
FACTPLA
FUNCTIONAL ANALYSIS AND THE COMPLEXITY OF TESTING

PROGRAMMABLE LOGIC ARRAYS

A THESIS SUB!v1ITTED

FOR THE DEGREE OF DOcrOR OF PHll..OSOPHY

By

S. L ABBAS (BSc., MSc.)

DEPARTMENT OF ELECTRICAL & ELECTRONIC ENG.

BRUNEL (THE UNIVERSITY OF WEST LONDON)

UXBRIDGE, MIDDLESEX, U.K., UB8 3PH

MAY 1988

ABSTRACT

A computer aided method for analyzing the testability

of Programmable Logic Arrays (PLAs) is described. The

method, which is based on a functional verification

approach, estimates the complexity of testing a PLA

according to the amount of single undetectable faults in

the array structure.

An analytic program (FACTPLA) is developed to predict the

above complexity without analyzing the topology of the

array as such. Thus, the method is technology invariant

and depends only on the functionality of the PLA. The

program quantitatively evaluates the effects of

undetectable faults and produces some testability measures

to manifest these effects.

A testability profile for different PLA examples is

provided and a number of suggestions for further research

to establish definitely the usefulness of some functional

properties for testing were made.

TO MY PARENTS,
BROTHERS & SISTERS

Samir

ACKNOWLEDGMENT

I should like to express my sincere appreciation and
deep gratitude to prof. G. Musgrave for his agreeing to
be my supervisor and for his guidance, patience, and
continuous encouragement throughout this study.

Thanks are due to Dr. T. Alukadi and Dr. M. Hadjinicolaou
for their useful and stimulating discussion and to all my
colleagues at BruneI 'CAD group'.

CONTENTS

CHAPTER 1 : INTRODUCTION 1

1.1 INTRODUCTION 0 • • • • • • • • • • • • • • •• 2

1.2 FAILURE MECHANISMS 3

1.3 TESTING PROBLEMS 6

1.3.1 Cost of Functional Testing 8

1.3.2 The Effects of Undetectable Faults 9

1.4 TESTABLE DESIGN ISSUES 11

1.4.1 Design For Testability 13

1.4.2 Testability Analysis 15

1 . 5 SUMMAR Y .. 1 6

CHAPTER 2 : FAULT ANALYSIS IN PROGRAMMABLE LOGIC ARRAYS .. 19

2.1 INTRODUCTION 20

2.2 THE STRUCTURE OF PROGRAMMABLE LOGIC ARRAyS 21

2.2.1 PLA Implementation 23

2 .2 .2 PLA Folding 25

2.2.3 Impact of PLAs on Logic Design 26

2.3 FAULT MODELING IN PROGRAMMABLE LOGIC ARRAYS 27

2.3.1 Stuck at Faults 27

2.3.2 Bridging Faults 29

2.3.3 Crosspoint Defects 33

2.3.4 The Product Term Fault Model 35

2.4 TESTING PROGRAMMABLE LOGIC ARRAYS 37

2.4.1 Using The PLA Logic Model 37

2.4.2 Using The PLA Personality 38

2.4.3 Using The PLA Functional Specification 39

2.5 FAULT MASKING IN PROGRAMMABLE LOGIC ARRAYS 40

2.6 MULTIPLE FAULT DETECTION IN PLAs 42

. . • • . . • . . • . . . • • . . • • . . • •. 44

CHAPTER 3 : FAULT MASKING EVALUATION IN PLAs 46

3.1 INTRODUCTION 47

3.2 PRIME IMPLICANT METHOD FOR TEST GENERATION 48

3.3 FUNCTIONAL LEVEL CHARACTERIZATION 51

3.4 REDUNDANT FAULTS IDENTIFICATION IN PLAs 56

3.4.1 Redundant Growth Faults 58

3.4.2 Redundant Shrinkage Faults 61

3.4.3 Redundant Appearance Faults 66

3.5 MASKING INFLUENCES ON MULTIPLE FAULT COVERAGE 67

3.5.1 Masking Evaluation in a Single_Output PLA ... 69

3.5.2 Masking Evaluation in a Multiple_Output PLA . 72

3 • 6 SUMMAR Y •• 7 3

CHAPTER 4 : FACTPLA PROGRAM IMPLEMENTATION 75

4.1 INTRODUCTION 76

4.2 FAULT DATA STRUCTURE 77

4.3 PROGRAM STRUCTURE 78

4.4 FACTPLA FOR A SIMPLE (n,ffi,l)_PLA 82

4.4.1 Algorithms For a (n,ffi,l)_PLA 83

4.4.2 Application on Switching Theory 87

4.5 FACTPLA GENERALIZATION TO MULTIPLE OUTPUT PLAs ... 89

4.6 EXPERMENTAL RESULTS 92

4 . 7 SUMMAR Y .. 9 6

CHAPTER 5 : CONCLUSIONS 99

5.1 CONCLUDING REMARKS 100

5 . 5 FUTURE WORK 102

REFERENCES

APPENDIX A
APPENDIX B
APPENDIX C

·
· .
· .
· .

105

108
112
117

CHAPTER ONE

INTRODUCTION

1

2

1.1 INTRODUCTION

The rapid evolution of semiconductor technology

t owa rds higher device densities has increased the effort

to prove the design validations manufacturing quality~ and

I onge r term operational reliability. With increasing

circuit density, a vast amount of data processing and

storage are required to perform testing. Examples of this

type indicate that a test pattern generation program could

run for several weeks for complex circuits like that of a

Micro Vax computers. This can account for about 60% of

the cost of test. It has been noticed that the best

measure of

simulation

the test

programs;

effectiveness

the most

has involved fault

costly part of test

preparation in Large Scale Integration (LSI) and Very

Large Scale Integration (VLSI) environments. Such programs

are usually based on a simple fault model for the circuit

under test. The cost of the test may increase to such an

extent as to regard the circuit as untestable, i . e • the

and cost of test pattern generation, evaluation

application are beyond the budget.

Most automated test generation procedures assume 'single'

since multiple faults analysis is, in general,

much more complicated [1]. The reason for such complexity

come from

signal

the fact that multiple faults assume some sort

of independencies that may defeat fault

sensitization required to generate the test patterns.

This implies that eve ry single fault is detected and

repaired before some other fault can occur.

3

In practice, however, most digital circuits tend to

contain various undetectable faults. Due to the phenomenon

among faults, the existence of such of masking

undetectable faults has a great influence on testing high

scale integrated circuits.

In the following review the basic issues and problems in

testing digital circuits are briefly discussed. Recent

techniques to overcome the testing problem, namely

design for testability

introduced.

and testability analysis, are also

1.2 FAILURE MECHANISMS

The design of a digital system can be viewed as a

sequence of transformations of design representations at

different levels of abstraction [2]

(a) functional (informational) representation,

(b) logic (gate) representation,

(c) physical (circuit or geometric) representation.

Thus, when modeling a circuit malfunction, an appropriate

model for the malfunction must be established at each

level. This is a "failure" in the circuit level, "fault"

in the gate level, and "error" in the informational level.

However, for ease of computation, the fault

possess some basic properties

model

1. easily definable and manipulatable by computer,

should

2 . able to reflect a variety of technological

and

failures,

3 . able to give a satisfactory coverage

failures.

of

4

the actual

In digital environments, a switching variable can have one

out of two logical values; ZERO and ONE. Hence,

is easier to handle at the gate fault modeling

representation and most fault detecting techniques have

adopted this policy. Accordingly, the stuck or stuck at

fault model represents a typical logical fault model which

is frequently considered. In this model, an arbitrary

s ig na I Ii ne k in the circuit is assumed to be fixed

permanently at either logical 0, k stuck at ZERO (k S@ 0),

or logical 1, k stuck at ONE (k S@ 1).

For testing purposes, single stuck at fault model, in

which the circuit is assumed to contain at most one stuck

fault l is widely used. More complex gate level

models are the multiple stuck and bridging faults.

multiple stuck fault model~ it is assumed that

fault

In the

signal

lines can have values that are fixed and independent of

the other signals in the circuits. The bridging fault

model assumes that two signal lines are connected together

so that a wired logic occurs.

However, the above classes of gate level faults have

drawbacks [3]

1 • there are many switch level faults which do not

some

fall

into these classes. Some switch level shorts and

opens can not be modeled by many gate level faults

because they involve a modification of the function

realized by the relevant logic diagram.

2 .

3 .

5

the logic diagram does not always constitute a real

model of the circuit diagram. For instance, in MOS

technology many stuck at faults in a gate level

representation of a MOS device do not correspond to

any physical failures of interest.

with increasing circuit density, logic level

representation

blocks.

s wi t c hes

Also,

then

results

·when

in large number of component

considering bi directional

as many as 15 logic levels have to be

considered. The complexity of testing and the number

of test patterns will increase accordingly.

Figure 1.1 illustrates a failure that can not be modeled

as a stuck fault. The nMOS complex gate given in Figure

1.1 consists of a LOAD and a DRIVER. If the input to a

Field Effect Transistor (FET) is logic 1 , then a

conducting path between its other leads exists. Otherwise,

these leads do not conduct. If, due to some input

assignment, a conducting path between the ou tpu t of the

gate ~nd ground exists, then the output of the gate is at

logic ZERO. However, if there is no such path, then the

depletion transistor in the LOAD section of the gate will

pull up the output to Vdd (logic ONE). Obviously, there

are 4 possible conducting paths which may force the output

to logic ZERO.

Now, if the permanent connection between Ul and U2 in the

above gate is broken for some reason, then only two

conducting paths remain, i . e . F + This

'faulty' function does not correspond to any stuck fault

LOADl

D~ERi
XI-Il=

UI

x3-1

Xl

X2

X3

X4

Vdd

F

FET

(a) a Complex nMOS Gate

X2
X4

l-x2

U2

I-X4

(b) original function (c) modified function

Fig. 1.1 Effect of Circuit _level Faults

6

in the equivalent logic diagram of the gate.

Accordingly) fault models, other than stuck and bridging

faults, have gained popularity. Current efforts are being

directed towards modeling failures at both switch and

functional levels. An advantage of testing switch level

failures is that in some cases it may be possible

utilize the structural properties (regularity,

to

for

instance) of the circuit to obtain a much simpler test set

compared to the one generated to the gate level

representation. However, testing switch level failures

involves a much greater amount of complexity. On the other

hand, functional level fault models help reduce the

complexity of testing highly dense circuits. In this case,

a very accurate fault model is required so that it can

reflect the interconnection structure of the transistor

c i rcu it.

1.3 TESTING PROBLEMS

In today's technology, the Integrated Circuit (IC)

chip represents the smallest physical element which has to

be considered in the manufacturing environments. At the

disk end of the IC fabrication process, the wafer

(approximately 75mm in diameter) is containing many copies

(called die) of the IC arranged in a rectangular matrix.

Typically, only a minority, perhaps 30%, of these copies

work properly. Hence, the actual step of testing begins at

the fabricated wafer [4]. Figure 1.2 shows a simplified

flow chart for testing the ICs. Test Tl is performed to

FABRICATE
WAFER

YES

YES

SLICE &
ENCAPSULATE

YES

~N......;O_-?o-t DISCARD WAFER

NO DISCARD CHIP

DISCARD

Fig. 1.2 Ie Manufacturing & Testing

7

check whether the fabrication process has been carried out

satisfactory.

Having established that the wafer contains an acceptable

percentage of good circuits, the actual copies must now be

tested (test T2) on wafer.

testing can be recognized

Three different types of Ie

1 • wafer sort each Ie on the wafer must be tested to

identify the good circuits)

2 • parametric testing parameters such as propagation

delay and drive currents are checked, and

3. functional testing: determine whether or not the Ie

carries out the function for which it was designed.

Due to access limitations on wafer, parametric and

functional testing are restricte4 at this stage. Hence,

the Ie must also be tested after it is packaged (test T3),

a fte r it is mounted on a board, and perhaps periodically

after it is placed in a system. However, among these,

functional testing has been shown to be the most expensive

part of the process. As the technology progresses towards

high levels of integration, the ratio between the number

of devices on a chip to the chip input/output pins

increases considerably. Such chip 'complexity' has caused

a rapid increase in

testing.

the cost of performing functional

In the following, the problems involved in testing digital

circuits are presented in terms of two parameters; the

cost of functional testing and the effects of undetectable

8

faults.

1.3.1 Cost of Functional Testing

The basic procedure of functionally testing digital

circuits involves three main activities [5]

1 •

2 .

3 •

Test Pattern Generation (TPG) deriving and

selecting a set of input stimuli which is either

'exhaustive',

generated.

'random')

Test Pattern Evaluation

or 'algorithmically'

(TPE) justifying the

effectiveness of the test patterns using one of two

different techniques; fault simulation and

fault insertion.

Test Application and Fault Finding (TAFF) applying

the test pattern to a real circuit by means of

sophisticated Automatic Test Equipment (ATE).

Accordingly. the cost of testing digital circuits may be

divided into

1 •

2 •

TPG cost relates to one of two parameters

(i) the computer time required to run the TPG program

plus the capital cost of

(automatic))

developing the program

(ii) the number of man hours required for a person to

write the test pattern plus the increase in system

development time caused by the time taken to develop

the tests (manual).

TPE cost depends mainly on fault simulation

techniques. Such techniques require an accurate model

9

of the circuit under test and repeated evaluation of

circuit signals for each fault tak~n from the fault

list. It has been proved that fault simulation run

times represent the most considerable contributor to

overall testing cost [5].

3. TAFF cost: depends on

(i) the cost of Automatic Test Equipments and their

interface requirements for different types of

circuits,

(ii) the tester time required to apply the test.

The Automatic Test Equipments have become very

exp ens ive and the computing time required to

calculate the input patterns to be applied to the

circuit has become very costly.

1.3.2 The effect of undetectable faults

A digital circuit is said to be redundant with respect to

some fault if the fault is undetectable, i . e • , the

function realized by the circuit with the fault present is

equal to the function realized by the ~ircuit without the

f aul t [1] • In sketch (a) of Figure 1 .3) the fault a S@O

(or S@1) is not testable since the output F is equal to

logic 'ONE' if and only if X =X
1 2

=1 regardless of whether

this fault is present or not. Most testing methods are

based on the assumption that the network under test is

irredundant. Therefore, a great amount of computation may

be wasted in trying to find tests for undetectable (or

redundant) faults. Beside, the existence of undetectable

faults in any circuit has a great influence on two of the

X3~a~-L_.-/

(S@O)

(a) Undetectale fault Ct

a
(S@ 1)

(S@O)

(b) Fault a Masks Fault. {3

t

(c) Dircct Graph Representation

F

Fig. 1.3 illustrations of undetectable Faults in Digital Circuits

10

most important aspects in functional testing

(i) Fault Masking

In a general digital circuit, a non_detectable fault may

mask the detection of a normally detectable fault for a

given test pattern. An example of fault masking is shown

in sketch (b) of Figu re 1.3. The fault a (S@l) is

undetectable at the output node F because of the

inconsistent assignment at inputs Xl' X
2

, and X
3

• The

fault ~ (S@O) is detectable at F by the input test

(110), which is the only test available for this fault.

However, the presence of a (S@l) prevents (masks) the

detection of ~ (S@O). The above masking phenomenon is

defined below

Definition 1.3.1. A redundant fault f. masks a testable
1

fault f. under the test T if and only if T detects f. but
J 1

does not detect the combined fault f.f •
1 j

Fault masking phenomenon may also be described by a direct

graph' (see sketch c of Figure 1.3). Generally, each node

in the graph represents a fault (single or multiple) and

an arc goes from node A to node B with label t if fault A

masks faults B under test t, i.e., B is detected but AB is

not. If the 'masking graph' is designed for a given test

set, i.e., a complete single fault test set, the labels of

its arcs may be omitted [29]. Note that fault masking may

occur in irredundant circuits as well. As an illustration,

consider the following NAND gate

a

1 1

The test "X==O~ Y==l" detects the single fault "line a S@l".

If a S@l and ~ S@1 are both present, then the above test

will not detect the fault a S@l. This masking is not a

problem as the test "X==1, Y==1" detects the fault ~ S@1.

Nevertheless, in a general combinational circuit, the

existence of loops of successively masking faults is

greatly affects the ability of single fault test

cover mUltiple faults as well.

sets to

(ii) Multiple Fault Detection

In a general digital circuit, there are many more mUltiple

faults than

contain up to

single

(3
k

faults. A circuit with k lines may

-1) possible multiple faults [1] •

Accordingly, the consideration of various multiple faults

would be extremely impractical. on the other hand, the

single fault model does not accurately cover various

failures which can o c cu r in highly dense circuits.

However, previous research on mUltiple faults has come to

the assumption that a complete single fault test set also

detects most of the multiple faults [1]. The validity of

this assumption is greatly affected by the amount of

undetectable faults and the possibility of fault masking

occurrence.

1.4 TESTABLE DESIGN ISSUES

Undoubtly, the discussion given in the last section

has indicated that it is not enough just to design a

circuit, after it is built it has to be tested easily.

Furthermore, it has been justified that testing costs

1 2

contribute considerably (50% - 60%) in overall product

cost. Current trends for increasing circuit density have

significantly decreased system hardware cost. The

implication of such trends had led to a situation in which:

1 . testing is becoming more difficult since the number

of pins per IC is not increasing in proportion to the

number of gates per IC. Thus, the ability to

.... control and 'observe signal values for the logic

on chip is reduced) and

2 . the percentage of system cost due to testing is

increasing drastically.

It appears, therefore, that the only economical method to

reduce testing costs is to include circuitry on each chip

to facilitate testing. The expenditure, in the design

stage, of adding such circuit overheads will result in

overall reduction in cost. Two key concepts are involved

in all strategies of designing testable circuits;

controllability (a measure of the ability to set and reset

every node internal to the circuit), and observability (a

measure of the ability to observe the state of any node in

the circuit). These circuit attributes reflect the degree

of circuit testability. there exist two main

techn~~ues which relate to circuit testability:

1 • Design For Testability (DFT) addresses the testing

problem during design by building testability in the

circuit by design, and

2 .

1 3

Testability Analysis a DFT method that approximates

the difficulty of testing before generating the test

patterns.

1.4.1 Design for testability

These techniques improve control and observation

properties of the digital circuits. They may be divided

into two main categories

1 •

2 .

Ad Hoc directed towards correcting specific design

features that create testing problems. The most

direct way to do this is to introduce test points,

that is, additional circuit inputs and outputs to be

used in the testing mode. These points allow the

internal signals to be controlled and observed during

testing. Such technique is seen to be specific and

not generally applicable to VLSI and WSI due to the

Ie pin limitations. On the other hand, it has been

estimated that the complexity of test pattern

gen~rating and fault simulation is proportional to

the number of logic gates to the third power [7].

Therefore, the partitioning of large circuits and the

indivi2uRl testing of the sub circuits should reduce

the overall testing cost. However, this method is

still unhelpful if the sub circuits contain many

memory devices which require initialization.

Structured

generally

have been

applying a set of design rules which are

applicable.

introduced to

Basically,

control

these techniques

and observe the

1 4

memory devices, therefore, the test generation

problem could be reduced to the one of just testing

the combinational logic.

Scan Set, Random Access

Scan techniques (Scan Path)

Scan, and Level Sensitive

Scan Design LSSD) permit access to internal nodes of

a circuit without requiring a separate external

connection for each node accessed. Scan Path is the

most recognizable approach to describe the concept of

these techniques. In the testing mode of Scan Path

circuits, all registers or flip flops are converted

into s hif t

shifting in

responses to

registers and connected as scan path for

test patterns

a tester.

and

The

shifting out

IBM LSSD uses

test

this

approach. However, due to the nature of serial data

transmission this approach involves a time delay for

applying the tests and receiving the responses.

