shown over its 60 dB viewing area from a full scale maximum of 

-940 dBm to 9990 dBm. A clipping algorithm is used to keep the lower 

limits of the graph from exceeding the plot area and automatic abscissa 

labelling is employed to produce rational labels over a full scale range 

of 0.05 MHz to 50 MHz. Additional features include the automatic 

association of the plot with the acoustic emission waveform number which 

produced it and the automatic calculation and labelling of the plot with 

the minimum frequency resolution, or bandwidth. 

When experience was gained using the programs just described it was 

realized that it would also be desirable to be able to calculate an 

average acoustic emission power spectrum for an entire test, complete 

with confidence limits. The reason for this was that the variability 

from spectrum to spectrum between acoustic emission Signals within one 

test was great enough to hinder the search for differences in spectral 

shape between tests conducted using different failure processes. For 

this reason, program AECNF (for "AE confidence limits") was written. 

(See Appendix B for its source code.) This program allows the operator 

to process any output file produced by AENOR and to normalize the 

acoustic emission Signal power spectrum using helium gas jet data 
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produced by GASJT if such is desired. AECNF will prompt the operator to 

enter a "t" value and the corresponding confidence limits for the 

calculated number of degrees of freedom and will then produce a plot 

similar to that shown in Figure 5.11. When the cross-hairs appear the 

operator can magnify the plot by typing in a M, or he can enter another 

"t" value and the appropriate confidence limits by typing a T, or he can 

terminate AECNF by typing in anything else. AECNF has the same 

automatic vertical scale ranging, clipping, abscissa labelling and 

bandwidth calculation features that PLFFT employs. In addition it 

labels the plot with the confidence limits which were utilized and also 

the number of spectra that were averaged. 

One last program was discovered to be needed when it was found that 

the extended record length data files produced by AENOR and GASJT could 

not be saved on magnetic tape or even moved from disc cartridge to disc 

cartridge through the use of RTE-IVB file manager commands. A program 

named DBSVR (for "data base save and restore") was therefore written to 

create a processed acoustic emission data base on magnetic tape. (See 

Appendix B for its source code.) DBSVR asks the operator if he wishes 

to save or restore data. If the answer is "save" the program asks if 

there is already data on the tape so that it can skip over it, then 

requests the name of the file to save and proceeds to store that file on 

magnetic tape. If the operator requests to restore data he is asked for 

the file number on the tape that contains the data he wants to restore. 

The program then prints out the first line of the header information and 

asks if this is the data that is desired. If not, DBSVR requests 

another file number and the process repeats. Otherwise, DBSVR requests 
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produced by program AECNF. 
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the name of a file in which to store the data and proceeds to restore 

the data to disc. In both the save and restore modes the data that has 

been newly created is verified against the original data so that no 

errors occur. 

As was mentioned before care was taken to insure that properly 

calibrated spectra were created by AENOR and GASJT and it was shown that 

it was possible to produce frequency spectra which agreed with 

theoretical calculations. However, due to the fact that other 

experimenters were producing acoustic emission power spectra using 

analog techniques through the use of the HP 8553B/8552B/141T swept 

frequency analysis system it was deemed important to determine if AENOR 

and GASJT produced comparable spectra. To accomplish this identical 

signals were input to both the analog and the digital systems and the 

results were compared. 

The test time domain waveform that was chosen for input to both 

AENOR/GASJT and the HP8553B was not strictly a waveform but rather 

random noise. The selection of noise as a test input rather than an 

actual acoustic emission waveform arose partially because of the 

necessity to repeatedly input the signal to the analog instrument. This 

is because the HP 8553B electronically sweeps a filter over the desired 

frequency range, thus the spectral components are sampled sequentially 

in time. AENOR and GASJT, on the other hand, are real-time analysis 

systems that calculate all of the spectral components simultaneously 

from a single input. To get a fair comparison of the two systems using 

an actual acoustic emission waveform, then, it would be necessary to 
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have a recording system that would accurately reproduce the signal at a 

constant repetition rate. Although this requirement could conceivably 

be met it is also important to realize that the HP 8553B instrument 

suffers from a phenomenon know as "pulse desensitization", which is 

caused by the fact that the swept filter employed in the instrument 

responds differently to a pulse than it would to a continuous signal 

[Ref 98]. The amplitude of the pulse desensitization in dB is given by: 

where Te is the effective pulse width and Bj is the effective impulse 

bandwidth of the swept filter. The decay of an acoustic emission signal 

makes it extremely difficult to assign a value to Te, thus the amount of 

correction required for an acoustic emission signal would at best be a 

guess. The substitution of random noise for an acoustic emission 

waveform eliminates all problems since there will be no pulses to 

desensitize the filter and since the input will be reproducible if a 

long enough sweep time is used on the HP 8553B to allow the dwell of the 

filter at a specific frequency to average out short term statistical 

fluctuations in the noise. AENOR will of course not be usable since it 

would process a short enough signal that statistical fluctuations would 

be important. GASJT, however, is ideally suited to this situation since 

it averages a number of power spectra together to develop an estimate of 

the long term average power spectrum. 

Figure 5.12 shows the output of GASJT when 57 power spectra of 

background electrical noise signals created by thermal processes in a 

Dunegan/Endevco S9201 transducer were averaged. Figure 5.12 also shows 
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the scope presentation of the HP 8553B instrument when it was connected 

to the same noise source. Note that the HP 8553B spectrum is 3 dB 

higher than the GASJT plot. This is caused by the fact that the 

bandwidth used on the HP 8553B was 10 kHz as opposed to the 4.9 kHz 

bandwidth of GASJT. Since random noise is random in both amplitude and 

phase doubling the measurement bandwidth doubles the measured power [Ref 

99J. This requires that a 3 dB correction be made when the bandwidth is 

doubled and therefore the output of GASJT is precisely comparable to the 

output of the HP 8553B/8552B/141T swept frequency analysis system. 

Because the only difference between GASJT and AENOR is that GASJT 

averages spectra together while AENOR does not it is reasonable to 

conclude that AENOR would produce a power spectrum for an actual 

acoustic emission waveform which would be comparable to that produced by 

the analog system, provided that the problems of producing an accurate, 

repetitive version of the acoustic emission signal and establishing an 

accurate pulse desensitization factor for the HP 8553B system could be 

overcome. 

The technology of acoustic emission was advanced by these programs 

for several reasons. First, they allow the use of digital signal 

processing for acoustic emission work with the assurance that the 

results are comparable with earlier analog results. Second, they 

provide a method for eliminating the effects of geometry changes, 

couplant variations and transducer aging on the experimental results. 

And third, they permit confidence limits to be calculated so that for 

the first time the effects of experimental errors on acoustic emission 

data may be evaluated. 
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CHAPTER 6 

SIGNAL ANALYSIS RESEARCH 

This chapter describes a series of experiments conducted using 4340 

steel and 7039 aluminum to determine if different acoustic emission 

sources can be identified by their emitted signals. The results 

indicate that this goal can be achieved using the data acquisition 

methods and signal processing techniques presented. 

6.1 Objective 

The goal of this thesis was to extend the technology of acoustic 

emission by developing methods for discriminating between acoustic 

emission signals to make possible the identification of the failure 

processes which generated the acoustic emissions. Chapter 5 documented 

the construction of a unique acoustic emission instrument which advanced 

acoustic emission technology since it permitted for the first time the 

acquisition of broadband digital waveform recordings of acoustic 

emission signals. Also documented in Chapter 5 was the writing of 

computer programs which collectively advanced acoustic emission 

technology by allowing such broadband digital waveform recordings to be 

processed so as to eliminate the effects of various experiment dependent 
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quantities while permitting a meaningful estimate to be made of the 

effects of experimental error. The purpose of this portion of the 

research program was to experimentally test the developed acoustic 

emission system and computer programs to determine if they did indeed 

provide the desired acoustic emission source discrimination capability. 

Three experiments were performed to test the instrument and the 

programs. Two different materials, three different specimen 

configurations and two modes of failure were used during the experiments 

to completely check the ability of the developed techniques to eliminate 

the effects of experiment dependent quantities while still performing 

source discrimination. The conducting of only three experiments is 

justifiable because the large number of acoustic emission signals that 

were recorded (1164 in all) required a tremendous amount of processing 

(628 pairs of useful plots resulted from the experiments). Since these 

acoustic emission signals were generated by growth of cracks over many 

interatomic distances (the total crack length increase monitored during 

the experiments was 16 mm) a valid statistical sampling was made of the 

population of all possible acoustic emission signals from the specimens 

and therefore further experiments would be redundant. Also, other 

workers associated with the author on another project reported that 

their experiments with similar specimens produced similar acoustic 

emission waveforms [Ref 85]. Thus, the analysis performed in this 

thesis utilized acoustic emission signals which were typical of the 

materials monitored. 

It will be shown that the techniques developed in Chapter 5 do 
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permit an experimenter to discriminate between different acoustic 

emission source mechanisms on the basis of the received signals. This 

is particularly significant since it will be shown that such source 

discrimination can be achieved in specimens of engineering interest 

rather than specimens of strictly laboratory interest. A limitation of 

the developed techniques is that they do not discriminate on an 

individual signal by signal basis but rather work on a collection of 

signals from an entire experiment. However, since the experiments do 

firmly establish the feasibility of source discrimination in engineering 

specimens, it is felt that the developed signal processing techniques 

advance the technology of acoustic emission. More intricate and 

expensive signal processing methods can now be investigated with the 

confidence that identifiable source mechanism characteristics exist ln 

acoustic emission signals. 

6.2 Experimental Design 

The objective of differentiating between different acoustic 

emission sources imposed numerous constraints on the experiments. 

First, faithful recording of the signals over the largest possible 

bandwidth was required in order to obtain the maximum data base from 

which to extract the signal characteristics. Second, specimens had to 

be designed to fail through a single mechanism to enable a positive 

identification of acoustic emission signals. Third, methods had to be 

developed to calibrate the specimen-couplant-transducer-recording system 

to insure that data obtained under different conditions would be 
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comparable. And finally, methods of processing the data to characterize 

individual acoustic emission sources had to be developed. 

The data recording instrumentation starts with the transducer since 

it is there that the electrical representations of the acoustic stress 

fields are developed. As was pointed out in Section 2.4 there are 

several types of transducers from which to choose. However, practical 

considerations such as ruggedness, immunity from noise and high 

sensitivity effectively limit the choice to piezoelectric transducers. 

Since reproducibility was also a consideration it was decided to utilize 

transducers that were built in quantity to obtain the advantages of mass 

production and hopefully limit response variability. Examination of the 

transducers of three acoustic emission companies including the Acoustic 

Emission Technology model FC500 and the Trodyne model 7536A led to the 

selection of the Dunegan/Endevco model S9201 based on its sensitivity, 

response bandwidth and availability. 

The author's prior acoustic emission experience indicated that a 

typical acoustic emission signal from aluminum and steel impinging on 

the S9201 transducer would generate an amplitude ranging from 10 to 100 

pV peak to peak into 50 ohms at the transducer output and would have a 

useful frequency range of 0.1 to 1.0 MHz. To condition such signals a 

high input impedance broad band preamplifier providing a gain of 100 was 

built. This consisted of an FET input stage, shown in Figure 6.1, 

feeding a Trodyne model 7529A preamplifier. This combination provided 

an input impedance of 1 megohm, a gain of 36 dB and a bandwidth of 10 

kHz to 15 MHz at the 3 dB points. The importance of the high input 

-158-



'110 nO 

t.fd •• + 

OUT 

UO 

Figure 6.1. Field effect transistor impedance converter built for 
thesis research program. 

.... 
• .. 
o 

1000 

~ 100 
o .. 
u 

10 

1 

o 

OUTPUT USING 
FET PREAMP 

soo 

FREQUENCY (kHz) 

1000 

Figure 6.2. Gain increase achieved from use of circuit of Figure 
6.1 (top curve) over normal operation (bottom curve). 

-159-



impedance may be seen in Figure 6.2, where a simultaneous increase in 

the signal to noise ratio as well as a higher voltage output is realized 

by going from 10 kilohm to 1 megohm input impedance. Another important 

aspect of the preamplifier was that it was completely shielded and 

battery operated. This modification was made to eliminate pickup of 

extraneous signals such as radio stations, radar, lights, etc. 

Recording of the amplified acoustic emissions was performed using 

the acoustic emission system described in Section 5.1. The equipment 

directly involved in the recording process consisted of a Biomation 

Model 8100 analog to digital converter, a specially designed interface 

unit and a Kennedy Model 9000 digital magnetic tape drive. Digital 

recording of Lhe signal offered significant advantages over analog 

recording in that daily calibration was unnecessary, long term signal 

degradation did not occur after a waveform was recorded on the tape, a 

better dynamic range was available, triggering was available to record 

signals during long quiet periods, and most importantly, easy and 

versatile signal processing could be performed via a digital computer. 

Another useful feature of digital recording was the pretrigger 

capability it offered which effectively allowed signal recording to 

start before the trigger occurred, thus preserving the all important 

leading edge of the acoustic emission. Some disadvantages were that 

quantization was introduced into the recordings and continuous recording 

of the signal was impossible. In the system used, quantization was 8 

bits (1 part in 256), sampling rates could vary from 0.01 pS to 10 pS in 

a 1-2-5 sequence and 2048 consecutive points could be recorded with a 

fixed dead time of 140 mS. A sampling rate of 0.1 pS was found to be 
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TABLE 6.1 GAS JET OPERATING SPECIFICATIONS [Ref 83] 

-------------------------------------------------------------
Parameter 

Type of Gas 

Pressure 

Jet 

Stand Off 

Bore Angle 

Miscellaneous 

Value of Parameter 

Helium 

144.8 kN/m2 ± 6.9 kN/m2 

As supplied by RMC, Canada - glass 
capillary of approximately 0.8 mm 
diameter by 60 mm long. 

3.5mm±0.1mm 

0° ± 2° with respect to surface normal 

Install filter in gas delivery line 
(such as nylon stocking). Clamp jet 
assembly only on plastic inlet section 
of capillary. Measure pressure at jet 
inlet (use of flowmeter recommended 
to detect perturbations in delivery). 
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the most useful since it permitted recording most of the envelope of a 

typical acoustic emission signal emitted from aluminum and steel while 

providing a Nyquist frequency of 5 MHz, thus 205 pS of acoustic emission 

data was recorded at least every 140 mS. For clarity Figure 6.3 shows a 

block diagram of the digital recording section of the acoustic emission 

system. 

The specimens employed in the acoustic emission source 

identification experiments are depicted in Figure 6.4. The double 

cantilever beam design was chosen for stress corrosion cracking 

specimens since it was a simple geometry that featured self loading. 

These attributes helped to reduce echoes within the sample, and 

eliminated the possibility that machine noise would contaminate the 

acoustic emission signals. The compact tension design was chosen for 

tensile overload specimens because it is well defined from a fracture 

mechanics point of view, thus insuring a known stress field and 

hopefully, therefore, a reproducible failure. Two materials, 4340 steel 

(Fe-0.4 C-1.8 Ni-0.8 Cr-0.7 Mn-0.3 Si-0.2 Mo, weight percentages) and 

7039 aluminum (AI-4.0 Zn-2.8 Mg-0.4 Fe-0.3 Si-0.25 Mn-0.2 Cr-0.1 Cu-0.1 

Ti, weight percentages) were selected. This was done to provide some 

insights into the acoustic emission behavior of different materials 

failing through different mechanisms. Prior to testing, the 4340 steel 

was quenched and tempered to produce a Rockwell "C" hardness of 49, 

while the 7039 aluminum was solution treated, quenched and aged to 

produce a Rockwell "B" hardness of 78. 

Calibration of the specimen-couplant-transducer-recording system 
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was carried out using the helium gas jet technique. Selection of this 

calibration procedure over some of the others mentioned in Section 3.2 

was made because it was easier to implement in a reproducible manner and 

because it yielded signal amplitudes which were more typical of acoustic 

emissions. To insure a reproducible calibration signal the gas jet 

operating parameter values listed in Table 6.1 were used. These values 

were reported by Bentley and Green [Ref 83] as being the most optimal 

for helium gas jet system calibration work. The reference gas jet 

spectrum was then developed by making a number of recordings of the time 

domain signals, calculating the power spectral density for each signal 

and then averaging all of these power spectra. It was found that 100 

time domain signals averaged together would be sufficient to yield a 

reference power spectrum with an error of plus or minus 0.1 dB from 0.1 

to 1.0 MHz. It should be reiterated that the purpose of the helium gas 

jet system calibration is to eliminate the variability between 

experiments caused by geometry changes, couplant variations and 

transducer aging. As will be seen, if these variations were not removed 

from the data they would overwhelm the spectral changes caused by 

acoustic emission source differences and therefore source discrimination 

could not be done. 

6.3 Results 

The goal of these experiments was to determine if differences could 

be discerned between acoustic emissions emanating from different 

materials undergoing different failure processes. Thus, it was 
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imperative before any experiment started to obtain a calibration signal 

to provide a basis for comparison. This was accomplished as described 

above, and Figures 6.5, 6.6 and 6.7 show the resultant reference power 

spectra and the point of stimulation for each experimental situation. 

The choice of the stimulation point was made to provide a reference 

signal in the vicinity of the expected acoustic emissions. In such 

small specimens no significant variation in the reference power spectrum 

resulted when the stimulation point was moved. This would not generally 

be the case in a larger specimen. Examination of the spectra in Figures 

6.5, 6.6 and 6.7 reveal that all three are different. This is to be 

expected since three drastically different geometries are involved 

because it has been found by McBride and Hutchison [Ref 100] that 

geometry is the major source of changes in the reference spectra. 

Having obtained a reference spectrum for each speCimen mechanical 

testing commenced starting with the 4340 steel DeB speCimen. A razor 

blade was used to create a fresh surface at the root of the notch, then 

the corroding agent (a saturated solution of sodium chloride) was added 

and finally the loading screw was tightened one quarter of a turn. 

During the next 70 minutes a crack formed and propagated approximately 8 

mm into the steel while a total of 553 acoustic emission Signals were 

recorded. The trigger level for recording an acoustic emission signal 

from this material was 32 pV referred to the transducer. 

Of the 553 signals recorded only 382 were found to be useful. This 

was determined by visual inspection of the data set. Visual inspection 

is of course not desirable for routine source identification work. For 
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this reason a computer program was written to automatically select 

signals for further processing. However, it proved too difficult to 

make the program selective enough to keep all of the good signals while 

rejecting all of the bad ones. Thus, only visual selection of good 

signals was used for the experiments in this thesis. Signals which were 

clipped or whose envelopes did not conform to the expected appearance of 

an acoustic emission signal's envelope (ie, initial quiet period 

followed by a short steep rise to a maximum value and an exponential 

decay after the peak) were rejected. Examples of good signals are shown 

in Figure 6.8, 6.9 and 6.10 along with their frequency transforms. It 

can be seen that these signals are quite distinct from one another. 

A similar experiment was conducted on the 7039 aluminum DCB 

specimen, except steps were taken to calculate the stress intensity 

factor, K, at the start of the data gathering process. This was 

accomplished by measuring the unloaded height of the specimen 

perpendicular to the plane of the crack (2h), obtaining the crack 

opening displacement (d) after turning the screw to produce pop-in, 

obtaining the crack length (a) by measuring from the center of the 

loading screws to the tip of the crack along the plane of the crack and 

then calculating K using an equation due to Kanninen [Ref 101]: 

K = .)3 
2 [ 

1 + O.64(h/a) ] 
1 + 1.92(h/a) + 1.22(h/a)2 + O.39(h/a)3 

where E is the elastic constant. 

(6.1) 

Once again a razor blade was used to create a fresh surface at the 
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Figure 6.11. Time domain waveform and corresponding power 
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root of the notch and then the saturated solution of sodium chloride was 

added. With the screw tightened to produce pop-in K was found to be 31 

MPaJim. Sixty acoustic emission signals were recorded over a 55 minute 

period while the crack grew approximately 2 mm. The trigger level for 

recording an acoustic emission signal from this material was 48 pV 

referred to the transducer. Visual inspection revealed that 57 signals 

were useful. Examples of these signals in both the time and frequency 

domains are shown in Figures 6.11, 6.12 and 6.13. 

Repetition of this experiment with a K level of 22 MPaJffi resulted 

in a data set of 67 useful acoustic emission signals gathered over a 90 

minute period while the crack extended another 2 mm. The trigger level 

remained the same, 48 pV referred to the transducer. These signals 

appeared very similar to those shown in in Figures 6.11, 6.12 and 6.13. 

The only distinguishing difference between the data gathered from the 

7039 DCB specimen at a K value of 31 and a K value of 22 was that the 

amplitudes of the signals taken at a K value of 22 were generally 

smaller than those taken at a K value of 31. 

To obtain data on a different failure mechanism a 7039 aluminum CT 

specimen having a 3.42 mm long pre-existing fatigue crack specimen was 

mounted in an Instron machine using specially designed clevises. Grip 

noise was minimized by using felt washers to separate the interior faces 

of the clevises from the specimen and the pins were liberally greased to 

prevent fretting. The cross-head speed was set at 83.8 microns per 

minute to allow ample time to record each acoustic emission and a 

clip-on gauge was used to record the crack opening displacement as a 
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function of tensile load. The output of the gauge, shown in Figure 

6.14, provides an easy means of detecting pop-in and final failure. 

Annotation of the graph with the acoustic emission waveform numbers 

provides evidence that the acoustic emission came from tensile overload 

failure and not from crack interface rubbing during unloading. A total 

of 496 acoustic emission signals were recorded during the test, of which 

only 189 were found via visual inspection to be useful. The trigger 

level for recording an acoustic emission waveform during the test was 32 

pV referred to the transducer. Examples of good signals in both the 

time and frequency domains are shown in Figures 6.15, 6.16 and 6.17. 

6.4 Data Analysis 

Analysis of the acoustic emission signals recorded during the three 

experiments outlined in Section 6.3 was accomplished using the computer 

programs described in Section 5.2 and commenced with the examination of 

the time domain representation of each signal using program PLTME. The 

envelope of each signal was required to be free of clipping and to 

conform to the general shape of an initial quiet period followed by a 

short steep rise to a maximum value with an exponential decay after the 

peak. Acoustic emission signals from a particular experiment which met 

these two criteria had their waveform numbers saved in a disc file whose 

name was mnemonically related to the root experiment. Each file was 

then read by program AENOR, which created a frequency spectral data base 

for each experiment. Each data base was processed in turn using program 

PLFFT to produce a permanent record of the power spectrum of each 
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accepted acoustic emission signal. 

The operations described in the preceding paragraph produced 628 

pairs of plots, 18 of which appear in Section 6.3. To analyze this vast 

amount of data it was decided to first produce bar charts for each 

experiment showing the relative occurrence of signals separated 

according to their raw (not normalized by use of the helium gas jet 

spectra for the particular test) spectral shape. The distribution 

classes were based on the relative heights of the two predominant 

spectral peaks and the presence or absence of either of the two peaks. 

Thus a continuous distribution of spectral shapes was transformed into 

the six categories shown in Figure 6.18. Figures 6.18, 6.19 and 6.20 

depict the result of this classification. Clearly, each experiment 

produced a dominant spectral shape (see Figures 6.8, 6.11 and 6.15 for 

examples of these), a secondary spectral shape (see Figures 6.9, 6.12 

and 6.16), as well as miscellaneous other spectral shapes (see Figures 

6.10, 6.13 and 6.17). A general observation about all these spectral 

examples is that they have a bimodal appearance. This is no doubt due 

to the transducer response characteristics, a statement which is 

supported by Figure 3.6a which shows the magnitude velocity response 

spectrum produced by a transducer similar to that used in the present 

experiments when it was excited by a flat frequency input. 

There are several possible reasons for the appearance of multiple 

spectral shapes during the course of a single experiment where only one 

basic fracture mechanism was operating. Crack length, since it changes 

the geometry of the specimen and thereby its normal resonant modes, 
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Figure 6.18. Classification of acoustic emission signals from 
4340 DCB specimen according to their raw spectral shapes. 
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offers an obvious explanation for the generation of different spectral 

shapes. However, a careful examination of the distribution of spectral 

types with test time revealed that no correlation could be made between 

spectral shape and crack length. 

Another possibility for the spectral shape change mechanism is that 

waveform interference occurred at the transducer location, either 

because of multiple propagation paths from a single source or because of 

simultaneously operating sources. Destructive interference of shear 

waves traveling at 3 kilometers per second would occur at 750 kHz if a 

path difference which was an integral multiple of 2 mm existed, while at 

250 kHz a basic path difference of 6 mm would be required. Constructive 

interference, on the other hand, would require a 4 mm basic path 

difference at 750 kHz, and 12 mm at 250 kHz. While these path 

differences are physically realizable in the specimens used, 

interference would not be capable of removing broad spectral peaks such 

as is documented in the changes between Figures 6.8 and 6.9, and Figures 

6.8 and 6.10, but would instead create narrow peaks and valleys. 

Still another explanation for the appearance of multiple spectral 

shapes during the course of an experiment where only one fracture mode 

was operative is that there may have been multiple acoustic emission 

source generation mechanisms. However, as was shown in Section 2.1 

there are only two sources for acoustic emission when cracking occurs, 

namely, brittle particle fracture and discontinuous crack movement. The 

4340 steel tested here contained no brittle second phase particles, only 

carbides having diameters of less than 0.1 microns. It is known that 
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carbides of this size do not generate detectable acoustic emission [Ref 

102]. Since there were six different spectral classes observed during 

the experiment with this material, the hypothesis of multiple acoustic 

emission source mechanisms operating during one test must be incorrect. 

The most likely explanation for the occurrence of multiple spectral 

shapes during the course of one experiment is that there was a variation 

in the speed of crack advancement or there was a variation in the amount 

of cracked area, or both. For example, if a constant crack advance rate 

of 100 mm per second were assumed, then a change in the predominant 

frequency of the acoustic emission waveform from 250 kHz to 750 kHz 

would occur if the diameter of the cracked area varied from 0.4 mm to 

0.1 mm. A similar frequency shift would occur if a constant cracked I 
area of 0.2 mm were assumed and the crack advance rate changed from 50 

meters per second to 150 meters per second. The reason that this 

mechanism is the most plausible explanation for the existence of 

multiple spectral shapes is because variations in crack area and crack 

advance rates have been found to exist by Wadley and Scruby [Ref 103] 

and because the predominant frequency change in the acoustic emission 

waveform which would result would excite the two broad resonances in the 

detection transducer to differing degrees, causing an energy loss or 

gain over a wide frequency range such as actually occurred in Figures 

6.8, 6.9 and 6.10 

Because the spectral shape variations during the course of each 

experiment do not result from the operation of different acoustic 

emission sources but rather arise because of the geometry or the rate of 
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operation of a particular emitter, it was decided that averaging the 

power spectra would produce a valid spectral description of the failure 

of each specimen. Program AECNF was used for this purpose; in operation 

it averaged the power spectra in a particular experiment's data base 

after first normalizing each spectrum to unity energy. Confidence 

limits were then calculated for each frequency using the "t" statistic. 

The results for the three experiments are shown in Figures 6.21, 6.22 

and 6.23. Comparison of these averages with the predominant spectral 

types of each corresponding experiment shown in Figures 6.8, 6.11 and 

6.15, respectively, show that the averaging process did indeed produce a 

faithful summary spectrum for an entire test. 

To allow a direct comparison of the information in Figures 6.21, 

6.22 and 6.23, it was necessary to deconvolve them with their respective 

gas jets shown in Figures 6.5, 6.6 and 6.7. The results of these 

deconvolutions are shown in Figures 6.24, 6.25 and 6.26. Comparison of 

the deconvolved spectra reveals that a substantial difference exists 

between the acoustic emission output from steel undergoing stress 

corrosion cracking and the acoustic emission from aluminum undergoing 

either stress corrosion cracking or tensile overloading. 

The inconsequential differences between the deconvolved spectral 

shapes for the aluminum samples was surprising, especially in view of 

the gross overall appearance differences which existed between the 

fracture surfaces of the 7039 SCC specimen and the 7039 CT specimen (see 

Figure 6.27). Note that the stress corrosion cracking specimen has the 

large smooth plates indicative of an intergranular fracture, while the 
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Figure 6.28. Scanning electron micrographs at 1000x magnification 
showing broken particles in both the 7039 DCB specimen (top) and 
the 7039 CT specimen (bottom). 
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tensile overload specimen shows the dimpled appearance characteristic of 

ductile fracture. It seemed almost inconceivable that two such 

dissimilar failures could produce the surprisingly similar spectra 

appearing in Figures 6.25 and 6.26, thus a series of scanning electron 

microscope photographs were taken of each fracture surface at 

increasingly higher magnifications. Careful examination of the aluminum 

sample micrographs made at a magnification of 1000 diameters revealed a 

common factor - fractured brittle particles (see Figure 6.28). 

Contrasting with this result, there were no brittle particles found in 

the micrographs of the 4340 steel (as expected). 

It was shown in Section 2.1 that the source of acoustic emissions 

in metals which are fracturing is the discontinuous movement of cracks. 

This discontinuous motion arises either from the temporary stopping of a 

crack by a particle which then breaks as the localized stress increases, 

or by the slowing of a crack front due to a reduction in stress caused 

by the misalignment between the grain boundary the crack is following 

and the principle tensile axis. In the case of the 4340 steel specimen 

it is clear from the lack of brittle particles that the sole source of 

acoustic emission was the starting and stopping of the crack front as it 

followed grain boundaries. In the case of the aluminum alloys, the work 

of McBride, MacLachlan and Paradis described in Section 2.1 demonstrated 

that brittle particle fracture was the sole source of acoustic emission 

in 7075 aluminum. They were able to show that ductile fracture of 7075 

aluminum which was not accompanied by particle fracture was completely 

silent. Combining their results with the data from the present 

experiments in 7039 aluminum where the ductile fracture of the CT 
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specimen and the brittle fracture of the DCB specimen produced 

identically shaped spectra, the inescapable conclusion is that particle 

fracture was solely responsible for the acoustic emission generated by 

the fracture of 7039 aluminum. 

From the data analysis presented in this section it can be 

concluded that it is possible to distinguish between individual failure 

processes occurring during the fracture of metals. As Figures 6.24, 

6.25 and 6.26 show, the magnitude spectrum of fracture caused by the 

discontinuous movement of a crack front during the stress corrosion 

cracking of 4340 steel is radically different from the magnitude spectra 

of fracture in 7039 aluminum which was caused by brittle particle 

fracture during both tensile overloading and stress corrosion cracking. 

A most significant result of these experiments is that they were 

achieved in engineering specimens in the presence of multiple 

reflections, both of which make the application of the generalized ray 

theory discussed in Section 2.2 impossible. This is not to say that the 

generalized ray theory is unnecessary for acoustic emission work, since 

it does offer the only means of quantitatively predicting the waveform 

at a specific site. However, the restrictions of having to work in 

simple geometries such as plates and also having to limit the receiver 

site to being less than six plate thicknesses away from the acoustic 

emission source limit the generalized ray theory to laboratory 

conditions. The experiments presented in this thesis show that it is 

possible to overcome these limitations and still differentiate between 

various acoustic emission sources by using appropriate signal 
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processing. 

The shortcoming of the processing techniques developed in this 

thesis is that they could not identify the acoustic emission source 

associated with each individual signal because of the large variability 

between signals obtained during a single test. However, because the 

feasibility of discriminating between signals emitted by different 

source mechanisms has now been firmly established, the task of 

developing techniques for associating a source with an individual signal 

can be undertaken with the confidence that there are indentifying 

characteristics to be found. This is of extreme importance because the 

magnitude of the data processing required means that such an undertaking 

will be very expensive. 

A suggestion for researchers interested in developing such a 

technology is to utilize the approach being followed by experimenters in 

the area of speech analysis. At the present large computer software 

packages are becoming available which will perform interactive data 

processing using a variety of pattern recognition techniques. With a 

simple frequency translation such packages could probably be utilized 

very effectively in acoustic emission source identification research. 
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CHAPTER 7 

SUMMATION 

This chapter summarizes the thesis, which consists of a literature 

review of the field of acoustic emission, necessary theoretical 

development relevant to acoustic emission monitoring, acoustic emission 

calibration techniques, digital signal processing, instrumentation 

construction, software development and experimental verification of 

acoustic emission signal identification. 

7.1 General 

The intent of this thesis was to extend the technology of acoustic 

emission by developing methods for discriminating between acoustic 

emission signals to make possible the identification of the material 

processes which caused the received acoustic emissions. This technology 

extension is important because it would make economically feasible 

continuous defect monitoring in important structures to prevent their 

catastrophic failure. Acoustic emission signal discrimination would 

accomplish such a goal by permitting commonly occurring inconsequential 

acoustic emission sources to be differentiated from rarely occurring 

dangerous acoustic emission sources, thus eliminating costly service 
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interruptions and unnecessary additional inspections using other 

nondestructive testing techniques. 

