
OCTOBER 1987 

THE PREPARATION, CHARACTERISATION AND 

CATALYTIC ACTIVITY OF TUNGSTEN BRONZES 

THESIS SUBMITTED FOR THE DEGREE OF 

DOCTOR OF PHILOSOPHY 

BY 

SHEENA STEVENSON 

Department of Chemistry, 
Brunel University, 
Uxbridge, 
Middlesex. 



- i -

A C K NOW LED GEM E N T S 

I would like to thank my supervisor, Dr. P.A. Sermon for his 

constant encouragement and advice throughout the work described 

in this thesis. 

I would also like to thank my colleagues in the Chemistry 

Department for their friendship and support. 

I wish to thank the technical staff of the Chemistry Department 

for their invaluable assistance. 

I would also like to thank Mrs. Speed for typing this thesis. 

-----000-----



- ii -

A B S T RAe T 

The structure and catalytic aspects of tungsten bronzes have 

been considered. A series of potassium tungsten bronzes, KxW0 3, 

0.05 ~ x ~ 0.8, and the corresponding series of sodium tungsten 

bronzes, Na xW03, 0.05 ~ x ~ 0.8 were prepared by a thermal method. 

The thermal stability of the prepared samples was studied in the 

presence of both an oxidising and a reducing gas. The number and 

strength of acid sites present on the bronzes was studied by 

temperature-programmed desorption of ammonia. Xps, xrd and elect­

rical resistivity measurements gave information about the bulk and 

surface properties of the bronzes. The activity of the tungsten 

bronzes for isopropanol decomposition and propene metathesis was 

investigated. In addition, a silica-supported tungsten bronze and 

a copper-potassium tungsten bronze, CUyKxW03, were prepared. Their 

structures and catalytic values were considered. 
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CHAPTER 1 

INTRODUCTION 

1.1 Oxide Bronzes 

The term 'oxide bronze ' is commonly used to describe ~ class 

of ternary oxide phases AxMOn' formally derived by insertion of an 

electropositive element, A, into an oxide matrix MOn of a transition 

metal M. Typical parent oxides MOn include those of W, Mo, V and Ti, 

where Mis in its hi ghest oxi dati on state. The structures ad"opted 

bv the MOn matrices in these compounds are closely related to (but 

not identical with) those of the normal oxides and involve open co­

valent frameworks of linked metal-oxygen polyhedra enclosing sites 

available for occupation by the A species. The electropositive 

element A, for example an alkali metal, enters the matrix as a cation 

and the average oxidation state of M is lowered accordingly. 

As early as 1823, Wohler(l) prepared sodium tungsten bronzes 

and somewhat later Laurent(2), von Knorre(3), and Schafer(4) reported 

the same type of compounds with potassium, lithium and rubidium 

respectively. These compounds were believed to be stoichiometric 

until 1935 when Hagg(5) in an x-ray diffraction study found that 

sodium tungsten bronzes of cubic symmetry belonged to a continuous 

series of solid solutions. 

1.2 Structures of Oxide Bronzes 

In AxMOn, the transition metal, M is usually in a high oxidation 

state and has a small crystal radius relative to 02-. It exerts 

strong directional bonding effects on its neare~t neighbours in the 
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crystal. Accordingly tunnel and layer structures occur, consisting 

of linked polyhedra. Such structural types can accommodate a large 

variation in A content, either in the interstices or between the 

layers. 

The common structural unit of the transition metal oxides that 

form oxide bronzes is the MOG octahedron. The octahedra may be 

essentially regular, as found in W, Ti and Nb oxides, or severely 

deformed, as observed in the vanadium oxides where the coordination 

is closer to that of a trigonal bipyramid. The mode of linking the 

octahedra (i.e. vertex, edge or face sharing), also differs sign­

ificantly among these transition metals. The possibilities are 

restricted by the stoichiometry of the framework, a small ratio of 

oxygen to metal atoms precluding extensive vertex sharing, but even 

when the stoichiometry is the same the transition metals exhibit 

individual behaviour. For example, W03 consists entirely of vertex­

shared octahedra whereas Mo03 is a layer structure of edge-shared 

octahedra. 

The differences in the coordination of the transition metals in 

their oxides also persist in the bronzes which often possess structures 

closely related to the parent oxide.. Thus, observed are the tunnel 

structures of the tungsten bronzes, the layer structures of the 

molybdenum bronzes and the complex vanadium bronzes containing irreg­

ular coordination. The geometry of the structure depends on the 

number of A ions to be inserted, their size, and their coordination 

requirements. The extent to which these requirements are met is 

determined by the flexibility of the host framework. This varies 

widely among the transition metals that form bronzes and is 

responsible for the very different types of structure observed. 
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Despite the complexity and variety of bronze structures, it is 

possible to describe their structures in terms of surprisingly few 

simple groups of octahedra. This is an approach that has been 

emphasised by Wadsley in transition metal oxide chemistry(6} and 

implies an extended covalent bonded system beyond the immediate environ­

ment of the metal atom. Attention here will be focused on the simple 

tunnel structures of W, which consist of three-dimensional frameworks 

constructed from infinite chains of octahedra, the octahedral clusters 

of the molybdenum bronzes and the vanadium bronzes which contain 

common ri bbons and sheets of octahedr'a. 

Tungsten Bronzes 

All the known tungsten bronze structures contain a three­

dimensional tunnel framework of the host lattice of stoichiometry W03, 

consisting of single Re03 chains (Figure l.l) which share all 

equatorial vertices with four other chains. 

Alkali metal tungsten bronzes adopt four different types of 

structures. These are (i) perovskite tungsten bronzes, PTB, (ii) 

tetragonal tungsten bronzes, TTB, (iii) hexagonal tungsten bronzes, 

HTB and (iv) intergrowth tungsten bronzes. 

Perovskite tungsten bronzes are formed only by lithium and 

sodium at atmospheric pressure. The perovskite type structure 

exhibits the highest symmetry among the bronze structures. It is 

analogous to that of perovskite, AB03 but with the A positions only 

partially occupied. It can also be regarded as consisting of four­

membered rings of W06 octahedra forming tunnels of square cross­

section running along the cube axes as shown in Figure 1.2. The 
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Figure 1.1 Single Re03 chain 

Figure 1.2 The structure of perovskite tungsten bronze. PTB. 

The large circles indicate interstitial metal atoms 

and the small circles tungsten atoms. 
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maximum radius of the sphere that can be accommodated in the 12 co­

ordinated sites (square tunnels) formed by the regular W06 octahedra 

is 0.13nm (assuming r02- = 0.14nm and a = 0.38nm). This permits only 

light alkali atoms (lithium and sodium) to occupy these sites. 

Potassium, rubidium and cesium have effective ionic radii greater than 

0.13nm and do not form PTB phases at atmospheric pressure. Magneli(7) 

determined the structure of a sodium bronze of composition, Na O. 10W03. 

This phase is very closely related to that of a perovskite bronze. 

The tungsten atoms in this phase are displaced in alternating directions 

along the c-axis forming puckered layers. Due to this puckering the 

unit cell becomes tetragonal rather than cubic and the cell volume is 

doubled. This phase also forms with lithium. 

Among the alkali metals only sodium and potassium form tetragonal 

tungsten bronzes. The structure can be regarded as built up of three -

four - and five-membered rings of W06 octahedra as shown in Figure 1.3. 

The interstitial holes thus formed are of three types: trigonal, 

tetragonal and pentagonal. The tungsten atoms in potassium TTB lie 

in the same plane and are thus not puckered. However, in the corres­

ponding sodium TTB phase, the tungsten atoms form puckered layers when 

x is 0.33 while they lie in the same plane when x is 0.48. The 

alkali metal atoms are located in the tetragonal and pentagonal 

tunnels. If all these available sites are completely filled x becomes 

0.66. 

The hexagonal tungsten bronzes are formed by a considerable 

number of elements. Like TTB it is built up of W06 octahedra sharing 

corners and arranged in layers normal to the hexagonal axis stacked 

on top of each other and connected by common corners perpendicular 

to this axis as shown in Figure 1.4. The W06 octahedra form a network 
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Figure 1.3 The crystal structure of tetragonal tungsten bronze, 

TTB, projected onto the xy plane. The W06 octahedra 

are shown shaded. The 1 arge open and fill ed ci rc 1 es 

indicate the alkali metal atoms, located in tetra-

gonal and pentagonal tunnels respectively. 

of three and six membered rings. The unit cell of the hexagonal phase 

contains two W06 layers along the hexagonal axis, which differ only 

by a small displacement of the atoms in opposite directions. The 

alkali metal atoms normally occupy the hexagonal tunnels only. The 

maximum theoretical x is 0.33 when-the tunnels are completely occupied. 

At atmospheric pressure only the heavier alkali HTB's (i.e. involving 

K, Rb and Cs) are stable. (Thus those of Na and Li HTB's can only 

be prepared exclusively at high pressure(8». Mixed HTB's in which 

one of the alkali metals is sodium or lithium are also known(9). 

In the case of(K,Li)x W03 Banks and Goldstein{lO) have shown that the 

smaller Li ions are probably located in the tunnels of trigonal cross-

section, because the maximum value of x is as high as 0.51. 
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Figure 1.4 The crystal structure of hexagonal tungsten bronze, HTB. 

The small circles represent tungsten atoms. The displace­

ments of the tungsten atoms in this layer with respect to 

the corresponding atoms in the layers above and below are 

shown by arrows. The large circles in the hexagonal 

tunnels are the alkali metal atoms (K, Rb and Cs). The 

unit cell extends over two layers. 

A fourth type of bronze, called "Intergrowth tungsten bronze, 

ITB" was discovered recently(ll}. This type forms with potassium, 

rubidium, cesium and also with thallium. The structure type shown 

in Figure 1.5 can be regarded as an intergrowth of HTB and W03 slabs. 

The W06 octahedra in the W03 slabs are tilted through 150 (ideally) 

in an alternating sequence to make the two structure elements fit 

together. The alkali metals are located in the hexagonal tunnels. 

ITB's are formed at very low concentrations (x < 0.10) of the heavy 

alkali metals. 
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WO HTB 
t----

Figure 1.5 The structure of an intergrowth tungsten bronze. The 

HTS and W03 slabs are marked. The large circles in 

the hexagonal tunnels indicate the positions of the 

heavy alkali metal atoms. 

Molybdenum Bronzes 

Mo03 itself has a layer structure. The layers consist of double 

Re03 chains sharing edges in the staggered manner shown in Figure 1.6. 

In the hydrogen molybdenum bronze, HxMo03, the H atoms are inserted as 

hydroxyl groups· between the layers, in the basic framework. The 

lithium molybdenum bronze, Li xMo03 is also closely related structurally 

to the parent oxide. In contrast the well characterised molybdenum 

bronzes Ko.33Mo03 and KxMo03 (0.28 ~ x ~ 0.30) have structures derived 

from octahedral clusters. The red Ka.33MoOJ phase contains a cluster 

of six octahedra as shown in Figure 1.7. The potassium ions complete­

ly occupy pos; tions of i rregul ar e; ghtfol,d coordination and bond the 
I ;, 

layers together, with a theoretical composition limit of x = 0.33. 
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(a) 

(c) 

(b) 

Figure 1.6 (a) The double Re03 chain, 

(b) Projection ·a1ong chain axis and, 

(c) Mo03 layer structure. 

Blue KxMo03 (0.28 ~ x ~ 0.30) contains a different cluster consisting 

of ten edge-shared octahedra as shown in Figure 1.8. The potassium 

ions again occupy sites between the layers which are fully occupied 

at x • 0.30. The molybdenum bronzes have been found to be much less 

stable than the tungsten bronzes, due mainly, to the tendency of 

molybdenum +5 to disproportionate. 

Vanadium Bronzes 

The idealized V205 structure Figure 1.9(a) can be generated by 

linking together single octahedral ribbons, Figure 1.9(b), formed by 

sheari ng two: Re03 chai ns together along cOl1lllOn octahedral edges.: 

Each ribbon connects via its free vertices to four similar ribbons. 
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Figure 1.7 Six-unit cluster in red KO. 33Mo03 

I, " 

Figure 1.8 Ten unit cluster in blue KO. 30Mo03 
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In the actual structure considerable distortion from this simple 

representation occurs; the coordination is closer to fivefold (tri­

gonal pyramidal), and the compound has a layer structure rather than 

a tunnel structure (Figure 1.9(c)). One vanadium bronze structure, 

the a-phase, is based on this structure. It is found for small 

concentrations of A atoms, e.g. NaxV 20S (0 ~ x ~ 0.02) where the 

inter-layer sites of a more symmetrical V20S lattice are occupied. 

The c"'. NaxV20S phase (0.70 ~ x ~ 1) has a similar structure. The 

B - NaxV20S structure (0.22 ~ x ~ 0.40) contains irregularly shaped 

tunnels enclosed by both double (essentially octahedral) and single 

(trigonal bipyramida1) ribbons, as shown in Figure 1.10. The sodium 

atoms in the S-phase occupy the tunnel sites Ml , but the proximity of 

neighbouring sites prohibit their simultaneous occupation. The 

upper composition level is x = 0.33, corresponding to a zig-zag 

arrangement by the A ions down the tunnel. The extra positions M2 

and M3 may be occupied by smaller insertion elements, e.g. in 

1.3 Properties of Oxide Bronzes 

The tungsten bronzes have been the subject of many investigations 

due to their interesting properties. Some of their physical properties 

are described below to illustrate those of oxide bronzes more generally. 

1.3.1 Electronic Properties 

The oxide bronzes are electronic conductors either metallic, as 

for example,Axwo3~12)r AO.StxNb03(~3), NaMo6017(14~ or ~emiconduct~ng 
as in the case of A V 0 (12) KO 33' M003(lS) and A Mn02(16). A consistent 

x 2 5 ' • x 
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(a) 

(b) 

(c) 

Figure 1.9 (a) V
2
0
S 

structure (idealised) represented as octahedra, 

(b) The single octahedra ribbon, and 

(c) V
2
0S represented as bipyramids. 
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(a) 

(b) 

(c) 

Figure 1.10 (a) The double octahedra ribbon, 

(b) p~ojection along ~hain l~rigih. and 

(c) 8 - NaxV20S structure 
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model for their electronic structures suggests that the inserted 

element A enters the oxide matrix MOn as a cation and its valence 

electrons are donated to the transition metal oxide framework. The 

donated electrons either occupy a delocalised conduction band, in 

which case metallic behaviour results, or are trapped at individual 

metal sites, causing the material to behave as a semiconductor. 

The main lines of evidence for this general viewpoint can be summarised 

as follows; (a) the nature of A in AxMOn affects the electronic conduct­

ivity of the bronze only through the number, Zmx of valence electrons 

provided(l7), (b) N.M.R. measurements on Naxwo3(18) and LixV20S(19) 

reveal the absence of a Knight shift at the alkali metal nuclei, a 

result consistent with their presence as cations, (c) in the case of 

the metallic bronzes, collective electron behaviour as determined by 

measurements of magnetic susceptibility(20), electronic specific 

heat(2l), optical reflectivity(22), and Seebeck and Hall coefficients 

(23,24) is consistent with participation of Zrnx nearly free-electrons 

in a broad conduction band, and (d) in the case of semiconducting 

vanadium bronzes, measurements of magnetic susceptibility(25) and 

e.p.r. (19), confirm the presence of isolated V4+ levels. 

The band structure in various oxides has been discussed by 

Goodenough(26) and his description of the binding in cubic Na xW03 is 

a useful prototype for the electronic structures of metallic oxide 

bronzes. 

The extent of the interaction between the transition metal 

orbitals in A MO , either by direct overlap or through M-O-M, will x n 
depend on the spatial extent of the d orbitals involved. On this 

basis the elements of the second and third transition series are more 
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likely to form de10ca1ised band structures than are the corresponding 

(later) members of the first transition series, V, Cr, Mn. The 

observed localised electron behaviour of these elements in NaxV20S' 

Na2cr309(27) and KxMn02 is consistent with this. 

Several, more subtle, relationships between structure and elect­

ronic behaviour have not yet been satisfactorily explained. Thus 

the origins of the metal-semiconductor transitions in Na xw03(17) 

(at x '" 0.25) and KO•30Mo03(15,25) (at T", 173K) are uncertain as is 

the observation that superconductivity is found for tetragonal and 

hexagonal tungsten bronzes but not for cubic phases(28,29-3l). A 

recent study by Sermon et al(32) has shown that tungsten bronzes 

prepared under vacuum have ionic conductivity properties. 

1.3.2 Magnetic Properties 

Greiner(33) measured the magnetic susceptibility of single 

crystals of sodium tungsten bronzes and found them to be temperature­

independent paramagnetic. Dickens and Whittingham(34) reported that 

the measurements made on powder samples of the alkali metal tungsten 

bronzes reveal similar behaviour. Sienko measured the susceptibility 

of alkali metal tungsten bronzes (Li, Na, K and Rb)(35). They found 

Rb(36) and some of the Li(37) and K(38) bronzes diamagnetic while 

Na(38) are weakly paramagnetic. The reasons for such deviations is 

not clear, however, in some cases it may be due to different measure­

ment techniques. It is of interest to mention that Bouchard and 

Gillson(39) reported hexagonal indium bronze as diamagnetic. Accord­

ing to them this is due to the compensation of the very weak Pauli 

paramagnetism by the diamagnetism of the indium ions. Their studies 

also included measurements of the magnetic susceptibility of single 

crystals of InxW03 along both the crystallographic axes, but no 
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difference was observed. 

1.3.3 Optical Properties 

One of the most interesting features of the tungsten bronzes is 

their optical properties. The colour of the cubic Na xW03 changes with 

increasing sodium content. According to Hagg(40) this is connected 

with the proportion of penta- and hexavalent tungsten atoms in the 

lattice. Magneli(4l) reported that the colour of the tungsten oxides 

and bronzes are dependent on the average valency of the tungsten atoms. 

Recently electro-chromic effects were observed in the NaxW03, KxW03 
and RbxW03 systems which may have great practical app1icability(42). 

1.3.4 Chemical Properties 

The tungsten bronzes are characterised by a very great chemical 

inertia, which makes chemical analysis difficult(43). They react 

only with chemical agents capable of attacking the W03 lattice, the 

location of the insertion ions within the channels effectively protecting 

them from their usual reagents. Hence acids, even in relatively 

strong concentrations, have no reaction with the phases MxW03• These 

properties are of obvious applied interest for applications purposes 

and their use as catalysts in an acid solution has been considered. 

However, tungsten bronzes are unstable in an alkaline medium. 

The vanadium bronzes are also very inert to chemical reaction, 

except in an oxidising environment. However, they are less resistant 

to acid attack than are the tungsten bronzes. One interesting 

feature of the vanadium bronzes is that they can fix oxygen which they 

lose again at higher temperatures. The amount of fixed. oxygen 

dependslg on the composition of the bronze and on the nature and 
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duration of the heat treatment. 

1.4 Preparation of Oxide Bronzes 

Generally oxide bronzes may be prepared by thermal and electro­

chemical methods. Wohler(l) first prepared tungsten bronzes by 

reducing a mixture of sodium tungstate and tungsten trioxide in gas­

eous hydrogen. Later(44) reducing agents such as Sn, Zn, and Fe 

were used. 

Electrolytic reduction is generally used to obtain single bronze 

crystals and was applied at an early stage(4S) using a molten mixture 

of metal tungstate and tungs~ic acid. 

The molybdenum bronzes are much less stable than the tungsten 

bronzes and this lack of stability explains why until recently it has 

been possible to prepare them by only two methods : electrolytic 

reduction and high-pressure synthesis. These two methods give, with 

only one exception, phases having entirely different structures. 

Whereas the first produces new structural types, the second leads to 

the various structures already described for the tungsten bronzes. 

Recently Reau et al(14) have studied the Mo03- Mo02M20 (M = Li, Nat K) 

systems in sealed gold tubes and in a limited temperature range 

(833K - 863K). They found not only the phases obtained by electro­

lytic reduction, but also a number of new ones. The role of the 

sealed tube is to prevent decomposition. 

Hydrogen bronzes may be prepared by spillover from phases active 

in hydrogen dissociation(46). Thus the formation of HO•SW03, Hl .7Mo03 
and H3.3V308 has been reported(47,48} and also:'Hl'~4Re03 (49). 



- 18 -

1.S Catalysis - General Theories 

A catalyst is a substance which increases the rate of attainment 

of equilibrium of a reacting system without causing any great alter­

ation in the free energy changes involved and without itself undergoing 

a chemical change. In heterogeneous catalysis, the catalyst is in a 

different phase from the reactant and is usually a solid. In such a 

system the reaction takes place at the interface between the catalyst 

and the less-dense phase. A necessary precursor to reaction is the 

adsorption of the reactant at the catalyst surface. The adsorption 

of molecules at solid surfaces is a long known and much studied 

phenomenon(50). A catalysed reaction must therefore involve more than 

one rate process : adsorption, the formation and breakup of an activated 

compl~x, and desorption of the products. Each of these has its· own 

activation energy. The rate of each is also determined by the total 

surface area of the catalyst present, or, more precisely, the number 

of active sites, and by the concentration on the catalyst surface of 

various adsorbed species. 

Heterogeneous catalysts may be divided into two distinct groups: 

(i) metals, and (ii) non-metals. The former group is comprised largely 

of the metals of Group VIII and IB, and the latter of metal oxides and 

sulphides, and acids. The non-metal catalysts may be further sub­

divided according to their electrical conductivity into (a) semi­

conductors, and (b) insulators. Metals, in general, are good catalysts 

for reactions involving hydrogen atom addition or abstraction. Semi­

conductor catalysts are good for oxidation-reduction processes# 

Insulators, of which alumina and silica are the most important, are good 

dehydration catalysts. 
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1.6 Catalysis and Solid State Chemistry 

1.6.1 Oxide Bronzes as Catalysts 

Solid state chemistry and physics are incrp.asingly brought to 

bear on the formation of catalytic materials. The interdisciplinary 

field of solid state science, touching on the relation between the 

properties of materials and atomic structure provides a natural matrix 

for the elucidation of structure-property relationships of defect 

solids used as catalysts. The earliest application of oxide bronzes 

for the catalysis of a desired chemical reaction was in the field of electro-

catalysis as electrodes in fuel cells(5l). Recently, there have been· 

scattered reports of activity in other processes as well. Bronzes 

could play an important role for the correlation of solid state chem-

istry and physics with catalytic properties. Metallic Tungsten 

bronzes, MxW03, x ~ 0.25, have been used for various electrode processes 

but are particularly interesting as oxygen electrodes (cathodes) in 

fuel cells. Sodium tungsten bronzes have shown considerable activity 

in the electrode reactions of peroxo species in acid media. The 

hydrogen electrode reactions over tungsten bronzes in acid media have 

been studied for the cathodic hydrogen evolution reaction and the 

anodic hydrogen oxidation reaction 

1.6.2 Alcohol Decomposition 

The two basic modes of alcohol decomposition are: (a) dehydro­

genation to form an aldehyde (in the case of primary alcohols) or a 

ketone and hydrogen (in the case of secondary alcohols), and (b) 

dehydration to form an alkene and water. According to current theories, 

catalyst activity and selectivity in this reaction may be related to 

lattice parameters, type of conductivity and width of the forbidden 
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zone as well as to the acidic properties of the surface(52-55). Many 

workers(56-58) have used the activity for the decomposition of 2-

Propanol (Isopropyl alcohol) as a measure of the acidity of various 

catalyst systems and found good correlations with acidity measured by 

adsorption of ammonia or pyridine. The two main paths of the 

decomposition of 2-Propanol (IPA) are given in Figure 1.11. The 

catalytic activity for dehydration of IPA to. propene has been found to 

CH3 I 
CH - OH 
I 

CH3 

~ CH3COCH3 + H2 

---------... CH3CH = CH2 + H20 

Figure 1.11 

be proportional to the acidity of a catalyst(59), whereas the activity 

for dehydrogenation of IPA to acetone is assumed to be proportional to 

the basicity of a catalyst(60-62). The tungsten bronzes, MxW03 where 

M = Na or K and 0 ~ x ~ 0.8, may be thought to contain both acidic 

and basic sites, which vary according to alkali ion content. Thus 

the decomposition of isopropanol was chosen as a probe reaction for 

characterising the acid-base properties of the sodium and potassium 

bronzes prepared::here. 

1.6.3 Alkene Metathesis 

Since fir~t discovered by Banks and Bailey(63), the alkene 

metathesis (disproportionation) reaction has been the subject of many 

investigations(64). The reaction may be regarded as a net breaking 

and re-formation of two olefinic carbon-carbon bonds, as depicted by 
, ' j I 

Figure 1.1'2 for the metathesis of propene, producing a mixture of ethene 

and cis- and trans-2-butene. Olefin metathesis is catalysed by a 
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~ CH2 =CH2 

~CH H 
~ / 

C = C 
/ \ 

H CH3 

and 

CH3 CH3 '\ / 
C = C 

/ "-
H H 

Figure 1.12 

variety of both heterogeneous and homogeneous systems(65), in hetero­

geneous catalysts it is known to occur mainly over rhenium, tungsten 

and molybdenum compounds(66). For the metathesis of propene in 

particular, the catalyst Re207/A1 203 can catalyse the reaction at low 

temperatures, with good activity and a high selectivity(67,64). It 

has recently been shown for the same metathesis reaction, dimerisation 

(producing mainly hexenes) was dominant over insulating W03, while the 

major products over metallic Re03 were those of metathesis of propene 

(i.e. ethene and but-2-enes). Metallic Re03 may be thought of as an 

isoelectronic analog of both NaW03 and KW03. W03 and MW03 (M = Na or K) 

are end members of MxW03 and have insulating properties when x < 0.25 

and metallic conductivity when x > 0.25(68). Thus an interesting 

reaction to probe the bulk properties of the potassium and sodium 

bronzes prepared here will be that of the catalytic reaction of propene, 

which could change from dimer;sation to metathesis over MxW03 (M = Na or K) 

when x is ,increased from zero, to 0.8 due to changes in electrical 

properties. 
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1.6.4 Ammonia Synthesis on Supported Potassium 

Tungsten Bronzes 

Since the early nineteenth century, many attempts have been made 

to cata lyse the synthesis of ammoni a from ni.trogen and hydrogen: 

6H = -109kJmol- l 

The quantity of nitrogen and hydrogen combining into ammonia depends on 

the operating pressure, temperature and H2/N2 ratio. Table 1.1 shows 

the equilibrium yields in percentage of ammonia at different pressures 

and temperatures. 

2.5MPa 5MPa 10MPa 20MPa 40MPa 

373K 91.7 94.5 96.5 98.4 99.4 

573K 63.6 73.5 82.0 89.0 94.6 

673K 27.4 39.6 53.1 66.7 79.7 

773K 8.7 15.4 25.4 38.8 55.4 

873K 2.9 5.6 10.5 18.3 39.1 

Table 1.1 Equilibrium yields of ammonia at different temperatures 

and pressures 

Two fundamental facts are shown in Table 1.1; (a) under the same 

pressure conditions, the ammonia equilibrium yields decrease with 

increasing temperature, and (b) under equal temperature conditions, 

the equilibrium ammonia yield increases with increasing pressure. 

From these facts it is clear that the exothermic synthesis of ammonia 

is thermodynamically favoured at low temperature and high pressure. 

" , 

The rate-determining step in the reaction was first associated 
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with the adsorption of nitrogen in the earlyl930s(69). This view was 

then substantiated by the pioneering kinetic studies of Emmett and 

Brunauer(70) who found that the overall rate of N2 adsorption is of 

the same order of magnitude as the rate of ammonia synthesis on the 

catalyst surfaces studied. In addition, Kozhenova and Kagan later 

showed that the hydrogenation proceeds much faster than nitrogen 

adsorption(7l). Although there was a general consensus about the 

rate-determining step, the nature of the catalytically active nitrogen 

species was in contention. Formally, the overall reaction can be 

divided into the following sequence of individual molecular steps 

assuming that (a) dissociatively adsorbed nitrogen, Nad , or (b) 

molecular nitrogen, N2ad , is hydrogenated stepwise to NH3. 

(a) Dissociative mechanism 

+ + 

+ + 

2NHad + 4Had ~ 2NH2ad + 2Had ~ 

2NH2ad + 2H~d --- 2NH3ad ~ 

2NH3ad 
~ 2NH3 ~ g 

(b) Molecular mechanism 

N2 + 3H2 
~ 

~ N2ad + 6Had 

N2ad + 6Had 
~ N2H2ad + 4Had -, -

N2H2ad + 4Had ~ N2H4ad + 2Had ~ 

N2H4ad + 2Had 
~ 

2NH3ad ~ 
: 

2NH3ad ---l 2NH3 
~ g 
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The dissociative adsorption of hydrogen on iron and other metal 

catalysts was always well-established and therefore a reaction mechanism 

via molecular hydrogen species need not be considered. In the reaction 

sequence (a), it is assumed that atomic nitrogen and hydrogen react via 

intermediate imine and amine surface species while in sequence (b), the 

reaction of molecularly adsorbed N2 proceeds through the formation of 

diimine and hydrazine to finally give ammonia. The final step in both 

models is the desorption of ammonia from the catalyst surface. 

A variety of catalysts have been used for ammonia synthesis, incl­

uding Pt foil, Os, dispersed iron and electrolytically deposited Mn. 

A promoted iron catalyst that, with the addition or substitution of 

other promoters, was eventually developed, and is still the catalyst 

universally used today. Recent studies(72) have shown that potassium 

tungsten bronzes supported on A1 203 have shown some catalytic activity 

for the synthesis of ammonia from its elements. The bronzes were 

prepared by i,mpregnation of an alumina support with an aqueous solution 

of potassium tungstate followed by reduction in hydrogen at high 

temperature. The rate of ammonia synthesis on these bronzes was 

observed to increase with temperature, the initial rate however was 

seen to decrease rapidly with time. This rapid fall in rate was 

explained in terms of an intermediate species being strongly adsorbed 

on the surface. 

1.6.5 Methanol Synthesis and the Water-Gas-Shift Reaction 

on Copper Based Catalysts 

Methanol synthesis consists of the hydrogenation of carbon mon­

oxide lOr carbon dioxide according to: 
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and 

-1 
~H600K = -lOO.46kJmol 

-1 
~H600K = - 61.59kJmol 

The catalysts used for this synthesis are based on copper and combin­

ations of various oxides (ZnO, A1 203, Cr203 and Ti02). Copper based 

catalysts have also shown considerable activity for the water-gas-shift 

reaction:-

~H = - 40.6kJmol- l 

which is a reaction most frequently used in conjunction with the pro­

duction of hydrogen via the steam reforming of hydrocarbons. For 

methanol synthesis and the shift reaction, copper is more active when 

supported on ZnO than on titania(73). There is current uncertainty 

regarding the precise oxidation state of ZnO supported Cu under 

conditions of use(74), however very recent work(75) has shown that 

Cu (II) in CuFexCrz_x04 spinels is as active as Cu/ZnO under conditions 

when it would not have been significantly reduced. 

1.7 Present Study 

The present study was undertaken to understand the surface and 

bulk properties of some unsupported tungsten bronzes MxW03, where 

M = Na or K and 0 ~ x ~ 0.8, and establish their catalytic activity 

towards the decomposition of isopropanol and the metathesis of propene. 

The programme of work was as follows: 

(1) Preparation of the potassium and sodium tungsten bronzes by 

the following reaction; 

3xM
2

W04 + (6-4x)W03 + xW ~1173K .. 

6MxW03 
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where M = Na or K 

(2) Surface characterisation and morphology of the potassium and 

sodium tungsten bronzes. 

(3) Study of the thermal stability of the bronzes in hydrogen and 

in air. 

(4) Characterisation of the bronze samples by x-ray photoelectron 

spectroscopy and x-ray diffraction. 

(5) Study of the electrical properties of the bronze samples. 

(6) Study of the catalytic activity of the bronzes for the decomp­

osition of isopropanol and for the metathesis of propene. 

(7) Preparation of CUyKXW03 by an ion-exchange method since 

preparation of such a sample by a thermal method is difficult 

due to thermodynamic limitations required at the high temper­

ature to overcame the slow rate of formation. 

(8) Previous studies(72) have shown that potassium bronzes 

supported on alumina have a slight catalytic activity for 

ammonia synthesis. A silica-supported bronze was prepared 

for comparison with the alumina supported bronzes. 

The results of the work carried out on the alumina-supported potassium 

tungsten bronzes is described in Appendix I. 



l. 

2. 

3. 

4. 

5. 

6. 

- 27 -

CHAPTER 1 

REFERENCES 

II F. Wohler, Ann. Chim. Phys., (2), 43,29, (1823). 

A. Laurent, Ann. Chim. Phys., (2),.§I, 215, (1838). 

G. von Knorre, J. Prakt. Chern., (2), Q, 49, (1883). 
II E. Schafer, Z. Anorg. Allg. Chern., 38, 142, (1903). 

II 

G. Hagg, Z. Phys. Chern., B29, 192, (1935). 

A.D. Wadsley, Helv. Chim. Acta. Fascic. Extraord., Alfred Werner, 

207, (1967). 

7. A. Magneli, Nova. Acta. Regiae Soc. Sci., Upsaliensis, li, 4, 

(1950). 

8. T.A. Bither, J.L. Gillson and H.S. Young, Inorg. Chern., ,§., 1559, 

(1966) . 

9. E.O. Brimm, J.C. Brantky, J.H. Lorenz and M.H. Je11inek, J. Am. 

Chern. Soc., 73, 5427, (1951). 

10. E. Banks and A. Goldstein, Inorg. Chern., J..., 966, (1968). 

11. A. Hussain, L. Kih1borg, Acta. Crysta11ogr., A32, 551, (1976). 

12. P. Hagenrnu11er, 'The Chemistry of Extended Defects in Non­

Metallic Solids', (1970), L. Eyring, M.O'Keefe, Editors. 

(Amsterdam: North Holland Publishing Co.) 

13. D. Ridgley and R. Ward, J. Am. Chern. Soc., ]2, 6132, (1955). 

14. J.M. Reau, C. Fouassier and P. Hagenrnu11er J. Solid State Chern., 

1, 326, (1970). 

15. G.H. Bouchard, J. Perlstein and M.J. Sienko, Inorg. Chern., ~, 

1682, ( 1967) . 

16. J.P. Parant, R. 01azcuaga, M. Deva1ette, C. Fouassier and 

P. Hagenmu11er, J. Solid State Chern., l, 1, (1971). 

17. H.R. ~hanks, P.R. Sidles and G.C. Danielson, 'Non-~toichiornetric 

Compounds', Chemistry Series No. 39, 237, (1963). 



- 28 -

18. W.H. Jones, E.A. Gabarty and R.G. Barnes, J. Chern. Phys., 36, 

494, (1962). 

19. G. Gende11, R. Cotts and M.J. Sienko, J. Chern. Phys., ~, 220, 

(1962). 

20. J.D. Greiner, H.R. Shanks and D.C. Wallace, J. Chern. Phys., 34, 

772, (1962). 

21. R.W. Vert, M. Griffe1 and J.F. Smith, J. Chern. Phys., 28, 293, 

(1958). 

22. P.G. Dickens, R.M.P. Qui11iam, M.S. Whittingham, Mater. Res. Bull, 

1, 941, (1968). 

23. L.D. Muh1estein and G.C. Danielson, Phys. Rev., 158, 825, (1967) . 

24. L.D. Muh1estein and G.C. Danielson, Phys. Rev., 160, 562, (1967) . 

25. A. Wold, W. Kunnrnann, R.J. Arnott and A. Ferretti, Inorg. Chern. , 

1,545, (1964). 

26. J.B. Goodenough, Prog. in Solid State Chern.,!, 145, (1971). 

27. T.A. Bither, J.L. Gillson and H.S. Young, Inorg. Chern.,.§., 1559, 

(1966) . 

28. T.E. Gier, D.C. Pease, A.W. Sleight and T.A. Bither, Inorg. Chern., 

I, 1646, (1968). 

29. A. Narath and D.C. Wallace, Phys. Rev. 127, 724, (1962). 

30. A.R. Sweed1er, C.J. Raub and B.T. Matthias, Phys. Lett, li, 108, 

(1965) . 

31. J.R. Rerneika, T.H. Geba11e, B.T. Matthias, A.S. Cooper, G.W. Hall 

and E.M. Kelly, Phys. Lett, 24A, 565, (1967). 