Furthermore, expensive test equipments and storage

for a large number of test patterns and responses are

required. Alternatively, Built in Self Testing

(In Chip Tester or Built in Logic Block Observation)

uses some silicon area to eliminate the disadvantages

associated with Scan techniques. On the other hand,

this method suffers many drawbacks. For instance, the

extra c!!i~cn area devoted for the test circuitry

reduces reliability and computational capacity of the

chip, as well as efficient automated test procedure

is required. A review of most DFT techniques is well

presented in a paper by Williams and Parker [7]

1.4.2 Testability Analysis

Having established the philosophy that

overheads and general design constraints

significant in the design method, it is vital

15

additional

are

that

very

the

designer has all the necessary information to make his

design judgments. For instance, it is desirable to

to

limit

the "extra additions" to those necessary insure

adequate testability of the design. Therefore, a need for

a 'testability measure' has become widespread. It is easy

to argue that the use of an Automatic Test Pattern

Generation (ATPG) program may provide a measure for the

circuit testability. For example, parameters such as the

run time of the program, the number of test patterns, and

the fault coverage may constitute the above measure.

However, two difficulties are associated with such direct

approach

1 • the large e xp ens e involved in running the ATPG

program, and

2 • the lack of information about how to improve the

test:abillty of a circuit with poor testability

measure.

Alternatively, testability analysis programs have been

developed to estimate the design testability by predicting

the cost (running time) of generating the test patterns.

These programs tend to quantify the circuit properties of

controllability and observability prior to determine its

testability without actually running any ATPG program.

Program [8]) , SCOAP (Sandia

16

'Controllability Analysis Program [9]); TESTSCREEN [10].

VICTOR (VLSI Identifier of Controllability, Testability,

Observability, and Redundancy [11]), and CAMELOT (Computer

Aided Measure for Logic Testability [1 2]) are the most

popular testability measure programs.

1.S SUMMARY

In the light of the above discussion, the very large

scale digital circuits make testing extremely difficult)

and when test patterns can not be obtained within the

allowed computation time, it will be difficult to achieve

a high rate of test coverage. Furthermore, mUltiple fault

faults coverage mus t also be adequate since these

represent an

Testability

important

analysis

parameter

p rog rams

in VLSI environment.

have been offered as

solutions to the problems of test complexity and coverage.

The information obtained by such programs may be used to

develop

testable

some design constraints for achieving easily

designs. For instance, advance knowledge of all

redundant faults and their masking influences could be

used to estimate the complexity of testing, multiple fault

coverage capability of a single fault test set and, hence:

the degree of testability for a given digital circuit.

Clearly, the philosophy behind any test strategy may serve

to systematically obtain such knowledge. Functional

testing of 2 level AND OR networks seems to be very

attractive in this context.

1 7

The above concept represents the theme of the work

established in this thesis as applied to programmable

logic arrays; one of the most popular structures in VLSI

design. FACTPLA (Functional Analysis and the Complexity of

Testing PLAs) is a fast, compact and systematic program

which has been developed to identify redundant faults and

quantify their masking effects in general PLAs. The

contact fault model has been adopted as it represents the

most dominant failure model in these arrays. The program

a Is 0 indicates the way with which more realistic test

patterns may be chosen for a PLA, i . e • , which patterns

s houl d be included in the test set in order to cover "as

many mUltiple faults as possible.

Chapter 2 of this thesis introduces PLAs, as an

increasingly powerful tool for LSI and VLSI design.

Various types of faults that are apt to occur in a PLA are

analyzed and the contact fault model is justified. A brief

review of the previous strategies for testing PLAs is also

discussed.

The theoretical strategy for the FACTPLA program is

presented in Chapter 3 • The method of prime implicant

testing of irredundant 2 level AND OR networks, as

suggested by Kohavi [13], is elaborated prior to analyze

the effects of undetectable faults in a PLA. This is

analyzed and based upon the functional specification of a

P LA (a s a set of product terms), therefore generating

testability criteria. for the array structure. A simple

hueristic is used by adopting the decimal code of the

18

product term as an ordered set of minterms. The policy of

choosing the realistic tests for detectable faults is also

justified.

Chapter 4 presents the implemented FACTPLA algorithms for

predicting the

difficulty of

impact

testing

of

the

redundant contact faults on

PLA. The applications and

complexity of such algorithms are also discussed.

Suggestions to direct a future research towards deriving a

more testable PLA

applications of the

Chapter 5.

structure and

FACTPLA program

generalizing the

are summarized in

CHAPTER1WO

\ULT ANALYSIS IN PROGRAMMABLE LOGIC ARRAYS

20

2.1 INTRODUCTION

Considerable technological achievement over the last

few years has produced an increasing level of integration

of components onto a single Integrated Circuit (IC) chip.

Very Large Scale Integration (VLSI) plays a major role in

the development of complex digital systems.

S tan dar d. I C s have been produced to meet several

requirements of both simple combinational circuits and the

more complex sequential networks. There are some

applications, however, that require a circuit which is not

available in standard IC form. The concept of custom or

semi custom design has been

flexibility and easy design

int roduced

changes. In

to provide

practice,

different digital semi custom ICs can be classified as

belonging to one of the following main groups [2]

(i) Gate Arrays (or Uncommitted Logic Arrays, ULAs)

(ii) Cell Based Systems

(iii) Programmable Logic Devices (Matrix Logic)

Programmable Logic Devices are basically capable of

implementing arbitrarily complex logic functions in sum of

products (SOP) forms. Depending on the manufacturer, the

best_known examples of these devices are the familiar PROM

(Programmable Read Only Memory) and FPLA (Field

Programmable Logic Array). Recently, PAL (Programmable

Array Logic), FPGA (Field Programmable Gate Array) and

FPLS (Field Programmable Logic Sequencer) have been

introduced and added to the category of these devices.

Figure 2 . 1 represents an overall architecture which

summarizes the comparison between PROM, FPLA and PAL. It

is obvious that all these devices perform similar logic

functions) the differences are determined by whether the

AND matrix, the OR matrix or both are programmable.

2.2 THE STRUCTURE OF PROGRAMMABLE LOGIC ARRAYS

Basically, the PLA is a logical element designed to

produce sum of products expressions. It allows more

efficient use of the silicon area by representing a set of

logic functions in a compressed yet regular form. A PLA

implements a two stage combinational logic through a pair

of adjacent rectangular arrays. Thus, conceptually a PLA

may be viewed as a collection of 2 level AND OR or

NAND NAND or NOR NOR networks.

The PLA is an important building block for VLSI c i r cu its.

It is commonly used to design instruction decoders of

microprocessors, and combinational circuitry of

finite state machines. The key technological advantage of

using a PLA in an IC technology relies on the

straightforward mapping between the symbolic

representation and its physical implementation. Any

combinational logic function can be described by a logic

cover. For PLAs this logic cover is represented by a pair

of matrices, called input and output matrices. The

symbolic _ physical mapping is obvious in Figure 2.2. In

this Figure, each input variable of the logic function is

represented by a column in the input matrix in sketch (a).

AND
ARRAY

p

OR
ARRAY

(a) PROM: AND array pre_programmable. Fully decoded n inputs
n

yield to all m = 2 possible product terms.

OR array user_programmable. Any combination of the

m products can be ORed onto one of the R outputs.

(b) FPLA: AND array user_programmable. Generate a chosen
n

products of m «2) products from n inputs.

OR array user_programmable. Any combination of the
n

m products «2) can be ORed onto one of the R outputs.

(c) PAL : AND array user_programmable. Generate a chosen products
n

of m «2) products from n inputs.

OR array pre_prograamble. Groups of products are ORed

onto the R outputs according to a pre_arranged pattern.

Fig. 2.1 a Comparison of Programmable Logic Devices

22

In sketch (b) of Figure 2.2, each variable corresponds to

a p ai r of columns in the left part of the physical

implementation. Every implicant of the logic function is

represented by a row in the symbolic representation • The

input part of each row represents a logical product of

some input variables. Finally, every output of the logic

function corresponds to a column in the right part of the

physical array.

The implementation of a particular logic function is

performed by "programming" the PLA, i.e., by placing (or

connecting) an appropriate device at the intersection

points (between the rows and columns) specified by '1' or

'0' in the symbolic representation. The grid

(intersection) points between the input/output columns and

the product lines (rows) are called crosspoints. The left

part of the PLA structure shown in Figure 2.2(b) is called

the SEARCH or PRODUCT TERM array, while the right part is

called the READ or SUMMING array. A cross (contact) in

the SEARCH array represents the presence of an input

variable (uncomplemented or complemented) in the relevant

product term, while a cross in the READ array represents

the presence of a product term in some output function.

Accordingly, every PLA will

(devi'ces or fusible links)

structure personality.

have specific

which define

personalities

the overall

xl xl

.
'"

.

--t-

101

000

0*1

1 1 a

010

a 1 1

100

1 1 a
Input Matrix Output Matrix

(a) A Simple PLA (Symbolic)

x2 x2 x3 x3 Fl F2

. -
r-- "t-

(b) the PLA Representation

Fig. 2.2 Symbolic_ Physical Representation in PLAs

F3

PI

-
,,~ P2

P3

P4

23

PLAs are sized or specified by the following description

n * m * p

whe re

n number of input variables,

m total number of unique p_terms,

p number of output functions.

Thus, in a general

m(2n+p) crosspoints.

(n,m,p) PLA structure, there are

Partitioning the inputs to a PLA is performed with the aid

of a Bit Partitioning Network (BPN). Single and Double

decoders are the most common BPN used in PLAs [6].

2.2.1 PLA Implementation

PLAs are compatible with different technologies. For

example, in the AND_OR bipolar transistor implementation,

the AND matrix is implemented with diodes, and the OR

matrix is implemented with bipolar transistors. This

provides the designer with the ability to program his

array by blowing fusible links within the array.

In another fabrication method, the implementation is

possible with MOSFET technology where the presence or

absence of gate connections define the function realized.

This is the case with NMOS technology where NAND gates can

be made as well as NOR gates. However, in MOS technology,

it is convenient to exploit the use of NOR gates rather

than NAND gates (in terms of

design). Thus, the NOR NOR

performance and ease of

NMOS PLA implementation is

most common in VLSI MOS circuits [2].

24

However, a simple schematic diagram (identical to the

physical representation) has been adopted to represent the

PLA implementation of switching functions. For instance,

the bipolar FPLA realization and the MOSFET implementation

of thePLA shown in Figure 2.2 is illustrated in Figure

2.3 and 2.4 respectively.

For fault analysis and test generation purposes, the

personality of a PLA has been defined using two different

procedures for input and output columns [1 4] • In other

words, the functionality (personality) of a PLA can be

represented by a 0 1 matrix defined as follows

definition 2.2.1 given a row and an "output" column in a

f aul t free PLA, if there is a cross between the two (or,

there is no cross), then a 1 contact (correspondingly, a

o contact) is said to exist between the row and the

column.

definition 2.2.2 given a row and an "input" column in a

fault free PLA, if there is a cross between the two (or,

there is no cross), then a 0 contact (correspondingly, a

1 contact) is said to exist between the row and the

column.

The personalized crosspoints between input lines and rows

will be referred to as input contacts, while the

personalized crosspoints between

will be called output contacts.

output lines and rows

v

v

/

~------------~------------------ ~

Fig. 2.3 FPLA Realization (Bipolar Technology)

Fig. 2.4 nMS?S NOR_NOR PLA (MOSFET Technology)
\

25

The personality matrix for the PLA structure shown in

Figure 2. 2 is given below . .

Xl Xl X
2

X
2 X3 X3 FI F2 F3

I 0 0 I I 0 0 I 0

0 I 0 I 0 I 0 I I

0 I I I I 0 I 0 0

0 I I 0 0 I I I 0

2.2.2 PLA Folding

Being general purpose and programmable, the PLA is not

always a dense layout for specific functions. Most PLA

personality matrices are very sparse, so that a

straightforward mapping to physical design will result in

a significant waste of the silicon area. It is possible to

recover some of this lost area by topological manipulation

of the array. This kind of manipulation is known as

"folding", but it has the disadvantage of reducing the

permutability of the inputs and outputs at the same time

as reducing the area [2].

Rowand column folding of a PLA are techniques which

attempt to reduce the area by exploiting its sparsity.

Figure 2.5 shows a 5 input, 6 output, 8_product terms PLA

using an 'equivalent' area for a 5 input, 4 output,

4 product terms PLA plus It is easy to

realize that the OR plane is folded on both sides of the

AND plane which is situated in the middle. All rows and

some columns have been split to allow for more product

OR AND OR

Z5

'TI

P2

Z4 Z6

Fig. 2.5 Illustration of PLA Folding
Zl 23

26

terms and output functions, thereby resulting in a denser

PLA. It should be noticed, however, that the realization

of such structure imposes certain decomposability

properties on the output functions. For example, Z2 does

not depend on inputs il and i
2

; Zs is independent of i
3

,

i 4 , is and so on. Therefore, the design of compact PLA

structures requires very complex decomposability and

functional separability algorithms.

2.2.3 Impact of PLAs on Logic design

In additional to cost effectiveness and optimum memory

features, PLAs introduce some other design advantages

1. Fast and smaller system design.

The design and implementation time can be reduced

considerably due to the programmability and

flexibility of the arrays.

2. Easy design changes - edit flexibility.

The uncomplemented or complement values of any input

variable may be selected by some programming method.

However, if both values are programmed (selected) in

a product term, this term will never be selected

since X.X = O. In FPLAs, the above feature may be

used to deactivate (remove) any previously programmed

p roduc t term. Moreover, unprogrammed inputs

represent don't care assignment, therefore additional

input variables can be added to the old product term

at any time by programming the desired don't care

conditions. Also, a sum of products expression can be

bv adding new product terms. This can be

27

done by further a programming process in the OR plane

of the PLA.

2.3 FAULT MODELING IN PROGRAMMABLE LOGIC ARRAYS

When testing digital circuits) most of the physical

failures are modeled at different description levels using

various types of fault models. For the analysis of faults

in PLAs, the simple schematic diagram shown in Figure 2.2)

is used. In that Figure, stuck at faults; shorts, and

crosspoint defects are the most likely fault behavior to

occur. In the rest of this section, the relationships

among these faults are presented prior to justify the

validity of crosspoint defects as the basic fault model

for PLAs.

2.3.1 Stuck at Faults

With this fault model, one of the lines in the PLA is

stuck permanently to one of the two logic values; it is

commonly caused by a short to ground or to power.

Depending on the type of the implementational circuitry,

the effect is considered as one or more lines of the

equivalent logical model being stuck at 0 (S@O) or stuck

at 1 (S @ 1) • For example, for a PLA constructed with NOR

technology, the value on a product line (or on an output

line) is a NOR function of all the devices (contacts) on

it. Thus, all stuck at faults in a general PLA structure

can be represented by three fault categories in the

equivalent 2_level NOR_NOR network. These fault categories

are described below:

28

(a) Stuck at faults on input (bit) lines.

One of the input leads of the NOR gates in the first level

is stuck at logic ZERO or logic ONE. The number of inputs

to each NOR gate in this level is determined from the

personality of the relevant product line in the search

array. For fault detection purposes, only input lines S@O

of the NOR gate have to be considered [1].

In Figure 2.2, if an input line L is stuck at ZERO with

only one contact on it, then a literal corresponding to

this contact must have belonged to some product line p •

Accordingly, P may be activated by a proper input stimuli

and, hence, the effect of the S@O fault will be equivalent

to the missing contact between lines Land P.

the fault can be sensitized and the effect

through one of the outputs containing P.

is

Therefore,

propagated

On the other hand, if there exist more than one contact on

L, then L S@O fault will be equivalent to a multiple

contact fault whose components are all single missing

contact faults on the same input column. These fault

components are equivalent to single S@O faults occurring

simultaneously at the same logic level. It is well known

that stuck at faults can not mask each other if they occur

at the same logic level [16]. Therefore, the above fault

is still detectable. However, if L has no contacts on it,

then no sensitive path exists, and the fault is redundant.

(b) Stuck at Faults on product (word) lines.

These faults are considered as stuck at faults on the

innut leads of the NOR gates in the second logic level.

29

It is obvious from the previous discussion that a fault of

this type is equivalent to some crosspoint defect where a

contact at the crosspoint is missing.

(c) Stuck at Faults on output (function) lines.

In this case, both S@O and S@1 faults must be considered.

The faults are equivalent to missing and extra contact

faults along the faulty output line. However, in a single

output PLA, the output line has contacts on all its

crosspoints with the product lines. Thus, all tests for

the missing of these contacts cause the output line to

have logical value O. Accordingly, an output line S@O

fault is not guaranteed to be detected by such tests.

2.3.2 Bridging Faults

This is a short between two adjacent or crossing lines of

the PLA. The commonly used stuck at fault fails to model

logic circuit shorts [15]. Bridging faults are defined to

model these circuit

lines are connected

malfunctions.

accidentally,

When two neighboring

a wired logic is

performed at the connection. Since there are two types of

wired logic functions, namely the wired logic AND and the

wired logic OR, therefore, there are two types of Bridging

faults. For instance, in NMOS technology, an AND

between the shorted lines occurs

<-- bridging fault ====)

function

30

Since most logic circuits are built by one of the logic

families, only one type of bridging fault, either AND or

OR will be considered at a time. However, if the shorted

lines have the same personality then the resultant fault

effect is undetectable since both lines assume the same

logic value. Nevertheless, such fault has no influences on

the functional operation of the circuit and, hence, the

short is not important. Therefore, the key factor for

investigating the effects of shorts is to assume different

logic va lu e s on the affected lines. The set of all

possible shorts in a PLA structure may includes the

following

(a) shorts between output lines.

The short is testable if there exist a device at the

crosspoint between one of the shorted lines and one of

the product lines, such that no device between

P and the other shorted line
k

OR ~ ----~F-~~-r--~~
r., !)--/--i. L.-+...J+--+--"""-- I}

Y

Any test pattern detecting the extra contact defect at

the crosspoint between P
k

and F
j

is qualified to detect

the short under consideration. Depending on

implementational circuitry,

output F.
1

(0 Re d s h 0 r t) or on

the short is detected

output F.
J

(ANDed short).

the

on

3 1

(b) shorts between input lines (one or two decoders).

Let X. and X be the two shorted lines, then
1 j

with a single decoder: only one of the input lines has

logic value ONE (decoder output)

'D
E
C
0

Xi

D Xj
E
R

-

r
) shon / L

h f-J,
A
N
D

A
R
R
A
Y

If X = 1, then two possible cases may be considered
i

(i) X. becomes logical ONE (ORed short). Hence, the short
J

is detected by a test pattern for the extra contact

defect at the crosspoint between X. and product line
1

P
k

, such that Xj has a contact with P
k

.

(ii) X. becomes logical ZERO
1

(ANDed short). Hence, the

short is detected by a test pattern for the missing

contact defect at· the crosspoint between X.
1

and

product line P , such that X. has no contact with Pl·
I J

with two decoders

D
E
C
0
D
E
R

'--

D
E
C
0
D
E
R

'---

consider the following case

Xi .

1/
) ~ort

Xj

r ...,
L ~,

.