A historical review of the phenomenon of acoustic emission was 

given revealing that although many practical nondestructive testing 

needs in materials research and structural integrity verification were 

already being satisfied through the use of acoustic emission monitoring, 

there were still significant limitations to the applicability of the 

technique because of the lack of a capability for acoustic emission 

signal source identification. 

In the theoretical development, specific sources of acoustic 

emission in metals were discussed. It was shown that cooperative 

discontinuous dislocation motion could create detectable acoustic 

emission, but the fracture of brittle particles and the discontinuous 

movement of cracks were also found to be important sources of acoustic 

emission. A seismological concept known as the theory of the 

generalized ray was presented which enabled stress waveform predictions 

to be made for various source force functions. Experimental evidence 

was given to show that the theory could successfully predict acoustic 

emission waveforms occurring in plates when appropriate source force 

models were used, as long as the waveform was detected not more than six 

plate thicknesses away from epicenter. It was therefore concluded that 

although the theory is important for acoustic emission research, it is 

too restricted to be generally applied on real structures. 

The minimum surface displacement detectable using capacitive and 

piezoelectric transducers was calculated using theoretical analyses of 
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the operating principles of both types of transducers. This calculation 

showed that piezoelectric transducers provide maximum displacement 

sensitivity, while capacitive transducers offer a displacement response 

which is independent of frequency. The effects which material 

properties and specimen geometry have on the propagation of acoustic 

emission were discussed. The concepts of geometrical spreading, 

absorption, scattering, mode conversion and dispersion were covered and 

experimental evidence was presented to show that predictions of these 

effects could be made so as to facilitate the analysis of acoustic 

emission signals. 

Experiments were reviewed which showed that the helium gas jet 

calibration technique used in the thesis studies provides a geometry 

independent calibration by characterizing the entire acoustic system of 

specimen, couplant and transducer. The basic assumptions which are made 

to obtain a calibration of a transducer were outlined and the procedures 

used for reciprocity calibration and comparison calibration were 

explained. For the calibration of acoustic emission transducers it was 

shown that comparison calibration was preferable to reciprocity 

calibration because the theory of the generalized ray provides a 

convenient means of checking the validity of comparison calibration 

while the reciprocity calibration involves the use of a non-verifiable 

assumption. Amplitude and phase spectral calibration curves obtained 

during a comparison calibration on a transducer similar to that used in 

the experiments in this thesis were shown. 

The fast Fourier transform computer program used in this thesis was 
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explained and the theory of Fourier spectral analysis was discussed. A 

method for approximating a Fourier transform that is usable with 

non-analytic time-limited signals was described. Special considerations 

required when signals are digitally processed were explained. The 

errors and noise introduced by analog to digital conversion were 

described and the concepts of aliasing and leakage were introduced. 

Practical methods for preventing or at least minimizing both aliasing 

and leakage were given. 

The acoustic emission data acquisition system assembled for this 

study was described. Special features include such items as extremely 

wide band preamplifiers, band limited arrival sequence and timing 

circuits, wideband first arrival signal digital waveform recording on 

magnetic tape, comprehensive error detection logic, an optimal valid 

data reset detector and modem transmission of individual acoustic 

emission event location, energy and load parameters to a remote 

computer. The constructed instrument is unique because it makes 

possible for the first time the acquisition of information necessary for 

signal source identification while simultaneously permitting real-time 

source location on dispersive structures and because it allowed such 

activities to occur in environments hostile to computer operation. 

The computer programs written to process the digital acoustic 

emission waveforms were described. The routines produce time domain 

digital plots of the recorded acoustic emissions, plot calibrated power 

spectra for validated signals, calculate a representative power spectral 

shape for an experiment complete with confidence limits and enable the 
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experimenter to create a processed data base for archival purposes. A 

unique feature of the programs is that they possess the capability to 

use helium gas jet system calibration data to correct for the effects of 

changing specimen geometry, different couplant thickness and transducer 

aging, thus producing experiment invariant results. Other features of 

the programs are that the original experimental conditions are preserved 

in the processed data base and that the power spectra produced are 

identical to those produced using conventional less versatile analog 

instrumentation. The technology of acoustic emission was advanced by 

these programs since for the first time it was possible to analyze 

acoustic emission source waveforms with sufficient confidence to 

determine if differences were present between experiments in which 

different materials processes were operative. 

A series of experiments were conducted to determine if different 

acoustic emission sources could be identified by their emitted signals. 

The experiments involved two different materials, two different failure 

processes and three different specimen geometries. Experiment invariant 

results were obtained via the use of the helium gas jet system 

calibration data and the programs described above. Two spectral shapes 

which were dramatically different at the 95% confidence level resulted 

from this processing and it was concluded that one spectral shape was 

due to the fracture of brittle particles while the other was due to the 

discontinuous movement of a crack. The new data acquisition methods and 

signal processing techniques developed in the thesis were thus proven to 

be effective for their intended purpose of identifying the material 

processes which caused the received acoustic emission signals. 
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7.2 Observations 

A review of the literature and an analysis of the data contained 

therein yielded the following important observations: 

1. Discontinuous crack movement and the fracture of brittle particles 

are important sources of acoustic emission in metals. 

2. A general model for the prediction of stress waveforms resulting 

from the action of various internal force functions inside plates 

exists and is applicable to a distance of six plate thicknesses 

from epicenter. 

3. The effects of material and geometry on the propagation of 

acoustic emission signals are well understood. 

4. Piezoelectric transducers provide the most displacement 

sensitivity for acoustic emission work, but their frequency 

response is complicated and difficult to determine analytically. 

5. Capacitive transducers provide a flat displacement response 

necessary for calibration work, but they are two orders of 

magnitude less sensitive to displacement than piezoelectric 

transducers. 

6. The most useful form of calibration for acoustic emission 

transducers is comparison to a capacitive transducer because it 

results in an independently verifiable calibration traceable to 

physical quantities. 
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7.3 Conclusions 

The following conclusions can be drawn from the work contained in 

this thesis: 

1. The helium gas jet provides a convenient means of obtaining 

quantitative acoustic emission spectra independent of system 

variables such as specimen geometry, couplant thickness and 

transducer response changes. 

2. Digital processing of Signals provides analytical flexibility not 

possible using analog techniques. 

3. Digital techniques can be used on non-analytic time-limited 

signals to quickly and economically produce power spectra which 

are identical to those produced using less flexible analog 

instruments. 

4. Spectral shapes of acoustic emissions contain sufficient 

information to allow discrimination between different material 

failure processes, e.g., brittle particle fracture and 

discontinuous crack movement. 

5. Particle fracture was the sole source of acoustic emission 

detected from the failure of 7039 aluminum specimens tested in 

this theSiS, extending the observations of others who worked with 

7075 aluminum. 
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6. Discontinuous crack motion was the sole source of acoustic 

emission detected from the failure of 4340 steel specimens tested 

in this thesis. 

7. Acoustic emission signal source identification can be performed in 

engineering structures where multiple reflections and complex 

geometry preclude the use of analytic techniques such as the 

theory of the generalized ray. 
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APPENDIX A 

FAST FOURIER TRANSFORM THEORY 

As was described in Section 4.2, the fast Fourier transform is a 

name given to a class of algorithms which implement the discrete Fourier 

transform (see Equations 4.9 and 4.10). By taking advantage of certain 

periodicities and symmetries in these equations, they obtain an 

appreciable advantage in calculation speed over direct computation of 

the discrete Fourier transform (see Figure 4.9). To understand how the 

speed advantage of the fast Fourier transform is obtained, it is 

instructive to examine the algorithm made famous by Cooley and Tukey 

[Ref 104] using an explanation devised by Brigham [Ref 90]. First, the 

discrete Fourier transform is re-written as: 

N-l 

X(n) = 1: 
k=o 

x (k)W
kn 

o (A.1) 

For the fast Fourier transform procedure to work, N must be chosen to be 

a power of some number. If the number is 2 the resulting algorithm is 

known as a radix 2 transform, if it is 4 it becomes a radix 4 transform. 

For convenience let N = 2 l' and choose l' = 2, then (A. 1) can be writ ten 
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as: 

X(o) Wo Wo 
Wo 

Wo 
x (0) 

0 

X(l ) Wo w1 w2 w3 
x (1) = 0 

X(2) Wo w2 w4 w6 (A.2) 
x (2) 

0 

X(3) Wo w3 w6 w9 
x (3) 

0 

The first key toward gaining computation speed is to recognize that 

Wnk = Wnk mod(N~ thus (A.2) becomes: 

X(o) x (0) 
0 

X(l ) w1 w2 w3 
x (1) 

= 0 

X(2) w2 
Wo w2 

(A.3) 
x (2) 

0 

X(3) w3 w2 w1 
X (3) 

0 

The second key in increasing speed is to factor (A.3) to obtain: 

X(o) Wo 0 0 1 0 Wo 0 x (0) 
0 

X(2) 1 w2 0 0 0 0 Wo x (1) 
= 0 

w1 w2 (A.4) 
X(l ) 0 0 1 0 0 x

o
(2) 

X(3) 0 0 1 w3 0 1 0 w2 x (3) 
0 

Note that rows 1 and 2 have been interchanged in deriving (A.4), and 

notice also the large number of zeros which appear in (A.4). It is the 

introduction of these zeros and also the fact that W 0 = _W 2 and W 1 = -w 3 

which markedly increase the computation speed, since some operations can 

be completely eliminated and some multiplications can be replaced with 

additions, which can be performed much faster than multiplication. The 

fast Fourier transform is thus based on a procedure which factors a N x 

N matrix into ~ matrices (each N x N) such that each of the factored 

matrices has the special property of minimizing the number of complex 

multiplications and additions. 
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As ~ becomes large, factored matrix equations such as (A.4) become 

unwieldy, thus it is common practice to represent the computations 

required for calculating the frequency components in a signal flow 

graph. Figure A.' shows the signal flow graph for N = 4, and thus 

represents Equation (A.4). To interpret this graph it is necessary to 

recognize that each node is entered by two transmission paths (the 

arrows) from previous nodes. The data at each node is calculated by 

multiplying the data from each applicable previous node by the factor 

(if any) appearing at the head of the arrow of the respective 

transmission path and summing the two results. For example, consider 

node x,(2) in Figure A.'. This node has the value of xO(O) + W2
X O(2). 

Besides conciseness, the reason for expressing the fast Fourier 

transform calculations in a signal flow graph is that when the 

operations can be seen certain symmetries become apparent, which can 

then be exploited to develop an algorithm. One such symmetry, called a 

dual node pair, can be seen by examining x,(O) and x,(2) in Figure A.1. 

It is apparent that these two nodes use the same data inputs, xO(O) and 

xO(2), and since the inputs do not get used in any other computations it 

is possible to simultaneously compute x,(O) and x,(2) and return the 

results to the storage locations used by xO(O) and xO(2). 

The identification of dual nodes is important not only for 

optimizing storage during computation, but also because it is only 

necessary to perform one multiplication in determining the value of a 

dual node pair. This is because the weighting factors of a dual node 

pair are related, and in particular, if the weighting factor at one node 
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COMPUTATION ARRAYS 

" , 
Data Array Array 1 Array 2 

"O(k) ", (k) "2(k) 

"0(0) )(2(0) 

"0(1) )(2(11 

)(0(2) x2
'
2) 

xO'3) 
)( 1 (3) w3 

)(2(3) 

Figure A.1. Representation of Equation A.4 in a signal flow graph 
[Ref 90]. 
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is W P then the weighting factor at the dual node will be W P+N/2, and 

wP = -W P+N/2. Since the vertical spacing of a dual node pair is given 

by N/21 where I is the index of the computation array, the calculation 

of any dual node pair is given by: 

P x
1
_1 (k) + W x

1
_
1 

(k+N/21) 

(A.5) 

Equation (A.5) is the crux of the fast Fourier transform algorithm, 

since it eliminates the need to multiply in half of any computation 

array. This is illustrated in Figure A.2, which shows a signal flow 

graph for N = 16, and the areas in the computation arrays where 

multiplication can be skipped by using (A.5) 

Application of Equation (A.5) in an algorithm requires that a means 

of calculating wP be found. Examination of Figure A.2 reveals that p 

can be calculated by writing the k index in binary using ~ bits, 

shifting this number ~-l bits to the right followed by zero filling the 

~-l high order bits, and then reversing the order of the bits in the 

result. For example, consider node x3(8) in Figure A.2. ~ = 4, k = 8 

and I = 3, so k is 1000 in binary. ~-l = 1, so the shifted and filled 

number is 0100. Reversing the bit order yields 0010, or 2 in decimal 

notation, which is exactly the value shown for p in Figure A.2. 

Equation (A.5) can now be used to calculate all of the values for the 

dual nodes in Figure A.2, which means that the input time domain data 

can be transformed into frequency components in an efficient manner. It 

is necessary to realize that the frequency components will be scrambled, 

as was shown in Equation (A.4), but they can easily be unscrambled by 
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DATA CD~PUTATION ARRAYS 
A. 

ARRAY '/_, /-2 /-J /-4' 

-Olk) _,Ik) .2Ik) -Jlk) x4lk) 

XO(O!~----------------------~~--~~----------~~~~------~~--~--~~··4101 

XOI15!~----------------------~~~~--------~~~~~------~~~~--~~·SK1P 

Figure A.2. Computations which may be skipped by means of dual 
node recognition [Ref 90]. 
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simply reversing the bit order of their k indices. 

An algorithm embodying concepts such as in-place calculation, 

calculation of (A.5), skipping of redundant dual nodes and output 

unscrambling is shown in Figure A.3 in flow chart form. Box 1 describes 

the input data required, while Box 2 initializes some variables used 

during computation. Box 3 checks for completion of the / array 

calculations, and if calculations remain to be done Box 4 sets a counter 

which monitors the number of dual nodes that have been encountered. Box 

5 calculates the value of p that is needed, which Box 6 uses to perform 

the computation of Equation (A.5). The index k is incremented by Box 7, 

and the condition in Box 8 determines if a dual node skip is required. 

If a skip is not required, Box 9 increments the dual node counter. If a 

skip is required, Box 10 determines the number of nodes to skip. Box 11 

then checks to see if all of the dual nodes in an I array have been 

calculated, and branches accordingly. If a new value of I is required, 

Box 12 initializes the variables needed and the process repeats. When 

all I arrays are computed the results are unscrambled, which starts by 

bit reversing k in Box 13 using the procedure outlined in Box 18. Boxes 

14 and 15 place the unscrambled data in ascending order, and Box 16 

determines when the process is complete. 

With the flow chart of Figure A.3 developed it is simple to write a 

computer program to implement the algorithm for the fast Fourier 

transform. Such a program is shown in Figure A.4, and constitutes what 

is generally known as a radix 2 Cooley-Tukey fast Fourier transform. It 

should be noted that Figure A.4 is somewhat inefficient because the 

-214-



T3 : x(k) 

l«k) : x(iI 
xl,) : T3 

STOP 

@ 

Figure A.3. 

START 

INPUT DATA 

Data x(kl. k : 0, 1, .,N . 1 

N : i''. ..., an Integer, 
NU = ..., 

I~IT~~Z~ION CD 
1= 1 

N2 = N 12 
NUl = ..., 1 

k = 0 

NO 

M = Integer ¥alue of (i< .'2NU 1) 0 
P = IBRIMJ 

n=wP,lktN210 
xli< t N2i = xlk) Tl 

xlk) = xlk) + Tl 

J2 = MI2 
IBR = 2 0 IBR + (M-2 o J2) 

M : J2 

I = I t 1 

N2 = "J22 
NUl = NUl 1 

k = 0 

Fast Fourier transform flow chart [Ref 90]. 
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SUB ROUTINE FFT(XREAL.XIMAG N.NU) 

DIMENSION XREAl(N).XIMAG(N) 

N2=N/2 

NUl =NU-l 

K=0 

DO 100 l=1.NU 

102 DO 101 1=1.N2 

p= IBITR (K/2 .. NU1.NU) 

ARG =6.283185. P/FlOAT( N) 

C=COS(ARG) 

S=SIN(ARG) 

Kl=K"'l 

K1N2=Kl"'N2 

TREAl= XREAl( Kl N2).C ... XI MAG (Kl N2).S 

TIMAG =XIMAG(Kl N2).C- XREAl(Kl N2).S 

XREAl(Kl N2) =XREAl(Kl) -TREAl 

XIMAG(Kl N2)=XIMAG(Kl )-TIMAG 

XREAl(Kl) =XREAl(Kl) "'TREAl 

XIMAG(Kl) =XIMAG (Kl) ... TIMAG 

101 K=K+l 

K=K+N2 

IF(K.lT.N) GO TO 102 

K=0 

N~l=NU'-' 

100 N2 = N2/2 

DO 103 K=1.N 

1=IBITR(K-l.NU)+l 

IF(I.lE.K) GO TO 103 

TREAl=XREAl(K) 

TIMAG=XIMAG(K) 

XREAL(K)=XREAL(I) 

XIMAG(K) =XIMAG (I) 

XREAl(I)=TREAl 

XIMAG(I)=TIMAG 

103 CONTINUE 

RETURN 

END 

FUNCTION IBITR(J.NU) 

Jl=J 

IBITR =0 

DO 200 l=l.NU 

J2=Jl/2 

IBITR= IBITR.2'" (Jl-2.J2) 

200 Jl =J2 

RETURN 

END 

Figure A.4. Computer program in FORTRAN which results from flow 
chart of Figure A.3 [Ref gO]. 
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array XIMAG must be set to zero when time domain data is placed into 

XREAL and thus some unnecessary calculations are performed. For this 

reason and others which are given in Section 4.2, another computer 

program was used to perform the spectral analysis in this thesis. 
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APPENDIX B 

COMPUTER PROGRAM SOURCE CODE 

The source code for the computer programs written for this thesis 

(whose operations are completely described in Chapter 5) appear on the 

following pages: 

ROUTINE 

MSCD 

PLOT 

SYMB 

PLTME 

JSHFT 

AENOR 

FOUR2 

GASJT 

PLFFT 

AECNF 

DBSVR 

. . . . . . . . . . . . . . . . . . . . 
· . . . . . . . . . . . . . . . . . . . . . . . 
· . . ...... ........ . 
· . . . . . . . . . . . . . . . . . . . . . 
· . . . . . . . . . . . . . . . . . . . . . . . 
· . . . . . . . . . . . . . . . . . . . . . 
· . . . . . . . . . . . . . . . . . . . . . . . 
· . . . . . . . . . . . . . . . . . . . . . 
· . . . . . . . . . . . . . . . . . . . . . . . 
· . . . . . . . . . . . . . . . . . . . . . . . 
· . . . . . . . . . . . . . . . . . . . . . . . 
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228 

244 

261 

268 

269 

274 

282 

285 

291 

298 



* 

Source Code of Program MSCD 

NAM MSCD LOGIC FOR AE DATA ACQUISITION HARDWARE 

CONTROLS A M6800 MICROPROCESSOR TO COLLECT AND TRANSMIT VALID 
AE DATA TO A REMOTE COMPUTER. RECORDS WIDEBAND AE ON TAPE. 
PERMITS REMOTE RETRIEVAL OF RECORDED WIDEBAND AE FROM TAPE. 

SPC 1 
* WRITTEN BY JOHN CARLYLE (21 SEP 78) 

SPC 1 

0001 
0002 * 
0003 * 
0004 * 
0005 * 
0006 
0007 
0008 
0009 
0010 
0011 
0012 
0013 
0014 
0015 
0016 
0017 
0018 
0019 
0020 
0021 
0022 
0023 
0024 
0025 
0026 
0027 
0028 
0029 
0030 
0031 
0032 
0033 
0034 
0035 
0036 
0037 
0038 
0039 
0040 
0041 
0042 
0043 
0044 
0045 
0046 
0047 
0048 
0049 

* REVISION DATE: 11 MAY 1981 
SPC 1 
ORG $8000 

BEGIN SEI 
LDS 1I$7F 
SPC 1 

SET INTERRUPT MASK 
STACK PNTR TO TOP OF RAM 

* INITIALIZE PIA #1 (MSCD INPUT) 
SPC 1 
LDA A 11$16 
STA A CRA1 
STA A CRB1 
SPC 1 

GET "CAB2 IN, LO TO HI, NO IRQ" CODE 
SET DRA TO INPUT 
SET DRB TO INPUT 

* INITIALIZE PIA #2 (CONTROL PANEL AND MSCD CONTROL) 
SPC 1 
LDA A 11$2E 
STA A CRA2 
COM DRB2 
STA A CRB2 
SPC 1 

GET "CAB2 OUT, LO TO HI, NO IRQ" CODE 
SET DRA TO INPUT 
SET DATA DIRECTION REG B TO OUTPUT 
SET DRB TO OUTPUT 

* INITIALIZE PIA #3 (KENNEDY INPUT AND DATACAP CONTROL) 
SPC 1 
LDA A 11$2C 
STA A CRA3 
COM DRB3 
STA A CRB3 
SPC 1 

GET "CAB2 OUT, HI TO LO, IRQ" CODE 
SET DRA TO INPUT 
SET DATA DIRECTION REG B TO OUTPUT 
SET DRB TO OUTPUT 

* INITIALIZE PIA #4 (KENNEDY STATUS AND CONTROL) 
SPC 1 
LDA A 11$2E 
STA A CRA4 
COM DRB4 
STA A CRB4 
SPC 1 

* INITIALIZE ACIA 
SPC 1 
LDA A 11$83 
STA A CRSAC 
LDA A #$55 
STA A CRSAC 
JSR CLR 

GET "CAB2 OUT, LO TO HI, NO IRQ" CODE 
SET DRA TO INPUT 
SET DATA DIRECTION REG B TO OUTPUT 
SET DRB TO OUTPUT 

GET "MASTER RESET, ENABLE RCVE IRQ" CODE 
SEND TO ACIA 
GET "RTS, 8-WDS, NO PAR, 1 STOP, 116" CODE 
SEND TO ACIA 
INITIALIZE COMMANDS, SYNC BUFFER AND FLAGS 
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Source Code of Program MSCD 

0050 JMP CMD GO CHECK FOR COMMANDS 
0051 SPC 1 
0052 • CONSTANTS FOR PIA'S AND ACIA 
0053 SPC 1 
0054 DRA1 EQU 4004H 
0055 CRA1 EQU 4005H 
0056 DRB1 EQU 4006H 
0057 CRB1 EQU 4007H 
0058 DRA2 EQU 4008H 
0059 CRA2 EQU 4009H 
0060 DRB2 EQU 400AH 
0061 CRB2 EQU 400BH 
0062 DRA3 EQU 4010H 
0063 CRA3 EQU 4011H 
0064 DRB3 EQU 4012H 
0065 CRB3 EQU 4013H 
0066 DRA4 EQU 4020H 
0067 CRA4 EQU 4021H 
0068 DRB4 EQU 4022H 
0069 CRB4 EQU 4023H 
0070 CRSAC EQU 4040H 
0071 XRAC EQU 4041H 
0072 OUTAC EQU 003DH 
0073 CMDBF EQU 003EH 
0074 DELAY EQU 003FH 
0075 SYNC EQU 0043H 
0076 TAG EQU 005AH 
0077 SPC 1 
0078 • SYSTEM RESET SUBROUTINE 
0079 SPC 1 
0080 ORG $805B 
0081 SYRST JSR REWR REWIND AND READ SELECT TRANSPORT 
0082 CLR LDX #$FFFF GET 1'S FOR MSCD SYNC WORD 
0083 STX SYNC STORE FOR LATER USE 
0084 CLR DRB4 CLEAR KENNEDY COMMANDS 
0085 CLRP CLR DRB3 CLEAR "NOT XFR AND WRITE DATA" COMMANDS 
0086 CLR DRB2 CLEAR "BIT 0, BIT 1 AND NOT MRST" COMMANDS 
0087 LDA A DRA3 CLEAR "REOR" FLAG 
0088 LDA A DRA2 CLEAR "XFRC" FLAG 
0089 LDA A DRA1 CLEAR MSCD FLAGS 
0090 RTS RETURN 
0091 SPC 1 
0092 • REWIND AND READ SELECT SUBROUTINE 
0093 SPC 1 
0094 REWR LDA A #$04 GET "REWIND" CODE 
0095 STA A DRB4 SEND TO KENNEDY 
0096 CLR DRB4 CLEAR "REWIND" COMMAND 
0097 LDP LDA A DRA4 CHECK KENNEDY STATUS 
0098 AND A #$01 LOAD POINT REACHED? 
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Source Code of Program MSCD 

0099 BEQ LDP NO, WAIT IN LOOP 
0100 LDA A II$OF YES, GET "REWIND COMPLETE" CODE 
0101 STA A OUTAC STORE FOR MODEM OUTPUT 
0102 JSR ACRDY GO SEND IT 
0103 RTS RETURN 
0104 SPC 1 
0105 • ACIA OUTPUT SUBROUTINE 
0106 SPC 1 
0107 ACRDY LDA A CRSAC GET ACIA STATUS 
0108 AND A 11$02 TRANSMISSION BUFFER EMPTY? 
0109 BEQ ACRDY NO, WAIT IN LOOP 
0110 LDA A OUTAC GET CHARACTER 
0111 STA A XRAC OUTPUT DATA TO MODEM 
0112 RTS RETURN 
0113 SPC 1 
0114 • COMMAND DETECTION SECTION 
0115 SPC 1 
0116 CMD CLR $0061 CLEAR "PREMATURE RETURN" TRAP 
0117 CLR $0060 CLEAR "SKIP" TRAP 
0118 LDA A DRA2 CHECK CONTROL PANEL INPUTS 
0119 AND A 11$3F ANY INPUTS HIGH? 
0120 BNE MDCDE YES, GO DECODE COMMAND 
0121 LDA A CRSAC NO, CHECK ACIA STATUS 
0122 AND A 11$01 COMMAND RECEIVED? 
0123 BNE ADCDE YES, GO DECODE IT 
0124 BRA CMD NO, WAIT IN LOOP 
0125 SPC 1 
0126 • MANUAL COMMAND DECODING SECTION 
0127 SPC 1 
0128 MDCDE STA A CMDBF SAVE COMMAND 
0129 BUTTN LDA A DRA2 GET CONTROL PANEL INPUTS 
0130 AND A 11$3F BUTTON RELEASED? 
0131 BNE BUTTN NO, WAIT IN LOOP 
0132 LDA A 11$80 YES, GET DELAY TIME VALUE 
0133 JSR DLY GO DELAY 
0134 LDA A CMDBF GET COMMAND AGAIN 
0135 CMP A 11$01 REWIND COMMAND? 
0136 BEQ JRWD YES, DO IT 
0137 CMP A 11$02 NO, SKIP COMMAND? 
0138 BEQ JSKP YES, DO IT 
0139 CMP A #$04 NO, READ COMMAND? 
0140 BEQ JREAD YES, DO IT 
0141 CMP A #$08 NO, RE-READ COMMAND? 
0142 BEQ JRRED YES, DO IT 
0143 CMP A 11$10 NO, SET FOR RECORD? 
0144 BEQ JREC YES, DO IT 
0145 CMP A 11$20 NO, WRITE EOF? 
0146 BEQ JEOF YES, DO IT 
0147 JMP CMD FALSE INPUT, LOOP 
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0148 SPC 1 
0149 • AUTOMATIC COMMAND DECODING SECTION 
0150 SPC 1 
0151 ADCDE LDA A XRAC GET COMMAND 
0152 CMP A #$96 REWIND COMMAND? 
0153 BEQ JRWD YES, DO IT 
0154 CMP A #$A6 NO, SKIP COMMAND? 
0155 BEQ JSKP YES, DO IT 
0156 CMP A #$99 NO, READ COMMAND? 
0157 BEQ JREAD YES, DO IT 
0158 CMP A #$5A NO, RE-READ COMMAND? 
0159 BEQ JRRED YES, DO IT 
0160 CMP A #$A9 NO, SET FOR RECORD? 
0161 BEQ JREC YES, DO IT 
0162 CMP A #$6A NO, WRITE EOF? 
0163 BEQ JEOF YES, DO IT 
0164 JMP CMD FALSE INPUT, LOOP 
0165 SPC 1 
0166 • COMMAND JUMPS 
0167 SPC 1 
0168 JRWD JSR SYRST REWIND AND SELECT READ MODE 
0169 JMP CMD RETURN TO COMMAND DETECTION 
0170 JSKP JMP SKIP GO SKIP A RECORD 
0171 JREAD JMP READ GO READ A RECORD 
0172 JRRED JMP RREAD GO RE-READ A RECORD 
0173 JREC JMP WRITE REWIND AND SELECT WRITE MODE 
0174 JEOF JMP EOF GO WRITE END-OF-FILE 
0175 SPC 1 
0176 * DELAY SUBROUTINE 
0177 SPC 1 
0178 DLY STA A DELAY SAVE TIME VALUE 
0179 LOOP2 LDA A #$FF INITIALIZE COUNT 
0180 LOOP1 DEC A DECREMENT COUNT 
0181 BNE LOOP1 COUNT DONE? 
0182 DEC DELAY YES, DECREMENT VALUE 
0183 BNE LOOP2 TIME VALUE GONE? 
0184 RTS YES, RETURN FROM DELAY 
0185 SPC 1 
0186 • RECORD MSCD AND WAVEFORM DATA SECTION 
0187 SPC 1 
0188 WRITE JSR CLRP CLEAR PIA COMMANDS AND FLAGS 
0189 JSR REWWS REWIND TAPE AND SELECT WRITE 
0190 LDA A #$04 GET "ENABLE MSCD" CODE 
0191 STA A DRB2 ENABLE MSCD 
0192 LDA A #$02 GET "ENABLE XFRD" CODE 
0193 STA A DRB3 ENABLE XFRD FLIP-FLOP 
0194 TAR1 LDA A DRA2 FIRST ARRIVAL RECORDED ON BIO? 
0195 BMI FLG2 YES, GO HANDLE WITH TAG 
0196 LDA A CRA1 NO, COMPLETE DATA SET OBTAINED? 
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0197 BMI CLFG1 YES, GO HANDLE WITHOUT TAG 
0198 LDA A DRA2 NO, GET CONTROL PANEL INPUTS 
0199 AND A #$3F COMMAND ISSUED? 
0200 BEQ ACCMD NO 
0201 JMP MDCDE YES, GO DECODE IT 
0202 ACCMD LDA A CRSAC GET ACIA STATUS 
0203 AND A #$01 COMMAND RECEIVED? 
0204 BEQ TAR1 NO, CHECK FOR FIRST ARRIVAL 
0205 JMP ADCDE YES, GO DECODE IT 
0206 CLFG1 LDA A DRA1 NO TAG, CLEAR "COMPLETE DATA SET" FLAG 
0207 JSR INDTA GO INPUT DATA 
0208 CLR $5A CLEAR TAG 
0209 JSR OTDTA OUTPUT DATA 
0210 BRA TAR1 CHECK FOR FIRST ARRIVAL 
0211 FLG2 LDA A CRA1 TAG REQUIRED, COMPLETE DATA SET OBTAINED? 
0212 BMI CLFG2 YES, GO HANDLE NORMALLY 
0213 ASL A NO, TIME LIMIT EXCEEDED? 
0214 BMI CLOVR YES, GO RESET FOR NEXT EVENT 
0215 BRA FLG2 NEITHER, WAIT IN LOOP 
0216 CLOVR LDA A DRA1 CLEAR "OVERRANGE" FLAG 
0217 CLR DRB3 CLEAR "NOT XFR AND WRITE DATA" COMMANDS 
0218 LDA A #$02 GET "ENABLE XFRD" CODE 
0219 STA A DRB3 ENABLE XFRD FLIP-FLOP 
0220 JMP TAR1 CHECK FOR FIRST ARRIVAL 
0221 CLFG2 LDA A DRA1 CLEAR "COMPLETE DATA SET" FLAG 
0222 LDA A #$03 GET "WDS AND NOT XFR" CODE 
0223 STA A DRB3 SEND TO DATACAP 
0224 LDA A #$01 GET "WDS ENABLE" CODE 
0225 STA A DRB3 LOWER "NOT XFR" TO WRITE ON TAPE 
0226 LDA A #$03 GET "WDS AND NOT XFR" CODE 
0227 STA A DRB3 SEND TO DATACAP 
0228 JSR INDTA GO INPUT DATA 
0229 LDA A #$FF GET "BIOMATION RECORD" TAG 
0230 STA A TAG STORE IN PROPER PLACE 
0231 JSR OTDTA OUTPUT DATA WITH TAG 
0232 XFRC LDA A CRA2 IS DATA TRANSFER COMPLETE? 
0233 BPL XFRC NO, LOOP 
0234 LDA A #$02 YES, GET "ENABLE XFRD" CODE 
0235 STA A DRB3 ENABLE XFRD FLIP-FLOP 
0236 LDA A DRA2 CLEAR "XFRC" FLAG 
0237 JMP TAR1 CHECK FOR FIRST ARRIVAL 
0238 SPC 1 
0239 * INPUT MSCD DATA SUBROUTINE 
0240 SPC 1 
0241 INDTA LDA B #$OB INITIALIZE # OF WORDS TO INPUT 
0242 LDX #$44 INITIALIZE POINTER TO MSCD BUFFER-1 
0243 INCNT INX INCREMENT POINTER 
0244 LDA A DRA1 GET 1/2 MSCD WORD AND CLEAR FLAG 
0245 STA A $OO,X STORE IN MSCD BUFFER 
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0246 
0247 
0248 
0249 
0250 
0251 
0252 
0253 
0254 
0255 FLG 
0256 
0257 
0258 CLFLG 
0259 
0260 
0261 
0262 
0263 
0264 
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INX 
LDA A DRB1 
STA A $OO,X 
DEC B 
BEQ CLFLG 
LDA A #$05 
STA A DRB2 
LDA A 11$04 
STA A DRB2 
LDA A CRA1 
BPL FLG 
BRA INCNT 
LDA A DRA1 
LDA A 11$06 
STA A DRB2 
LDA A 11$04 
STA A DRB2 
RTS 
SPC 1 