32. S.A. Lawrence, S. Stevenson, K. Mavadia and P.A. Sermon, Proc. R. 

Soc., A411, 95, 1987. 

33. J.~. Greiner, H.R. Shanks and D.C. Wallace, J. Chern. Phys., 36, 

772, (1962) ~ 

34. P.G. Dickens and M.S. Whittingham, Quart. Rev., 22, 30, (1968). 



- 29 -

35. M.J. Sienko, 'Non-Stoichiometric Compounds I , Adv. in Chemistry 

36. 

37. 

38. 

39. 

40. 

41. 

42. 

43. 

44. 

Series No. 39, 224, (1963). 

D.R. Wan1ass and J.J. Sienko, J. Solid State Chern., ~, 362, (1975). 

M.J. Sienko and S.M. Morehouse, Inorg. Chern., £,485, (1963). 

M.J. Sienko and T.B.N. Troung, J. Am. Chern. Soc., 83, 3939, (1961). 

R.J. Bouchard and J.L. Gillson, Inorg. Chern., I, 969, (1968). 
II 

G. Hagg, Z. Phys. Chern., B29, 192, (1935). 

A. Magne1i, Nova.Acta.Regine.Soc. Sci. Upsa1iensis, 14, 4, (1950). 

I. Lefkowitz and G.W. Taylor, Optics Commun., ~, 340, (1975). 

A. Magne1i, Arkiv. Kemi., l, 273, (1949). 

E. Banks and A. Wold, Prepn. Inorg. Reactions, 4, (1968) Inter-

science. 

45. E. Zettnow, Pogg. Ann., 130, 240, (1967). 

46. P.A. Sermon and G.C. Bond, CataL Rev., 8, 211, (1973). 

47. P.A. Sermon and G.C. Bond, J. Chern. Soc., Faraday Trans. 1,1£, 

730, (1976); G.C. Bond, P.A. Sermon and C.J. Wright, Mater. Res. 

Bu1L,11, 701, (1984). 

48. P.A. Sermon and A.R. Berzins, Metal Hydrogen Systems. Ed. T.N. 

Verzirog1u, 451, (1982). 

49. P.G. Dickens and M.T. Weller, J. Solid State Chern., 48, 407, 

(1983) . 

50. G.C. Bond, Heterogeneous Catalysis, Principles and Applications, 

Oxford University Press, (Ed. P.W. Atkins, J.S.E. Ho1ker, and 

A.K. Holliday), (1974). 

51. J. McHardy, J.O'M. Bockris, 'From E1ectrocata1ysis to Fuel Cells', 

G. Sandstede, Ed., University of Washington Press, Seattle and 

London, (1972). 

52. S.Z. R09inski"Zh. Fizo Khimo, i, 3~4., (1935). 
" ' 

i: , 

53. SoZ. Roginski, Ook1. Akad. Nauk., USSR, ~, 97, (1949). 



- 30 -

54. K. Hauffe. Reactions on Solids and their Surfaces. Russ. L. (1962). 

55. G.M. Schwar. Adv. Cata1., .£' 229, (1952). 

56. M. Ali and S. Suzuki, Bull. Chern. Soc. , Jap. 47,(12),3074, (1974). 

57. M. Ali, S. Suzuki, Bull. Chern. Soc., Jap. 46, 321, (1973). 

58. K.T. Sea, S.C. Kang, H.J. Kim and S.K. Moon, Korean J. Chern. Eng., 

l!. (2), 163, (1985). 

H. Pines, Adv. Cata1., l§., 49, (1966). 

M. Ali, Bull. Jap. Petrol. Inst. , ~, 50, (1976). 

M. Ali, Bull. Chern. Soc. Jap., 50,355, (1977). 

M. A 1; , Bull Chern. Soc. Jap., 50, 2579, (1977) . 



- 31 -

CHAPTER 2 

PREPARATION OF POTASSIUM AND SODIUM TUNGSTEN BRONZES 

2.1 Introduction 

The tungsten bronzes are non-stoichiometric ternary metal oxides 

of general formul a MxW03 where Mis a metal and 0< x < 1. These com­

pounds have been known from the beginning of the 19th century(l). In 

recent years. many research groups have been studying these types of 

materials because of their interesting physical and chemical properties. 

The metal. ~1. to form bronzes of tungsten include potassium and soCi·ur.1. 

2.2 Synthesis of Tungsten Bronzes 

A number of methods have been used to prepare tungsten bronzes. 

In 1823 Woh1er(1) first prepared the tungsten bronzes by reducing a 

mixture of sodium tungstate - tungsten trioxide with hydrogen gas. 

In 1838 Laurent(2) obtained a similar product using potassium tungstate. 

Later tither reducing agents such as tin. zinc. and iron were also 

used(3). 

Brunner(4) prepared the potassium bronzes by heating a mixture 

of K2W04• W03 and W02 in vacuum. Later Straumanis(S) and also 

Brinm(6) used tungsten as a reduci ng agent to prepare sodium and: 'pot­

assium bronzes according to the following reaction; 

---I.... 6MxW03 1173K 

Metal chloride ca~-be used instead of tungstate as a starting mater­

ial(7). Conroy and Yokokawa(8) prepared tetragonal barium tungsten 

bronzes using barium chloride as a starting material according to the 
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following reaction; 

This method has also been used to prepare other alkaline earth metal 

tungsten bronzes with the possible substitution of bromine or iodine 

for chlorine(9). Hexagonal tungsten bronzes have been preoared by 

the reaction of hexagonal W03 with metal vapours, within the temper­

ature range of 473K - 673K(lO). The solid state reaction has been 

found quite versatile and is the most frequently used method for the 

preparation of bronzes. 

Electrolytic reduction is generally used to obtain large single 

crystals of bronzes and was first applied by Zettnow(ll) in 1867; a 

molten mixture of metal tungstate and tungstic acid was electrolytically 

reduced. Hagg(12), in his study of sodium bronzes, used this tech­

nique which was then further developed by Ellerbeck(13) and by 

Kunnman and Ferretti (14). 

Sienko(15} prepared single crystals of Tl xW03 by vapour-phase 

reaction of W03 and metallic Tl according to the following reaction; 

The crystals were deposited on a cold finger in the reaction vessel. 

This method is suitable if the metal is appreciably volatile at high 

temperatures. Aluminium bronzes have also been prepared by this 

method. 

-
The hexagonal phases of lithium(16}, ammonium(16), and the cubic 

potassium tungsten bronzes(l7) which are not ,possible to: prepare at 

atmospheric pressure may be synthesised at high pressure. This 

method permits in some cases the extension of compositional range to 
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higher x values, particularly of atoms having a valency state higher 

than one(18). 

Tungsten bronzes prepared by the electrolytic methods are often 

obtained impure and thus require purification. They are remarkably 

stable against chemical reagents such as acids and use of this has been 

made in the purification process. Impurities can be removed by 

successive treatment of the sample with (i) boiling water(19); 

(ii) boiling conc. Hel or aqua regia(20); (iii) boiling in 40% hydro­

fluoric acid(20,2l). 

Recently(22) supported hexagonal potassium tungsten bronzes 

have been prepared by impregnation of a support with a solution of 

K2W04, followed by reduction at 1023K in hydrogen gas. 

2.3 Present Method of Preparation 

2.3.1 Potassium and Sodium Bronzes 

In the present study a series of potassium tungsten bronzes 

and a series of sodium tungsten bronzes was prepared by the solid 

state reaction using tungsten as the reducing agent according to the 

fo:" owi ng equa t ion; 

" , , 

where M = K or Na 

Both potassium and sodium tungstate were commercially available (KOCH 

Light Laboratories, 99.9%) together with W03 (Koch-Light, 99.5%), 

and W powder (BOH, 98%). 

The app~opriate weight of these starting materials was used to give an 

alkali metal ion content of 0.05, 0.2, 0.3, 0.6 and 0.8 mole fraction 
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(0.84% - 13.5%) in both the potassium and sodium tungsten bronzes. 

K2W04, W03 and W powder were ground together placed in a silica reactor 

and heated at 1173K in flowing argon for approximately 48h - 72h to 

produce homogeneous polycrystalline bronze samples. The resultant 

bronzes were intensely coloured, those with lower alkali ion content 

being generally darker in colour. The samples were labelled and 

stored O.05KW, O.2KW, O.3KW, 0.6KW and 0.8KW where K refers to potass­

ium, W to tungsten and the preceding number to the intended potassium 

ion content on a mole basis. A similar labelling system was used 

for the sodium bronzes with Na representing the sodium ion. 

2.3.2 Supported Potassium Bronze 

A supported potassium tungsten bronze was prepared by impreg­

nating a silica support (Aerosil 200, surface area 200m2g- l.) to 

incipient wetness with a solution of potassium poly tungstate to give a 

tungsten loading of 30% by weight. After removing any excess water 

on a steam bath and drying in an air oven at 373K for l2h, the sample 

was reduced in flowing hydrogen (40cm3 min- l , 10lkPa) at 770K for about 

2h. The poly tungstate solution was obtained by adjusting the pH of a 

solution of potassium tungstate to 4 (using nitric acid). Previous 

studies(22) by Raman spectroscopy have shown that at such a pH the 

paratungstate species (W12042l2-) is formed. Such'species are more 

easily reducible to the bronzes than the monotungstate(22). A high 

metal loading was selected because it was observed that in the previous 

studies(22) the bronzes are more readily formed at loadings much higher 

than that required to form a monolayer. 

2.3.3 CUy.KxW03 

An ion-exchange method was used in trying to obtain highly 
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dispersed Cu ions in the potassium bronze structure. Attempts to 

prepare such a sample by thermal methods have not been very successful 

since only a minimum of copper ions enter the lattice framework due to 

thermodynamic limitations at the high temperatures required to overcome 

kinetics. An initial study was first made in order to establish the 

optimum conditions of exchange of potassium ions for cupric ions. A 

CuC1 2 (J.M.C. Speciality Products AR:) solution was used as the Cu 

precursor and the method was used for the potassium tungsten bronze 

with x = 0.2. Jhe initial study involved varying the temperature of 

the Cu solution (294K - 353K), the concentration of Cu ions in solution 

(between 10 - 300 times the concentration of K ions present) and the 

time for exchange (24h - l20h). Usually about 19 of bronze and 60cm3 

of cupric chloride solution were used for each study. In e~ch series 

of experiments a blank was prepared by allowing 19 of 0.02KW to 

equilibrate in 60cm3 of distilled water. 

In the first series of experiments the concentration of the Cu 

solution was varied between 0.139'N to 4.17M (the amount of copper 

present in 60cm3 of solution is between 10 to 300 times those of the K 

ions in the bronze). The solutions were allowed to equilibrate with 

1 9 of the bronze at room temperature for 24h. A second se·ri es of 

experiments in which the concentration of the copper solution, main­

tained at room temperature, was kept at a concentration of 2.7BH but 

the time period was varied between 24h to 120h in an attempt to follow 

the kinetics of ion-exchange. In the final series of experiments the 

temperature of the copper solution was varied between 288K and 353K but 

the concentration of the solution (Cu2+ = 2.78M) and the time of 

equi1i~rium (96h) were kept constant. In each ~ase lthe, s91ution,was 
! ' 

stirred continuously using a magnetic stirrer. After each experiment 

the mi xture was centri fuged and the aliquot was ana lysed for potass i urn 
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content using atomic absorption (Perkin Elmer 2380). It was difficult 

to analyse for the high Cu concentration in the solution and hence the 

accuracy in determining the amount exchanged. In each case the blank 

samples prepared showed no potassium ions present in the aliquot as 

observed by atomic absorption. 

Figure 2.1 gives the amount of potassium removed from the bronze 

as a function of the concentration of copper present in 60cm3 of sol­

ution. The isotherm shows that the maximum amount of potassium 

removed ;s achieved at a copper concentration of 2.8M after which 

increases in the Cu2+ concentration in solution have no effect. 

Figure 2.2 shows that maximum amount of potassium exchanged at room 

temperature with a solution of 2.78M Cu is achieved after about 48h; 

this means exchange kinetics are rather slow. Figure 2.3 shows that 

the minimum temperature required to achieve maximum exchange of K ions 

with a solution of 2.7BM Cu and a time period of 96h is about 294K. 

The study has therefore shown that the optimum conditions required for 

the maximum exchange of K ions for Cu ions, (XPS has shown directly 

the presence of Cu ions in the bronze Cu K W03 see Chapter 6). These were, y x 
for 19 of bronze: a solution of 2.78M Cu, a temperature of 294K and a 

time period of 48h. 

The conditions used for preparation of CUyKxW03 were:- a temper­

ature of 313K; 96h equilibrium time and a Cu solution of concentration 

2.78M. 
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CHAPTER 3 

PHYSICAL CHARACTERISATION AND SURFACE MORPHOLOGY 

3.1 Introduction 

Many reactions of both theoretical and practical interest occur 

on the surface of solid catalysts. An important parameter which deter­

mines the catalytic activity is the available surface area or the 

number of active sites per unit total surface area. The course of 

reaction, however, is, in a considerable number of cases, determined 

by the acidic number and strength of acid sites at the surface, (or the 

acidic nature of the surface). 

The potassium tungsten bronzes, the sodium tungsten bronzes and 

W03 were analysed for their BET surface area using krypton adsorption. 

The use of the physical adsorption of gases by solids for the deter­

mination of their surface area, porosity and texture is now well­

established in many fields of scientific investigation. The theory 

of ga's adsorption by solids with special emphasis on the character­

isation of porous solids by gas adsorption has been ~xtensively developed 

and discussed in recent years. Transmission Electron Microscopy, (TEM) 

was also used to obtain a more detailed morphological study of these 

materials. Temperature programmed qesorption of ammonia was used to 

measure the amount and distribution of acid sites on W03, KxW03 and 

NaxW03 (0.05 s x ~ 0.8). Acidity is often an important characteristic 

which makes a solid catalytically effective. Silica-aluminas and, 

more recently, zeolites with acidic surfaces playa very important 

catalytic role in industrial processes, in particular in the petroleum 

industry. 
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3.2 The BET Method of Surface Area Determination 

The BET method(l) has been adopted as a standard procedure for 

surface area determination of solids. The BET model(l) extends the 

dynamic condensation - evaporation mechanism previously suggested by 

Langmuir(2) to describe localised monolayer adsorption to a mUlti-

layer adsorption of gases on solid surfaces. The BET equation has 

been represented in different forms(3), a convenient and widely used 

one being 

p = £ 
Po 

where; V is the amount of gas adsorbed at the equilibrium pressure p. 

Vm is the amount of gas required to give monolayer coverage. 

Po is the saturated vapour pressure of the adsorbate. 

C is a constant which may be regarded as a free energy term. 

The theory assumes (i) that the heat of adsorption in all layers above 

the first is equal to the latent heat of condensation, (ii) that all 

rates of evaporation and condensation in all layers above the first 

are identical, (iii) and that when p becomes equal to the saturation 

vapour pressure of the adsorbate, the latter condenses as an ordinary 

liquid into the adsorbed film. The BET mod~l also assumes that the 

surface of the solid is energetically uniform and ignores the fact that 

most solid surfaces are energetically heterogeneous. The theory also 

neglects any interactions between adsorbed species horizontal to the 

solid surface, taking into account only those perpendicular to the 

surface. The BET theory also fails to account for the fact that at 

saturation vapour pressure often only a finite number of molecular layers 

are adsorbed. 

Despite its minor failures, the BET theory is remarkably success-
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ful when used in the calculation of specific surface area of solids. 

The BET equation predicts that a pl~t of p against ~ 
V(po-p) Po 

should be linear, yielding ~ as the slope j, and ~ as the 
m m 

intercept i and solving these two simultaneous equations give 

1 = 
(i +j ) 

c = i+j 

i 

The range of linearity of the BET plot is normally, but not always, 

between 0.005 < ~ < 0.35. The specific surface area, 2 -1 S, in m g 

is given by the relationship 

S = Vm N . Am .10-18 

22414 

where Vm is expressed in cm3 (S.T.P.) of adsorbate per gram of solid, 

N is Avogadros constant, 6.023 x 1023 and Am is the cross-sectional area 

of the adsorbed molecules in nm2. Am cannot be measured independently 

and its value is usually estimated(4) by assuming (i) close hexagonal 

packing of the species in the mono1ayer,and (ii) a packing density in 

the monolayer equal to the bulk density of the adsorbate. In general, 

the value of Am varies from adsorbate to adsorbate; thus, for krypton 

gas as an adsorbate at 77K, the recommended value of Am is 0.195nm2 

whilst for water vapour Am is usually taken to be O.106nm2 at 293K. 

Nitrogen adsorption is the most commonly used technique for determin­

ation of surface areas as low as approximately 1m2 can be measured. 

The principle obstacle to measuring areas lower than this with nitrogen 

in a volumetric system lies in accurately measuring the void or "dead 

space" volume. On small areas, the quantity of adsorbate remaining in 

the void volume is large compared to the amount adsorbed, and indeed 
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the void volume error can be larger than the volume adsorbed. The 

number of molecules trapped in the void volume can be reduced by using 

adsorbates with low vapour pressures such as krypton. ,The vapour 

pressures of krypton at liquid nitrogen temperature is 350.64 Pa. 

Therefore, the amount of krypton remaining in the void volume, when 

monolayer coverage occurs, will be much less than nitrogen, whereas the 

amount of adsorption will be only slightly less by approximately the 

ratio of cross-sectional areas of nitrogen and krypton, or about 

0.162/0.195. In the present study krypton adsorption at liquid nitro­

gen temperature was used to determine the surface areas of the bronzes 

and W0 3. At liquid nitrogen temperature, krypton may condense as a 

liquid but since the vapour pressure used is very low, such a possibility 

is non-existent. 

3.3 Surface Acidity 

The concept of surface acidity of highly divided solids was 

derived originally to explain the action of acid surfaces in catalytic 

reactions. A description of acidity in general, and surface acidity 

more specifically, requires the determination of the nature, the 

strength, and the number of acid sites. A solid acid is capable of 

transforming an adsorbed basic molecule into its conjugated acid form. 

In its most general definition an acid is an electron-pair acceptor. 

So the Bronsted acid site is able to transfer a proton from the solid 

to the adsorbed molecule. In this wayan ion is generated and an ion­

dipole interaction with the solid exists. The Lewis acid site is able 

to accept an electron pair from the adsorbed molecule and a coordina­

tive bond with the surface is formed. 

3.3.1 Nature of Surface Acidity 

Bronsted acid sites in solids can be generated when a trivalent 
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cation is present in tetrahedral coordination with oxygen. The most 

common example is aluminium. When all tetrahedral oxygen anions are 

shared between two cations, net negative charges are created for 

cations with charges lower than 4. A schematic diagram is given for 

a1uminosi1icate, the most common case encountered, in Figure 3.1. 

When the excess negative charges are 

0 0 0 
/0 0 

I '\ IV / \ o· / \ " - / \ III IV o II I 
Si Al Si Al 

/ \ / \ / \ 1\ 
0 0 0 0 0 0 0 0 
I I I I I I I I 

Figure 3.1 

compensated for by protons, si1ano1 groups are formed, which are 

represented in Figure 3.2 

H 
I 

0 o 0 
/\ / ", / \ 

Si A1 
/ \ / \ 

0 0 o 0 
I I I I 

Figure 3.2 

It has to be understood that in such a structure a trigonal oxygen 

does not exist; it indicates only that $i as well as A1 retain their 
. 

tetrahedral coordination. Upon interaction with a basic molecule 

(e.g. an alkene), the following equilibrium is established: 
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+R - CH = CH 2 

+ 
R - CH - CH3 + 

000 
\ / \0-/\ 

Si Al 
/ \ / \ 
000 0 
I I I I 

II 

Depending on the strength of the Bronsted site this equilibrium will 

be shifted. It seems, therefore, the surface acidity is dynamic 

in character and is dependent on the chemical nature of both the 

adsorbed base and the solid. When coordinative unsaturated sites 

by some mechanism are generated, acid sites of the Lewis type are 

created which are able to accept electrons. 

example is schematized in Figure 3.3. 
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The silica-aluminium 

or 
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A given acidic solid usually does not have a single class of 

acidic sites, but shows a large distribution of strengths of acid 

sites. This may be the result of inhomogeneity in the comoosition 

of the solid, or the existence of short-range interactions or of 

surface structures. 

3.3.2 Measurement of Acidity of Surfaces 

There are many publications dealing with the measurement of 

surface aCidity(S,6) some of which are described below. 

3.3.2.1 Non-aqueous titrations 

Historically the first method to be used for the determin­

ation of surface acid sites concentration (SASe) was by Johnson(7). 

He suspended some powdered sample in dry benzene and titrated it by 

slowly adding a dilute solution of n-butylamine in benzene until the 

indicator adsorbed on the surface was converted permanently to its 

basic form. Since an indicator is converted to its conjugate acid 

only by acid sites which have acid strengths equal or more than the 

pKb of the indicator (i.e. equal or lower than the Bronsted acidity), 

use of indicators of varying pKb yields a distribution of acid sites 

concentration with strength. By using a series of indicators with 

increasing pKb, Johnson, determined the lowest value of pKb for which 

the indicator is converted to its conjugate acid. Thus, the limiting 

strength for the stronger acid sites can be determined. The dis­

advantages of this method are that the equilibrium between the solid 

and the base is often reached very slowly and hence the method can be 

time-consuming and inaccurate, indicators can alter colour through 

physisorption rather than adsorption at acid sites and the base used 

is sometimes adsorbed on sites other than acidic ones. 
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3.3.2.2 Aqueous Titrations 

II 

This can be used to determine Bronsted acidity. It is 

basically an ion exchange method where surface protons are replaced 

by other hydrated cations(8). The method consists of equilibrating 

the solid with a known amount of base and backtitrating the excess 

with acid. The disadvantages of this method are that it will not 

distinguish between acid sites of different strength, while the 
II 

addition of water to the system may create new Bronsted sites. 

3.3.2.3 Infra-red Spectroscopy 

This method enables the measurement of the extent of pro-
II 

tonation of a chemisorbed base, and therefore Bronsted acidity can be 

distinguished from Lewis acidity. Mapes and Eischens(9) studied the 

chemisorption of ammonia on catalysts. Infrared spectra of such 

samples contained H - N - H bending bands due both the NH4+ and to 

coordinated ammonia. This was the first direct evidence of the 
II 

existence of both Bronsted and Lewis acid sites on aluminosi1icate 

surfaces. Pyridine is also commonly used, and being a weaker base 

than ammonia, is more selective for the stronger acid sites. 

Pyridine adsorbs on Bronsted acid sites giving a peak at 1545 cm-1 

due to the pyridinium ion, and adsorbs on Lewis acid sites giving a 

band in the region 1440 - 1465 cm-1 due to coordinated pyridine. 

3.3.2.4 Temperature-programmed desorption 

(tpd) of chemisorbed bases 

A gaseous base adsorbed on a strong acid site is more stable 

than one adsorbed on a weak acid site, and is more difficult to 

desorb. As elevated temperatures stimulate desorption of the:'adsorb-

ed bases from acid sites, those at weaker sites will be desorbed, 



- 47 -

preferentially. Thus, the proportion of adsorbed base desorbed at 

various temperatures can give a measure of the amount and distribution 

of acid sites. The bases used normally are quinoline, pyridine or 

ammonia. Tpd of ammonia, has been widely used to measure the acidity 

of various zeolites(lO). Ammonia is an excellent probe molecule 

because it can be stabilised on acid sites and can penetrate into pores 

due to its strong basicity and small size. However, the transport of 

this base molecule into the zeolite material may not be completely 

rapid. In some cases, the thermal behaviour could be influenced by 

these diffusion problems. Such a condition may be plausible at lower 

temperatures, Kanazirev(ll) used tpd of NH3 to study the problem of 

diffusion in a zeolite matrix and found broad peaks around or lower 

than 373K influenced .by the diffusibility of ammonia. Hidalgo(lO) 

et al overcame this problem by using a relatively high temperature for 

attaining equilibrium with the zeolite surface and using a slow rate 

of temperature increase. 

In the present study tpd of ammonia was used to show the dis­

tribution and strength of acid sites on the alkali metal tungsten 

bronzes. Ammonia was used as the probing molecule in preference to 

other bases because of the low surface area of the bronzes requiring 

a molecule with a small cross-sectional area. 

3.4 Transmission Electron Microscopy 

Electron microscopy is an extremely versatile technique capable 

of providing structural information over a wide range of magnification. 

At one extreme, scanning electron microscopy (SEM) complements optical 
--

mi croscopy : fo,r studyi ng ~he texture. tqpography a,nd surface features 
~ " ' Ii' , 

of powders; features up to tens of micrometers in size can be seen 

and, because of the depth of focus of SEM instruments, the resulting 
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pictures have a definite three-dimensional quality. At the other 

extreme, high resolution electron microscopy (HREM) is capable, under 

favourable circumstances of giving information on an atomic scale, by 

direct lattice imaging. Resolution of approximately 0.2nm has been 

achieved, meaning it has become possible to Isee l individual atoms. 

Electron microscopes are of either transmission or reflection 

design. For examination in transmission (TEM), samples are usually 

thinner than 200nm. This is because electrons interact strongly with 

matter and are completely absorbed by thick particles. In order to 

use electrons, instead of light, in a microscope it is necessary to 

be able to focus them, this is achieved by an electric or magnetic 

field. In order to minimise electron scattering a high vacuum is used. 

Electron microscopes contain several electromagnetic lenses. The 

condenser lenses are used to control the size and angular spread of 

the electron beam that is incident on the sample. Transmitted elect­

rons then pass through a sequence of lenses, objective, intermediate 

and projector, and form a magnified image of the sample on a fluor­

escent viewing screen from which photographs are then taken. A schematic 

representation of the transmission electron microscope is shown in 

Figure 3.4 

3.5 Experimental Procedures 

3.5.1 Krypton Adsorption Measurement 

The BET surface areas of W03, KxW03 and NaxW03 were determined 

using krypton adsorption at liquid nitrogen temperature. The 

measurements were undertaken on a Micromeritics Surface Area Pore 

Volume Analyser 21000. This is a volumetric adsorption apparatus 

which essentially consists of:-
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Electron source 

Condenser lens 

Object 

Objective lens 

Intermediate image 

Projection lens 

Final image 

Figure 3.4 Representation of the transmission electron 

microscope 

(1) A device for the introduction and removal of the adsorbate. 

(2) A system for measuring and recording the equilibrium pressure. 

(3) Temperature monitors for measuring both the sample outgassing 

and liquid nitrogen temper~tures. 

The sample was contained i~ a burette which after connection to 

the system manifold was evacuated':at room temperature using rotary and 

mercury diffusion pumps to less than lOmPa. The "dead space", i.e. 

the volume within the sample burette exclusive of the sample itself 

was then determined by expanding helium, a non-adsorbing gas, from a 

fixed volume at a known pressure into the sample burette maintained at 

liquid nitrogen:temperatu~ and recording the equilibrium pressure. 

The sample was again evacuated and krypton adsorption measurements were 
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performed by repeating the above procedure but using krypton and 

increasing the dosing pressure in successive doses. The equilibrium 

pressure observed after each dose was corrected for thermal trans-

piration effects. Once the gas volume introduced and the volume not 

adsorbed at a given pressure were known (±2%) it was possible to 

calculate the volume adsorbed at various equilibrium pressures. The 

surface area was calculated by plotting V(p ) against ~ where 
Po-P Po 

Po was the saturation vapour pressure of krypton (0.33kPa). 

The analyser allows the measurement of surface areas as low as 

0.1 m2g-1 (±2-S%) when krypton gas is used as the adsorbate molecule. 

3.5.2 Temperature Programmed Desorption (tpd) of Ammonia 

Tpd of ammonia was carried out on W03 and both the potassium 

and sodium bronzes. A schematic diagram of the tpd apparatus used is 

shown in Figure 3.4. In the apparatus the desorbed ammonia molecules 

were measured by a digital conductivity meter, Fissons PTl-18. 

Nitrogen gas was purified by passing through a SA molecular 

sieve at 298K. 6% NH3/94% N2 was purified by passing through a trap 

containing silica gel at 298K. Gas flow rates were kept constant 

(to within ±O.Scm3min-1) and were for N2, 20cm3min-1 and 6% NH.3 in 
3 . -1 N2, 1 Ocm mln . 

The sample (1-2g) was placed in a Pyrex reactor fitted with a 

thermocouple (Chromel-Alumel) to measure the sample temperature of 

the solig sample, and surrounded by a tubular furnace whose temperature 

was contro 11 ed by ali near programmer to wi thi n ± SK. N2 gas was 

admitted'and the temperature raised to 773K and held for lh. The 

sample was cooled to room temperature in N2 gas. 6% ~H3 in N2 was 



N2 

6% NH3/N2 

computer 
conductivity 
meter 

....-
~ 1\ 

l./ 
~ 

Thermocouple 

1-0' -
] 

FC 

r '-1 Reactor 

Furnace 

Temperature 
ProgranJTIer 

Figure 3.5 Tpd Apparatus 

. MS 5A Molecular sieve 
trap 

SG : Sill el trap 

T : Taps 

FC : Flo\'1 troller 

,.... .... 

Electrode 

U1 
--' 

r0o- f-

~ 
_ Exit 

........ 

, 

Conductivity cell 



- 52 -

then admitted and the sample allowed to equilibrate for 10 min. The 

diluted ammonia flow was then replaced by pure N2. The gas from the 

reactor was then bubb1~d through a cell containing 20cm3 of de-ionised 

water. The de-ionised water was obtained by passing doubly distilled 

water through an ion-exchange column packed with Duolite. The 

conductivity of the water in the cell was continuously monitored using 

a conductivity meter. When the conductivity of the de-ionised water 

was constant, indicating any excess ammonia or physisorbed ammonia had 

been removed, the sample temperature was raised to 773K at 5K min- l , 

and the concentration of desorbed ammonia in the exit gas was continu­

ously monitored as a change in conductivity of the de-ionised water in 

the cell. The output on the conductivity meter and the thermocouple 

was fed to a Commodore CBM 4032 computer (1 bit per ~mo1e of ammonia) 

through an amplifier and an analogue to digital converter for data 

processing. 

Calibration of the conductivity meter for ammonia was done by 

measuring the conductivity of 20cm3 of de-ionised water containing 

varying amounts of ammonia solution.· A calibration curve between the 

conductivity and the number of moles of ammonia present was then 

derived. The amount of ammonia desorbed was then estimated using this 

relationship. A previous study(12) has shown that the results 

obtained by the conductivity method are reproducible and the error is 

within ±3nmol of ammonia. 

3.5.3 Transmission Electron Microscopy 

For TEM, the sample was crushed using a pestle and mortar, 

ultrasonically dispersed in acetone and a drop of the suspension was 

placed onto a 200 mesh carbon coated copper grid. The dried grid, 
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clamped on the sample holder was transferred to the TEM (Jeol Temscan 

100CX). The sample was evacuated to less than 0.1 mPa before 

exposure to the electron beam at an accelerating voltage of 100kV. 

Micrographs of the magnified samples were taken by a Joel Plate 

Camera containing Agfa Gevaert Scientia films. The negatives were 

developed using an Agfa G170C developer, fixed by Ilford Hypam fixer 

and printed on Kodak Photographic paper. 

3~6. Results 

3 .. 6.1 BET Surface Area 

The surface area of W03 and the sodium and potassium bronzes 

was determined from the measurement of krypton adsorption at 77.1SK. 

Figures 3.6 - 3.16 show the plots of V(~o-p) versus %; for the differ­

ent samples. The gradi ent (ij~t ) and intercept v7 of these plots 

permit the monolayer capacity Vm to be derived and hence the surface 

area assuming a cross-sectional area of 0.195nm2 for the krypton atom 

assuming liquid krypton. Table 3.1 gives the surface area values for 

W03, KxW03 and NaxW03 where, 0.05 ~ x ~ O.S. 

W03 has a higher surface area than any of the bronze samples; 

this could be expected since the bronzes were prepared at a very high 

temperature. In general, for any given series of bronze, the surface 

area tends to decrease with increasing alkali ion concentration. 

This could not be due to a structural effect since although the pot­

assium bronzes with low alkali metal content are mostly hexagonal and 

those wi th x ~ 0.3 tetragona 1, the sodi urn bronzes wi th x ~ 0.3 are 
, 

tetragonal and at high sodium content hexagonal. The bronzes were 

prepared at high temperature and it is possible that the difference in 

surface area is caused by sintering. It appears that the extent to 
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which the bronzes are sintered depend on the alkali metal concentration, 

the higher this concentration, the greater is the loss of surface area 

due to sintering. 
Table 3.1 

Surface Area Values 

Sample surface
2
Arya/m2g-1 

t 0.05m g-

W03 1.15 

0.05KW 1.05 

0.2KW 0.77 

0.3KW 0.26 (0.24) 

0.6KW 0.16 

O.BKW 0.16 

O.05NaW 0.96 

0.2NaW 0.64 

0.3NaW 0.42 (0.39) 

0.6NaW 0.13 

O.BNaW 0.13 

Good reproducibility is indicated by duplicate data in brackets. 

3.6.2 Tpd of Ammonia 

3.6.2.1 Tpd of Ammonia on W03 and KxW03-

Temperature programmed desorption of chemisorbed ammonia could 

show a picture of the distribution of the strength of the acid sites 
-

on the alkali metal tungsten bronzes. The rate of ammonia desorption 
I I " 

as a function of temperature is considered for this purpose. 
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The tpd profiles of ammonia on samplesofW03andthe potassium 

tungsten bronzes are shown in Figures 3.17 - 3.22 respectively. In 

general the profiles obtained for samples W03t O.05KW and O.2KW are 

quite similar: showing one broad desorption peak with a maximum at 

approximately 398K. The profile obtained for sample O.3KW exhibits 

two overlapping peaks with maxima at 448K and 635K. The rate of 

ammonia desorption from sample O.6KW also gives two peaks with maxima 

at 435K and 729K. The tpd profile for sample O.8KW gives two peaks 

with maxima at 363K and 753K with a distinguished shoulder at 473K. 

The total amount of ammonia desorbed from these -samples together with -

the temperature at which the maximum rate -of desorption occurs are 

summarised in Table 3.2. In general it would appear that there are 

at least three different types of acid sites present on the potassium 

bronzes and these can then be correlated to the peak maxima. There _ 

is a low temperature peak at about 390K which is mostly present on 

bronzes with x ~ 0.2; however, the peak ;s also present on 0.8KW. 

There is a hi gh temperature peak at '" 730K and another at'" 450K for 

bronzes with x ~ 0.3. 

One obvious factor that can influence the nature of the acid 

site is the structure of the b~o~zet since it is possible that bronzes 

with the same structure will possess cages which are geometrically 

identical thus showing a sim~lar distribution of acid sites. Although 

the assumption is true for bronzes with x ~ 0.2 (O.2KW is hexagonal and 

O.OSKW is ~n intergrowth tungsten bronze, which is a mixture of hexa-
I 

gonal and W0 3 phases), O.3KW possessing the hexagonal structure has a 

quite similar distribution of acid sites to 0.6KW which has a tetra-

gonal structure. It is possible that the alkali metal ion.modifies 
'I ',I • I 

the nature of the acid sites probably through an electronic effect; 
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thus its concentration could be important. It could explain why bronzes 

with high alkali metal content show more than one type of acid site. 

It will also be interesting to compare the acid site concentration on 

the bronzes as the alkali metal ion concentration is increased. Table 

3.3 gives the BET surface area of the potassium bronzes and the acid 

site concentration (moles of NH3 des orbed per m2 of surface). The 

table also reports the surface area of acid sites calculated from the 

number of molecules of ammonia desorbed and assuming a cross-sectional 

area of 13.2 x 10-20m2 for the ammonia molecule. In general both the 

acid site surface areas and the acid site surface density tends to 

decrease with increasing potassium content; the only exception being 

0.3KW which has a slightly higher surface concentration of acid sites 

than 0.2KW. Although the difference is within experimental error 

(normally ± 20%) for surface area and tpd measurements), it is possible 

that the stronger acid sites present on 0.3KW are each capable of 

adsorbing more than one molecule of ammonia. 