A
N
D

A
R
R
A
Y

32

(i) if the short is ORed, the fault is detected in the

same manner described in case (i) of the single

decoder.

(ii) if the short is ANDed, the fault is detected in the

same manner described in case (ii) of the single

decoder if and only if X. = o.
J

However, if X.
J

1, a

test pattern other than those belonging to the

contact defects test set is needed.

(c) shorts between product lines (AND plane).

Consider the following case :

A
N

Xi
V-

r h
D

1/ L fJ,
Xj

A
R
R
A
Y

(i) if the short is ANDed, the fault is detected by a

test pattern for the extra contact defect at the

crosspoint between Xi and Pk + 1

(i) if the short is ORed, the fault is detected by a test

pattern for the missing contact defect at the

crosspoint between Xi and P
k

provided that P k + 1 = 1.

(d) shorts between product lines (OR plane).

Consider the following case

o
R

A
R
R
A
Y \

-----4~--4-----~ ~

rh
1/ LJ.J,

F· J

(i) if the short is ORed, the fault is detected by a test

pattern for the extra contact defect at the

crosspoint between P k + 1 and F j .

33

(i) if the short is ANDed, the fault is detected by a

the missing contact defect at the test pattern for

crosspoint between P
k

and F
Jo

if and only if P = O.
k+l

(e) crossline shorts (AND or OR planes).

In this case, the short occurs between the metalization

and diffusion layers of the chip. An extensive analysis in

[16] and [17] shows that a crossline short is equivalent

to a mUltiple stuck fault at some logic level of the

logical diagram. Therefore, these faults are guaranteed to

be detected by some crosspoint defect tests.

Undoubtly, the above analysis reveals the influences of

layout and personality of a PLA on the coverage of

stuck at and short fault. However, it has been concluded

that any complete single crosspoint fault test set for a

PLA is also a very good test for most stuck and bridging

faults [16].

2.3.3 CROSSPOINT DEFECTS

This fault is the absence (missing) or the unnecessary

presence (extra) of a cross connection or device between a

bit line (input column) and a product line or between a

product line and a sum (output) line. Recall the

definitions of crosspoint contacts given in section 2.2.1,

crosspoint defects may also be defined as follows

definition 2.3.1 a single 0 contact (I-contact) fault is

said to exist in a PLA structure if due to some failure, a

O-contact (1 contact) of the fault free PLA becomes a

1 contact (0 contact) in the faulty PLA.

34

This type of fault is usually assumed for PLAs because it

is more accurate than the other two types. The

justifications for using the contact fault model

summari;;?;ed below

may be

1. fault collapsing can be performed within the contact

fault model [18]. Extra contact fault, at the

cro~spoint of an already selected input variable in

the AND plane, dominates a missing contact fault in

2 .

3 •

the OR plane for the same row. For example, in

NOR NOR technology, the relevant product line is

showing forced to zero as can be seen in Figure 2.6;

such an arrangement and its

representation. Thus, a test for this

equivalent

particular

f aul t is qualified as a test for the "existence" of

the product term P in the map of the output function.

the number of (single) crosspoint faults and

crossline bridging faults is a function of the area

of the PLA, while the number of the other (single)

faults is linear in the number of input, output, and

product lines. Since crossline bridging faults are

equivalent to some stuck at faults (see previous

section), then the number of the contact faults is by

far the largest of all the three types. Hence, the

size (length) of a single contact fault test set may

a Is 0

cover

be the largest. Accordingly, a higher fault

will be achieved by adopting this model.

the contact fault model allows efficient generation

of compact, technology invariant tests. The

Xl
X2

Pi

Pj

X : normal contact

@ : extra contact (fault)

(a) modified personality of a faulty-PLA

X2--------~------------______ ~ Pi

Xl----------------------------~

(b) equivalent representation in NOR_NOR technology

Fig. 2.6 Fault Collapsing in PLAs

35

structural regularity, and the ability of

representing contact f It au s at a higher, functional

level are good justifications.

2.3.4 THE PRODUCT TERM FAULT MODEL

As physical failures, crosspoint defects in a PLA may be

viewed as incorrect wire connections on the equivalent

logical diagram of the PLA. These connections are, in

f ac t, the programming points (crosspoints) of the search

and read arrays of the PLA. Figure 2.7(a) shows a simple

schematic diagram of a 4 input PLA implementing two

switching functions

- -
F = X X + X X + X X X

1 01 12 123

With the aid of Figure 2.7, the product term fault model

is described below:

(1) Growth Faults, G

If an input literal is disconnected from an AND gate, the

implicant generated by this gate will "grow" since it

becomes independent of some input variable. The effect is

equivalent to a missing contact fault in the search array.

In Figure 2.7(a), a missing contact fault (q 1) in the

search array causes

(Xl) as is illustrated in Figure 2.7(b).

(2) Shrinkage Faults, S

to an If an input literal becomes incorrectly connected

AND gate, then the corresponding implicant "shrinks".

Po =XoXl

/
PI =Xl~

2

/ 11 =~X3

/
P3 = Xl~X3

(a) Schematic Representation of a PLA

00 01 11 10 00 01 11 10
......

00'
~

1 00 · · · : · · · · ·
01 ~ 1 1 1 1 · 1 . 1 01 · . · · · ·
11 ~ 1 1 1 11 t 11 111 1 1 111

10 ·i 10 1
--.; ~

(b) Fault ql : Growth of Po (c) Fault q2 : Shrinkage of 11 '

0001 11 10 00 01 11 10
1 r-

00 T 1 OO 1
...

01 1 1 ·
01 : 1 . · ·

11 I 1 1 I 1 11 11 1 J .J]

10 1 1 10 1
--

(d) Fault q3 : Appearance of P3 ,. (e) Fault q4 or q5 :
Disappearance of PI

Fig. 2.7 Effects of Contact Faults on PLA Product Tcnns

For example,

implicant P
2

Figure 2.7(c).

an extra contact fault (q 2)

to shrink

(3) Appearance Faults, A

If an AND gate becomes incorrectly connected

36

causes the

to an OR

gate, then an implicant "appears" th f h on e map 0 t e

correspo~ding output. This is equivalent to an extra

contact fault in the read array. The effect of the extra

contact fault (q3) is shown in Figure 2.7(d)

(4) Disappearance Faults, D

If an AND gate becomes incorrectly disconnected from an OR

gate, then the corresponding implicant "disappears" from

the map of the relevant output function. Thus, a missing

contact fault (q4) will cause the disappearance of the

implicant PI as shown in Figure 2.7(e).

(5) Vanish Faults, V

If X. (X.) is an input variable already connected to some
J J

AND gate, then an incorrect connection of X.
J

(X.) to the
J

same AND gate will cause the corresponding implicant to

"vanish" • The effect is identical to the disappearance of

an implicant from the map of the output function.

To summarize, therefore

1 • an input 0 contact fault is the same as a growth

fault,

2 • an output o contact fault is equivalent to an

appearance fault,

3 .

4 .

an input I_contact fault is equivalent

vanish or shrinkage fault, and

an output 1 contact fault is the

disappearance fault.

2.4 TESTING PROGRAMMABLE LOGIC ARRAYS

The increasing popularity, in terms

37

to either a

same as a

of structural

regularity and flexible means of implementing

of Programmable Logic Arrays (PLAs) has circuits,

logic

imposed

the necessity to establish efficient test procedures for

these arrays.

Several approaches have been reported to generate a

minimum or near minimum test set for a PLA. They all are

affected, to some extent, by the basic fault model they

use and by the size of the PLA. In the following

subsections, a brief discussion on the use of various

fault models to generate tests for PLAs is presented.

2.4.1 Using The PLA Logic Model

Muelhdrof [19] and Cha [20,21] have used classical stuck

at fault test generation algorithms after modeling the PLA

as a functionally equivalent logic network. For example,

in MOSFET Technology, NOR gates are usually used to

implement the required function.

possible to employ a program that will

Accordingly, it

use a stuck at

is

zero

(S@O) criterion for all input lines of all NOR gates, and

both S@O and S@1 faults for all output lines of all NOR

gates to generate a complete test set. The procedure

always involves the selection (activation) of one product

38

always involves the selection (act; t") f
~va ~on 0 one product

line by assigning suitable input values (activity pattern

contains o , 1, and X : do not care) on the input columns

of the PLA.

It is obvious that the computational time of the above

test scheme increases considerably with the size of the

PLA due to the large number of component blocks produced

by adopting such a scheme.

2.4.2 Using The PLA Personality

Ostapko [22] used an abstract matrix representing the

AND OR personality of the PLA. In this method, for every

single crosspoint defect, it is necessary to determine the

equivalent bit pattern change that results from that

defect. Thus, given a PLA personality, crosspoint fault

detection is the same as testing that the ZEROS and ONES

of the personality matrix are functionally correct. Each

row in the personality matrix is regarded as a multi part

cube where the number of the cube parts depends on the

number of decoder networks. The method uses global cube

ordering and cube operations to derive the tests. The

resulting bit change can be analyzed to see whether or not

it would be detected. Thus, during the test generation

process the method requires repeated fault simulation to

determine the fault cover.

Eichelberger [23] associated with every used crosspoint

defect
a stuck at fault and established the necessary and

sufficient conditions to sensitize a test path through the

OR DIane of the PLA. The method uses a matrix representing

39

the PLA without expansion into . 1 equlva ent logic blocks. It

e xp 10 its the concept of redundant testing and expands its

application to generate tests for PLAs.

As thi complexity of the PLA increases, random testing

becomes inefficient due to the 1 arge number of 'used'

crosspoints. The probability of detecting a missing

crosspoint with a random pattern is not better than 1/2
n

,

where n is the number of used cross points [23].

2.4.3 Using The PLA Functional Specification

Somenzi [18], Smith [17], and Bose [1 4] have used the

cubical notation (see Appendix A) to represent the PLA

personality and to specify the set of the product terms.

Figure 2.8(a) shows a PLA specification matrix of the

following switching function

- -
FI = X

I
X

3
X + X

2
X

3
+ X

1
X

3 4

- -
F2 = X

I
X

3
X

4
+ X

2
X

3
+ X

2
X

3
X

4

In [1 8] , fault simulation is required to establish an

Excitation Cube, EC, representing the fault effect. The EC

is obtained by assigning proper logic values at the faulty

bit of the cube under consideration (see Figure 2.8(b)).

Fault effect propagation is performed by selecting those

conditions
in EC which cause one of the outputs to depend

on the fault to be covered. The necessary condition for

preventing fault propagation is defined as a Masking

Function MF; which is obtained always by deleting the

faulty cube from the PLA specification matrix as shown in

Figure 2.8(c).

40

A complete test set for a particular crosspoint defect is

given by

EC - MF

where (-) denotes the "set difference" operation, i.e., to

obtain those conditions in EC not covered by MF (see

Appendix A).

The methods described in [14] and [17] use the same policy

given in [18] as they analyze a crosspoint defect at a

higher levelo The effect of actual physical failures is

viewed in terms of changes in the product term

configuration on a Karnaugh Map, that is growth,

shrinkage,

terms.

appearance, and disappearance of the product

In [17], fault simulation and backtrack procedures are

required to perform fault sensitization to the outputs and

consistency assignments to the inputs. On the other hand,

the method described in [14] involves mass computations to

perform the necessary comparisons between the cubes

representing the product terms. The complexity of the

algorithms employed by this approach grows geometrically

with the number of the product terms in the PLA.

2.5 FAULT MASKING IN PROGRAMMABLE LOGIC ARRAYS

An important problem in fault detection is to verify

whether a single fault test set is able to detect all

multiple faults. A test derived for the detection of some

fault may fail this purpose in the presence of another

41

fault [29]. Similarly, a set of diagnostic tests derived

for a general PLA structure is not necessary a valid set,

if a fault occurrence in the structure is preceded by the

occurrence of some undetectable (redundant) faults. If a

testable fault is masked, the output may indicate no fault

during testing yet give erroneous response during normal

operation. The above phenomenon, called "masking" among

faults, has a great impact on fault detection in PLAs.

definition 2.5.2. A single contact fault (ql) is said to

be masked by another single contact fault (q2) for an

i n put v e, c tor X ,
t

if X
t

tests

simultaneous fault qlq2"

but does not test the

Referring to the logical view of the contact fault model,

the following properties specify all the necessary

conditions under which masking might take place in a PLAo

In these properties let

G denotes the set of all growth faults,

A denotes the set of all appearance faults,

S denotes the set of all shrinkage faults,

V denotes the set of all vanish faults,

D denotes the set of all disappearance faults, and

U : denotes the "set union" operation (see appendix A)

property 2.5.1 For a given test vector X
t

, a detectable

fault from the set (GUA) existing on some product line L.
1

of the PLA, can be masked only by 'one' fault from the set

(SLJDLJV) also existing on the same product line Lio

42

~roperty 2.5.2 For a given test vector x ,
t

a detectable

fault from the set (SLJDLJV) existing on some product line

L. of the PLA, can be masked only by a fault from the set
1

(GLJA) existing on some product line other than L .•
1

The above two properties are based on lemmas 2 and 3

respectively as defined by Agarwal [25] where equivalent

relationships have been proved.

2.6 MULTIPLE FAULT DETECTION IN PLAs

The problem of mUltiple fault detection irr PLAs is

mostly directed to the evaluation of the single fault test

set capabilities to detect multiple faults. The

evaluation is based on a rather general assumption ; an

irredundant PLA structure.

Agarwal [25] has proposed a modeled network, called Stuck

At Equivalent, SAE, network, which represents the complete

PLA structure. Each single crosspoint defect (contact

fault) is functionally equivalent to some stuck at fault

in the modeled network. The SAE network is shown to be a

3 level, internal fanout free with respect to any output

line, network. In an irredundant, internal fanout free

network, every multiple stuck at fault of size 2 or 3

(number of simultaneous faults) is covered by any test set

that covers only the single stuck at faults of the network

[26,27]. Accordingly, it has been stated that

"Every complete single contact fault test set of an

irredundant PLA covers every mUltiple fault of size 2 or

3" [25].

43

For multiple contact faults of size 4 and larger, the

concept of the 4-way masking cycle is involved. This

phenomenon occurs when four components (f
1

, f
2

, and

f 4) of a mUltiple fault of size 4 or more, are distributed

such that fl masks f4' f4 mask f
3

, f3 masks and

masks This phenomenon may be described by the

following direct graph:

An irredundant PLA with n inputs, m product terms, and p

outputs has been proved to have the following property

"Out of (m(2n
r
+p » ,

r~4, different contact faults of size

m
most (2).(n + r, at faults are not

covered by every complete single contact fault test set of

thePLA".

At the worst case, the maximum number of contact faults of

m 4
(2).(n + p/2) , as reported size 4 with 4-way masking is

in [25].

A close investigation to the above coverage Figures shows

that for an irredundant PLA with n=16, m=48, and p=8,

there are two cases to be considered:

case (i) r=4 the number

(m (2 n
4

+ p)) • the total

m 4
(2).(n + p/2) is a mere .03% of

44

Thus, 99.97% of all mUltiple contact faults of size 4 are

to be covered by each single contact test set.

case (ii) r>4 in this case, if r becomes large the bound

h (m(2n+p)) becomes greater t an .
r

Thus, a practical use of the above property is only

convenient for values of r not exceeding 8.

Similar evaluations have been described in [28] and [2 9]

by Rajski and Tyzer. They quantitatively predicted the

mUltiple contact fault coverage capability of a single

contact fault test set in a PLA. The problem is studied

from the point of view of the theory of combinations.

They have shown that some of the multiple faults of size

r, r~4, which contain a 4-way masking could be detected by

a single fault test set of the PLA. The validity of this

point depends on the types and locations of the fault

components other than those involved in the 4-way masking

cycle.

2.7 SUMMARY

Test sets derived for the detection of single crosspoint

defects in a PLA can not be safely used, if the PLA

contains undetectable crosspoint faults. This is due to

the phenomenon of masking among faults. The necessary

conditions under which fault masking might take place in

PLAs are presented using the product term fault model.

The work presented in [25,28,29] is based on an

"irredundant" PLA. The attempt was to predict the ability

of single fault test sets to detect multiple faults. The

45

coverage results given in the above papers, however,

not be used for PLAs having redundant faults, unless

can

the

PLA is converted to a crosspoint irredundant structure for

testing purposes.

No known method exists to convert a general PLA structure

to an irredundant one without using extra hardware. For

example, the control input procedure described by

Ramanatha [30] implies that a number of control inputs

(extra input columns) may be added to obtain a crosspoint

irredundant PLA structure.

Other techniques have been proposed to augment a PLA for

improving its t est a b'i lit Y [3 1 - 3 7] • They all are based on

the idea of adding extra hardware to achieve high fault

coverage and to overcome the problems of undetectable

faults. Therefore, an extra silicon area must be devoted

to serve for testing purposes, and faults in this

additional test circuitry (mostly sequential) must also be

considered.

Ln the following Chapter, the influences of undetectable

contact faults in PLAs are analyzed. The prime implicant

method for testing irredundant two level AND OR networks

[16] is elaborated for the sake of such analysis.

46

CHAPTER TIIREE

FAULT MASKING EVALUATION IN PROGRAMMABLE LOGIC ARRAYS

47

3.1 INTRODUCTION

The existence of undetectable faults represents one

of the most important aspects in functional testing.

Within tbe test generation process, even an exhaustive

search may fail to find a test for a fault, i.e., no test

exists. The fault is undetectable (or redundant) and the

effort has been wastedo Therefore, efficient test

generation requires advance knowledge of all redundant

faults. In this context, the complexity of testing a

digital circuit may be considered as related to the

following parameters

(a) The total number of redundant faults. This number has

a great influence on the computational time of any

automated test procedure.

(b) The multiple fault coverage capabilities of the

single fault test set.

Redundant

functional

faults may be determined by analyzing the

characteristics of the circuit, while multiple

fault coverage may be approximated by considering the

limitations on the single fault test patterns to detect

the above parameters multiple faults as well. Obviously,

are closely related, that is, the ability of a single

f aul t t es t set to cover mUltiple faults decreases

drastically as the number of redundant faults increases.

In the following section, a simple method for testing

irredundant two level AND OR networks is presented.

48

The method is shown to be a good vehicle for analyzing and

predicting the effects of undetectable faults in PLAs.

3.1 PRIME IMPLICANT METHOD FOR TEST GENERATION

KOHAVI [13] has shown how a minimal set of tests for

an irredundant 2 level AND OR network may be derived from

the set of prime implicants of the function under

consideration. Based on the classical stuck at fault

model, a complete test set can be generated without

analyzing the topology of the circuit. Sketch (a) of

Figure 3.1 shows an example of an irredundant 2 level

AND OR circuit. Karnaugh Map representation is shown in

sketch (b). It is well known that for a fanout free

combinational circuit, any set of tests which detects all

stuck faults on primary inputs will detect all stuck

faults in the rest of the circuit [1]. Thus, only stuck at

ZERO (S@O) and stuck at ONE (S@I) faults on input leads of

the AND gates need to be considered.

It is obvious that the AND gates in Figure 3.1(a) have one

toone correspondence with the prime implicants. Thus, a

stuck at fault in an AND gate will reveal some functional

change in the corresponding prime implicant. This change

manifests itself as a growth or disappearance of the

relevant prime implicant.

Any input to an AND gate s@1 causes a "growth" in the

corresponding prime implicant. Figure 3.1(c) illustrates

the effect on the prime implicant PI due to ql S @ 1) ,

i . e • ,

qI (S@ 1)

/ ...---..