INCREMENT POINTER 
GET 2/2 MSCD WORD 
STORE IN MSCD BUFFER 
ALL MSCD DATA INPUT? 
YES, JUMP 
NO, GET "BIT 0 AND MSCD ENABLE" 
SEND TO MSCD 
GET "ENABLE MSCD" CODE 
ENABLE MSCD 
RESPONSE FROM MSCD? 
NO, WAIT 
YES, GO HANDLE NEXT MSCD WORD 
CLEAR "COMPLETE DATA SET" FLAG 
GET "BIT 1 AND MSCD ENABLE" CODE 
SEND TO MSCD 
GET "MSCD ENABLE" CODE 
ENABLE MSCD 
RETURN 

0265 • 
0266 

OUTPUT MSCD DATA SUBROUTINE 
SPC 1 

OTDTA LDA B #$18 INITIALIZE # OF WORDS TO OUTPUT 

CODE 

0267 
0268 
0269 TDRE 
0270 

LDX 11$43 
LDA A CRSAC 
AND A 11$02 

INITIALIZE POINTER TO "SYNC" WORD 
GET ACIA STATUS 

0271 
0272 
0273 
0274 
0275 
0276 
0277 
0278 SRTN 

BEQ TDRE 
LDA A $OO,X 
STA A XRAC 
DEC B 
BEQ SRTN 
INX 
BRA TDRE 
RTS 
SPC 1 

TRANSMISSION BUFFER EMPTY? 
NO, WAIT IN LOOP 
YES, GET MSCD DATA WORD 
OUTPUT DATA TO MODEM 
ALL MSCD DATA SENT? 
YES, DONE 
NO, INCREMENT POINTER 
GO SEND NEXT WORD 
RETURN 

0279 
0280 
0281 
0282 
0283 
0284 

• REWIND AND WRITE SELECT SUBROUTINE 
SPC 1 

0285 

REWWS LDA A #$05 
STA A DRB4 
LDA A 11$01 
STA A DRB4 

0286 BSY1 
0287 

LDA A DRA4 
AND A 11$04 
BEQ BSY1 
LDA A DRA4 
AND A 11$04 

0288 
0289 BSY2 
0290 
0291 
0292 
0293 
'0294 

BNE BSY2 
LDA A II$OF 
STA A OUTAC 
JSR ACRDY 

GET "REWIND AND WRITE SELECT" 
SEND TO KENNEDY 
GET "WRITE SELECT" CODE 
SEND TO KENNEDY 
GET KENNEDY STATUS 
HAS KENNEDY BECOME BUSY? 
NO, LOOP 
YES, GET KENNEDY STATUS 
IS KENNEDY STILL BUSY? 
YES, WAIT IN LOOP 
NO, GET "REWIND COMPLETE" CODE 
STORE FOR MODEM OUTPUT 
GO SEND IT 
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0295 RTS RETURN 
0296 SPC 1 
0297 • WRITE END-OF-FILE SECTION 
0298 SPC 1 
0299 EOF LDA A DRB4 CHECK KENNEDY STATUS 
0300 AND A #$01 IS WRITE MODE SELECTED? 
0301 BNE BSY3 YES, CONTINUE 
0302 JMP CMD NO, CHECK FOR NEXT COMMAND 
0303 BSY3 LDA A DRA4 CHECK KENNEDY STATUS 
0304 AND A #$04 IS KENNEDY BUSY? 
0305 BNE BSY3 YES, WAIT IN LOOP 
0306 LDA A #$03 NO, GET "EOFC AND WRITE SELECT" CODE 
0307 STA A DRB4 SEND TO KENNEDY 
0308 LDA A #$01 GET "WRITE SELECT" CODE 
0309 STA A DRB4 SEND TO KENNEDY 
0310 BSY4 LDA A DRA4 CHECK KENNEDY STATUS 
0311 AND A #$04 IS KENNEDY BUSY? 
0312 BNE BSY4 YES, WAIT IN LOOP 
0313 LDA A #$OF NO, GET "EOF WRITTEN" CODE 
0314 STA A OUTAC STORE FOR MODEM OUTPUT 
0315 JSR ACRDY GO SEND IT 
0316 JMP CMD GO CHECK FOR COMMANDS AGAIN 
0317 SPC 1 
0318 • READ RECORD SECTION 
0319 SPC 1 
0320 READ JSR INTRD GO INITIALIZE READ MODE 
0321 TST $0061 IS "PREMATURE RETURN" TRAP SET? 
0322 BNE NW1 YES, KENNEDY IN WRITE MODE, RETURN 
0323 CLR DRB4 NO, RELEASE "HOLD" COMMAND 
0324 JSR ROR GO READ ONE RECORD 
0325 TST $0061 IS "PREMATURE RETURN" TRAP SET? 
0326 BNE NW1 YES, EOF ENCOUNTERED, RETURN 
0327 JSR OTDT1 NO, GO OUTPUT ONE RECORD 
0328 NW1 JMP CMD GO CHECK FOR COMMANDS 
0329 SPC 1 
0330 • RE-READ ONE RECORD SECTION 
0331 SPC 1 
0332 RREAD JSR INTRD GO INITIALIZE READ MODE 
0333 TST $0061 IS "PREMATURE RETURN" TRAP SET? 
0334 BNE NW2 YES, KENNEDY IN WRITE MODE, RETURN 
0335 LDA A #$08 NO, GET "HOLD" CODE 
0336 STA A DRB4 SEND TO KENNEDY 
0337 JSR ROR GO READ ONE RECORD 
0338 TST $0061 IS "PREMATURE RETURN" TRAP SET? 
0339 BNE NW2 YES, EOF ENCOUNTERED, RETURN 
0340 JSR OTDT1 NO, GO OUTPUT ONE RECORD 
0341 NW2 JMP CMD GO CHECK FOR COMMANDS 
0342 SPC 1 
0343 • SKIP ONE RECORD SECTION 
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0344 SPC 1 
0345 SKIP INC $0060 SET "SKIP" TRAP 
0346 JSR INTRD GO INITIALIZE READ MODE 
0347 TST $0061 IS "PREMATURE RETURN" TRAP SET? 
0348 BNE NW3 YES, KENNEDY IN WRITE MODE, RETURN 
0349 CLR DRB4 NO, RELEASE "HOLD" COMMAND 
0350 JSR ROR GO READ ONE RECORD 
0351 TST $0061 IS "PREMATURE RETURN" TRAP SET? 
0352 BNE NW3 YES, EOF ENCOUNTERED, RETURN 
0353 LDA A DRA3 NO, CLEAR "END OF RECORD" FLAG 
0354 ROOC LDA A 11$28 GET "ROOC AND HOLD" CODE 
0355 LDA B 11$08 GET "HOLD" CODE 
0356 STA A DRB4 SEND TO KENNEDY 
0357 STA B DRB4 SEND TO KENNEDY 
0358 NOP DELAY FOR "REOR" INTERRUPT 
0359 LDA A CRA3 END OF RECORD REACHED? 
0360 BPL ROOC NO, LOOP 
0361 LDA A DRA3 YES, CLEAR "END OF RECORD" FLAG 
0362 JSR ACRDY OUTPUT FINISHED CODE 
0363 NW3 JMP CMD GO CHECK FOR COMMANDS 
0364 SPC 1 
0365 * INITIALIZE READ MODE SUBROUTINE 
0366 SPC 1 
0367 INTRD LDA A DRB4 CHECK KENNEDY STATUS 
0368 AND A 11$01 IS WRITE MODE SELECTED? 
0369 BEQ RDA NO, CONTINUE 
0370 INC $0061 YES, SET "PREHATURE RETURN" TRAP 
0371 BRA RT1 RETURN 
0372 RDA LDA A DRA4 CHECK FOR KENNEDY STATUS 
0373 AND A 11$08 IS READ DATA AVAILABLE? 
0374 BEQ RDA NO, WAIT IN LOOP 
0375 RT1 RTS RETURN 
0376 SPC 1 
0377 * READ ONE RECORD SUBROUTINE 
0378 SPC 1 
0379 ROR NOP REQUIRED DELAY ••• 
0380 NOP ••• FOR TRANSPORT TO 
0381 NOP ••• START TRANSFERRING 
0382 NOP ••• DATA FROM TAPE 
0383 RBSY LDA A DRA4 CHECK KENNEDY STATUS 
0384 AND A 11$04 IS MEMORY BEING FILLED? 
0385 BEQ RBSY YES, WAIT IN LOOP 
0386 LDA A 11$08 NO, GET "HOLD" CODE 
0387 STA A DRB4 SEND TO KENNEDY 
0388 LDA A DRA4 CHECK KENNEDY STATUS 
0389 AND A 11$10 WAS EOF READ? 
0390 BEQ RBIE NO, GO CHECK FURTHER 
0391 LDA A II$OF YES, GET "EOF READ" CODE 
0392 STA A OUTAC STORE FOR MODEM OUTPUT 
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0393 JSR ACRDY GO SEND IT 
0394 INC $0061 SET "PREMATURE RETURN" TRAP 
0395 BRA RT2 RETURN 
0396 RBIE LDA A DRA4 CHECK KENNEDY STATUS 
0397 AND A 11$20 WAS READ BLOCK IN ERROR? 
0398 BEQ NOER NO, DATA IS OK 
0399 LDA A I!$FF YES, GET "READ ERROR" CODE 
0400 STA A OUTAC STORE FOR MODEM OUTPUT 
0401 TST $0060 IS "SKIP TRAP" SET? 
0402 BNE RT2 YES, RETURN 
0403 JSR ACRDY NO, GO SEND IT 
0404 RT2 RTS RETURN 
0405 NOER LDA A I!$OO GET "DATA OK" CODE 
0406 STA A OUTAC STORE FOR MODEM OUTPUT 
0407 TST $0060 IS "SKIP TRAP" SET? 
0408 BNE RT9 YES, RETURN 
0409 JSR ACRDY NO, GO SEND IT 
0410 RT9 RTS RETURN 
0411 SPC 1 
0412 • OUTPUT ONE RECORD SUBROUTINE 
0413 SPC 1 
0414 OTDT1 CLR $0060 CLEAR FOR CHECKSUM 
0415 IINC LDA A DRA3 GET KENNEDY DATA 
0416 STA A OUTAC STORE FOR MODEM OUTPUT 
0417 LDA B $60 GET LAST CHECKSUM 
0418 ABA ADD TO PRESENT CHECKSUM 
0419 STA A $60 STORE CHECKSUM 
0420 JSR ACRDY SEND DATA 
0421 LDA A 1!$28 GET "ROOC AND HOLD" COMMAND 
0422 LDA B #$08 GET "HOLD" CODE 
0423 STA A DRB4 SEND TO KENNEDY 
0424 STA B DRB4 SEND TO KENNEDY 
0425 NOP DELAY FOR "REOR" INTERRUPT 
0426 LDA A CRA3 END OF RECORD REACHED? 
0427 BPL IINC NO, OUTPUT MORE DATA 
0428 LDA A DRA3 YES, CLEAR "END OF RECORD" FLAG 
0429 LDA A $60 GET CHECKSUM 
0430 STA A OUTAC STORE FOR MODEM OUTPUT 
0431 JSR ACRDY SEND CHECKSUM 
0432 CLR $0060 CLEAR CHECKSUM LOCATION 
0433 RTS RETURN 
0434 • VECTORED INTERRUPTS 
0435 ORG $83F8 
0436 FDB $8037 IRQ VECTOR 
0437 ORG $83FC 
0438 FDB $8037 NMI VECTOR 
0439 FDB $8000 RES VECTOR 
0440 SPC 1 
0441 END 
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0001 
0002 

ASMB,R,F 

0003 • 
0004 * 
0005 
0006 • 
0007 * 
0008 
0009 
0010 • 
0011 * 
0012 
0013 * 

HED ** RT/DOS PLOT PACKAGE FOR TEK 4010 .* 

NAM PLOT,7 

ENT WHERE,FACT,PLOT,PLTLU 
ENT TPLOT,CURSR,ERASE,HCOPY 

EXT .ENTR,EXEC,IFIX,FLOAT 

0014 • THIS IS THE CENTRAL PROGRAM IN THE HP REAL-TIME/DISC 
0015 • OPERATING SYSTEM PLOTTING PACKAGE. IT PLOTS ON A 
0016 * TEKTRONIX 4010 CATHODE RAY STORAGE TUBE. 
0017 * 
0018 * 
0019 * WRITTEN BY JOHN CARLYLE 
0020 • 
0021 • 
0022 **.*.* •• *.*.* ••• *.***.**. 
0023 • 
0024 • 
0025 * 
0026 • 
0027 * 
0028 • 
0029 • 
0030 • 
0031 • 
0032 * 
0033 * 
0034 * 
0035 • 
0036 • 
0037 * 
0038 * 
0039 * 
0040 * 
0041 * 
0042 • 
0043 

THERE ARE 8 SECTIONS TO THE PLOT PROGRAM 

1-WHERE; 
2-FACT; 
3-PLOT; 

4-PLTLU; 

5-TPLOT; 
6-CURSR; 
7-ERASE; 
8-HCOPY; 

SKP 

ESTABLISHES WHERE PEN IS CURRENTLY. 
ESTABLISHES SCALING FACTOR OF PLOT 
CONVERTS THE X,Y AND PEN DATA TO PLOT 
COMMANDS. 
ALLOWS THE USER TO DECLARE THE 
LOGICAL UNIT NUY£ER OF THE 
PLOTTER UNIT. THIS ALLOWS THE 
USE OF MORE THAN ONE PLOTTER. 
TEKTRONIX 4010 CRT PLOTTING ROUTINE 
TEKTRONIX 4010 CRT CURSOR ACTIVATION 
TEKTRONIX 4010 CRT SCREEN ERASE 
TEKTRONIX 4010 CRT HARDCOPY CREATION 

0044 * •• * ••••• **.*.*.*.* ••••••• 
0045 * 
0046 • 
0047 *.*.* •• WHERE ** •• 
0048 • 
0049 • THE -WHERE- CALL ALLOWS THE USER TO DETERMINE THE 
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0050 • CURRENT PLOTTER PEN POSITION. THE NUMBERS PROVIDED 
0051 • TO THE USER WILL BE IN FLOATING POINT. 
0052 • 
0053 •• - FORTRAN LINKAGE -
0054 • 
0055 • 
0056 • 
0057 • 
0058 • 
0059 • 
0060 • 
0061 •• 
0062 • 

CALL WHERECX,Y) 

X SPECIFIES THE 2 WORD BUFFER FOR X. 
Y SPECIFIES THE 2 WORD BUFFER FOR Y. 

0063 •• - CALLING SEQUENCE -
0064 • 
0065 • 
0066 • 
0067 • 
0068 • 
0069 • 
0070 • 

JSB WHERE WHERE ROUTINE ORIGIN 
RETURN DEF .+3 

DEF XC 
DEF YC 

0071 •••••••••••••• 
0072 • 
0073 • 
0074 XC 
0075 YC 
0076 • 
0077 • 

OCT 0 
OCT 0 

0078 WHERE NOP 
0079 JSB .ENTR 
0080 DEF WHERE-2 
0081 LDA XPEN 
0082 CMA,INA 
0083 ADA IDX 
0084 JSB FLOAT 
0085 FDV CFAC 
0086 DST XC,I 
0087 • 
0088 
0089 
0090 
0091 
0092 
0093 
0094 
0095 • 
0096 • 
0097 • 
0098 • 

LDA YPEN 
CMA,INA 
ADA IDY 
JSB FLOAT 
FDV DFAC 
DST YC,I 
JMP WHERE,I 

LOCATION OF USER X 2 WD BUFFER 
LOCATION OF USER Y 2 WD BUFFER 

ADDRESS OF 2 WD BUFFER FOR X 
ADDRESS OF 2 WD BUFFER FOR Y 

GET CURRENT X ORIGIN 
NEGATE IT 
CALCULATE CURRENT X POSITION 
CONVERT FROM FIXED TO FLOATING 

STORE IN USERS BUFFER 

GET CURRENT Y ORIGIN 
NEGATE IT 
CALCULATE CURRENT Y POSITION 
CONVERT FROM FIXED TO FLOATING 

STORE IN USERS BUFFER 
EXIT 
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0100 • 

SKP 
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0101 •••••••••••••••••• 
0102 • 
0103 • 
0104 ••••• FACT •••• 
0105 • 
0106 • 
0107 • THE -FACT- CALL ALLOWS THE USER TO VARY THE SCALING 
0108 • FACTOR USED FOR EACH PLOT. THE SCALING FACTOR WILL 
0109 • BE INITIALIZED AT "1.0". THE FACTOR IS 
0110 • MULTIPLIED BY 100.0 FOR USE WITH THE TEK 4010, 
0111 • WHERE THE MAX LIMITS ARE (1023,1023). 
0112 • 
0113 •• - FORTRAN LINKAGE -
0114 • 
0115 • 
0116 • 
0117 • 
0118 • 
0119 • 
0120 •• 
0121 • 

CALL FACT(AX,AY) 

AX = X PLOT FACTOR 
AY = Y PLOT FACTOR 

0122 •• - CALLING SEQUENCE -
0123 • 
0124 • 
0125 • 
0126 • 
0127 • 
0128 • 
0129 • 

JSB FACT 
DEF ·+3 
DEF FCT 

FACTOR ROUTINE ORIGIN 

LOC OF X PLOT FACTOR 
DEF FCT+1 " " Y " " 

0130 •••••••••••••••••• 
0131 • 
0132 • 
0133 • 
0134 FCT 
0135 
0136 FACT 
0137 
0138 
0139 
0140 
0141 
0142 
0143 
0144 
0145 
0146 • 

OCT 0 
OCT 0 
NOP 
JSB .ENTR 
DEF FACT-2 
DLD FCT,I 
FMP F100 
DST CFAC 
DLD FCT+1, I 
FMP F100 
DST DFAC 
JMP FACT,I 

0147 CFAC DEC 100.0 

ADDRESS OF 2 WD FP FACTOR 
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0148 DFAC DEC 100.0 
0149 F100 DEC 100.0 
0150 • 
0151 • 
0152 SKP 
0153 •••••••••••••••••••••••••••• 
0154 • 
0155 • 
0156 ••••• PLOT •••• 
0157 • 
0158 • 
0159 • THE -PLOT- ROUTINE CONVERTS THE DEFINED X,Y 
0160 • PARAMETERS TO PLOT INFOm1ATION THEN EXECUTES 
0161 • THE PLOT. 
0162 • 
0163 •• RESTRICTION--- NO PLOT LENGTH CAN EXCEED 16,383 
0164 • INCREMENTS. (APPROXIMATELY 163 INCHES) 
0165 • 
0166 •• - FORTRAN LINKAGE -
0167 • 
0168 • 
0169 • 
0170 • 
0171 • 
0172 • 
0173 • 
0174 •• 

CALL PLOT(X,Y,IC) 

-X,Y DEFINES THE NEW COORDINATE TO BE PLOTTED. 

-IC DEFINES THE PEN UP/DOWN COMMAND. 

0175 • 
0176 •• 
0177 • 
0178 • 
0179 • 
0180 • 
0181 • 
0182 • 

- CALLING 

JSB 
DEF 
DEF 
DEF 
DEF 

0183 •••••••••••••• 
0184 • 
0185 • 
0186 X 
0187 Y 
0188 IC 
0189 • 

OCT 0 
OCT 0 
OCT 0 

0190 PLOT NOP 
0191 JSB .ENTR 

SEQUENCE -

PLOT 
·+4 
X 
Y 
IC 

PLOT ROUTINE ORIGIN 

ADDRESS OF X COORDINATE. 
ADDRESS OF Y COORDINATE. 
ADDRESS OF PEN COMMAND. 

ADDRESS OF X PLOT DATA. 
ADDRESS OF Y PLOT DATA. 
ADDRESS OF PEN COMMAND. 

0192 DEF PLOT-3 
0193 • 
0194 • 
0195 
0196 

DLD X,I 
JSB FPC 

LOAD X PLOT DATA 
CONVERT AND FACTOR 
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0197 
0198 • 
0199 
0200 
0201 
0202 • 
0203 
0204 • 
0205 * 
0206 • 
0207 • 
0208 • 
0209 • 
0210 • 
0211 • 
0212 • 
0213 • 
0214 • 
0215 • 
0216 • 
0217 • 
0218 • 
0219 
0220 
0221 
0222 • 
0223 • 
0224 • 
0225 • 
0226 • 
0227 • 
0228 
0229 
0230 
0231 
0232 
0233 
0234 
0235 PU.1 
0236 
0237 
0238 
0239 
0240 PU.2 
0241 
0242 PU.3 
0243 
0244 
0245 
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STA IX 

DLD Y,I 
JSB FPD 
STA IY 

DLD XPEN 

STORE FIXED X MOVEMENT VALUE 

LOAD Y PLOT DATA 
CONVERT AND FACTOR 
STORE FIXED Y MOVEMENT VALUE 

LOAD OLD X,Y ORIGIN DATA 

XPEN AND YPEN ARE IN 2 CONSECUTIVE 
LOCATIONS FOR THIS DOUBLE LOAD. 

THE PLOTTER DATA WILL BE 
CALCULATED AS FOLLOWS: 

ADA IX 
ADB IY 
DST IDX 

IX + XPEN = IDX 
IY + YPEN = IDY 

WHERE IX = REQUIRED X MOVEMENT 
WHERE IY = REQUIRED Y MOVEMENT 

XPEN = OLD X ORIGIN 
YPEN = OLD Y ORIGIN 

IX + XPEN 
IY + YPEN 
STORE ABSOLUTE PLOTTING DATA 

DETERMINE PLOT MODE AND DRAW THE LINE ••.• 

LDA IC,I 
SSA,RSS 
JMP PU.1 
DLD IDX 
DST XPEN 
LDA IC,I 
CMA,INA 
CPA C02 
JMP PU.2 
CLA 
STA PENC 
JMP PU.3 
CLA,INA 
STA PENC 
JSB TPLOT 
DEF .+5 
DEF ILUN 
DEF PENC 

GET PEN COMMAND 
NEW ORIGIN? 
NO 
YES, GET CURRENT POSITION 
STORE IN ORIGIN AREA 
GET PEN COMMAND AGAIN 
MAKE PEN COMMAND POSITIVE 
DOES PEN COMMAND = 2? 
YES 
NO, MOVE WITH PEN UP 

MOVE WITH PEN DOWN 

DRAW THE LINE .•.. 
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0246 
0247 
0248 
0249 • 
0250 • 
0251 • 

Source Code of Subroutine PLOT 

DEF IDX 
DEF IDY 
JMP PLOT,I 

0252 • THIS ROUTINE MULTIPLIES THE PLOT CO-ORDINATE 
0253 • BY THE SCALE FACTOR THEN CONVERTS FROM 
0254 • FLOATING POINT TO FIXED. 
0255 • A= X OR Y PLOT CO-ORDINATE ON ENTRY. 
0256 • 
0257 FPC 
0258 
0259 
0260 
0261 
0262 • 
0263 • 
0264 • 
0265 FPD 
0266 
0267 
0268 
0269 
0270 • 
0271 • 
0272 • 
0273 
0274 • 

NOP 
FMP CFAC 
FAD FD05 
JSB IFIX 
JMP FPC,I 

NOP 
FMP DFAC 
FAD FD05 
JSB IFIX 
JMP FPD,I 

SKP 

(CO-ORDINATE)(PLOT FACTOR) 

CONVERT TO FIXED POINT 
EXIT WITH A=FIXED PLOT H. 

0275 •••••••••••••••••••• 
0276 • 
0277 ••• PLTLU ••• 
0278 • 
0279 • 
0280 • THE -PLTLU- CALL ALLOWS THE USER TO SET THE 
0281 • LOGICAL UNIT NUMBER FOR THE DESIRED PLOTTER. 
0282 • THIS CALL MUST BE MADE TO SET THE LU H BEFORE 
0283 • THE FIRST CALL TO -PLOT-; OTHERWISE THE SYSTEM 
0284 • WILL TERMINATE THE USER PROGRAM BECAUSE OF AN 
0285 • I/O REQUEST ERROR "LOGICAL UNIT = ZERO". 
0286 • 
0287 •• - FORTRAN LINKAGE -
0288 • 

CALL PLTLU(ILU) 0289 • 
0290 • 
0291 • 
0292 • 

THE LOGICAL UNIT H MUST BE INTEGER 

0293 •• - CALLING SEQUENCE : 
0294 • 
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0295 • 
0296 • 
0297 • 
0298 • 

JSB PLTLU 
DEF .+2 
DEF ILU 

0299 •••••••••••••••••• 
0300 • 
0301 • 
0302 • 
0303 ILU BSS 1 
0304 • 
0305 • 
0306 PLTLU NOP 
0307 JSB .ENTR 
0308 DEF PLTLU-1 
0309 • 
0310 
0311 
0312 • 
0313 
0314 
0315 • 
0316 • 
0317 • 

LDA ILU,I 
STA ILUN 

JMP PLTLU,I 
SKP 

PLOT LU ROUTINE 
RETURN 
LOCATION OF INTEGER LU # 

STORAGE FOR LU # ADDRESS 

SET ADDRESS OF 
PARAMETER IN "ILU". 

SET LU # 
IN LOCAL STORAGE. 

RETURN 

0318 •••••••••••••••••• * ••••• 
0319 • 
0320 ••• *. WORKING STORAGE ••• 
0321 • 
0322 • 
0323 • THE FOLLOWING GROUPS OF TWO WORDS MUST BE 
0324 • IN 2 CONSECUTIVE MEMORY LOCATIONS. 
0325 • 
0326 IDX 
0327 IDY 
0328 • 
0329 XPEN 
0330 YPEN 
0331 • 
0332 IX 
0333 IY 
0334 • 
0335 PENC 
0336 ILUN 
0337 • 
0338 C02 
0339 FD05 
0340 
0341 • 

OCT 0 
OCT 0 

OCT 0 
OCT 0 

OCT 0 
OCT 0 

OCT 0 
OCT 0 

OCT 2 
DEC • 5 
SKP 

ABSOLUTE X DATA FOR PLOTTER 
ABSOLUTE Y DATA FOR PLOTTER 

STORAGE FOR X ORIGIN 
STORAGE FOR Y ORIGIN 

REQUIRED X MOVEMENT 
REQUIRED Y MOVEMENT 

PEN COMMAND (MODE) 
LU # OF PLOTTER BEING USED 

0342 • TEKTRONIX 4010 TERMINAL MANIPULATION SECTION 
0343 • 
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0344 A 
0345 • 

EQU 0 

0346 BAKAR OCT 
0347 HBAKA OCT 
0348 ERAS OCT 
0349 VECT OCT 
0350 ALCUR OCT 
0351 CUARO OCT 
0352 HCPY OCT 
0353 ALPH OCT 
0354 • 

137 
57400 
15414 
16537 
17433 
15137 
15427 
17537 

0355 M2 OCT-2 
0356 M3 OCT-3 
0357 M4 OCT -4 
0358 M5 OCT-5 
0359 B37 OCT 37 
0360 B377 OCT 377 
0361 HOBYT OCT 40 
0362 LXBYT OCT 100 
0363 LYBYT OCT 140 
0364 ICOD1 OCT 1 
0365 ICOD2 OCT 2 
0366 INDR OCT 100000 
0367 • 
0368 IBUFR BSS 3 
0369 IBUFL NOP 
0370 ICNWD NOP 
0371 ARGAD NOP 
0372 RETAD NOP 
0373 XSTOR NOP 
0374 YSTOR NOP 
0375 LOWX NOP 
0376 TEMP NOP 
0377 MODE NOP 
0378 • 
0379 • 
0380 
0381 • 

HED TPLOT 

A-REGISTER DEFINITION 

BACK-ARROW TO SUPPRESS CR/LF FROM DRIVER 
BACK-ARROW IN UPPER ASCII BYTE 
ESC+FF CHARACTERS TO ERASE SCREEN 
GS + BACK-ARROW TO SET VECTOR MODE 
US + ESC + SUB + BACK-ARROW TO RETURN TO 

ALPHA MODE THEN ENABLE GRAPHICS CURSOR 
ESC+ETB CHARACTERS TO MAKE HARD COpy 
US + BACK-ARROW TO SET ALPHA MODE 

ASCII CHARACTER COUNTS 

FOR RTE/DOS EXEC CALLS 

MASK FOR CURSOR-POSITION BYTE 
MASK FOR ASCII BYTE 
HIGH-ORDER BYTE TAG 
LOW-ORDER X-BYTE TAG 
LOW-ORDER Y-BYTE TAG 
RTE/DOS EXEC-CALL READ CODE 
RTE/DOS EXEC-CALL WRITE CODE 
INDIRECT BIT 15 

RTE/DOS EXEC-CALL BUFFER 
RTE/DOS EXEC-CALL BUFFER LENGTH 
RTE/DOS EXEC-CALL CONTROL WORD 
CALLER ARGUMENT-ADDRESS POINTER 
CALLER RETURN-ADDRESS POINTER 
TEMPORARY X-COORDINATE STORAGE 
TEMPORARY Y-COORDINATE STORAGE 
TEMPORARY LOW-X BYTE STORAGE 
TEMPORARY STORAGE 
POINT-PLOT MODE SWITCH 

0382 ••••••••••••••••••••••••••••••••••••••••••••• 1.1 •• 1.11I • 

••••••••••••• 1.1 •••••••••••••••• 11 •• 11 •• 111.1 •••• 1 •• 1 ••• 

•• •• 
0383 
0384 
0385 •• 
0386 •• 
0387 •• 
0388 •• 
0389 •• 
0390 •• 
0391 •• 
0392 •• 

PLOTTING ROUTINE "TPLOT" 

CALLING SEQUENCES : 

FORTRAN CALL TPLOT(LUN,MODE,IX,IY) 

ASMB JSB TPLOT 
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•• 0393 
0394 
0395 •• 

•• 
•• 
•• 
•• 
•• 
•• 
•• 
•• 
•• 
•• 
•• 
•• 
•• 
•• 
•• 
•• 
•• 
•• 
•• 
•• 
•• 
•• 
•• 
•• 
•• 
•• 
•• 
•• 

•• 
•• 
•• 
•• 
•• 
•• 
•• 
•• 
•• 
•• 
•• 
•• 
•• 
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WHERE LUN 
MODE 
IX 
IY 

DEF .+5 
DEF LUN 
DEF MODE 
DEF IX 
DEF IY 

= LOGICAL UNIT NO. OF CRT 
= PLOTTING MODE 
= X-COORDINATE , 0 TO 1023 MAX. 
= Y-COORDINATE , 0 TO 780 MAX. 