Table 3.2 

Sample Molecules NH3 Tma/ K 
desorbed/g 

W03 6.98 x 1018 385 

0.05KW 4.40 x 1018 398 

0.2KW 1. 34 x 1018 398 

0.3KW '5.28 x 1017 448, 635 

0.6KW 1.22 x 1017 435, 729 

0.8KW 3.07 x 1016 363, 473(5) 
735 

(5) = shoulder 
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Table 3.3 

Sample No. of moles of Acid site BET surface 
NH3 desorbed/m2 surface areal area/m2g- 1 
of surface m2g-1 

W03 10. 07 x 10-6 0.92 1. 15 

O. 05KW 6.96 x 10-6 0.58 1.05 

0.2KW 2.89 x 10-6 0.18 0.77 

0.3KW 3.37 x 10-6 0.07 0.26 

0.6KW 1.27 x 10-6 0.016 0.16 

0.8KW 0.32 x 10-6 0.004 0.16 

3.6.2.2 Tpd of Ammonia on Nax~ 

The tpd, profiles of the sodium tungsten bronzes are shown in 

Figures 3.23 - 3.27. The profiles for samples 0.05NaW, 0.2NaW and 

0.3NaW comprise a single peak in each case, with the peak for 0.05NaW 

being sharper than for the other two bronzes. The peak maximum 

tends to move to lower temperatures increasing sodium content. The 

rate of ammonia desorption from sample 0.6NaW gives a very broad peak 

with a maximum at 493K and distinct shoulders at 4llK and 623K. The 

tpd profile of,0.8NaW shows a broad peak with maxima at 543K and 698K 

and a shoulder at 4llK. Table 3.4 records the amount of ammonia 

desorbed from these samples and the temperature at which the maximum 

rate of desorption occurs. As for the potassium bronzes, the sodium 

analogues with low alkali ion concentration, x , 0.2, have mostly one 

type of acid site present. However Tmax tends to indicate that the 

sites present on the sodium bronzes with x ~ 0.2 could be of a stronger 

nature than those on the corresponding potassium bronzes. These 
i I I. ! 

sodium bronzes have a tetragonal structure and their distribution of 

acid sites should relate to those present on 0.6KW which is also 
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tetragonal, but however, possess two types of acid sites with Tmax at 

435K and 729K. O.3NaW contains only one type of acid site which is 

weaker than those present on the hexagonal O.3KW. The sodium bronzes 

with higher sodium concentration contains more than one type of acid 

site. Table 3.5 gives the BET surface area of the sodium bronzes, the 

acid site concentration and the acid site surface area. The acid site 

surface concentration decreases with increasing sodium content similar 

to the potassium bronzes. 

The type of acid site present on the alkali tungsten bronzes 

appears to be influenced by the structure of the bronzes, the concen-

tration and nature of the alkali metal ion. In general there is a 

higher concentration of acid sites present on the potassium bronzes 

than the corresponding sodium bronzes. However at low alkali metal 

ion concentration the acid sites present on the sodium bronzes are of 

a stronger nature than those on the potassium bronzes. At high alkali 

ion concentration, different types of acid sites are present on both 

bronzes. Bronzes with the same structure also give acid sites of 

different strengths depending on the concentration and nature of alkali 

ion present. 

, , 
, : 

The nature of the acid sites present on W03 and the bronze 

samples observed from ammonia desorption will be discussed later in 

conjunction with the isopropanol decomposition reaction. 

3.6.3 Transmission Electron Microscopt 

High Resolution Electron Microscopy (HREM) has previously been 

~sed to study the structure of tungsten bronzes(13). In the present, 
, I 

study, only in a few cases, especially for sample O.05KW and O.2KW, 
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Table 3.4 

I 

Sample Molecules HN3 TmaxK 
desorbed/g 

0.05NaW 1.36 x 1018 428 

0.2NaW 5.05 x 1017 453 

0.3NaW 3.20 x 1017 416 

0.6NaW 3.87 x 1016 411 (s),493, 
623(s) 

0.8NaW 2.80 x 1016 411 (s ) ,543 , 
698 

(s) = shoulder 

Table 3.5 

Sample No. of moles o~ Acid site BET surface 
NH3 desorbed/m surface area area/m2g-1 
of surface /m2g-1 

0.05NaW 2.34 x 10-6 O. 18 0.96 

0.2NaW 1.31 x 10-6 0.067 0.64 

0.3NaW 1. 26 x 10-6 0.042 0.42 

0.6NaW 0.49 x 10-6 0.005 O. 13 

0.8NaW 0.36 x 10-6 0.004 0.13 

were successful images obtained. Figures 3.29 - 3.32 show electron 

images of samples 0.05KW and 0.2KW. Sample 0.05KW is an intergrowth 

tungsten bronze and may be considered as a lamellar intergrowth of 

hexagonal tungsten bronze (HTB) and W03. The formation of this type 

of structure can be regarded as a way of adapting to alkali poor 
, ' 

conditions by IIdiluting" the HTB with slabs of pure W03, whereby a 
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certain minimum degree of filling of the tunnels can be maintained. 

Kihlborg(13) employed HREM to obtain images of ITBs prepared with K, 

Rb, Cs and Tl. The images obtained enabled identification of vertical 

slabs of HTB and W03 in ITBs and of distorted ITBs containing single 

and double HTB tunnel rows and W03 slabs of varying widths. Figures 

3.29 and 3.30 give the electron images of the ITB, O.OSKW, and shows 

signs of the vertical slabs of HTB and W03 present in this type of 

bronze. Figures 3.31 and 3.32 give the electron images of sample 

O.2KW, and show signs of vertical slabs and layers. Bando et al(14) 

has studied HTBs using HREM and h~s proposed a model in' which layers 

occur with the alkali sites. either completely filled or completely 

empty. Stacking of these two types of layers occurs so that 4 or 5 

filled layers are followed by a vacant one. 
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Figure 3.29 Electron image of 0.05K~J 

Figure 3.30 Electron image of 0.05KW 
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I 

Figure 3.31 Electron image of O.2KW 

Figure 3.32 Electron image of O.2KW 
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CHAPTER 4 

THERMAL ANALYSIS 

4. 1 Introduction 

The alkali metal tungsten bronzes which are non-stoichiometric 

compounds attract attention because of the possibility of their use in 

modern technology as electrode materials for fuel cells, as electrically 

conductive transparent films and in semiconductor devices. Although 

they were discovered at the beginning of the last century, their thermo­

dynamic properties or chemical stability in the presence of oxidising 

or reducing gases is still a subject of great interest. 

The reduction of alkali metal tungsten bronzes has previously 

appeared in the literature. Dickens(l} has studied the reduction of 

the oxides and the bronzes of tungsten. Lower oxides of tungsten 

reduced directly to tungsten; the a form in the case of W02 and W1S049 
and the s form for W200SS ' W03 however, first formed W200SS in a 

hydrogen atmosphere, which then reduced to S tungsten. The low alkali 

containing tungsten bronzes were shown to reduce initially to an 

oxygen deficient modification of W03 and subsequent reduction gave 

sodium tungstate and both forms of tungsten. For the sodium bronzes, 

as the sodium content increases it was found that the formation of a 

higher content bronze occurred, the excess tungsten initially being 

removed as tungsten dioxide and finally a- and s- tungsten. The sod­

ium content of the bronze increases until it is converted to the cubic 

peroskite structure and finally to NaW03 which then reduced to Na2W04· 

For all bronzes the final products of reduction were tungsten metal 

and tungstate. \ Bu'lk oxidation of the tungsten bronz'es is thought to 

produce either X2W04 and W03 or the x-poly tungstate and W03_x and 
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involves an oxygen uptake which increases as the alkali metal ion 

content increases. Deschanures(2) and Hussain(3) et al suggest con­

version of tungsten bronzes to polytungstates quickly at 873 - 973K 

and then oxidation of the lower tungsten oxide to the trioxide at 

about l223K. 

The sodium and potassium bronzes prepared here have been 

compared for their reactivities as exemplified by their reduction in 

hydrogen gas and their oxidation in a diluted oxygen gas stream. 

4.1.2 Thermal Methods of Analysis 

Thermal analysis involves heating a sample at a constant rate 

in a certain atmosphere or under vacuum and observing some changes in 

the sample or its surroundings. Thermogravimetric analysis (tga) is 

the simplest of the thermal analysis techniques and involves measure­

ment of the mass of the sample- as a function of temperature. Differ­

ential thermal analysis (dta) monitors the temperature difference 

between the sample and a reference material and thus gives an indi­

cation of whether an exothermic or endothermic reaction is occurring 

in the sample. 

In temperature programmed reduction (tpr) the hydrogen consumed 

in a reduction step is being monitored as the sample is being heated 

in a diluted hydrogen atmosphere. Temperature programmed oxidation 

(tpo) involves measurement of the oxygen uptake as the sample is heated 

in a dilute oxygen atmosphere. 

4.2 Experimental Thermal Analysis 

4.2.1 Tga and Dta Techniques 

Thermogravimetric and differential thermal analysis was performed 
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on a Stanton Redcroft STA 780 Simultaneous Thermal Analyser, which is 

designed to give simultaneous thermogravimetric records and differ­

ential thermal analysis curves. The sample (usually about 20mg ± 

O.Olmg) and the reference material, a-alumina were contained in rhodium-· 

platinum crucibles. The crucibles were mounted on top of flat plates, 

Pt-Pt/Rh thermocouple system. To eliminate possible factors which 

may affect the thermogravimetric and dta curves the same sample size, 

heating rate 10K min- l and gas flow rate of 40cm3min- l were used for 

the different samples. The nitrogen and hydrogen gases were purified 

by passing through a SA molecular sieve trap at 295K. Before each 

reduction run, the sample and the system were flushed with nitrogen 

for about 15 minutes. The sample was then heated in nitrogen to 373K 

to remove any moisture. When the weight had stabilised the sample 

was cooled to room temperature and the nitrogen flow was replaced by 

hydrogen flow. When the weight was constant, heating was started and 

the weight change and the temperature difference between the sample 

and the reference material was recorded as a function of temperature 

to l223K. 

4.2.2 Tpr Technique 

A schematic drawing of the tpr apparatus used in the present 

work is shown in Figure 4.1. 

The sample was placed in a silica reactor fitted with a thermo­

couple to measure the sample temperature and surrounded by a tubular 

furnace whose temperature was controlled by a linear temperature prog­

rammer. The reducing gas 5% H2/9S% Arwas purified by passing 

through a trap containing Pd/Al:203 at 29SK to remove any oxygen and 

another trap of SA molecular sieve at 29SK to remove any moisture. 

It is important that the oxygen content of the gas stream be reduced 
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to as low a level as possible. The reducing gas purified and dry was 

then directed through one arm of a conductivity cell (Gow Mac Katha­

rometer No. 40-201). Leaving the katharometer the gas then passed 

through th~ reactor containing the sample and finally via a cold trap 

kept at 203K to remove the reduction products. After the trap the 

gas stream passed through the other arm of the conductivity cell. In 

this way a reduction process on the sample was detected by an imbalance 

in the thermal conductivity cell. The change in hydrogen concentration 

was displayed as a peak or several peaks on a chart recorder. The 

output on the conductivity bridge and thermocouple (Chrome1-A1ume1) 

was fed to a SSC microcomputer through an amplifier for data processing. 

-Since the gas flow was kept constant, the change in hydrogen con­

centration was proportional to the rate of sample reduction. The 

experimental conditions used are listed in Table 4.1. 

Gas mixture 

Heating rate 

Flow rate 

Mass of sample 

Table 4.1 

Experimental Conditions 

5% H2/95% Ar 

5K min-1 

40 cm3min-1 

~50mg 

The amount of hydrogen consumed was determined at the end of 

each run by injecting a known volume of pure hydrogen into the gas 

stream as a calibration standard. The peak areas were calculated 

using the computer data processing facility. 

4.2.3 Tpo Technique 

A schematic diagram of the tpo system used is shown in 
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Figure 4.2. A 6% O2 in N2 gas stream was used. The gas stream 

(40cm3 min- l ) was purified by passing through a SA molecular sieve 

before being admitted to the sample reactor. The sample (1 - 1.5g) 

was placed ~n a silica reactor fitted with a thermocouple well to 

monitor its temperature. The reactor was placed in a tubular furnace 

whose temperature can be raised by linear programming. The sample 

was first flushed with argon before admitting the 6% O2 mixture. 

The mixture was passed through the sample until the output from the 

oxygen detector was stable and the linear heating started. A heating 

rate of 10K min- l was used. A calibrated oxygen detector (Draeger 

Oxywarn 100R) was used to monitor the oxygen level (with an accuracy 

of ± 0.05%) as a function of temperature. The oxygen uptake was 

displayed as a peak or peaks on a chart recorder connected to the 

oxygen detector. The consumption of O2 was calculated by integration 

of the peak areas. Values were expressed as mol 02 per mol sample. 

4.3 Results 

4.3.1 Tga and Dta Results 

4.3.1.1 Reduction of W0 3 and the Potassium Tungsten Bronzes 

Tga reveals that there was only a slight weight loss (~O.3%) 

on heating the potassium tungsten bronze samples ,;0 nitrogen to 373K. 
, , 

The results obtained-by tga and dta on heating sa~ples W03, O.OSKW, 
" 

0.2KW, 0.3KW, 0.6KW and O.8KW in hydrogen to l223K are shown in 

Figures 4.3 - 4.8 respectively. Reduction of pure W03 is endothermic 

starting at 773K with two overlapping processes having minima at 861K 

and 98SK. The reduction ;s complete at 998K with a total weight loss 

of 2~.09% which agrees well with a theoretical weight loss of 20.70% 

assliming that W03 is comp1etely'reduced to; Wmetal. The thermogram 

seems to indicate that a suboxide of tungsten is first formed which is 
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then reduced to tungsten. The tga and dta curves obtained on heating 

O.OSKW in H2 show much similarity to that of pure W03. A total weight 

loss of 20.78% occurred in two overlapping endothermic processes with 

minima at 861K and 96SK. The lowest content potassium bronze appears 

to reduce initially to an oxygen deficient modification of W03; 

subsequent reduction gives sodium tungstate and tungsten. The theore­

tical weight loss for such a process agrees well with the observed 

weight loss. For the reduction of O.OSKW the following stoichiometric 

equation may be written; 

The dta and tga results for samples 0.2KW - 0.8KW show that reduction 

is a single endothermic process usually in the temperature range 

773 - 1123K. The total weight loss in each case agrees well with a 

reduction process that leads to the formation of K2W04 and W. Table 

2 gives the experimental and theoretical weight loss and the tempera­

ture of the minima for the reduction process for each of these samples. 

Table 4.2 

Sample Theoretical % Experimental % ~~nJK weight loss weight loss 
endotherm 

0.2KW 17.35 19.87 993 

0.3KW lS.76 15.96 933 

0.6KW 11.28 11.93 965 

0.8KW 8.51 8.90 923 
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4.3.1.2 Reduction of the Sodium Tungsten Bronzes 

Tga results show that the sodium bronzes, similar to the pot­

assium bronzes lose only minimal weight on heating in nitrogen to 373K. 

The dta and tga results obtaine9 for samples 0.05NaW; 0.2NaW; 0.3NaW; 

0.6NaW and 0.8NaW on heating in hydrogen to 1223K are shown in 

Figures 4.9 - 4.13 respectively. The profiles show a similarity to 

those obtained for the reduction of the potassium bronzes. However, 

unlike sample 0.05KW, reduction of 0.05NaW occurred in only one step, 

with the endotherm having a minimum at 953K, perhaps suggesting no W03 
is present in the sodium bronze sample. For samples with x > 0.2 , 

there was an endothermic process usually occuring between 823K and 

1123K. In all cases the total weight loss was assumed to be assoc-

iated with the formation of Na 2W04 and W. For the sodium bronzes, 

the experimental and theoretical weight losses and the temperature of 

the minima for the reduction process is given in Table 4.3 

Table 4.3 

Sample Theoretical % Experimental % Tmi n,lK 
weight loss weight loss for 

endotherm 

0.05NaW 19.91 20.60 953 

0.2NaW 17.94 19.25 1003 

0.3NaW 16.08 16.45 945 

0.6NaW 11.72 12.50 1021 

0.8NaW 8.95 10.53 953 

In all cases the weight loss obtained on both the potassium and sod­

ium br0nzes lagrees we 11 wi th the- theoreti ca 1 wei ght loss for t~e . 

reduction of each bronze to the corresponding tungstate and W metal. 
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Variation in the temperatur~ at the maximum rate of reduction occurs, 

i.e. the minima among the different samples, could be due to experi­

mental artefact. 

4.3.2 Tpr Results 

4.3.2.1 Reduction of W03-

The tpr profile of W03 on heating to l473K is shown in Figure 

4.14. The profile shows that reduction started at 758K with two over­

lapping processes having maxima at l020K and 1180K. As found by the 

tga thermogram, the tpr profile also indicates the formation of a sub­

oxide of tungsten which is then reduced to tungsten. The total hydro­

gen consumed was found to be 13.3 mmoles g-l sample. The theoretical 

amount of hydrogen required for the reduction of W03 to W is 12.9 m 

moles g-l sample. This value is lower than the observed and may 

partly be due to the accuracy "of the method. 

4.3.2.2 Reduction of Potassium Tungsten Bronzes 

The tpr profiles of samples O.05KW, O.2KW, O.3KW, O.6KW and 

O.SKW are shown in Figures 4.15 - 4.19 respectively. In general the 

profiles are similar showing reduction to occur in one step in the 

temperature range 850K - l323K. However, the profile of sample O.05KW 

appears to show a rather broad peak with a slight shoulder at l123K 

perhaps suggesting the presence of two unresolved processes as 

indicated more clearly by tga results. The temperature at which each 

maxima occurred together with the total hydrogen consumed in the 

reduction process is given" in Table 4.4. Similar to the tga results 

the total hydrog:en consumed agrees well wi th a reducti on process that 
: I I' ! 

leads to the formation of K2W04 and W, which is illustrated below for 
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the reduction of sample 0.2KW 

The temperature at which the maximum rate of reduction occurs as observed 

by tpr is in all cases higher than those found by dta. This could 

partly be explained by the fact that in the dta experiment a pure hydro-

gen gas stream was used, whereas in the tpr experiments a dilute H2 gas 

stream was used. 

Table 4.4 

Sample Peak Maxima/ H2 co~sumption/ 
K x 10- mo1g-

0.05KW 1373 11.40 

0.2KW 1143 11.79 

0.3KW 1143 9.28 

0.6KW 1273 7.00 

0.8KW 1273 5.18 

4.3.2.3 Reduction of Sodium Tungsten Bronzes 

The tpr profiles of the sodium bronzes, 0.05NaW, 0.2NaW, 0.3NaW, 

0.6NaW and 0.8NaW on heating to l323K are shown in Figures 4.20 - 4.24 

respectively. The profiles show that in all cases reduction occurs 

in one step in the temperature range 850K - 1250K, similar to the pot­

assium bronzes, if the products of reduction are assumed to be Na2W04 

and W, then the observed value of hydrogen consumption agrees well with 

the theoretical value. Table 4.5 shows the temperature at which each 

maximum occurred together:w1th the total hydrogen consumed in the 

reduction process. The tpr profiles for O.OSNaW and O.2NaW show a 
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slight shoulder at approximately 1098K possibly indicating that 

reduction may be occurring through an intermediate step which cannot 

be resolved by the techniques used under the present conditions. 

Table 4.5 

Sample Peak Maxima/ 
K 

H2 Consumpti9n/ 
x 10-3 molg-

-

O.05NaW 1245 12.40 

O.2NaW 1250 10.90 

O.3NaW 1250 9.14 

O.6NaW 1202 8.69 

O.8NaW 1140 5.49 

4.3.3 T.p.o. Results 

4.3.3.1 Oxidation of W Powder and Potassium Tungsten Bronzes 

The sensitivity of the tpo method was demonstrated by a brief 

study of the oxidation of pure tungsten powder on heating in a diluted 

O2 atmosphere. The profile given in Figure 4.25 shows that oxidation 

of tungsten powder starts at 655K and occurs in three overlapping 

processes with maxima at 755K, 790K and 935K. It is most likely that 

the different peaks can be associated with the gradual oxidation of 
o 6+ tungsten from W to W The total oxygen consumed (1.531 moles of 

O2 per mole of W) is slightly higher than that theoretically required 

for the process (1.50 moles of O2 per mole of W). 

The tpo profiles obtained on oxidation of the potassium tung­

s~eri bronzes are given in Figure 4.26. Table 4.~ ~cords the measured 

oxygen consumption and the percentage which this is, of that expected 
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on the basis of total oxidation to potassium tungstate and tungsten 

trioxide as illustrated below: 

It is possible that a poly tungstate first forms which then disproport­

ionates to the tungstate and W03. XRD results of the oxidised products 

showed only the presence of K2W04 and W03. The values are generally 

close to 100%. The table also contains the peak maximum temperatures 

observed in the oxidation of the various potassium tungsten bronzes. 

The tpo profiles of O.OSKW, O.2KW and O.3KW consist of broad peaks 

usually in the temperature range of 820K to 1075K with peak maxima at 

approximately 1000K. The tpo profile of 0.6KW shows that oxidation 

start;s at 575K and exhibits peaks a.t 760K, 855K and 955K. The 

oxidation is complete at l140K. The oxidation of 0.8KW occurs in the 

temperature range ~f 575K - 1090K and the profile shows distinct peaks 

at 820K and 900K, with a shoulder at 690K. Although the complete 

oxidation of all the potassium tungsten bronzes leads to the formation 

of K2W04 and W03, the processes involved in the oxidation of the 

bronzes with higher potassium content appear more complex than those 

with lower alkali ipn concentration. One possible explanation for 

this may be that th~ bronzes with low potassium content usually contain 

only the hexagonal ,phase which could oxidise in a single step at high 
, 

temperature, whereas O.6KW and O.8KW contain mixed phases,normally 

tetragonal and others. The tetragonal phase could oxidise at lower 

temperature. It could be possible that the tetratungstate is more 

easily formed than the hexatungstate which then disproportionates. 
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Table 4.6 

Sample Expt. O2 Temperature % of 
uptake/mmoles/ max;ma/K theoretical 
mole sample 

0.05KW 11. 5 1000 92 

O. 2K~~ 55 1000 110 

0.3KW 78 968 104 

0.6KW 133 760,855,995 88.7 

0.8KW 230 690(s),820,900 115 

(s) = shoulder 

4.3.3.2 Oxidation of Sodium Tungsten Bronzes 

The tpo profiles for the sodium tungsten bronzes are shown 

in Figure 4.27. Table 4.7 gives the oxygen consumption and the 

percentage which this is, of the theoretical assuming that the final 

products of oxidation are sodium tungstate and tungsten trioxide. 

XRD of the oxidised products showed only the presence of Na2W04 and 

W03. The peak maximum temperatures observed in the oxidation of the 

sodium tungsten bronzes are also recorded. The tpo profiles show a 

different pattern to those observed for the corresponding potassium 

tungsten bronzes with the peak maximum occurring at lower temperature. 

especially for bronzes with low sodium ion concentration. Sample 

0.05NaW consumes oxygen in the temperature range of 560K - 800K in a 

single step with a maximum at 680K. The oxidation of sample 0.2NaW 

starts at 760K and shows two overlapping processes with maxima at 778K 

and 937K. The tpo profile of sample 0.3NaW shows oxidation to begin 

at 6l0K with. one distinct maximum at 834K followed by a small shoulder 
• I ' 

at 943K. The profiles of samples 0.6NaW and 0.8NaW show oxidation to 

be a multistep process which in the case of sample 0.8NaW occurs in the 
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temperature range of 6l0K - l260K. The O2 consumed in the oxidation 

of the sodium tungsten bronzes agree well with the theoretical, although 

as mentioned previously, a poly tungstate may be first formed which then 

disproportionates. The sodium tungsten bronzes with low alkali ion 

content are easier to oxidise than the corresponding potassium bronzes. 

The sodium bronzes with low alkali ion content have been shown to 

contain tetragonal phases; and like the potassium bronzes with similar 

phases (those with high alkali ion content) oxidise more readily to the 

tetratungstate which then disproportionates. The sodium bronzes with 

high alkali ion content contain mainly the cubic phase and this, similar 

to the hexagonal phase of the potassium bronzes is more difficult to 

oxidise. 

Table 4.7 

Sample Expt. 0 Temperature % of 
uPtake/~moles/ maximum/K theoretical 
mole sample 

O.OSNaW 12.4 680 99.2 

0.2NaW S7 778,937 114 

0.3NaW 64.S 834,943(5) 86 

0.6NaW 128 6S0,828, 85.3 
930,10SO 

0.8NaW 230 72S(s) ,841 11S 
1002,1075(s) 

(s) = shoulder 

4.4 Conclusions 

The reduction of the potassium and sodium tungsten bronzes 

appears to occur in one or more steps depending upon the' concentration 

of the alkali metal ion content. But in all cases the final products 
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of reduction upon heating the samples to l323K in hydrogen seems to be 

the alkali metal tungstate and tungsten metal. The reduction occurs 

according to the following stoichiometric equation: 

where M = K or Na. 

A theoretical consideration of this equation would require both the 

hydrogen consumption and the weight. loss to decrease with increasing 

alkali metal ion content in the bronze. This agrees with the 

observatio'ns made in the present study indicating formation of a 

separate tungstate phase. ,Reduction of W0 3 occurs in two steps. 

Various mentions have been made in literature(l) of the reduction of 

W03, first to an intermediate oxide and then finally to tungsten metal. 

It appears that a similar mechanism of reduction occurs on the present 

sample although it was not possible to distinguish the sub-oxide formed. 

Reduction of the bronzes could be occurring through more than one step 

as mentioned in,literature(l)', but the limitations of the present 

techniques or possibly the high heating rate used did not allow the 

resolution of the different processes, although in some cases more than 

one step was observed. 

The products of oxidation of the alkali metal tungsten bronzes 

are the alkali metal tungstate and W03. There is indication that the 

bronzes first oxidise to a poly tungstate and a sub-oxide of tungsten 

before complete oxidation. Bronzes with a tetragonal structure oxidise 

more easily than those with either an hexagonal or cubic structure, 

most probably because the tetratungstate is formed more readily. 

From the oxygen consumption ,there was no indication that the bronzes 
!' I 1 ,~ .! ' 

prepared by the present method were oxygen deficient, although a recent 

study(4) on tungsten bronzes prepared under vacuum have shown such 

characteristics. 
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CHAPTER 5 

X-RAY DIFFRACTION STUDIES 

5.1 Introduction 

X-ray diffraction allows study of the structure of matter and 

as such it provides complementary information to optical and electron 

microscopy. All the information is extracted by the use of mono­

chromatic radiation and a relatively complex mathematical analysis. 

If single crystals are examined by this technique it is possible, by 

direct interpretation of the diffractogram, to obtain information on 

crystal planes and lattice spacing. 

X-rays are a form of electromagnetic radiation differing from 

light waves (A = 400 to 800nm) in that they have a shorter wavelength 

(A = O.lnm). These rays are produced when a metal target is bombarded 

with fast electrons in a vacuum tube. The radiation emitted can be 

separated into two components, a continuous spectrum which is spread 

. over a wide range of wavelengths and a superimposed line spectrum 

characteristic of the metal being bombarded. (Figure 5.l(a)). The 

energy of the white radiation, as the continuous spectrum is called, 

increases as the atomic number of the target and as the square of the 

applied voltage, while the characteristic radiation is excited only 

when a critical voltage is exceeded. The white radiation results 

from the deceleration of the incoming high energy electrons by the 

strong electric field provided by the electrons surrounding the nucleus 

of an atom. The decrease in energy 6E of these incoming electrons is 

given by hv. Concurrent deceleration appears as continuous radiation 

over a wide range of wavelength.! . Characteristic spectra are produced 

when incident electrons have sufficient energy to dislodge an electron 
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from one of the inner electron shells. If an electron from a higher 

energy shell then decays to the lower shell, the energy released is 

in the form of an X-ray. The difference in energy between two given 

shells determines the emitted wavelength and although an increase in 

electron acceleration voltage increases the intensity of character­

istic radiation, it does not alter its wavelength. 

If an electron is ejected from the K shell and the vacancy is 

filled by an L shell electron, the transition is termed K~ and if the 

vacancy is filled by an M shell electron, the transition is termed KS' 

The characteristic X-ray produced by elements with low atomic numbers 

are very easily absorbed by matter and are therefore of little use in 

crystallography, whilst X-rays from target elements of high atomic 

number are the most useful for X-ray diffraction. The most often 

used target metals include copper, molybdenum and cobalt. 

The characteristic radiation for copper shown in Figure S.l(a) 

consists of X-rays arising from the Ks' K~l and K~2 transitions. 

The respective wavelengths of these transitions are O.139nm, O.lS40Snm 

and O.15445nm. Due to the similarity in wavelength of the K~l and 

K 2 transitions, the wavelength usually quoted for CuK (weighted for 
a a 

relative intensities) is O.154l8nm. The presence of the Ks radiation 

makes interpretation confusing, therefore, a metal foil filter is 

employed. Superimposed on Figure S.l(a) is the absorption spectrum 

of nickel. It will be noted that the absorption spectrum, unlike 

emission spectra for X-rays, consists not of a series of lines but of 

one or more absorption edges. Thus for nickel the absorption edge 

lies between CUKs and Ka emissions. By calculating the thickness of 

nickel foil required to absorb most of the Ks emission without sign­

ificantly affecting the K~ emission, a spectrum of the type shown in 
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Figure 5.1(b) will be obtained. In this way, it is possible to produce 

almost monochromatic X-rays which are suitable for X-ray diffraction 

purposes. 

5.2 Theory 

The basic theory of X-ray diffraction was originally deduced by 

W.L. Bragg. Consider Figure 5.2, which shows a series of parallel 

planes of atoms separated by a uniform distance d. A beam of X-rays 

incident at an angle e to the atomic planes will be partially reflected 

by the outermost atoms at point A to paint P such that the angle of 

incidence will equal the angle of reflection, (i.e. a total of 2e). 

The remainder of the X-rays will penetrate the lattice, most being 

absorbed by lower planes of atoms. The angle of reflection for the 

lower planes of atoms will also be 9. Therefore, all X-rays reflect­

ed by a particular plane of atoms will be in phase, but only under 

strict angular conditions will X-rays reflected from a series of planes 

be in phase with each other and cause constructive interference. 

The condition for in phase reflection is that the path length differ­

ence must be an integral number of wavelengths (nA) between waves 

reflected from successive planes. 

Bragg deduced that, 

nA = 2dsin6 ................... 5.1 

where the critical angular values of 9 for which the law is satisfied 

are known as Bragg angles. The directions of the reflected beams 

are determined entirely by the geometry of the lattice which in turn 

is governed by the orientation and spacing of the crystal planes. 
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5.3 Crystal Planes and Lattice Spacing 

The crystalline state is a special form of solid where regular 

repeating units (known as the unit cell) are present. By repeated 

translations of the unit ceJl in three dimensions the overall crystal 

lattice is found. The shape and size of a unit cell is normally 

defined by lengths a, band c, and the angles between these vectors 

given by a, Band y (the angles between band c, c and a, and a and b 

respectively). A regular three-dimensional array of atoms, which 

defines the crystalline structure can be considered as a series of 

parallel equivalent planes which are more or less densely populated 

with these atoms. In 1839, W.H. Miller proposed a system of indices 

to define numertcal1y any series of planes. Consider Figure 5.3(a), 

the set of planes illustrated intercepting the x, y and z axis may be 

defined by the integral number of intercepts, given by h, k and 1 on 

the unit cell edges, a, band c. If the intercept is length a 

(or b or c), then the value of h (or k or 1) will be 1. If the inter­

cept is one half of the unit cell edge, then the corresponding index 

will be 2. Thus the values of h, k and 1 can be used to define any 

family of planes. Figure 5.3(a) shows a family of 342 planes. For 

any lattice it is possible to find a set of axes on which the number of 

intercepts (h, k and 1) are small whole numbers, although in some 

planes the intercepts are negative and are quoted by a.bar over the 

particular index, (e.g. h,k,l). Planes parallel to an axis are 

denoted by a zero (e.g. h,k,O). 

Consider Figure 5.3(b) which shows the first 342 plane such 

that the length d is given by the normal from the origin ° to point 

X on the plane which passes through points P, Q and R. The line. so 
, ! I 

constructed can be seen to be perpendicular to the PQR plane and since 
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the origin lies in the adjacent (hkl) plane, the distance is equal to 

the separation between the individual members of the whole family of 

planes. The lines OPt OQ and OR have lengths given respectively by 

a/h , b/k , and c/l, and desc~ibe the angles a, Sand y respectively, 

with the line OX corresponding to distance d. 

Therefore, cos a = -; 
dh cos S = dk -; cos y = -; dl 
a b c 

But for directional cosines 

Therefore, 

d2h2 
+ d2k2 

+ d212 
= 1 

a2 7 7 
or, 

1 h2 
+ k2 

+ 
12 

d2 = 
a2 b2 ~ 

. . . . . . . . . . . . . . . . . . .. 5. 2 

Combination of equation 5.2 with the Bragg equation 5.1 gives: 

+ + 5.3 

, , , 
, , 

Equation 5.3 can be considered to re1ate to an orthorhombic struc~ure 
" 

in which the three unit lengths are different but distributed along 

three mutually perpendicular axes. For a cubic cell in which the 

unit cell dimensions are all equal and taken as the value a, the 

equation simplifies to: 

...... ~ .......... : ... : 5.4 
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5.4 Apparatus and Procedure 

In the present study X-ray diffractometric analysis was 

performed on W powder; W03, K2W04, Na 2W04, the potassium tungsten 

bronzes and the sodium tungsten bronzes. 

A Philips PW 1729 X-ray generator with a copper target was 

used. It was operated at 50 kV and 24 rnA and the X-ray beam passed 

through a nickel filter to give the CuKal radiation. In the diffract-

ometer, a divergent beam of X-rays converges after reflection from the 

specimen, passes through a narrow slit and enters the detector which 

is a countertube with electrical circuitry. The detector is driven 

at twice the speed of the specimen so that the specimen surface is 

always at e when the detector i's at 29. Parallel slits are used 

normal to the focusing planes to obtain sharp lines. The intensity 

diffracted at the various angles is automatically recorded on a chart 

as a function of the reflection angles 29. The detector was scanned 

at 0.50 of 29 per minute and the recorder chart speed was Smm min- l 

so that 1cm on the chart was equivalent to 10 of 29. 

5.5 Results 

5.5.1 X-Ray Diffractometer Studies 

The parameter measured from the diffractogram was the Bragg 

angle 29. The measurement of the Bragg diffraction angles enable the 

interp1anar spacings, d, to be calculated since 

nX = 2dhk1 Sin Q ................... 5.1 

where x is the incident X-ray wavelength~d the interplanar spacing 

for any family of crystal planes (hkl), and e the Bragg diffraction 

angie. 
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5.5.2 W. Powder, WO~2WO~ and Na2WO~ 

The d values calculated from the diffractograms of W powder, 

W0 3, K2W04 and Na 2W04 are given in Appendix 2. Only the more intense 

lines are shown and compared with the d values given in ASTM powder 

diffraction file(l). The d spacings of W powder show good agreement 

with those given in the literature for W metal having a cubic structure 

with cell parameter ao - 0.3165nm. The d spacing calculated for W0 3 
is identical for W03 with a monoclinic structure with cell parameters 

ao = O.7297nm, bo = O.7539nm and Co = O.7688nm, as quoted in the 

literature. K2W04 normally adopts a monoclinic structure with cell 

parameters ao = 1.238nm, bo = O.612nm and Co = 0.755nm, and the d 

spacings calculated agree well with those for such a structure. The 

d spacings obtained for Na2W04 agree with those for Na2W04 with a 

cubic structure with cell parameter ao = 0.9l29nm. 