1 2 F XX

X~ 00

00 0

10 1

11 I r 3 r

10 2

/ r---L __

q2 (S@O)

(a)

01 11 10

1 121 8 4

51 13
1 9

71 ,~ 1111

1 141 r:. 10

(c) Growth of PI

F

1 2 F XX

X~ 00

00 0

10 1

11 f3 I

10 2

1 2 F XX

X~ 00

00 0

10 1

11 113
1

10 2

01

4

5

7
1

1
lfi

(b)

01

4

5

7
1

6

11 10

9 8

1
13 9

15
1 1111

1
1.1- 10

11 10

g 8

1
13 9

1 1111 15

1
ll.L 10

Cd) Disappearance of P2

Fig.3.1 Prime Implicant Method for Functional Testing

49

the map of the output function.

Definition 3.1.1 The set of extra minterms contributed by

a growth fault is called the growth term.

Obviously, there are n growth terms (or faults) associated

with the prime implicant which is corresponding to an n

input AND gate.

Definition 3.1.2 Any minterm that is covered by a growth

term and does not belong to the function under

consideration is called a free minterm.

Since the prime implicant grows to contain a growth term,

then any free minterm that is covered by the growth term

will detect this particular growth fault. It can be seen

from Figure 3.1(c) that any minterm that belongs to the

set { 4,5 } is qualified as a test for ql. Hence, a

possible minimal growth test set for the circuit example

given in Figure 3.1(a) could be { 5,10 }.

On the other hand, if a s@O fault occurs on an AND gate

output, then it affects the behavior of the network as if

the corresponding prime implicant was deleted from the map

of the output function. This effect is shown in Figure

3.1(d) where the fault q2 (s@O) causes the prime implicant

P2 to vanish.

Definition 3.3.3 For a given output function, any minterm

that is covered by a prime implicant is said to be unique

if it is not covered by any other prime implicant of the

function under consideration. Otherwise, it is said to be

bound.

50

Clearly, every unique minterm belonging to some implicant

is qualified as a test for the existence of the relevant

implicant. Thus, choosing a unique minterm 'arbitrary'

from ~ach prime implicant in the circuit example of Figure

3.1 yields the complete disappearance test set { 12,3,6 }.

The minimal test set to detect all single stuck at faults

for the above circuit is the union of the growth and

disappearance test sets; that is { 3,5,6,10,12 }.

Obviously, the above testing method is not applicable to a

general PLA structure since it does not account for all

possible contact faults. For instance, shrinkage and

appearance faults are not covered by such method.

Nevertheless, this method may be expanded, using decimal

codes for the minterms, to identify redundant faults and

evaluate their masking effects on normally detected faults

in PLAs. Therefore, an analytic program can be designed to

evaluate a difficulty measure for testing a PLA without

analyzing

Chapter,

referred

the

the

to

Complexity of

topology of the array structure. In this

theoretical concept for such program,

as FACTPLA Functional Analysis and the

Testing PLAs, will be established. The

described approach is shown to be technology invariant and

applicable to the folded versions of a PLA. The

mathematical notion of the set theory is used to describe

the formal aspects of the program, and some of the

operations on sets that are used in this Chapter are given

in Appendix A.

51

3.3 FUNCTIONAL LEVEL CHARACTERIZATION

In some cases, it may be possible to make use of the

functional characteristics of a general digital circuit in

order to explore some of its structural properties. Fo r

instance, the regularity of a PLA structure may introduce

some useful properties at a higher level. The similarity

between PLAs and the familiar sum of products expressions

is used for this purpose. For a general sum of products

expression, the cubical notation is used to represent the

possible binary codes, or n tuples, of each product term

in a general multidimensional space (see Appendix A).

Karnaugh Map can be considered as an attempt to project

this multidimensional space onto a 2 dimensional space. It

is obvious that the actual dimensionality is determined by

n; the number of input variables.

In the sequel, the notion of sets is used such that all

the sets are assumed to be 'finite', i.e, having only a

finite number of elements. The number of elements in a

finite set A is called the 'cardinality' of A and is

denoted by IAI. Furthermore, it is very convenient to

assume that all the sets are subsets of a fixed universal

set (denoted by U) • In the context of this thesis,

however, the elements of U are the decimal codes of all

the minterms found in the multidimensional space

determined by n. In other words

U = { x
n o ~ x ~ 2 -1 }

Also, the definitions of the set 'union', 'intersection',

and "'proper subset' operations (denoted by U' n, and C

52

respectively) are given in Appendix A. Now, some basic

definitions which are used in the rest of this thesis are

presen.ted.

Definition 3.3.1 A product term P is said to be of size R

if it contains R minterms.

Clearly, the size of any product term is equal to

where i ~ O.

Definition 3.3.2 Two minterms covered by a product term

are said to be adjacent if they differ in only one bit,

i.e., the difference between their decimal codes is 2i ,

where i ~ O.

Definition 3.3.3 Let A and B be two sets of the same

cardinality such that

A = { x : x ~ 0 }, B = { y : y ~ 0 }.

If, for every i, element x. in A is adjacent to element y.
~ ~

in B, then set A is said to be adjacent to set B or vice

v e r sa. 0 nth e 0 the r han d, i f A and B don 0 t h a vet he -s am e

Gardinality then a 'set adjacency' operation, denoted by

(ADJ), may by defined as follows

A (AD J) B = { x.
~

where y.
J

the

e 1 erne nt in B adjacent to x. } , and
~

B (ADJ) A = { Yi IYi - x j I 2k where x. the 'first' ,
J

element in A adjacent to y. } , for k ~ O.
~

Obviously, the set {A (ADJ) B} is not necessary equal to

the set {B (ADJ) Ar.

Example. Let A {O,1,3,S,6,7,8} and B {8,lO,13,21, 31 r.

Then A (ADJ) B {O,S,8 }, and

53

B (ADJ) A = { 8,10,13,21 }

Generally, any given minterm (m) is adjacent to a set of

minterms (S) • This set may be generated using the

following expression [24]

S
(i-I)

m + [2(i-l)] [(_1)m/2] -------- (1)

for i=1,2, •. n where

n the number of the input variables which define the

multidimensional space containing m, and

m/2(i-l) is defined as an integer divide.

Recall the possible modifications that are apt to occur

for a product term due to some physical failure, the

following property hold.

property 3.3.1 For any product term P of size R, there are

(i) n - Log
2

R

(ii) 2Log
2

R

possible Growth faults (= Vanish faults)

possible Shrinkage faults.

where n is the number of input variables.

proof

(i) A product term P of size R may grow to contain a

growth term gt of size R also. Each minterm in

adjacent only to one minterm in the original product

term P. Now, if R=l (canonical term), then

the number of possible growth terms (faults) in P =

the number of all possible adjacent minterms = n.

Thus, for a given value of n, if R increases, the

number of the growth terms (or faults) decreases.

This relationship can be described by the following

Table

n
~

i R = 2i 1 2 3 4 5

0 1 1 2 3 4 5
1 2 1 2 3 4
2 4 1 2 3
3 8 1 2
4 16 1 <-- possible

Since each entry in the above Table represents

number of growth faults, then it is obvious that

the number of growth faults = n - i

i
Now, R = 2 , then

Log
2

R = i -------- (3)

from (2) and (3) we have

-------- (2)

the number of growth faults = n - Log
2

R.

54

growth

a

(ii) In this case, the number of shrinkage faults in any

product term does not depend on the dimensionality of

the space defined by n. A product term P of size R

may shrink to half of its original size. The shrunk

term (the rest of the minterms in P) constitutes an

implicant of size R/2. Hence, the total number of

possible shrunk terms (or shrinkage faults) in P can

be arranged in the following Table :

i R=2
i

possible implicants of size R/2

1 2 2
2 4 4
3 8 6
4 16 8

From this Table, it is easy to realize that the total

number of possible shrinkage faults in P = 2 * i =

55

It should be noticed that for i=O the product term

contains only one minterm, i.e., P contains the maximum

number of literals. This means that all input variables

are personalized in this product term, and this case is

excluded from the definition of shrinkage faults.

The above property is general to a PLA structure specified

as a set of n tuple cubes. If, for a given product term

cube, the number of the X_component is k, then the size R

(as defined above) of this cube is 2k (hence, k = Log
2
R).

By definition, shrinkage faults occur due to the incorrect

connections of the unpersonalized (X component) input

variables (complement or uncomplemented) to some product

line.

Thus, all possible shrinkage in the product cube =

2 * the number of X_components = 2 * Log 2 R

Obviously, the number of all possible growth faults will

be equal to the number of the non X_components. Thus, if n

represents the number of all input variables to the PLA,

then

·bl th· the product cube = n - k all POSSl e grow ln

Example. let p. be the cube (1XX10XOX), where n = 8,
1

K = 4. Therefore, R = 2k = 16 and

possible growth faults in Pi = n - k = 4,

possible shrinkage faults in P = 2Log R = 8.
i 2

56

3.4 REDUNDANT FAULTS IDENTIFICATION IN PLAs

Generally, the adoption of the crosspoint fault model

in PLAs presents a clear distinction between redundant

faults at the functional level. For instance, the presence

of undetectable stuck at faults in a general digital

circuit can be associated with redundancy. This is shown

clearly for the circuit given in sketch (a) of Figure 3.2.

The stuck at 0 fault on line k is undetectable and, if the

function is implemented with a PLA, the disappearance

contact fault at the junction between column f and P is 2 I

equally undetectable (sketches b and c). Now, if the line

k is removed, the resulting circuit is irredundant.

However, removing the connection (device) between f2 and

PI results in one undetectable appearance fault. Thus, the

circuit is 'logically' irredundant while the PLA is

contact redundant.

Now, the product terms of a general PLA are not restricted

to be prime implicants. However, we do assume that all of

the product terms are essential with respect to some

output function. Thus, deleting any product term from the

sum of products expression is guaranteed to cause a

logical change in the map of the output function(s). If

the PLA does not have any redundant product terms, then

all vanish faults would be detectable because, if a

product term vanishes, then at least one output function

would be affected, provided the product term is not

redundant. Redundant product terms will be assumed to have

been removed from the array. Similarly, in a multiple

x ------JD PI ---r---

k

Fl

P2
y--~

F2

(a)

x Y Fl F2

PI 0

P2 - 0 0

(b)

- -x x y y Fl F2

r r r r

[\. "\. "\.

r r

(c)

Fig. 3.2 Effects of a Redundant Function

57

output PLA any contact in the OR plane causing an

undetectable disappearance fault can be removed without

changing the function of the array. For instance, the PLA

structure shown in Figure 3.3 has an obvious redundant

contact at the junction between the product line and

the output column f •
2

It can easily be realized that this

particular contact causes P to be redundant with respect o
to f 2 · Hence, the function realized by this PLA will

remain the same with or without this contact.

The removal of such contacts can easily be undertaken by

inspecting the maps of the output functions individually.

Accordingly, each fault belonging to the union set of all

vanish and disappearance faults is guaranteed to be

detected by 'any' complete single contact fault test set.

In this context, a complete single fault test set is

assumed to contain a test pattern for every detectable

sing I e fault in the circuit under consideration.

Therefore, only redundant growth, shrinkage, and

appearance faults need to be considered.

In the following subsections, the basic theoretical

concept for identifying redundant faults in PLAs is

presented. The method is based on manipulating the

decimal representation of the product terms. Two

parameters associated with every product term in the PLA

are suggested. The adjacent Table and the partitions of a

product term are defined to be the vehicle for the

analysis presented in the rest of this thesis. These

parameters represent a new view for the use of the product

., ,r :r ~r (13) 'I!r lA .. "'~ I'- .. "1"- 1"-

!r ",lr r (5,13) r v-
I'- '1"- 1"- " ... 'I'"

r (8,9,10,11)
"'II'" .,!r
"':-. "I'-

L r I'"
(1,3)

"'I:r
":0...

""
:"- "'I'-

0 4 12 8 0 4 12 8 0 4 12 '8
-

1
13

1
1 5 9

r--

@] 1 5 9 1 I 5 IITDI 9

3 7 15 11 3 7 15 11 3 7 15 11 - '--

2 6 14 10 2 6 14 10 2 6 14 10 - ~

Fig. 3.3 Redundant Contact (q) in the OR Plane

58

term fault

the sequel,

model presented in the previous Chapter. In

the 'bound', 'unique', and 'free' minterms

will be used as they defined in section 3.2.

3.4.1 Redundant Growth Faults

Based on property 3.3.1(i) of the previous section, it is

possible to establish a numerical Table for any product

term P such that, every column in the table represents a

possible "growth fault". Obviously, every row of the

Table represents the set of all minterms adjacent to a

particular minterm in P. This Table will be called the

"Adjacent Table" for the product term P. Figure 3.4 shows

a simple PLA and the relevant Tables. In this Figure,

column q1

Po due

in

to

the table of Po represents the growth term of

the missing contact fault q1, column q2

represents the growth term of due to the missing

contact fault q 2 , and so on. Two different types of

tagging are used to distinguish between the entries

(mi nterms) of the adjacent Table. The 'circled' minterms

in the Table are those belonging to the output function

under consideration, while the minterms tagged with an

'asterisk' (on the left side of the Table) represent

bounded minterms with respect to some output function. It

should be noticed that for different output functions, the

structure (in terms of the tagging) of the adjacent Tables

will. be different. The notion of the adjacent Table may be

derived formally using property 3.3.1 with the aid of the

following definition.

F

ql q2 q3 (1,5,17,21)
J"

q4 Q5 Q6. (4,5,12,13)
r-- "

ql q& q9 (3,7,11,15)

ql0 qll q12 (8,9,10,11)
J J ~ J

PO q3 q2 ql PI q6 q5 q4

1 0 Q) ® 4 6 0 20

* @ (j) @ *
5 5 (J) CD @

17 16 19 25 12 14 CID 28

21 20 23 29 13 15 CV 29

P2 q9 q8 q7 P3 q12 qll ql0

3 2 CD 19 8 @ 0 24

7 6 0) 23 9 @ CD 25

• ® (9) 26 II 27 10 14 2
• <0 G)

15 14 @ 31 11 27

Fig. 3.4 Adjacent Tables for a Simple PLA

59

Definition 3.4.1 If A and B are sets, the complement of B

in A written as A B, is defined by

A - B = { x : x E A , x ~ B }.

Now, if P is a product term of size R, then a set (A) may
p

be defined as follows

(A) = { x. : x is a decimal code for some minterm in P }
P 1 i

such that x.) x. for i)j and 1~i,j~R.
1 J

Also, let (8) be a set whose elements are themselves sets
p

written as

where s.
1

a possible set that is adjacent to

definition 3.3.3),

n : number of input variables.

"

(A)
p

The set s. is generated using the following expression
1

s .
1

for 1 ~ j ~ R,

integer divide.

-------- (4)

) x./2
(i-l)

x r- (A , and is
j ~ P J

defined as

(see

an

From property 3.3.1, if R)l then some of the si's sets

must be 'equal' to (A) •
p

of P is the set (AT) where
p

(AT) = (8) - (A)
p p p

n

Accordingly, the Adjacent table

= (US
i

) - (A)p
i=1

-------- (5)

60

Obviously, (A) - (A) = cD (the empty set).
p p Thus, the

actual number of the sets that are generated by expression

(5) is limited by n and it is equal to (n - 1 R) og2 ,as it

has been proved in property 3.3.1. Hence, expression (5)

becomes

(AT) = gf 1 U gf
2 ... U gf

P n-log
2

R
n-log2R

= U gf. -------- (6)
j=l J

where

gf. = s . - (A) 4= cD
1 1 P

the fault set for some growth fault in P •

Now, since the columns of an ~djacent Table represent

growth fault sets, then any free (uncircled) minterm in

each column is qualified to be a test vector for the

relevant growth fault. In other words, if F represents the

set of all product terms belonging to the function under

consideration, i.e.,

m
F = L(A) .Cu

pl
(u the universal set) -------- (7)

then any fault set satisfying the condition

(f) (F - (A)Pi =ffl g Pi - W
-------- (8)

represents a redundant growth fault in p .•
1

For instance,

if the contact at q8 on P
2

of Figure 3.4 is missing

incorrectly, then (A)P2 grows to contain the fault set

(1 , 5 , 9 , 13) . Column q8 of the Table of P
2

shows that no

minterm is free and, hence, the fault is undetectable.

61

It is worth noting that the order of the columns in a

given Table

locations of

product line.

has some similarity with the physical

the

It

contact faults on the corresponding

is easy to realize that the first column

represents the last missing contact defect in the product

1 i ne, the second column represents the defect next to the

last one, and so on. Fortunately, such arrangement, which

is very attractive for locating the redundant growth

faults in a PLA, represents the exact way with which

expression (1) of section 3.3 works.

The concept of the growth Table may also be used to

generate the complete set of single growth fault test

patterns in PLAs. Later on in the Chapter, the policy of

chosing more realistic test patterns for multiple fault

coverage in PLAs is described.

3.4.2. Redundant Shrinkage Faults

An extra contact fault

variable in a product

at

line

some unpersonalized input

causes the corresponding

product term to shrink to half of its original size. A

simple heuristic will be used to represent all possible

shrunk terms (the rest of minterms left due to a shrinkage

fault). This will be done simply by ordering the decimal

codes of the minterms constituting a product term in an

ascending manner. Recall the adjacent relationships in the

n dimensional space, it is easy to realize that for a

product term P of size R, all possible shrunk terms may be

obtained by a simple partitioning process. The number of

the partitions in P is determined by its size R.

62

If R = 2i , 1 2 3 , 1 = , , ••• , then the number of the partitions

in P is equal to i. Indeed, each partition contains a

pair of blocks; one represents the shrunk term and the

o the r represents the fault responsible for it. In other

words, each block is equivalent to an extra contact fault

at one of the two columns of an input variable X" where
1

X, is unpersonalized in P.
1

Figure 3 .5 illustrates the

partitioning process and the resultant blocks for

different product terms. Now, if (A) is defined in manner
p

given in the previous subsection, then the set of

partitions (PT) in

(PT)
p

the term P
Log

2
R - 1

= U I,
" 0 1 1=

where R the size of P, and

I.
1

partition i.

the two

may be described below :

-------- (9)

blocks (or fault sets)

In Mathematical terms, each partition 'decomposes'

of

(A)
p

into two non_empty disjoint subsets (or blocks) of the

same 'cardinality' (number of elements). The derivation

of the first block in partition i from (A) is given below
p

(where i = 0 being the first partition)

(B) .
1

2i

U b ik where b ik = [xstart~limit
k=l

such that

start =

limit = (1/2 + j)(R/2i) - 1

for 0 ~ j ~ 2i - 1

x E (A)]
p

(a) (A)p= (0,1,2,3)
----... R=4=2

then P is partitioned as follows

PTo = (0,1) (2,3)

PTI = (0,2) (1,3)

2

(b) (A)p= { 0,1,2,3,16,17,18,19) 3
----- R=8=2

then P is partitioned as follows

PTo= (0,1,2,3) (16,17,18,19)

PTI = (0,1,16,17) (2,3,18,19)

PT2= (0,2.16,18) (1,3,17,19)

(c) (A)p= (4,5,6,7,12,13,14,15,20,21,22,23,28,29,30,31)

then P is partitioned as follows

PTo= (4,5,6,7,12,13,14,15) (20,21,22,23,28,29,30,31)

PTI = (4,5,6,7,20,21,22,23) (12,13,14,15,28,29,30,31)

PT2 = (4,5,12,13,20.21,28,29) (6,7,14,15,22,23,30,31)

PT3 = (4,6,12,14,20,22,28,30) (5.7,13,15,21,23,29,31)

Fig. 3.5 Examples of the Product Tenn Partitions

4
R = 16 = 2

63

The above partitions will be used to diagnose all

redundant shrinkage faults in a PLA. But first, two types

of product terms must be defined :

definition 3.4.1. A product term P. is said
1

to be non-

isolated (with respect to a given output function) if it

contains at least one minterm which is covered by some

other p roduc t term p. (i + j) of the function under
J

consideration. Otherwise, p. is said
1

to be an isolated

product term.