PLOTTING MODES ARE AS FOLLOWS 

MODE = 0 
THIS PUTS THE CRT INTO LINEAR-INTERPOLATE 
MODE AND PLOTS A DARK VECTOR (INVISIBLE) 
TO THE COORDINATES SPECIFIED • 
THIS MODE MUST ALWAYS BE CALLED TO PLOT 
THE FIRST POINT OF ANY SEQUENCE WHICH 
INVOLVES BRIGHT-VECTOR PLOTTING • 

MODE > 0 
THIS MODE DRAWS A BRIGHT LINEAR VECTOR 
FROM ANY PREVIOUS POINT TO THE COORDINATES 
SPECIFIED. PRIOR TO USING THIS MODE , 
THE CRT MUST HAVE BEEN PUT IN VECTOR MODE 
BY AN INITIAL MODE-O PLOT • 

MODE < 0 
THIS MODE SIMULATES POINT PLOTTING BY 
FIRST DRAWING A DARK VECTOR TO THE GIVEN 
COORDINATES , AND THEN A BRIGHT VECTOR TO 
THE SAME POINT , RESULTING IN A SINGLE 
DOT ON THE SCREEN • 
MODE 0 NEED NOT BE USED PRIOR TO CALLING 
POINT-PLOT • 

THE CRT IS LEFT IN VECTOR MODE AFTER CALLING 
ANY OF THESE PLOT ROUTINES • 

THIS ROUTINE CALLS THREE OTHER INTERNAL 
SUBROUTINES: 'ENTRY' 'TKPLT' 'OUT' 

•• 
•• 
•• 
•• 
•• 
• • 
•• 
•• 
•• 
•• 
•• 
•• 
•• 
•• 
•• 
•• 
•• 
•• 
•• 
•• 
•• 
•• 
•• 
•• 
•• 
•• 
•• 
•• 
•• 
•• 
•• 
•• 
•• 
•• 
•• 
•• 
•• 
•• 
•• 
•• 
•• 
•• 
•• 
•• 
•• 
•• 
•• 

0396 
0397 
0398 
0399 
0400 
0401 
0402 
0403 
0404 
0405 
0406 
0407 
0408 
0409 
0410 
0411 
0412 
0413 
0414 
0415 •• 
0416 
0417 
0418 
0419 
0420 
0421 
0422 
0423 
0424 •• 
0425 •• 
0426 
0427 
0428 
0429 
0430 
0431 
0432 
0433 
0434 
0435 •• 
0436 
0437 
0438 
0439 
0440 
0441 

•••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
•••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
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0442 * 
0443 * 
0444 TPLOT NOP 
0445 JSB ENTRY SET UP THE POINTERS 
0446 LDA ARGAD,I PASS LOGICAL UNIT 
0447 STA ICNWD NUMBER TO EXEC CALL 
0448 LDA M2 SET EXEC-CALL LENGTH 
0449 STA IBUFL TO TWO ASCII CHARACTERS 
0450 ISZ ARGAD ADVANCE ARGUMENT POINTER 
0451 LDA ARGAD,I GET THE NEXT ARGUMENT (MODE) 
0452 SZA,RSS CHECK FOR CASE 1, MODE = 0 
0453 JMP DARK 
0454 SSA SKIP IF BRIGHT VECTOR 
0455 JMP POINT CASE 3, MODE < 0 
0456 JMP BRITE CASE 2, MODE > 0 
0457 * 
0458 * 
0459 * CASE 1 - DARK VECTOR 
0460 * 
0461 DARK LDA VECT GET CHARACTER FOR VECTOR MODE 
0462 STA IBUFR AND PASS IT TO EXEC CALL 
0463 JMP IN IT INITIALIZE CRT 
0464 * 
0465 * 
0466 * CASE 3 - POINT-PLOT SIMULATION 
0467 * 0468 POINT LDA VECT GET CHARACTER FOR VECTOR MODE 
0469 STA IBUFR AND PASS IT TO EXEC CALL 
0470 STA MODE SET THE POINT-PLOT MODE SWITCH 
0471 INIT JSB OUT OUTPUT THE VECTOR-MODE CHARACTER 
0472 * 
0473 * 
0474 * CASE 2 - BRIGHT VECTOR 
0475 * 
0476 BRITE ISZ ARGAD ADVANCE ARGUMENT POINTER 
0477 LDA ARGAD,I GET X-COORDINATE FROM CALLER 
0478 STA XSTOR AND SAVE IT LOCALLY 
0479 ISZ ARGAD ADVANCE ARGUMENT POINTER 
0480 LDA ARGAD,I GET Y-COORDINATE FROM CALLER 
0481 STA YSTOR AND SAVE IT LOCALLY 
0482 JSB TKPLT NOW PLOT THIS POINT 
0483 LDA LOWX GET LOW-X CURSOR BYTE AGAIN 
0484 LSL 8 SHIFT INTO UPPER ASCII BYTE 
0485 lOR BAKAR ADD BACK-ARROW 
0486 STA IBUFR AND PASS IT TO EXEC CALL 
0487 LDA M2 SET EXEC-CALL LENGTH 
0488 STA IBUFL TO TWO ASCII CHARACTERS 
0489 LDA MODE LOAD POINT-PLOT MODE SWITCH 
0490 SZA AND SKIP IF NOT POINT MODE 

-237-



• • 
• 

Source Code of Subroutine PLOT 

JSB OUT 
CLA 
STA MODE 
JMP RETAD,I 

HED CURSR 

OUTPUT LOW-X BYTE AGAIN , 
(TO PLOT SAME POINT AS BRIGHT) 

RESET POINT-PLOT MODE SWITCH 
RETURN 

0491 
0492 
0493 
0494 
0495 
0496 
0497 
0498 
0499 
0500 
0501 
0502 •• 

•••••••••••••••• * •••••• ********************************* 
**.********.*.*****.******.******.***.***********.****** 

0503 
0504 
0505 
0506 
0507 
0508 
0509 
0510 
0511 
0512 
0513 
0514 
0515 
0516 
0517 
0518 
0519 
0520 
0521 
0522 
0523 
0524 
0525 
0526 
0527 
0528 
0529 
0530 
0531 
0532 
0533 
0534 
0535 
0536 
0537 
0538 
0539 

.* 

** 
** 
** 
.* 
.* 
.* 
** 
** 
.* 
• * 
** 
.* 
** 
.* 
** 
** 
.* 
** 
** 
** 
.* 
** 
** 
** 
.* 
*. .* 
** .* .* 
** •• 
•• 
.* 
.* 
•• 
•• 

CURSOR-COORDINATE ROUTINE "CURSR" 

CALLING SEQUENCES : 

FORTRAN 

ASMB 

WHERE 

. . 

LUN 
ICHAR 
IX 
IY 

CALL CURSR(LUN,ICHAR,IX,IY) 

JSB CURSR 
DEF *+5 
DEF LUN 
DEF ICHAR 
DEF IX 
DEF IY 

= LOGICAL UNIT NO. OF CRT 
= KEYBOARD CHARACTER FROM CRT 
= CURSOR X-COORDINATE 
= CURSOR Y-COORDINATE 

THIS ROUTINE PLACES THE CRT IN ALPHA MODE , 
TURNS ON THE CROSSHAIR CURSOR , AND WAITS 
FOR THE OPERATOR TO ENTER ANY ALPHANUMERIC 
CHARACTER + CARRIAGE-RETURN/LINEFEED . 

WHEN THE CROSSHAIR CURSOR APPEARS , THE 
OPERATOR ADJUSTS ITS POSITION AS REQUIRED , 
AND THEN TYPES ANY DESIRED ALPHANUMERIC 
CHARACTER + CRLF. THE ASCII VALUE OF THE 
KEYBOARD CHARACTER IS THEN RETURNED TO THE 
CALLING PROGRAM (IN THE LOWER BYTE OF ICHAR) , 
ALONG WITH THE INTEGER VALUES OF THE X AND Y 
COORDINATES OF THE CROSSHAIR INTERSECTION • 

THE USE OF CTRL/A TO CHANGE THE KEYBOARD 
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0540 
0541 
0542 •• 

•• 
•• 
•• 
•• 
•• 
•• 
•• 
•• 
•• 
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CHARACTER ENTRY IS ILLEGAL , SINCE THE DRIVER 
WILL ALTER ONE OF THE COORDINATES INSTEAD • 

THE CRT IS LEFT IN ALPHA MODE AFTER CALLING 
THIS ROUTINE • 

THIS ROUTINE CALLS THREE OTHER INTERNAL 
SUBROUTINES: 'ENTRY' 'IN' 'OUT' 

•• 
•• 
•• 
•• 
•• 
•• 
•• 
•• 
•• 
.* 
•• ••••••••••••••••••••••••••••••••••••••••••••••••••••• **. 

0543 
0544 
0545 •• 
0546 
0547 
0548 
0549 
0550 
0551 
0552 
0553 
0554 
0555 
0556 
0557 
0558 
0559 
0560 
0561 
0562 
0563 
0564 
0565 
0566 
0567 
0568 
0569 
0570 
0571 
0572 
0573 
0574 
0575 
0576 
0577 
0578 
0579 
0580 
0581 
0582 
0583 
0584 
0585 
0586 
0587 
0588 

•••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
• • 
CURSR NOP 

• 

JSB ENTRY 
LDA ARGAD,I 
STA ICNWD 
LDA M4 
STA IBUFL 
LDA ALCUR 
STA IBUFR 
LDA CUARO 
STA IBUFR+1 
JSB OUT 

LDA M5 
STA IBUFL 
JSB IN 
LDA IBUFR 
CLB 
LSR 8 
ISZ ARGAD 
STA ARGAD,I 
LDA IBUFR 
AND B37 
LSL 5 
STA TEMP 
LDA IBUFR+1 
LSR 8 
AND B37 
lOR TEMP 
ISZ ARGAD 
STA ARGAD,I 
LDA IBUFR+1 
AND B37 
LSL 5 
STA TEMP 

SET UP THE POINTERS 
PASS LOGICAL UNIT 

NUMBER TO EXEC CALL 
SET EXEC-CALL LENGTH 

TO FOUR ASCII CHARACTERS 
PASS ALPHA-MODE , 

CURSOR-ENABLE , 
AND BACK-ARROW 
CHARACTERS TO EXEC CALL 

OUTPUT THE CHARACTERS 

SET EXEC-CALL LENGTH 
TO FIVE ASCII CHARACTERS 
AND WAIT FOR THEM 

GET FIRST WORD RECEIVED 
ISOLATE KEYBOARD CHARACTER BY 

DISCARDING LOW ASCII BYTE 
ADVANCE ARGUMENT POINTER 
RETURN CHARACTER TO CALLER 
GET FIRST WORD AGAIN 

AND ISOLATE HIGH-X CURSOR BYTE 
SHIFT IT INTO POSITION 

AND SAVE IT TEMPORARILY 
GET SECOND BUFFER WORD 
DISCARD LOWER ASCII BYTE 
ISOLATE LOW-X CURSOR BYTE 
ADD HIGH-X BYTE 
ADVANCE ARGUMENT POINTER 

AND RETURN X-COORDINATE TO CALLER 
GET SECOND BUFFER WORD AGAIN 

AND ISOLATE HIGH-Y CURSOR BYTE 
SHIFT IT INTO POSITION 

AND SAVE IT TEMPORARILY 

-239-



0589 
0590 
0591 
0592 
0593 
0594 
0595 
0596 
0597 
0598 
0599 
0600 
0601 
0602 
0603 
0604 
0605 
0606 
0607 
0608 
0609 
0610 
0611 
0612 
0613 
0614 
0615 
0616 
0617 
0618 
0619 
0620 
0621 
0622 
0623 
0624 
0625 
0626 
0627 
0628 
0629 
0630 
0631 
0632 
0633 
0634 
0635 
0636 
0637 

• 
• 
• 
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LDA IBUFR+2 
LSR 8 
AND B37 
lOR TEMP 
ISZ ARGAD 
STA ARGAD,I 
JMP RETAD,I 

HED ERASE 

GET THIRD BUFFER WORD 
DISCARD LOWER ASCII BYTE 
ISOLATE LOW-Y CURSOR BYTE 
ADD HIGH-Y BYTE 
ADVANCE ARGUMENT POINTER 

AND RETURN Y-COORDINATE TO CALLER 
RETURN 

.............. , ..... , ..... , .. , ... ".,", ... , .... , ... ,'., .. , .... , ... "., ............. " .... " .... ,',.,., .. " .. ,,. 
•• 
•• 
•• 
•• 
•• ,. 
•• 
•• 
•• 
•• 
•• •• ,. 
•• 
•• 
•• ., ., 
•• 
•• 
•• •• 
•• ., 

CRT SCREEN-ERASE ROUTINE "ERASE" 

CALLING SEQUENCES : 

FORTRAN CALL ERASE(LUN) 

ASMB JSB ERASE 
DEF '+2 
DEF LUN 

WHERE LUN = LOGICAL UNIT NO. OF CRT 

THIS ROUTINE CAUSES THE SCREEN OF THE CRT 
SPECIFIED IN THE CALL TO BE ERASED , AND 
LEAVES IT IN ALPHA MODE WITH THE CURSOR IN 
THE 'HOME' POSITION. 

THIS ROUTINE CALLS TWO OTHER INTERNAL 
SUBROUTINES: 'ENTRY' 'OUT' 

•• ,. 
•• ., 
" ., 
•• •• 
•• ., ., 
•• ., 
" •• 
" ., ,. 
., 
" ., 
., 
•• ., 

.,.,',., •• , ••• , •••• , •• "., •• , •••••• ,',.,'*,." •• ,',.,'** 
•••• *.*"., ••• ,.,., •••• , ••••••• ,*, •• ",*",.,,* •• * ••• **' 
• 
• 
ERASE NOP 

JSB ENTRY 
LDA ARGAD,I 
STA ICNWD 
LDA M3 
STA IBUFL 
LDA ERAS 
STA IBUFR 

SET UP THE POINTERS 
PASS LOGICAL UNIT 

NUMBER TO EXEC CALL 
SET EXEC-CALL LENGTH 

TO THREE ASCII CHARACTERS 
GET CHARACTERS TO ERASE SCREEN 

AND PASS TO EXEC CALL 
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0638 
0639 
0640 
0641 
0642 
0643 
0644 
0645 
0646 
0647 
0648 
0649 
0650 
0651 
0652 
0653 
0654 
0655 
0656 
0657 
0658 
0659 
0660 
0661 
0662 
0663 
0664 
0665 
0666 
0667 
0668 
0669 
0670 
0671 
0672 
0673 
0674 
0675 
0676 
0677 
0678 
0679 
0680 
0681 
0682 
0683 
0684 
0685 
0686 

• 
• 
• 
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LDA HBAKA 
STA IBUFR+1 
JSB OUT 
JMP RETAD,I 

HED HCOPY 

GET UPPER BACK-ARROW CHARACTER 
AND PASS TO EXEC CALL 

OUTPUT THE ERASE COMMAND 
RETURN 

•••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
•••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
•• 
•• 
•• 
•• 
•• 
•• 
•• 
•• 
•• 
•• 
•• 
•• 
•• 
•• 
•• 
•• 
•• 
•• 
•• 
•• 
•• 
•• 
•• 
•• 
•• 
•• 
•• 
•• 
•• 
•• 

HARD-COPY PRODUCTION ROUTINE 

CALLING SEQUENCES : 

FORTRAN 

ASMB 

CALL HCOPY(LUN) 

JSB HCOPY 
DEF .+2 
DEF LUN 

"HCOPY" 

WHERE LUN = LOGICAL UNIT NO. OF CRT 

THIS ROUTINE , WHICH WORKS ONLY WITH A 
4010-1 TERMINAL EQUIPPED WITH A COPIER 
CAUSES IT TO GENERATE ONE HARD COPY 
FOR EACH CALL TO THE ROUTINE • 

AFTER EACH COpy CYCLE , THE TERMINAL IS LEFT 
IN THE MODE IN WHICH THE CALLING PROGRAM 
FOUND IT • 

THIS ROUTINE CALLS TWO OTHER INTERNAL 
SUBROUTINES: 'ENTRY' 'OUT' 

•• 
•• 
•• 
•• 
•• 
•• 
•• 
•• 
•• 
•• 
•• 
•• 
•• 
•• 
•• 
•• 
•• 
•• 
•• 
•• 
•• 
•• 
•• 
•• 
•• 
•• 
•• 
•• 
•• 
•• 

•••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
•••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
• 
• 
HCOPY NOP 

JSB ENTRY 
LDA ARGAD,I 
STA ICNWD 
LDA M3 

SET UP THE POINTERS 
PASS LOGICAL UNIT 

NUMBER TO EXEC CALL 
SET EXEC-CALL LENGTH 
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0687 
0688 
0689 
0690 
0691 
0692 
0693 
0694 • 
0695 • 
0696 

STA IBUFL 
LDA HCPY 
STA IBUFR 
LDA HBAKA 
STA IBUFR+1 
JSB OUT 
JMP RETAD,I 

HED TKPLT 

TO THREE ASCII CHARACTERS 
GET CHARACTERS TO MAKE HARD COpy 

AND PASS TO EXEC CALL 
GET UPPER BACK-ARROW CHARACTER 

AND PASS TO EXEC CALL 
OUTPUT THE COpy COMMAND 
RETURN 

0697 • 
0698 • 
0699 • 
0700 • 
0701 • 
0702 • 

THIS SUBROUTINE ASSEMBLES A COORDINATE PAIR AND 
TRANSMITS IT TO THE TERMINAL , ALONG WITH A BACK­
ARROW TO SUPPRESS THE CRLF FROM THE DRIVER . 

0703 TKPLT NOP 
0704 LDA YSTOR 
0705 LSR 5 
0706 AND B37 
0707 lOR HOBYT 
0708 LSL 8 
0709 STA TEMP 
0710 LDA YSTOR 
0711 AND B37 
0712 lOR LYBYT 
0713 lOR TEMP 
0714 STA IBUFR 
0715 LDA XSTOR 
0716 LSR 5 
0717 AND B37 
0718 lOR HOBYT 
0719 LSL 8 
0720 STA TEMP 
0721 LDA XSTOR 
0722 AND B37 
0723 lOR LXBYT 
0724 STA LOWX 
0725 lOR TEMP 
0726 STA IBUFR+1 
0727 LDA HBAKA 
0728 STA IBUFR+2 
0729 LDA M5 
0730 STA IBUFL 
0731 JSB OUT 
0732 JMP TKPLT,I 
0733 • 
0734 • 
0735 HED IN 

GET THE Y-COORDINATE 
DISCARD THE LOW 5 BITS 
ISOLATE HIGH-Y CURSOR BYTE 
ADD HIGH-ORDER TAG BITS 
SHIFT INTO UPPER ASCII BYTE 

AND SAVE TEMPORARILY 
GET COORDINATE AGAIN 
ISOLATE LOW-Y CURSOR BYTE 
ADD LOW-Y TAG BITS 
ADD UPPER ASCII BYTE 

AND PASS TO EXEC CALL 
GET THE X-COORDINATE 
DISCARD THE LOW 5 BITS 
ISOLATE HIGH-X CURSOR BYTE 
ADD HIGH-ORDER TAG BITS 
SHIFT INTO UPPER ASCII BYTE 

AND SAVE TEMPORARILY 
GET COORDINATE AGAIN 
ISOLATE LOW-X CURSOR BYTE 
ADD LOW-X TAG BITS 
SAVE LOW-X CURSOR BYTE FOR POINT-PLOT 
ADD UPPER ASCII BYTE 

AND PASS TO EXEC CALL 
GET UPPER BACK-ARROW CHARACTER 

AND PASS TO EXEC CALL 
SET EXEC-CALL LENGTH 

TO FIVE ASCII CHARACTERS 
AND OUTPUT THE POINT 

RETURN 
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0136 * 
0131 IN 
0138 
0139 
0140 
0141 
0142 
0143 
0144 
0145 * 
0146 * 
0141 
0148 * 

NOP 
JSB EXEC 
DEF *+5 
DEF ICOD1 
DEF ICNWD 
DEF IBUFR 
DEF IBUFL 
JMP IN,I 

HED OUT 

0149 OUT NOP 
0150 JSB EXEC 

DEF *+5 
DEF ICOD2 
DEF ICNWD 
DEF IBUFR 
DEF IBUFL 
JMP OUT,I 

HED ENTRY 

CALL RTE/DOS EXEC FOR A READ 
OPERATION 

CALL RTE/DOS EXEC FOR A WRITE 
OPERATION 0151 

0152 
0153 
0154 
0155 
0156 
0151 * 
0158 * 
0159 
0760 * 
0761 * 
0762 * 
0763 * 
0764 * 

THIS SUBROUTINE SETS UP POINTERS TO THE CALLING 
PROGRAM'S RETURN ADDRESS AND ARGUMENT LIST. 

0765 ENTRY NOP 
0766 LDA ENTRY 
0767 ADA M2 
0768 LDA A,I 
0169 lOR INDR 
0770 STA RETAD 
0771 INA 
0772 STA ARGAD 
0773 JMP ENTRY,I 
0774 * 
0775 * 
0776 END 

GET (ADDRESS+2) OF OUR CALLER 
SUBTRACT OFF THE TWO 
FIND WHERE HE WAS CALLED FROM 
ADD INDIRECT BIT 

AND SAVE POINTER TO RETURN ADDRESS 
ADVANCE POINTER TO ARGUMENT LIST 

AND SAVE FOR THE ROUTINE 
RETURN TO LOCAL ROUTINE 
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0001 ASMB,R,F 
0002 * 
0003 
0004 
0005 * 
0006 
0007 * 
0008 
0009 * 
0010 * 

HED ** REAL-TIME UTILITY ROUTINE - "SYMB" ** 
NAM SYMB,7 

ENT SYMB 

EXT PLOT,SIN,COS,.ENTR,.FDV,ERRO 

0011 * WRITTEN BY JOHN CARLYLE 
0012 * 
0013 * 
0014 **************************************************** 
0015 * 
0016 * ROUTINE: SYMB (SYMBOL) 
0017 * 
0018 * 
0019 * 
0020 * 
0021 * 
0022 * 
0023 * 
0024 * 
0025 * 
0026 * 
0027 * 
0028 * 
0029 * 
0030 * 
0031 * 
0032 * 
0033 * 
0034 * 
0035 * 
0036 * 
0037 * 
0038 * 
0039 * 
0040 * 
0041 * 
0042 * 
0043 * 
0044 * 
0045 * 
0046 * 
0047 * 
0048 * 
0049 * 

-FORTRAN LINKAGE-
CALL SYMB(X,Y,SIZE,BCD,THETA,N) 

-CALLING SEQUENCE­
JSB SYMB 
DEF *+7 
DEF X 
DEF Y 
DEF SIZE 
DEF BCD 
DEF THETA 
DEF N 

WHERE X AND Y ARE THE PAGE COORDINATES 
OF THE LOWER LEFT CORNER OF THE FIRST 
CHARACTER. SIZE IS THE DESIRED LETTER 
HEIGHT. BCD IS THE LOCATION OF THE 
ASCII ARRAY. THETA IS THE ANGLE OF 
LETTERING WITH RESPECT TO THE X-AXIS. 
N IS THE NUMBER OF ASCII CHARACTERS TO 
BE DRAWN (FROM THE ASCII ARRAY). 

- X,Y,SIZE AND THETA ARE FLOATING POINT 
NUMBERS. (THETA IS IN DEGREES). 

N: 1. N IS A POSITIVE INTEGER DEFINING 
THE NUMBER OF ASCII CHARACTERS 
IN THE ARRAY -BCD-. (THE ASCII 
CHARACTERS ARE PACKED 2 PER WORD 
IN THE ARRAY. 

2. N = 0 TO DESIGNATE THAT ONLY ONE 
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0050 • 
0051 • 
0052 • 
0053 • 
0054 • 
0055 • 
0056 • 
0057 • 
0058 • 
0059 • 
0060 • 
0061 • 
0062 • 
0063 • 
0064 • 

Source Code of Subroutine SYMB 

CHARACTER IS TO BE DRAWN. THE 
CHARACTER IS THE LOWER CHARACTER 
IN THE WORD SPECIFIED BY BCD. 

3. N IS A NEGATIVE INTEGER TO MEAN 
THAT THE BCD VALUE IS AN INTEGER 
VALUE SPECIFYING A SPECIAL SYMBOL. 
(BCD) IS A POINTER TO THE SPECIAL 
SYMBOL TABLE (TAB2). 

N = -1 
N < -1 

INDICATES PEN UP 
INDICATES PEN DOWN TO 

DRAW A LINE FROM CURRENT 
POSITION TO POSITION (X,Y) 

0065 ••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
0066 • 
0067 x DEF FL999 
0068 Y DEF FL999 
0069 SIZE DEF OFCT 
0070 BCD DEF C.02 
0071 THETA DEF OTHET 
0072 N DEF CM.8 
0073 • 
0074 • 
0075 SYMB NOP 
0076 JSB .ENTR 
0077 DEF SYMB-6 
0078 • 
0079 
0080 
0081 
0082 
0083 
0084 • 

LDA C.03 
STA PEN 
LDA N,I 
SSA,RSS 
JMP S1 

PARAMETER AREA 
(SET BY .ENTR AFTER CALL) 
(INITIALIZED TO FIXED VALUES 

TO PROTECT ROUTINE FROM SHORT 
PARAMETER LIST). 

SET UP PARAMETER 
LINKAGE AREA 

INITIALIZE PEN TO 
UP POSITION. 

CHECK -N-
IF N >= 0, GO TO 

SET FOR ARRAY PLOT. 

0085 • SPECIAL CHARACTER (N < 0 ) 
0086 • 
0087 
0088 
0089 
0090 
0091 
0092 
0093 
0094 
0095 
0096 
0097 
0098 

LDB C.02 
CMA,SZA 
STB PEN 
CCA 
STA CHCNT 
LDA TAB2A 
STA TABA 
LDA BCD,I 
STA CHAR 
ADA CM15 
SSA,RSS 
JMP S2 

IF N<=-1 THEN SET PEN=2 
FOR PEN DOWN CONDITION. 

SET CHCNT = -1 FOR ONE CHAR 
TO BE DRAWN. 

SET TABA TO REFERENCE TAB2 -
SPECIAL CHARACTER TABLE. 

GET CHARACTER VALUE, SAVE AS 
INDEX TO TAB2. 

SUBTRACT 15(8) TO CHECK FOR 
RANGE 0 TO 14 (CENTERED CHAR) 

-NORMAL OFFSET- (GT 14(8)) 
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0099 
0100 
0101 • 

Source Code of Subroutine SYMB 

LDA F4A 
JMP S2+1 

SET DIVISOR OF SIZE = 4 
GO TO CHECK X,Y. 

0102 • ASCII CHARACTER PLOT (ARRAY OR SINGLE CHARACTER) 
0103 • 
0104 S1 
0105 
0106 
0107 
0108 
0109 • 
0110 
0111 
0112 
0113 
0114 
0115 
0116 
0117 • 
0118 S2 
0119 
0120 
0121 
0122 DIV 
0123 
0124 • 

CMA,INA 
STA B 
SZA,RSS 
CCA 
STA CHCNT 

LDA BCD 
RAL 
SZB,RSS 
INA 
STA ARRAD 
LDA TAB1A 
STA TABA 

LDA F7A 
STA DIV 
DLD SIZE,I 
JSB .FDV 
NOP 
DST FCT 

SET N NEGATIVE -
(SAVE TEMPORARILY) 
IF N = 0 (SINGLE CHAR PLOT), 

SET N = -1. 
SET N AS INDEX FOR CHAR. COUNT. 

GET ARRAY ADDRESS - CONVERT TO 
CHAR. ADDRESS (UPPER CHAR) 

IF SINGLE CHAR. OUTPUT, SET ADDR. 
TO LOWER (BIT 0 =1) 

SAVE ADDRESS. 
SET TABLE ADDRESS = TAB1A TO 

REFERENCE ASCII SET TABLE. 

SET DIVISOR OF SIZE = 7 

GET SIZE PARAMETER, DIVIDE BY 
7 OR 4 (FLPT) FOR OFFSET. 

(ADDR OF F7 OR F4 - SET AT S2+1) 
SET FACTOR (SIZE/DIV). 

0125 • CHECK FOR NEW THETA (ROTATIONAL) PARAMETER 
0126 • 
0127 
0128 
0129 
0130 
0131 
0132 
0133 • 

DLD THETA,I 
CPA OTHET 
RSS 
JMP S3 
CPB OTHET+1 
JMP S4 

CHECK NEW THETA 
AGAINST OLD THETA VALUE 

(INITIALIZED TO O-DEGREES.) 
-NEW-

-SAME AS OLD VALUE-

0134 • CONVERT THETA TO RADIANS, COMPUTE SIN, COS 
0135 • 
0136 S3 
0137 
0138 
0139 
0140 
0141 
0142 
0143 
0144 
0145 
0146 
0147 

DST OTHET 
FMP RADN 
DST TEMP1 
JSB SIN 
JSB ERRO 
DST INCS 
DLD TEMP1 
JSB COS 
JSB ERRO 
DST INCC 
DLD FCT 
JMP S5 

SAVE AS NEW OLD-THETA 
CONVERT DEGREES TO RADIANS 

CALCULATE SINE 

CALCULATE COSINE 
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0148 * 
0149 * CHECK FOR NEW FACTOR PARAMETER (SIZE/DIV) 
0150 * 
0151 S4 
0152 
0153 
0154 
0155 
0156 
0157 * 

DLD FCT 
CPA OFCT 
RSS 
JMP S5 
CPB OFCT+1 
JMP S8 

CHECK FOR CHANGE IN 
FACTOR 

-NEW-

-SAME AS OLD VALUE 

0158 * CALCULATE POINT FACTORS FOR POINT (X1,Y1) 
0159 * 
0160 S5 
0161 
0162 
0163 
0164 
0165 
0166 * 

DST OFCT 
FMP INCC 
DST XA1 
DLD OFCT 
FMP INCS 
DST YA1 

SET NEW VALUE AS OLD FACTOR 
CALCULATE XA1 = FCT * INCC 

CALCULATE YA1 = FCT * INCS 

0167 * CALCULATE POINT FACTORS FOR 10X10 MATRIX (2 TO 9) 
0168 It 

0169 
0170 
0171 
0172 
0173 
0174 S6 
0175 
0176 
0177 
0178 
0179 
0180 * 
0181 
0182 
0183 
0184 
0185 
0186 S7 
0187 
0188 
0189 
0190 
0191 
0192 * 

LDA XA2A 
STA TEMP1 
LDA CM.8 
STA TEMP2 
DLD XA1 
FAD XA1 
DST TEMP1,I 
ISZ TEMP1 
ISZ TEMP1 
ISZ TEMP2 
JMP S6 

LDA YA2A 
STA TEMP1 
LDA CM.8 
STA TEMP2 
DLD YA1 
FAD YA1 
DST TEMP1, I 
ISZ TEMP1 
ISZ TEMP1 
ISZ TEMP2 
JMP S7 

SET ADDR. FOR 
XA(2) 

SET INDEX FOR RANGE 
XA(2) TO XA(9) 

XA(I) = XA(1) + XA(I-1) 

SET XACI) FOR I = 2-9 
-SET ADDR. 

FOR NEXT FLPT NUMBER. 
INDEX FOR 2 TO 9 
-CONTINUE 

REPEAT 
ABOVE 

PROCESSING 
FOR 

YA(2) TO YA(9) 
ACCORDING TO: 

YA(I) = YA(1) + YA(I-1) 

0193 * PROCESS X,Y COORDINATES IN CALL 
0194 * 
0195 s8 
0196 

DLD X,I 
FSB FL999 

IF -X- IS GT OR = TO 
999.0, 
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0197 
0198 
0199 • 
0200 
0201 
0202 
0203 
0204 * 
0205 S9 
0206 
0207 
0208 
0209 • 
0210 
0211 
0212 
0213 
0214 • 
0215 S10 
0216 
0217 
0218 
0219 • 

SSA,RSS 
JMP S9 

DLD X,I 
FSB XA2 
FAD YA2 
DST XORG 

DLD Y,I 
FSB FL999 
SSA,RSS 
JMP S10 

DLD Y,I 
FSB XA2 
FSB YA2 
DST YORG 

LDB N,I 
LDA CHAR 
SSB 
JMP S12 

THEN USE 
PREVIOUS X-ORIGIN 

SET X-ORIGIN: 

XORG = X - XA(2) + YA(2) 

IF -Y- IS GT OR = TO 
999.0, 

THEN USE 
PREVIOUS Y-ORIGIN 

SET Y-ORIGIN: 

YORG = Y - XA(2) - YA(2) 

IF N < 0, THEN SET 
(A) = CHAR INDEX 

AND GO TO 
GET CHAR. OFFSETS. 