5.5.3 Potassium Tungsten Bronzes 

The d values calculated from the diffractogram of 0.05KW are 

given in Table 5.1. Previous structural studies(2) of potassium 

tungsten bronzes with low alkali ion content have suggested an inter­

grow~h tungsten bronze, (ITB), structure to be present. The ITB can 

be r~9arded as an intergrowth of hexagonal tungsten bronze (HTB) and 

W03~roviding a gradual transition from the HTB structure to that of 

W03. The symmetry of an ITB is normally that of an orthorhombic 

system. After elimination of those lines observed due to the presence 

of W03, the remaining d values calculated for O.05KW correspond to an 

orthorhombic system with cell parameters ao = O.735nm, bo = 3.850nm 

and Co = O.388nm. 
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Table 5.1 

X-ray Diffraction of 0.05KW 

I 
I 

9 Sin9 d/nm 

6.765 0.117 0.654 

11. 390 0.197 0.390 

11. 665 0.202 0.381 

12.019 0.208 0.370 

13.009 0.225 0.342 

13.815 0.238 0.322 

14.217 0.245 0.314 

16.487 0.284 0.271 

16.624 0.286 0.269 

16.929 0.291 0.264 

17.429 0.299 0.257 

17.677 0.303 0.254 

18.329 0.314 0.245 

20.664 0.353 0.218 

24.774 0.419 0.184 

27.592 0.463 0.166 

I 

The values of 9 obtained from the diffractograms of samples 

0.2KW and 0.3KW were used to determine the unit cells, calculate the 

lattice parameters and to index the lines. Structural studies of 

potassium tungsten bronzeswhere 0.19 ~ x ~ 0.33(2,3) have suggested 

the unit cell to be hexagonal. On this basis the lines obtained for 

0.2KW and 0.3KW were indexed employing the method for an hexagonal 

system detailed below for sample O.3KW. 
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For an hexagonal system, equation 5.3 may be written as; 

sin2g = A(h2 + hk + k2} + C1 2 5.5 

where A 
,,2 

= 3a2 5.6 

and C 1.
2 

= 
4c2 . . . . . . . . . . . . . . . .. 5.7 

For the hkO spectra; 

· 2g S1 n 100 = A · 29 S1n 210 = 7A 

· 29 S1n 110 = 3A · 29 ,S1n ,300 = 9A 

· 29 S1n 200 = 4A · 29 S1n 220 = l2A 

The ratio 3 occurs frequently, and is representative of the hexagonal 

system, occurring in other systems only by chance. If the ratio of 

the sin2g values of two of the first three or four lines is 3, then 

the first one is probably the 100 line and the other the 110 line. 

Once the value of A has been found, the other lines can be indexed and 

the value of C can be determined. The lattice parameters can then 

be calculated from the values of A and C using equations 5.6 and 5.7. 

Table 5.2 shows the line spacings and the sin29 values for the most 

intense lines of sample 0.3KW. Initially it is necessary to ,look for 

the significant ratio of 3 between two sin2e values. The rat'io of 

the third sin2a,va1ue to the first in Table 5.2 is 3.007, hence it may 

be assumed that the first line corresponds to the 100 reflection and 

the third line, the 110 reflection. The term A which is equal to sin2g 

when h,k and 1 correspond to the 100 plane has a value of 0.0144. If 

the 1 index of an hkl line is not zero, then the sin2g value of that 

line must contain a term Cl 2 in accordance with equation 5.5. To 
I 'I' ; : 'I 

facilitate the search for the factor C, the characteristic multiples 

of A are subtracted from the sin2g values as shown in Table 5.2. It 
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can be seen that the term 0.0105 is common to the second line in the 

sin28 column, to the fourth in the sin2e-A column and to the sixth in 

the sin2e-3A column and therefore corresponds to the value of C when 1 

;s equal to one. 

These values of A(0.0144) and C(0.0105) were then used to index 

the lines by assuming different values of h, k and using equation 5.5. 

These values are shown in Table 5.2. The lattice parameters ao and Co 

for the hexagonal structure were calculated from the values of A and C 

using equations 5.6 and 5.7 respectively. The values of ao = 0.741nm 

and Co = 0.751 for sample 0.3KW obtained from these relationships agree 

well with those quoted in literature(3). 

The values of e obtained for sample 0.2KW were used to index 

the lines and calculate the lattice parameters ao and Co using the same 

Table 5.2 

X-ray Diffraction of 0.3KW 

8 Sin2S Sin2S-A Sin2S-3A d/nm hkl 

6.895 0.0144 - - 0.641 100 

11.760 0.0415 0.0271 - 0.378 002 

12.004 0.0433 0.0289 0.0001 0.370 110 

13.405 0.0537 0.0393 0.0105 0.332 111 

13.725 0.0563 0.0419 0.0131 0.325 102 

13.925 0.0579 0.0435 0.0147 0.320 200 

16.964 0.0851 0.0707 0.0419 0.264 112 

18.412 0.0998 0.0854 0.0566 0.244 202 

19.537 0.1118 0.0974 0.0686 0.230 211 

25.724 0.1884 0.1740 0.1452 0.177 310 

26.477 0.1988 0.1844 0.1556 0.173 311 

27.677 0.2157 0.2013 0.1725 0.166 220 
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method described previously for an hexagonal system. These values 

together with the d values are given in Table 5.3. Sample 0.2KW 

corresponds to an hexagonal bronze with cell parameters ao = 0.738nm 

and Co = 0.751nm, which agree well with those in the literture(2). 

Table 5.3 

X-ray Diffraction of 0.2KW 

9 Sine d/nm hkl 

6.907 0.120 0.640 100 

11. e32 0.205 0.376 002 

12.042 0.208 0.369 110 

13.429 0.232 0.332 111 

13.757 0.237 0.324 102 

13.917 0.240 0.320 200 

17.010 0.292 0.263 112 

18.442 0.316 0.243 202 

19.557 0.335 0.230 211 

24.247 0.411 0.188 004 

24.640 0.417 0.185 202 

28.412 0.476 0.162 222 

28.772 

I 
0.481 0.160 400 

The 9 values obtained from the diffractogram of sample 0.6KW 

are given in Table 5.4. Structural studies(4) on potassium bronzes 

with higher alkali ion content have suggested the unit cell to be 

tetragonal, on this basis the relationships detailed below for a 
I ,I ~ , I I • 

tetragonal system were used to index the lines and calculate the 

lattice parameters for sample 0.6KW. 
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For a tetragonal system, equation 5.3 may be written as: 

................. 5.8 

where 

A 1.
2 

= - ................. 5.9 
4a2 

and C = 1.
2 

. . . . . . . . . . . . . . . .. 5. 10 

4c2 

For the hkO spectra, 

Sin2elOO = A Sin29200 = 4A 

Si n
2e" 0 = 2A Sin2e220 = 8A 

The ratio 2 occurs frequently and except by chance, the only other 

system in which this ratio is found is the cubic one. If the ratio 

of the sin2e values of two low-angle lines are in the ratio of 2, it 

is probable that the substance is tetragonal and that the two lines 

are the 100 and 110 or 110 and 200 planes. Once the quantity A has 

been found, the other lines can be indexed and the value of C can be 

determined. The lattice parameters can then be calculated from the 

values of A and C using equations 5.9 and 5.10. Table 5.4 shows 

the line spacings and the sin2e values for the most intense lines of 

sample 0.6KW. It can be seen that the ratio of the second sin2a 
value to the first in Table 5.4 is 2.00, hence the first and second 

lines correspond to the 100 and 110 planes respectively. The term 

A which is equal to sin2a when h, k and 1 correspond to the 100 plane 

has a value of 0.005. If the 1 index of an hkl line is not zero, 

then the sin2a value of that line must,'contain a term C1 2 in accord­

ance with equation 5.8. To find the constant C, characteristic 

multiples of A must be subtracted from the sin2a values as shown in 
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Table 5.4. It can be seen that the term 0.0403 ± 0.0003 is common to 

the fifth line in the sin29 column, the fifth line in the sin2e-A column, 

and the fifth line in the sin2e-2A column, and corresponds to the value 

of C when 1 is equal to one. The values of A(0.0050)and C(O.0403) were 

then used to index the lines by using different values of h, k and 1 

using equation 5.8. These values are given in Table 5.4. The lattice 

parameters ao and Co were calculated from the values of A and C using 

Table 5.4 

X-ray Diffraction of 0.6KW 

I 

9 Sin29 Sin2e-A Sin2S-2A d/nm hkl 

4.055 0.0050 - - 1.089 100 

5.750 0.0100 0.0050 - 0.770 110 

8.150 0.0201 0.0151 0.0051 0.542 200 

11. 399 0.0391 0.0340 0.0241 0.389 220 

11. 542 0.0400 0.0350 0.0250 0.385 001 

12.330 0.0456 0.0406 0.0356 0.360 101 

12.947 0.0502 0.0452 0.0402 0.344 111 

14.492 0.0626 0.0576 0.0476 0.308 320 

14.954 0.0665 0.0615 0.0515 0.298 211 

16.347 0.0792 0.0742 0.0642 0.274 221 

18.454 0.1002 0.0952 0.0902 0.244 420 

20.321 0.1206 0.1156 0.1106 0.222 401 

23.662 0.1611 0.1561 O. 1461 0.192 002 

25.585 0.1865 0.1815 0.1765 0.178 202 

26.522 0.1994 0.1944 0.1894 0.173 441 

26.657 0.2013 0.1963 0.1863 0.172 222 , , : . 
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equations 5.9 and 5.10 respectively. For the tetragonal bronze O.6KW. 

ao = 1.089nm and Co = 0.384nm which agree well with those quoted in 

literature for potassium tungsten bronzes having a tetragonal struct­

ure(4). 

The diffractogram obtained for sample 0.8K~! was much more 

complex than those obtained for the other potassium bronze samples 

and proved too complicated to interpret fully. The d values for the 

most intense lines obtained on sample 0.8KW are given in Table 5.5. 

Table 5.5 

X-ray Diffractogram of 0.8KW 

9 SinS d/nm 

2.949 0.051 1.496 

4.304 0.075 1.026 

6.394 0.111 0.691 
-

6.529 O. 1 3 0.677 

7.989 0.139 0.554 

9.002 0.156 0.492 

9.134 0.159 0.485 

9.534 0.165 0.465 

9.937 0.172 0.446 

10.229 0.177 0.434 

11. 352 0.197 0.391 

12.552 0.217 0.355 

14.059 0.243 0.317 

18.637 0.319 0.204 

21.302 0.363 0.212 

21.602 0.368 0.209 

23.472 0.398 0.193 

24.052 0.407 0.189 
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5.5.4 Sodium Tungsten Bronzes 

The e values obtained for samples O.05NaW, O.2NaW, and O.3NaW 

are given in Tables 5.6, 5.7 and 5.8 respectively. These sodium 

bronzes appear to be tetragonal bronzes. The method of calculating the . 

lattice parameters and indexing the most intense lines obtained for 

these samples was that employed for the potassium bronze sample O.6KW, 

and is given in detail in sub-section 3.5.3. Sample O.05NaW has 

lattice parameters ao = O.524nm and Co = 0.388nm, which agree well with 

those found in the literature(5) the d values for this sample together 

with the line indices are given in Table 5.6. The values of e obtain-

ed from the diffractograms of samples O.2NaW and O.3NaW were used to 

calculate the lattice parameters and index the most intense lines, these 

values are given in Tables 5.7 and 5.B. Sample O.2NaW is a tetragonal 

bronze with lattice parameters ao = 1.21Snm and Co = 0.377nm. Sample 

0.3NaW also corresponds to a tetragonal bronze with lattice parameters 

ao = 1.209nm and Co = 0.375nm. In both cases the calculated cell 

parameters agree well with those found in literature(6). 

The sodium bronzes with higher alkali ion content, x ~ 0.6, 

gave relatively uncomplicated diffractograms. Upon inspection of the 

spectra obtained for samples a.6NaW and a.8NaW, a regular pattern was 

observed, suggesting the presence of cubic phases for these bronzes. 

The d values obtained for sample a.6NaW are detailed in Table 5.9. 

For the cubic system; 

where 

. 2~ 
Sln ~hk' 

A 

= 

= 

. . . . . . . . . . • . . . . . .. 5.4 

. . . . . . . . . . . . . . . . .. 5. 11 

The characteristic of this system is that the values of sin29 have 

a common factor. The values of sin29 for sample 0.6NaW are given 



Table 5.6 

X-ray Diffractogram of 0.05NaW 

Q Sing d/nm hkl 

11. 563 0.200 0.384 0.01 

11.833 0.205 0.376 110 

14.365 0.248 0.310 101 

16.675 0.287 0.268 111 
- -

17.105 0.294 0.262 200 

18.348 0.315 0.245 210 

20.808 0.355 0.217 201 

23-.593 0.400 0.192 002 

25.221 0.426 0.181 102 

26.719 0.449 0.171 112 

27.939 0.468 0.164 310 

30.537 0.508 0.152 311 

38.283 0.619 0.124 401 
-

i, 

Table 5.7 

X-ray Diffractogram of 0.2NaW 

() Sine d/nm 

8.181 0.142 0.541 

11. 328 0.196 0.392 

11.602 0.201 0.383 

11.882 0.206 0.374 

14.157 0.244 0.315 

16.558 0.285 0.270 

20.470. 0.349 0.220 

20.607 0.352 . 0.219 

23.802 0.403 0.191 

24.382 0.413 0.186 

24.855 0.420 0.183 

26.817 0.451 0.171 

27.232 0.457 0.168 

27.592 0.463 0.166 

hk1 

210 

300 

310 

001 

211 

311 

421 

440 

002 

102 

112 

302 

312 

322 

'-0 
U1 
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Table 5.8 

X-ray Oiffractogram of 0.3NaW 

8 Sin8 d/nm hkl 

8. 143 0.142 0.544 210 

11. 642 0.202 0.382 310 

12.562 0.217 0.354 101 

13.272 0.229 0.335 112 

15.244 0.263 0.293 410 

16.597 0.286 0.269 311 

20.507 0.350 0.220 421 

23.852 0.404 0.190 002 

25.317 0.427 0.180 202 

26.892 0.452 0.170 312 

29.654 0.495 0.156 332 

in Table 5.9 and it can be seen that the first two lines have a 

common factor of about 0.0404 and dividing the first seven lines 

obtained by 0.0404, values of around 1, 2, 3, 4, 5, 6 and 8 are 

obtained, being characteristic values for a primitive cubic lattice. 

Sample 0.6NaW corresponds to a cubic bronze with lattice parameter 

ao = 0.383nm, calculated from equation 5.11 with A = 0.0404, and is 

in good agreement with literature values of cubic sodium bronzes(7). 

The 9 and d values together with the line indices obtained 

for sample 0.8NaW are given in Table 5.10. Similar to sample 0.6NaW, 

it was found that sample 0.8NaW is a primitive cubic bronze with cell 

parameter ao = 0.385n~, which agrees well with those mentioned in 
,. i ' I 

literature for sodium bronzes with high alkali ion content. 



9 SinG 

11 .595 0.201 

16.504 0.284 

20.300 0.347 

23.639 0.401 

26.639 0.448 

29.432 0.491 

34.584 0.568 

37.013 0.602 

39.406 0.635 

41. 745 0.666 

44.059 0.695 

46.377 0.724 

48.712 0.751 
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Table 5.9 

X-ray Diffractogram of 0.6NaW 

Sin2g d/nm 

0.0404 0.386 

0.0807 0.272 

0.1203 0.222 

0.1607 0.192 

0.2010 0.172 

0.2414 0.157 

0.3221 0.135 

0.3624 0.128 

0.4030 0.121 

0.4433 0.116 

0.4836 0.111 

0.5240 0.106 

0.5646 0.103 

hkl 

100 

110 

111 

200 

210 

211 

220 

221 

310 

311 

222 

320 

321 

It can be concluded that both the potassium and sodium bronzes 

may be regarded as mainly homogeneous bronzes with the exception of 

sample 0.05KW which showed the presence of W03 phases. 

I: " 



- 98 -

Table 5.10 

X-ray Diffractogram of a.8NaW 

e SinS d/nm hkl 

11 .539 0.200 0.385 100 

16.423 0.283 0.272 110 

20.272 0.346 0.222 111 

23.580 0.400 0.193 200 

26.555 0.447 0.172 210 

29.405 0.491 0.157 211 

34.525 0.567 0.136 220 

36.969 0.601 0.128 221 

39.349 0.634 0.121 310 

41.549 0.663 0.116 311 
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CHAPTER 6 

X-RAY PHOTOELECTRON SPECTROSCOPY 

6.1 Introduction 

X-ray photoelectron spectroscopy (XPS), also known as Electron 

Spectroscopy for Chemical Analysis (ESCA), has the ability to monitor 

the chemistry occurring on the outermost layers of a solid or catalyst, 

and irrespective of the elements from which the catalyst is prepared 

(with the exception of hydrogen and helium), to detect changes of 

relative concentration of surface atoms. 

Since the 1970s, X-ray photoelectron spectroscopy has been widely 

used in chemical research. The method is based on the photo-electric 

effect. Bearing in mind that the physical principles of XPS and the 

problems concerned with the interpretation of the spectra have been 

reviewed(1-7), consideration will be confined to the basic concepts. 

The principles are simple. A sample is bombarded with mono­

energetic X-ray photons, normally Al Ka (1486.6eV) or Mg Ka (1253.6eV), 

which eject electrons from core and valence shells in which the ion-

isation potential, or binding energy, is less than the primary photon 

energy. The kinetic energy of the ejected electron is measured and 

is related to the binding energy by the relation: 

. . . . . . . . . . . . . . . . .. 6. 1 

where hv is the energy of the photon, EBE is the binding energy of the 

electrons with respect to the· Fermi level, and ~s is the spectrometer 

work function. Samples of ~aterial which are poor conductors of 

electricity acquire a positive charge during their examination, and 



- 101 -

this leads to the ejected electron having lower kinetic energy than 

it should, leading to too high a binding energy. This phenomenon is 

called "charging effect"(l ,8-10). The incorporation of ~s' the work 

function, in equation 6.1 allows for the "charging effect" to be 

assessed since it is a measure of the voltage between the spectrometer 

and the sample. Its value should be a constant, thus any variation 

could mean a change in the l e1ectronic" state of the sample. In the 

case of non-conductive samples, any change in the work function will 

probably mean that the sample is being charged. 

Although the X-ray photons can penetrate deeply into the sample, 

the electrons which escape without energy loss come from the outermost 

surface layers, (i.e. from within 2nm of the surface), since low energy 

electrons have short, mean free paths. Further, it is only those 

electrons ejected which do not lose energy by inelastic scattering on 

thei~ passage to the surface which will appear in the kinetic energy 

spectrum at their original characteristic positions. The rest con­

tribute to the discrete and continuum background at lower kinetic 

energy. 

The energies of the core electrons of a particular atom are 

sufficiently invariant to provide a finger-print of the atom. When 

a photon extracts an electron from a core sub-shell, a nholen is 

produced, and this stage normally decays by one or two mechanisms; 

X-ray fluorescence or an Auger process. These processes are presented 

schematically below(7) 
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x-ray fluorescence C 11. 
C 1l B i - - - -- - --. hv 

B II A '11 
A II 

'" 
'" Auger 

'- process 

" 
" 

C i 

B L 
A 11 

/ 
e 

Auger 
electron 

In both cases the vacancy in sub-shell A is filled by an electron 

from sub-shell B. The energy t.E released mq,y appear as a photon which 

usually belongs to the X-ray region. This is X-ray fluorescence. 

Alternatively, the excess energy may be dissipated by ionisation of an 

outer electron (from sub-shell C). This non-radiative mode of decay 

is the Auger Process, the secondary electron emitted being the Auger 

electron; the net result is a double ionisation. 

The two relaxation processes (fluorescence and Auger) are competi­

tive and their relative rates depend upon the atomic number of the 

element involved. High atomic numbers favour fluorescence, while 

Auger emission predominates with atoms of very low atomic numbers. 

Most of the chemical information available from XPS is from the 

chemical shift data. There is a wealth of data now existing on the 

use of chemical shifts in XPS to investigate bonding both in the solid 

and gas phase(ll,12). 
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6.2 Experimental Procedure 

The XPS measurements were made on a Kratos ES300 spectrophotometer 

provided with a dual anode X-ray gun; either Mg Ka or A1 Ka radiation 

may be used as the exciting radiation. The latter was used in the 

present work. The samples were placed on the sample probe by means of 

a double-sided adhesive tape and distributed over it as a very fine 

layer. The X-ray supply was run at 14kV and lOrnA. The source slit 

and the collector slit were left unchanged during all the runs. With 

the sample holder in the spectrometer, the system was evacuated and when 

the vacuum was ,sufficiently low,1.33~Pa, a broad scan of the electron 

energy spectrum on irradiation was taken. It was then followed by 

scans of each element of interest over a narrow eV range. The kinetic 

energy of the electron emitted from tbe sample was measured in the' 

e1ectro~ ~~~rgy anaiyser and an electron multiplier was employed to 

count the electrons. 

6.3 Results 

6.3.1 Calculation of Oxidation States 

From the electron spectrum, the binding energy of the carbon is 

state has been noted. This element is always present on the surface 

of a sample unless extremely careful precautions are taken, or unless 

the sample has been pretreated, (e.g. by argon ion etching). This 

, peak has been used to correct for charging in the sample during irr­

adiation which displaces peaks from their true positions. Elemental 

carbon should give rise to a cts peak at 284.8eV but because of 

charging this peak may be found to vary in position. The magnitude of 

separation of the observed Cis peak from~'its true binding energy 

enabled a charging correction to be made to all other XPS peaks in the 

spectrum. The difference between the corrected binding energies and 
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the true elemental position of the peak, (as given in the table of X-ray 

adsorption data (2)), is an indication of the oxidation state of that 

particular element. 

6.3.2 Experimental Results 

X-ray photoelectron spectra of the elements detected on the sur­

face of the different samples, (including W powder; W03; K2W04; Na 2W0 4; 

O.OSKW; O.2KW; 0.3KW; O.6KW; O.8KW; O.OSNaW; 0.2NaW; 0.3NaW; 0.6NaW and 

O.8NaW), are shown in Figures 6.1 to 6.14. Appendix 3 gives the 

observed and corrected binding energies in eV for the element of interest 

such as W, K, Na and 0 found on the surface of the different samples 

found by ESCA. 

For the case of tungsten the spectrum of the 4f electrons were 

studied in all samples. The spectra of the W4f electrons in W, W03, 

K2W04 and Na 2W04 are shown in Figure 6.15. For a single type of 

tungsten atom or ion there is a doublet, (with a separation of approx­

imately 2eV), due to spin orbit-coupling(13)). The magnitude of the 

splitting and the relative line intensity is the same for both tungsten 

powder and W03. If only the W4f7/2 line is considered a binding 

energy of 33.6eV was obtained for tungsten powder whereas for W03 a 

binding energy of 36.0eV was obtained. The chemical shift between W03 

and W powder is thus 2.4eV but it must be noted that tungsten powder 

necessarily contains certain adsorbed oxygen species on its surface as 

shown in the spectrum, thus giving a slightly higher binding e~ergy than 

the quoted value, (3l.0eV (2)), for the zero-valent state. The measured 

binding energy for the 4f7/2 lines of K2W04 (36.SeV) and Na2W04 (36.5eV) 

is close to the value obtained for W03 (36.0eV) indicating that tungsten 
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Figure 6.15 (a) W powder, (b) W03, 

(c) KZW04, (d) Na2W04 

is present in the +6 oxidation state in both samples. The binding 

energies of the K2p and Nals peaks agree well with literature values 

for compounds of potassium and sodium. 

6.3.4 Potassium and Sodium Tungsten Bronze Samples 

In all the bronze samples a shift of the W4f peak to a lower 

binding energy was observed. Deduction of the oxidation state of W 

from the absolute binding energy of this peak is difficult, however, it 

can be determined from the spectra that W is present in the +5 and +6 

oxidation states. Both the K2p and Nals peaks in the bronze samples 

show no evident change in binding energy compared to those of K2W04 
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and Na2W04' 

A quantitative estimation of the relative ratio of tungsten to 

alkali metal ion in the bronzes has been attempted. This was carried 

out by comparing the peak areas of the W4d and K2p peaks for the pot­

assium bronzes and the W4f and Nals peak for the sodium bronzes. 

The W4d peak was chosen for the potassium bronzes because of overlapping 

between the W4f and K3S peak. A quantitative examination of the 

spectra shows that the ratio of the tungsten peak to the oxygen peak is 

'almost constantin most bronzes whilst the intensity of the K2p peak 

and Nals peak increases with increasing alkali ion concentration. 

The method of quantification used was that of peak areas and in cases 

where there is a doublet, e.g. W4f, the total peak area was estimated. 

The peak areas were calculated using a graphics tablet, Apple II 

computer and suitable software, with an accuracy of ±10 - 20%. These 

values were then divided by a sensitivity factor, which for different 

elemental peaks is listed in Appendix 3. The corrected peak areas for 

the alkali ion were normalised with respect to the tungsten peak thus 

giving a relative ratio of the two elements present. The relative 

peak intensities together with the calculated ratio are given in 

Appendix 3. The calculated ratio of the alkali ion to tungsten shows 

reasonable agreement in most cases to the bulk atomic ratio of these 

elements as defined by the preparation. ,It would appear that there is 

no tendency of any particular element to enrich the surface of these 

bronzes. 

6.4 Conclusions 

, ' , The relative chemical shift characteristic of W, has helped 
1 ,I, 

facilitate detennination of the nature of the tungsten species present 
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in both the potassium and the sodium bronzes. In all the samples, 

tungsten was observed to be in an oxidation state of +5. In complex 

ternary materials such as the potassium or sodium bronzes there is the 

possibility that the chemical composition close to the surface differs 

from that of the bulk. In particular, one can envisage surface Na or 

K depletion or enrichment without major structural upheaval. Quantit­

ative examination of the X-ray photoelectron spectra of the bronze 

samples has shown that the surface of these salnp1es is essentially a 

termination of the bulk structure with no pronounced segregation or 

depletion of K or Na. 
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CHAPTER 7 

ELECTRICAL RESISTIVITY 

7.1 Introduction 

Electrical conductivity is the movement of electric charge from 

one location to another. Since the charge may be carried by ions or 

electrons whose mobility varies in different materials there is a full 

spectrum of conductivities ranging from highly conducting metals to 

nearly perfect insulators. Usually conduction by one or the other 

type of charge carrier predominates, but in some inorganic materials 

both ionic and electronic conduction are appreciable in the same material. 

The logarithim of specific conductivity, 10g6 i (ohm cm)-l for ionic 

solids has values which vary between -14 and -18 for crystals and ~3 to 

+1 for solid electrolytes and for electronic conductors log de has values 

of 
<-12 insulators 

-5 to +2 semiconductors 

+1 to +5 metals 

In ionic conductivity, the carriers may be either negative or 

positive ions. In e1ectron,ic conductivity the carriers are electrons 

_ or electron 'ho1es'. The charge per electron ;s 1.6 x 10-19 coulomb. 

Since ions contain either a deficiency or an excess of electrons, the 

charge per ion is an integral multiple of 1.6 x 10-19 coulomb .. This 

charge is accelerated as it moves in one direction in the electric field 

and decelerated as it reverses its direction. Conductivity,6, may be 

expressed as a product of (1) the number of charge carriers, n, in a 

material, (2) the charge, q, carried by each and (3) the mobility, u, 

of the carriers. That is, 

6 = n q u . . . . . . . . . . . . . . . . . .. 7. 1 
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The mobility of a carrier is its net velocity per unit voltage gradient. 

Ionic conductivity in solids is due to the migration of ions from 

one lattice site to another. The probability of such movement is low in 

most ionic and covalently bonded solids such as oxides and halides. 

Rather, the atoms tend to be essentially fixed on their lattice sites 

and can only move via crystal defects. Only at high temperature where 

the defect concentrations may become quite large and the atoms have a 

lot of thermal energy does ionic conductivity become appreciable. If 

the ion moves with the electric field it is accelerated and receives 

more energy as it vibrates in the favourable direction of the electric 

field. Conversly it is decelerated as it moves in the unfavourable' 

direction. The result is net ion movement in one direction which gives 

ionic conductivity. The ionic conductivities in solids are naturally 

low because there is only a very low probability that the energy will be 

available for its movement. However, there exists a small group of 

solids called solid electrolytes or fast ionic conductors in which one 

of the sets of ions can move quite easily. Such materials often have 

rather special crystal structures in which there are open tunnels or 

layers through which the mobile ions may move. 

Electronic conductivity arises by the long range migration of 

electrons. In metals, valence electrons are not anchored to any 

specific atom and thus their energy permits them to move among the atoms 

in all directions with equal velocity. This model was first postulated 

in 1900 by Drude(l) who proposed that these valence electrons move 

IIfreelyll between the ion cores, which were assumed to be spherically 

symmetrical positive charges at rest in a fixed lattice. In this "free 

electron gas ll model, an applied electric'field €, accelerates the 

lIelectron gas" in a given direction. This motion is opposed by a 
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viscous drag effect arising from collisions with the lattice cations 

resulting in a net movement of electrons towards the positive holes. 

In ionically and covalently bonded materials, the electrons are not free 

to leave their host atoms and therefore are poor electronic conductors; 

these materials can be classified either as semiconductors or insulators 

depending on the energy requirement for movement of an electron from its 

low energy position so that it may transport a charge. The main differ-

ence between metals, semiconductors and insulators is the magnitude of 

their conductivity as given previously; but whereas the conductivity of 

most semiconductors and insulators increases rapidly with increasing 

temperature, that of metals shows a gradual decrease. The reason for 

this can be found by considering equation (7.1). For all electronic 

conductors q is a constant independent of temperature and'the mobility 

term is similar in most materials in that it usually decreases slightly 

with increasing temperature. However, for most metals, n ;s large 

and essentially unchanged with temperature, the decrease in ~ causes a 

decrease in~. In semiconductors and insulators n usually increases 

exponentially with temperature which causes a net increase in6. 

The free electron theory was later developed into the Band theory which 

was applied to explain the electrical conductivity in metals, insulators 

and semiconductors. When atoms approach one another to form solids, 

the sharp atomic energy levels spread into wide allowed energy bands 

which are separated by forbidden gaps. This band formation is marked 

for the valence electrons and negligible for the inner Icore l electrons. 

The picture of the electronic structure of a metal given by this theory 

is as follows. A solid metal can be considered to possess bands of 

electrons which are separated from each other by energy gaps. Further, 

these bands can be completely fille~ with loca1i:sed e1ectrorst:or part-
t I, 1':. : . I " 

ially filled with free electrons whose molecular orbitals extend over 
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all the atoms in the crystal. In metals such as sodium there are 

unfilled orbitals lying very close to the uppermost filled level, the 

Fermi level, and so it requires exceptionally little energy to excite 

the uppermost - energy electrons. (See Figure 7.1(a)). The electrons 

are therefore very mobile, and their mobility is reflected in the ability 

of the metal to conduct electricity when small potential differences 

are applied. Electrical conductivity of metals is therefore a proper-

ty characteristic of partially filled bands of orbitals. Insulators, 

on the other hand, have a full valence band, separated by a large 

forbidden gap from the next empty energy band (conduction band) (see 

Figure 7.1(b)), thus very few electrons from the upper valence band 

states have sufficient energy to overcome the forbidden gap, hence the 

electrical conductivity is negligible. In some materials there is a 

small gap between the filled band and an empty band, Figure 7.1(c). 

If some of the electrons could be excited into the upper band, the holes 

in the lower band and the electrons in the upper band could move through 

the lattice. This is called semiconductivity. It can be brought 

about in several ways. For example, thermal excitation might generate 

enough of these carriers. A higher temperature implies more carriers, 

and so the conductivity increases with temperature. Another way of 

forming carriers is to introduce impurities in an otherwise ultrapure 

material. If these impurities can trap electrons they withdraw electrons 

from the full band, leaving holes which permit conduction: this is 

p-type semiconductivity (p indicating the introduction of holes which 

are positive relative to the negatively charged electrons filling the 

band). Alternatively, the impurity might carry excess electrons 

(e.g. phosphorus atoms introduced into geranium) and these electrons 

swim in the otherwise empty bands, giving n-type semiconductivity 
.' I ' 

(where n donates negatively charged carriers). 
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Figure 7.1 Band filling leads to' (a) metal, 

(b) insulator, and (c) semiconductor 

7.2 Experimental Procedure 

Resistivity-conductivity measurements on the polycrystalline 

bronzes in air were carried out in a Pyrex cell and using Be-Al alloy 

electrodes. The sample (about 0.2-0.5g) was first pressed into a 

disc using a hydraulic press at a pressure of 10,000kg.: ,The disc was 
. , 

enveloped with aluminium feil and then held between two 'stainless-
, . 

steel plates to which the electrodes were connected. The electrodes 

and disc were held in place in the Pyrex cell using springs, as shown 

in Figure 7.2. Dc resistances were measured using an ohm meter (with 

an accuracy of 0.05%) and were then converted to dc resistivities 

(p = Ra/t], in ohm.cm (where a and t are the cross-sectional area and 

: thickness ,of the sample, measured using a micrometer with an a~curacy 

of ± 0.05%. IfOi is significant then dc-resistance measurements are 
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Figure 7.2. Apparatus for electrical resistivity measuremen1 
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likely to lead to polarisation at the sample/electrode interface resulting 

in anomalouslY nlgh resistivity values being obtained. Ac modes of 

measurement were used to overcome polarisation effects and thus to give 

a clear picture of the composite electronic and ionic conductivity of 

these bronze materials. In the ac mode V = lZ where Z is impedance 

(a complex function of resistance R and capacitance C, i.e. Z = R + jC.). 

For a series circuit impedance Z is given by vlfR2 + Xc 2) where Xc is the 

capacitive-reactance or l/ZrrFC where F is the ac test frequency (here 

1000 Hz). . The ac capacitance was determined using the multimeter 

connected to a l~F shunt. A programmabl~ heating coil enables measure­

ments to be carried out in air at known temperatures between 298K and 

39SK. In ac mode p is given by Za/t. 

7.3 Electrical Resistivity Results 

The a.c. and d.c. electrical resistivities of the Na and K 

tungsten bronzes have been measured in the temperature range 298 - 39SK. 

For sodium and potassium tungstates and W02 only the a.c. resistivities 

were measured. The d.c. and a.c" resistivities of the sodium bronzes 

are plotted as a function of temperature and are shown in Figures 7.3 

and 7.4 respectively. The character of the resistivity-temperature 

plots indicates that the principle conduction mechanism in the sodium 

rich bronzes (x > 0.2) is different from that found in bronzes with 

lower sodium content, the former exhibiting typically metallic electrical 

properties and samples with x , 0.2 behaving more like semiconductors. 

The carriers are electrons at all sodium concentrations. Figures 7.5 

and 7.6 show the d.c. and a.c. resistivities of the potassium bronzes 

in the temperature range 298 - 373K. The shape of the resistivity __ -

. temperature curve for KO.OSWOg:suggests semiconducting be~aviour, while 

those with higher potassium content show properties of metallic conduction. 



160 0.05NaW 

120 

p/nem 

80 

40 

300 320 340 360 

Figure 7.3 d.e. resistivity versus temperature for NaxW03 

380 

0.2NaW 

0.3NaW 
0.6NaW 

0.8NaW 

400 

T/K 



800 

600 

plncm 

400 

200 

0.05NaW 

0.2NaW 

• • • • • • • • .0.3NaW 
• 

300 320 340 360 

Figure 7.4 a.c. resistivity versus temperature for NaxW03 

• • 0.6NaW 

380 400 
T/K 



- 115 -

The d.c. resistivity of W03 as a function of temperature is given in 

Figure 7.5 and shows conductivity characteristic of a semiconductor. 

Figure 7.7 shows the a.c. resistivity values at 298K of the polycry-

stalline sodium and potassium bronzes as a function of the number of 

alkali metal ions inserted. It is evident that the electrical resist-

ivity decreases with increasing value of x. A similar observation has 

been made for single crystals of these bronzes but however, it should 

be noted that the absolute resistivities are very different as a result 

of the physical properties of the bronzes. (It appears that at a 

given value of x the resistivity increases only slightly as the inserted 

ion is changed from Na+ to K+). The a.c. re.sistivities of Na2W04' 

K2W04 and W03 as a function of temperature between 293K and 373K are 

shown in Figure 7.8. Clearly, in all cases the resistivity decreases 

as a function of temperature. However, the absolute resistivity of the 

bronzes is about 106 times lower than for the tungstates, but only 

slightly smaller than for the lower oxide of tungsten. The sodium and 

potassium tungstates have resist.ivity values characteristic of insulators. 