Again, if R represents the size of the term P, then it is

possible to obtain the set of shrinkage tests for P

according to one of the following cases

case(i) R = 1 in this case, (A)
p

contains only one

element that is responsible to detect any extra contact

fault on the product line P.

case(ii) R = 2 if P is isolated, then both elements of

(A) will constitute a complete shrinkage test for P.
p

However, if P is non_isolated, then at least one of the

elements in (A) must be a 'unique' minterm and, hence, it
p

will detect only one of the possible two shrinkage faults

in P.

case(iii) R > 2 in this case, the set of shrinkage tests

for P may be derived from one of the following pairs

(X
1

+
j

,x
R

_
j

) for 0 ~ j ~ R/2 - 1

where x.~(A) and 1 ~ i ~ R
1 P

Figure 3.6 illustrates the concept of these pairs for a

general product term, while the rational justification of

Let (A) = { 0,1,2,3,16,17,18,19 }
p .

(i) P is isolated

then possible shrinkage tests for P

(0,19) or (1,18) or (2,17) or (3,16)

(ii) P is non isolated

then possible pairs are

(0,19) ,(1,18) , (2,17) , and (3,16)

(a) assume that 1,3, 16, and 17 are boundedminterms then

a 'complete' shrinkage test for P could be (0,19)

(b) assume that 0, 1,3, and 17 are bounded minterms then

a 'complete' shrinkage test for P coul be (19,2,16)

(c) assume that 0, 1,2, and 3 are bounded minterms then

a possible shrinkage test for P could be (19,16) or (18,17)

(not complete)

(d) assume that 1,3,17, and 19 are bounded mintenns then

a possible shrinkage test for P could be (0,18) or (2,16)

(not complete)

Fig. 3.6 Shrinkage Test exist<?nce for a Product Term

64

using them is given below

1 •

2 .

P is isolated then all the minterms belonging to P

are unique. Thus, any minterm in P is qualified as a

test for some shrinkage faults. In fa c t , every

unique minterm detects half of all possible shrinkage

faults in P. This is easily verified from the

partitions of P. In Figure 3.5, every minterm is

belonging to only one block (or shrinkage fault set)

of each partition and, hence, is qualified to detect

half of the total shrinkage faults. Furthermore, the

partitions show that any two minterms chosen to

detect all possible shrinkage faults in P must

constitute one of the pairs given above.

Accordingly, for an isolated product term, any pair

from the set (X
1
+

j
,x

R
_

j
), o ~ j R/2 - 1, is

qualified as a complete shrinkage test for that term

(see Figure 3.6(i».

Obviously, in a PLA, no redundant shrinkage faults

exist on any row carrying an isolated product term.

P is non isolated in this case, at least one of the

minterms of P must be bound. Generally, it may not

be possible to find a pair of shrinkage tests in the

manner given for the isolated product term. However,

one of the minterms of P should be unique and hence

.
belongs to one of the above pairs. Therefore, any

given pair

component, say

component xb is

x ,
a

such that

is unique,

one of

then

also unique, P will have

the pair s

if the other

a complete

65

shrinkage test and no redundant shrinkage faults

(case (a) in Figure 3.6). However, if xb is bounded

for all possible pal'rs, th . en any two unlque minterms,

X b1 and x
b2

' of P which are adjacent to will

constitute a complete test set for the other half of

shrinkage faults in P (case (b) in Figure 3 • 6) • The

validity of this point can be easily verified by

considering the resultant partitions brought out by

the shrinkage faults in terms of K map

representation.

If the above condition does not hold for any pair,

then no complete shrinkage test exists for P and it

must contain some redundant shrinkage faults. These

faults are redundant with respect to any test set.

It follows immediately that all redundant shrinkage faults

can be identified by a simple inspection of the partition

blocks shown in Figure 3.5. For a given partition, if all

minterms belonging to one block of the partition are

bounded, then the other block represents a shrunk product

term caused by a 'redundant' shrinkage fault. Let F be

defined in the manner given in expression (7) and V be the

set of all common elements, i.e.,
m

V = (A) PIn (A) P 2 ••• n (A) Pm = [11 (A) P i ---- (10)

Then, any block, say the first block B1 , in partition j of

the d P satisfying the condition pro uct term i

represents a

(B) - V = ([>
j1 Pi

-------- (11)

redundant shrinkage fault in P"
1

66

The locations of redundant shrinkage faults in a general

product line P are determined directly from the set of

partitions of P. The Partitions are arranged such that

the first partition represents the first unpersonalized

(X_component) input in the cube of the product term, and

its first block represents an extra contact fault at the

complemented input column, while its second block

represents an extra contact fault at the uncomplemented

input column.

3.4.3 Redundant Appearance Faults

For a multiple output PLA, appearance faults must be

considered, in addition to shrinkage and growth faults.

Appearance faults are caused by an unnecessary presence of

extra contacts in the OR plane of the PLA. Consider a

product term p.
1

(i
th

row), which belongs to the function

f (J
. th

. output
J

column) but does not belong to fk (k
th

output column). Now, under an extra contact fault at the

junction of
. th th

the 1 row and k column, the product term

p. appears on
1

the map of the output function f
k

•

.
Obviously, any minterm which is covered by Pi but not

qualifies as a test pattern for the appearance fault in

question.

In the following section, the policy of using the adjacent

Tables and partitions for evaluating the effects of

masking among faults in PLAs is presented.

67

3.5 MASKING INFLUENCES ON MULTIPLE FAULT COVERAGE

A multiple fault is detected if at least one of its

components is detected [29]. Figure 3.7 shows a bridging

fault between two output columns in a nMOS PLA. Assume

that the short is ORed, then it will be equivalent to the

mUltiple contact fault qlq2 q 3 in the OR plane of the PLA.

If one of the fault component or

testable, then the multiple fault is testable by a test

for such component.

Accordingly, to guarantee the detection of a multiple

f a ul t , at least one of its fault components should not be

masked by any redundant fault in the circuit. The concept

of fault masking is further elaborated below.

Let Ta be the set of all possible test patterns for the

single fault a in a general digital circuit (note that Ta

may contain only one pattern). If a is proceeded by some

"masking" fault f3, then two different cases have to be

considered

(a) fault ~ masks fault a for all the patterns in Ta. This

masking phenomenon, written as f3a ' may be represented by

the following set

M = max { (6a) t. ti E Ta l- for 1 {.. i {.. ITal
l

Then f3a is 'true
,

if and only if ~ is undetectable.

Therefore, a difficulty measure (MASK) may be defined to

ma rk the existence of every such condition. If k

represents the number of the undetectable faults, L

represents the number of the testable single faults in a

PLA Outputs PLA Outputs

1

(a) nMOS PLA with a Short Fault (b) Equivalent Faulty Circuit

Fig. 3.7 Effects of Bridging Faults in PLAs

given circuit, then

(MASK),8

(MASK)
c c t

------- (12)

K L

= L Lj ------- (13)

i=1 ((3i)
aj j=1

(b) fault (3 masks fault a for some patterns

68

Obviously, the simultaneous fault a(3 could be detected by

some patterns in Tex even if (3 was undetectable. However,

this type of masking has less restriction than the one

described in case(a). hence, if D is a proper subset'

(see Appendix A) from the set M described above, then

D = {((3a) t.
1

ti E Ta }- C M for 1 ~ i ~ IDI

The ref 0 r e , (3a i s 'true' if and only if (3 is undetectable

f a ul t . In general, a difficulty measure (RISK) may be

defined to count the patterns in Ta under which (3 masks a.

Again, if K represents the number of the undetectable

faults, L represents the munber of the detectable faults

in the circuit, then

(RISK)(3 ------- (14)

k LID'
(RISK)cct =LLLj ------- (15)

i=1 e=1 (pi).
fJae J=1

At the functional level, the key concept in evaluating the

above measures is to consider first the effect of the

69

masking fault. This strategy is vital if the masking

fault was undetectable.

3.5.1 Masking Evaluation in a Single Output PLA

Consider the simple PLA structure given in Figure 3 .8.

Obviously, the adjacent tables and the partitions indicate

that the structure is irredundant, i . e • , contains no

redundant faults. Nevertheless, this structure may be

used to illustrate the effect of fault masking in a

general PLA.

In Figure 3.8, for the missing contact fault al on PO' any

pattern- in the set Tal' where

Tal = { 36,37,38,39,44,45,46,47,52,54,60,62 } c: gfal

is qualified to detect ale Now, the extra contact fault ~l

on the same product line masks the detection of al for
I

some tests in Tal. The effect of this phenomenon is

determined from the masking fault (~l in this case) in the

following manner. Due to ~l, the product term PO shrinks

to

[(A)pO]~l = { 4,5,6,7,20,21,22,23 }

Then the masking should be represented by the combined

effect of both faults such that the effect of ~l dominates

the effect of ale

according to the

reduced In other words, Tal should be

reduction in the adjacent Table of Po

caused by the fault ~l. In this context, theset

adjacency operation, defined in section 3.3, may well be

used to express this masking dominancy. Accordingly, only

the patterns in the set

- -
xO xO xl xl x2 x2

{31 h

x 3 x3 x4 x4 x 5 x 5
a ll,.

I\.
a2..,.

~ 1"'-

a3 I,. {32 '::-, Cf4,.

4

5

6

7

12

13

14

15

o

1

2

3

8

9

r-.-

10

11

36

37

38

39

44

45

46

47

20 16 52

"* 21 @ ®
22 18 54

* 23 ® ®
28 24 60

*" 29 @ ®
30 26 62

3t* ® @

partitions of PO

:!:'

17

19

21*

* 23

25

27

49

51

53

55

57

59

61

63

* * * * [(4.5.6.7,12,13,14,15) (20,21,22,23,28,29,30,31)]

,

16 1

18 3

24 9

26 11

48

50

52

54

56

58

60

62

@

@
33

35

37

39

41

43

45

47

* * * * {31 ((4.5,6.7,20,21.22.23) (12,13,14,15,28.29.30.31)] ..

* * * * ((4.5,12.13,20,21,28,29) (6,7.14,15,22,23.30,31)]

* * *' * [(4,6,l2,14.20,22.2830) (5,7,13,15,21,23,29.31) 1

partitions of PI

*" * "* * [(17,19,21,23,25,27,29.31) (49,51,53.55.57.59.61,63) I

* * * * [(17,19,21,23,49.51.53.55) (25,27,29,31.57.59,61,63)]

"* ... * * [(17.19.25.27,49,51.57.59) (21.23,29,31,53,55,61,63)]

* * * * {32 [(17,21.25.29,49.53.57,61) (19.23,27,31,51.55,59.63)]

Fig. 3.8 EffecS of Fault Masking in PLAs
\

F
;,.

I\. PO

,.

l'
PI

Adjacent Tables

70

[Ta1]{31 = Tal (ADJ) [(A)PO]{31

= { 36,37,38,39,52,54 }

can detect the simultaneous fault a1{31.

On the other hand, the product term PI shrinks to

[(A)P1]{32 = { 19,23,27,31,51,55,59,63 }

due to the extra contact fault {32. From the partitions of

PI, any pattern in the set

T{32 = { 17,25,49,53,57,61 }

is qualified to detect {32. However, if fault a1 exists,

then it will mask {32 for some tests in T {32. In this case,

the combined effect of a1 and {32 is determined from the

growth fault set of the masking fault a1; gf
a1

. Any

element in which also belongs to gf
a1

is

to detect the simultaneous fault a1{32.

realize that the patterns in the set

[T{32]a1 = T{32 n gfa1

{ 53,61 }

fail to detect a1{32.

disqualified

It is easy to

The following examples illustrate the influences of fault

masking due to 'redundant' faults in a general PLA

structure.

Example 1. For the PLA structure shown in Figure 3.9(a),

the extra contact fault at the junction between Xo and P5

causes an undetectable shrinkage fault The

adjacent Table of P
5

shows that for the growth fault ~,

Ir Ir
(9,11,13,15)

Ir I IT
I'- ~ 1'- ~

T IT
(10,11,14,15)

T

~ i' i'

r IT IT
(7,15)

IT
~ i'- I'- i'

IT I,
(0,1,2,3) , ,

I'" f\. 1'- 1'-

I r IT
(6,7,14,15)

~, IT
~ i' 1'-

{3
~ ex IT I,

(0,1,8,9)
I,

f'=' r-: ~ f Ps

FO F2

0 4 12 8 0 4 12 8 FD 4 12 rr
1 5 13 9 1 5 13 9 1 s 13 9

"-- '--

3 7 15 11 3 7 15 11 3 7 15 11

2 6 14 10 2 fi 14 10
'----

,., fi 14 10 c.-=-.

Adjacent Table of P5 with respect to F2

P5 ex

O· CD 4

•
1 s

Fig. 3.9a Shrinkage Fault ((3) Masks Growth Fault (a)

(F2) (F2)a{3
~ ~

,,~ 0.0 0.0
+ +

+ +
~

+ +
1.0 1.0
+ +

"
1.0 1.0

~':I a ,
~

+ +

'" 0.1 0.1

0 0

no change

(F2) (F2)cx{3

0 0
+ +

+ +
" " + +

" " 1.0 1.0
+ +

" 1.0 1.0
(] a + +

0.1 0.1

i'
0 0
no change

(F2) (F2)a(3

"
~ 0 a

+ +

" + +

+ +
" " "

"
0.0 0.0
+ +

" 1.0 1.0

(] "
r.-. a ~

~

+ +
0.1 1 i.l

" 0 1
change

Fig. 3.gb Effects of Fault Masking for Different Tests

7 1

the available tests are the minterms 4 (0100), 5 (0101),

and 12 (1100). Assume that the single contact fault test

set T includes the patterns (0100) and/or (0101) but not
s

(1100), then a will not be detected by the set T , if the
s

redundant fault (3 is also present. It is easy to realize

that under the test (0100) or (0101), the value on the

output F 2 will not be affected by the multiple fault a{3.

For both tests, F2 will have the same logic value with or

without the fault a{3. This is illustrated in Figure

3.9(b), where the logical change in the signal values has

been traced for all available tests for a. However,

during the normal operation, for the input vector (1100)

F2 will have logic ZERO without the fault a{3 and logic ONE

with the fault. Then output of the PLA will be incorrect

f or this input.

Example 2. For the PLA structure shown in Figure 3.10(a),

a is a missing contact fault which causes Po to contain a

redundant growth fault. For the extra contact fault (3 at

the junction between the available tests are

the minterms 24 (11000), 25 (11001), 28 (11100) , and 29

(11101). For both inputs (11000) and (11001), the presence

of the multiple fault a{3 does not alter the logic value

at the output of the PLA. This is shown clearly in Figure

3.10(b) where the output response is shown to be affected

only by applying the tests (11100) or (11101). Thus, one

of the two minterms, (28) or (29), should be included in

T
s

to ensure the detection of the multiple fault a~.

xO· xO xl xl x2 x2 x3 x3 x4 x4
F

a ,~ lr ,. ~,.

~ I' t~ j\.
I~

~
pO

Ir r
i\-. '\.

r r

r
'\.

r 'r r

i"
[r [r

I
'\. I'\. [" I'

I~ !r {3h
1"- j\.. I \:.

t,.

I ~

pI

p2

p3

F

10 41
.---

12 8 24 28 20 16

I Is 131 ~ 2S 29 21 17

3 7 IS 11 27 31 ')""' ~j 19

[1 2 61 14 10 26 30 22 18

Adjacent Tables of PO

PO a

8 10 12 @ @

9 11 @ 1 @

Fig. 3.1.0a Growth Fault (a) Masks Shrinkage Fault (6)

1
iO xO

a
J~

1
iO xO

a
j~

,

Ir

j

1
it) xO

a

a

,

,

1
iO xO

J

.

-

1
xl xl

I
j

.

..

1
xl xl

, ..

1
xl xl

.

J

.

1
xl xl

.

..

.
J

o
x2 x2

,

I

o
x2 x2

~

j

1
x2 x2

,

..

1
x2 x2

'r-

o
x3 x3

~

{3~

o
x3 x3

(3
::

o
x3 x3

,

{3

1

o
x3 x3

I'"

.
{3

I

o
x4 x4

"

"I'-

1
x4 x4 .

,

I"-

o
x4 x4

~

'r-
.

1
x4 x4

.

.
~

Fig. 3.10b Effects of F~ult Masking for Different Tests

F

"

J

J

·
4

F

·

· ,

·

· ,

F

,

·

~

·

F

J

..

.
.~

.
.. ~

PO

PI

P2

P3

PO

PI

P2

P3

PO

PI

P2

P3

PO

PI

P2

P3

F F0:{3

0.1.1.1 1.1.1
+ +

0.0.1 0.0.1
+ +

0.0.1.0 0.0.1.0
+ +

1.1 1.1.0

1 1
no change.

F
I Fa{3

0.1. L 1 1.1.1 !
+ +

0.0.0 0.1.0
+ +

0.0.1.1 0.0.1.1
+ +

1.1 1.1.0

1 1
no change

F

0.1.0.1 1.0.1
+ +

0.0.1 0.0.1
+ +

o.1.1.e 0.1. LO
+ +

1.1 1.1.0 J

1 0 I
change

F FQ{3

0.1.0.1 1.0.1
+ +

0.0.0 0.0.0
+ +

0.1.1.1 0.1.1.1
+ + I

1.1 1.1.0

1 0
change

72

3.5.2 Masking evaluation in a Multiple Output PLAs

The existence of appearance faults in a general PLA

structure has imposed the following consequences:

• (i) a detectable extra contact (shrinkage) fault in the

input part of row i of a PLA may be masked (on a

given test vector) by a redundant appearance fault in

row j, j*i (property 2.5.2 in Chapter 2).

(ii) a possible case of property 2.5.1 (in Chapter 2)

could be interpreted as follows

"for a given test vector, X , a
t

detectable appearance

f aul t can only be masked by a redundant shrinkage

fault in the same row of the PLA".

Accordingly, the following two cases complete the

evaluation of the effects of redundant faults in PLAs

case (i) (on the same row of the PLA)

let (3 be a redundant shrinkage fault on row i of a

such that the partition of p. due to this
~

fault contains the two blocks B1 and B2 where

B1 = the shrunk term = [(A)Pi](3' and

B2 = the fault set. (empty in this case)

For the output function f
k

, 1~k~z, such that P
i

does not

belong to f
k

, an extra contact fault , "Y, at the junction

between P. and fk causes the appearance of P . on the map
1 ~

of the function f k • If, due to fault (3, B1 C F (see
k

expression (7) in section 3.4.3 for the definition of the

then (3 masks"Y and the simultaneous fault {3"Y is

undetectable.

73

case (ii) (on different rows of the PLA)

let l' be a redundant extra contact fault at the junction

between row i and the output column k of a (n,m,z) PLA. A

normally detectable shrinkage fault ~ in row j such that

and p.
J

j 4= i

"I. Let B~ be

belongs to fk only, may be masked by the fault

the fault set of ~. If B~ C (A)Pi' then the

simultaneous fault ~"I is undetectable.