0220 • EXTRACT CHAR FROM BCD ARRAY AND INDEX TO TABLES 
0221 • 
0222 S11 LDA ARRAD 
0223 ISZ ARRAD 
0224 
0225 
0226 
0227 
0228 
0229 • 

CLE,ERA 
LDA A,I 
SEZ,RSS 
ALF,ALF 
AND M77 

0230 S12 ADA TABA 
0231 STA TEMP1 
0232 
0233 
0234 
0235 
0236 
0237 
0238 
0239 
0240 
0241 
0242 
0243 
0244 • 

LDA A,I 
AND M377 
ADA TABLA 
RAL 
STA OFFST 
LDA TEMP1, I 
SSA 
ISZ OFFST 
ALF,ALF 
AND M177 
CMA,INA 
STA OFFCT 

GET CURRENT CHARACTER ADDRESS 
- SET FOR NEXT CHARACTER ADDR.­

CONVERT TO WORD ADDR - POSITION 
IN E. GET WORD AND POSITION 

UPPER (=0) OR LOWER (=1) 
CHARACTER 

IN A. (USE ONLY LOW 6-BITS) 

SET APPROPRIATE TABLE 
ADDRESS -

GET TABLE VALUE FOR -CHAR­
GET ADDR OF FIRST OFFSET WORD 

IN OFFSET TABLE - CONVERT TO 
UPPER POSITION 

CHARACTER ADDRESS. 
GET TABLE WORD AGAIN. 
IF BIT 15 = 1, SET OFFSET ADDRESS 

TO LOWER POSITION. 
ROTATE OFFSET COUNT TO 

LOW A (7-BITS) AND SET 
NEGATIVE FOR 

INDEX FOR INDEX FACTORS 

0245 • EXTRACT AND PROCESS EACH OFFSET PAIR FOR CHARACTER 
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0246 * 
0247 S13 LDA OFFST GET CURRENT OFFSET-PAIR CHARACTER 
0248 ISZ OFFST ADDRESS, SET FOR NEXT ADDRESS. 
0249 CLE,ERA CONVERT TO WORD ADDR, SET POSI-
0250 LDA A,I TION IN E, GET OFFSET WORD. 
0251 SEZ SHIFT OFFSET PAIR TO UPPER A, 
0252 ALF,ALF (X,Y) OF 8-BITS. 
0253 AND M1774 ISOLATE AND 
0254 STA B SAVE X,Y. 
0255 ALF PUT X 
0256 AND M17 IN LOW A, 
0257 ALS MULTIPLY BY 2 
0258 STA TEMP1 AND SAVE FOR INDEX TO XA-ARRAY 
0259 LDA B PUT 
0260 ALF,ALF Y IN LOW A, 
0261 AND M17 MULTIPLY 
0262 ALS BY 2 
0263 STA TEMP2 AND SAVE FOR INDEX TO YA. 
0264 LDA M36 IF X OFFSET = 17(8) FOR 
0265 LDB C.03 PEN-UP, THEN 
0266 CPA TEMP1 GO TO SET IC AND GET 
0267 JMP S14 NEXT OFFSET PAIR. 
0268 * 
0269 LDA XAD COMPUTE ADDRESS OF 
0270 ADA TEMP1 XA-ARRAY FOR X-OFFSET 
0271 STA TEMP3 
0272 LDA YAD COMPUTE ADDRESS OF 
0273 ADA TEMP2 YA-ARRAY FOR Y-OFFSET 
0274 STA TEMP4 
0275 DLD XORG COMPUTE: 
0276 FAD TEMP3,I 
0277 FSB TEMP4,I XT = XORG + XA(KX) - YA(KY) 
0278 DST XT 
0279 * 
0280 LDA YAD COMPUTE ADDRESS OF 
0281 ADA TEMP1 YA-ARRAY FOR X-OFFSET 
0282 STA TEMP3 
0283 LDA XAD COMPUTE ADDRESS OF 
0284 ADA TEMP2 XA-ARRAY FOR Y-OFFSET 
0285 STA TEMP4 
0286 DLD YORG COMPUTE 
0287 FAD TEMP3,I 
0288 FAD TEMP4,I YT = YORG + YA(KX) + XA(KY) 
0289 DST YT 
0290 * 
0291 * CALL FOR PLOT FOR CURRENT XT,YT 
0292 * 
0293 JSB PLOT 
0294 DEF *+4 
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0295 DEF XT 
0296 DEF YT 
0297 DEF PEN 
0298 • 
0299 • 
0300 LDB C.02 SET FOR PEN DOWN 
0301 S14 STB PEN 
0302 • 
0303 ISZ OFFCT INDEX CHARACTER OFFSET COUNT 
0304 JMP S13 - MORE TO PROCESS -
0305 • 
0306 • SET X-ORIGIN AND Y-ORIGIN FOR NEXT CHARACTER. 
0307 • 
0308 DLD XORG 
0309 FAD XA7 X-ORIGIN = X-ORIGIN + XA(7) 
0310 DST XORG 
0311 • 
0312 DLD YORG 
0313 FAD YA7 Y-ORIGIN = Y-ORIGIN + YA(7) 
0314 DST YORG 
0315 LDA C.03 
0316 STA PEN 
0317 • 
0318 ISZ CHCNT INDEX CHARACTER COUNTER 
0319 JMP S11 - MORE TO PLOT -
0320 • 
0321 • CALL TO SYMB COMPLETED 
0322 • 
0323 JMP SYMB,I 
0324 • 
0325 • 
0326 • CONSTANT, FLAG AND STORAGE SECTION 
0327 • 
0328 A EQU 0 A, B 
0329 B EQU 1 REGISTERS 
0330 • 
0331 C.02 DEC 2 
0332 C.03 DEC 3 
0333 CM.8 DEC -8 
0334 CM15 DEC -15 
0335 • 
0336 M17 OCT 17 
0337 M36 OCT 36 
0338 M77 OCT 77 
0339 M177 OCT 177 
0340 M377 OCT 377 
0341 M1774 OCT 177400 
0342 • 
0343 FL999 DEC 999.0 
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0344 • 
0345 F4A DEF F4 
0346 F4 DEC 4.0 
0347 F7A DEF F7 
0348 F7 DEC 7.0 
0349 • 
0350 PEN NOP 
0351 • 
0352 CHCNT NOP 
0353 CHAR NOP 
0354 OFFST NOP 
0355 OFFCT NOP 
0356 ARRAD NOP 
0357 • 
0358 TEMP1 NOP TEMPORARY 
0359 TEMP2 NOP 
0360 TEMP3 NOP STORAGE 
0361 TEMP4 NOP 
0362 • 
0363 INCS DEC o. 
0364 INCC DEC 1.0 
0365 • 
0366 FCT DEC o. 
0367 OFCT DEC .02 FOR .14 INCH INCREMENTS (.01 FOR .07) 
0368 • 
0369 OTHET DEC O. INITIALIZE TO ZERO DEGREES ROTATION 
0370 • 
0371 RADN DEC .0174533 FACTOR FOR DEGREES TO RADIANS 
0372 • 
0373 • 
0374 • 
0375 XAD DEF XAO 
0376 XA2A DEF XA2 
0377 • 
0378 XAO DEC .00 INITIAL 
0379 XA1 DEC .02 VALUES 
0380 XA2 DEC .04 SET 
0381 XA3 DEC .06 FOR 
0382 XA4 DEC .08 .14 INCH 
0383 XA5 DEC .10 INCREMENTS 
0384 XA6 DEC • 12 
0385 XA7 DEC • 14 (FOR .07 INCH INCREMENTS, 
0386 XA8 DEC • 16 HALVE VALUES) 
0387 XA9 DEC .18 
0388 • 
0389 • 
0390 • 
0391 YAD DEF YAO 
0392 YA2A DEF YA2 
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0393 • 
0394 YAO 
0395 YA1 
0396 YA2 
0397 YA3 
0398 YA4 
0399 YA5 
0400 YA6 
0401 YA7 
0402 YA8 
0403 YA9 
0404 • 
0405 * 
0406 * 

DEC O. 
DEC O. 
DEC O. 
DEC O. 
DEC O. 
DEC O. 
DEC O. 
DEC O. 
DEC O. 
DEC O. 

0407 XORG DEC O. 
0408 YORG DEC O. 
0409 • 
0410 XT 
0411 YT 
0412 • 
0413 * 

DEC O. 
DEC O. 

0414 TABA NOP 
0415 * 
0416 TAB1A DEF TAB1 
0417 * 
0418 TAB2A DEF TAB2 
0419 * 
0420 * 
0421 • CHARACTER REFERENCE TABLES -
0422 • 
0423 * THE FOLLOWING TABLES (TAB1 AND TAB2) CONTAIN 
0424 • THE INFORMATION TO ACCESS THE OFFSET TABLE 
0425 * FOR EACH AVAILABLE CHARACTER. 
0426 • 
0427 * EACH CHARACTER OR SPECIAL SYMBOL AVAILABLE 
0428 • FOR PLOTTING IS ASSOCIATED WITH ONE UNIQUE 
0429 • WORD IN ONE OF THE FOLLOWING TABLES. 
0430 • 
0431 • EACH REFERENCE WORD CONTAINS THE FOLLOWING 
0432 • INFORMATION: 
0433. 1. RELATIVE ADDRESS OF WORD IN OFFSET TABLE 
0434 • FOR START OF OFFSET STRING 
0435 * (BITS 07-00) 
0436. 2. NUMBER OF OFFSET PAIRS (8-BITS) IN STRING 
0437 * (BITS 14-08) 
0438 * 3. STARTING POSITION OF STRING IN WORD, 
0439 * 0 MEANS UPPER, 1 MEANS LOWER. 
0440 * (BIT 15) 
0441 • 
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0442 • TAB1 COMPRISES THE STANDARD CHARACTER SET 
0443 • TAB2 COMPRISES SPECIAL CHARACTERS AND 
0444 • CENTERED SYMBOLS WHICH CAN BE ACCESSED 
0445 • BY POSITION WHEN PARAMETER N < 0, IN CALL. 
0446 • 
0447 • TAB1 IS ORDERED BY POSITION DESIGNATED BY LOWER 
0448 • 6-BITS OF ASCII CODE (E.G. A = 101 = 01) 
0449 • - THIS TABLE IS LIMITED TO 64 ENTRIES - 00 
0450 • TO 77. 
0451 • 
0452 • 
0453 • POS CNT ADDR CODE CHARACTER 
0454 • --- --- ---- ---------
0455 • 
0456 TAB2 OCT 103641 1 7 241 00 
0457 OCT 106244 1 14 244 01 
0458 OCT 003252 0 6 252 02 
0459 OCT 003660 0 7 260 03 
0460 OCT 103663 1 7 263 04 
0461 OCT 003666 0 7 266 05 
0462 OCT 003671 0 7 271 06 
0463 OCT 004274 0 10 274 07 
0464 OCT 005700 0 13 300 08 
0465 OCT 003705 0 7 305 09 
0466 OCT 007310 0 16 310 10 
0467 OCT 006660 0 15 260 11 
0468 OCT 103316 1 6 316 12 
0469 OCT 002260 0 4 260 13 
0470 OCT 006252 0 14 252 14 
0471 OCT 101321 1 2 321 15 
0472 OCT 101325 1 2 325 16 
0473 OCT 102726 1 5 326 17 
0474 OCT 103233 1 6 233 18 
0475 OCT 104321 1 10 321 19 
0476 OCT 002731 0 5 331 20 
0477 OCT 102733 1 5 333 21 
0478 OCT 103236 1 6 236 22 
0479 OCT 001746 0 3 346 23 
0480 OCT 004336 0 10 336 24 
0481 OCT 004342 0 10 342 25 
0482 • 
0483 • 
0484 • 
0485 TAB1 OCT 110347 1 20 347 00 @ 

0486 OCT 004400 0 11 0 01 A 
0487 OCT 106005 1 14 5 02 B 
0488 OCT 104014 1 10 14 03 C 
0489 OCT 103404 1 7 4 04 D 
0490 OCT 003422 0 7 22 05 E 
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0491 OCT 003022 0 6 22 06 F 
0492 OCT 006036 0 14 36 07 G 
0493 OCT 103025 1 6 25 10 H 
0494 OCT 003044 0 6 44 11 I 
0495 OCT 103047 1 6 47 12 J 
0496 OCT 003033 0 6 33 13 K 
0497 OCT 001425 0 3 25 14 L 
0498 OCT 102431 1 5 31 15 M 
0499 OCT 102030 1 4 30 16 N 
0500 OCT 004414 0 1 1 14 17 0 
0501 OCT 103453 1 7 53 20 p 
0502 OCT 006014 0 14 14 21 Q 
0503 OCT 104453 1 11 53 22 R 
0504 OCT 006460 0 15 60 23 S 
0505 OCT 102066 1 4 66 24 T 
0506 OCT 003447 0 7 47 25 u 
0507 OCT 001473 0 3 73 26 V 
0508 OCT 002452 0 5 52 27 W 
0509 OCT 102474 1 5 74 30 X 
0510 OCT 002477 0 5 77 31 y 
0511 OCT 103467 1 7 67 32 Z 
0512 OCT 002156 0 4 156 33 
0513 OCT 001076 0 2 76 34 
0514 OCT 002160 0 4 160 35 
0515 OCT 002562 0 5 162 36 
0516 OCT 102564 1 5 164 37 
0517 OCT 100471 1 1 71 40 
0518 OCT 003574 0 7 174 41 
0519 OCT 004577 0 11 177 42 " 
0520 OCT 105603 1 13 203 43 /I 
0521 OCT 006611 0 15 211 44 $ 
0522 OCT 106217 1 14 217 45 % 
0523 OCT 105357 0 12 357 46 & 
0524 OCT 002177 0 4 177 47 
0525 OCT 002152 0 4 152 50 ( 

0526 OCT 002154 0 4 154 51 ) 

0527 OCT 005542 0 13 142 52 * 
0528 OCT 002542 0 5 142 53 + 
0529 OCT 103230 1 6 230 54 
0530 OCT 101143 1 2 143 55 
0531 OCT 102630 1 5 230 56 
0532 OCT 101074 1 2 74 57 / 
0533 OCT 105013 1 12 13 60 0 
0534 OCT 102501 1 5 101 61 1 
0535 OCT 004504 0 1 1 104 62 2 
0536 OCT 006524 0 15 124 63 3 
0537 OCT 102110 1 4 110 64 4 
0538 OCT 105112 1 12 112 65 5 
0539 OCT 106113 1 14 113 66 6 
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0540 
0541 
0542 
0543 
0544 
0545 
0546 
0547 
0548 
0549 • 
0550 • 
0551 • 
0552 • 

OCT 102521 
OCT 010524 
OCT 105534 
OCT 105625 
OCT 106225 
OCT 001635 
OCT 102547 
OCT 001640 
OCT 007167 

1 
0 
1 
1 
1 
0 
1 
0 
0 

5 121 
21 124 
13 134 
13 225 
14 225 
3 235 
5 147 
3 240 

16 167 

0553 • CHARACTER - OFFSET - TABLE 

67 
70 
71 
72 
73 
74 
75 
76 
77 

SYMB 

7 
8 
9 

. , 
< 
= 
> 
? 

0554 • -EACH WORD CONTAINS 2 PAIRS OF X,Y OFFSETS, 
0555 * "X1Y1X2Y2", EACH PAIR IS 8-BITS AND 4 
0556 * BITS IN EACH PAIR SPECIFY THE X AND Y POINT 
0557 * FOR THE OFFSET. 
0558 * 
0559 * THE STRING OF OFFSET PAIRS FOR A CHARACTER MAY 
0560 * START IN THE UPPER OR LOWER POSITION OF A 
0561 • WORD. THE STARTING LOCATION, POSITION INDICATOR 
0562 * AND OFFSET COUNT FOR EACH CHARACTER IS CONTAINED 
0563 * IN THE REFERENCE TABLES. 
0564 • 
0565 * 
0566 * PORTIONS OF OFFSET STRINGS MAY OVERLAP OTHER 
0567 * STRINGS WHEN LINE SEGMENTS AMONG CHARACTERS 
0568 * ARE IDENTICAL. 
0569 * 
0570 * 
0571 TABLA DEF TABLE 
0572 * 

DEFINE STARTING ADDRESS OF TABLE 

0573 * OCTAL PAIRS ADDRESS SYMBOL 
0574 * 
0575 TABLE OCT 
0576 OCT 
0577 OCT 
0578 OCT 
0579 OCT 
0580 OCT 
0581 OCT 
0582 OCT 
0583 OCT 
0584 OCT 
0585 OCT 
0586 OCT 
0587 OCT 
0588 OCT 

021045 
062445 
024071 
054550 
061131 
064143 
051042 
024531 
064147 
053046 
053145 
061527 
064143 
051062 

2-2 2-5 
6-5 2-5 
2-10 3-11 
5-11 6-10 
6-2 5-11 
6-10 6-3 
5-2 2-2 
2-11 5-11 
6-10 6-7 
5-6 2-6 
5-6 6-5 
6-3 5-7 
6-10 6-3 
5-2 3-2 
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-D 
-B 

10 

-0 
+Q,+o,-C 



Source Code of Subroutine SYMB 

0589 OCT 021450 2-3 2-10 
0590 OCT 034531 3-11 5-11 
0591 OCT 064360 6-10 17-0 20 
0592 OCT 042142 4-4 6-2 
0593 OCT 064451 6-11 2-11 +E,+F 
0594 OCT 023126 2-6 5-6 
0595 OCT 023042 2-6 2-2 
0596 OCT 061042 6-2 2-2 +L,-H 
0597 OCT 024446 2-11 2-6 
0598 OCT 063151 6-6 6-11 
0599 OCT 061042 6-2 2-2 30 -N 
0600 OCT 024542 2-11 6-2 -M 
0601 OCT 064506 6-11 4-6 
0602 OCT 024442 2-11 2-2 +K 
0603 OCT 022551 2-5 6-11 
0604 OCT 033142 3-6 6-2 
0605 OCT 072525 7-5 5-5 +G 
0606 OCT 062543 6-5 6-3 
0607 OCT 051062 5-2 3-2 40 
0608 OCT 021450 2-3 2-10 
0609 OCT 034531 3-11 5-11 
0610 OCT 064147 6-10 6-7 
0611 OCT 051062 5-2 3-2 +I 
0612 OCT 041111 4-2 4-11 
0613 OCT 034531 3-11 5-11 
0614 OCT 024444 2-11 2-4 +U,-J 
0615 OCT 021462 2-3 3-2 50 
0616 OCT 051143 5-2 6-3 
0617 OCT 064542 6-11 6-2 +W 
0618 OCT 043042 4-6 2-2 -P,-R 
0619 OCT 024531 2-11 5-11 
0620 OCT 064147 6-10 6-7 
0621 OCT 053046 5-6 2-6 
0622 OCT 043142 4-6 6-2 
0623 OCT 022043 2-4 2-3 60 +S 
0624 OCT 031122 3-2 5-2 
0625 OCT 061545 6-3 6-5 
0626 OCT 053066 5-6 3-6 
0627 OCT 023450 2-7 2-10 
0628 OCT 034531 3-11 5-11 
0629 OCT 064102 6-10 4-2 -T 
0630 OCT 044451 4-11 2-11 -z 
0631 OCT 064442 6-11 2-2 70 
0632 OCT 061360 6-2 17-0 -(PEN UP) 
0633 OCT 033126 3-6 5-6 
0634 OCT 024502 2-11 4-2 +V 
0635 OCT 064442 6-11 2-2 -X,-/ 
0636 OCT 064760 6-11 17-0 
0637 OCT 024542 2-11 6-2 + 
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0638 OCT 024506 2-11 4-6 +y 
0639 OCT 041106 4-2 4-6 100 
0640 OCT 064522 6-11 5-2 -1 
0641 OCT 031102 3-2 4-2 
0642 OCT 044470 4-11 3-10 
0643 OCT 023450 2-7 2-10 +2 
0644 OCT 034531 3-11 5-11 
0645 OCT 064147 6-10 6-7 
0646 OCT 021442 2-3 2-2 
0647 OCT 061122 6-2 5-2 110 -4 
0648 OCT 054444 5-11 2-4 
0649 OCT 062151 6-4 6-11 -5 
0650 OCT 024446 2-11 2-6 -6 
0651 OCT 053145 5-6 6-5 
0652 OCT 061522 6-3 5-2 
0653 OCT 031043 3-2 2-3 
0654 OCT 0220~0 2-4 2-10 
0655 OCT 034531 3-11 5-11 120 
0656 OCT 064050 6-10 2-10 -7 
0657 OCT 024551 2-11 6-11 
0658 OCT 064102 6-10 4-2 
0659 OCT 024071 2-10 3-11 +8,+3 
0660 OCT 054550 5-11 6-10 
0661 OCT 063526 6-7 5-6 
0662 OCT 033126 3-6 5-6 
0663 OCT 062543 6-5 6-3 130 
0664 OCT 051062 5-2 3-2 
0665 OCT 021445 2-3 2-5 
0666 OCT 033047 3-6 2-7 
0667 OCT 024043 2-10 2-3 +9 
0668 OCT 031122 3-2 5-2 
0669 OCT 061550 6-3 6-10 
0670 OCT 054471 5-11 3-11 
0671 OCT 024046 2-10 2-6 140 
0672 OCT 032545 3-5 6-5 
0673 OCT 041507 4-3 4-7 ++ +* , 
0674 OCT 042445 4-5 2-5 
0675 OCT 062505 6-5 4-5 
0676 OCT 021547 2-3 6-7 
0677 OCT 042447 4-5 2-7 
0678 OCT 061446 6-3 2-6 -= 
0679 OCT 063360 6-6 17-0 150 
0680 OCT 021543 2-3 6-3 
0681 OCT 041063 4-2 3-3 +( 
0682 OCT 034111 3-10 4-11 
0683 OCT 041123 4-2 5-3 +) 
0684 OCT 054111 5-10 4-11 
0685 OCT 051062 5-2 3-2 +[ 
0686 OCT 034531 3-11 5-11 
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0687 OCT 031122 3-2 5-2 160 +] 
0688 OCT 054471 5-11 3-11 
0689 OCT 041111 4-2 4-11 + 
0690 OCT 034130 3-10 5-10 
0691 OCT 044545 4-11 6-5 
0692 OCT 022466 2-5 3-6 
0693 OCT 032045 3-4 2-5 
0694 OCT 023450 2-7 2-10 +? 
0695 OCT 034531 3-11 5-11 170 
0696 OCT 064147 6-10 6-7 
0697 OCT 053106 5-6 4-6 
0698 OCT 042360 4-4 17-0 
0699 OCT 031122 3-2 5-2 +1 
0700 OCT 041462 4-3 3-2 
0701 OCT 170104 17-0 4-4 
0702 OCT 044507 4-11 4-7 + t , +" 
0703 OCT 054511 5-11 4-11 200 
0704 OCT 170051 17-0 2-11 
0705 OCT 023471 2-7 3-11 
0706 OCT 024463 2-11 3-3 -11 
0707 OCT 033466 3-7 3-6 
0708 OCT 023146 2-6 6-6 
0709 OCT 053127 5-6 5-7 
0710 OCT 051524 5-3 5-4 
0711 OCT 062044 6-4 2-4 210 
0712 OCT 022063 2-4 3-3 +$ 
0713 OCT 051544 5-3 6-4 
0714 OCT 062446 6-5 2-6 
0715 OCT 023470 2-7 3-10 
0716 OCT 054147 5-10 6-7 
0717 OCT 170111 17-0 4-11 
0718 OCT 041050 4-2 2-10 -% 
0719 OCT 034071 3-10 3-11 220 
0720 OCT 024360 2-10 17-0 
0721 OCT 021151 2-2 6-11 
0722 OCT 170142 17-0 6-2 
0723 OCT 061522 6-3 5-2 
0724 OCT 061107 6-2 4-7 
0725 OCT 043126 4-6 5-6 
0726 OCT 053507 5-7 4-7 
0727 OCT 170123 17-0 5-3 
0728 OCT 041504 4-3 4-4 
0729 OCT 052123 5-4 5-3 
0730 OCT 041043 4-2 2-3 
0731 OCT 061760 6-3 17-0 
0732 OCT 062046 6-4 2-6 +> 

0733 OCT 064043 6-10 2-3 
0734 OCT 061760 6-3 17-0 
0735 OCT 022146 2-4 6-6 240 +> 
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0736 OCT 024042 2-10 2-2 
0737 OCT 042004 4-4 0-4 
0738 OCT 000100 0-0 4-0 
0739 OCT 042042 4-4 2-2 
0740 OCT 022024 2-4 1-4 
0741 OCT 001401 0-3 0-1 
0742 OCT 010060 1-0 3-0 
0743 OCT 040503 4-1 4-3 250 
0744 OCT 032044 3-4 2-4 
0745 OCT 021044 2-2 2-4 
0746 OCT 000501 0-1 4-1 
0747 OCT 022042 2-4 2-2 
0748 OCT 021403 2-3 0-3 
0749 OCT 020103 2-0 4-3 
0750 OCT 021442 2-3 2-2 
0751 OCT 021044 2-2 2-4 260 
0752 OCT 020042 2-0 2-2 
0753 OCT 001102 0-2 4-2 
0754 OCT 021004 2-2 0-4 
0755 OCT 040042 4-0 2-2 
0756 OCT 000104 0-0 4-4 
0757 OCT 021044 2-2 2-4 
0758 OCT 001040 0-2 2-0 
0759 OCT 041044 4-2 2-4 270 
0760 OCT 021002 2-2 0-2 
0761 OCT 022040 2-4 2-0 
0762 OCT 022102 2-4 4-2 
0763 OCT 021004 2-2 0-4 
0764 OCT 042042 4-4 2-2 
0765 OCT 000042 0-0 2-2 
0766 OCT 040042 4-0 2-2 
0767 OCT 021022 2-2 1-2 300 
0768 OCT 031042 3-2 2-2 
0769 OCT 042004 4-4 0-4 
0770 OCT 042000 4-4 0-0 
0771 OCT 040000 4-0 0-0 
0772 OCT 021004 2-2 0-4 
0773 OCT 021104 2-2 4-4 
0774 OCT 021040 2-2 2-0 
0775 OCT 021104 2-2 4-4 310 
0776 OCT 031423 3-3 1-3 
0777 OCT 002023 0-4 1-3 
0778 OCT 010400 1-1 0-0 
0779 OCT 010461 1-1 3-1 
0780 OCT 040061 4-0 3-1 
0781 OCT 031442 3-3 2-2 
0782 OCT 002104 0-4 4-4 
0783 OCT 000100 0-0 4-0 320 
0784 OCT 021042 2-2 2-2 
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0785 OCT 061360 6-2 17-0 
0786 OCT 022545 2-5 6-5 
0787 OCT 170050 17-0 2-10 
0788 OCT 064051 6-10 2-11 -1,1116 
0789 OCT 021111 2-2 4-11 
0790 OCT 041063 4-2 3-3 
0791 OCT 051502 5-3 4-2 330 
0792 OCT 022545 2-5 6-5 + 
0793 OCT 053124 5-6 5-4 
0794 OCT 062562 6-5 7-2 
0795 OCT 021126 2-2 5-6 
0796 OCT 024571 2-11 7-11 
0797 OCT 023146 2-6 6-6 + 
0798 OCT 170043 17-0 2-3 
0799 OCT 061760 6-3 17-0 340 
0800 OCT 053462 5-7 3-2 
0801 OCT 021543 2-3 6-3 + 
0802 OCT 170046 17-0 2-6 
0803 OCT 063106 6-6 4-6 
0804 OCT 044104 4-10 4-4 345 
0805 OCT 021507 2-3 4-7 + 
0806 OCT 061544 6-3 6-4 -@ 
0807 OCT 051463 5-3 3-3 350 
0808 OCT 022047 2-4 2-7 
0809 OCT 034130 3-10 5-10 
0810 OCT 063545 6-7 6-5 
0811 OCT 052104 5-4 4-4 
0812 OCT 032466 3-5 3-6 
0813 OCT 043527 4-7 5-7 
0814 OCT 063142 6-6 6-2 
0815 OCT 033470 3-73-10 
0816 OCT 044530 4-11 5-10 
0817 OCT 022444 2-5 2-4 
0818 OCT 031503 3-3 3-4 
0819 OCT 062000 6-4 
0820 * 
0821 * 
0822 END 
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FTN4 
C 

0001 
0002 
0003 
0004 C 
0005 C 
0006 C 
0007 C 
0008 C 
0009 C 
0010 C 
0011 C 
0012 C 
0013 C 
0014 C 
0015 
0016 
0017 
0018 
0019 
0020 
0021 
0022 
0023 
0024 C 

PROGRAM PLTME 

THIS PROGRAM WILL MAKE A TIME DOMAIN PLOT OF AN ACOUSTIC 
EMISSION SIGNAL RECORDED ON THE KENNEDY 9000 TAPE DECK. 
THE USER HAS THE OPTION OF VIEWING THE WAVEFORMS ONLY OR , 
VIEWING AND WRITING GOOD WAVEFORM NUMBERS TO A DISC FILE. 