Values of the a.c. resistivity measured at different temper­

atures were used to calculate the activation energy for electrical con­

duction. Goodenough(2) has indicated that plots of ln (TIp) versus 

T- l have a slope of -Ei/86.29 ~eV, and that for fast ionic conduction 

in solids Ei: 0.2eV. Figure 7.9 shows these plots for the tungstates, 

W03 and the lower oxide of tungsten. Such plots show good linearity 

over the entire temperature range and this suggests no dramatic change 

in gradient involving a change in the mode of conduction. Table 7.1 

gives the· values of the activation energies for conduction for the lower 

oxide of tungsten, W02, K2W04 and Na 2W04. Figures 7.10 and 7.11 show 

plots of 1n (Tip) versus T- 1 for the Na and K bronzes respectively. 



1200 

p/ n::m 

800 

400 

W03 
• 

0.3KW. e • e. :. · i: : ~.6KW .. ~ ~ . . . 
O.BKW &I •• • ~ •• ~ II .0.2KW 

300 320 340 360 3BO 

Figure 7.5 d.c. resistivity versus temperature for KxW03 and W03 

400 
T/K 

2000 

1600 

1200 

p/ncm 
BOO 

400 

o 



2100 

p/nem 

1500 

900 

300 

0.05KW 

0.2KW 
• 

0.3KW 
•------.-----~------o_----------~.~-----• .-----~.~-----~.~----•• .. . 
• • • 0 0.6KW 

300 320 340 360 

Figure 7.6 a.c. resistivity versus temperature for KxW03 

380 400 

T/K 



2000 

1000 
p/Qcm 

500 

300 

100 

50 

20 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

x in MxW03 

Figure 7.7 a.c resistivity values at 298K versus 

x ; n Mxl~03 



400 

1 
l- 6000 

Na2W04 
W03 

..-- -+ 

300 

1 
~ 4500 

p/Mncm p/rlcm 

200 3000 

--------------~m 

100 J r 1500 

\&102 -+ 

300 320 340 360 380 400 

T/K 

Figure 7.8 a.c. resistivity values for tungstates, W03 and W02 versus' temperature 



4 

2 

o 

1n(T/p} 

-2 

-4 

-6 

-8 

: 

Figure 7.9 

6 • , 

g K2W04 • • .... 

-
Na2W04 

2.80 3.00 3.20 3.40 
1 x 103 
T 

, , 

In(T/p) measured in the a.c. mode versus 

~ for tungstates W03 and W02 



o 

-1 

• 

2.70 2.90 3.10 

0.2NaW 

O.OSNaW 

3.30 

1 x 103 
T 

Figure 7.10 In(T/o) measured in the a.c. mode versuS 

~ for Na xW03 T 



2.4 

1.6 

0.8 

1n(T/p) 

0.0 

-0.8 

-1.6 

• 

..... 
o o • o 

• 

2.70 2.90 3.10 

. --------
0.8KW 

0.6KW 

• -
0.3KW 

0.2KW 

3.30 

1 x 103 
T 

Figure 7.11 1n(T/p) measured in the a.c. mode versus 
1 
T for KxW0 3 



- 116 -

The log of the conduction varies linearly with inverse temperature, the 

straight line sometimes exhibiting breaks at a certain temperature. 

Table 7.2 gives the derived activation energy values for electrical 

conduction of the bronzes. In gene~~l, the activation energies decrease 

with increasing value of x but are rather similar at one value of x 

changing from Na+ to K+. 

7.4 Conclusions 

The sodium and potassium tungsten bronzes having high concen­

trations of the insertion ion show metallic properties while those 

with low insertion ion concentration have semiconductor properties. 

It appears that at higher concentrations the conducting electrons are 

delocalised resulting in metallic conductivity while for lower alkali 

content these electrons could be localised, most probably on discreet 

tungsten atoms causing semiconductor behaviour. Measurement of the 

Hall effect, i.e. measurement of the free electron concentration for 

Naxwo3(3) has indicated that the free electron concentration is equal 

to the alkali metal concentration and is temperature independent, thus 

implying that the conducting electrons arise from the complete ion­

isation of the inserted atoms. 

The origin of the metallic conductivity of the tungsten bronzes 

having large concentr~tion of insertion ions has been very much dis­

cussed, the explanation given by Goodenough(2) seems to be the most 

plausible. His description of the binding in cubic NaxW03 is a useful 

prototype for the electronic structures of metallic oxide bronzes. A 

qualitative energy level scheme ;s given ;n Figure 7.12. Each oxygen 

has two sp orbitals directed towards neighbouring tungsten atoms. 
, " , 

The central tungsten atom of a W06 octahedron has Ss,6p and Sd(eg) 
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orbitals which can combine with the sp oxygen orbitals directed towards 

it. In the extended lattice these interactions lead to the formation 
. * of 6 and <S bands. The remaining oxygen p orbitals (PIT) combine with 

* the tungsten Sd (t2g) orbitals to give IT (bonding), IT (anti-bonding) 

and PIT+ (non-bonding) bands. The conduction band, which can contain a 

* maximum of six electrons per W atom, is IT and is predominantly WSd 

(t2g) in character. Sodium atoms donate one electron per atom into the 

conduction band which becomes partially filled. The resulting energy 

level scheme is similar to that calculated(4) for Re03, a metallic 

material isoelectronic and isastructural with Na xW03. 

The electrical properties of tungsten bronzes with low insertion 

ion concentration has also been adequately investigated to conclude 

semiconductor behaviour(S). This behaviour is coincidental with struct­

ural distortions of the oxide lattice which probably disrupt the mechan­

ism by which the conduction band is formed and instead cause localisation 

of electrons in the t2g orbitals of specific tungsten atoms. 

The substitution of potassium for sodium as the insertion ion 

in the bronze only slightly increases the resistivity values, indicating 

that the resistivity is possibly independent of the nature of the 

insertion ion. A similar observation has been made by Ellerbeck et 

al(6). He concluded that not only was the electron mobility independ­

ent of the nature of the insertion ion, but, that it is not influenced 

by the number of insertion- ion vacanCies, depending only on the W03 
sublattice at sufficiently elevated temperatures. 

Recent studies(7) on the conductivity of some polycrystalline 

alkali metal tungsten:bronzes have shown that a.c. measurements, above 

a certain critical temperature, (Tc)' suggest ionic conductivity to be 
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Figure 7.12 Electronic energy level scheme for 

W03 and NaxW03 

significant.. This ionic conductivity was thought to arise simult­

aneously from the mobility of (i) 02- lattice ions and oxygen vacancies, 

'(i1) w5+ ,:,., •• W6+ exchange, arid (iii) aU'ali metal 'ions intercalated, 
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However, tpo studies(7) on these samples suggested the presence of 

oxygen deficiencies unlike the present bronzes (see Chapter 4). The 

samples were prepared under vacuum(7) whereas the present bronze 

samples were prepared in a flowing argon gas stream. This could 

explain the differences in the results obtained. 

Table 1 

Table 2 

Activation energy of conduction E6 in tungstates 

and tungsten oxides 

Sample Ed/meV 

W02 32.5 

W03 180.8 

K2W04 194.7 

Na2W04 108.9 

Activation energy of conduction E6 in alkali 

metal tungsten bronzes 

Sample Ed/meV 

NaO.OSW03 102.0 

NaO. 2 W03 74.7 

NaO. 3 W03 6S.3 

NaO.6 W03 68.6 

NaO.8 W03 48.6 

KO.05 W03 143.1 

KO.2 W03 82.9 

KO.3 W03 46.8 

KO.6 W03 133.5 

KO.8 W03 43.0 
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CHAPTER 8 

CATALYTIC ACTIVITY FOR ISOPROPANOL DECOMPOSITION 

8.1 Introduction 

The decomposition of a secondary alcohol can occur by two routes 

(a) dehydrogenation to form a ketone and hydrogen, (b) dehydration to 

form an alkene and water. At very high temperatures cleavage of carbon­

~ - hydrogen bonds can occur with the formation of alkanes, CO and 

CO2. At near ambient temperature ether is the major reaction product. 

For the studies of catalyst selection it is sufficient to consider only 

the general reactions (a) and (b). Studies of these reactions have 

revealed that each of them calls for a different type of active site, 

which can be deduced from the various theories of catalysis. (1) From 

the electronic theory of catalysis, the rate-determining step for 

dehydrogenation is the migration of free electrons in the catalyst; 

consequently dehydrogenation is the migration of vacancies while for 

dehydration it is the m~gration of free electrons in the catalyst; 

consequently dehydrogenation is expected to be catalysed by p-type semi­

conductors and dehydration should be catalysed by n-type semiconductors, 

however some authors have arrived at opposite conclusions; (2) the 

multiplet theory of catalysis implies two-point adsorption as a con-

'dition for alcohol decomposition. Optimum interatomic spacing between 

surface atoms of the catalyst for the adsorption leading to dehydration 

is greater than that leading to dehydrogenation. Therefore an increase 

in crystal lattice parameters will aid dehydration activity, while a 

corresponding decrease will aid dehydrogenation; (3) from the classi­

fication of catalytic processes, dehydration is an acidic reaction and 

therefore should be catalysed by solid, protic and aprotic acids; 

dehydrogenation being an electronic reaction should be catalysed by 
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metals and also by semiconductors; (4) in accordance with the concept 

of cyclic complexes in catalysis adsorption of an alcohol involves a 

two-point attachment to the electropositive and electronegative surface 

atoms; an increase in metal-oxygen distance will facilitate dehydro­

genation and a decrease in such distance will facilitate dehydration; 

(5) alcohol decomposition is a multistep reaction, dehydration requires 

acidic catalysts with n-type conductivity and dehydrogenation requires 

basic catalysts with p-type conductivity; (6) allowing for the role of 

the width of the forbidden zone, (U), and for the presumption that 

catalysis involves specific conductivity, the rate of alcohol dehydro­

genation will increase with decreasing value of (U). There should be 

no effect of (U) on dehydration, since this is an acid catalysed 

reaction. 

Decomposition of iso-propylalcohol has gained a prominent place 

as a model reaction for studying the principles of catalyst selection. 

The two main paths of this decomposition are: 

Cr3 ~CH3COCH3 + H2 dehydrogenation 

(IPA) CH - OH 

C~3 ~ CH3CH = CH2 + H20 dehydration 

both of them are free of side reactions 

Recently the activity for the dehydration of isopropyl alcohol 

is reported to be a good measure of acidity of metal oxide catalysts. 

(1-4) Seo et al(5) have found acid-base measurements from their 

study of isopropanol decomposition over molybdena~alumina (Mo-A1 203) 

catalysts to be in good correlation with those measured by adsorption 
, " 

of ammonia or pyridine. Acidity and basicity on the Mo-A1 203 cata­

lysts were found to be affected by the extent of reduction. 
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(a) Kinetics of IPA Decomposition 

Although the decomposition of IPA has been studied frequently 

using a variety of catalysts(6), few papers have emphasised the kinetics 

of the reaction and information on the kinetic equations is limited. 

In dehydrogenation, the possible rate-limiting steps are (a) adsorption 

of the alcohol, (b) interaction on the surface, and (c) desorption of 

products. These possibilities have been discussed for catalysis on 

zinc (II) oxide(7) and a kinetic analysis was carried out. Also, in 

general form the following equation has been proposed(2) for the cata­

lytic dehydrogenation; 

rate = (1 ) 

where kl , k2 and k3 are, respectively, the rate constants for the de­

composition of t~e alcohol, adsorption of acetone, and desorption of 

acetone while Palc and Pac are the partial pressures of IPA and acetone 

respectively. The equation is in agreement with experimental data(8) 

and was derived on the assumption that at the steady-state, the rate 

of desorption of acetone is equal to its rate of adsorption plus the 

rate of dehydrogenation of the alcohol. For the dehydration of IPA 

on metal oxides a similar kinetic treatment(9) yields an equation for the 

rate like equation (1) with rate parameters for water substituted for 

those of acetone. 

A thermodynamic consideration of the isopropanol decomposition 

reaction is also of interest. Dehydrogenation of IPA is an exothermic 

reaction and hence the products are favoured at low temperature. The 

dehydration reaction on the other hand, is an endothermic process and 
I 'II 

I, !"', ; I I ,I 

hence the products of dehydration are favoured at higher temperature. 
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Table 8.1 shows how the equilibrium constant, K, for the two reactions 

varies with temperature(s). 

Table 8.1 Variation of equilibrium constant, K, with 

temperature 

Temperature/K Dehydration, Dehydrogenation 
Kx10-4 K 

463 3.49 8.3 

473 4.53 7.5 

483 5.83 7.2 

493 7.42 6.9 

503 9.34 6.8 

It must be noted that the equilibrium constant for the dehydrogenation 

reaction is larger than that for the dehydration reaction at any 

temperature, but decreases with temperature. Whereas for the dehydra-

tion reaction, K increases with temperature. However, at lower temp-

eratures both reactions are kinetically limited. 

8.2 Experimental Procedure 

The decomposition of isopropanol, IPA, was carried out using a 

fixed bed reactor in a flow system, as shown in Figure 8.1. The cata­

lyst (usually about 0.29) was supported on a sintered disc in a Pyrex 

reactor which was connected to the reaction system. The reactor was 

placed in an electrically heated furnace and regulated to within ±SK. 

The introduction of a thermocouple into the well fitted to the reactor 

allowed measurement of the temperature. Prior to activity measure­

ments the samples were thermally treated in N2 at 773K for lh. The 

sample was then cooled to room temperature in N2 before the reactive 
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mixture was admitted. N2 (White Spot BOC, 99.99% purity) at a flow 

rate of 88cm3 min- l was used as a carrier gas. The lPA, fed into the 

nitrogen carrier gas stream by a saturator, was carried over the 

catalyst at 101.325kPa of total pressure. 

The saturator was placed in an ice-water mixture at 273K and 

the temperature was found to remain constant to ±2K over at least an 

8h period. At the outlet of the reactor, gas samples were injected 

to the chromatographic apparatus (Pye Unicam model Fll) which contain­

ed a column (5% carbowax on chromosorb P, 80-100 mesh) capable of 

separating propene, acetone and isopropanol, and was fitted with a 

flame ionisation detector whose output was fed to a chart recorder. 

The analysis was carried out under the following conditions: 

Temperature of column = 323K 

Pressure of N2 g.c. carrier gas= l40kPa 

N2 flow rate in column = 15cm3 min- l 

Pressure of H2 for FlO = l30kPa 

Pressure of Air for FlO = 85kPa 

Calibration was achieved by injecting known amounts of acetone, 

propene and lPA into the column and plotting a graph of peak areas 

versus amount of component injected. From the gradient of these graphs, 

response coefficients for each component were obtained. The retention 

time and response coefficient for IPA, propene and acetone measured at 

the conditions given above are shown below: 

Retention ResEonse 

time/mins coefficient 

IPA 2.05 1.00 : 

Acetone 1.33 0.75 

Propene 0.58 0.07 
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The number of moles of the component produced was assumed to be 

proportional to the peak area, i.e. 

where 

N. 
1 

is the number of moles of component i produced 

k. 
1 

is the response coefficient for component i 

A. 
1 

is the peak area for component i 

The percentage conversion of IPA was calculated from the composi­

tion of the gas mixture by the equation; 

% conversion = lOOA 

A + Nisopropanol 

where A is the number of moles of IPA transformed to produce propene 

and acetone and is calculated from the equation; 

A = Npropene + Nacetone 

The selectivity for a given product is defined as the number of 

moles of that product divided by the number of moles of IPA transformed. 

For a reaction product it is given by the equation; 

s. = Ni 
1 

A 

The reaction rate (R) is expressed as the moles of IPA transformed 

per hour per gram of catalyst. It has been calculated using the 

equation; 

R = % conversion 
100 

x F 60 x x 
22414 w 
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where W = weight of sample used. The constant 22414cm3 mol-1 was 

considered to be the molar volume of a gas at S.T.P. F is the flow 

rate of isopropanol in cm3 min- l and is given by 

Flowrate of N2 x vapour pressure of IPA at 273K 

carrier gas lOl.325kPa 

8.3 Results 

The decomposition of isopropanol was studied as a function of 

temperature on W03, KxW03 and Na xW03. Figure 8.2 shows the initial 

selectivity for IPA decomposition on W03 as a function of temperature. 

Selectivity for dehydration increased as a function of temperature and 

from 513K, W03 shows total selectivity towards propene formation. 

Figures 8.3 - 8.7 show the selectivities for propene and acetone prod­

uction as a function of temperature for the potassium tungsten bronzes, 

O.05KW ~ O.8KW respectively. For the potassium bronzes, the 

selectivities show minimum variation with temperature, in the range in 

which they were active (5l3K - 633K) usually with a slight increase in 

propene selectivity. It would be more interesting to compare the 

selectivities of the potassium bronzes at a fixed temperature. Figure 

8.8 shows the variation of selectivities with x in Kx W03 at the test 

temperature of 553K. Propene selectivity decreases as the concent­

ration of potassium ions in the bronze increases. 

Figures 8.9 - 8.13 show the selectivities for propene and acetone 

production as a function of temperature for the sodium tungsten bronzes 

Similar to the potassium 

bronzes, the selectivities for the sodium bronzes show minimum variation 
, ' 

with temperature, in the range in which they were active (493K-633K).' 
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However, unlike the potassium bronzes, the sodium bronzes with low 

concentration of insertion ion, i.e. x ~ 0.2, produce only propene in 

the temperature range of 493K - 573K. Figure 8.14 shows the select­

ivity values as a function of x in NaxW03 at the test temperature of 

553K. From this graph it can be seen that propene selectivity tends 

to decrease as the concentration of sodium ions ;n the bronze increases. 

For any given value of x the sodium bronzes show much higher select­

ivity for propene than the corresponding potassium bronze. 

Table 8.2 gives the total rate for isopropanol decomposition at 

the fixed temperature of 553K for W03, KxW03 and Na xW03 where 0.05 ~ x 

~ 0.8. In general for either series of bronze the total rate of 

decomposition decreases with increase in concentration of insertion ion. 

In general, the rate of isopropanol decomposition ;s greater for the 

sodium bronzes than for the potassium bronzes with x ~ 0.3, but is less 

when x ~ 0.6. The variation of the rates of the decomposition of iso­

propanol with K or Na content in the bronze was a common feature at all 

temperatures at which activity measurements were made. The variation 

of the rate of decomposition of IPA with temperature was used to 

calculate the activation energy. 

The dependence of the rate constant, k, on temperature T, (Kelvin) 

follows the Arrhenius equation (k = A exp.- if where Ea is the 

activation energy, R is the gas constant and A th~ pre-exponential 

factor). Measurement of k requires the determination of the orders of 

reaction at each temperature using the power rate law, 

r = 

It has to be assumed that a is not temperature dependent and k is 
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Total rate of Isopropanol Decomposition at 553K 

for WO~xW03 and Na xW03-

Sample .!h/mmol f'h-' 

W03 15.09 

KO.OSW03 3.22 

KO.2W03 1.88 

KO.3W03 1.21 

KO.6W03 0.81 

KO. 8~~03 0.73 

NaO.OSW03 3.95 

NaO.2w03 3.69 

NaO.3w03 3.68 

NaO.6W03 0.40 

NaO.8W03 0.21 

proportional to r providing that the reaction is studied at low 

conversions and over a moderate temperature range (usually lOOK). The 

apparent activation energy can therefore be calculated from the equation; 

1n r = 1n A - Ea 
RT 

This is done by determining the rate of reaction at different temper­

atures and plotting 1nr versus +. The Arrhenius plots for the initial 

rate of isopropanol decomposition on W03, KxW03 and NaxW03, where 

0.05 ~ x ~ 0.8, are given in Figures 8.15,8.16 and 8.17 r~spectively. 

, Good linear re1atio~ships were obtained for a:l1 samples. 'The pre-
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exponential factor, A, and the activation energy, Ea' were calculated 

using the least squares method, and are given in Table 8.3 for W03, 

KxW03 and NaxW03. Activation energy values for the decomposition of 

IPA are within the range of those mentioned in literature(10). 

Table 8.3 Activation Energy Values and ln A for the 

Decomposition of IPA on WO~xW03 and NaxW03--

Sample ~/kJm01-1 ln A 

W03 52.0 14.0 

KO.OSW03 76.0 17.7 

KO.2W03 75.6 17. 1 

KO.3W03 71.3 15.7 

KO.6W03 37.8 8.0 

KO.8W03 35.0 7.3 

NaO.OSW03 61.3 14.7 

NaO.2w03 57.2 13.7 

NaO.3W03 49.1 12.0 

NaO•6W03 69.3 14.1 

NaO•8W03 65.6 12.7 

8.4 Conclusions 

The decomposition of IPA to propene and water (dehydration) or 

to acetone and hydrogen (dehydrogenation) is a common probe reaction 

that is used with catalysts that have acid and base functions. The 

decomposi'tion of IPA on W03 shows selectivity for both dehydration 

and dehydrogenation in the temperature range of 433 - 493K but above 

493K only propene was produced. These results suggest that in the 
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low temperature range both acidic (required for dehydration) and basic 

sites (for dehydrogenation) are present on the surface of W03, but 

above 493K only the acidic sites appeared to be active. Selectivity 

in IPA decomposition is known to be affected by the temperature at 

which the reaction is conducted, higher temperatures (typically above 

623K) favouring dehydration(ll). But total selectivity for propene 

formation on W03 at temperatures above 493K cannot be due to only this 

thermodynamic factor, since acetone formation has been observed on 

other catalysts in such temperature ranges. It is most probably 

caused by the elimination of the basic sites. According to Krylov(6} 

strong metal-oxygen bonds (M - O) gives strong acidity and in oxides 

that have weak M - 0 bonds the oxygen lone pair is basic. W03 is 

classified as an acidic oxide but there is a possibility of weak W - 0 

bonds present on the surface giving rise to basic sites. It is 

possible that at temperatures above 493K these weak W - 0 bonds are 

reduced by the secondary alcohol thus leaving only the acid sites. 

It may also be possible that at higher temperatures there is partial 

dehydration of the surface and a decrease in the coordination number 

of surface ions thus resulting in a strong M ~ 0 bond. 

The decomposition of IPA on the potassium tungsten bronzes 

produced both dehydration and dehydrogenation products showing the 

presence of both acidic and basic sites. In general, the selectivity 

for propene production decreases as the concentration of potassium 

ions in the bronze increases. This result could be expected since 

the total number of acid sites decrease as x in KxW03 increases. 

(see Chapter 3) or alternatively, the number of basic sites increase 

with increasing x. However, it would be interesting to consider 

whether the same type of reactive acidic sites are present in all of 

the potassium bronzes, since ammonia desorption has shown that for 
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bronzes with x ~ 0.3 at least two types of acidic site are present, as 

two or more maxima were observed. This could be done by comparing the 

turnover frequency for the dehydration reaction. Table 8.4 gives the 

rate Qf dehydration, the number of acid sites present and the turnover 

frequency for dehydration for W03 and the potassium tungsten bronzes. 

The rate and turnover frequency for the dehydration reaction on W03 are 

higher than those for the potassium bronzes with x ~ 0.2. It;s 

possible that on W03 the sites are more reactive than on the potassium 

bronzes probably because stronger acid sites are formed during the 

reaction for reasons previously explained but not observed during 

ammonia desorption studies. The turnover frequency for the dehydration 

reaction may be considered constant for potassium bronzes with 

Table 8.4 Turnover Numbers for Propene Production on 

~ and Kx~ at 553K 

Sample Rate of No. of acid Turnover No/ 
dehydration/ sites/molecules molecules 
nunolg-l(cat) NH3 desorbed per site 

h- l 9-1 s-l (cat) 

W03 15.09 6.98 x 1018 0.36 

KO.05W03 2.64 4.40 x 1018 0.10 

KO. 2W03 0.97 1.34 x 1018 0.12 

KO.3W03 0.69 5.28 x 1017 0.22 

KO.6W03 0.16 1.22 x 1017 0.22 

KO.8W03 0.04 3. 07 x 1016 0.22 

x = 0.05 and x = 0.2. ,Temperature programmed desorption of ammonia on 
, , : '; ~' • t 

these samples and on W03 shows only one peak maximum in the low temper-
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ature range thus indicating only one type of acid site is present. 

Turnover numbers for the dehydration reaction for bronzes with x ~ 0.3 

are greater despite the fact that the total number of acid sites has 

decreased. However, tpdof ammonia has shown that for these samples 

there are at least two different types of acid site present. One 

way to distinguish whether more than one type of acid site is present 

is to consider the activation energy values for the dehydration reaction. 

Many investigations(S) have reported that these values are lower on 

catalysts which have both Bronsted and Lewis acid sites than those with 

only Lewis acid sites. Table 8.5 gives the activation energy (Ea) 

values for the dehydration reaction for W03 and the potassium bronzes. 

It appears that Ea is lower for the bronzes with higher potassium 

content again possibly indicating that these bronzes contain two types 

of acid site, while W03 and the potassium bronzes with x ~ 0.2 contain 

only one type of acid site. On Bronsted acid sites it is believed 

that IPA is molecularly adsorbed by hydrogen bonding whereas on Lewis 

acid sites it is dissociatively adsorbed to form a surface alkoxide 

and an adsorbed proton. In general the sodium tungsten bronzes show 

greater selectivity for the dehydration reaction than the potassium 

bronzes and in fact when x ~ 0.2 total selectivity for propene form­

ation was observed. Temperature programmed desorption of ammonia of 

the sodium bronzes in most cases gave very broad peaks, possibly 

indicating acid sites of different strengths present. Table 8.6 gives 

the rate of dehydration, the number of acid sites present and the 

turnover number for the dehydration reaction on the sodium tungsten 

bronzes. Although the total number of acid sites present on the 

sodium bronzes are· smaller than those on the corresponding potassium 

bronzes,; th;e rate of dehydration and hence the turnover n,umb~r are 

greater, again indicating that the acid sites present on the sodium 
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Table 8.5 Activation Energy Values and 1n A for the 

Dehydration Reaction on W03 and KxW03-

Sample ~/kJm01-1 1 n A 

W03 121.3 29.1 

KO.OSW03 124.9 28.1 

KO.2W03 166.0 36.1 

KO.3W03 81.1 17.3 

KO.6W03 72.3 13.9 

KO.8W03 101.6 18.9 

Table 8.6 Turnover Numbers for Propene Production 

on Nax~ at S53K 

Sample Rate of No. of acid Turnover No./ 
dehydration/ sites/molecules mo1ecu1ys per 

1 -1 NH3 desorbed ~~lg (cat) site s-
g-l (cat) 

NaO. OSW03 3.95 1.36 x 1018 0.49 

NaO. 2W03 3.69 5.05 x 1017 1. 22 

NaO.3W03 3.46 3.20 x 1017 1.81 

NaO.6W03 0.35 3.87 x 1016 1. 51 
.-

NaO.8w03 0.17 2.80 x 1016 1.02 

bronzes are more reactive. The activation energy values for the 

dehydration reaction on the sodium bronzes, given in Table 8.7 are in 

the:, range of those obta i ned for the potas s-i um bronzes wi th x ~ 0.2 
! ' ' " I '" ' 

where more than one type or strength of acid site was clearly observed 

duri ng t p d of ammoni a. 
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A comparison between the relative activities of the different 

samples for the dehydration reaction can be obtained using the compen­

sation effect, where the logarithm of the pre-exponential factor is 

plotted against the activation energy. The compensation effect has 

Table 8.7 Activation Ener9~ Values and ln A for the 

Dehydration Reaction on the Sodium Bronzes 

Sample ~/kJm01-1 1 n A 

NaO.OSW03 61.3 14.7 

NaO.2W03 57.2 13.7 

NaO.3W03 85.5 19.8 

NaO.6W03 80.5 16.5 

NaO.8W03 73.6 14.2 

been interpreted and reviewed in several papers(12-14) although the root 

of this effect is still uncertain. In general, catalysts lying on the 

same line in such a plot show similar activities whereas catalysts 

lying to the left show higher activities and those to the right smaller 

activities. Figure 8.18 shows the compensation plot for the dehydra­

tion reaction on W03, KxW03 and NaxW03. It appears that W03 and 

NaxW03, where 0.05 ~ x ~ 0.3, show similar activities whereas the corres­

ponding potassium bronzes show slightly less activity. Of the bronzes 

with higher alkali ion content the sodium bronzes appear to be more 

active. 

A similar compensation plot (Figure 8.19) has also been drawn for 

the total rate of decomposition of IPA on W03, KxW03 and NaxW03 from 
\ \ I 

values of ln A and Ea given in Table 8.3. The potassium bronzes show 
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similar activities since they lie on the same line. W03 is the most 

active with the sodium bronzes with 0.05 ~ x ~ 0.3 showing slightly 

less activity. The least active samples appeared to be the sodium 

bronzes with high alkali ion content. For the sodium bronzes with 

0.05 ~ x ~ 0.3 where dehydration is the most important reaction, the 

activity is higher than the potassium bronzes since the acid sites are 

more reactive. However, the potassium bronzes with 0.6 ~ x ~ 0.8, 

although contain similar acid sites, show less activity for the de­

composition reaction probably because dehydrogenation is an important 

reaction. The sodium bronzes with 0.6 ~ x ~ 0.8 show lower activities 

than the potassium despite containing stronger acid. sites. However, 

on these samples acetone formation is also observed and hence the basic 

sites present are less reactive. In general, the rate of the dehydra-

tion reaction is greater on the sodium bronzes than the corresponding 

potassium bronzes, this has been explained by the presence of stronger 

acid sites. The activities of the samples for the dehydrogenation 

reaction appears to be higher on the potassium bronzes than the sodium 

bronzes,most probably due to the fact that the basic sites on the 

potassium tungsten bronzes are more active. 
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CHAPTER 9 

CATALYTIC ACTIVITY FOR PROPENE METATHESIS 

9.1 Introduction 

(a) Mechanisms and Reactions 

Alkene metathesis (disproportionation) is one of the most 

recently cata1ysed reactions of hydrocarbons to emerge. Discovered 

in 19S9(l,2) this novel reaction opened up a new and exciting field 

of hydrocarbon chemistry and provided commercial routes for the inter­

conversion of light alkenic hydrocarbons: the backbone of today's 

petrol chemical industry. The reaction is general for hydrocarbons 

containing C = C double bonds, its scope has broadened, and the 

original term "disproportionation", used in the initial publications(l), 

no longer app 1 i es . A more appropri ate name, "metathes i S", was 

introduced in 1967(3) and is now commonly used. The reaction can be 

thought of as a net breaking and re-formation of two carbon = carbon 

bonds, as shown in Scheme 1. 

R2 
I 

R3 
I 

R2 
I 

R3 
I 

R1 - C = C R4 Rl C C - R4 .. II II + + 
~ 

RS - C - C R8 RS C C - R8 
I I I I 
R6 R7 R6 R7 

Scheme 1 Generalised Metathesis Reaction 

Alkene metathesis reactions are believed to proceed through a 
,I ; ! '\ ~ . I 'I 

single-step meta110carbene scheme involving a metallocyclobutane 

intermediate, as shown in Scheme 2. Support for the validity of this 
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generally accepted mechanism has been provided by very detailed kinetic 

and mechanistic studies(4). 

I J I I I I 
-c = c- -C C - -C C-

-. -.. II II ~ ~ 

M - C- M C- M C-
I I I 

I I I I I 
-C C- -C C- -c - c-

II II --. --. 
~ ~ 

M C- M C- M == C-
I I I 

Scheme 2. Single-step Metallocarbene Mechanism 

However, for predicting primary products of metathesis applications, a 

simple four-center concerted mechanism (Scheme 3) is adequate and more 

direct. As depicted in both schemes, the types and total number of 

bonds remain unchanged. 

I r 
-c == c-

--. 
~ 

-C - C-
I I 

I 
-c 

-C 
I 

I 
C-

C­
I 

I 
-C 

II 
-c , 

Scheme 3. Four-Center Mechanism for predicting products 

I 
C-

II 
C­
I 

Metathesis reactions of acyclic monoa1kenes can be classified 

into (1) self-metathesis of a single alkene, and (2) cross-metathesis 

of double-bond isomers or of two different a1kenes. In the first 

case, two primary metathesis products are produced; e.g. propene yields 

ethene and but-2-ene. In the second case, sets of both self- and 
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cross-metathesis products are obtained; e.g. a pent-l-ene + pent-2-ene 

mixture yields ethene + oct-4-ene, propene + hept-3-ene, but-l-ene + 

hex-2-ene, and but-2-ene + hex-3-ene. When ethene is.one of the react-

ants (ethene cleavage), a-ethenes are produced; e.g. ethene cleavage of 

hex-3-enes yields but-l-ene. Cross-metath~sis of acyclic with cyclic 

alkenes yields dialkenes; ethene cleavage of cyclic alkenes provides a 

new route to a, w-alkenes as shown in Scheme 4. The metathesis of 

other types of alkenes and their mixtures, including dialkenes, ring­

substituted alkenes (e.g. styrene), and functionally substituted 

alkenes, produces products consistent with schemes 2 and 3. In theory, 

the number of olefin metathesis reactions is limited only by the number 

of compounds containing carbon-carbon double bonds. 

(b) Catalysts Systems 

Current industrial applications of alkene metathesis using heter­

ogeneous catalysts is high: 

Scheme 4. Synthesis of a, w-olefins 

Among the more effective metathesis catalysts are the oxides of moly­

bdenum, tungsten, and rhenium supported on high-surface-area alumina 

or silica(S-lO). Molybdenum oxide-alumina exhibits metathesis act­

ivity in the 373K - 473K temperature range. Tungsten oxide-silica is 

effectiv~ for metathesis in the 573K - 773K temperature range and is 

less susceptible to trace quantities of catalyst poisons in the feed 

stream than lower temperature alumina-based catalysts. Rhenium oxide-
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alumina compositions are active metathesis catalysts at ambient conditions 

making them ideal for fundamental studies. 

A typical example of the metathesis reaction is the conversion 

of propene into a mixture of ethene and cis- and trans- but-2-ene, which 

is catalysed by a variety of supported systems including those mentioned 

above. Catalytic reactions of propene have also been investigated 

over unsupported Na xw03(11) to see how the metal-insulator transition 

of the catalyst affects the selectivity towards dimerisation or meta-

thesis. It was found that dimerisation, producing mainly hexenes, was 

dominant over an insulating solid while metathesis, producing ethene and 

but-2-enes, was dominant over a conducting solid. 

9.2 Experimental Procedure 

The propene metathesis reaction was studied in the apparatus 

shown in Figure 9.1. It is composed of lines of gase~ that are puri-

fied and controlled before passing through the reactor, R. White spot 

nitrogen (BOC, 99.95% pure) was further purified by passing through a 

pre reduced 10% Cu/Si02 trap, CS, maintained at 673K, to remove oxygen 

and a SA molecular sieve trap, MS. Propene (Matheson, 99.98% pure) 

was used as delivered without any extra purification. N2 gas flow 

was controlled by a Hoke valve, HV, and measured by a rotameter, RT. 

A soap bubble flowmeter, BF, connected by a bypass system was used for 

checking the hydrocarbon flow controlled by a Hoke valve. A trap of 

silica gel, SG, was connected at the end of the flowmeter for the 

removal of water from the hydrocarbon stream. It was changed every 

24h. The Cu/Si02 trap in the apparatus was regenerated periodically 

by reduction in hydrogen for 2h at 673K. 