Again, it should be noticed that in the above two cases

the effect of the masking fault is considered first. The

combined effect of both faults is then analyzed prior to

evaluate the masking effect.

In the next Chapter, the analysis of the redundant contact

faults is shown to be performed by a simple inspection and

manipulation of the adjacent Tables and partitions

produced for each product term.

3.6 SUMMARY

A concept for evaluating the effects of redundant

f a ul t s in PLAs has been presented. A new description for

the product term fault model is formulated in terms of two

sets associated with each term; the adjacent Table set and

the set of partitions. These sets are analyzed and

possible redundant faults have been shown to exist within

three types of contact faults. These faults (g r ow t h,

shrinkage, and appearance) can be identified and their

masking influence on detectable faults may be evaluated by

investigating the adjacency relationships and the

properties of the output function(s). Such analysis may

74

be carried out before the actual derivation of any single

contact fault test set (T)
s

in a PLA takes place.

Therefore, the complexity of testing and the ability of T
s

to cover more mUltiple faults can be established by

producing some difficulty measures for the actual fault

masking in the array. In the next Chapter, the algorithmic

realization of the above concepts and the estimation of

the complexity of the implementation is presented.

75

CHAPTER FOUR

FACfPLA PROGRAM IMPLEMENTATION

76

4.1 INTRODUCTION

In the previous Chapter, two difficulty measures have

been established and shown to have a great influence on

the complexity of testing a PLA. The evaluation of these

measures is embodied in a general analytic program

(FACTPLA) Functional Analysis and the Complexity of

Testing

steps

PLAs. The basic program consists of two main

identifying the

evaluating their masking

redundant

effects

contact faults and

in PLAs. For testing

purposes,

structures

the distinction between two different PLA

having the same silicon area is based on the

differences between

(i) the effects of fault masking (MASK measure), and

(ii) the restrictions on single fault test patterns to

cover multiple faults (RISK measure).

The above two measures have been evaluated from the

parameters of adjacent Tables and partitions which are

defined in Chapter 3. The measures are obtained for every

redundant single contact fault. The first (MASK) measure

accumulates the possible masking occurrence due to

redundant single faults, while the second (RISK) measure

indicates the difficulty of testing multiple faults due to

the arbitrary choice of the single fault test patterns.

Indeed, a redundant fault in a general digital circuit

makes testing difficult regardless that the fault is

single or embodied in a more general multiple fault.

Accordingly, the values of the above measures reflect the

77

effectiveness of any test set derived on the single f aul t

assumption bases. In VLSI environment, predicting such

effectiveness is vital due to the increasing number of

multiple faults which have to be considered. In the rest

of this Chapter, the algorithmic realization and

application of FACTPLA program is presented,

complexity of computation is also discussed.

and the

4.2 FAULT DATA STRUCTURE

Obviously, the redundant contact faults in a PLA

represent the framework of the analysis performed by

FACTPLA program. Figure 4.1 illustrates the fault data

structure constituting the bases of FACTPLA's algorithms

presented in the following sections. In this Figure, a

redundant contact fault on some row, say row i, of the PLA

is either a shrinkage or growth fault in the AND plane, or

an appearance fault in the OR plane of the array. The

effects of every redundant fault are associated with the

MASK and

testing)

RISK measures which reflect the difficulty (of

imposed by the fault in question. The

'MASK RISK' relationships depend mainly on the location of

the redundant fault in the array structure.

Note that disappearance faults "are excluded form the

structure shown in Figure 4.1. In the previous Chapter,

redundant disappearance faults are shown to have no

effects on other faults in a PLA (see Figure 3.3). The

removal of the contacts (devices) causing such faults

would not change the functionality of the array.

redundant contact
fault in row i

extra contact missing contact extra contact
, shrinkage' · growth • , appearance'

risk on growtJt risk on shrinkage risk on shrinkage
tests orrow 1 tests of row J tests of row J

masks growth masks shrinkage masks shrinkage
faults in row i faults in row J faults in row J

masks appearance
faults In row j

Fig. 4.1 Fault Data Structure

78

However, large PLAs may contain many such contacts and

their existence represents anther difficulty of testing

the PLA. Later on in the Chapter, a simple algorithm to

identify such contacts, which cause a potential increase

in the computational time of testing, shall be presented.

Also, in his paper, Bose [14] has shown that most of the

appearance faults could be covered by shrinkage fault test

patterns. In this thesis, however, no restrictions shall

be assumed on appearance tests as they represent a small

percentage of the complete test set.

4.3 PROGRAM STRUCTURE

The structure of FACTPLA program is illustrated in

Figure 4.2. The flow of information among the program main

routines is well understood by considering each routine

individually

(1) The INPUT FILE

The file input to the program contains the description of

the PLA distributed among three sets of data

(a) the set [m,n,z,max] where

m is the number of product terms,

n is the number of input variables,

/
z is the number of output functions, and

max is the number of product terms belonging to the

largest function; the function with the maximum

number of terms.

heuristic information
for test generation

evaluate2

evaluate3

I
I

Fig. 4.2 FACfPLA Program Structure

I
I
I
I

I
I
I
I
I
I

I
I

/

I~----~--------~
define intersting

functional properties

I
I
I
I
I
I
I
I
I

analyze results
with functional

properties

..
II
II

~
heuristic infonnation

for logic minimization

79

(b) the set of product term cubes constituting the PLA.

(c) the set of output functions containing the numbers

of the terms in each function.

The PLA example given in Figure 3.9(a) of the previous

Chapter is described to FACTPLA program as follows

set (a) 6 , 4 ,3, 4

1 X X 1
1 X 1 X

set (b) X 1 1 1
0 0 X X
X 1 1 X
X 0 0 X

o , 1 , 2
set (c) 3,4

0,3,4,5

(2) EVALUATEl: Decimal code generation routine

The underlying heuristic in FACTPLA program is the

adoption of decimal codes to represent the functionality

of the PLA. The product terms are analyzed by the program

as ordered sets of integer numbers representing the

minterms. Such arrangement has reduced the computation

time and the complexity of the whole program. Figure 4.3

illustrates a general flow chart for this routine, while

Appendix B contains the detailed symbolic representation

describing the derivation of the decimal codes in the

manner needed by the program.

(3) EVALUATE2: Fault identification routine

Having generated the decimal codes of the product terms,

it is necessary to identify the set of minterms which are

common (bounded) between two or more terms. Generating the

I START 1

R= 2 X, X =.·X·
elements in BinP

setstorsge
of size A = R * n

R 1

?

>1

store B inP in
every row of

of A

,

Generate Binary
codes of the

rows in A

Calculate the Decimal
code for every row

in A

,
I END I

,

BinP : Product Term Cube

R : Size of Product Term

n : input variables

store BinP in
the first row

of A

Fig. 4.3 Decimal Code Generation of Product Tenns

80

'intersection vector' between the terms represents the

first task of this routine (see Appendix B for this step).

The second and basic task of the routine is the actual

identification of the redundant contact faults (growth,

shrinkage, and appearance) in the PLA structure. In the

next section, the detailed procedures for this step are

presented. It should be noticed that FACTPLA assumes a

'complete' single fault test set, that is, a test pattern

for every testable fault is included in the test set.

Therefore, a fault node is considered if and only if the

corresponding fault is redundant with respect to all the

relevant output functions. In other words, a fault on row

i of the PLA is redundant if and only if is redundant with

respect to every function containing p.'
1

(4) EVALUATE3: Measures evaluation routine

This routine constitutes the heart of FACTPLA program. It

evaluates the (MASK) and (RISK) measures for every

possible redundant contact fault in the PLA. A special

compact nodal structure has been set up to contain the

fault's information. There is a node for every class of

the redundant faults, therefore, a total of 3 nodes are

used for redundant growth, shrinkage, and appearance

faults. Every node contains the location and the relevant

difficulty measures for some redundant fault. the layout

of such structure is illustrated in (6) below, while the

establishment of each fault node is described in detail in

the next section.

81

It is worth noting that the strategy of evaluating the

MASK RISK measures has also indicated the way with which

good tests for multiple faults may by chosen. Such worthy

information provide a good heuristic for any test

generation procedure.

(5) EVALUATE4: Redundant contacts identification routine

FACTPLA program strategy assumes that a large PLA may

contain some redundant contacts (devices) in the OR plane

of the array. This is due to the fact that current

minimization procedures for large boolean expressions may

optimize some of the minimality criteria. In other words,

although a PLA may be designed to contain a minimum number

of product terms (or rows), some of these terms may still

be redundant with respect to some of the output functions

(see Fig. 3.3 in the previous Chapter) • This routine

evaluates the amount of these contacts which are caused by

such optimization techniques.

(6) The DISPLAY routine

This routine displays the output data in the manner

presented by the EVALUATE3 routine above. The fault node

is described below where

m.
~

c =

row i in the PLA,

input variable j to the PLA,

output k from the PLA, and

1 the uncomplemented column (bit line) of input nj

o the complemented column (bit line) of input nj

82

fault node location measures

growth (m.,n.) MASK, RISK
~ J

shrinkage (m.,n.,c) MASK, RISK
~ J

appearance (mi,f
k

) MASK, RISK

Fault Data Structure

In an advanced stage, the displayed fault information may

be analyzed against the basic functional properties of the

PLA prior to develop some heuristic guide information that

he lp logic minimization techniques to arrive at the

best to test circuit.

In the following section, FACTPLA program for single

output PLAs is presented. Generalization to multiple

output PLAs will be considered later on in the Chapter.

4.4 FACTPLA FOR A SIMPLE (n,m,l) PLA

In this section, the basic PLA structure is assumed

to have n input variables, m product terms and one output

function. Accordingly, the total number of contacts ina

(n,m,l) PLA is m(2n+l). All product lines will contribute

to the output function and appearance faults need not be

considered. Thus, the masking measure (MASK) is assumed to

consist of two parts the masking of detectable growth

f a ul t s by some redundant shrinkage fault on the same row,

and the masking of detectable shrinkage faults by some

redundant growth fault on different rows of the PLA.

The restrictions on single growth fault tests for

product term p. can be evaluated directly from
1

adjacent Table of P .•
1

Such restrictions are imposed by

existence of some redundant shrinkage fault in row i •

the other hand, since the shrinkage tests for p.
1

i nvo I ve d in p.
1

itself then the restrictions

83

a

the

the

On

are

on

single shrinkage fault tests for P. are evaluated from the
1

partitions of p .•
1

In this case, the restrictions on

shrinkage tests are imposed by the existence of some

redundant growth fault in row j, j4=i. Higher values of

the (RISK) measure indicate that maximizing the multiple

f aul t coverage may by achieved with longer test lengths,

while higher values of the (MASK) measure reveal poor

multiple fault coverage by a single fault test set.

4.4.1 Algorithms for a (n,m,l) PLA

Basically, two main analytic algorithms for redundant

f a ul t s consideration in a general

considered. This is illustrated by the simple flow chart

given in Figure 4 • 4 • In this Figure, algorithm 4.4.1

identifies all redundant growth faults in the product term

p.
1.

and evaluates their masking effects on the detectable

shrinkage faults of other product terms. Algorithm

identifies all redundant shrinkage faults in p.
1.

4.4.2

and

evaluates their masking effects on the detectable growth

faults of p. itself.
1

These algorithms are described below

where

(MASK) : denotes the masking of growth faults
s g

due

to redundant shrinkage faults,

I i=i+l I
r.

I i=O 1

Algorithm 4.4.1

mask evaluation
for

redundant growth
faults in Pi

Algorithm 4.4.2

mask evaluation
for

redundant shrinkage
faults in Pi

NO

,

update masking
measures

i=m
?

YES

I STOP I

Fig. 4.4 Fault Masking Evaluation in A (n,m,I)_PLA

84

(MASK) : denotes the masking of g_s shrinkage faults

due to redundant growth faults,

(RISK) : denotes the restriction (due to redundant s_g

shrinkage faults) on growth tests to cover multiple

faults,

(RISK) : denotes the restriction (due to redundant g_s

growth faults) on shrinkage tests to cover multiple

faults, and

R. : denotes the size of p. (number of minterms in 1 1

P .) •
1

Again, it should be emphasized that the minterms are

arranged in ascending order such that the representation

of any product term begins with the lowest minterm and

ends with the highest one (see the definition of (A) in
p

the previous chapter).

~A~I~g~o~r~i~t~h~m~4~.~4~.~1~~(~f~o~r~r~e~d~u~n~d~a~~nt~g~r_~ow~t_h __ f __ a_u_l_t_s ___ i_n ___ Pil

Procedure 4.4.1(a) fault identification.

Procedure 4.4.1(b) fault location & measures evaluation.

Procedure 4.4.1(a)

1 • Generate the adjacent Table of p. as follows
1

(a) for each minterm (M) of Pi' obtain the set S

possible minterms adjacent to M using the

expression:

S = M +
(k-l)

[2(k-l)] [(_1)M/2]

of all

following

85

where l~k~n and is defined as an integer

divide.

(b) the result of (a) above is a Table of n columns and R.
1

rows.

P .•
1

2.

3 •

Element every column which is exactly identical to

For the Table generated in step 1, tag all the

minterms belonging to the function

consideration.

In the above Table, any column, say (column).,
J

under

whose

minterms were all tagged represents a redundant

column (or undetectable fault).

Procedure 4.4.1(b)

1. Set (RISK) and (MASK) to zero.
g s g s

2 •

3 •

locate the redundant growth faults on row i in the

following manner. If (column). of the adjacent Table
J

of p. was redundant, then the bit change at the
1

(.)th .. f h b f p. ddt n-J posltlon 0 t e cu eo. 1S re un an .
1

evaluate (RISK) and
g s

follows:

(a) for every product

(MASK) for (column).
g s J

term P , q+i,
q

if the size

as

R =1
q

then check if the only minterm of P belongs to
q

(column) .• If it does, then
J

(MASK) = (MASK) + 1.
g_s g_s

However, if the size R >1, then go to step (b) below.
q

(b) perform the partitioning process on p.
q

Every

partition of P will have two blocks, and every block
q

86

contains an implicant of size R /2
q

(Appendix B

illustrates a symbolic representation for such

partitioning process). Tag the bounded minterms in

the partition blocks. For any block, say (block)k'

if the set of 'unique' minterms in (block)
k

belonged to (column). then
J

(MASK) = (MASK) + 1 . g s g s

Otherwise, for every unique minterm,

that is belonged to (column). do
J

(RISK) = (RISK) + 1.
g s g s

in

were all

(block)k'

4. Repeat step 2 and 3 for every redundant column in the

table generated by procedure 4.4.1(a).

Figure 4.5 illustrates the application of algorithm 4.4.1

on the first row of a simple PLA.

_A_I~g~o_r_l_·_t_h_m ___ 4_._4 __ ._2 __ (~f_o_r ___ r_e_d_u __ n_d_a_n __ t __ s_h __ r_i_n_k_a~g_e __ f __ a_u_l_t __ s __ i_n ___ Pil

Procedure 4.4.2(a) fault identification & location

Procedure 4.4.2(b) measures evaluation

Procedure 4.4.2(a)

1 • Perform the partitioning process on p. to obtain the
1.

possible partitions and tag the bounded

minterms.

2. Scan partitions of Pi' If, for a given partition, say

of the minterms = [(block) , (block)], the set
a b (PT) .

J

belonging to one block, say (block)a were all tagged

(redundant block) , then mark this block as a

redundant fault in row i. Obviously, the other

block, (block)b in this case, represents a shrunk

XO XO
ex

Step 1 : '

Step 2
&

Step 3

8
9
10
11

Xl Xl

f'.

(3

cO

8 9
9 8
10 11
11 10

Procedure 4.4.1(a)

-
X2 X2 X3 X3

{3

cl c2 c3 c4

10 12 0 24
11 13 1 25
8 14 2 26
9 15 3 27

(a)

12 0 24'
13 1 25'

26' 14 2
15 3 27'

t
redundant

Step 1 : RISK = MASK = 0

X4 X4 F

8
9
10
11

PO=OI0XX

PI = 11 XX 1

P2=lXOXO

12 0 24

(b)

13 1 25
14 2 26
15 3 27

Step 2 : fault location = n - c4 = 0 (first bit change 0 --;> X)

Step 3 :

Partitions of PI

Partitions of P2

Procedure 4.4.1 (b)

masked
,/

[(25 , 27) (29 , 31)]

[(25 , 29) (27 , 31)]

/
[(16 , 18) (24 , 26)]

[(16, 24) (18 , 26)]

masked

Fig. 4.5 Application of algorithm 4.4.1 on PO

87

term caused by this particular fault. The location

of the fault is determined from the order of the

partitions in the manner described in the previous

Chapter.

Procedure 4.4.2(b)

1 •

2 •

to zero.

Assume that a block, say (block) , in partition j
a

of

p. was redundant. Then obtain the 'adjacent Table' of
1

the other block, (block)b' and perform the necessary

tagging (note that the whole original product term p.
1

should be removed from the Table). In this Table, for

every column whose minterms were all tagged do

(MASK) = (MASK) + 1.
s g s_g

Otherwise, for every tagged minterm (in the above

column) do

3. Repeat step 2 for every partition of P .•
1

Figure 4.6 illustrates the application of algorithm 4.4.2

on the first row of a simple PLA.

4.4.2 Application on Switching Theory

Most minimization procedures tend to obtain a minimal

sum_of products expression for a given switching function,

after establishing some criteria for minimality. Consider

the minimization of the function F(x,y,z)

F(x,y,z) -= xyz + xyz + xyz + xyz + xyz + xyz

XO XO Xl Xl X2 X2 X3 X3 X4 X4
a

•

,

Step 1
&

Step 2

.

. B

partitions of PO
* * * * redundant block [(4, 5 , 6 , 7) (12 , 13 , 14 , 15) 1

* * *6 [(4 , 5 , 12 , 13) (6 , 7 , 14 , 15)]

* * * * [(4 , 6 , 12, 14) (5 , 7 , 13 , 15)]

the second X_element bit change (X --> 1) is undetectable

Procedure 4.4.2(a)

Step 1 : RISK = MASK = 0

Step 2 : obtain the adjac;ent Table of shrunk tenn

4 5 6 0 20 4
5 4 7 1 21 5
12 13 14 8 28 12
13 12 15 9 29 13

\/
the original p_term

Procedure 4.4.2(b)

Fig. 4.6 Application of algorithm 4.4.2 on PO

F

, . PO=OXIXX

.
PI = 0 X X 1 X

. , P2=IXXOX

0 20/
1 21/
8 28/
9 29/

I
masked

88

Combining the first and second, second and third, forth

and fifth, fifth and sixth terms yields a reduced function

for F

F(x,y,z) = xz + yz + yz + xz •.••••••...•..... (1)

The above sum of products expression is said to be

irredundant or irreducible, since no term or literal can

be deleted without altering its logical value. However,

combining the first and second, third and sixth, forth and

fifth terms of F results in :

F(x,y,z) = xz -+ xy + yz . (2)

Similarly, the combinations of the first and forth, second

and third, fifth and sixth terms yield a third irredundant

expression

F(x,y,z) = xy + yz + xz . (3)

While all three expressions are irredundant, only the

latter two are minimal. Consequently, an irredundant

expression is not necessarily minimal, nor is the minimal

expression always unique. Note that the minimality

criteria depend on two parameters the number of prime

implicants and the number of literals in each such prime

implicant.