WRITTEN BY JOHN CARLYLE 

DIMENSION LU(5),IREG(2),INBUF(36),IPBUF(10),IBUF(36) 
DIMENSION IDCB1(144),ITPNM(12),LVOLT(3),LTIME(6) 
DIMENSION TRX(2048),NTAPE(1024),IREC2(512) 
EQUIVALENCE (REG,IREG),(TRX(1537),NTAPE) 
EQUIVALENCE (NTAPE(513),IREC2) 
LOGICAL VIEW,EOF 
DATA ICNT/1/,IUSLA/17537B/,EOF/.FALSE.I,VIEW/.TRUE.I 
DATA LVOLT/2HVO,2HLT,2HS I,MINUS/26400BI 
DATA LTIME/2HMI,2HCR,2HOS,2HEC,2HON,2HDSI 

0025 C RECOVER PARAMETERS, REWIND TAPE, AND DETERMINE MODE 

C 

CALL RMPAR(LU) 
IF(LU(1).EQ.O) LU(1)=1 
ILU=LU(1)+400B 
CALL EXEC(3,410B) 
CALL PLTLU(LU(1» 
WRITE(LU(1),10) 

10 FORMAT("/PLTME: VIEW WAVEFORMS 
READ(LU(1),20) IV 

20 FORMAT(A2) 
IF(IV.EQ.47117B) VIEW=.FALSE. 
IF(VIEW) GO TO 210 

ONLY? _") 

0026 C 
0027 
0028 
0029 
0030 
0031 
0032 
0033 
0034 
0035 
0036 
0037 
0038 
0039 
0040 
0041 
0042 
0043 
0044 
0045 
0046 
0047 
0048 
0049 

C GET 'NAMR' INFORMATION AND CREATE FILE FOR NON-VIEW MODE 
C 

30 WRITE(LU(1),40) 
40 FORMAT("/PLTME: ENTER 'NAMR' FOR DATA FILE: _") 

REG=EXEC(1,ILU,INBUF,-72) 
ISCHR=1 
IF(NAMR(IPBUF,INBUF,IREG(2),ISCHR» 30,50 

50IREG(1)=-1 
IREG(2)=0 
CALL CREAT(IDCB1,IERR,IPBUF,IREG,3,IPBUF(5),IPBUF(6») 
IF(IERR.GE.O) GO TO 70 
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ITRY=ITRY+1 
IF(ITRY.GE.3) GO TO 110 
WRITE(LU(1),60) IERR 

60 FORMAT("/PLTME: FILE ERROR 
GO TO 30 

",14,". TRY AGAIN!",/) 

C GET HEADER DATA AND WRITE IT TO DATA FILE FOR NON-VIEW MODE 
C 

0050 
0051 
0052 
0053 
0054 
0055 
0056 
0057 
0058 
0059 
0060 
0061 
0062 
0063 
0064 
0065 
0066 
0067 
0068 
0069 
0070 
0071 
0072 
0073 
0074 
0075 
0076 
0077 
0078 
0079 
0080 
0081 
0082 
0083 
0084 
0085 
0086 
0087 
0088 
0089 
0090 C 
0091 
0092 
0093 
0094 
0095 
0096 
0097 
0098 

C 

70 WRITE(LU(1),80) 
80 FORMAT("/PLTME: TYPE IN ONE LINE OF HEADER DATA.",/) 

REG=EXEC(1,ILU,INBUF,36) 
CALL CODE(IREG(2)*2) 
READ(INBUF,*) (TRX(I),I=1,5) 
IF(TRX(1).NE.0.O) GO TO 140 
IF(ITRY.NE.O) GO TO 100 
DO 90 1= 1 ,36 
IBUF(I)=INBUF(I) 

90 CONTINUE 
INDNT=(73-IREG(2)*2)*7 
ITRY=1 

100 CALL WRITF(IDCB1,IERR,INBUF,IREG(2» 
IF(IERR.GE.O) GO TO 70 

110 WRITE(LU(1),120) IERR 
120 FORMAT("/PLTME: FILE ERROR ",14,". ABORTING PROGRAM!",/) 
130 CALL PURGE(IDCB1,IERR,IPBUF,IPBUF(5),IPBUF(6» 

GO TO 620 
140 VOLTS=TRX( 1) 

RATE=TRX(2) 
CALL WRITF(IDCB1,IERR,INBUF,IREG(2» 
IF(IERR.LT.O) GO TO 110 

150 WRITE(LU(1),160) 
160 FORMAT("/PLTME: ENTER TAPE FILE NUMBER: _") 

REG=EXEC(1,ILU,INBUF,36) 
CALL CODE(IREG(2)*2) 
READ(INBUF,*) IFILE 
IF(IFILE.LE.O) GO TO 150 
CALL WRITF(IDCB1,IERR,INBUF,IREG(2» 
IF(IERR.LT.O) GO TO 110 

C POSITION TO PROPER TAPE FILE FOR BOTH MODES 

170 IF(ICNT.EQ.IFILE) GO TO 200 
ICNT=ICNT+1 
CALL EXEC(3,1310B) 
REG=EXEC(3,610B) 
IREG(1)=IAND(73B,IREG(1» 
IF(IREG(1).EQ.0) GO TO 170 

180 WRITE(LU(1),190) IREG(1) 
190 FORMAT("/PLTME: MAG TAPE STATUS = 
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0099 +"PROGRAMI",/) 
0100 GO TO 130 
0101 200 IF(VIEW) GO TO 250 
0102 IWAVE=IWAVE+1 
0103 GO TO 360 
0104 C 
0105 C GET WAVEFORM DATA FOR VIEWING ONLY MODE 
0106 C 
0107 210 WRITE(LU(1),220) 
0108 220 FORMAT("/PLTME: ENTER GRAPH TITLE:") 
0109 REG=EXEC(1,ILU,IBUF,-72) 
0110 INDNT=(73-IREG(2»*7 
0111 WRITE(LU(1),230) 
0112 230 FORMAT("/PLTME: ENTER ATTENUATOR SETTING AND SAMPLING ", 
0113 +"RATE: _H) 
0114 READ(LU(1),*) VOLTS,RATE 
0115 240 WRITE(LU(1),160) 
0116 READ(LU(1),*) IFILE 
0117 IF(IFILE.LE.O) GO TO 240 
0118 GO TO 170 
0119 250 ICNT=O 
0120 260 ICNT=ICNT+1 
0121 270 WRITE(LU(1),280) 
0122 280 FORMAT("/PLTME: ENTER WAVEFOR}l NUMBER _H) 
0123 READ(LU(1),*) IWAVE 
0124 IF(IWAVE.LE.O) GO TO 270 
0125 IF(IWAVE-ICNT) 340,360,290 
0126 C 
0127 C POSITION TO PROPER RECORD FOR VIEWING MODE 
0128 C 
0129 290 IF(IWAVE.EQ.ICNT) GO TO 360 
0130 ICNT=ICNT+1 
0131 DO 300 1=1,2 
0132 CALL EXEC(3,310B) 
0133 REG=EXEC(3,610B) 
0134 IREG(1)=IAND(373B,IREG(1» 
0135 IF(IREG(1).EQ.200B) EOF=.TRUE. 
0136 IF(IREG(1).LT.200B.AND.IREG(1).NE.0) GO TO 180 
0137 300 CONTINUE 
0138 IF(.NOT.EOF) GO TO 290 
0139 310 WRITE(LU(1),320) 
0140 320 FORMAT("/PLTME: WAVEFORM NUMBER TOO BIG!",/) 
0141 EOF=.FALSE. 
0142 DO 330 1=1,2 
0143 CALL EXEC(3,1410B) 
0144 REG=EXEC(3,610B) 
0145 IREG(1)=IAND(73B,IREG(1» 
0146 IF(IREG(1).NE.0) GO TO 180 
0147 330 CONTINUE 

-263-



Source Code of Program PLTME 

0148 IF(IFILE.EQ.1) GO TO 250 
0149 CALL EXEC(3,310B) 
0150 GO TO 250 
0151 340 IF(IWAVE.EQ.ICNT) GO TO 360 
0152 ICNT=ICNT-1 
0153 DO 350 1=1,2 
0154 CALL EXEC(3,210B) 
0155 REG=EXEC(3,610B) 
0156 IREG(1)=IAND(373B,IREG(1» 
0157 IF(IREG(1).NE.0) GO TO 180 
0158 350 CONTINUE 
0159 GO TO 340 
0160 C 
0161 C READ IN DATA AND UNPACK IT FOR BOTH MODES 
0162 C 
0163 360 CALL ERASE(LU(1» 
0164 CALL EXEC(1,110B,NTAPE,512) 
0165 REG=EXEC(3,610B) 
0166 IREG(1)=IAND(373B,IREG(1» 
0167 IF(IREG(1).EQ.200B) EOF=.TRUE. 
0168 IF(IREG(1).LT.200B.AND.IREG(1).NE.0) GO TO 180 
0169 IF(EOF) GO TO 370 
0170 CALL EXEC(1,110B,IREC2,512) 
0171 REG=EXEC(3,610B) 
0172 IREG(1)=IAND(373B,IREG(1» 
0173 IF(IREG(1).EQ.200B) EOF=.TRUE. 
0174 IF(IREG(1).LT.200B.AND.IREG(1).NE.0) GO TO 180 
0175 IF(.NOT.EOF) GO TO 380 
0176 370 IF(VIEW) GO TO 310 
0177 GO TO 570 
0178 380 DO 390 L=1,2047,2 
0179 LN=(L+1)/2 
0180 L2=L+1 
0181 IREG(2)=IAND(377B,NTAPE(LN» 
0182 IREG(1)=JSHFT(NTAPE(LN),8) 
0183 IREG(1)=IAND(377B,IREG(1» 
0184 TRX(L)=FLOAT(IREG(1)-128) 
0185 TRX(L2)=FLOAT(IREG(2)-128) 
0186 390 CONTINUE 
0187 C 
0188 C FIND MAX AND MIN OF DATA AND OBTAIN MAGNIFIER FOR BOTH MODES 
0189 C 
0190 TMAX=-128 
0191 TMIN=127 
0192 DO 400 1=1,2048 
0193 TMAX=AMAX1(TMAX,TRX(I» 
0194 TMIN=AMIN1(TMIN,TRX(I» 
0195 400 CONTINUE 
0196 IF(TMAX.LE.64.0.AND.TMIN.GE.-64.0) GO TO 410 
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0197 IMAG=1 
0198 GO TO 430 
0199 410 IF(TMAX.LE.25.0.AND.TMIN.GE.-25.0) GO TO 420 
0200 IMAG=2 
0201 GO TO 430 
0202 420 IMAG=5 
0203 C 
0204 C DRAW AXES AND TICK MARKS FOR BOTH MODES 
0205 C 
0206 430 CALL TPLOT(LU(1),0,137,137) 
0207 CALL TPLOT(LU(1),1,937,137) 
0208 CALL TPLOT(LU(1),1,937,637) 
0209 CALL TPLOT(LU(1),1,137,637) 
0210 CALL TPLOT(LU(1),1,137,137) 
0211 DO 440 J=1,9 
0212 IYP=J*50+137 
0213 CALL TPLOT(LU(1),0,137,IYP) 
0214 CALL TPLOT(LU(1),1,145,IYP) 
0215 CALL TPLOT(LU(1),0,929,IYP) 
0216 CALL TPLOT(LU(1),1,937,IYP) 
0217 440 CONTINUE 
0218 DO 450 J=1,9 
0219 IXP=J*80+137 
0220 CALL TPLOT(LU(1),0,IXP,137) 
0221 CALL TPLOT(LU(1),1,IXP,145) 
0222 CALL TPLOT(LU(1),0,IXP,629) 
0223 CALL TPLOT(LU(1),1,IXP,637) 
0224 450 CONTINUE 
0225 C 
0226 C LABEL ORDINATE, ABSCISSA AND GRAPH FOR BOTH MODES 
0227 C 
0228 DO 470 J=1,5 
0229 IYP=J*100+80 
0230 VMAX=VOLTS/FLOAT(IMAG) 
0231 YABLE=ABS(VMAX-«VMAX/2.0)*(5.0-FLOAT(J»» 
0232 CALL TPLOT(LU(1),0,70,IYP) 
0233 CALL EXEC(2,LU(1),IUSLA,-2) 
0234 WRITE(LU(1),460) YABLE 
0235 460 FORMAT(F4.3) 
0236 470 CONTINUE 
0237 DO 490 J=1,2 
0238 IYP=J*100+80 
0239 CALL TPLOT(LU(1),0,56,IYP) 
0240 CALL EXEC(2,LU(1),IUSLA,-2) 
0241 WRITE(LU(1),480) MINUS 
0242 480 FORMAT(A1) 
0243 490 CONTINUE 
0244 CALL SYMB(0.36,3.55,0.14,LVOLT,90. 0 ,5) 
0245 DO 500 J=0,5 
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IXP=J*160+111 
XABLE=FLOAT(J)*RATE*409.6 
CALL TPLOT(LU(1),0,IXP,102) 
CALL EXEC(2,LU(1),IUSLA,-2) 
WRITE(LU(1),460) XABLE 

500 CONTINUE 
CALL TPLOT(LU(1),0,456,70) 
CALL EXEC(2,LU(1),IUSLA,-2) 
WRITE(LU(1),510) LTIME 

510 FORMAT(6A2) 
CALL TPLOT(LU(1),0,INDNT,750) 
CALL EXEC(2,LU(1),IUSLA,-2) 
WRITE(LU(1),520) IBUF 

520 FORMAT(36A2) 
CALL TPLOT(LU(1),0,350,725) 
CALL EXEC(2,LU(1),IUSLA,-2) 
WRITE(LU(1),530) IWAVE 

530 FORMAT("BIOMATION RECORDING ",13) 

C PLOT WAVEFORM FOR BOTH MODES 
C 

0246 
0247 
0248 
0249 
0250 
0251 
0252 
0253 
0254 
0255 
0256 
0257 
0258 
0259 
0260 
0261 
0262 
0263 
0264 
0265 
0266 
0267 
0268 
0269 
0270 
0271 
0272 
0273 
0274 
0275 
0276 
0277 
0278 
0279 
0280 
0281 
0282 
0283 
0284 
0285 
0286 
0287 
0288 
0289 
0290 
0291 
0292 
0293 
0294 C 

C 

DO 550 1= 1 ,2048 
IXP=FLOAT(I)*0.390625+137.0 
IYP=TRX(I)*1.5625*FLOAT(IMAG)+387.0 
IF(I.NE.1) GO TO 540 
CALL TPLOT(LU(1),0,IXP,IYP) 
GO TO 550 

540 CALL TPLOT(LU(1),1,IXP,IYP) 
550 CONTINUE 

CALL CURSR(LU(1),IQUIT,IXP,IYP) 
IF(.NOT.VIEW) GO TO 560 
CALL ERASE(LU(1» 
IF(IQUIT.NE.121B) GO TO 260 
GO TO 600 

560 IF(IQUIT.NE.107B) GO TO 200 

C WRITE GOOD WAVEFORMS TO DISK FOR NON-VIEWING MODE 
C 

IPNT=IPNT+1 
ITPNM(IPNT)=IWAVE 
IF(IPNT.LT.15) GO TO 200 

570 CALL CODE 
WRITE(INBUF,580) (ITPNM(I),I=1,IPNT) 

580 FORMAT(15(I3," "» 
CALL WRITF(IDCB1,IERR,INBUF,IPNT*2) 
IF(IERR.LT.O) GO TO 110 
IPNT=O 
IF(.NOT.EOF) GO TO 200 
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C RETURN UNUSED DISK SPACE AND QUIT 0295 
0296 C 
0297 
0298 
0299 
0300 
0301 
0302 
0303 
0304 
0305 
0306 
0307 
0308 
0309 

CALL ERASE(LU(1)) 
CALL LOCF(IDCB1,IERR,I,IREC,J,LEN) 
LEN=LEN/2-IREC-1 
CALL CLOSE(IDCB1,IERR,LEN) 
IF(IERR.GE.O) GO TO 600 
WRITE(LU(1),590) IERR,LEN 

590 FORMAT("/PLTME: ERROR ",14," IN TRUNCATING DATA FILE BY", 
+16," BLOCKSI",/) 

600 WRITE(LU(1),610) 
610 FORMAT("/PLTME: FINISHEDI",/) 
620 CONTINUE 

CALL EXEC(3,410B) 
END 
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0001 
0002 
0003 

ASMB,R,F 

0004 
0005 * 

NAM JSHFT,7 
ENT JSHFT 
EXT .ENTR 

0006 * FUNCTION JSHFT(IWORD,ICOUNT) 
0007 * 
0008 * WHERE: 
0009 * 

IWORD IS THE WORD TO BE SHIFTED 
ICOUNT IS THE NUMBER OF BITS TO SHIFT 
NEGATIVE ICOUNT SHIFTS THE WORD LEFT 
POSITIVE ICOUNT SHIFTS THE WORD RIGHT 

0010 * 
0011 * 
0012 * 
0013 * 
0014 * WRITTEN BY JOHN CARLYLE 
0015 * 
0016 * 
0017 WORD 
0018 COUNT 
0019 JSHFT 
0020 
0021 
0022 
0023 
0024 
0025 
0026 
0027 

NOP 
NOP 
NOP 
JSB .ENTR 
DEF WORD 
LDA WORD,I 
LDB COUNT,I 
SZB,RSS 
JMP JSHFT,I 
SSB 
JMP LEFT 

0028 RIGHT CMB,INB 
0029 RAR 
0030 
0031 
0032 
0033 LEFT 
0034 
0035 
0036 EXIT 
0037 

INB,SZB 
JMP *-2 
JMP EXIT 
RAL 
INB,SZB 
JMP *-2 
JMP JSHFT,I 
END JSHFT 

GET ADDRESSES OF PARAMETERS 

GET THE WORD 
GET THE COUNT 
IS COUNT ZERO? 
YES, RETURN 
NO, IS THE COUNT POSITIVE? 
NO, WILL SHIFT LEFT 
YES, INITIALIZE FOR PLACE 
ROTATE RIGHT ONE PLACE 
NUMBER OF SHIFTS COMPLETE? 
NO, DO IT AGAIN 
YES, DONE 
ROTATE LEFT ONE PLACE 
NUMBER OF SHIFTS COMPLETE? 
NO, DO IT AGAIN 
YES, RETURN 

-268-



Source Code of Program AENOR 

FTN14 
C 

0001 
0002 
0003 
00014 C 
0005 C 
0006 C 
0007 C 
0008 C 
0009 C 
0010 C 
0011 C 
0012 C 
0013 C 
00114 C 
0015 C 
0016 
0017 
0018 
0019 
0020 
0021 
0022 
0023 
0024 
0025 
0026 
0027 
0028 
0029 
0030 
0031 
0032 
0033 
0034 
0035 
0036 
0037 
0038 
0039 
00140 
0041 
0042 
0043 
0044 
0014 5 
0046 
0047 
0048 
0049 

C 

PROGRAM AENOR 

THIS PROGRAM READS THE FILE CREATED BY <PLTME) AND CREATES 
ANOTHER DISC FILE CONTAINING ALL OF THE HEADER INFORMATION 
IN THE ORIGINAL FILE PLUS POWER SPECTRA DATA CALCULATED FROM 
THE EXPERIMENTAL WAVEFORM TAPE USING THE WAVEFORM NUMBERS 
IN THE <PLTME) FILE FOR POSITIONING. 

WRITTEN BY JOHN CARLYLE 

DIMENSION LU(5),IREG(2),INBUF(36),IPBUF(10) 
DIMENSION IDCB1(144),IDCB2(11414),ITPNM(36) 
DIMENSION TRX(2050),NTAPE(1024),IREC2(512) 
DIMENSION POWER(1025),DOUT(1027),DATA(18) 
EQUIVALENCE (REG,IREG),(DATA,ITPNM),(POWER,TRX) 
EQUIVALENCE (TRX(1537),NTAPE),(NTAPE(513),IREC2) 
EQUIVALENCE (POWER,DOUT(2)) 
DATA ICNT/1/ 

C RECOVER PARAMETERS 
C 

C 

CALL RMPAR(LU) 
IF(LU(1).EQ.0) LU(1)=1 
ILU=LU(' )+400B 

C GET 'NAMR' INFORMATION 
C 

C 

10 WRITE(LU(1),20) ICNT 
20 FORMAT("/AENOR: ENTER 'NAMR' FOR FILE 1f",I1,": _") 

REG=EXEC(1,ILU,INBUF,-72) 
ISCHR=1 
IF(NAMR(IPBUF,INBUF,IREG(2),ISCHR)) 10,30 

30 IF(ICNT.NE.1) GO TO 70 

C OPEN FILE 1f1 
C 

C 

CALL OPEN(IDCB1,IERR,IPBUF,0,IPBUF(5),IPBUF(6)) 
IF(IERR.GE.O) GO TO 60 

40 WRITE(LU(1),50) IERR 
50 FORMAT("/AENOR: FILE ERROR ",14,". TRY AGAIN!",/) 

GO TO 10 

C CREATE FILE 1f2 
C 
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0050 60 ICNT=2 
0051 GO TO 10 
0052 70 IREG(1)=-1 
0053 IREG(2)=0 
0054 CALL CREAT(IDCB2,IERR,IPBUF,IREG,3,IPBUF(5),IPBUF(6» 
0055 IF(IERR.GE.O) GO TO 80 
0056 ITRY=ITRY+1 
0057 IF(ITRY.LT.3) GO TO 40 
0058 GO TO 110 
0059 C 
0060 C READ DATA IN CONTROL FILE 
0061 C 
0062 80 ITRY=-1 
0063 90 DO 100 L=1,36 
0064 ITPNM(L)=O 
0065 100 CONTINUE 
0066 CALL READF(IDCB1,IERR,INBUF,36,LEN) 
0067 IF(IERR.GE.O) GO TO 130 
0068 110 WRITE(LU(1),120) IERR 
0069 120 FORMAT("/AENOR: FILE ERROR ",14,". ABORTING PROGRAMl",/) 
0070 GO TO 400 
0071 130 IF(LEN.NE.-1) GO TO 160 
0072 IF(ITRY) 140,140,360 
0073 140 WRITE(LU(1),150) 
0074 150 FORMAT("/AENOR: EOF IN CONTROL FILE. ABORTING", 
0075 +"PROGRAMl",/) 
0076 GO TO 400 
0077 C 
0078 C TRANSFER HEADER DATA TO DATA FILE 
0079 C 
0080 160 IF(ITRY) 170,190,190 
0081 170 CALL CODE(LEN*2) 
0082 READ(INBUF,*) (DATA(I),I=1,18) 
0083 IF(DATA(1).NE.0.0) GO TO 180 
0084 CALL WRITF(IDCB2,IERR,INBUF,LEN) 
0085 IF(IERR.GE.O) GO TO 90 
0086 GO TO 110 
0087 C 
0088 C GET BIOMATION INPUT RANGE AND PROPER TAPE FILE 
0089 C 
0090 180 VOLTS=DATA(1)*0.0078125 
0091 CALL WRITF(IDCB2,IERR,INBUF,LEN) 
0092 IF(IERR.LT.O) GO TO 110 
0093 ITRY=O 
0094 GO TO 90 
0095 190 CALL CODE(LEN*2) 
0096 READ(INBUF,*) (ITPNM(I),I=1,36) 
0097 IF(ITRY) 200,200,260 
0098 200 IFILE=ITPNM(1) 
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ITRY=1 
IF(IFILE) 210,210,230 

210 WRITE(LU(1),220) 
220 FORMAT("/AENOR: INVALID MAG TAPE FILE. 

+"PROGRAMI",/) 
GO TO 400 

ABORTING" 

C POSITION MAG TAPE TO FILE AND INITIALIZE POINTERS 
C 

0099 
0100 
0101 
0102 
0103 
0104 
0105 
0106 
0107 
0108 
0109 
0110 
0111 
0112 
0113 
0114 
0115 
0116 
0117 
0118 
0119 
0120 
0121 
0122 C 

230 

240 

250 

ICNT=1 
CALL EXEC(3,410B) 
IF(ICNT.EQ.IFILE) GO TO 250 
ICNT=ICNT+1 
CALL EXEC(3,1310B) 
REG=EXEC(3,610B) 
IREG(1)=IAND(73B,IREG(1» 
IF(IREG(1).NE.0) GO TO 300 
GO TO 240 
IAE=1 
IREC=1 
CALL WRITF(IDCB2,IERR,INBUF,0) 
IF(IERR.GE.O) GO TO 90 
GO TO 110 

0123 C POSITION TO GOOD AE WAVEFORM RECORD 
0124 C 
0125 
0126 
0127 
0128 
0129 
0130 
0131 
0132 
0133 
0134 
0135 
0136 
0137 
0138 C 

260 ICNT=1 
270 IF(ITPNM(ICNT).EQ.O) GO TO 90 
280 IF(ITPNM(ICNT).EQ.IREC) GO TO 290 

IREC=IREC+1 
CALL EXEC(3,310B) 
REG=EXEC(3,610B) 
IREG(1)=IAND(373B,IREG(1» 
IF(IREG(1).NE.0) GO TO 300 
CALL EXEC(3,310B) 
REG=EXEC(3,610B) 
IREG(1)=IAND(373B,IREG(1» 
IF(IREG(1).NE.0) GO TO 300 
GO TO 280 

0139 C READ IN BIOMATION RECORD AND UNPACK IT 

290 CALL EXEC(1,110B,NTAPE,512) 
REG=EXEC(3,610B) 
IREG(1)=IAND(373B,IREG(1» 
IF(IREG(1).EQ.0) GO TO 320 

, 

0140 C 
0141 
0142 
0143 
0144 
0145 
0146 
0147 

300 WRITE(LU(1),310) IREG(1) 
310 FORMAT("/AENOR: MAG TAPE STATUS = 

+"PROGRAMI",/) 
",03,"B. ABORTING", 
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0148 GO TO 400 
0149 320 CALL EXEC(1,110B,IREC2,512) 
0150 REG=EXEC(3,610B) 
0151 IREG(1)=IAND(373B,IREG(1» 
0152 IF(IREG(1).NE.0) GO TO 300 
0153 DO 330 L=1,2047,2 
0154 LN=(L+1)/2 
0155 L2=L+1 
0156 IREG(2)=IAND(377B,NTAPE(LN» 
0157 IREG(1)=JSHFT(NTAPE(LN),8) 
0158 IREG(1)=IAND(377B,IREG(1» 
0159 TRX(L)=FLOAT(IREG(1)-128)*VOLTS 
0160 TRX(L2)=FLOAT(IREG(2)-128)*VOLTS 
0161 330 CONTINUE 
0162 C 
0163 C OBTAIN NORMALIZED POWER SPECTRUM REF. 1 MW INTO 50 OHMS 
0164 C VALUES HAVE BEEN DOUBLED FOR FREQUENCIES OTHER THAN DC 
0165 C 
0166 CALL FOUR2(TRX,2048,1,-1,0) 
0167 TOTN=O.O 
0168 DO 340 L=1,2049,2 
0169 LN=(L+1)/2 
0170 TRX(L)=TRX(L)/2048.0 
0171 TRX(L+1)=TRX(L+1)/2048.0 
0172 POWER(LN)=TRX(L)*TRX(L)+TRX(L+1)*TRX(L+1) 
0173 POWER(LN)=POWER(LN)*20.0 
0174 IF(LN.NE.1) POWER(LN)=POWER(LN)*2.0 
0175 TOTN=TOTN+POWER(LN) 
0176 340 CONTINUE 
0177 IF(IAE.NE.1) GO TO 350 
0178 TOTO=TOTN 
0179 350 DOUT(1)=TOTO/TOTN 
0180 DOUT(1027)=FLOAT(ITPNM(ICNT» 
0181 C 
0182 C WRITE NORMALIZING FACTOR AND SPECTRUM TO DISC 
0183 C 
0184 CALL WRITF(IDCB2,IERR,DOUT,2054) 
0185 IF(IERR.LT.O) GO TO 110 
0186 ICNT=ICNT+1 
0187 IREC=IREC+1 
0188 IAE=IAE+1 
0189 GO TO 270 
0190 C 
0191 C RETURN UNUSED DISC SPACE AND QUIT 
0192 C 
0193 360 CALL LOCF(IDCB2,IERR,ICNT,IREC,L,LEN) 
0194 LEN=LEN/2-IREC-1 
0195 CALL CLOSE(IDCB2,IERR,LEN) 
0196 IF(IERR.GE.O) GO TO 380 

-272-



Source Code of Program AENOR 

0197 WRITE(LU(1),370) IERR,LEN 
0198 370 FORMAT("/AENOR: ERROR ",I4," IN DELETING FILE2 BY ",I6, 
0199 +" BLOCKSI",/) 
0200 380 WRITE(LU(1),390) 
0201 390 FORMAT("/AENOR: FINISHED!",/) 
0202 GO TO 410 
0203 400 CALL PURGE(IDCB2,IERR,IPBUF,IPBUF(5),IPBUF(6» 
0204 410 CALL CLOSE(IDCB1,IERR) 
0205 END 
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FTN4 0001 
0002 
0003 C 
0004 C 
0005 C 
0006 C 
0007 C 
0008 C 
0009 C 
0010 C 
0011 C 
0012 C 
0013 C 
0014 C 
0015 C 
0016 C 
0017 C 
0018 C 
0019 C 
0020 C 
0021 C 
0022 C 
0023 C 
0024 C 
0025 C 
0026 C 
0027 C 
0028 C 
0029 C 
0030 C 
0031 C 
0032 
0033 
0034 
0035 
0036 
0037 
0038 
0039 
0040 
0041 
0042 
0043 
0044 
0045 
0046 
0047 
0048 
0049 

SUBROUTINE FOUR2 (DATA,N,NDIM,ISIGN,IFORM) 
COOLEY-TUKEY FAST FOURIER TRANSFORM IN USASI BASIC 
FORTRAN. MULTI-DIMENSIONAL TRANSFORM, EACH DIMENSION 
A POWER OF TWO, COMPLEX OR REAL DATA. 
TRANSFORM(K1,K2, ••• ) = SUM(DATA(J1,J2, •.• ).EXP(ISIGN*2.PI 
·SQRT(-1)*«J1-1)·(K1-1)/N(1)+(J2-1)·(K2_1)/N(2)+ .•• ))), 
SUMMED FOR ALL J1 AND K1 FROM 1 TO N(1), J2 AND K2 FROM 
TO N(2) ETC. FOR ALL NDIM SUBSCRIPTS. NDIM MUST BE 
POSITIVE AND EACH N(IDIM) MUST BE A POWER OF TWO. ISIGN 
IS +1 OR -1. LET NTOT = N(1).N(2) ••••• N(NDIM). THEN A -1 
TRANSFORM FOLLOWED BY A +1 ONE (OR VICE VERSA) RETURNS 
NTOT TIMES THE ORIGINAL DATA. IFORM = 1, 0 OR -1, AS DATA 
IS COMPLEX, REAL OR THE FIRST HALF OF A COMPLEX ARRAY. 
TRANSFORM VALUES ARE RETURNED TO ARRAY DATA. THEY ARE 
COMPLEX, REAL OR THE FIRST HALF OF A COMPLEX ARRAY, AS 
IFORM = 1, -1 OR O. THE TRANSFORM OF A REAL ARRAY (IFOml 
= 0) DIMENSIONED N(1) BY N(2) BY ••• WILL BE RETURNED IN 
THE SAME ARRAY, NOW CONSIDERED TO BE COMPLEX OF DIMENSIONS 
N(1)/2+1 BY N(2) By •••• NOTE THAT IF IFORM = 0 OR -1, 
N(1) MUST BE EVEN, AND ENOUGH ROOM MUST BE RESERVED. THE 
MISSING VALUES MAY BE OBTAINED BY COMPLEX CONJUGATION. 
THE REVERSE TRANSFORMATION, OF A HALF COMPLEX ARRAY DIMEN­
SIONED N(1)/2+1 BY N(2) BY ••• , IS ACCOMPLISHED BY SETTING 
IFORM TO -1. IN THE N ARRAY, N(1) MUST BE THE TRUE N(1), 
NOT N(1)/2+1. THE TRANSFORM WILL BE REAL AND RETURNED TO 
THE INPUT ARRAY. RUNNING TIME IS PROPORTIONAL TO NTOT* 
LOG2(NTOT), RATHER THAN THE NAIVE NTOT**2. FURTHERMORE, 
LESS ERROR IS BUILT UP. WRITTEN BY NORMAN BRENNER OF MIT 
LINCOLN LABORATORY, JANUARY 1969. SEE-- IEEE AUDIO 
TRANSACTIONS (JUNE 1967), SPECIAL ISSUE ON FFT. 
DIMENSION DATA(1), N(1) 
NTOT=1 
DO 10 IDIM=1,NDIM 

10 NTOT=NTOT*N(IDIM) 
IF (IFORM) 70,20,20 

20 NREM=NTOT 
DO 60 IDIM=1,NDIM 
NREM=NREM/N(IDIM) 
NPREV=NTOT/(N(IDIM)·NREM) 
NCURR=N(IDIM) 
IF (IDIM-1+IFORM) 30,30,40 

30 NCURR=NCURR/2 
40 CALL BITRV (DATA,NPREV,NCURR,NREM) 

CALL COOL2 (DATA,NPREV,NCURR,NREM,ISIGN) 
IF (IDIM-1+IFORM) 50,50,60 

50 CALL FIXRL (DATA,N(1),NREM,ISIGN,IFORM) 
NTOT=(NTOT/N(1))·(N(1)/2+1) 

60 CONTINUE 
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0050 
0051 
0052 
0053 
0054 
0055 
0056 
0057 
0058 
0059 
0060 
0061 
0062 
0063 
0064 
0065 
0066 
0067 C 
0068 C 
0069 C 
0070 C 
0071 C 
0072 C 
0073 C 
0074 C 
0075 C 
0076 C 
0077 C 
0078 C 
0079 C 
0080 C 
0081 C 
0082 C 
0083 C 
0084 C 
0085 C 
0086 C 
0087 C 
0088 C 
0089 C 
0090 C 
0091 C 
0092 C 
0093 C 
0094 
0095 
0096 
0097 
0098 
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RETURN 
70 NTOT=(NTOT/N(1»*(N(1)/2+1) 