Quantitative analysis of the metathesis products at the outlet 
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CS 10/ SG 
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RT 
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Figure 9.1 Catalytic apparatus for propene metathesis 

SV 

R = Reactor 

CS = Cu/Si02 Catalyst (trap) 

RT = Rotameters 

BF = Soap bubble flowmeter 

SG = Silica gel trap 

T = Tap 

GC = Gas Chromatograph 

SV = Gas sampling valve 

P = Propene gas 

N2 = Nitrogen gas 

HV = Hoke valve 

MS = Molecular sieve trap 
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of the reactor was carried out by a gas chromatograph, GC, Perkin Elmer 

model 8500, with flame ionisation detector, and data acquisition and 

processing facilities. A column of 3% squalane on Alumina H, 100-200 

mesh, was used to separate the products. The effluent from the reactor 

was fed to the chromatograph through a gas sampling valve, SV. The 

analysis was carried out under the following conditions:-

Pressure at inlet of column = 130kPa 

Temperature of column = 353K 

N2 flow in column = 30cm3min- l 

Pressure of hydrogen = 70kPa 

Pressure of air = l40kPa 

The g.c. was calibrated by injecting a standard calibration gas mixture 

(Phase Separations Ltd.) containing defined amounts of the different 

components (i.e. reactant and products). The relative response 

coefficients were calculated by comparing the area of each peak with 

that of propene. Since the number of moles of each component is pro­

portional to the peak area, then in a mixture of gases containing the 

different component, the molar percentage, Cj of any of them can be 

calculated by the equation: 

where 

c. = 
J 

100 A. k. 
J J 

A. = peak area of component j 
J 

A. = peak area of each component in effluent , 
k = response coefficient 

The retention times and the response coefficients flo,r' the various: products 

measured at the conditions indicated previously are shown in Table 9.1. 
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A preliminary study has shown that the bronzes have little activity for 

propene reaction at temperatures below 673K. The temperature of 673K 

Table 9.1 

\ Product Retention time/ Response 
min. Coefficient 

Methane 1.82 2.89 

Ethane 2.64 1. 54 

Ethene 2.83 1. 54 

Propane 4.71 1.02 

Propene 5.90 1.00 

Butane 9.81 0.82 

Butene 14.56 0.82 

trans-2-butene 17.42 0.94 

cis-2-butene 21.31 0.88 

hexenes 29.51 0.54 

was therefore selected for activity measurements.Tpr and tga studies 

have shown that the bronzes are stable at this temperature in both N2 

and H2. Further tga experiments in a propene atmosphere have 

demonstrated that W03 and the bronzes showed no weight loss when heated 

in such an atmosphere up to a temperature of 723K. So it can be 

assumed that at 673K there ;s no bulk or surface reduction in the 

bronze in propene. Normally about 1.5g of the bronze was placed 

inside a fixed bed reactor fitted with a thermocouple and N2 gas flowed 

over it. The sample was then heated to 673K ± 5K at 10Kmin- l and the 

nitrogen flow replaced by propene, (10cm3min-1), and activity meas~re­

ments were commenced. Activity was measured every 30 min. because of 

the high retention time of hexene. 
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9.3 Results 

The catalytic reaction of propene on W03, KxW03 and Na xW03 has 

been studied under the conditions previously mentioned. The influence 

of the bronze composition on the reaction was investigated by comparing 

the changes in activity and selectivity of dimerisation and metathesis 

at 673K. It will be particularly interesting to see if the semi-

conductor-metal transition in the bronze affects the selectivity towards 

dimeri sation. 

The reaction of propene on W03 at 673K gave ethene, but-2-ene 

and hexene as the major products. Figure 9.2 shows how the concent­

ration and the selectivity of the products vary with time. There are 

insignificant changes in product concentration with tne reaction time. 

A similar effect was observed on both the potassium and sodium bronzes. 

Figures 9.3 and 9.4 are representative of the variation of product 

concentration with time for samples 0.2KW and 0.2NaW respectively. 

Future reference will be made only to the products obtained after the 

sample has been exposed to the reactant for 65 min. 

The major products obtained by the reaction of propene on W03 
and the potassium bronzes of 673K are given in Table 9.2. Both meta­

thesis and dimerisation coexist on these samples as products of both 
. -

these reactions were obtained. Negligible traces of other hydro-

carbons, (methane, ethane and propane) were also detected (i.e. < 0.1%). 

Methane and ethane are most probably formed by the cracking of propane 

impurity present in the propene feedstock. Nominal amounts of but-l­

ene and pentenes were also detected in most cases. These might have 

been the products of homogeneous reactions as a result of .molecular 

collisions of propene at the temperature of reaction because they were 

produced even in the absence of a sample. The main component of hexene 
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was 2-methyl-2-pentene. A similar pattern of products was obtained for 

the reaction of propene on the sodium bronzes, as shown in Table 9.3. 

Table 9.2 Major Products obtained over W03 and KxW03-

% component of total product 

! 

x in KxW03 C2H4 2-C4HS C6H12 

0 26.9 2S.7 44.4 

0.05 30.5 31.5 3S.0 --

0.2 45.9 44.5 9.6 

0.3 37.S 46.3 15.9 

0.6 41.4 37.9 20.7 

O.S 37.5 45.S 16.7 
I 

The rate of metathesis and dimerisation was calculated from the 

amount of propene converted either to metathesis products, (ethene and 

but-2-enes), or dimerisation products, (hexenes), from the fact that 

Table 9.3 Major Products obtained over Na xW03-

% component of total product 

x in NaxW03 C2H4 2-C4HS C6H12 

0.05 27.9 30.0 42.1 

0.2 42.9 44.4 12.7 

0.3 43.1 41.3 15.6 

0.6 41.0 35.9 23.1 

O.S 38.7 40.3 21.0 

2 moles of propene are required to produce either 1 mole of but-2-ene 
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and 1 mole of ethene, or 1 mole of hexenes by the routes shown below: 

The percent propene converted in the metathesis and dimerisation 

reactions are then given by equations 9.1 and 9.2 

% conversion (metathesis) A x 100 = ........... 
A + B + C3 

% conversion (dimerisation) B x 100 = ........... 
A + B + C3 

where A = 2C4 (C4 = cis and trans but-2-ene or ethene). 

B = 2C6 (C6 = hexenes) 

C3 = propene 

9.1 

9.2 

C. = No. of moles of compound ; calculated from the peak area , 
using the response coefficient for the FlO detector. 

-1 -1 ) The rate (mmo1,g (samp1e)h was then calculated using the percent 

conversion, and is given by equation 9.3 

-1 h-1 rate (mmo1 g (sample) ) = __ C __ x F x 60 min x 1 x 
100 W 

1 x 1000 
22414 

9.3 

where C = percent conversion for either metathesis or dimerisation 

F = flow rate of propene gas 

W = weight of sample used 

22414 cm3mo1-1 1 1 f t S T P = mo ar vo ume 0 gas a ... 

Tables 9.4 and 9.5 show the rates of metathesis and dimerisation for 

W0 3, KxW03 and Na xW03, where 0.05 ~ x ~ 0.8, respectively. It would 
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be more interesting to compare the rate per unit area of surface for 

each of the samples, since krypton adsorption has shown the surface 

area of the bronzes varies with alkali ion content. These values are 

also quoted in Tables 9.4 and 9.5 (Figures in brackets). Figures 9.5 

and 9.6 are reported plots of the rate of dimerisation and metathesis 

(mmo1 m- 2 h-1) against alkali ion content for the potassium and sodium 

Table 9.4 Rate of Oimerisation and Metathesis for W03-

and KxW03-

x in KxW03 Rate of
1
dimrrisation/ 

mmo1g- h-
Rate of1met~thesis/ 

mmo1g- h-

0 0.41 (0.37) 0.09 (0.08) 

0.05 0.22 (0.21) 0.19 (0.18) 

0.2 0.08 (0.10) 0.38 (0.49) 

0.3 0.04 (0.15) 0.12 (0.46) 

0.6 0.03 (0.19) 0.06 (0.38) 

0.8 0.01 (0.10) 0.03 (0.30) 

(Figures in brackets correspond to rates in mmo1 m- 2 h-1) 

Table 9.5 Rate of Oimerisation and Metathesis for NaxW03-

x in NaxW03 Rate of
1
dimrrisation/ 

111I1101g- h-
Rate of1met~thesis/ 
mmo1g- h-

0.05 O. 19 (0.20) 0.13 (0.14) 

0.2 0.10 (0.16) 0.35 (0.55) 

0.3 0.05 (0.12) 0.14 (0.33) 

0.6 0.03 (0.23) 0.05 (0.38) 

0.8 0.04 (0.31 ) 0.07 <.0.54 ) 
; : , . 

(Figures in brackets correspond to rates in mmo1 m- 2 h-1) 
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bronzes respectively. The selectivities for dimerisation and metathesis 

were also determined. The selectivities were defined by equations 9.4 

and 9.5. 

So 
rO 

= 
rO + r m 

................. 9.4 

r 
Sm = m 

rm + rO 
................. 9.5 

where So and Sm are the selectivities for dimerisation and metathesis 

respectively, and rO and rm are the rates for dimerisation and meta­

thesis respectively. Figures 9.7 and 9.8 show the selectivities for 

dimerisation and metathesis for the potassium and sodium bronzes 

respectively as a function of the alkali ion content. 

9.4 Conclusions 

Oimerisation of propene has been found to be dominant over W03 
and metathesis over Re03. W03 is a semiconductor oxide and Re03 is 

electrically metallic. In the present study it was intended to see 

whether the selectivity of the reaction changes with increase in alkali 

metal ion concentration in the sodium and potassium bronzes, AxW03, 

,where A = Na or K and 0.05 ~ x ~ 0.8, since it has been found that 

there is a change from semiconductor to metallic properties as x in­

creases in either series of bronze (see Chapter 7). The reaction of 

.propene over unsupported catalysts is characterised by small turnover 

numbers, oxygen vacancy dependencies and stereoselectivity of but-2-

enes(7,12). The sodium and potassium bronzes with x = 0.05 produce 

approximately equal amounts of metathesis and dimerisation products 

with a slightly higher selectivity toward dimerisation. These bronzes 
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have semiconductor properties and perhaps would have been expected to 

show a much higher selectivity for dimerisation. One of the possible 

explanations for the formation of metathesis products could be the 

high temperature used (673K) to enable a reliable activity measurement 

to be obtained. However, at such a temperature the reduction of the 

bronzes by propene was not appreciable since no weight loss was observed 

when the samples were heated in propene to 723K in tga experiments. 

It has been reported that reduction of oxides is very effective to 

enhance metathesis and to suppress dimerisation. However, for the 

present bronzes, activity measurements performed after exposing the 

bronzes to propene for over 65 min showed no significant change in 

product·distribution. For bronzes with x > 0.05, both metathesis and 

dimerisation products were observed and in no case was complete 

selectivity for either metathesis or dimerisation obtained. However, 

an increase in selectivity for metathesis was observed when x = 0.2 for 

both sodium and potassium bronzes, and in all other samples the select­

ivity for metathesis was much higher than with x = 0.05. The meta­

thesis activity was slightly enhanced with increase in x as seen from 

Tables 9.1 and 9.2. As can be seen, C6H12 is appreciable even when 

the metathesis reaction is expected to be solely active. On these 

samples small amounts of pentenes were also observed. They may be 

produced by co-dimerisation of the metathesis products assuming react­

ions such as 

C4 He + C2 H4 .. C6 H12 , 

C4 He + C4 He ~ C2 H4 + C6 Hl2 

The cis/trans ratio of but-2~ene is given as a function of x in Table 

9.6. As shown, the ratio appears to increase with x for either series 
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of bronze. This ratio has often been used as an indication of the 

stereoselectivity of the reaction, and for the characterisation of the 

reaction centre. For a rhenium/alumina catalyst Lin et al(5) found 

that the cis/trans ratio of but-2-ene becomes smaller as the anion 

vacancies increased. Davie et al(13) reported that cis- but-2-ene 

was sometimes produced more than the trans isomer initially from C3H6 

when a supported molybdenum hexacarbonyl catalyst was used. Basset 

et al(14) found that the cis/trans ratio of C4 Ha from cis-2-C5 H10 
is larger using a supported catalyst than using a homogeneous one. 

Katz and McGinnis(15) explained the stereoselectivity by the metal­

carbene model and Leconte and Basset(8) explained it in more detail 

by taking into account the various static interactions among sub-

stituents in the metallocyclobutane transition state. 

Table 9.6 Cis/trans Ratio of but-2-ene obtained for 

Sam~le Cis/trans ratio 

W03 1. 31 

O.05KW 1. 59 

O.2KW 1. 38 

O.3KW 1. 92 

O.6KW 2.23 

0.8KW 2.51 

0.05NaW 1.68 

O.2NaW 1.34 

O.3NaW 1.65 

O.6NaW 1.84 

O.8NaW 2.23 
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CHAPTER 10 

A SILICA-SUPPORTED BRONZE AND A COPPER BRONZE 

10.1 Introduction 

The tungsten bronzes have shown some interesting catalytic 

properties such as in the decomposition of isopropanol, the metathesis 

of propene and the electrochemical reduction of oxygen(l). A previous 

study by the author(2), has demonstrated that potassium tungsten 

bronzes can be prepared on an alumina support, and have shown activity 

for ammonia synthesis. It was therefore interesting to investigate 

if a potassium tungsten bronze in a highly dispersed state could also 

be prepared on a silica support, and its activity compared with that 

for the alumina-supported bronze (see Chapter 2). Bronzes prepared on 

an inert support would have more surface active sites and hence could be 

expected to be more active than the unsupported bronzes. 

Copper containing catalysts are widely used in the methanol 

synthesis and decomposition reactions and the water-gas-shift reaction. 

There is much uncertainty as to the precise oxidation state of Cu in 

these catalysts under reaction conditions(3), recent work however,(4) 

has suggested that Cu in a positive oxidation state is involved in the 

catalysis of these reactions. A copper containing bronze in which 

the Cu will be intercalated in a high oxidation state, even under 

reaction conditions, could be useful in determining the active sites 

in methanol synthesis and the water-gas-shift reactions. However, a 

Cu containing bronze is difficult to prepare by a thermal method due 

to thermodynamic limitations at the high temperature required to over­

come kinetics, hence the preparation of CUyKxW03 was attempted by an 

ion-exchange method. (See Chapter 2). The two approaches to producing 
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bronze catalysts of higher activity have therefore been attempted and 

and the results obtained are now described. 

10.1.1 Supported Catalysts 

A cata1ysed reaction usually occurs on certain specific active 

sites at the surface, and it is therefore normally desirable to provide 

as much surface area as possible. A widely-used procedure to achieve 

a high surface area is to distribute the active component over the 

surface of relatively-inert oxide particles of high porosity such as 

alumina, silica, titania and activated charcoal supports. The 

advantages of using supported catalysts in preference to unsupported 

ones (e.g. Pt sols or blacks) have long been appreciated. The supp­

ort facilitates the formation of extremely small metal particles 

having a high proportion of surface atoms; the particles also have 

remarkable thermal stability and the presence of the support allows the 

incorporation of beneficial additives usually known as promoters. 

Supports were long thought to be catalytically inert, except in the 

special case of bifunctional platinum and alumina catalysts for petrol­

eum reforming. Recently there has arisen evidence that in some systems 

at least the support can exert a marked influence over the properties 

of metal particles residing on it, in the form of strong metal support 

interaction. 

Previous studies(2) have shown that hexagonal potassium tung­

sten bronzes supported on alumina have shown some catalytic activity 

for the synthesis of ammonia from its molecular elements. In the 

present study an hexagonal potassium tungsten bronze supported on 

silica was prepared (see Chapter 2) and its catalytic activity for 
\ 

ammonia synthesis determined. Silica was chosen as the support to 
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investigate whether bronze formation is easier on its surface than on 

the surface of alumina, (and hence whether the support had a more 

positive role in defining catalytic activity). 

10.1.2 Copper Catalysts 

Copper is one of the most widely used base metals for catalytic 

reactions. Two of the most common reactions where copper catalysts 

are used are the water-gas-shift reaction and methanol synthesis. 

Recently there has been a renaissance of interest concerning copper 

catalysis of water-gas-shift, methanol synthesis and methanol decomp-

osition reactions and the role of promoters. However, there is much 

uncertainty as to the precise oxidation state of the active copper 

phase under reaction conditions(3) and the symmetry of the surface 

copper sites and how this is affected by precursor states(5,6). For 

methanol synthesis from CO (and its decomposition) Cu is more active 

when supported on ZnO than on titania(7);this is also true for the 

water-gas-shift reaction. Sermon et al(4) have recently shown that 

copper in Cu FexCr2_x04 spinels is as active as Cu/ZnO in the afore­

mentioned reactions under conditions where it would not have been 

reduced as significantly as Cu/ZnO. Maximum activity was shown in 

these spinels at intermediate composition when Cu in a positive oxida­

tion state may be close in adjacent octahedral and tetrahedral sites. 

It was assumed that Cu in a positive oxidation state can be involved in 

the catalysis of these reactions and catalysts where Cu (II) is highly 

dispersed in constraining lattices may be useful. 

In the present study a sample was prepared whereby K+ ions in 

a bronze were ion-exchanged with cupric ions from solution in order t~ 

insert cupric ions in the bronze. The sample was tested for its 

activity in methanol synthesis and the water-gas-shift reaction. N20 
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decomposition was attempted in order to evaluate the copper surface area. 

10.1.3 Catalysed Reactions 

Reactions which could be catalysed by the bronze phases des­

cribed above were used; in a sense such catalysed reactions were 

capable of probing the local chemistry prevailing at these non-stoich­

iometric surfaces in a manner not possible by other methods. In 

addition, one adsorptive-decomposition (N20) was also used. These 

are individually reviewed briefly now. 

(i) The Water-Gas-Shift Reaction 

The water gas shift (WGS) reaction is a reversible, exothermic 

chemical reaction of considerable industrial importance and is the 

reaction of water and carbon monoxide to produce carbon dioxide and 

hydrogen:-

-::+ -1 CO + H2 ~ CO2 + H2 ~H298K = -40.6kJmo1 . . . . . • . . . . .. 10. 1 

The WGS process is most frequently used in conjunction with the prod­

uction of hydrogen via the steam reforming of hydrocarbons:-

CnHm + nH20 .... nCO + (n+ m/2) H2 · ........... 10.2 

CO + H2O 4 ~ CO2 + H2 · ........... 10.3 

CO + 3H2 • • CH4 + H2O · ........... 10.4 

Reaction (10.2), under steam-reforming conditions is cons i dered . 

irreversible and essentially complete. Normally reactions (10.3) and 

(10.4) at the exit of the steam-reforming reaction are nearly at equil­

ibrium. The high temperature in the reformer favours H2 production by 

shifting the equilibrium of reaction (10.4) far to the left. The 
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effluent from the steam reformer is then passed to a series of WGS 

reactors operated at lower temperatures in order to shift the equil­

ibrium of reaction (10.3) to the right. Many materials are capable 

of catalysing the WGS reaction. Moe(S) gives a good discussion of 

potential shift catalyst systems. Two classes of materials are 

almost exclusively used in industry as shift catalysts: the iron-based cata­

lysts and the copper based catalysts. The iron-based catalysts are 

the so-called high-temperature shift catalysts, operating from about 

593K - 723K(9). These materials are an example of some of the 

earliest heterogeneous catalysts used industrially. Copper-base shift 

catalysts are a more recent development which has now gained wide 

industrial acceptance. These are the so-called low-temperature shift 

catalysts operating from about.473K - 523K. These catalysts show 

good activity at low temperatures and are therefore attractive since 

equilibrium is more favourable at lower temperatures(lO). Although 

many mecha~istic studies of the water-gas-shift reaction on iron-

based catalysts have been made, there is still considerable dispute 

in this area. This concerns whether the correct mechanism is the 

oxidation-reduction mechanism proposed by Temkin et al(11,12) or the 

mechanism employing stoichiometric numbers proposed by Oki et al(13-l6) 

A review by Newsome(17) covers both possible mechanisms in detail and 

concludes that the mechanisms suggested by Oki and associates(13-l6) 

are theoretically possible while that proposed by Temkin et al{11,12) 

is not plausible for the shift reaction over iron-based catalysts. 

Since low-temperature shift catalysts, are relatively new, the mechan­

ism of the shift reaction on these copper-based catalysts have not 

been stu~ied nearly as extensively as with the high-temperature iron­

based catalyst systems. Yur'eva et al{lS) offered the fot~owing 

mechanism, where the reaction takes place through an active complex on 

the surface, including both CO and H20, and where the third step is the 
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rate-determing step: 

co COads 

COads + H20ads ~ CO2 + H2 
ads ads 

CO 2gas 

H 2gas 

In the present study the CUyKxW03 system was studied for its activity 

in the water-gas-shift reaction. 

(ii) Methanol Synthesis 

Methanol synthesis is a process of major industrial importance 

consisting of hydrogenation of carbon monoxide or of carbon dioxide 

according to the equations; 

and 

-1 
~H600K= -lOO.46kJmol 

Methanol synthesis from carbon monoxide formally consists of an attach­

ment of three hydrogen atoms onto the carbon end and of one hydrogen 

atom onto the oxygen end of the CO molecule without the cleavage of 

the carbon-oxygen bond. The two bonding rr-orbitals of carbon mono-

* oxide, the lone pair (5a ) orbital of carbon, and the a orbitals of 

two hydrogen molecules are utilised to make three C-H sigma bonds, 

one O-H sigma bond, and one additional lone pair orbital on the oxygen 

atom, schematically; 

H H - H 

I Ie -- 01 
H 

H 

H-'t-a-H 
/ 

H 
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The carbon-oxygen sigma (30) and the lone-pair oxygen (40) orbitals 

remains intact except for a change in electron repulsion. These 

features of the reaction impose the following requirements on the 

catalyst: 

(a) The catalyst must not cleave the carbon-oxygen sigma bond. 

(b) The catalyst must activate the carbon monoxide molecule so 

that hydrogenation can occur on both ends of the molecule. 

(c) The catalyst must be a fairly good hydrogenation catalyst which 

activates hydrogen molecules in a manner suitable for the 

above reaction. 

Good "metallic" catalysts for methanol synthesis have been known for a 

long time(19,20). They are based on copper and combinations of various 

oxides, (e.g. ZnO, A1 203 and ;Cr203). A recently studied catalyst is 

the copper-thoria, (CU/Th02)(21), system which shows good selectivity 

for methanol but not as high as that of the. Cu/ZnO catalyst. Among 

the transition metals various forms of Pd, Pt, Ir and Rh have been 

reported active in methanol synthesis(22-24). In the present study 

the CUyK
X

W03 sample was studied for its activity in methanol synthesis, 

because of the ability of the constraining host lattice to keep the 

copper in a high oxidation state. 

(iii) Ammonla Synthesis 

The fixation of atmospheric nitrogen in the form of ammonia is 

one of the foundations of the modern chemi~a1 industry. From 1820 to 

1900 many futile attempts were made to use platinum and various other 

substances to catalyse the exothermic synthesis reaction; 

At the beginning of this century a promoted iron catalyst with the 
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addition or substitution of other promoters was eventually developed 

and is still the catalyst universally used today. 

Several "new" ammonia synthesis catalysts have been claimed, 

reported and patented. The addition of cobalt and ruthenium to the 

currently used iron catalyst has attracted considerable attention. 

The use of carbon- and alumina- supported ruthenium catalysts has also 

been extensively studied(25-27). Ruthenium supported on silica gel or 

alumina shows catalytic behaviour for the ammonia synthesis reaction 

similar to that exhibited by ruthenium-carbon catalysts(28). Recent 

studies indicate a very good possibility of producing a new catalyst 

that would have perhaps twice the activity of today's commercial cata­

lyst(29). A number of metallic catalysts have been examined for their 

activity in amonia synthesis. In a review by r"'ittasch(30), the 

relative efficiencies of pure metals as catalysts for ammonia synthesis 

under lOMPa at 823K were given long ago, these are shown in Figure 10.1 

as a plot of percent ammonia in the exit gas against the parameter, 

(-6H~), for the heat of chemisorption. It is obvious that osmium and 

iron are the most effective metals under these conditions. 

Os F~ z.o r" -...: 
!.. 1.5 

"" :x: Ru z 1.0 • Mn 

~, ;0 
• 

0.5 
W\ 

0 • 
zoo 400 600 800 

-6H: (k](moC metal atom.- I ) 

Figure 10.1 The ammonia synt~es;s capacities of metals 

as a function of the heat of chemisorption 

of nitrogen. 
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Although tungsten shows a low catalytic activity as a result of its 

high strength of nitrogen chemisorption, this could be enhanced by the 

presence of potassium and controlled by raising the tungsten to a 

higher oxidation state. Recently Ozaki(25) has developed a catalyst 

system promoted by metallic potassium. In the present study a silica 

supported potassium tungsten bronze was studied for its activity in 

ammonia. synthesis (in the light of the author's earlier results, see 

Appendix 1), with specific comparison with activities of a1umina­

supported potassium tungsten bronzes prepared previously(2). 

(iv) ~20 Decomposition 

Traditionally, metal surface areas have been determined by 

chemisorption of a suitable adsorbate. Both carbon monoxide and hydro­

gen have been used to measure copper surface areas although neither 

adsorbate is thought to provide accurate results(31). The reaction 

of nitrous oxide has been used to measure metal surface areas for both 

pure and supported copper catalysts(32-35). The methods are based on 

the decomposition of a nitrous oxide molecule on a copper surface which 

is accompanied by the liberation of one nitrogen molecule according to:-

10.5 

where the subscript s signifies surface atoms. Previous investigations 

have differed in the experimental methods and reaction conditions used 

to measure the extent of reaction (10). Osinga et al(33) adopted the 

method of Dell et al(32) in which nitrogen formed by reaction (10.5) 

was determined by freezing out the excess of N20 and measuring the 

residual nitrogen pressure in a conventional volumetric adsorption 

apparatus. Scholten(34) used both microcatharometric and mass spectro­

scopic methods to determine the gas composition in a vacuum apparatus 

in which reaction gases were recycled. In the present study the 
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copper surface area in CUyKxW03 was determined using a volumetric 

adsorption apparatus,and a Cu/O atomic adsorption stoichiometry of 

2:1 was assumed. It was judged" that the 'equiva1ent' copper surface 

area would contain 1.4 x 1019 Cu atoms per m2. 

10.2 Experimental Procedures 

10.2.1 Physical Characterisation of Si02 Supported Bronze 

and CU:y~xW03-

The different physical methods of characterising catalysts 

described in the previous chapters were used to study the Si02 
supported sample and the ion exchange sample. Tpr (see Chapter 4) 

was used to investigate the reduction of the potassium poly tungstate 

on Si02, to determine the temperature at which a bronze is formed and 

give information on the nature of the bronze; tpr was also used to 

investigate the reducibility of Cu K W03 and whether copper has any y x 

effect on the reduction temperature of the bronze. The structures 

of the two bronzes were analysed by XRD, (see Chapter 5). Xps, (see 

Chapter 6), revealed their compositions and whether there was any 

surface enrichment. 

10.2.2 Water-Gas-Shift Reaction 

Rates of conversion in the water-gas-shift reaction, 

were measured in a silica reactor with samples (0.59) of CUyKxW03 which 

were first reduced in 6% H2 in N2 (40cm3min-1, 101kPa) during heating 

at 4K min-1 from ambient to 623K, at which temperature the sample was 

held for 15 min. The sample was then cooled in a flowing N2 stream 

t40cm3min-1, 101kPa) to the reaction temperature 523K ± 2K which was 

achieved in an electric furnace (VB35; Stanton Redcroft; controlled by 
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Eurotherm 810 : Thermal Designs Ltd.). After flushing at this temper­

ature 2.5% CO/N2 (lOlkPa) was introduced at a constant flow rate 

(20cm3min- l ) after it had been saturated with water vapour (2.4kPa; 

293K) t~rough the catalyst at 523K and the product stream was analysed 

at 5 min intervals on a gas chromatograph (Perkin Elmer Sigma 4; TCD 

detector; poropak Q column at 303K). The g.c. was calibrated by 

injecting a fixed volume of H2 and the method to calculate conversions 

is the same as described previously for other g.c. techniques (e.g. 

see isopropanol decomposition, Chapter 8). 

10.2.3 Methanol Synthesis 

The activity and selectivity of sample CUyKxW03 in the synthesis 

of methanol from carbon monoxide and hydrogen was studied at moderate 

pressure in an experimental rig constructed of stainless steel. The 

sample (0.5g) was packed in the reactor and reduced in a mixture of 

6% H2 in N2 (BOC 99.99% pure, 40cm3min- l ) as the temperature of the 

sample bed was raised at 5Kmin- l from 293K to 623K, at which upper 

temperatures it was held for 5-10 min before cooling to room temperature. 

Synthesis gas of 33% C0/67% H2 (BOC 99.99% pure) was then introduced 

(180cm3min- l ) through the sample and the pressure in the reactor was 

increased to 1.723MPa. The sample wa~ then heated at <lOKmin- l to 

573K and the isothermal reaction rate measurements commenced. Samples 

of the gaseous products were analysed by gas chromatography (Perkin 

Elmer 8410 with an FlO detector and a column: 5% Carbowax on chromo-

sorb WA WH MDS) at 443K. The concentrations of methane and methanol 

as the major products were monitored as a function of time until the 

reaction reached a steady-state. 

was then used in calculation •. 

This steady-state rate of reaction 

, : 

Blank measurements were also carried out with an empty reactor contain­

ing a bed of alumina under identical conditions: this showed no 
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significant activity in CO hydrogenation when used in place of the 

sample and so it was judged that the following equilibria(36) could 

CO - CO 

Fe(steel) .... ~t---. Fe(CO)5 Fe(sample) 

303K 573K 

LogK = -0.3 10gK = +14.2 

not have transferred atomically-dispersed Fe to the sample in significant 

quantities. Thus, there was thought to be no need to protect the 

sample with a replaceable guard-column of alumina held at 573K to 

collect any traces of Fe and prevent these reaching the downstream 

sample. 

10.2.4 Ammonia Synthesis 

The activity of the silica supported sample in cata1ysing the 

synthesis of ammonia was measured using a silica flow reactor at 101kPa 

with the sample held in a furnace (Stanton Redcroft C1/Pt13/CL) to 

within ± 5K of the set temperature. The product stream passed through 

20cm3 of de-ionised water (obtained by passing distilled water through 

a Duo1ite ion-exchange column) whose conductivity could be monitored 

continuously (Fissons PTl-18). The sample (0.5g) was flushed with Ar 

(99.9% purity; BOC) for 15 min and the H2 (99.95% purity; BOC) at 

ambient temperature and also as the sample temperature was raised to 

773K at 10K per min and then held for 2h. Subsequently, the hydro­

gen was replaced by flowing argon and the sample cooled to ambient 

temperat~re. During the pretreatment the conductivity detector gave 

a constant reading. The reactant stream of 75% hydrogen in nitrogen 

(99.9% purity; BOC; prepurified by oxygen and water vapour removal) 

was introduced at 40cm3min- 1. The sample temperature was then increased 
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to various temperatures and conductivity vs. time measurements were 

taken under isothermal conditions. The error in the assessment of 

the quantity of ammonia formed was ±3nmol. 

10.2.5 ~20 Decomposition 

N20 decomposition(37) was used to determine the equivalent 

Cu surface area in CUyKxW03, in a volumetric apparatus with a Bell and 

Howell transducer (BHL-270). The sample (1.0g) was reduced in-situ 

at 623K in 6% H2 in N2 (40cm3min-1) and then cooled to 473K at which 

temperature it was evacuated. After cooling at ambient temperature 

N20 was admitted at 5.3kPa and after 30 min unreacted N20 was 

removed from the gas phase at 78K and the residual pressure of N2 was 

determined. It was assumed that there were 1.41 x 1019 Cu atoms per 

m2 (i.e. that each Cu atom occupies 0.071nm2) and that the Cu/O atomic 

adsorption stoichiometry was 2:1. 

10.3 Results 

10.3.1 Si02 Supported Sample 

10.3.1.1 Tpr 

The reducibility of the supported potassium poly tungstate formed 

by impregnating the Si02 support with a solution of potassium tungstate 

at pH 4 was studied by tpr. Figure 10.2 shows the relevant tpr pro­

file which shows at least two overlapping consumption peaks in the 

temperature range 673K to l273K. The first process starts at 673K 

with a maximum at about 773K, the hydrogen consumed in this process is 

0.146mmo1g-1 sample. The second process occurs in the temperature 

range 873 - 1273K with twin maxima at 1033K and ll13K. The total H2 

consumed in the i second prbcess is 1.82 lTITlo1g-1 sample. It" appears 

that the first process corresponds to the reduction of the poly tungstate 
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to a tungsten bronze according to the equation:-

This process requires a H2 consumption of 0.177mmolg- l sample, (for a 

loading of 30% w/w tungsten metal), which agrees well with the observed 

value. The temperature range at which the second process occurs, 

corresponds to the temperature of reduction of the unsupported bronze, 

0.3KW, to K2W04 and W, (i.e. 850 - 1273K; Tmax at 1143K; H2 consumption 

11.79mmolg-l sample; see Fig. 10.2 and Chapter 4. However, for the 

supported bronze this process shows two maxima unlike the unsupported 

bronze. Most probably there is a highly dispersed bronze present 

which reduces more easily and the second maximum could then correspond 

to reduction of larger supported crystallites. On this basis, if a 

bronze is to be formed from the supported poly tungstate, a reduction 

temperature ~ 873K must be used. In the present study a temperature 

of 773K was selected for the reduction of the S;02 supported poly­

tungstate in 6% H2/94% N2, (40cm3min-', 2h). 

10.3.1.2 Xrd 

The bronze formed by the reduction of the Si02 supported poly­

tungstate at 773K for 2h in 6% H2/94% N2 (40cm3min- l ) was analysed by 

xrd. The diffraction lines due to the Si02 support were first 

eliminated before determining the structure of the bronze. The d values 

calculated from the diffractogram due to the bronze are given in Table 

10.1. These values correspond well to a bronze with an hexagonal 

structure having cell parameters ao = 0.734nm and Co = 0.752nm, and 

with x having a value of 0.33. The xrd study clearly indicates that 

a bronze has been formed by the reduction of the Si02-supported poly­

tungstate. 
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Table 10.1 

X-ray Diffraction of Silica Supported 

Bronze 

9 d/nm hk1 

6.90 0.641 100 

11.85 0.375 002 

13.95 0.319 102 

14.15 0.315 200 

17.05 0.263 112 

18.45 0.243 202 

19.95 0.226 211 

20.25 0.222 300 

21.90 0.206 113 

24.40 0.186 004 

24.65 0.184 302 

25.10 0.182 220 

27.65 0.166 222 

28.40 0.162 204 

28.75 0.160 312 

10.3.1.3 ~ 

Xps analysis was carried out on both the unreduced silica 

supported sample and the reduced sample (see sub-section 10.3.1.1). 

For the case of tungsten the spectrum of the 4f electrons was studied 

in both samples. The measured binding energy for the 4f7/2 line of 

the unreduced supported sample (36.2eV) is close to the value obtain­

ed for W03 (36.0ev) indicating that tungsten is largely p~es~nt in the 

+6 oxidation state. The 4f7/2 line for the reduced supported sample 
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occurred at 35.6eV similar to the values obtained for the unsupported 

potassium and sodium tungsten bronzes (see Chapter 6). This decrease 

in binding energy suggests a decrease in the oxidation state of tung­

sten from +6 to about +5 after reduction of the supported sample. 

The xps study also points to the formation of a bronze and little 

interaction between the tungsten species and Si02 since the binding 

energy of the W4f electrons of the supported and unsupported bronze 

agrees well. 

10.3.1.4 Activity of the Supported Bronze for Ammonia Synthesis 

The catalytic measurements for ammonia formation were carried 

out on the supported bronze. The rate and extent of ammonia prod­

uction during each catalytic run was estimated from the change in 

aqueous conductivity in the detector cell using the calibration curve 

shown in Figure 10-3. The activity measurement was carried out for 

at least three different temperatures, 520K, 570K and 620K. At each 

different temperature the amount of ammonia formed was measured as a 

function of time and the rate of ammonia formation was estimated from 

the total amount of ammonia produced over a period of 35 min. Table 

10.2 shows the rate of ammonia formation at the three different temper-

atures. 

Table 10.2 

Rate of Ammonia Formation 

Temp. /K Rate/nmo1g- lmin- l 

520 2.32 x 10-3 

570 9.14 x_~O -3 

: 
17.70 x 10-3 , 620 : 
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The rates given in Table 10.2 were used to estimate the activation 

energy for the synthesis process. The Arrhenius plot is shown in 

Figure 10.4 and the calculated activation energy is 53.2kJmol- l . 

The rate of ammonia formation for the Si02 supported bronze is 

much smaller than those observed on the A1 203 supported bronzes(2), 

but it must be noted that a much higher tungsten 10ading,(30%), was 

used. Indeed, it was observed that for the A1 203 supported bronzes(2), 

the rate of ammonia synthesis decreases when the metal loading exceeds 

5%. The bronze formed on the A1 203 support containing 10% tungsten 

metal has an activity for ammonia synthesis of 0.69nmo1g-1min-1 at 

773K compared to that of the present Si02 supported bronze which has an 

activity of 17.7 x 10-3nmo1g- 1min-1 at 620K. The activation energy 

value, (Ea), is also higher than those observed on the A1 203 -

supported bronzes (14-20kJmo1-1). 