Now, realized as PLA structures, expression 2 and 3 yields

the same number of product lines and contacts

(connections) in the array. Thus, from the design point

of view, the choice between the two possible realizations

seems to be arbitrary. However, the algorithms presented

ection assume a third (testability)

89

criterion for chosing the best PLA realization. For

example, Figure 4.7 shows 3 different single output PLA

structures which realize the same switching function F.

The P,LAs are specified by structural personalities where

they contain the same number of contacts (devices). Note

that all the structures have the same number of

undetectable single contact faults. Nevertheless, the

firs t PLA is shown to have less difficulty measures and,

hence, the easiest to test structure. In the concluding

part of this thesis, the general functional properties

that help arriving at the 'best' realization are

discussed.

4.5 FACTPLA GENERALIZATION TO MULTIPLE OUTPUT PLAs

In the case of multiple output PLAs, shrinkage and

growth faults in any row must be checked through different

output functions since a complete single fault test set is

assumed to exist always. A fault q, where q belongs to the

union set of all shrinkage and growth faults in row i, is

redundant if and only if q is redundant with respect to

all output functions containing P"
1.

In Figure 4.8 the

missing contact fault a causes P
5

to grow. Now, although a

is redundant with respect to the output function f
1

, it

can still be detected through fOe On the other hand, the

shrinkage fault (3 of the product term Po can not be

detected through fO or f 2 . Thus, (3 is redundant and it

must be considered for fault masking evaluation.

F

pO

pI

p2

p3

p4

p5

000 001 011 010

00
1 1

0 4 12

01 1 1 1
1 5 13

II 1 1 1
3 7 15

10
2

1 1
6 14

. PLA_l

xOlxx

Oxlxx

OOxxl

11 0 x 1

lxOlx

01xlx

undetectable
single faults

6

6

6

8

9
1

11

1
10

110 111 101 100
1

24 I?R 20

25
1 1

?9 21
1 1

27 ~1 23
1

26 10 22

PLA_2

xOlxx

Oxlxx

OOxxi

11 0 x 1

lxOlx

xl01x

(mask)
measure

1

2

1

16

l7
1

19
1

18

PLA_3

xOlxx

Oxlxx

OOxxl

1 1 Ox 1

10xlx

xl0lx

(risk)
measure

8

11

10

Fig. 4.7 Testability Measures for Different PLA Realizations

{3
XO XO Xl Xl X2 X2

r

- -,

~

-, ,

Ir , ·
- 1'- ·

,~ · I

fault a : redundam with respect to FI

testable with respect to FO

X3 X3

-

,

a -,

fault {3 : redundant with respect to FO & F2

FO FI F2

-

,
~

..

-,

,

Fig. 4.8 Fault Detection in Multiple Output PLAs

90

In addition to the above faults, appearance faults must

now be considered. As it was pointed out in the previous

Chapter, identifying appearance faults and evaluating

their masking influences are based on two objects; a

product term p. and an output function
1

does not belong to f.
J

f.
J

such that P
i

Also, In'VLSI environments logic functions may have up to

30 input and output and more than 100 product terms. Thus,

exact logic minimization, which involve generation of all

prime implicants and extraction of a minimum prime cover,

is impractical. indeed, the problem of extracting a

minimum prime cover is known to belong to the class of

NP complete problems[38]. Obviously, the computation time

of such problems increases drastically with the increase

number of implicants. Hence, the need for optimization

techniques to generate a near minimum cover may results in

the inclusion of some redundant contacts in the OR plane

of a PLA.

Accordingly, the following algorithms complete the fault

masking analysis for a general PLA structure. Algorithm

4.5.1 evaluates redundant shrinkage and appearance fault

effects in row i of the PLA, while algorithm 4.5.2

identifies all redundant contacts in the OR plane of the

array.

Algorithm 4.5.1 (for a product term Pil

In this algorithm let

(MASK) : denotes the masking of shrinkage faults due
a s

redundant appearance faults of P . ,
1

to

91

(MASK)S a: denotes the masking of appearance faults due to

redundant shrinkage faults in p.,
1

(RISK) :
a s

denotes the restriction (due to redundant

appearance faults) on shrinkage tests to cover mUltiple

faults.

Procedure 4.5.1(a) redundant shrinkage faults effects

Procedure 4.5.1(b) redundant appearance faults effects

Procedure 4.5.1(a) (on the same row of the PLA)

1. Set (MASK) to zero.
s a

2 .

.3 •

Assume that (block) of partition j
a

of the product

term p. was redundant (see algorithm 4.2.2). Thus the
1

other block, (block)b in this case, represents the

shrunk term of P .•
1

For every output function, f
k

,

such that p. does
1

not belong to fk and (block)b

belongs to the set of terms constituting fk do

(MASK) = (MASK) + 1.
s a s a

Repeat step 2 for the other redundant blocks in

partitions.

p S
1

Procedure 4.5.1(b) (on different rows of the PLA)

1. Set (RISK) and (MASK) to zero.
a s a s

2 • For every output function, f k ,

belong to fk do

such that P does
i

not

(a) if P. belongs to the 'set of terms'"
1

constituting

then mark the extra contact fault at the junction

between Pi and fk as a redundant appearance fault.

(b) for every product term p., j=#=i and P belongs
J j

to

92

perform the partitioning process to obtain P 's
j

partitions; Any block of (PT)
Pj

whose

unique (with respect to f
k

) minterms were all

belonged to p. represents a masking condition.
1

Thus,

for every such condition do

(MASK) = (MASK) + 1.
a s a s

Otherwise, for every minterm (in the above block)

which is unique with respect to fk and belong to Pi

do

(RISK) = (RISK) + 1.
a s a s

(c) repeat (b) for every block in the

partitions.

set of P.'s
J

Algorithm 4.5.2 (Identification of redundant contacts)

Let R dev be denotes the total number of redundant

contacts in the OR plane of the PLA.

1. Set R dev to ZERO.

2 . For an output function f . ,
1

any product term p.
J

belonging to f .
1

such that all of P 's minterms are
j

also 'bounded' with respect to f. then
1

R dev = R dev + 1.

3. Repeat step 2 for every output function.

4.6 EXPERIMENTAL RESULTS

In this section, the experience of applying FACTPLA

on different PLA structures is discussed. Appendix C

contains data on 13 different PLAs, which have been

93

collected from various sources, while Table 4.1 summarizes

the results given in the Appendix according to FACTPLA.

The first column of Table 4.1 contains the PLAs arranged

according to their alphanumeric names. The amoun.t of

undetectable single contact faults are given in the second

column. These faults are redundant with respect to any

functionally generated single fault test test.

The RISK and MASK values, given in the third and forth

columns respectively, reveal the impact of 'bad' design on

multiple faults coverage in a PLA. The last column in

Table 4. 1 gives an idea about the amount of undetectable

faults as compared to the total number of possible growth,

shrinkage, and appearance faults, that is, f or a

total redundant faults
undetectability % =

Total possible faults

where m
n - R L (Log

2 Total growth faults = i)
;=1

Total shrinkage

and

Total appearance
faults

m
faults = L(2 * Log 2 R

i
)

;=1

m f

= (m * f) - (L Lj)
i=l 0=1)

P.f.f.
I J

* 100

see property 3.3.1

see section 3.4.3

Now, it is very convenient to normalize the RISK and MASK

values by certain parameters so that the complexity of

testing a PLA may be estimated according

personality structure of the PLA itself.

proceeding to do so, the theoretical upper

tfls~ length for a PLA has to be defined.

bound

to the

Be for e

on the

single Total Total undetectability
PLA undetectable faults RISK MASK %

PLA_5X 157 224 305 11%

PLA_BW 1148 43 '1075 42%

PLA_BWI 496 51 511 23%

PLA_CONI 7 38 3 6%

PLA_DIL 15 1168 10 3%

PLA_F2 12 1 12 12%

PLA_MAS 42 65 140 5%

PLA_MID 1 0 40 0.37%

PLA_MISEX1 99 220 499 17%

PLA_RD53 20 4 10 8%

PLA_RD73 199 34 73 14%

PLA_SA02 111 552 104 12%

PLA_SR 16 180 0 6%

Table 4.1 Testability Profile for differents PLAs (1)

94

Since the strategy of FACTPLA program assumes that growth

and shrinkage tests constitute the vast majority of the

patterns in the test length, only these tests shall be

considered henceforth. Now, in the previous chapter it has

been shown that up to 3 patterns may be needed to detect

all testable shrinkage faults in a general product term

(see sec~ion 3.3). Therefore, in a PLA with m rows the

upper bound on the shrinkage tests is 3m. On the other

hand, a product term grows into different coordinates and

no two growths can overlap. Hence, the worst case for

testing growth faults is to have a distinct test pattern

for every possible missing contact fault, that is (n -

It follows immediately that the theoretical upper bound on

the test length for a (n,m,f)_PLA may be given by

Theoretical upper
=

bound on test length

m

3 * m + [(n - Log 2 Ri)
i=l

Accordingly, the worst case for covering multiple faults

in a PLA is to assume that all the patterns having RISK

values do belong to the test set. Therefore, the

testability criterion of multiple faults in a PLA may be

give n by

RISK on
Multiple fault % =

coverage

Total RISK

Theoretical upper bound
on the test length

* 100

95

Similarly, since the MASK values account for those

testable which are masked from detection, then it

is very convenient to normalize these values by the amount

faults

of the testable faults . , 1.e.,

Total MASK
MASK % = * 100

Total testable faults

where

testable faults = Total faults - Total redundant faults

The normalized values for the PLA examples in question are

summarized in Table 4.2. Note that some of the RISK and

MASK measures in Table 4.2 have an effect of ()100%). This

is explained below.

The FACTPLA program is a pre test generation technique

which tends to estimate the complexity of testing a PLA.

Hence, the values of RISK measures are evaluated for all

possible qualified test patterns without knowing exactly

which tests will be included in the final test length.

Therefore, without loss of generality, it is natural to

assume that, at the worst case, all tests with RISK values

are included in the final test length. In some cases, the

amount of such tests may exceeds the theoretical upper

bound of the test length.

On the other hand, a testable contact fault may be masked

by more than one redundant fault under various tests. For

instance, a testable growth fault on row i of a PLA may be

masked by more than one shrinkage fault on the same row.

theoretical upper
Single detectable PLA bound on test length RISK MASK

fanlt~ % %

PLA_5X 512 1272 43% 24%

PLA_BW 611 1557 7% 57%

PLA_BW1 435 1620 11% 31%

PLA_CONl 50 105 76% 2%

PLA_DIL 186 437 >100% 2%

PLA_F2 72 84 1% 14%

PLA_MAS 535 712 12% 19%

PLA_MID 97 270 0% 15%

PLA_MISEX1 218 483 >100% >100%

PLA_RD53 240 218 1% 4%

PLA_RD73 1263 1217 2% 6%

PLA_SA02 597 780 92% 13%

PLA_SR 139 220 >100% 0%

Table 4.2 Testability Profile for different PLAs (II)

PLA
Complexity
of testing

PLA_MISEXI >100%

PLA_SA02 52%

PLA_DIL 51%

PLA_SR 50%

PLA_CONI 39%

PLA_5X 33%

PLA_BW 32%

PLA_BWI 21%

PLA_MAS 15%

PLA_MID 7%

PLA_F2 7%

PLA_RD73 4%

PLA_RD53 2%

Table 4.3 The Complexity of Testing different PLAs (III)

96

Hence, the amount of masking conditions may exceeds the

total number of single testable faults in the PLA.

However, for more a accurate estimation of the complexity

of testing a PLA, both measures have to be considered

simultaneously. In this case, the complexity of testing

indicates the effectiveness of a single fault test set to

cover more mUltiple faults. Such complexity will be

defined by the mean value of both measures

complexity of RISK% + MASK%
% =

testing 2

In Table 4.3 the PLA examples in question are

according to their testing complexity defined by the above

expression.

4.7 SUMMARY

The analytic program presented in the previous

sections produces measures for testability investigation

in PLAs. The procedures of the FACTPLA program may be

considered for estimating the complexity of the whole

program. For instance, the memory requirement for

generating and manipulating the adjacent tables and

partitions of the product terms is limited by the size of

the largest
product term. At any instant of the program,

only 'one' adjacent Table and 'one set' of partitions are

required.

97

Accordingly, the storage required in the main computation

of the FACTPLA program may be described below

Log
2

R .R
max max + R • n

max ,,----- ----------for partitions for adjacent tables

where Log R
2 max

is the number of partitions in the

largest product term,

R
max

is the size of the largest product term, and

n is the number of inputs to the PLA.

It follows that the operations in FACTPLA relate linearly

to the number of product terms and the amount of redundant

faults. Both MASK and RISK evaluations are completed after

a single pass through the set of product terms.

Another factor to consider here is the ease with which

'more realistic' test patterns can be generated for a PLA.

The functional verification approach embodied in the

program may be used to obtain such patterns, that is, the

PLA under normal condition performs the intended

operation, even if some redundant faults exist. It is

obvious that the derivation of such patterns can be

achieved directly from the adjacent Tables and partitions

of the product terms. A straightforward application of any

minimal cover routine on these Tables and partitions

yields a minimal test length for the PLA.

Now, to achieve minimal fault masking and higher coverage

of multiple faults, the adjacent Tables and partitions may

be updated by removing those 'free' minterms (from the

~. T a b I ~ S) ~m!--~aTI·~ u e' min t e r m s (f rom the par tit ion s) w hi c h

98

belong to redundant fault sets Ccolumns in the Tables and

blocks in the partitions). Thus, applying the same minimal

cover routine, another test length can be achieved and a

new testability criterion may be established by comparing

both test lengths. It is worth noting that increasing the

f aul t coverage is achieved without augmenting

structure of the PLA, therefore, reducing the chances

the

of

f aul t occurrence in the sequential circuits involved in

most of the augmentation techniques [31-37].

However, FACTPLA program analyzes the functional

specification of PLAs without considering the topology of

the arrays as such. Thus, as far as the properties of the

output functionCs) remain the same, the program is

technology invariant and may also be applied to the folded

versions of the PLAs.

CHAPTER FIVE

CONCLUSIONS AND FUTURE WORK

99

100

5.1 CONCLUDING REMARKS

With the advent of VLSI, the circuit complexity of

chips has been increasing exponentially_ Considerable

effort has been made to incorporate regular structures

into circuit design. As one of such structures,

Programmable logic arrays presently occupy an extremely

useful role

other hand,

in the design of complex VLSI chips. On the

the steadily growing chip complexity is

associated with testing difficulties; particularly in the

area of mUltiple fault detection in these chips. It is for

this reason that considerable attention is being devoted

for testing PLAs effectively.

The introductory part of this thesis identified the need

to consider the influences of undetectable faults on

testing and testability aspects in digital circuits. Being

the example vehicle of the above consideration, a PLA is

introduced in Chapter 2 and the problem of testing PLAs is

identified in the light of the following topics

2 •

3 •

Fault modeling

malfunctions

represented.

Derivation of

relates to determining how various

can be logically or functionally

a complete single contact fault test set

relates to the computational difficulties despite

various heuristic based test generation algorithms

reported in the literature.

Multiple fault detection: relates to the problem of

quantitatively predicting the multiple fault coverage

4 •

5 •

The

101

capability of a single fault detection test set (T)
s

in a PLA. Moreover, augmenting T in order to obtain
s

a mUltiple fault detection test set (T) represents
m

another problem.

Effect of untestable contact faults relates to the

increasing complexity of the computations involved in

the algorithms mentioned in (2) above. Furthermore,

untestable contact faults become important when one

attempts to show that most other faults can be

covered by test patterns designed to cover only

single crosspoint faults.

Designing easily testable PLAs relates to the

different trade offs over the parameters associated

with the extra test circuitry (e.g., the number of

additional pins, fault coverage, the number of test

patterns, .•• etc.).

work established in this thesis presents an

alternative for estimating the complexity of testing in

PLAs. The described approach expresses such complexity in

terms of the effects of masking among faults.

Undetectable faults identification and fault masking

evaluation have been combined to yield an analytic program

for testability investigation in PLAs. The program

(FACTPLA) analyses the functional specification and

investigates the adjacency relationships among the product

terms constituting the PLA.

102

Two testability measures, related to the effect of fault

masking and restriction on single fault test patterns to

cover multiple faults, are produced. A record of all

undetectable contact faults is also given. The main

application of the program is to distinguish between

different PLA structures by considering their testability

measures.

Since the properties of the output function(s) are

investigated without considering any topological aspect,

the program can be applied to large PLAs and to the folded

PLA structures as well.

5.2 FUTURE WORK

The main aim of traditional minimization techniques

is to simplify a boolean function f(x
1

,x , ••• ,x) to find
2 n

an expression g(x
1

,x , ••. } x) which is equivalent
2 n

to f

and which minimizes some cost criteria. The most common

cost criteria are

1 • minimum number of appearances of literals

(complemented or uncomplemented) in a product term,

2. minimum number of literals in a sum of products (sop)

expression, and

3 • minimum number of terms in a sum of products

expression provided there is no other such expression

with the same number of terms and with fewer

literals.

Now, cost is defined as merely the number of AND (or the

product terms) gates required in the realization. Such

103

definition is quite natural for the PLA. Thus, the third

criterion above seems to be the most relevant one for PLA

structures. However, as it was illustrated in chapter 4,

a minimal sum of products expression produced by most

minimization techniques is not necessary unique. Hence,

for the same output function, there may exist several PLA

realizations with different functional properties

affecting the array's testability.

Now, the values calculated for the testability measures in

this thesis are used to estimate the testability within a

particular PLA as well as to compare the testability of

different PLAs. This is due to the normalization of the

absolute measures by certain common factors which are

affected significantly by the functionality (realization)

of each PLA. This is clearly illustrated by the histogram

format (Figure 5.1) developed to show that the amount of

crosspoints (as a function of the area of a PLA) is

irrelevant to the complexity of testing, and hence, the

testability of a PLA. Therefore, a worthy motivation

towards further research may be directed to :

1. define those functional properties that affect the

2 •

complexity of testing. For instance, unateness,

linear separability, symmetry •• etc., may be proved

to have good or bad impact on testing.

define the 'design style" that help reduce the

complexity of testing. As far as a PLA is concerned,

the design style may be confined by the "shape" of

the output (OR) plane of the array. For example, in

m(2p+f)_PLA

I\) c.u ~ 0 0 0 0 0 0 0 0 0 0 0 0 0

l'-.j I\)
I 1-'-

(RD53) ()'q

V1

f-'

(RD73)
H
(l)

UJ

(F2) n-
Ul
cr
1-'-
f--'
1-'-

~ n- O
'-<:

0
'1j 0 CJI (MAS) I 'i 3 I 0

I t-n "0
I 1-'- CD I f--' x (8W1) I (l)

I
I t-n ~

(8W) I 0 0 W
I 'i - I\)
I --i 3306 I t:l CD I 1-'-

(j)
I t-n W
I t-n

:::J W I (l)
(Q I 'i

I (l)

I ;:l w
(CON1) I n- to

I
I en
I 1-'-
I N CJI

(SR) I (l)
0

I UJ
I
I '1j

I r CJI
(OIL) I :»

UJ

(SA02)

(MISEX1)

104

some cases a PLA is designed such that each of its

product lines is belonged to one and only one output

function (in Appendix C , PLA 5X, and

PLA RD73 are some examples of such design).