NREM=1 
DO 100 JDIM=1,NDIM 
IDIM=NDIM+1-JDIM 
NCURR=N(IDIM) 
IF (IDIM-1) 80,80,90 

80 NCURR=NCURR/2 
CALL FIXRL (DATA,N(1),NREM,ISIGN,IFORM) 
NTOT=NTOT/(N(1)/2+1)*N(1) 

90 NPREV=NTOT/(N(IDIM)*NREM) 
CALL BITRV (DATA, NPREV, NCURR, NREM) 
CALL COOL2 (DATA,NPREV,NCURR,NREM,ISIGN) 

100 NREM=NREM*N(IDIM) 
RETURN 
END 
SUBROUTINE COOL2 (DATA,NPREV,N,NREM,ISIGN) 
DISCRETE FOURIER TRANSFORM OF LENGTH N. IN-PLACE COOLEY­
TUKEY ALGORITHM, BIT-REVERSED TO NORMAL ORDER, SANDE-TUKEY 
PHASE SHIFTS. 
DIMENSION DATA(NPREV,N,NREM) 
COMPLEX DATA 
DATA(J1,K4,J5) = SUM(DATA(J1,J4,J5)*EXP(ISIGN*2*PI*I* 
(J4-1)*(K4-1)/N», SUMMED OVER J4 = 1 TO N FOR ALL J1 FROM 
1 TO NPREV, K4 FROM 1 TO NAND J5 FROM 1 TO NREM. N MUST 
BE A POWER OF TWO. METHOD--LET IPREV TAKE THE VALUES 1, 2 
OR 4, 4 OR 8, ••• , N/16, N/4, N. THE CHOICE BETWEEN 2 OR 
4, ETC., DEPENDS ON WHETHER N IS A POWER OF FOUR. DEFINE 
IFACT = 2 OR 4, THE NEXT FACTOR THAT IPREV MUST TAKE, AND 
IREM = N/(IFACT*IPREV). THEN--
DIMENSION DATA(NPREV,IPREV,IFACT,IREM,NREM) 
COMPLEX DATA 
DATA(J1,J2,K3,J4,J5) = SUM(DATA(J1,J2,J3,J4,J5)*EXP(ISIGN* 
PI*I*(K3-1)*«J3-1)/IFACT+(J2-1)/(IFACT*IPREV»», SUMMED 
J3 = 1 TO IFACT FOR ALL J1 FROM 1 TO NPREV, J2 FROM 1 TO 
IPREV, K3 FROM 1 TO IFACT, J4 FROM 1 TO IREM AND J5 FROM 1 
TO NREM. THIS IS A PHASE-SHIFTED DISCRETE FOURIER TRANS­
FORM OF LENGTH IFACT. FACTORING N BY FOURS SAVES ABOUT 
TWENTY FIVE PERCENT OVER FACTORING BY TWOS. DATA MUST BE 
BIT-REVERSED INITIALLY. IT IS NOT NECESSARY TO REWRITE 
THIS SUBROUTINE INTO COMPLEX NOTATION SO LONG AS THE 
FORTRAN COMPILER USED STORES REAL AND IMAGINARY PARTS IN 
ADJACENT STORAGE LOCATIONS. IT MUST ALSO STORE ARRAYS 
WITH THE FIRST SUBSCRIPT INCREASING FASTEST. 
DIMENSION DATA(1) 
TWOPI=6.2831853071786*FLOAT(ISIGN) 
IPO=2 
IP1=IPO*NPREV 
IP4=IP1*N 
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0099 IP5=IP4*NREM 
0100 IP2=IP1 
0101 C IP2=IP1*IPROD 
0102 NPART=N 
0103 10 IF (NPART-2) 60,30,20 
0104 20 NPART=NPART/4 
0105 GO TO 10 
0106 C DO A FOURIER TRANSFORM OF LENGTH TWO 
0107 30 IF (IP2-IP4) 40,160,160 
0108 40 IP3=IP2*2 
0109 C IP3=IP2*IFACT 
0110 DO 50 I1=1,IP1,IPO 
0111 C 11 = 1+(J1-1)*IPO 
0112 DO 50 I5=I1,IP5,IP3 
0113 C 15 = 1+(J1-1)*IPO+(J4-1)*IP3+(J5-1)*IP4 
0114 I3A=I5 
0115 I3B=I3A+IP2 
0116 C 13 = 1+(J1-1)*IPO+(J2-1)*IP1+(J3-1)*IP2+(J4-1)*IP3+ 
0117 C (J5-1)*IP4 
0118 TEMPR=DATA(I3B) 
0119 TEMPI=DATA(I3B+1) 
0120 DATA(I3B)=DATA(I3A)-TEMPR 
0121 DATA(I3B+1)=DATA(I3A+1)-TEMPI 
0122 DATA(I3A)=DATA(I3A)+TEMPR 
0123 50 DATA(I3A+1)=DATA(I3A+1)+TEMPI 
0124 IP2=IP3 
0125 C DO A FOURIER TRANSFORM OF LENGTH FOUR (FROM BIT 
0126 C REVERSED ORDER) 
0127 60 IF (IP2-IP4) 70,160,160 
0128 70 IP3=IP2*4 
0129 C IP3=IP2*IFACT 
0130 C COMPUTE TWOPI THRU WR AND WI IN DOUBLE PRECISION, IF 
0131 C AVAILABLE. 
0132 THETA=TWOPI/FLOAT(IP3/IP1) 
0133 SINTH=SIN(THETA/2.) 
0134 WSTPR=-2.*SINTH*SINTH 
0135 WSTPI=SIN(THETA) 
0136 WR=1. 
0137 WI=O. 
0138 DO 150 I2=1,IP2,IP1 
0139 C 12 = 1+(J2-1)*IP1 
0140 IF (12-1) 90,90,80 
0141 80 W2R=WR*WR-WI*WI 
0142 W2I=2.*WR*WI 
0143 W3R=W2R*WR-W2I*WI 
0144 W3I=W2R*WI+W2I*WR 
0145 90 I1MAX=I2+IP1-IPO 
0146 DO 140 I1=I2,I1MAX,IPO 
0147 C 11 = 1+(J1-1)*IPO+(J2-1)*IP1 
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0148 DO 140 I5=I1,IP5,IP3 
0149 C 15 = 1+(J1-1)*IPO+(J2-1)*IP1+(J4-1)*IP3+(J5_1)*IP4 
0150 I3A=I5 
0151 I3B=I3A+IP2 
0152 I3C=I3B+IP2 
0153 I3D=I3C+IP2 
0154 C 13 = 1+(J1-1)*IPO+(J2-1)*IP1+(J3-1)IIP2+(J4-1)IIP3+ 
0155 C (J5-1)*IP4 
0156 IF (12-1) 110,110,100 
0157 C APPLY THE PHASE SHIFT FACTORS 
0158 100 TEMPR=DATA(I3B) 
0159 DATA(I3B)=W2R*DATA(I3B)-W2I*DATA(I3B+1) 
0160 DATA(I3B+1)=W2R*DATA(I3B+1)+W2I*TEMPR 
0161 TEMPR=DATA(I3C) 
0162 DATA(I3C)=WR*DATA(I3C)-WI*DATA(I3C+1) 
0163 DATA(I3C+1)=WR*DATA(I3C+1)+WI*TEMPR 
0164 TEMPR=DATA(I3D) 
0165 DATA(I3D)=W3R*DATA(I3D)-W3I*DATA(I3D+1) 
0166 DATA(I3D+1)=W3R*DATA(I3D+1)+W3I*TEMPR 
0167 110 TOR=DATA(I3A)+DATA(I3B) 
0168 TOI=DATA(I3A+1)+DATA(I3B+1) 
0169 T1R=DATA(I3A)-DATA(I3B) 
0170 T1I=DATA(I3A+1)-DATA(I3B+1) 
0171 T2R=DATA(I3C)+DATA(I3D) 
0172 T2I=DATA(I3C+1)+DATA(I3D+1) 
0173 T3R=DATA(I3C)-DATA(I3D) 
0174 T3I=DATA(I3C+1)-DATA(I3D+1) 
0175 DATA(I3A)=TOR+T2R 
0176 DATA(I3A+1)=TOI+T21 
0177 DATA(I3C)=TOR-T2R 
0178 DATA(I3C+1)=TOI-T2I 
0179 IF (ISIGN) 120,120,130 
0180 120 T3R=-T3R 
0181 T3I=-T31 
0182 130 DATA(I3B)=T1R-T31 
0183 DATA(I3B+1)=T1I+T3R 
0184 DATA(I3D)=T1R+T31 
0185 140 DATA(I3D+1)=T1I-T3R 
0186 TEMPR=WR 
0187 WR=WSTPR*TEMPR-WSTPI*WI+TEMPR 
0188 150 WI=WSTPR*WI+WSTPI*TEMPR+WI 
0189 IP2=IP3 
0190 GO TO 60 
0191 160 RETURN 
0192 END 
0193 SUBROUTINE FIXRL (DATA,N,NREM,ISIGN,IFORM) 

REAL 0194 C FOR IFORM = 0, CONVERT THE TRANSFORM OF A DOUBLED-UP 
0195 C ARRAY, CONSIDERED COMPLEX, INTO ITS TRUE TRANSFORM. 

AS 0196 C SUPPLY ONLY THE FIRST HALF OF THE COMPLEX TRANSFORM, 
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0197 
0198 
0199 
0200 
0201 
0202 
0203 
0204 
0205 
0206 
0207 
0208 
0209 
0210 
0211 
0212 
0213 
0214 
0215 
0216 
0217 
0218 
0219 
0220 
0221 C 
0222 
0223 
0224 
0225 
0226 
0227 
0228 
0229 
0230 
0231 
0232 
0233 
0234 
0235 
0236 
0237 
0238 
0239 
0240 
0241 
0242 
0243 
0244 
0245 

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

10 
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THE SECOND HALF HAS CONJUGATE SYMMETRY. FOR IFORM = -1, 
CONVERT THE FIRST HALF OF THE TRUE TRANSFORM INTO THE 
TRANSFORM OF A DOUBLED-UP ARRAY. N MUST BE EVEN. 
USING COMPLEX NOTATION AND SUBSCRIPTS STARTING AT ZERO, 
THE TRANSFORMATION IS--
DIMENSION DATA(N,NREM) 
ZSTP = EXP(ISIGN*2*PI*I/N) 
DO 10 I2=0,NREM-1 
DATA(0,I2) = CONJ(DATA(0,I2»*(1+I) 
DO 10 I1=1,N/4 
Z = (1+(2*IFORM+1)*I*ZSTP**I1)/2 
I1CNJ = N/2-I1 
DIF = DATA(I1,I2)-CONJ(DATA(I1CNJ,I2» 
TEMP = Z*DIF 
DATA(I1,I2) = (DATA(I1,I2)-TEMP)*(1-IFORM) 
DATA(I1CNJ,I2) = (DATA(I1CNJ,I2)+CONJ(TEMP»*(1-IFORM) 
IF I1=I1CNJ, THE CALCULATION FOR THAT VALUE COLLAPSES 
INTO A SIMPLE CONJUGATION OF DATA(I1,I2). 
DIMENSION DATA(1) 
TWOPI=6.2831853071786*FLOAT(ISIGN) 
IPO=2 
IP1=IPO*(N/2) 
IP2=IP1*NREM 
IF (IFORM) 10,70,70 
PACK THE REAL INPUT VALUES (TWO PER COLUMN) 

10 J1=IP1+1 
DATA(2)=DATA(J1) 
IF (NREM-1) 70,70,20 

20 J1=J1+IPO 
I2MIN=IP1+1 
DO 60 I2=I2MIN,IP2,IP1 
DATA(I2)=DATA(J1) 
J1=J1+IPO 
IF (N-2) 50,50,30 

30 I1MIN=I2+IPO 
I1MAX=I2+IP1-IPO 
DO 40 I1=I1MIN,I1MAX,IPO 
DATA(I1)=DATA(J1) 
DATA(I1+1)=DATA(J1+1) 

40 J1=J1+IPO 
50 DATA(I2+1)=DATA(J1) 
60 J1=J1+IPO 
70 DO 80 I2=1,IP2,IP1 

TEMPR=DATA(I2) 
DATA(I2)=DATA(I2)+DATA(I2+1) 

80 DATA(I2+1)=TEMPR-DATA(I2+1) 
IF (N-2) 200,200,90 

90 THETA=TWOPI/FLOAT(N) 
SINTH=SIN(THETA/2.) 
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0246 
0247 
0248 
0249 
0250 
0251 
0252 
0253 
0254 
0255 
0256 
0257 
0258 
0259 
0260 
0261 
0262 
0263 
0264 
0265 
0266 
0267 
0268 
0269 
0270 
0271 
0272 
0273 
0274 
0275 
0276 
0277 
0278 
0279 C 
0280 C 
0281 
0282 C 
0283 
0284 
0285 
0286 
0287 
0288 
0289 
0290 
0291 
0292 
0293 
0294 

Source Code of Subroutine FOUR2 

ZSTPR=-2.*SINTH*SINTH 
ZSTPI=SIN(THETA) 
ZR=(1.-ZSTPI)/2. 
ZI=(1.+ZSTPR)/2. 
IF (IFORM) 100,110,110 

100 ZR=1.-ZR 
ZI=-ZI 

110 I1MIN=IPO+1 
I1MAX=IPO*(N/4)+1 
DO 190 I1=I1MIN,I1MAX,IPO 
DO 180 I2=I1,IP2,IP1 
I2CNJ=IPO*(N/2+1)-2*I1+I2 
IF (I2-I2CNJ) 150,120,120 

120 IF (ISIGN*(2*IFORM+1» 130,140,140 
130 DATA(I2+1)=-DATA(I2+1) 
140 IF (IFORM) 170,180,180 
150 DIFR=DATA(I2)-DATA(I2CNJ) 

DIFI=DATA(I2+1)+DATA(I2CNJ+1) 
TEMPR=DIFR*ZR-DIFI*ZI 
TEMPI=DIFR*ZI+DIFI*ZR 
DATA(I2)=DATA(I2)-TEMPR 
DATA(I2+1)=DATA(I2+1)-TEMPI 
DATA(I2CNJ)=DATA(I2CNJ)+TEMPR 
DATA(I2CNJ+1)=DATA(I2CNJ+1)-TEMPI 
IF (IFORM) 160,180,180 

160 DATA(I2CNJ)=DATA(I2CNJ)+DATA(I2CNJ) 
DATA(I2CNJ+1)=DATA(I2CNJ+1)+DATA(I2CNJ+1) 

170 DATA(I2)=DATA(I2)+DATA(I2) 
DATA(I2+1)=DATA(I2+1)+DATA(I2+1) 

180 CONTINUE 
TEMPR=ZR-.5 
ZR=ZSTPR*TEMPR-ZSTPI*ZI+ZR 

190 ZI=ZSTPR*ZI+ZSTPI*TEMPR+ZI 
RECURSION SAVES TIME, AT A SLIGHT LOSS IN ACCURACY. IF 
AVAILABLE, USE DOUBLE PRECISION TO COMPUTE ZR AND ZI. 

200 IF (IFORM) 270,210,210 
UNPACK THE REAL TRANSFORM VALUES (TWO PER COLUMN) 

210 I2=IP2+1 
11=12 
J1=IPO*(N/2+1)*NREM+1 
GO TO 250 

220 DATA(J1)=DATA(I1) 
DATA(J1+1)=DATA(I1+1) 
I1=I1-IPO 
J1=J1-IPO 

230 IF -(12-11) 220,240,240 
240 DATA(J1)=DATA(I1) 

DATA(J1+1)=0. 
250 I2=I2-IP1 
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0295 
0296 
0297 
0298 
0299 
0300 
0301 
0302 
0303 
0304 
0305 C 
0306 C 
0307 C 
0308 C 
0309 C 
0310 C 
0311 C 
0312 C 
0313 
0314 
0315 
0316 
0317 
0318 
0319 C 
0320 
0321 C 
0322 
0323 
0324 
0325 C 
0326 
0327 C 
0328 
0329 C 
0330 
0331 
0332 
0333 
0334 
0335 
0336 C 
0337 C 
0338 
0339 
0340 
0341 
0342 
0343 
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J1=J1-IPO 
DATA(J1)=DATA(I2+1) 
DATA(J1+1)=0. 
I1=I1-IPO 
J1=J1-IPO 
IF (12-1) 260,260,230 

260 DATA(2)=0. 
270 RETURN 

END 
SUBROUTINE BITRV (DATA,NPREV,N,NREM) 
SHUFFLE THE DATA BY BIT REVERSAL. 
DIMENSION DATA(NPREV,N,NREM) 
COMPLEX DATA 
EXCHANGE DATA(J1,J4REV,J5) WITH DATA(J1,J4,J5) FOR ALL J1 
FROM 1 TO NPREV, ALL J4 FROM 1 TO N (WHICH MUST BE A POWER 
OF TWO), AND ALL J5 FROM 1 TO NREM. J4REV-1 IS THE BIT 
REVERSAL OF J4-1, E.G., SUPPOSE N = 32. THEN FOR J4-1 = 
10011, J4REV-1 = 11001, ETC. 
DIMENSION DATA(1) 
IPO=2 
IP1=IPO*NPREV 
IP4=IP1*N 
IP5=IP4*NREM 
I4REV= 1 
I4REV = 1+(J4REV-1)*IP1 
DO 60 I4=1,IP4,IP1 
14 = 1+(J4-1)*IP1 
IF (I4-I4REV) 10,30,30 

10 I1MAX=I4+IP1-IPO 
DO 20 I1=I4,I1MAX,IPO 
11 = 1+(J1-1)*IPO+(J4-1)*IP1 
DO 20 15=I1,IP5,IP4 
15 = 1+(J1-1)*IPO+(J4-1)*IP1+(J5-1)*IP4 
I5REV=I4REV+I5-I4 
I5REV = 1+(J1-1)*IPO+(J4REV-1)*IP1+(J5-1)*IP4 
TEMPR=DATA(I5) 
TEMPI=DATA(I5+1) 
DATA(I5)=DATA(I5REV) 
DATA(I5+1)=DATA(I5REV+1) 
DATA(I5REV)=TEMPR 

20 DATA(I5REV+1)=TEMPI 
ADD ONE WITH DOWNWARD CARRY TO THE HIGH ORDER BIT 
OF J4REV-1. 

30 IP2=IP4/2 
40 IF (I4REV-IP2) 60,60,50 
50 I4REV=I4REV-IP2 

IP2=IP2/2 
IF (IP2-IP1) 60,40,40 

60 I4REV=I4REV+IP2 
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0344 RETURN 
0345 END 
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FTN4 
C 

0001 
0002 
0003 
0004 C 
0005 C 
0006 C 
0007 C 
0008 C 
0009 C 
0010 C 
0011 C 
0012 C 
0013 C 
0014 C 
0015 
0016 
0017 
0018 
0019 
0020 
0021 
0022 
0023 
0024 
0025 
0026 
0027 
0028 
0029 
0030 
0031 
0032 
0033 
0034 
0035 
0036 
0037 
0038 
0039 
0040 
0041 
0042 
0043 
0044 
0045 
0046 
0047 
0048 
0049 

C 

PROGRAM GASJT 

THIS PROGRAM READS AN EXPERIMENTAL TAPE CONTAINING GAS JET 
RECORDINGS, CALCULATES A POWER SPECTRUM FOR EACH RECORDING, 
AVERAGES THE SPECTRA, AND PRODUCES A DISC FILE CONTAINING 
HEADER INFORMATION AS WELL AS THE AVERAGE POWER SPECTRUM. 

WRITTEN BY JOHN CARLYLE 

DIMENSION LU(5),IREG(2),INBUF(36),IPBUF(10) 
DIMENSION IDCB1(144),TRX(2050),NTAPE(1024),IREC2(512) 
DIMENSION POWER(1025),CUM(1025),DOUT(1027),IFILE(2) 
EQUIVALENCE (IREG,REG),(CUM,DOUT(2»,(POWER,TRX) 
EQUIVALENCE (TRX(1537),NTAPE),(NTAPE(513),IREC2) 
DATA IFILE/-1,0/ 
CALL RMPAR(LU) 
IF(LU(1).EQ.0) LU(1)=1 
ILU=LU(1)+400B 

C GET 'NAMR' AND CREATE DATA FILE 
C 

C 

10 WRITE(LU(1),20) 
20 FORMAT("/GASJT: ENTER 'NAMR' FOR DATA FILE: _H) 

REG=EXEC(1,ILU,INBUF,-72) 
ISCHR=1 
IF(NAMR(IPBUF,INBUF,IREG(2),ISCHR» 10,30 

30 CALL CREAT(IDCB1,IERR,IPBUF,IFILE,3,IPBUF(5),IPBUF(6» 
IF(IERR.GE.O) GO TO 50 
WRITE(LU(1),40) IERR 

40 FORMAT("/GASJT: FILE ERROR ",14,". TRY AGAIN!",/) 
GO TO 10 

C GET HEADER DATA AND WRITE IT TO DATA FILE 
C 

50 WRITE(LU(1),60) 
60 FORMAT("/GASJT: TYPE IN ONE LINE OF HEADER DATA.",/) 

REG=EXEC(1,ILU,INBUF,36) 
CALL CODE(IREG(2)*2) 
READ(INBUF,*) (POWER(I),I=1,5) 
IF(POWER(1).NE.0.0) GO TO 100 
CALL WRITF(IDCB1,IERR,INBUF,IREG(2» 
IF(IERR.GE.O) GO TO 50 

70 WRITE(LU(1),80) IERR 
80 FORMAT("/GASJT: FILE ERROR ",14,". ABORTING PROGRAMI",/) 
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90 CALL PURGE(IDCB1,IERR,IPBUF,IPBUF(5),IPBUF(6» 
GO TO 250 

100 VOLTS=POWER(1)*0.0078125 
CALL WRITF(IDCB1,IERR,INBUF,IREG(2» 
IF(IERR.LT.O) GO TO 70 
CALL WRITF(IDCB1,IERR,INBUF,0) 
IF(IERR.LT.O) GO TO 70 

C GET TAPE FILE NUMBER AND POSITION MAG TAPE 
C 

0050 
0051 
0052 
0053 
0054 
0055 
0056 
0057 
0058 
0059 
0060 
0061 
0062 
0063 
0064 
0065 
0066 
0067 
0068 
0069 
0070 
0071 
0072 
0073 
0074 
0075 
0076 
0077 
0078 
0079 
0080 
0081 
0082 
0083 
0084 
0085 
0086 
0087 
0088 
0089 
0090 
0091 
0092 
0093 
0094 
0095 
0096 
0097 
0098 C 

C 

110 WRITE(LU(1),120) 
120 FORMAT("/GASJT: TAPE FILE NUMBER? _") 

READ(LU(1),*) IFILE(1) 
IF(IFILE(1).LE.0) GO TO 110 
ICNT=1 
CALL EXEC(3,410B) 

130 IF(ICNT.EQ.IFILE(1» GO TO 160 
ICNT=ICNT+1 
CALL EXEC(3,1310B) 
REG=EXEC(3,610B) 
IREG(1)=IAND(73B,IREG(1» 
IF(IREG(1).EQ.0) GO TO 130 

140 WRITE(LU(1),150) IREG(1) 
150 FORMAT("/GASJT: MAG TAPE STATUS = ",03,"B. ABORTING", 

+"PROGRAM!",/) 
GO TO 90 

C READ IN BIOMATION RECORD AND UNPACK IT 
C 

160 
170 

180 

IAE=1 
CALL EXEC(1,110B,NTAPE,512) 
REG=EXEC(3,610B) 
IREG(1)=IAND(373B,IREG(1» 
IF(IREG(1).EQ.200B) GO TO 200 
IF(IREG(1).NE.0) GO TO 140 
CALL EXEC(1,110B,IREC2,512) 
REG=EXEC(3,610B) 
IREG(1)=IAND(373B,IREG(1» 
IF(IREG(1).NE.0) GO TO 140 
DO 180 L=1,2047,2 
LN= (L+1 )/2 
L2=L+1 
IREG(2)=IAND(377B,NTAPE(LN» 
IREG(1)=JSHFT(NTAPE(LN),8) 
IREG(1)=IAND(377B,IREG(1» 
TRX(L)=FLOAT(IREG(1)-128)*VOLTS 
TRX(L2)=FLOAT(IREG(2)-128)*VOLTS 
CONTINUE 
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0099 C CALCULATE POWER SPECTRUM REF. 1 MW INTO 50 OHMS 
0100 C VALUES HAVE BEEN DOUBLED FOR FREQUENCIES OTHER THAN DC 
0101 C CALCULATE AVERAGE IN ARRAY 'CUM' 
0102 C 
0103 CALL FOUR2(TRX,2048,1,-1,0) 
0104 DO 190 L=1,2049,2 
0105 LN=(L+1)/2 
0106 TRX(L)=TRX(L)/2048.0 
0107 TRX(L+1)=TRX(L+1)/2048.0 
0108 POWER(LN)=TRX(L)*TRX(L)+TRX(L+1)*TRX(L+1) 
0109 POWER(LN)=POWER(LN)*20.0 
0110 IF(LN.NE.1) POWER(LN)=POWER(LN)*2.0 
0111 CUM(LN)=POWER(LN)+CUM(LN) 
0112 190 CONTINUE 
0113 IAE=IAE+1 
0114 GO TO 170 
0115 C 
0116 C WRITE OUT AVERAGED POWER SPECTRUM WHEN EOF ENCOUNTERED 
0117 C 
0118 200 IAE=IAE-1 
0119 DO 210 1=1,1025 
0120 CUM(I)=CUM(I)/FLOAT(IAE) 
0121 210 CONTINUE 
0122 DOUT(1)=1.00 
0123 DOUT(1027)=FLOAT(IAE) 
0124 CALL WRITF(IDCB1,IERR,DOUT,2054) 
0125 IF(IERR.LT.O) GO TO 70 
0126 CALL LOCF(IDCB1,IERR,ICNT,IREC,L,LEN) 
0127 IF(IERR.LT.O) GO TO 70 
0128 LEN=LEN/2-IREC-1 
0129 CALL CLOSE(IDCB1,IERR,LEN) 
0130 IF(IERR.GE.O) GO TO 230 
0131 WRITE(LU(1),220) IERR,LEN 
0132 220 FORMAT("/GASJT: ERROR ",14," IN TRUNCATING FILE BY ",16, 
0133 +" BLOCKS!",/) 
0134 230 WRITE(LU(1),240) 
0135 240 FORMAT("/GASJT: FINISHED!",/) 
0136 250 CONTINUE 
0137 END 
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FTN4 
C 

0001 
0002 
0003 
0004 C 
0005 C 
0006 C 
0007 C 
0008 C 
0009 C 
0010 C 
0011 C 
0012 C 
0013 C 
0014 C 
0015 C 
0016 
0017 
0018 
0019 
0020 
0021 
0022 
0023 
0024 
0025 
0026 
0027 
0028 
0029 
0030 
0031 
0032 
0033 
0034 
0035 
0036 
0037 
0038 
0039 
0040 
0041 
0042 
0043 
0044 
0045 
0046 
0047 
0048 
0049 

C 

PROGRAM PLFFT 

THIS PROGRAM WILL MAKE A FREQUENCY DOMAIN PLOT OF ACOUSTIC 
EMISSION SIGNALS USING THE DATA PRODUCED BY (AENOR) AND 
<GASJT). THE USER HAS THE OPTION OF NORMALIZING THE PLOTS 
USING THE GAS JET DATA FOR THE EXPERIMENT, AND CAN ALSO 
EXAMINE SHAPE CHANGES THROUGH CONSTANT ENERGY PLOTS. 

WRITTEN BY JOHN CARLYLE 

DIMENSION LU(5),IREG(2),INBUF(36),IPBUF(10),TBUF(18) 
DIMENSION IDCB1(144),DATA(1028),HBUF(18),IDATA(2056) 
DIMENSION IBUF1(6),IBUF2(B),IBUF3(10) 
DIMENSION IDCB2(144),GAS(102B) 
EQUIVALENCE (REG,IREG),(INBUF,HBUF),(DATA,IDATA) 
EQUIVALENCE (DATA(1011),TBUF) 
DATA ICNT/1/,IUSLA/17537B/,ITRY/-1/,IMAG/11 
DATA IBUF1/2HPO,2HWE,2HR ,2H(D,2HBM,2H) I 
DATA IBUF2/2HFR,2HEQ,2HUE,2HNC,2HY ,2H(M,2HHZ,2H) / 
DATA IBUF3/2HRE,2HLA,2HTI,2HVE,2H P,2HOW,2HER, 

+2H (,2HDB,2H) / 

C RECOVER PARAMETERS 
C 

C 

CALL RMPAR(LU) 
IF(LU(1).EQ.0) LU(1)=1 
ILU=LU(1)+400B 

C GET 'NAMR' INFORMATION 
C 

C 

CALL PLTLU(LU(1» 
10 WRITE(LU(1),20) ICNT 
20 FORMAT("/PLFFT: ENTER 'NAMR' FOR FILE #",11,": 

REG=EXEC(1,ILU,INBUF,-72) 
ISCHR=1 
IF(NAMR(IPBUF,INBUF,IREG(2),ISCHR» 10,30 

30 IF(ICNT.NE.1) GO TO BO 

C OPEN FILE 111 
C 

CALL OPEN(IDCB1,IERR,IPBUF,0,IPBUF(5),IPBUF(6» 
IF(IERR.GE.O) GO TO 60 

-") 

40 WRITE(LU(1),50) IERR 
50 FORMAT("/PLFFT: FILE ERROR ",14,". TRY AGAIN!",/) 
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0050 GO TO 10 
0051 C 
0052 C OPEN FILE #2 AND READ GAS JET DATA 
0053 C 
0054 60 WRITE(LU(1),70) 
0055 70 FORMAT("/PLFFT: PLOT WAVEFORMS NORMALIZED BY GAS JET? ") 
0056 READ(LU(1),190) IGAS -
0057 IF(IGAS.NE.54505B) GO TO 150 
0058 ICNT=2 
0059 GO TO 10 
0060 80 CALL OPEN(IDCB2,IERR,IPBUF,0,IPBUF(5),IPBUF(6» 
0061 IF(IERR.GT.O) GO TO 90 
0062 ITRY=ITRY+1 
0063 IF(ITRY.LT.2) GO TO 40 
0064 GO TO 220 
0065 90 ITRY=-1 
0066 100 CALL READF(IDCB2,IERR,GAS,2056,LEN) 
0067 IF(LEN.LT.O.OR.IERR.LT.O) GO TO 220 
0068 IF(LEN.NE.O.AND.ITRY.GT.O) GO TO 110 
0069 IF(LEN.NE.O) GO TO 100 
0070 ITRY=1 
0071 GO TO 100 
0072 110 IF(LEN.EQ.2054) GO TO 120 
0073 GO TO 320 
0074 120 DO 140 1=2,1026 
0075 IF(GAS(I).GT.O.O) GO TO 130 
0076 GAS(I)=-99.0 
0077 GO TO 140 
0078 130 GAS(I)=ALOGT(GAS(I» 
0079 140 CONTINUE 
0080 C 
0081 C READ DATA IN PLOT FILE 
0082 C 
0083 150 ICNT=-1 
0084 ITRY=-1 
0085 160 WRITE(LU(1),170) 
0086 170 FORMAT("/PLFFT: WHICH BIOMATION RECORDING DO YOU WANT? _H) 
0087 READ(LU(1),*) INUM 
0088 IF(ICNT.NE.-1) GO TO 200 
0089 WRITE(LU(1),180) 
0090 180 FORMAT("/PLFFT: PLOT WAVEFORMS WITH CONSTANT ENERGY? _H) 
0091 READ(LU(1),190) ICAL 
0092 190 FORMAT(A2) 
0093 200 CALL ERASE(LU(1» 
0094 210 CALL READF(IDCB1,IERR,DATA,2056,LEN) 
0095 IF(IERR.GE.O) GO TO 240 
0096 220 WRITE(LU(1),230) IERR 
0097 230 FORMAT("/PLFFT: FILE ERROR ",14,". ABORTING PROGRAM!",/) 
0098 GO TO 630 
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0099 240 IF(LEN.NE.-1) GO TO 260 
0100 WRITE(LU(1),250) 
0101 250 FORMAT("/PLFFT: EOF ENCOUNTERED. FINISHED!") 
0102 GO TO 630 
0103 260 IF(ICNT) 270,300,310 
0104 270 CALL CODE(LEN*2) 
0105 READ(IDATA,*) (TBUF(I),I=1,18) 
0106 IF(TBUF(1).NE.0.0) GO TO 290 
0107 IF(ITRY.GE.O) GO TO 210 
0108 DO 280 1=1,18 
0109 HBUF(I)=DATA(I) 
0110 280 CONTINUE 
0111 INDNT=(73-LEN*2)*7 
0112 ITRY=1 
0113 GO TO 210 
0114 290 TlME=TBUF(2) 
0115 BNDWT=1.0/(TlME*2.048) 
0116 ICNT=O 
0117 GO TO 210 
0118 300 IF(LEN.NE.O) GO TO 210 
0119 ICNT=1 
0120 GO TO 210 
0121 310 IF(LEN.EQ.2054) GO TO 340 
0122 320 WRITE(LU(1),330) LEN 
0123 330 FORMAT("/PLFFT: IMPOSSIBLE LENGTH = ",15,". ABORTING", 
0124 +"PROGRAM!",/) 
0125 GO TO 630 
0126 340 IF(IFIX(DATA(1027».LT.INUM) GO TO 210 
0127 C 
0128 C OBTAIN LOG OF DATA AND GET MAX VALUE 
0129 C 
0130 D IMAG=1 
0131 DMAX=-99.0 
0132 DO 370 1=2,1026 
0133 IF(ICAL.EQ.54505B) DATA(I)=DATA(I)*DATA(1) 
0134 350 IF(DATA(I).GT.O.O) GO TO 360 
0135 DATA(I)=-99.0 
0136 GO TO 370 
0137 360 DATA(I)=ALOGT(DATA(I» 
0138 IF(IGAS.EQ.54505B) DATA(I)=DATA(I)-GAS(I) 
0139 DMAX=AMAX1(DMAX,DATA(I» 
0140 370 CONTINUE 
0141 lMAX=IFIX(DMAX) 
0142 IF(DMAX.GE.O.O) IMAX=IMAX+1 
0143 C 
0144 C DRAW AXES AND TICK MARKS 
0145 C 
0146 380 CALL TPLOT(LU(1),0,137,137) 
0147 CALL TPLOT(LU(1),1,937,137) 
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0148 CALL TPLOT(LU(1),1,937,637) 
0149 CALL TPLOT(LU(1),1,137,637) 
0150 CALL TPLOT(LU(1),1,137,137) 
0151 DO 390 J=1,9 
0152 IYP=J*50+137 
0153 CALL TPLOT(LU(1),0,137,IYP) 
0154 CALL TPLOT(LU(1),1,145,IYP) 
0155 CALL TPLOT(LU(1),0,929,IYP) 
0156 CALL TPLOT(LU(1),1,937,IYP) 
0157 390 CONTINUE 
0158 DO 400 J=1,9 
0159 IXP=J*80+137 
0160 CALL TPLOT(LU(1),0,IXP,137) 
0161 CALL TPLOT(LU(1),1,IXP,145) 
0162 CALL TPLOT(LU(1),0,IXP,629) 
0163 CALL TPLOT(LU(1),1,IXP,637) 
0164 400 CONTINUE 
0165 C 
0166 C LABEL ORDINATE, ABSCISSA, AND GRAPH 
0167 C 
0168 DO 420 J=0,5 
0169 IYP=J*100+130 
0170 LABEL=(IMAX-5+J)*10 
0171 CALL TPLOT(LU(1),0,70,IYP) 
0172 CALL EXEC(2,LU(1),IUSLA,-2) 
0173 WRITE(LU(1),410) LABEL 
0174 410 FORMAT(I4) 
0175 420 CONTINUE 
0176 IF(IGAS.NE.54505B) GO TO 430 
0177 CALL SYMB(0.50,2.57,0.14,IBUF3,90.0,19) 
0178 GO TO 440 
0179 430 CALL SYMB(0.50,3.13,0.14,IBUF1,90.0,11) 
0180 440 DO 460 J=0,5 
0181 IXP=J*160+118 
0182 XABLE=FLOAT(J)/(10*TIME*FLOAT(IMAG» 
0183 CALL TPLOT(LU(1),0,IXP,102) 
0184 CALL EXEC(2,LU(1),IUSLA,-2) 
0185 WRITE(LU(1),450) XABLE 
0186 450 FORMAT(F3.2) 
0187 460 CONTINUE 
0188 CALL TPLOT(LU(1),0,INDNT,750) 
0189 CALL EXEC(2,LU(1),IUSLA,-2) 
0190 WRITE(LU(1),470) INBUF 
0191 470 FORMAT(36A2) 
0192 IF(ICAL.NE.54505B) GO TO 490 
0193 CALL TPLOT(LU(1),0,441,650) 
0194 CALL EXEC(2,LU(1),IUSLA,-2) 
0195 WRITE(LU(1),480) 
0196 480 FORMAT("NOT CALIBRATED") 
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490 IF(IGAS.NE.54505B) GO TO 510 
CALL TPLOT(LU(1),0,329,700) 
CALL EXEC(2,LU(1),IUSLA,-2) 
WRITE(LU(1),500) 