Either the sites on the Si02-supported bronze are not as active 

as those on the A1 203 supported bronzes or there are far fewer of them. 

Since the activity of the silica-supported bronze in this reaction was 

so low no further consideration was given to other loadings. 

10.3.2 CUy.Kx~3-

10.3.2.1 Tpr 

The tpr profile of sample CUyKxW03 is shown in Figure 10.5 and 

is similar to that obtained for sample 0.2KW (see Chapter 4). Reduction 

occurred in one step in the temperature range 845K - 1320K with a total 

hydrogen consumption (11.70mmolg-1 sample), which is in good agreement 

with that. obtained for the reducti.on of 0.2~W (11.79mmolg- l sample) . . 
No peak was observed for the reduction of the copper species present, 
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however, this may be due to the sensitivity of the equipment and the 

relatively low copper content present. The profile also indicates that 

the copper species has no effect on the reduction of the bronze. 

10.3.2.2 Xrd 

The copper sample obtained by ion-exchange of KO.2W03 with 

CuC1 2 was characterised by xrd. The d values calculated from the 

diffractogram of the sample are given in Table 10.3. These d values 

differ slightly from those obtained for KO•2W03 (see Table 5.3, 

Chapter 5). There were a few "new" peaks observed that do not corres-

pond to any copper salt either in the +1 or +2 oxidation state. It 

is most probable that a homogeneous compound in which copper ions have 

been inserted in the potassium bronze has been formed with the removal 

of some potassium ions. 

10.3.2.3 ~ 

The ion-exchange sample, CUyK
X

W03, was studied by xps. The 

binding energies calculated from the spectra for the peaks due to the 

various elements are given in Table 10.4. In the case of tungsten 

the 4f electrons were studied, and for copper the binding energy of 

the 2p peaks was used. The measured binding energy for the W4f7/
2 

line was found to be 35.3eV, which is slightly different to that found 

for KO. 2W03, (35.geV, see Chapter 6), i~dicating no change in the 

oxidation state of tungsten (about +5), and possibly due to interaction 

with copper ions. The spectrum for the Cu2p peaks is shown in Figure 

10.6. There is a slight indication of the presence of satellite peaks 

suggesting that copper could be present in the +2 oxidation state. A 

quantitative estimation of the relative ratio of tungsten to potassium, 

and tungsten to copper in the bronze was attempted. This was done by 
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Table 10.3 

.;.;.X -.....;,.r...;;:,aYt-..;;.D.....;,.if.....;,.f.....;,.ra;;,.;:c....:..t '..:...;:' o;,.;,;.n....,;o:...:.,f_C:,::U:y Kx_WO 3-

9 Sine d/nm 

6.945 0.121 0.637 

11 .900 0.206 0.373 

12.060 0.209 0.368 

13.035 0.226 0.341 

13.465 0.233 0.331 

13.950 0.241 0.319 

17.035 0.293 0.263 

18.455 0.317 0.243 

19.565 0.335 0.230 

20.209 0.345 0.223 

24.300 0.412 0.187 

24.655 0.417 0.185 

27.745 0.466 0.165 

28.495 0.477 0.161 

28.815 0.482 0.160 



Element Signal 

C1s 

01s 

W4fS/ 2 

W4f7/ 2 

W4d3/
2 

W4d7/ 
2 

K2P1/
2 

K2P3/ 
2 

CU2P1/
2 

Cu2P3/
2 
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Table 10.4 

X-ray Photoelectron Spectroscopy 

CU:y~xW03-

Observed Corrected 
Binding Binding 
Energy eV Energy eV 

292.5 284.6 

536.1 528.2 

4S.7 37.8 

43.2 35.3 

267.7 259.8 

255.2 247.3 

302.2 294.3 

299.1 291.2 

960.8 952.9 

940.5 932.6 

Observed 
Shift 

eV 

9.80 

4.65 

4.30 

1.20 

0.70 

4.70 

4.80 

5.10 

5.40 
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comparing the peaks areas of the W4d and K2p and Cu2p peaks by the 

method described in Chapter 6. The relative peak intensities, the 

sensitivity factors used, and the calculated ratios are given in Table 

10.5. Xps studies on KO.2W03 (see Chapter 6) have shown a K : W ratio 

of 0.238 : 1 whereas on the ion-exchange sample this ratio has 

decreased to 0.130 : 1, indicating that about 45% of the potassium ions 

Element 

K2p 

Cu2p 

W4d 

Sensitivity 
Factor 

1.468 

3.043 

6.370 

Table 10.5 

Peak 
Area 

21.6 

21.36 

720.0 

Peak Area Relative 
~.F'. Ratio 

14.71 0.130 

7.02 0.062 

113.03 1.000 

has been removed by the ion-exchange process. A study by atomic 

adsorption (see Chapter 2) of the aliquot obtained after the ion-exchange 

process has also shown the removal of about 45% of the potassium ions 

present. The bronze obtained by ion-exchange of KO.2W0 3 with CuC1 2 

most probably has an empirical formula of (CuO.062KO.130W03)n. 

10.3.2.4 ~20 Decomposition 

The copper surface area present in the ion-exchange sample, 

The residual N2 

pressure, after exposing the sample to N20 at a certain pressure and 

removing the unreacted N20, was used to estimate the copper surface 

area using the gas law PV E = nRT, where VE is the equilibrium volume. 

For each mole of N2 in the gas phase there must be an equivalent number 

of moles of oxygen atoms which have chemisorbed on the copper surfaces. 

It was assumed that there were 1.41 x 1019 Cu atoms per m2, (i .e. that 

each Cu at~m ~'ccupies 0.071nm2) and that It~e' Cu/O atomic adsorption 
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Figure 10.7 Selectivity (methanol to methane formation)of CUyKxWOJ versus time 
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stoichiometry was 2 : 1. The calculation for the Cu surface area is 

given in Appendix 4. The total number of surface copper atoms per gram 

of sample was found to be 5.36 x 1018 , giving a percentage copper dis­

persion of 3.4%, if the empirical formula of the compound ;s taken as 

CUO.062KO.13W03. This indicates that most of the Cu atoms must have 

entered the lattice of the bronze to form a homogeneous compound and 

are not available for surface reaction. The copper surface area 

calculated from this dispersion ;s 0.38m2g- 1 sample. 

10.3.2.5 Methanol Synthesis and the Water-Gas-Shift Reaction 

The catalytic measurements in the synthesis of methanol from 

carbon monoxide and hydrogen was studied on the ior.-exchanged sample 

CUyKXW03. The activity measurements were carried out at three temper­

atures; 573K, 593K and 613K. The production of both methanol and 

methane was observed on the sample at these three temperatures. 

Figure 10.7 shows a plot of the selectivity, (the ratio.of methanol to 

methane formation), of CUyKxW03 towards methanol and methane product­

ion against time. At all three temperatures the sample has a higher 

selectivity for methane than methanol, with methane formation being 

slightly more favoured at the highest temperature (6l3K). However, 

the selectivity for methanol at each temperature tends to increase with 

time, due to a d~op in activity for methane formation, and an increase 

in activity for methanol synthesis. Figure 10.8 illustrates the rate 

of methanol synthesis with time, at the three reaction temperatures. 

Clearly the rate of methanol production increases with increasing temp­

erature and a steady-state value is reached after about 60 mins. Table 

10.6 gives the steady-state activity and selectivity for methanol syn­

thesis of sample CUyKxW03 together with the turnover numbers calculated 

assuming a copper surface area of 0.38m2g-1 sample as determined by N20 
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Table 10.6 

Temp/K Rate of ~~eOH CH 3OH/CH4 Turnover number/ 
Synthesis/nmol Molecules per 

m- 2s-1 site s-l 

573 0.61 0.17 26.2 x 10 -6 

593 1.84 0.33 78.6 x 10-6 

613 2.90 0.13 123.6 x 10-6 

decomposition (see sUb-section 10.3.2.4). The turnover number is much 

lower than those observed on a Cu/ZnO cata1yst(4) but is of the same 

magnitude as that observed for a Cu/Ti02 (Rutile) catalyst. The 

selectivity for methanol formation is lower than for both the Cu/ZnO 

and Cu/Ti02 catalysts. The rate of methanol formation on the copper 

bronze is lower than that observed for copper spinels where copper is 

also present in a high oxidation state(4). Most probably indicating 

that the copper species in the bronze are not as active as those in the 

spinels. There is much uncertainty concerning the mechanism of 

methanol synthesis as to whether; 

(i) the methanol synthesis reaction is via a formate intermediate 

(from CO and 0 and OH) or successive addition of H to CO. 

(ii) CO or CO2 is the main reactant in methanol synthesis using 

CO/C02/H2 reaction mixtures. 

(iii) the reactions occur on Cu and/or ZnO in the Cu/ZnO catalyst. 

It appears that Cu in a high oxidation state could be the active site 

for methanol formation(4) t but further evidence would be required to 

determine the actual sites responsible for:.me~hanol synthesis in the 

bronze. 
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Although the copper bronze shows some activity for methanol 

synthesis, no activity was observed in the water-gas-shift reaction up 

to a temperature of 723K. 
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CHAPTER 11 

CONCLUSIONS 

The structure and catalytic aspects of a series of potassium 

tungsten bronzes and a series of sodium tungsten bronzes have been 

considered. They were prepared by a thermal method using tungsten 

as the reducing agent according to the following equation: 

where M = K or Na. 

1173K 
----1.~ 6MxW03 Ar 

The alkali ion content in the bronzes ranged from O.S% to 11.9%. The 

surface area of the bronzes was determined by krypton adsorption and 

ranged from 0.13 to 1.OSm2g-1. For both series of bronzes the surface 

area tended to decrease with increasing alkali ion concentration 

probably due to sintering since they were prepared at high temperature. 

The melting point of the bronzes decreases with increasing alkali metal 

ion content, W03 = 1746K and KO.3W03 = 1237K. It would appear that 

the growth of crystalline particles probably by surface diffusion 

involving migration of atoms across the particles surface is influenced 

by the melting point of the bronzes and hence the observed drop in 

surface area with increasing alkali metal ion content. 

X-ray diffraction measurements have given qualitative inform­

ation on the crystalline nature of the bronze samples. The potassium 

bronze, O.OSKW is an intergrowth tungsten bronze, ITB, being an inter­

growth of hexagonal tungsten bronze, HTB, and W03. Potassium bronzes 

with x = 0.2 and 0.3 are of hexagonal types, whereas 0.6KW is a tetra­

gonal tungsten bronze, TTB. The pattern obtained for 0.8KW was too 



- 180 -

complex to fully interpret. The sodium bronzes with low alkali ion 

content, 0.05 ~ x ~ 0.3, are tetragonal bronzes. The patterns obtained 

for the sodium bronzes with x = 0.6 and 0.8 were relatively uncomp­

licated and proved to be cubic. The bronze samples were regarded as 

being homogeneous. The X-ray photoelectron spectra of the samples has 

shown tungsten to be in an oxidation state of about +5. Quantitative 

examination of the spectra showed that the surface of the samples was 

essentially a termination of the bulk structure with no pronounced 

segregation or depletion of potassium or sodium. 

The thermal stability of the potassium and sodium tungsten 

bronzes was studied by their reduction in hydrogen gas and their oxid­

ation in a diluted oxygen gas stream. The bronzes are stable in hydro­

gen up to a temperature of about BOOK below which neither weight loss 

nor hydrogen consumption was observed. The weight loss obtained by 

heating the samples in H2 to 1173K indicated that the tungstate and W 

metal were formed. Reduction in most cases was a single endothermic 

process. The tpr profiles of the bronze samples have also shown that 

in most cases reduction occurred in one step. From the H2 consumed 

in the tpr process, the tungstate and W metal were the final products 

of reduction as also observed by tga experiments. Oxidation of the 

bronze samples occurred in most cases in overlapping processes. The 

bronzes are stable in air up to a temperature of about 600K. The 

complete oxidation of all of the bronzes led to the formation of the 

tungstate and W03. The initial processes in the oxidation were 

attributed to the formation of polytungstates which then disproportionate. 

It was observed that the bronzes with a tetragonal structure oxidise 

more readily than those with either a cubic or hexagonal structure and 
: . 

is attributed to the ease of formation of the corresponding poly-
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tungstates. From the 02 consumption none of the bronze samples were 

thought to be oxygen deficient as the observed 02 uptake corresponded 

well with the theoretical values required. 

Electrical resistivity measurements on the bronze samples have 

shown that bronzes with high inserted ion concentrations are metallic 

while bronzes with low concentrations of the insertion ion have semi­

conductor properties. The resistivity values for both the potassium 

and the sodium bronzes were similar, with values for potassium being 

slightly higher, indicating that the resistivity was possibly independ­

ent of the nature of the insertion ion. 

Temperature programmed desorption of chemisorbed ammonia was 

used to obtain a picture of the strength and density of the acid sites 

on W03 and the bronze samples. The decomposition of isopropanol was 

used as a probe reaction to obtain information about the nature of these 

acid sites. Temperature programmed desorption of ammonia on W03 and 

potassium bronzes with x ~ 0.2 has shown that there is probably only 

one type of acid site present. However, for the potassium bronzes 

with 0.3 ~ x ~ 0.8 and for most of the sodium bronzes there is more than 

one type of acid site present since a second ammonia desorption peak 

was observed at higher temperature. A comparison of the acid site 

concentration on the bronzes has suggested that the acid site surface 

density decreases with increasing alkali metal ion content. In general, 

a higher concentration of acid sites was found to be present on the 

potassium bronzes than on the corresponding sodium bronzes. The iso­

propanol decomposition reaction has often been used to probe the acidic 

and basic sites on catalysts. The selectivity of the reaction for 

dehydration and dehydrogenation has ~~~n Used to explain the ~atu~e of 

these sites. W03 and the bronzes show selectivity for both propene 
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(dehydration reaction) and acetone (dehydrogenation reaction), except 

for some of the sodium bronzes with low alkali ion content which show 

total selectivity for propene formation. In general, for any given 

sample the selectivity for propene formation increased with temper­

ature and this is mostly due to a thermodynamic limitation since the 

products of the dehydration reaction are favoured at high temperature 

whereas the dehydrogenation reaction is exothermic. The select-

ivity for the dehydration reaction for both the potassium and the sodium 

bronzes decreased with increase in alkali metal ion content, due to an 

increase in the number of basic sites. The sodium tungsten bronzes 

show a greater selectivity for the dehydration reaction than the pota­

ssium bronzes with the same alkali ion content. The rate of the dehydr­

ation reaction decreases as the sodium and potassium content increases. 

However, the rate of dehydration on the sodium bronzes was greater than 

that observed for the corresponding potassium bronzes, although the 

total number of acid sites was smaller, thus indicating the greater 

activity of the acid sites present on the sodium bronzes. Recent 

work(l) has also shown that the rate of dehydration tends to decrease 

with increasing ion size as observed for the present potassium and sod­

ium bronzes, the K+ ion being larger (0.133nm) than the sodium ion, 

(0.097nm). The activation energy values for the dehydration reaction 

have been used to discuss the nature of these acid sites(2) low act-

ivation energy values for the reaction have been associated on surfaces 

where both Lewis and Bronsted acid sites occur, whereas high activation 

energy values indicate only Lewis acid sites. The activation energy 

values for the dehydration reaction calculated for W03 and KxW03 where 

x ~ 0.2 are high whereas those with x ~O.3 and the sodium bronzes have 

a lower value. It would appear that the first series of samples 
~ • ,j 

contain only Lewis acid sites, whereas the second series contain both 
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Lewis and Bronsted acid sites. It is these Bronsted acid sites which 

are of a stronger nature and more active. Lewis acidity is intrinsic 

in W03 and the Lewis acid sites present in the bronzes can be 

attributed to the W03 matrix. Fig. 11.1 shows such a site on a hexa-

gonal potassium tungsten bronze . 

....... 

Fig. 11.1 Hexagonal potassium tungsten bronze, I:Qxygen; ..... 
I, tungsten; K+, potassium ; ~ _" Lewis a.cid site. 

The formation of Bronsted acid sites is caused by the addition of the 

alkali metal ion and the extent of formation depends on both the nature 

and concentratjon of the added metal ion. The activation energy values 

for the debydration reaction have indicated that sodium is more effect­

ive in fonning Bronsted acid sites in tl:le bronze t~anpotass;um :and this 
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can be associated with the e1ectronegativity of the alkali metal ion 

inserted. Na+ is more electronegative, (0.9, Pauling scale), than 

+ K , (0.8, Pauling scale), and is more effective in polarising the W-O 

bond in the bronze. The attraction of a proton by 0- leads to the 

formation of a Bronsted acid site. Figure 11.2 shows such a site on 

an hexagonal sodium tungsten bronze. Bronsted acid sites were not 

observed on the potassium bronzes until the alkali metal ion content 

reached, x = 0.3, whereas for the sodium bronzes, Bronsted sites were 

present at all alkali metal ion concentrations. 

Fig. 11.2 Hexagonal sodium tungsten bronze, It oxygen; 
+ " 't tungsten;~Na , sodium;~_/Bronsted acid site; 

H, Hydrogen 
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The possible mechanisms of IPA dehydration on Lewis acid sites and on 

Bronsted acid sites are shown in Schemes 1 and 2 respectively. 

CH - CH -CH 
I 2 I 3 

Hd+ Od-H 
I 

I 

0-0 - wa~ Od-

Lewis acid site 

Scheme 1. IPA dehydration on a Lewis Acid Site 

Bronsted acid site 

, , 
'15- 15+ t-O -w -0 

Scheme 2. IPA dehydration on a Bronsted Acid Site 

The catalytic reaction of propene has been used to probe the 

semiconductor-metallic transition of the sodium and potassium bronzes. 

It has been ·shown that metathesis of propene is dominant over metallic 

solids whereas dimerisation of propene is the most likely reaction over 

insulating solids(3). The potassium and sodium bronzes prepared here 

with x ~ 0.2 have semiconductor properties while bronzes with x ~ 0.3 
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are metallic. The catalytic reaction of propene on W03, the potassium 

bronzes and the sodium bronzes gave ethene, but-2-ene (metathesis prod­

ucts) and hexenes (dimer;sation products) as the major products. For 

both the potassium and the sodium bronzes, selectivity for metathesis 

reached a maximum when x was equal to 0.2, although electrical resist­

ivity measurements indicated that such a transition occurs between an 

alkali ion content of 0.2 and 0.3. A useful comparison can be 

obtained if the nature and number of active sites in the bronzes were 

defined. If it is assumed that the W atoms are the active sites for 

both the metathesis and the dimerisation reactions, it will first be 

necessary to calculate how many of these are present in a unit area of 

surface. The turnover rates (the number of molecules which react per 

active site per second) are routinely measured for many different metal 

catalysts because selective chemisorption techniques have been developed 

to determine the number of surface atoms. The selective chemisorption 

technique unfortunately usually does not work well with metal oxides 

and the number of exposed sites in metal oxide catalysts are not 

generally known. The number of active sites for oxide catalysts can be 

estimated from the number of cations present on the crystal planes most 

likely to be exposed at the surface, but in the present study the number 

of active sites was assumed to be the total number of W atoms present. 

The turnover numbers for the dimerisation and metathesis reactions 

on the bronzes are given in Table 11.1 The activity of the bronze 

samples show a maximum in turnover number for metathesis when x = 0.2 in 

MxW03 whereas the activity for the dimerisation reaction show a decrease 

in turnover number with increasing alkali ion content. It is difficult 

to assess whether the maximum in activity for metathesis is associated 

with the electrical properties of the bronze. However, the' activity 
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for metathesis is lower at higher alkali ion content suggesting that 

both K and Na have a detrimental effect to the reactivity of the active 

sites. 

Table 11.1 Turnover Numbers for Metathesis and Oimerisation 

of Propene on WO~x~ and Nax~ 

Sample Turnover N01molecu~es 
per site s- x 10-

Turnover No/molecules 
per site s-l x 10-5 

for metathes is for dimerisation 

W03 5.8 2.64 

0.05KW 12.3 1. 43 

0.2KW 25.3 0.53 

0.3KW 8.1 0.27 

0.6KW 4.3 0.28· 

0.8KW 2.2 0.07 

0.05NaW 8.4 1. 23 

0.2NaW 22.9 0.65 

0.3NaW 9.3 0.33 

0.6NaW 3.4 0.20 

0.8NaW 4.8 0.28 

A potassium tungsten bronze in which copper ions were inserted 

by ion-exchange was prepared. Xrd indicated that the compound formed 

has a homogeneous bronze structure. The xps of the sample has 

suggested that copper may be in the +2 oxidation state, while W is in 

an oxidation state of about +5, with the compound having an empirical 

formula, CUO.062KO.13W03. The presence of copper in the bronze does 

not affect its reducibility. The copper surface area :was est'imated 
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by N20 decomposition and was calculated to be O.38m2g-1. The copper 

bronze is active in methanol synthesis from synthesis gas, but shows 

a higher selectivity for methane than methanol formation. The copper 

sites are less active than those present in a Cu/ZnO catalyst but are 

as active as those on a Cu/Ti02 catalyst(4). It was thought that Cu 

in a high oxidation state was the active site in methanol synthesis. 

A supported potassium tungsten bronze was prepared by impreg-

nating a silica support with an aqueous solution of potassium tungstate, 

(pH 4), followed by reduction in hydrogen gas at 770K. Xrd studies 

on the supported bronze suggested it to have an hexagonal structure. 

The X-ray photoelectron spectrum of the bronze has shown tungsten to 

be in an oxidation state of about +5. The activity of the bronze was 

monitored for ammonia synthesis but was lower than that observed for 

a potassium tungsten bronze supported on alumina. This may be due to 

the larger crystalline particles present on the silica-supported 

bronze. 
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Promotion of Nitrogen and Hydrogen Chemisorption and 
Ammonia Synthesis on Alumina-supported Hexagonal 

Tungsten Bronze, Kx W03 
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Alumina-supported hexagonal Ks WO. phases have been prepared in the 
prescnc:e and absence of Pt; K significantly promotes the chemisorption of 
nitrogen and Pt the chemisorption of hydrogen thereon. The turnover 
number for the production of ammonia (molecules of ammonia produced 
per site capable of chemisorbinl hydrogen per second) was very low. but was 
promoted by K and not Pt. The modes of adsorption and catalysis and the 
manner of their promotion are considered in detail. 

Ammonia synthesis can be catalysed by non-group VllI metals,l their oxyanions' and 
complexes.s However, for W the enthalpy of hydrogen adsorption [130 kJ mol-Ion 
polycrystalline surfaces. 38-IS91cJ mol-Ion W(III) and 84-163 kJ mol-Ion W(211)]4 
is only about a fifth that of nitrogen (820 kJ mol-I), despite the high bond strength 
(914 kJ mol-I) of dinitrogen. This mitigates agai~st effective catalysis of ammc;mia 
synthesis by metallic tungsten. Consideration has been given here to whether the activity 
ofW surfaces can be promoted to enhance the adsorption of both nitrogen and hydrogen, 
and subsequently ammonia synthesis. by controlling the oxidation state and symmetry 
of its reaction centres.' concentrating on supported Ks WOs 'bronze' ·phases where the 
lattice cation oxidation state and symmetry of location is controlled by the oxide matrix 
and the size,location and concentration of the intercalated :cK· ions and its xe- electrons. 

Alkali-metal bronzes are non-stoichiometric solids, Mz WOs' in which Mil. ions and 
ne- electrons are inserted (where 0 < .'C < I) into the oxide conduction band and the solid 
interstitial channels.' Potassium bronzes were selected since alkali-metal oxides are an 
important group of promoters to transition-metal catalysts' for ammonia synthesis. CO 
hydrogenation eIC.; for example. KIO markedly accelerates the adsorption of nitrogen 
on polycrystalline Fe. I In the present bronzes the location and state of the K· could be 
well defined. unlike some traditional catalysts (e.g. in promoted Fe-based catalysts some 
of the KIO may be chemically combined with the iron oxide and also in a free surface 
statel and is mobile on alumina alone at, say. 670 K, to an extent which varies with the 
prevailing gaseous atmosphere. I. Surprisingly, on Re single crystals and foils. where the 
rate-detennining step remains N, dissociative chemisorption. no promotional effect of 
K is observed, 11 which contrasts with the significant promotional effect of K on Fe single 
crystals.' Sometimes K: M ratios as high as twelve have been recommendedu in ammonia 
synthesis catalysts. 

Doubly and triply promoted iron catalysts13 are the cornerstone of ammonia synthesis. 
Nevertheless, despite their lower density. supported catalysts (especially those on 
graphite-containing carbon)l. are being developed where a promoter alkali-metal ion is 
actively associated with the metallic phase (e.g. Ru or VB-VB-VIIB or VIII transition 
metal). U Alumina-supported Fe has also been reported for ammonia synthesis. U where 
act~v~ty at 101 kPa and 593 K was in the range 1-4 Jlmol NH3 per g (Fe) per h. The 
actIvIty on Ru/MgO and Ru/CaO was promoted by the alkaline-carth support. II where 
there may have been electron transfer from the support to the Ru. 
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Tlble I. Catalysts prepared upon Alumin Oxid 
C· 

sample W (wt%) Pt (wt%) 

W1.5 1.50 0.00 

KWI 1.01 0.00 
KW3 3.00 0.00 
KW5 5.04 0.00 
KWIO 10.14 0.00 

PtKW3 3.04 0.527 
PtKW5 5. \I 0.556 
PtKWIO 10.03 0.640 

• 97.0% ,,-AI,O,; < 2000 ppm SiO,. Fe,O,; 
non-porous; 90. 100. 101. 113 ml I-I indicated 
by Nt B.E.T. measurements. 

Results for supported K:r WOJ catalysts where K and Pt arc the promoting phases for 
adsorption and catalysis on W surface sites arc now reported. 

Experimental 

Catalyst Prep •• doa 

All alumina-supported catalysts were prepa~· using Aluminium Oxid C (Degussa) 
whose properties are given in table I. Monolayer coverage of the support by the W phases 
was thOUght to ~uire on average S W atom m-' and an attempt was made to prepare 
most catalysts (see table I) below this concentration to minimise the formation of poorly 
dispersed' bulk' W phases. 

WO,/AltO, was prepared at a loading of I.S wt'Y. W by impregnating the alumina 
to the point of incipient wetness with an aqueous solution of ammonium tungstate 
(B.D.H. Chemicals Ltd; 95.0% purity). The product (denoted WI.S) was dried at 393 K 
for 16 h and then calcined in air at 823 K for 2 h. 
K~ WO,/AltO, samples (denoted KWI. KW3. KWS and KWIO) were prepared by 

impregnating the predried alumina with an aqueous solution of potassium tungstate of 
the correct strength and volume to ultimately give 1.3. Sand 10 wt% Wand to JUSt wet 
the alumina completely. Samples were dried in an air oven at 373 K for 12 h and stored 
in air unreduced. The pH of the impregnating solutions varied a tittle (9.04-9.08) 
depending upon the precise W loading to be achieved. Under these conditions the 
alumina support is thought to undergo only slight dissolution. 

Pt/K~ WO,I AltO, samples were prepared by impregnating the predried alumina with 
aqueous solutions containing required amounts ofHtPtCI. (Johnson Matthey: Spccpure) 
and potassium tungstate. In each case the ultimate loading of Pt was O.S wt·:~. but the 
W concentration varied. The mixed impregnating solution gave strong absorbance at 
241 mm. and since this was also true for a solution of hexachoroplatinic acid alone. it 
was thought that the PtCI!- ions remained intact in the mixed solution at ambient 
temperatures. Samples (denoted PtK WI. PtK W3. PtK WS and PtK WIO) were also dried 
in air at 373 K for 12 h. The pH of the mixed-metal impregnating solutions (n,. S.7S) 
was almost independent of concentration in lhe range used. Al Ihis pH lhe alumina 
support is thought to undergo meagre dissolutton. 

Temperature-programmed bulk reduction (Lp.b.r.) described laler suggested that ea\.:h 
catalyst should be reduced in flowing H: (40 cm~ min: 101 \cPa) at 1023 K for 16 h. ThIS 
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was carried out upon the samples (and the support alone), and each was then cooled 
in the reductant stream to ambient temperature and flushed with flowing Ar. Subse­
quently an in sil&l reduction was carried out. 

Experimental Methods 

Estimates of the extent of NI physical adsorption at 77 K (determined using a 
semi-automatic Carlo-Erba Sorptomatic series 1800) was used to determine total 
accessible surface areas assuming the cross-sectional area of adsorbed Nt to be 
0.162 nml. 

Raman spectra were recorded on a Spex Ramlab spectrometer using a coherent 
radiation model S2M.G. Ar/Kr laser with a green-interference filter to remove plasma 
lines; a cylindrical lens was used before the sample to minimise sample decomposition. 
Aqueous solutions were analysed in a capillary. Signals were measured at 90° to the 
incident beam; the laser output was ca. 30-100 mW and the slit-width S em-t. 

Thermogravimetric and differential theral analyses were carried out on samples (ca. 
30 mg; predried in Rowing N. at 373 K for IS min) using a Stanton Redcroft STA780 
analyser, «-alumina references, 10 K min- t heating rate and 40 cmJ min-I flow rate. 
T.p.b.r. was carried out on samples (0.5-2.0 g) in flowing 6% H, in N. (40 cmJ min-I), 
from which oxygen and water contaminants had been removed by passage through beds 
of Pdl AltO, and SA molecular sieve at 295 K. Hydrogen concentrations were measured 
after removal of product water at 203 K using a hot-wire detector (Gow Mac Kathar­
ometer OII06P) during heating at S K min-I. 

X-ray photoelectron spectra were measured on a Kratos ES300 instrument using Al X. 
radiation and were calibrated against the C Lr peak at 284.8 e V. Diffractometry was used 
to ascertain the structure of catalyst (PWIOSO generator operating at SO kV and 24 rnA 
via a Ni filter producing Cu K.l radiation). 

The extents of chemisorption of hydrogen and nitrogen were measured ± 10% in a 
volumetric system described previously.17 A known weight of the catalysts (prerecluccd 
at 1023 K for 16 h in H,) was flushed with flowing Ar for I S min, HI at 773 K ± S K 
for 3 h, and then flowing Ar for 1 h. Samples were then evacuated to 1-3 mPa at 773 K, 
after which H, (Research grade; 99.9995% purity; BOC) chemisorption was followed 
at the same temperature. Equilibration times of 15-20 min were required. Pressures were 
measured using a mercury manometer/cathetometer and a pressure transducer (Bell &t 
Howell BHLIOIO; HI vapour was prevented from reaching the catalysts by a trap held 
at 77 K). After measurement of hydrogen chemisorption. the sample was re~vacuated 
at 773 K and the extent of nitrogen chemisorption measured at 773 K ± S K (after 
changing the cold trap separating the sample from the remainder of the system to one 
at 195 K). 'Monolayer' extents of adsorption were estimated from the gradient of the 
linear Langmuir plots and also extrapolation of adsorption data at 30-70 kPa to the zero 
pressure; all isotherms approximated to a Langmuir form. 

The activity of samples in catalysing the synthesis of ammonia was measured using 
a silica flow reactor at 101 kPa with the sample held in a furnace (Stanton Redcroft 
CIIPt 13/CL) to within ± S K of the set temperature. The product stream flowed through 
20 cm3 of de-ionised water (obtained by passing double-deionised water through a 
Duolite ion~xchange column) whose conductivity could be monitored continuously 
(Fisons PTI-18). Catalyst samples (ca. O.S g) were flushed with Ar (99.9~,~ purity; BOC) 
for 15 min and then Ht (99.9S% purity; DOC) at ambient temperature. and as the sample 
temperature was raised to 1023 K at 10 K per min and then held there for 2 h. 
Subsequently, the H, was replaced by flowing Ar and the sample cooled to ambient 
temperature. During this pretreatment the conductivity detector gave a constant reading; 
the reactant stream of 75,% HI in Nt (99.99~,~ purity: BOC; pre·purified by removal of 
oxygen and water-vapour in the same was as the gas strean:t used in t.p.b.r. experiments 
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Fil. I. Raman spectra of Kt WO.(aq) at pH - 9.04 (a). Kt WO.(aq) at pH - S.74 (b) and we, 
(c) and some supported catalysts: (d) unreduced KWIO. (e) unreduced KWS. (f) unreduced 

PtKWIO and (g) unreduced PtKWS. 

described above) was introduced at 40 ana min-I. The sample temperature was then 
increased to 523 K (or 573. 673 or 773 K) and conductivity us. time measurements 
undertaken under isothennal conditions. The conductivity of the water (initially 
0.5 Scm-I) rose linearly with ammonia concentration to 140 nmol. The error in the 
assessment of the quantity of ammonia fonned was ± 3 nmol. 

Characterisation Results 
Raman Spec:troscopy or Unreduced Catalysts 

The Raman spectra of K.,O. in solution at pH 5.75 and 9.04 (selected because of their 
relevance to condition~ ~~ \.:atalyst preparation). W03 and of unreduced samples. K W~. 
PtKW5. WIO and PtKWIO arc shown in fig. I and main band positions are given an 
table 2. Spectra of catalysts with lower W contents gave no well defined peaks. 

The Raman spectrum of W03 shows expected bands. 1M The peaks of K: WO. arc 
characteristic of tetrahedral WO~- and this ionic state is known to exist .e,'(clusively in 
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Table 1. Raman spectroscopic data 

sample 

Kt WO. (PH 9.04)· 
KtWO. (PH S.7S" 
WOI· 
AltOI 

KWS } 
KWIO 

PtKWS } 
PtKW10 

bands/em -I 

933. 830. 324 
962. 90S. 61S. S60 and 366 
807. 712 and 276 
890.810. 799 and 73S 

94S and 847 

1010 and 945 

• Assignments: symmetric W=O stretching 
vibration 933 em-i; Intisymmetric W=O 
stretchinl vibration 830 em-I; W=O bending 
vibration 324 em-i; W=O stretching vibra­
tion 807 em-I; W=O stretching vibration 
712 em-I; W-O-W defonnatioD vibration 
276em-'. 

neutral .and allealine solutions:" the Raman spectrum of solid KaWO. was identical. 
However. that for K.WO. in solution at pH 5.75 is similar to that of solid 
Na,.W110 .. ·18H.O," and it may be that the octahedral WlIOU- ion is present in the 
acidic solution. 

Previous studies of AI.(WO.).lI·1l have shown it e~hibits a characteristic and sharp 
Raman band at 1046 em- l which may be used here to differentiate and detect this species 
in present catalysts. Only very small Raman bands were observed for the alumina support 
used here, and it was not tbought to interfere too seriously with Raman analysis of these 
supported W catalysts. Raman spectra of unreduced KW5 and KW10 catalysts showed 
two major bands which were broader than those observed for pure K,WO. and were 
also shifted slightly to higher wavcnumbers than those for Kl WO. in the impregnated 
solution at pH 9.04 (;.~. 830 and 933 em- l which can be attributed to symmetric and 
antisymmetric W=O stretching modes, respectively, in the supported phases). The 
broadening of these bands could be due to coordination of water to the alumina­
supported tungsten complex. No bands were shown at l()()-4()()em- l • a region which 
reftects the crystallinity of the sample. Thus the supported phases could be in a 
moderately well dispersed state. All other bands for these catalysts were consistent with 
those for the support. If water is coordinated to the surface W sites it might produce 
an octahedral from a tetrahedral symmetry. 