500 FORMAT(26H"NORMALIZED USING GAS JET") 
510 CALL TPLOT(LU(1),0,435,70) 

CALL EXEC(2,LU(1),IUSLA,-2) 
WRITE(LU(1),520) IBUF2 

520 FORMAT(8A2) 
CALL TPLOT(LU(1),0,0,0) 
CALL EXEC(2,LU(1),IUSLA,-2) 
ICNT=DATA( 1027) 
WRITE(LU(1),530) ICNT 

530 FORMAT(" BIOMATION RECORDING ",13) 
CALL TPLOT(LU(1),0,780,0) 
CALL EXEC(2,LU(1),IUSLA,-2) 
WRITE(LU(1),540) BNDWT 

540 FORMAT("BANDWIDTH ",F3.2," KHZ") 

C PLOT POWER SPECTRUM IN DECIBEL FORMAT 
C 

0197 
0198 
0199 
0200 
0201 
0202 
0203 
0204 
0205 
0206 
0207 
0208 
0209 
0210 
0211 
0212 
0213 
0214 
0215 
0216 
0217 
0218 
0219 
0220 
0221 
0222 
0223 
0224 
0225 
0226 
0227 
0228 
0229 
0230 
0231 
0232 
0233 
0234 
0235 
0236 
0237 
0238 
0239 
0240 
0241 
0242 
0243 
0244 
0245 C 

DO 600 I=1,1025/IMAG 
IXP=FLOAT(I)*0.78125*FLOAT(IMAG)+137.0 
IYP=(DATA(I+1)-FLOAT(IMAX»*100.0+637.0 
IF(IYP-637) 560,560,550 

550 IYP=637 
GO TO 580 

560 IF(IYP-137) 570,580,580 
570 IYP=137 
580 IF(I.NE.1) GO TO 590 

CALL TPLOT(LU(1),0,IXP,IYP) 
GO TO 600 

590 CALL TPLOT(LU(1),1,IXP,IYP) 
600 CONTINUE 

CALL CURSR(LU(1),IQUIT,IXP,IYP) 
CALL ERASE(LU(1» 
ICNT=ICNT+1 
IF(IQUIT.EQ.43B) GO TO 160 
IF(IQUIT.EQ.121B) GO TO 630 
IF(IQUIT.EQ.115B) GO TO 610 
GO TO 210 

610 WRITE(LU(1),620) 
620 FORMAT("/PLFFT: MAGNIFY BY 1,2, OR 51 _H) 

READ(LU(1),*) IMAG 
IF(IMAG.LT.1) IMAG=1 
IF(IMAG.GT.2) IMAG=5 
CALL ERASE(LU(1» 
GO TO 380 
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0246 C QUIT 
0247 C 
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0248 630 CALL CLOSE(IDCB1,IERR) 
0249 IF(IGAS.EQ.54505B) CALL CLOSE(IDCB2,IERR) 
0250 END 
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FTN4 
C 

0001 
0002 
0003 
0004 C 
0005 C 
0006 C 
0007 C 
0008 C 
0009 C 
0010 C 
0011 C 
0012 C 
0013 C 
0014 C 
0015 C 
0016 
0017 
0018 
0019 
0020 
0021 
0022 
0023 
0024 
0025 
0026 
0027 
0028 
0029 
0030 
0031 
0032 
0033 
0034 
0035 
0036 
0037 
0038 
0039 
0040 
0041 
0042 
0043 
0044 
0045 
0046 
0047 
0048 
0049 

C 

PROGRAM AECNF 

THIS PROGRAM AVERAGES THE POWER SPECTRA IN THE FILE CREATED 
UNDER <AENOR) AND THEN PLOTS THE AVERAGED POWER SPECTRUM 
ALONG WITH THE CONFIDENCE LIMITS SPECIFIED BY THE USER. 
THE USER CAN NORMALIZE THE AVERAGE POWER SPECTRUM USING 
THE GAS JET DATA CALCULATED WITH <GASJT). 

WRITTEN BY JOHN CARLYLE 

DIMENSION LU(5),IREG(2),INBUF(36),IPBUF(10),TBUF(18) 
DIMENSION IDCB1(144),DATA(1028),HBUF(18),IDATA(2056) 
DIMENSION IBUF1(6),IBUF2(8),IDCB2(144),GAS(1028) 
DIMENSION AVE(1026),VAR(1025),IBUF3(10) 
EQUIVALENCE (REG,IREG),(INBUF,HBUF),(DATA,IDATA) 
EQUIVALENCE (DATA(1011),TBUF),(TAVE,AVE) 
DATA ICNT/1/,IUSLA/17537B/,ITRY/-1/,IMAG/1/,IPASS/-11 
DATA IBUF1/2HPO,2HWE,2HR ,2H(D,2HBM,2H) I 
DATA IBUF2/2HFR,2HEQ,2HUE,2HNC,2HY ,2H(M,2HHZ,2H) I 
DATA IBUF3/2HRE,2HLA,2HTI,2HVE,2H P,2HOW,2HER, 

+2H (,2HDB,2H) I 

C RECOVER PARAMETERS 
C 

C 

CALL RMPAR(LU) 
IF(LU(1).EQ.0) LU(1)=1 
ILU=LU(1)+400B 

C GET 'NAMR' INFORMATION 
C 

C 

CALL PLTLU(LU(1)) 
10 WRITE(LU(1),20) ICNT 
20 FORMAT("/AECNF: ENTER 'NAMR' FOR FILE U",I1,": 

REG=EXEC(1,ILU,INBUF,-72) 
ISCHR=1 
IF(NAMR(IPBUF,INBUF,IREG(2),ISCHR)) 10,30 

30 IF(ICNT.NE.1) GO TO 90 

C OPEN FILE 1!1 
C 

CALL OPEN(IDCB1,IERR,IPBUF,0,IPBUF(5),IPBUF(6)) 
IF(IERR.GE.O) GO TO 60 

-") 

40 WRITE(LU(1),50) IERR 
50 FORMAT("/AECNF: FILE ERROR ",14,". TRY AGAIN!",/) 
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0050 GO TO 10 
0051 C 
0052 C OPEN FILE #2 
0053 C 
0054 60 WRITE(LU(1),70) 
0055 70 FORMAT("/AECNF: PLOT WAVEFORMS NORMALIZED BY GAS JET? ") 
0056 READ(LU(1),80) IGAS -
0057 80 FORMAT(A2) 
0058 IF(IGAS.NE.54505B) GO TO 100 
0059 ICNT=2 
0060 GO TO 10 
0061 90 CALL OPEN(IDCB2,IERR,IPBUF,0,IPBUF(5),IPBUF(6» 
0062 IF(IERR.GT.O) GO TO 100 
0063 ITRY=ITRY+1 
0064 IF(ITRY.LT.2) GO TO 40 
0065 GO TO 130 
0066 C 
0067 C READ DATA IN PLOT FILE 
0068 C 
0069 100 CALL ERASE(LU(1» 
0070 110 ICNT=-1 
0071 ITRY=-1 
0072 120 CALL READF(IDCB1,IERR,DATA,2056,LEN) 
0073 IF(IERR.GE.O) GO TO 150 
0074 130 WRITE(LU(1),140) IERR 
0075 140 FORMAT("/AECNF: FILE ERROR ",14,". ABORTING PROGRAMI",/) 
0076 GO TO 760 
0077 150 IF(LEN.NE.-1) GO TO 180 
0078 IF(ICNT.GT.O) GO TO 170 
0079 WRITE(LU(1),160) 
0080 160 FORMAT("/AECNF: EOF ENCOUNTERED. ABORTING PROGRAM!",/) 
0081 GO TO 760 
0082 170 IF(IPASS) 300,340,340 
0083 180 IF(ICNT) 190,230,240 
0084 190 CALL CODE(LEN*2) 
0085 READ(IDATA,*) (TBUF(I),I=1,18) 
0086 IF(TBUF(1).NE.0.0) GO TO 210 
0087 IF(ITRY.GE.O.OR.IPASS.GT.O) GO TO 120 
0088 DO 200 1=1,18 
0089 HBUF(I)=DATA(I) 
0090 INDNT=(73-LEN*2)*7 
0091 ITRY=1 
0092 200 CONTINUE 
0093 GO TO 120 
0094 210 IF(IPASS.GT.O) GO TO 220 
0095 TIME=TBUF(2) 
0096 BNDWT=1.0/(TIME*2.048) 
0097 220 ICNT=O 
0098 GO TO 120 
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0099 
0100 
0101 
0102 
0103 
0104 
0105 
0106 
0107 
0108 
0109 
0110 
0111 
0112 
0113 
0114 
0115 
0116 
0117 
0118 
0119 
0120 
0121 
0122 
0123 
0124 
0125 
0126 
0127 
0128 
0129 
0130 
0131 
0132 
0133 
0134 
0135 
0136 
0137 
0138 
0139 
0140 
0141 
0142 
0143 
0144 
0145 
0146 
0147 

C 
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230 IF(LEN.NE.O) GO TO 120 
ICNT=1 
GO TO 120 

240 IF(LEN.EQ.2054) GO TO 270 
250 WRITE(LU(1),260) LEN 
260 FORMAT("/AECNF: IMPOSSIBLE LENGTH = ",I5,". ABORTING", 

+"PROGRAMI",/) 
GO TO 760 

C CALCULATE AVERAGE OF NORMALIZED AE WAVEFORMS 
C 

C 

270 IF(IPASS) 280,320,320 
280 NWAVE=NWAVE+1 

DO 290 I=2, 1026 
DATA(I)=DATA(I)*DATA(1) 
AVE(I)=DATA(I)+AVE(I) 

290 CONTINUE 
TAVE=TAVE+DATA(1) 
GO TO 120 

300 CALL RWNDF(IDCB1,IERR) 
IF(IERR.LT.O) GO TO 130 
TAVE=TAVE/FLOAT(NWAVE) 
DO 310 I=2,1026 
AVE(I)=AVE(I)/FLOAT(NWAVE) 

310 CONTINUE 
IPASS=1 
GO TO 110 

C CALCULATE VARIANCE OF NORMALIZED AE WAVEFORMS 
C 

C 

320 DO 330 I=2,1026 
DATA(I)=DATA(I)*DATA(1) 
VAR(I-1)=(DATA(I)-AVE(I»*(DATA(I)-AVE(I»+VAR(I-1) 

330 CONTINUE 
GO TO 120 

340 NDEGF=NWAVE-1 
DO 350 I= 1,1025 
VAR(I)=SQRT(VAR(I)/(FLOAT(NWAVE)*FLOAT(NDEGF») 

350 CONTINUE 

C READ GAS JET DATA 
C 

ITRY=-1 
IF(IGAS.NE.54505B) GO TO 410 

360 CALL READF(IDCB2,IERR,GAS,2056,LEN) 
IF(LEN.LT.O.OR.IERR.LT.O) GO TO 130 
IF(LEN.NE.O.AND.ITRY.GT.O) GO TO 370 
IF(LEN.NE.O) GO TO 360 
ITRY=1 
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0148 
0149 
0150 
0151 
0152 
0153 
0154 
0155 
0156 
0157 
0158 
0159 
0160 
0161 
0162 
0163 
0164 
0165 
0166 
0167 
0168 
0169 
0170 
0171 
0172 
0173 
0174 
0175 
0176 
0177 
0178 
0179 
0180 
0181 
0182 
0183 
0184 
0185 
0186 
0187 
0188 
0189 
0190 
0191 
0192 
0193 
0194 
0195 
0196 

C 
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GO TO 360 
370 IF(LEN.EQ.2054) GO TO 380 

GO TO 250 
380 DO 400 1=2,1026 

IF(GAS(I).GT.O.O) GO TO 390 
GAS(I)=-99.0 
GO TO 400 

390 GAS(I)=ALOGT(GAS(I» 
400 CONTINUE 

C GET PROPER "T" VALUE AND CONFIDENCE LIMITS 
C 

C 

410 WRITE(LU(1),420) NDEGF 
420 FORMAT("/AECNF: ENTER 'T' VALUE AND CONFIDENCE LIMITS" 

+"FOR ",13," DF: _") 
READ(LU(1),*) TVAL,ICONF 
CALL ERASE(LU(1» 
IMAG=1 

C OBTAIN LOG OF DATA AND FIND MAX FOR PLOT 
C 

C 

430 IPASS=-1 
440 IF(IPASS) 450,480,480 
450 DMAX=-99.0 

DO 470 1=2,1026 
DATA(I)=(AVE(I)+TVAL*VAR(I-1»/TAVE 
IF(DATA(I).GT.O.O) GO TO 460 
DATA(I)=-99.0 
GO TO 470 

460 DATA(I)=ALOGT(DATA(I» 
IF(IGAS.EQ.54505B) DATA(I)=DATA(I)-GAS(I) 
DMAX=AMAX1(DMAX,DATA(I» 

470 CONTINUE 
IMAX=IFIX(DMAX) 
IF(DMAX.GE.O.O) IMAX=IMAX+1 
GO TO 510 

480 DO 500 1=2,1026 
DATA(I)=(AVE(I)-FLOAT(IPASS)*TVAL*VAR(I-1»/TAVE 
IF(DATA(I).GT.O) GO TO 490 
DATA(I)=-99.0 
GO TO 500 

490 DATA(I)=ALOGT(DATA(I» 
IF(IGAS.EQ.54505B) DATA(I)=DATA(I)-GAS(I) 

500 CONTINUE 
GO TO 670 

C DRAW AXES AND TICK MARKS 
C 

510 CALL TPLOT(LU(1),0,137,137) 
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0197 CALL TPLOT(LU(1),1,937,137) 
0198 CALL TPLOT(LU(1),1,937,637) 
0199 CALL TPLOT(LU(1),1,137,637) 
0200 CALL TPLOT(LU(1),1,137,137) 
0201 DO 520 J=1,9 
0202 IYP=J*50+137 
0203 CALL TPLOT(LU(1),0,137,IYP) 
0204 CALL TPLOT(LU(1),1,145,IYP) 
0205 CALL TPLOT(LU(1),0,929,IYP) 
0206 CALL TPLOT(LU(1),1,937,IYP) 
0207 520 CONTINUE 
0208 DO 530 J=1,9 
0209 IXP=J*80+137 
0210 CALL TPLOT(LU(1),0,IXP,137) 
0211 CALL TPLOT(LU(1),1,IXP,145) 
0212 CALL TPLOT(LU(1),0,IXP,629) 
0213 CALL TPLOT(LU(1),1,IXP,637) 
0214 530 CONTINUE 
0215 C 
0216 C LABEL ORDINATE, ABSCISSA, AND GRAPH 
0217 C 
0218 DO 550 J=0,5 
0219 IYP=J*100+130 
0220 LABEL=(FLOAT(IMAX)-5.0+FLOAT(J»*10.0 
0221 CALL TPLOT(LU(1),0,70,IYP) 
0222 CALL EXEC(2,LU(1),IUSLA,-2) 
0223 WRITE(LU(1),540) LABEL 
0224 540 FORMAT(I4) 
0225 550 CONTINUE 
0226 IF(IGAS.NE.54505B) GO TO 560 
0227 CALL SYMB(0.50,2.57,0.14,IBUF3,90.0,19) 
0228 GO TO 570 
0229 560 CALL SYMB(0.50,3.13,0.14,IBUF1,90.0,11) 
0230 570 DO 590 J=0,5 
0231 IXP=J*160+118 
0232 XABLE=FLOAT(J)/(10.0*TIME*FLOAT(IMAG» 
0233 CALL TPLOT(LU(1),0,IXP,102) 
0234 CALL EXEC(2,LU(1),IUSLA,-2) 
0235 WRITE(LU(1),580) XABLE 
0236 580 FORMAT(F3.2) 
0237 590 CONTINUE 
0238 CALL TPLOT(LU(1),0,INDNT,750) 
0239 CALL EXEC(2,LU(1),IUSLA,-2) 
0240 WRITE(LU(1),600) INBUF 
0241 600 FORMAT(36A2) 
0242 CALL TPLOT(LU(1),0,364,725) 
0243 CALL EXEC(2,LU(1),IUSLA,-2) 
0244 WRITE(LU(1),610) ICONF 
0245 610 FORMAT(I2,"% CONFIDENCE LIMITS") 
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0246 IF(IGAS.NE.54505B) GO TO 630 
0247 CALL TPLOT(LU(1),0,329,700) 
0248 CALL EXEC(2,LU(1),IUSLA,-2) 
0249 WRITE(LU(1),620) 
0250 620 FORMAT(26H"NORMALIZED USING GAS JET") 
0251 630 CALL TPLOT(LU(1),0,435,70) 
0252 CALL EXEC(2,LU(1),IUSLA,-2) 
0253 WRITE(LU(1),640) IBUF2 
0254 640 FORMAT(8A2) 
0255 CALL TPLOT(LU(1),0,0,0) 
0256 CALL EXEC(2,LU(1),IUSLA,-2) 
0257 WRITE(LU(1),650) NWAVE 
0258 650 FORMAT (13," SPECTRA AVERAGED") 
0259 CALL TPLOT(LU(1),0,780,0) 
0260 CALL EXEC(2,LU(1),IUSLA,-2) 
0261 WRITE(LU(1),660) BNDWT 
0262 660 FORMAT("BANDWIDTH ",F3.2," KHZ") 
0263 C 
0264 C PLOT POWER SPECTRUM IN DECIBEL FORMAT 
0265 C 
0266 
0267 
0268 
0269 
0270 
0271 
0272 
0273 
0274 
0275 
0276 
0277 
0278 
0279 
0280 
0281 
0282 
0283 
0284 
0285 
0286 
0287 
0288 
0289 
0290 
0291 
0292 
0293 C 

670 DO 730 I=1,1025/IMAG 
IXP=FLOAT(I)*0.78125*FLOAT(IMAG)+137.0 
IYP=(DATA(I+1)-FLOAT(IMAX»*100.0+637.0 
IF(IYP-637) 690,690,680 

680 IYP=637 
GO TO 710 

690 
700 
710 

IF(IYP-137) 700,710,710 
IYP=137 
IF(I.NE.1.AND.IPASS.NE.0) GO TO 720 
CALL TPLOT(LU(1),-1,IXP,IYP) 
GO TO 730 

720 CALL TPLOT(LU(1),1,IXP,IYP) 
730 CONTINUE 

IPASS=IPASS+1 
IF(IPASS.LE.1) GO TO 440 
CALL CURSR(LU(1),IQUIT,IXP,IYP) 
CALL ERASE(LU(1» 
IF(IQUIT.EQ.115B) GO TO 740 
IF(IQUIT.EQ.124B) GO TO 410 
GO TO 760 

740 WRITE(LU(1),750) 
750 FORMAT("/AECNF: MAGNIFY BY 1,2, OR 57 _H) 

READ(LU(1),*) IMAG 
IF(IMAG.LT.1) IMAG=1 
IF(IMAG.GT.2) IMAG=5 
CALL ERASE(LU(1» 
GO TO 430 

0294 C QUIT 
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0295 C 
0296 
0297 
0298 
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760 CALL CLOSE(IDCB1,IERR) 
IF(IGAS.EQ.54505B) CALL CLOSE(IDCB2,IERR) 
END 
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FTN4 
C 

0001 
0002 
0003 
0004 C 
0005 C 
0006 C 
0007 C 
0008 C 
0009 C 
0010 C 
0011 C 
0012 C 
0013 C 
0014 
0015 
0016 
0017 
0018 
0019 
0020 
0021 
0022 
0023 
0024 
0025 
0026 
0027 
0028 
0029 
0030 
0031 
0032 
0033 
0034 
0035 
0036 
0037 
0038 
0039 
0040 
0041 
0042 
0043 
0044 
0045 
0046 
0047 
0048 
0049 

C 

PROGRAM DBSVR 

THIS PROGRAM WILL SAVE THE DISC DATA FILES CREATED USING 
<AENOR> AND <GASJT> ON TAPE AND VERIFY THEM. THE USER 
CAN ALSO RESTORE THE DATA FILES TO DISC. 

WRITTEN BY JOHN CARLYLE 

DIMENSION LU(5),IREG(2),INBUF(36),IPBUF(10) 
DIMENSION IDCB1(144),IDATA(2056),ICOMP(2056),IDEOF(6) 
EQUIVALENCE (REG,IREG) 
DATA IDEOF/401B,77577B,77577B,401B,100000B,1BI 

C RECOVER PARAMETERS 
C 

C 

CALL RMPAR(LU) 
IF(LU(1).EQ.0) LU(1)=1 
IF(LU(2).EQ.0) LU(2)=8 
CALL EXEC(3,400B+LU(2» 

C DETERMINE MODE 
C 

C 

WRITE(LU(1),10) 
10 FORMAT("/DBSVR: IS THIS A RESTORE OPERATION? _") 

READ(LU(1),20) IREST 
20 FORMAT(A2) 

IF(IREST.EQ.54505B) GO TO 250 

C POSITION MAG TAPE FOR SAVE 
C 

C 

WRITE(LU(1),30) 
30 FORMAT("/DBSVR: IS ARCHIVE TAPE BLANK? _") 

READ(LU(1),20) IVIRG 
IF(IVIRG.EQ.54505B) GO TO 50 

40 CALL EXEC(3,1300B+LU(2» 
REG=EXEC(1,LU(2),INBUF,36) 
IF(IAND(IREG(1),200B).EQ.0) GO TO 40 
CALL EXEC(3,1400B+LU(2» 

C SAVE FILE OPENING SECTION 
C 

50 WRITE(LU(1),60) 
60 FORMAT("/DBSVR: ENTER NAME OF FILE TO BE SAVED: _") 

REG=EXEC(1,400B+LU(1),INBUF,-72) 
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ISCHR=1 
IF(NAMR(IPBUF,INBUF,IREG(2),ISCHR» 50,70 

70 CALL OPEN(IDCB1,IERR,IPBUF,0,IPBUF(5),IPBUF(6» 
IF(IERR.GE.O) GO TO 100 

80 WRITE(LU(1),90) IERR 
90 FORMAT("/DBSVR: FILE ERROR ",14,". TRY AGAIN!",/) 

GO TO 50 

C SAVE DATA TRANSFER SECTION 
C 

0050 
0051 
0052 
0053 
0054 
0055 
0056 
0057 
0058 
0059 
0060 
0061 
0062 
0063 
0064 
0065 
0066 
0067 
0068 
0069 
0070 
0071 
0072 
0073 
0074 
0075 
0076 
0077 
0078 
0079 
0080 
0081 
0082 
0083 
0084 
0085 
0086 
0087 
0088 
0089 
0090 
0091 
0092 
0093 
0094 
0095 
0096 
0097 
0098 C 

100 CALL READF(IDCB1,IERR,IDATA,2056,LEN) 
IF(IERR.GE.O) GO TO 130 

110 WRITE(LU(1),120) IERR 
120 FORMAT("/DBSVR: FILE ERROR ",14,". ABORTING PROGRAM!",/) 

GO TO 210 
130 IF(LEN.NE.-1) GO TO 150 

WRITE(LU(1),140) 
140 FORMAT("/DBSVR: EOF ENCOUNTERED. FILE ON MAG TAPE!",/) 

CALL EXEC(3,100B+LU(2» 
GO TO 220 

150 IF(LEN) 160,180,160 
160 CALL EXEC(2,LU(2),IDATA,LEN) 
170 REG=EXEC(3,600B+LU(2» 

IREG(1)=IAND(IREG(1),73B) 
IF(IREG(1).NE.0) GO TO 190 
GO TO 100 

180 CALL EXEC(2,LU(2),IDEOF,6) 
GO TO 170 

190 WRITE(LU(1),200) IREG(1) 
200 FORMAT("/DBSVR: MAG TAPE STATUS = ",03,"B. ABORTING fI, 

+"PROGRAM!",/) 
210 IF(IREST.EQ.54505B) GO TO 490 

CALL EXEC(3,1400B+LU(2» 
CALL EXEC(3,300B+LU(2» 
CALL EXEC(3,100B+LU(2» 
GO TO 490 

220 IOK=IVRFY(IDCB1,IDATA,ICOMP,LU(2),IVIRG) 
IF(IOK.EQ.1) GO TO 230 
WRITE(LU(1),460) 
GO TO 210 

230 CALL CLOSE(IDCB1,IERR) 
WRITE(LU(1),240) 

240 FORMAT("/DBSVR: SAVE ANOTHER FILE? _H) 
IVIRG=47117B 
READ(LU(1),20) IMORE 
IF(IMORE.EQ.54505B) GO TO 50 
CALL EXEC(3,100B+LU(2» 
GO TO 510 
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0099 C FILE POSITIONING FOR RESTORE 
0100 C 
0101 
0102 
0103 
0104 
0105 
0106 
0107 
0108 
0109 
0110 
0111 
0112 
0113 
0114 
0115 
0116 
0117 
0118 
0119 
0120 
0121 
0122 
0123 
0124 
0125 
0126 
0127 
0128 C 

250 WRITE(LU(1),260) 
260 FORMAT("/DBSVR: ENTER FILE NUMBER: _") 

READ(LU(1),*) IFILE 
ICNT=1 
IF(IFILE) 270,270,290 

270 WRITE(LU(1),280) 
280 FORMAT("/DBSVR: INVALID MAG TAPE FILE. 

GO TO 250 
290 IF(IFILE.EQ.1) GO TO 310 
300 CALL EXEC(3,1300B+LU(2» 

ICNT=ICNT+1 
IF(ICNT.LT.IFILE) GO TO 300 
GO TO 320 

310 IVIRG=54505B 
320 WRITE(LU(1),330) 
330 FORMAT("/DBSVR: FILE ID IS:") 

REG=EXEC(1,LU(2),IDATA,2056) 
CALL EXEC(2,LU(1),IDATA,IREG(2» 
WRITE(LU(1),340) 

340 FORMAT("/DBSVR: OK TO RESTORE? _") 
READ(LU(1),20) IYEP 
IF(IYEP.EQ.54505B) GO TO 350 
CALL EXEC(3,400B+LU(2» 
IVIRG=O 
GO TO 250 

350 CALL EXEC(3,200B+LU(2» 
ITRY=O 

0129 C RESTORE FILE CREATION SECTION 

360 WRITE(LU(1),370) 

TRY AGAIN!",/) 

0130 C 
0131 
0132 
0133 
0134 
0135 
0136 
0137 
0138 
0139 
0140 
0141 
0142 
0143 
0144 
0145 
0146 
0147 

370 FORMAT("/DBSVR: ENTER FILE NAME FOR DATA STORAGE: _") 
REG=EXEC(1,400B+LU(1),INBUF,-72) 

C 

ISCHR=1 
IF(NAMR(IPBUF,INBUF,IREG(2),ISCHR» 360,380 

380 IREG(1)=-1 
IREG(2)=0 
CALL CREAT(IDCB1,IERR,IPBUF,IREG,3,IPBUF(5),IPBUF(6» 
IF(IERR.GE.O) GO TO 390 
ITRY=ITRY+1 
IF(ITRY.GE.3) GO TO 110 
WRITE(LU(1),90) IERR 
GO TO 360 

C RESTORE DATA TRANSFER SECTION 
C 

390 REG=EXEC(1,LU(2),IDATA,2056) 
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0148 IF(IAND(IREG(1),200B).GT.O) GO TO 420 
0149 IREG(1)=IAND(IREG(1),73B) 
0150 IF(IREG(1).NE.O) GO TO 190 
0151 IF(IREG(2).NE.6) GO TO 410 
0152 DO 400 1=1,6 
0153 IF(IDATA(I).NE.IDEOF(I» GO TO 410 
0154 400 CONTINUE 
0155 IREG(2)=0 
0156 410 CALL WRITF(IDCB1,IERR,IDATA,IREG(2» 
0157 IF(IERR.LT.O) GO TO 110 
0158 GO TO 390 
0159 420 CALL LOCF(IDCB1,IERR,ICNT,IREC,L,LEN) 
0160 LEN=LEN/2-IREC-1 
0161 CALL CLOSE(IDCB1,IERR,LEN) 
0162 IF(IERR.GE.O) GO TO 440 
0163 WRITE(LU(1),430) IERR,LEN 
0164 430 FORMAT("/DBSVR: ERROR ",14," IN TRUNCATING FILE BY ",16, 
0165 +" BLOCKS!",/) 
0166 GO TO 500 
0167 440 CALL OPEN(IDCB1,IERR,IPBUF,0,IPBUF(5),IPBUF(6» 
0168 WRITE(LU(1),450) 
0169 450 FORMAT("/DBSVR: EOF ENCOUNTERED. FILE ON DISC!",/) 
0170 IOK=IVRFY(IDCB1,IDATA,ICOMP,LU(2),IVIRG) 
0171 IF(IOK.EQ.1) GO TO 470 
0172 WRITE(LU(1),460) 
0173 460 FORMAT("/DBSVR: VERIFICATION ERROR. ABORTING", 
0174 +"PROGRAM!",/) 
0175 GO TO 500 
0176 470 CALL CLOSE(IDCB1,IERR) 
0177 WRITE(LU(1),480) 
0178 480 FORMAT("/DBSVR: RESTORE ANOTHER FILE? _") 
0179 READ(LU(1),20) IMORE 
0180 IF(IMORE.NE. 54505B) GO TO 510 
0181 CALL EXEC(3,400B+LU(2» 
0182 IVIRG=O 
0183 GO TO 250 
0184 C 
0185 C QUIT 
0186 C 
0187 490 IF(IREST.EQ.54505B) GO TO 500 
0188 CALL CLOSE(IDCB1,IERR) 
0189 GO TO 510 
0190 500 CALL PURGE(IDCB1,IERR,IPBUF,IPBUF(5),IPBUF(6» 
0191 510 CALL EXEC(3,400B+LU(2» 
0192 END 
0193 FUNCTION IVRFY(IDCB1,IDATA,ICOMP,LU,IVIRG) 
0194 DIMENSION IDCB1(1),IDATA(1),ICOMP(1),IREG(2) 
0195 EQUIVALENCE (REG,IREG) 
0196 CALL RWNDF(IDCB1,IERR) 
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0197 CALL EXEC(3,1400B+LU) 
0198 CALL EXEC(3,1400B+LU) 
0199 IF(IVIRG.EQ.54505B) GO TO 10 
0200 CALL EXEC(3,300B+LU) 
0201 10 REG=EXEC(1,LU,ICOMP,2056) 
0202 CALL READF(IDCB1,IERR,IDATA,2056,LEN) 
0203 IF(IERR.LT.0.OR.IAND(IREG(1),73B).NE.0) GO TO 40 
0204 IF(LEN.EQ.-1.0R.IAND(IREG(1),200B).NE.0) GO TO 30 
0205 IF(LEN.EQ.O) GO TO 10 
0206 IF(IREG(2).NE.LEN) GO TO 40 
0207 DO 20 I=1,LEN 
0208 IF(IDATA(I).NE.ICOMP(I» GO TO 40 
0209 20 CONTINUE 
0210 GO TO 10 
0211 30 IF(LEN.EQ.-1.AND.IAND(IREG(1),200B).NE.0) GO TO 50 
0212 40 IVRFY=-1 
0213 RETURN 
0214 50 IVRFY=1 
0215 RETURN 
0216 END 
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