Increasing the coordination of W to six should increase the W=O stretching modes 
to higher wave numbers. Simultaneously the order of the terminal W=O bonds will 
decrease (with a decrease in the W=O stretching frequency). The symmetric w=o 
stretching mode in Na,WO. (928 em-I) increases to 931 cm- I in Na:WO,.:' Here the 
shift for supported catalysts could be attributed to the presence of adsorbed water. No 
band at 1046 cm-1 was found in unreduced supported catalysts indicating the absence 
of AI,(WO.)3' 

The Raman spectra of unreduced PtKWS and PtKWIO showed bands of W=O 
stretching modes corresponding to those in K,WO, in acid solution. but shifted ca. 4i~ 
to higher wavenumber. possibly as a result of an active-phase/support interaction. 
Similar behaviour has been observed in the Raman spectra of (NH, ).H. W ,.o,n/ AI20 3 

catalysts." The absence of bands at low wavenumber and at ,·a. 1046 cm -I again suggests 
highly dispersed supported phases in the absence of AI.(WO. )3' 

Raman spectroscopy then provides valuable evidence of the state of these catalysts 
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as it has previously. 11 There is no suggestion of WO,-alumina interactions" forming 
Alt(WO, ) •• which was previously only detected after calcination ca. 1273 K or as a minor 
component at 863-1123 K." It is very sensitive to the coordination of the W and the 
vibrational modes of the W=O bonds: there the spectra of KWS. 10 and PtKWS. 10 
in fig. I do not correspond to those of crystalline WO,. Kt WO~ or Alt(WO,), [sec fig. 
4 in ref. (24)]. although unfortunately peaks below 700 cm-' are obscured. 

Thermal Analysis or Reducdon Characteristics 

On heating KtWO, in ftaring hydrogen a broad endotherm at 473-700 K with a weight 
loss of3% is followed by a sharp exotherm at 8SS K with a further weight loss of22.53%. 
Neither is likely to be associated with loss of water (heating in nitrogen produced only 
0.6% weight loss) but possibly to conversion of the tungstate to a bronze. Ko.t• WO, (i.e. 
K,WO,+0.14Ht - K. .•• WO,+0.86K,0+0.14HtO). T.p.b.r. confirmed a multistep 
reduction with maxima at 653. 913 and 1018 K. The total hydrogen consumption 
(0.0430 mmol g-a sample) for the formation of the above bronze. Table 3 gives H, 
consumption and weight-loss data. 

Equivalent data for catalysts are given in fig. 2 and table 3; no weight losses of 
significance were seen with any sample on heating in nitrogen and for results of heating 
in hydrogen there is moderate agreement between bronze compositions estimated by 
t.g.a. and t.p.b.r. For no samples was there reduction to the metallic state ofW on heating 
to 1023 K in hydrogen. Suppdrted phases reduced at lower temperatures than 
unsupported K, WO,. partly as a result of the high dispersion. Indeed. temperatures of 
reduction were lowest at lowest W loadings. Introduction of Pt appears to facilitate 
lower-temperature reduction and this may be associated with spillover. It is to be 
expected that reduction of Pt species will occur within the lowest temperature reduction 
maxima. However. it was not possible to assign to these t.p.b.r. peaks reduction processes 
of separate and distinct phases" in such complex catalysts. 

No hydrogen consumption was observed on heatingWl.S (WO,/AltOs) in hydrogen 
to 1323 K in t.p.r. It may be that a surface tungsten oxide is obtained at the low WO, 
loadings which is difficult to reduce further. 

X-Ray Photoelectroa Spectroscopy or Unreduced and Reducecl Catalysts 

The W 4/7/t peak for unreduced KtWO, was found at a binding energy of 36.S eV and 
close to the value for WO, (36.0 eV). For KWI-IO its position was unchanged at 
37.6 eV. but the full width at half maximum height or-this peak was found to decrease 
as the metal loading increased (i.e. O.S, 0.4. 0.3 andO}eV for KWI. KW3. KWS and 
K WI 0): a similar observation was reported for alumina-supported MoO, and WO,."· n 
and broad~!ling was attributed to charging effects. Her~ the width of the Al tp peaks also 
decreased in the same sequence and this eliminates ;the possibility that multiple W 
oxidation states are contributing to this observation ... · 

A linear relationship is to be expected between concentration and X.p.s. intensity for 
highly dispersed supported W phases. Fig. 3 shows that this does indeed exist for the 
present catalysts at least up to ca. 6.8 wtO~ W (or 2.25 x IO=Q W atom g-I catalyst). This 
could correspond to 'monolayer' coverage of bronze.on the support. The lowest B.E.T. 
area of the alumina support was found to be 90 m' g-I (see table I). and if this has 
4.5 OH groups per m' of the surface'" then there are 4.05 x 10tO OH groups at the surface 
per g. This suggests that two OH groups could be associated with the adsorption of each 
W ion: this is consistent with the molecular model needed in interpreting Raman spectra. 
However. it is important to note that X.r.d. reveals well crystallised material. 

Similar results were obtained for Pt K W 1-10 samples. K peak intensities were not 
diminished by reduction and hence K:O is not substantially lost. X.p.s. ?f reduced 
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Table J. Reduction characteristics of catalysts 

t.p.r. HI consumption 
t.g.a. % wt loss 

sample endo· exo· :c T/K of max. red. rate 
total HI 

uscdt .t 

KWI 0.20 0.50 0.21 418 723 1008 9.60 0.34 
KW3 0.45 0.79 0.47 403 726 999 23.70 0.29 
KWS 0.68 1.37 0.50 418 746 1003 49.30 0.36 
KWIO 1.03 4.10 O.SO 533 823 1010 104.75 0.38 

PtKWI 0.82 0.20 0.52 383 5SO 810 1006 62.10 0.40 
PtKW3 1.32 0.66 0.40 373 523 773 1018 86.75 . 0.39 
PtKW5 2.42 1.00 0.49 383 S08 744 1018 98.79 0.31 
PtKWIO 3.2& 2.12 0.42 440 SSg 820 1007 163.96 0.36 

• % weight loss below 823 K. • % weight loss at 823-1023 K; C 1IID01 HI g-'. T.g.a. and t.p.r. 
denote thennogravimmctric analysis and temperature programmed reduction. respectively. 
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Fie. 3. W4f11./AI2p X.p.s. intensity as a function of W content in catalysts KWI-IO (a) and as 
a function of bulk WI Al ratio (b). Open symbols and filled symbols relate to catalysts K W \-1 0 
and PtKI-IO. respectively. before reduction. Deviation from linearity above ca. 7% W suggests 

the presence of a poorer dispersion. 

catalysts found the W 4fpeaks changed to lower binding energies corresponding to those 
of W'·. but not to the metallic state or that in Alt(WO~)3 (i.e. 36.1 eV." In reduced 
PtKWI-IO only one Pt peak (4d",) was found at a binding energy of 319.0 eV. which 
appeared to correspond to the zero-valent state. H 

X-Ray Diffraction of Unreducecl and Reduced Catalysts 

Diffractometry of pure unreduced K~ WO I was consistent with a monoclinic structure 
(ao = 1.2382 nm. bo = 0.61194 nm and Co = 0.75526 nm). but after reduction. d values 
corresponded to a hexagonal structural state (all = bn = 0.734 nm and Co = 0.752 nm). 
These results agree with data for hexagonal potassium bronzes of tungsten. U 

After subtraction of broad peaks for the support. reduced KWIO and PtKWIO were 
found to exhibit X-ray diffraction patterns which were consistent with hexagonal 
structures (ao = 713 nm. c. = 0.775 nm and aq = 710 nm. Co = 0.782 nm). KW5 and 
PtK WS gave similar but weaker diffraction patterns: catalysts of lower W content could 
not be analysed by this method. None of the catalysts gave diffraction peaks 
corresponding to AI,(WO. )~. and if present its concentration was judged to be below 
the limit of detection by XRD. 
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FiC. S. Isotherms of hydrogen on KW3 (0). WI.S «» and PtKW3 (.) at 773 K. These reach 
a plateau at lower pressures than for Nt. 

Summary 

Samples of alumina-supported K z W03 appear to have been prepared here by an 
impregnation-reduction route. X.p.s. intensities suggest the active phase is quite highly 
dispersed and yet exhibits a hexagonal structure detectable by X-ray diffraction at higher 
concentration; possibly the active phase exists in both fonns in some catalysts. There 
was no evidence of bulk reduction of W to the zero-valent state or complete loss of K. 
Although it would not be possible to rule out the separate retention of KsQ on the 
alumina. under the conditions of preparation here it would have sublimed and ~en 
lost if separated. There was no X.p.s. c':idence of loss of K from PtKWIO on reductIon. 
Hence the interpretation here is in tenns of Kr WO~ upon the alumina support. 
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Fil. 6. Linear Langmuir plots for nitrogen (0) and hydrogen (.) chemisorbing upon PtK W) 
at 773 K. 

Table 4.. Adsorptive and catalytic properties 

'monolayer' extent of N. 
or H. adsorption/ pmOI.-1 

'!lHa after 20 min 
H. (773 K) Inmol NHa I-I min-I N;HI at 773 K 

N. / I ()I molecule 
sample (773 K) total max", minw 523 K 573 K 673 K 773K site-I h- I 

WI.S 2.06 6.15 0.00 6.15 0.11 0.53 

KWI 0.\6 0.20 0.4S 
KW3 55.S3 12.75 0.00 12.75 0.47 0.73 1.02 2.37 
KWS 73.7S 13.00 0.00 13.00 0.54 0.S6 1.21 2.22 4.99 
KWIO 35.31 10.5S 0.00 10.5S 0.27 0.45 0.69 1.90 

PtKW3 57.08 55.00 13.51 41.49 0.64 1.00 1.46 O.SI (1.09) 
PtKW5 77.SO 47. SO 14.28 33.22 0.96 1.21 1.74 2.36 1.47 (2.10) 
PtKWIO 32.S1 31.00 16.40 14.60 0.31 0.44 0.64 0.64 (1.37) 

II Apparent turnover frequency was determined by dividinl the rate of ammonia synthesis at 
773 K by the extent of hydrogen chemisorption at the same temperature as estimated from the 
gradient of the linear Langmuir plots (see fig. 6) or by extrapolation of hydrogen chemisorption 
(see fig. 5) data to the zero-pressure intercept. N has units of NH~ molecules produced per 1000 
chemisorption sites per h: bracketed data relate to values of N calculated for W sites chemisorbing 
hydrogen in the column denoted minw. 

Adsorptive-Catalytic Results 

Chemisorption Results 

Fig. 4 and 5 show the Langmuir-type isothenns as the extent of adsorption (q) ~or N~ 
and Hs chemisorption upon W 1.501 K W3 Ilnd PtK W3 catalysts as a function of, 
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FiC.7. Extent ofNH, synthesis over KWl(O). WI.S () and PtKW3 (e) at 773 K as a 
function of reaction time. 

equilibrium pressure (P) at 773 K; extents of adsorption at monolayer coverage were 
deduced from the gradients of the linear Langmuir plots (see fig. 6) and arc given in table 
4 for all catalysts prepared here. First one should note,that the rate of HI adsorption 
was faster on all samples than Nit and its isotherms appeared to reach' plateau' extents 
of adsorption at lower pressures. Secondly, the extent of N. chemisorption appears to 
be dramatically promoted by the presence ofK (cJ. data for Wl.5 and KW3 etc. in table 
4), although not by the addition of Pt, but that the extent of adsorption is a maximum 
close to the maximum dispersion suggested by x.p.s. intensity analysis in fig. 3. Thirdly, 
the reverse promotional effect appears to be the case for the extent of H~ adsorption in 
that K has only a small promotional effect. but Pt a large promotional effect (compare 
data for samples KW3-10 and PtKW3-IO in table 4); again. maximum extent of 
adsorption is seen at maximum catalysts dispersion, suggested in fig. 3. 

Ammonia Syathesis 

Fig. 7 shows the extent of synthesis of ammonia on several catalysts at 773 K; Fig. 8 
shows the effect of temperature on the rate and extent of ammonia synthesis over PtW3 
in the range 573-773 K. It is clear from fig. 8 that rates of synthesis decrease with time 
at each temperature and indeed only reached steady-state values at ca. I h. Table 4 shows 
rates measured from gradients in fig. 7 over several catalysts at an arbitrary time into 
the reaction and also the activation energy calculated over this temperature range. 
Activation energies for all samples in ammonia synthesis under these conditions were 
much lower (14-21 kJ per mol) than previously estimated I and this suggests either 
diffusion limitation or that N. dissociation is not the rate-detennining step. The turnover 
numbers. N. of ammonia synthesis over catalysts here were calculated in terms of 
molecules produced per non-Pt site active in hydrogen chemisorption per h: this seemed 
preferable to using the larger concentration of sites chemisorbing nitrogen. The values 
of N so calculated (shown in the last column of table 4) are very much lower than found 
for Group VIII metal catalysts and would be even lower if calculated on the basis of 
the numbers of sites chemisorbing nitrogen. 

However. it is more important to consider the promotional effects of K and Pt upon 
the catalytic activity. It appears that K has a substantial promotional effect (i.t'. compare 
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promotion. Interestingly, the extent of chemisorption of nitrogen exceeds that of 
hydrogen; this suggests that only a small fraction of this chemisorbed nitrogen is in a 
state which may be activated for ammonia synthesis. Further work is required to define 
how K promotes this specific type of nitrogen chemisorption (and hence ammonia 
synthesis). 

Discussion aad Coaclusions 

The mono tungstate WO:- exists in alkaline solution but polymerises as the pH drops: 

6{W0.l·-+7H+ = [HW,0.al' -+3H.0 

and in the solid state undergoes transition to polymorphs such as K. W lOll at elevated 
temperatures; interestingly, the octatungstate is isostructural with the hexagonal tung­
sten bronze K..'I WO" which together with hexagonal WO, are well known. U Here 
weight losses and hydrogen consumptions on reduction correspond to 0.29 < x < 0.40. 
There is no evidence of zero-valent W formation. Raman spectroscopy of unreduced 
catalysts suggests that W 110:. exists upon the alumina support and that this poly tung­
state is readily reduced to these hexagonal bronzes. 

On all catalysts here the activity in ammonia synthesis increased with increasing 
temperature but, under isothermal conditions. also decreased with time. The low 
activation energy observed might be due to diffusion-limitation (or that the mechanism 
did not involve Nt dissociation as the rate-determining step) and the isothermal 
deactivation could result from retention of a strongly bound surface intermediate. The 
turnover numbers for ammonia synthesis at 773 K calculated using hydrogen adsorption 
sites were very low. Naturally. ammonia does decompOse over Pt at a rate (Jiven by the 
Langmuir-Hinshelwood unimolccular rate equationA which amounts to 10" 
molecule em-I S-l (or a turnover number of 0.36 per h) and could have reduced values 
of N in table 4. It is possible that metals other than Pt would have a greater promotional 
effect. Equally, tunptates do catalysc ammonia synthesis,' but not to an extent which 
would be significant under prescnt conditions. Normally the chemisorption and disso­
ciation of nitrogen is rate-determining. but here it is interesting and surprising that 
nitrogen adsorption is more extensive than that of hydrogen. Pt had little effect on the 
extent of Nt adsorption, which reached saturation coverage only at high pressures. but 
K docs accelerate and promote nitrogen adsorption at 773 K (as it does in commercial 
synthesis catalysts). but whether this is because of electron donation to the W centres 
is uncertain; certainly such centres will be far more deficient of d electrons than in 
zero-valent catalysts. Hydrogen chemisorption was much faster than nitrogen and 
reached a saturation coverage at a much lower pressure, but this adsorbate may be more 
mobile on the catalyst surface than nitrogen and consideration needs to be given to why 
this should be so on the present surfaces. 

Nitrogen adsorbs on polycrystalline zero-valent W surfaces. reaching ca. 40% 
monolayer coverage at room temperature.3 •• However. its rate of adsorption is much 
slower on some planes [e.g. W(IIl») than on others [e.g. W(IOO)V~ As a result. 
equilibrium nitrogen adsorption isotherms of the extent of adsorption (q) L'S. pressure 
(p) on W powder have been difficult to obtain. but generally obeyed the Freundlich model 
with linear logq I)S. logp plots at moderate pressures; interestingly. the common point 
of intersection suggests one N atom adsorbed on average per two surface W atoms."~ 
with a high initial enthalpy of adsorption (335 kJ mol-I). The adsorption of hydrogen 
on W film and powder at 79-873 K also obeys~' the Freundlich equation. with no 
maximum extent of adsorption reach at 13 kPa. but the initial enthalpy of adsorption 
is much smaller and decreased almost linearly with increasing coverage (in contradiction 
of the Freundlich model). In contrast. here the adsorption isothenns of hydrogen and 
nitrogen upon the present • bronze' catalysts are approximately Langmuirian. and 
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Ftc. 9. Non-Freundlich behaviour of nitrogen (0) and hydrogen (.) adsorption on PtK W3 at 
773 K. where Inp I1S. Inq plots are distinctly non-linear if q is the extent of adsorption and pis 

the equilibrium pressure. 

certainly not of the Freundlich fonn (see fig. 9); this suggests that the adsorption centres 
cannot approximate to the zero-valent W state. bearing in mind the past findings of 
Freundlich-type adsorption of hydrogen and nitrogen upon zero-valent W surfaces. 

Although both nitrogen and hydrogen adsorb in several different states upon 
zero-valent W surfaces". 17. II (with nitrogen even weakly adsorbed" on W(IIO)," it is 
uncertain whether any of these are truly molecular. The smaller hydrogen adsorbate 
might interact with sites not accessible to the larger nitrogen. Therefore, the precise 
location of the adsorbed nitrogen and hydrogen on surfaces of W remains uncertain. M 

and this is complicated by the tendency ofW surfaces to reconstruct" during adsorption 
(i.~. tungsten atoms in the (001) surface readily undergo small lateral displacements).~o 
Nevertheless. nitrogen and hydrogen may be located in fourfold coordination sites upon 
W(IOO): on a W(OOI) surface a hydrogen atom is deemedtl to sit midway between two 
surface W atoms. Present hexagonal tungsten bronzes (see fig. 10) are fonned by 
comer-shared WO. octahedra (with trigonal holes exceeding the number of hexagonal 
ones). K + ions sit within the hexagonal channels juts below the plane of the hexagon. 
in which the W-o-W angle between WO. octahedra centres is rather obtuse. It is 
necessary to consider how adsorption and catalysis may occur on such a surface and 
to compare this with what pertains in W complexes and on other transition-metal oxides. 
The dissociation of dinitrogen upon metal surfacesu is not directly relevant here. It is 
suggested that N! adsorbs at surface cation sites exposed on TiO! by dehydroxylation. I~ 
and here a similar adsorption mode is considered. First. it has been shown~t that all such 
alkali-metal bronzes of Ware oxygen-deficient. and so some of the terminal oxygens 
above the surface tungstens will be missing. and it is on these centres that electron 
donation from the K will produce WU centres (where: is 4 or 5). The triple bond of 
the nitrogen molecule could donate 1t electrons to the K + ion intercalated below the plane 
of the hexagon and the two ends of dinitrogen with a a-bond to two WU centres. This 
molecular mode of adsorption of nitrogen upon the hexagonal bronze surface would be 
readily accepted by the W(l-tl+ with their almost vacant d-orbitals. the process would 
be promoted by K +. Hydrogen adsorption must involve heterolytic adsorption across 
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Fic. 10. Adsorption sites on hexagonal K~ WO, (e, oXYP; •• tungsten in the plane of the 
hexagons; O. potassium below the plane of tbe beulOns). It. is important to remember that on 

W(IOO) Hand N atoms are chemisorbed ill sites with four-fold coordination. 

W-o sites and also hydrogen spillover promoted by Pt (which may not-otherwise be 
involved in the catalytic reaction site). 

This model would require the extent of nitrogen chemisorption to be related to the 
extent of surface oxygen deficiency in these bronzes. 1be size of the Nt molecule (11 Opm 
bond length) means that it could just stretch across the opening of the hexagonal tunnels 
(width 260 pm) in this adsorption mode. 

The catalysts used here were not seen as potential industrial catalysts (thus tungstates 
are more generally used as inhibitors,41 although tungstates have been reported to 
catalyse ammonia synthesis,' and certainly WO, and MoO, have been recommended as 
additives to Fe ammonia synthesis catalysts." 

Studies on W surfacesU emphasise that the state of adsorbates at low pressures may 
be different from those at industrially relevant pressures. Equally, in catalysis. the effect 
of the alkali-metal promoter may be high at high pressure. but negative for the 
atmospheric-pressure synthesis of ammonia.~· Therefore. the function of the present 
work was not to suggest that comparisons can or should be made between catalysis at 
low pressures and under commercial conditions. (ndeed. research~' has illustrated the 
difficulty of extrapolating from surface data at low pressures and temperatures to 
industrial conditions 723 K and> 100 atm. Nevertheless. the results arc intriguing and 
do show a relationship between catalysis (of ammonia synthesis) with W ions stabilised 
in . bronzes' and in complexes;3 this relationship between homogeneous and heterogen­
eous catalysis is worthy of further fruitful study. It provides an example of a mode of 
control of an active site at a catalytic surface.' On these ionic surfaces the activation 
energies to surface diffusion will be larger than on zero-valent metals and migration will 
be more difficult.24 and this might also contribute to the control of activity and selectivity. 
Holmes and King" have shown that the tight-binding model provides an insight into 
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the electronic structure at the surface of metallic tungsten, and the above localised 
chemical model of adsorption at these W surfaces may also be justified. Kosaka" al.n 

found that whether the bronze Na% WQ, was an insulator or metal determined whether 
it catalysed dimerisation or metathesis reactions, and it may be that the precise value 
of x (i.e. the K loading and the associated level of oxygen deficiency) will have an 
important role in defining the extent of promotion of ammonia synthesis. Unfortunately, 
as:c is changed. so is the structure and oxygen deficiency, and so itwould be very difficult 
to separate these effects in the catalysis observed. 

The dissociative mechanism on metallic W surfaces is well established," but here on 
the' bronze' surface, if nitrogen is molecularly (and hence more weakly) adsorbed, it may 
be that an associative mechanism is also important. It is not yet possible to deduce the 
relative importance of the two mechanisms. This differentiation would require in silu 
analysis" using F.t.i.r. which is in progress and will be reported. Interestingly, the 
activation energy for ammonia synthesis here appears much smaller than that for 
nitrogen dissociation and this is seen as further evidence of the involvement of a 
mechanism unlike that on traditional catalysts. 

Further in situ analysis is also required to ensure that the active sites and phases are 
characterised whether these be a highly dispersed oxyanion phase of tungsten anchored 
to the alumina surface uia W-o-Al bonds (possibly preferentially sensed by Raman) 
or more poorly dispersed phases (possibly preferentially sensed by X.r.d.) or a combi­
nation of both. 

We gratefully acknowledge the financial support of S5 by S.E.R.C. and Perkin Elmer. 
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APPENDIX 2 

X-ray Diffraction of Tungsten Powder 

Q SinS dexptJnm d1 i teratur/ nm hk1 

20.104 0.344 0.224 0.224 110 

20.156 0.345 0.223 0.224 110 

29.092 0.486 0.158 0.158 200 

36.553 0.596 0.129 0.129 211 

36.562 0.596 0.129 0.129 211 
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X-ray Diffraction of W03-

9 Sine dexpt./nm dliteratur/nm hkl 

11 .665 0.202 0.381 0.380 020 

12.019 0.208 0.369 0.365 200 

14.217 0.245 0.313 0.312 112 

16.487 0 .. 283 0.271 0.269 022 

16.929 0.291 0.264 0.263 202 
-

17.677 0.303 0.253 0.253 122 
-

20.664 0.353 0.218 0.218 222 

24.774 0.419 0.184 0.183 140 
-

27.592 0.463 0.166 0.166 402 



APPENDIX 2 

X-~ay Diffraction of K2~ 

9 Sine dexpt.lnm d1 iteratur/nm hk1 

-7.80 0.136 0.567 0.570 201 

8.00 0.139 0.553 0.556 200 

8.25 0.143 0.536 0.536 110 
-9.40 0.163 0.471 0.471 111 

11.60 0.201 0.383 0.383 111 
-12.00 0.208 0.370 0.371 202 

12.35 0.214 0.360 0.360 201 

13. 15 0.228 0.338 0.339 002 

14.05 0.243 0.317 0.317 310 

14.60 0.252 0.305 0.305 020 
-15.25 0.263 0.293 0.293 312 

16.10 0.277 0.278 0.278 400 
-16.60 0.286 0.269 0.269 221 

17.05 0.293 0.262 0.263 112 
-19.00 0.326 0.236 0.236 222 

19.80 0.339 0.227 0.227 022 

22.85 0.388 0.198 0.198 312 
-25.20 0.423 0.181 0.180 314 
-26.20 0.445 0.174 0.174 332 
-26.85 0.452 0.170 0.170 514 
-31. 75 0.526 0.146 0.146 315 



APPENDIX 2 

X-ray Diffraction of N2~ 

Q SinQ dexptJnm * d1iterature/nm hk1 

8.293 0.144 0.533 0.528 111 

13.775 0.238 0.323 0.323 220 

16.648 0.286 0.268 0.275 311 

19.425 0.333 0.231 0.228 400 

20.617 0.352 0.218 0.209 331 

27.301 0.459 0.167 0.161 440 

* Sample was prepared by heating at 373K a sample of sodium 

tungstate dihydrate. 



Element Signal 

Cl s 

W4f5/2 

W4f7/2 

W4d3/2 

W4d
5/2 

APPENDIX 3 

X-ray Photoelectron Spectroscopy 

Tungsten Powder 

Observed Corrected 
Binding Binding 
Energy eV Energy eV 

294.1 284.6 

45.1 35.6 

43.1 33.6 

267.6 258.1 

254.2 244.7 

Observed 
Shift 

eV 

2.45 

2.60 

2.90 

3.30 



Element Signal 

Cls 

Ols 

W4fS/2 

W4f7/
2 

W4d 3/
2 

W4d 5/ 
2 

APPENDIX 3 

X-ray Photoelectron Spectroscopy 

W03 

Observed Corrected 
Binding Binding 
Energy eV Energy eV 

294.1 284.6 

539.6 530.1 

47.4 37.9 

46.5 36.0 

268.5 258.0 

256.3 245.8 

Observed 
Shift 

eV 

7.90 

4.75 

5.00 



APPENDIX 3 

X-ray Photoelectron Spectroscopy 

Potassium Tungstate 

Element Signal Observed Corrected Observed 
Binding Binding Shift 
Energy eV Energy eV eV 

C1s 297.1 284.6 

01s 542.6 530.1 7.90 

W4f5/ 51.1 38.6 5.45 
2 

W4f7/
2 

49.0 36.5 5.50 

W4d3/
2 

269.9 257.4 3.60 

W4dS/
2 

257.5 245.0 3.00 

K2P1/ 308.12 295.62 3.38 
2 

K2P3/
2 

305.4 292.9 3.10 



APPENDIX 3 

X-ray Photoelectron Spectroscopy 

Sodium Tungstate 
; 

Element Signal Observed Corrected Observed 
Binding Binding Shift 
Energy eV Energy eV eV 

C1s 294.8 284.6 

01s 540.9 530.7 7.30 

W4f5/ 48.6 38.4 5.25 
2 

W4f7/ 46.5 36.3 5.30 
2 

W4d3/ 268.1 257.9 3.10 
2 

W4d5/ 255.6 245.4 2.60 
2 

Nal s . 1081. 5 1071. 3 3.70 



Element Signal 

C1s 

01s 

W4f5/ 
2 

W4f7/ 
2 

W4d3/
2 

W4d5/
2 

K2Pl /2 

K2 P3/
2 

APPENDIX 3 

X-ray Photoelectron Spectroscopy 

Sample 0.05KW 

Observed Corrected 
Binding Binding 
Energy eV Energy eV 

292.3 284.6 

536.3 528.6 

45.7 38.0 

43.7 36.0 

266.7 259.0 

254.3 246.6 

303.2 295.5 

299.8 292.1 

Observed 
Shift 

eV 

9.40 

4.85 

5.00 

2.00 

1.40 

3.50 

3.90 



Element Signal 

C15 

015 

W4f5/2 

W4f7/
2 

W4d3/ 
2 

W4d 5/
2 

K2P1/
2 

K2P3/ 
2 

APPENDIX 3 

X-ray Photoelectron Spectroscopy 

Sample O.2KW 

Observed Corrected 
Binding Binding 
Energy eV Energy eV 

302.8 284.6 

546.1 527.9 

56.0 37.8 

54.1 35.9 

277 .6 259.4 

264.5 246.3 

312.7 294.5 

309.6 291.4 

Observed 
Shift 

eV 

10.10 

4.65 

4.90 

1.60 

1. 70 

4.50 

4.60 



Element signal 

C1s 

01s 

W4f5/
2 

W4f7/
2 

W4d3/ 
2 

W4dS/
2 

K2P1/
2 

K2P3/
2 

APPENDIX 3 

X-ray Photoelectron Spectroscopy 

Samp 1 eO. 3 KW 

Observed Corrected 
Binding Binding 
Energy eV Energy eV 

298.1 284.6 

541.6 528.1 

51.6 38.1 

49.6 36.1 

271.6 258.1 

259.2 245.7 

307.6 294.1 

305.1 291.6 

Observed 
Shift 

eV 

9.90 

4.95 

5.10 

2.90 

2.30 

4.90 

4.40 



APPENDIX 3 

X-ray Photoelectron SEectroscopy 

Sample 0.6KW 

Element Signal Observed Corrected Observed 
Binding Binding Shift 
Energy eV Energy eV eV 

Cls 292.6 284.6 

Ols 541.1 533.1 4.90 

W4fS/ 4S.2 37.2 4.05 
2 

W4f7/
2 

43.0 3S.0 4.00 

W4d3/
2 

267.7 259.7 1. 30 

W4dS/ 254.6 246.6 1.40 
2 

K2Pl/ 303.7 295.7 3.30 
2 

K2P3/
2 

300.8 292.8 3.20 



Element Signal 

Cls 

01s 

W4f5/ 
2 

W4f7/ 
2 

W4d3/ 
2 

W4dS/
2 

K2P1/
2 

K2P3/ 2 

APPENDIX 3 

X-ray Photoelectron Spectroscopy 

Sample 0.8KW 

Observed Corrected 
Binding Binding 
Energy eV Energy eV 

293.5 284.6 

534.8 525.9 

46.9 38.0 

44.8 35.9 

267.1 258.2 

254.5 245.6 

303.3 294.4 

300.3 291.4 

Observed 
Shift 

eV 

12.10 

4.85 

4.90 

2.80 

2.40 

4.60 

4.60 



Element Signal 

C15 

015 

W4f5/ 
2 

W4f7/ 
2 

W4d3/ 
2 

W4dS/ 
2 

Nals 

APPENDIX 3 

X-ray Photoelectron Spectroscopy 

Sample 0.05NaW 

Observed Corrected 
Binding Binding 
Energy eV Energy eV 

292.7 284.6 

539.0 530.9 

45.6 37.5 

43.6 35.5 

268.3 260.2 

25S.4 247.3 

1079.7 1071 .6 

Observed 
Shift 

eV 

7.10 

4.35 

4.50 

0.80 

0.70 

3.40 



Element Signal 

C1s 

01s 

W4f5/ 
2 

W4f7/ 
2 

W4d3/
2 

W4d5/
2 

Na1s 

APPENDIX 3 

X-ray Photoelectron Spectroscopy 

Sample O.2NaW 

Observed Corrected 
Binding Binding 
Energy eV Energy eV 

292.6 284.6 

538.7 522.7 

45.7 37.7 

43.8 35.8 

267.8 259.8 

254.8 246.8 

1079. 1 1071. 1 

Observed 
Shift 

eV 

15.3 

4.55 

4.80 

1.20 

1.20 

3.90 



APPENDIX 3 

X-ray Photoelectron Seectroscoe~ 

Samele 0.3NaW 

Element Signal Observed Corrected Observed 
Binding Binding Shift 
Energy eV Energy eV eV 

C1s 292.7 284.6 

Ols 539.4 531.3 6.70 

W4fS/ 45.7 37.6 4.45 
2 

W4f7/ 43.7 35.6 4.60 
2 

W4d3/
2 

267.6 259.S 1. SO 

W4dS/
2 

254.9 246.8 1.20 

Na1s 1079.8 1071. 7 3.30 



APPENDIX 3 

X-ray Photoelectron Spectroscopy 

Sample O.GNaW 

Element Signal Observed Corrected Observed 
Binding Binding Shift 
Energy eV Energy eV eV 

Cl s 292.5 284.6 

Ols 539.1 531.2 6.80 

W4f5/2 45.8 37.9 4.75 

W4f7/
2 

43.6 35.7 4.70 

W4d3/
2 

267.8 259.9 1.10 

W4d 5/ 254.9 247.0 1.00 
2 

Nals 1079.7 1071. 8 3.20 



Element Signal 

Cls 

Ols 

W4f5/2 

W4f7/
2 

W4d3/ 
2 

W4d5/ 
2 

Nals 

APPENDIX 3 

X-ray Photoelectron Spectroscopy 

Sample 0.8NaW 

Observed Corrected 
Binding Binding 
Energy eV Energy eV 

292.6 284.6 

538.6 530.6 

45.5 37.5 

43.4 35.4 

268.0 260.0 

254.6 246.6 

1079.2 1071. 2 

Observed 
Shift 

eV 

7.40 

4.35 

4.40 

1.00 

1.40 

3.80 



APPENDIX 3 

X-ray Photoelectron Spectroscopy 

Sample KO.05 W03 

Peak Area Relative 
Element Peak Area S.F. Ratio 

K2p 15.5 10.56 0.101 

W4d 665 104.40 1.000 

Sample KO. 2 W03 

Peak Area Relative 
Element Peak Area S.F. Ratio 

K2p 34.5 23.50 0.238 

W4d 630 98.90 1.000 

Sample KO.3 W03 

Peak Area Relative 
Element Peak Area S.F. Ratio 

K2p 57.0 38.83 0.361 

W4d 685 107.54 1.000 



APPENDIX 3 

X-ray Photoelectron Spectroscopy 

Sample KO.6 W03 

Peak Area Relative 
Element Peak Area S.F. Ratio 

K2p 95.0 64.71 0.632 

W4d 652.5 102.43 1.000 

Sample KO.8 W03 

Peak Areq Relative 
Element Peak Area S.F. Ratio 

K2p 125.5 85.49 0.807 

W4d 675 105.97 1.000 

Sample NaO.05 W03 

Peak Area Relative 
Element Peak Area S.F. Ratio 

Na1s 103 220.56 0.084 

W4f 12255 2627.01 1.000 



Sample NaO. 2 W03 

Element 

Na1s 

W4f 

Sample NaO.3 W03 

Element 

Na1s 

W4f 

Sample NaO. 6 W03 

Element 

Nals 

W4f 

APPENDIX 3 

X~ray Photoelectron Spectroscopy 

Peak Area 

315 

13281 

Peak Area 

509.5 

13464 

Peak Area 

742 

12084 

Peak Area 
S.F. 

674.52 

2846.95 

Peak Area 
S.F. 

1091. 01 

2886.17 

Peak Area 
S.F. 

1588.87 

2590.35 

Relative 
Ratio 

0.237 

1.000 

Relative 
Ratio 

0.378 

1.000 

Relative 
Ratio 

0.613 

1.000 



APPENDIX 3 

X-ray Photoelectron Spectroscopy 

Sample NaO.8 W03 

Peak Area Relative 
Element Peak Area S.F. Ratio 

Na1s 908 1944.33 0.823 

W4f 11019 2362.06 1.000 



Element 

K2p 

W4d 

Nals 

W4f 

APPENDIX 3 

X-ray Photoelectron Spectroscopy 

Sensitivity Factors 

Photoelectron Signal Intensity 

1.468 

6.370 

0.467 

4.665 



APPENDIX 4 

Calculation of Copper Surface Area in 

CUyKxW03 from N20 Decomposition 

Weight of sample used 

N2 residual pressure 

(1 Torr = 133.33Pa) 

= 1. 03579. 

= 2.77 Torr. 

= 369.32Pa. 

Using the gas equation; 

where PR is the residual N2 pressure (369.32Pa). 

VE is the equilibrium volume (30.67 x 10-6 m3). 

R is the gas constant (8.314Jmol- l ) 

T is room temperature (295K) 

n is the number of moles of N2 

n = 369.32 x 30.67 x 10-6 

8.314 x 295 

= 4.62 umoles of N2 

Amount of oxygen adsorbed by sample; 

= 4.62 umo1es of 0 

= 4.46 umo1es of 0 per gram of sample 

= 2.68 x 1018 oxygen atoms per gram of ~amp1e 

Assuming Cu : 0 = 2: 1 

Therefore copper surface atoms 

= 5.36 x 1018 

Assuming there are 1.41 x 1019 Cu atoms per m2; 

Cu surface area = 0.38m2g-1 sample 
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