A systematic way to identify the impact of the combination

of the above two parameters need to be established. Such

motivation will be of great theoretical and practical

interset. Furthermore, generalizing and integrating

FACTPLA within a complete CAD tool for logic minimization

"'with emphasis on testability'" is appreciated when

considering the following argument.

Previous experience on generating tests for digital

circuits shows that most of the search time of an ATPG

algorithm is wasted on undetectable faults (see Figure

5.2a). Now, the

the

knowledge provided by FACTPLA could be

ATPG algorithm if it picks up an used to guide

undetectable fault. At the worst case, the computer run

time of FACTPLA may be equivalent to that of the ATPG

algorithm. The important conclusion of this fact is

depicted in sketch (b) of Figure 5. 2 where the

acceleration of the ATPG algorithm is achieved. An

effective reduction in the total search time is not the

only advantage of FACTPLA. Another area which has been

proven to be of value in Chapter four is the consideration

of multiple faults. Essentially, the generation of

effective test patterns which detect as many multiple

faults as possible is achieved.

25%
Start A TPG 1-1 __ .,.,.

t Algorithm

Test Generated
If Fault Is
Testable

25%
Start t-I -->~ I :0-

FACTPLA t
Start ATPG

With Knowledge

(a)

50%

Stop
Computation

(b)

100%
Search Time

t
No Test Exist

Fault Is Redundant
(Exhausts All Search Time)

100%
Search Time

Fig. 5.2 Reduction In Total Search Time Of An A TPG

REFERENCES

[1] Melvin A. Breuer, Arthur D. Friedman
"Diagnosis and Reliable Design of Digital Systems".
Computer Science Press, Inc. 1976.

105

[2] P. J. Hicks
"Semi_Custom IC Design and VLSI".
Peter Peregrinus Ltd. 1983.

--
[3] T. W. Williams (Editor)
"VLSI Testing".

Elsevier Science Publishers B.V. 1986, North Holand.

[4] B. R. Wilkins
"Testing Digital Circuits".
van Nostrand Reinhold co. Ltd. 1986.

[5] R. G. Bennetts
"Design of Testable Logic Circuits".
Addison Wesley 1984.

[6] H. Flleisher, L. I. Maissel
"An Introduction to Array Logic"
IBM J. Res. Dev., vol.19, March 1975.

[7] Thomas W. Williams, Kenneth P. Parker
"Design for Testability - A Servey".
IEEE Transc. on comp., C_31, No.1, Jan. 1982.

[8] J. E. Stephenson, J. Grason
"A Testability Measure for Register Transfer
Level Digital Circuits".
Dig. 6th Int. Symp. Fault-Tolerant Comput. (FTCS-6),
pp. 101-107, 1976.

[9] Lawrence H. Goldsteine, Evelyn L. Thigpen
"SCOAP : Sandia Controllability/Observability
Analysis Program".
IEEE 17th Design Automation (DA) conf. 1980.

[10] P. G. Kovijanic
"Testability Analysis".
Dig. IEEE Test Conf., pp. 310-316, Oct. 1979.

[11] Ion M. Ratiu, Alberto Sangiovanni_Vincentelli
"VICTOR: A Fast VLSI Testability Analysis Algorithm".
IEEE Test conf. 1982.

[12] R. G. Bennette, C. M. Maunder, G. D. Robinson
"CAMELOT: A Computer_Aided_Measure for Logic Testability".
IEEE ROCE, vol.128, No.5, Sep. 1981.

[13] I. Kohavi
"Fault Diagnosis of Logical Circuits".
Proc. 10th Ann. symp. on Switching and Automata Theory Oct. 1969.

[14] Pradip Bose, Jacob A. Abraham
"Test Pattern Generation for PLAs".
19th design Automation conf., 1982.

106

[15] Kenyon C. Y. Mei
"Bridging and Stuck_at Faults".
IEEE Transc. on comp., C_23, No.7, July 1974.
--
[16] Charles W. Cha
"A Testing Strategy for PLAs".
15th Design Automation conf., Las Vegas, June 1978.

[17] James E. Smith
"Detection of Faults in PLAs".
IEEE transc. on compo C_28, No.11, Nov. 1979

[18] Fabio Somenzi, Silvano Gai, Marco Mezzalama, Paolo Prinetto
"A new Integrated System for PLA testing and Verification".
20th Design Automation conf. 1983.

[19] E. I. Muehldnof, T. W. Williams
"Optimized Stuck Fault Test Pattern Generation for PLA Macros".
Semiconductor Test symp., Oct. 1977.

[20] C. W. Cha
"Prime Faults in A Double Bit Partition PLAs".
IBM Tech. Disclosure Bulletin, vol.18, No.8, 1976.

[21] C. W. Cha
"Test Pattern Generation for Shorts in PLAs".
IBM Tech. Disclosure Bulletin, vol.18, No.5, 1975.

[22] Daniel L. Ostapko, Se June Hong
"Fault Analysis and Test Generation for PLAs".
IEEE transc. on compo C 28, No.9, Sept. 1979.

[23] E.B. Eichelberger, E. Lindbloom
"A Heuristic Test Pattern Generation for PLAs".
IBM Res. Dev., vol.24, No.1, Jan. 1980.

[24] William I. Fletcher
"Engineering Approach to Digital Design".
Prentice/Hall Int. Edition 1980.

[25] Vinod K. Agarwal
"Multiple Fault Detection in PLAs".
IEEE transc. on compo C_29, No.6, June, 1980.

[26] J. W. Gault, Robinson, S. M. Reddy
"Multiple Fault Detection in Combinational Networks".
IEEE transc. on compo C_21, pp. 31-36, Jan. 1972.

107

[27] C. T. Ku, G. M. Masson
"The Boolean Difference and Multiple Fault Analysis".
IEEE transc. on compo C_24, pp. 62-71, Jan. 1975.

[28] Janusz Rajski, Jerzy Tyszer
"Combinatorial Approach to Multiple Contact Faults in PLA".
IEEE transc. on compo C_34 , No.6, June. 1985.

[29] Janusz Rajski, Jerzy Tyszer
"The Influence of Masking Phenomenon on Coverage Capability
of Single Fault Test Sets in PLAs".
IEEE transc. on compo C_35, No.1, Jan. 1986.

[30] K. S. Ramanatha
"A Design for Testability of Universal Crosspoint
Faults in PLAs".
IEEE Transc. on comp., C_32, No.6, June, 1983.

[31] Wilfried Daehn, Joachim Mucha
"A Hardware Approach to Self_Testing of Large PLAs".
IEEE Transc. on comp., C_30, No.11, Nov. 1981.

[32] Hideo Fujiwara, Kozo Kinoshita
"A Design of PLAs with Universal Tests".
IEEE Transc. on comp., C_30, No.11, Nov. 1981.

[33] C. Zheng, G. Musgrave
"A Functional Testable Design of PLAs".
lEE Electronic Design Automation conf. (EDA 1984).

[34] Javad Khakbaz
"A Testable PLA Design with Low Overhead and High
Fault Coverage".
IEEE Transc. on comp., C_33, No.8, Aug., 1984.

[35] Hideo Fujiwara
"A New PLA Design for Universal Testability".
IEEE Transc. on comp., C_33, No.8, Aug., 1984.

[36] Kewal K. Saluja, Kozo Kinoshita, Hide? Fujiwara "
"An Easily Testable Design of PLA for Multlple Faults .
IEEE Transc. on comp., C_32, No.11, Nov., 1983.

[37] Saied Bozorgui_Nesbat, Edwar~ ~. McCluske~
"Lower Overhead Design for Testablllty of PLAs .
IEEE Transc. on comp., C_35, No.4, April, 1986.

[38] Robert K. Brayton, Gary D. Hachte~, Curtis T. McMullen,

Alberto L. Sangiovanni_Vincentelll
""Logic Minimization Algorithms for VLSI Synthesis"
Kluwer Academic Pub. 1984.

108

APPENDIX A

A.I The Cubic Notation

The most straightforward representation for a logic

function is the 'tabular form' or 'truth table'. In this

form, the function outputs are specified for each possible

combination of the inputs. F or example, the function

- -F = XYZ + XYZ + XYZ

is specified as follows

X Y Z F

o o o 1

o o 1 o

o 1 o 1

o 1 1 o

1 o o o

1 o 1 o

1 1 o 1

1 1 1 o

The above specification may also be mapped into a

geometrical representation in which points in

n dimensional space are used to represent the possible

binary codes or n tuples. Karnaugh map may be considered

as an attempt to project this n dimensional space onto a

2 dimensional map (this is usually effective for up to 5

or 6 variables).

Accordingly, logic functions with 3 variables may be

represented as a 3 dimensional unit cube as shown in

Figure A.l. Each canonical product term (minterm) of the

109

function is associated with a unl'que pOl'nt ()
vertex of the

cube. The cubical representation for the above function

is illustrated in Figure A.2, where the indicated vertices

represent the existence of the corresponding minterms in

the original function. Planes and edges are used to

represent the non canonical product terms since each

vertex is distance one apart (i . e . only one variable

changes its logical value between two adjacent vertices).

For example, Figure A.3(a) represents the product term

(2), while Figure A.3(b) represents the product term (Y2).

Using the above notation, switching function expressions

may be specified and manipulated as an arrays of n tuples

(cubes). Thus, a complete algebra may be established with

defined operations on arrays of cubes to perform any

computer manipulation on switching functions.

A.2 The Mathematical notion of sets

In this section, the notion of set and its basis

operations, used in the material given in chapter 3, is

introduced.

A set is simply a collection of objects without

repetition. Each object in a set is called an element of

that set. For example, a product term may be described as

b representl"ng the decimal codes of a set of integer num ers

its minterms. If an element, X, is a member of a set A,

then it is written as X EA (read X in A or X belongs to

I

A), and if X is not an element in A then we write X tf- A

(read X not in A or X does not belong to A).

(0,0,0)

. (0,1,1) (1,1,1)

(0,0,1) (1,0,1)

(0,0,0)

'" '" '" '"
(0,0,0)

Fig. A.3(a)

I
I
I
«

J- i~,2~02 __

.Fig. A.l

I
I
«
I
I
, (0,1,0)

(1,0,0)

s-------
" '" '"

Fig. A.2

(1,0,0)

(1,1,0)

(1,1,0)

(0,1,1) YZ (1,1,1) -------

Fig. A.3(b)

Cubical Representation of Swithcing functions

110

III

A set A is a subset of set B, written ACB, if and only

if eve ry element of A is a member of the set B. If A is

not a subset of B, we write Acj:.B. Then

{ 1,2,4 }C{ 1,2,3,4,5 }

and

{ 2,4,6 }ct{ 1,2,3,4,5 }-

The basic operations on sets are the binary operations,

union (U), intersection (n), and difference (-).

If A and B are sets then these operations are

follows

defined as

A U B

A n B

consists of all elements in either A or B,

consists of all elements in both A and B,

A - B consists of all elements in A but not in B.

For example, if A = { 0,1,3,5 }, B

A U B = { 0,1,2,3,5 },

A n B = { 3,5 }, and

A - B = {0,1 }.

{ 2,3,5 }- then

112

APPENDIX B

Appendix B contains the detailed symbolic

repres~ntation of some of the most important routines in

FACTPLA program. Figures B1 (in the next two pages)

illustrates the complete flow chart for deriving the

decimal code (DeeP) of a product term (BinP) in the manner

required by the program. Figure B2 shows the derivation of

the intersection vector (common minterms) between product

terms and P
2

Finally, figure B3 illustrates the

partitioning of a product term (P) of size (R) to obtain

the Log
2

R partitions. Each partition has two blocks,

referred as block 0 and block 1 in the flow chart.

1

:•...........................

i = i + 1

..

R'S' • LZe of the Product Tam p

B' inP : Product Tam Cube

DeeP : Decimal Code of BioP

binary & Temp . ~ • prary Storage

~•.......•........... .•....•..•.......••.•..•••..

NO

YES

i = i + 1

.. :

113

--
~----------------------~*

:•..... ~•••....•.•.••. ..•................................

i = i + 1 NO

NO
'-..,. binary(i,j) ==

"'- 'X'

k=k+l

j = j + 1

start = sUrt + 2 • (ajh)
limit = (a/h) + (j+ I) • (2 • (a/h»

YES

................
.. ..

Fig. 131 Decim:li Code Derivation of a Product Term Cube

. "

j=j+l

NO

NO

DecPi = 0
k=O

YES

NO

w=n-(j+l)

w
k=2

DccPi = DccPi + k

i = i + 1

Fig. B 1 Decimal Code Derivation of a Product Tem1 Cube

114

FALS

j = j + 1

START

INPUf
Pl.Rl
P2.R2

i = 0
s=o

vCClOr(s) = Pi
s=s+l

Rl : Size of Term PI

R2 : Size of term P2

i = i + 1

Fig. B2 Generation of the Intersection Vector between twO terms

115

INPUT
b = lottR.. a = R!2

t ;'0, i = °

FALSE

Temp <--p
h = 2\ j = °

start = 0, limit = a/h

FALSE

partition(i,O,s) = Temp
s = s + 1 , Temp = -1

L-_______ k_=.-.!} + I

start = start + 2 • (a,Ih)
limit = a/h + G+1) ·-(2 * (a,Ih»

END]

b: number of partitions

a : size of the partition block

Temp: temparay storage

s=O
k=O

~ 16

K<R FALSE

if Temp i- -1
partition(i,l.s) = Temp

s = s + 1

/r~-----~F:::;i~b~_~BU~J.[titioning :.l Product T~ml \P) of Si:~c (R)

----l

I
I

I
j

I
I
I

I

,
- I

117

APPENDIX C

Appendix C contains the results of PACTPLA on several

PLA examples. The personality of each PLA is specified by

0, 1 , and X (don't care) in the input part of the product

term (or row), and 1 and 0 (or"") in the output part. The

locations of undetectable (g r ow t h, shrinkage, and

appearance) faults are listed and the total values of the

measure (MASK and RISK) are also given.

Note that the locations of faults are specified by m, n,

f, and c where

used for the first row (product line),

: used for the first i npu t variable (growth

case),

used for the first output column (function), and

c : used for input columns (shrinkage fault case)

that

c = 0

c = 1

for the complemented bit line, and

for the uncomplemented bit line.

fault

such

___ ~=~~:~~~;~tQ~~~S_7~'~O _____ ~A 5X
_products 75

x X X 0 X X X
X X X X lOX
X X X X 0 1 0
XXXXIOI
1 X X X 0 1 0
01XXX01
X 0 0 X X X 1
XOIIXXO
X 100 X X 0
OXIOXXX
lXllXXX
OlOlXXX
lXOOXXX
100 X X X X
X 0 0 1 X X X
XIXOXXX
Xl1XXXX
X X 0 1 X X X
XXI0XXX
XXXXlll
lXXXllX
OOXXIXO
1 X X X 0 1 1
XIXXOll
l1XXXOI
lXlXXOl
111XI0X
llXllOX
OOXXXIO
o XXXOO 1
X 0 0 X 0 0 1
III X 0 X 0
1 1 X lOX 0
OXXXI00
X 0 X X 100
XXOOIOO
Xl110l0
OOXXXlO
100XXOX
OXllXOI
0111XOX
1 X 0 0 X 0 0
1 1 1 X X 1 X
1 1 X 1 X 1 X

o 0 X 0 X X 1
X 1 1 I X X
1 1 1 X X X
11X1XXI
1 0 1 X X X 0
Xliii 1 X

OXXOlXO
OXOXIXO
X XII 0 1 1
OOXOO X
000 X 0 X
OXXOXIO
OXOXXIO
OOXOOXI
000 X 0 X
1 X X XII
X 1 X XII 1
o 0 1 1 I 1 X
OXXOlXO
OXOX1XO
I 1 X X 1 X 1
OXOXXIO
10XXXOO
OOXOXIX
OOOXXIX
1 1 X X X 1
1 X 1 X X 1

01 XOXXO
OIOXXXO

--------1-
1--------­
-1--------
-1--------
--1-------
---1------
----1-----
----1-----
----1-----
-----1----
-----1----
-----1----
-----1----
-----1----
------1---
------1---
------1---
-------1--
-------1--
--------,.-1
---------1
1---------
1---------
1--------­
-1--------
-1--------
-1--------
-1--------
-1--------
--1-------
--1-------
--1-------
--1-------
--1-------
--1-------
--1-------
--1-------
---1------
---1------
---1------
---1------
---1------
---1------
---1------
----1-----
----1-----
----1-----
----1-----
----1-----
---------1
1---------

1---------
1---------
-1--------
-1--------
-.1--------
-1--------
--1-------
--1-------
--1-------
--1-------
--1----
--1-------
--1-------

--1-------
---1------

---1------
---1------
---1------

---1---
---1------
----1-----
----1-----

App_.fault locacion
(r(Y.I , output)
c:::======:::.======

(60
(59
(73
(69
(66
(62
(57
(55
(53
(50
(44

41
35
18
15
12

, 9)
9)
8)

, 8)
8)
8)
8)
8)
8)
8)
8)
8) (

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

(
(
(
(
(
(
(
(
(

(

(
(

(

(
(

(
(
(

(

(
(

(
(
(

(
(

,8)
I 8)

8)
, 8)

9 I 8)
8 I 8)
14 , 7)
11 , 7)
9 , 7)
73 • 6)
49 6)
46 6)
45 , 6)
42 6)
40 6)
36 6)
31 , 6)
26 , 6)
8 • 6)
41 5)
38 , 5)
58 4)
57 , 4)
30 4)
56 3)
55 3)
54 3)
53 3)
28 3)
51 2)
50 2)
21 , 2)
67 1)
66., 1)
37 1)
3 &,)
4 , 1)

63 , 0)
62 , 0)
3 S , 0)
34 ,0)
33 , 0)
27 ' 0)
26 ' 0)
3 , 0)

. ,
= 57. a s rna s I~ = 1 1 2 3 5 App f3ults

r 1 s,~

Sh_faulC locacion

(rev , input I bit line)
~~====c==~==~=a~_~=Q=~_a~

(49 I 6 , 0) (33 3 1)
(49 • 0 0) (33, 2 1)
(20 , 6 J 0) (33 1 1)
(19" 0 , 0) (32 5 0)
(16 3 1) (32 I 2 0)
(15 , 2 , 0) (31, 5 , 0)
(13 3 I 1) (31, 3 (l)
(12 1 1) (3 a 0 1)
(74 , 3 , 1) (56, 4 , 1)
(73 2 1) (56 I J)
(48 I 3 0) (56 1, 1)
(47 2 0) (55. 4 1)
(46 3 0) (55 I 2 1)
(45 0 0) (55, 1 . 1)
(44 , 2 , 1) (54, 6 , 1)
(8 , 0 • 1) (54 I 3 1)
(7 , 0 I 0) (53 6 1)
(72 1 0) (53, 2 1)
(71 , 3 0) (28 4 1)
(71 ,2 0) (28 3 1)
(70 6 1) (28 2 1)
(70 3 1) (27, 6 0)
(69 ,6 1) (27 2 I 0)
(69 2 1) (26 6) 0)

1 ' h. ~ ,

(68 2 1) (26 3 0)
(67 ,3 1) (25 4 0)
(67 1 1) (25, 1 0)
(66 2, 1) (24 4 0)
(66 1, 1) (24 2 0)
(43 6 0) (52) 1 • 0)
(43 2 0) (52. 0 0)
(42 6 0) (S1) 5 1)
(42 3 0) (51) 3 I)

(41 1. 1) (51, 1)
(40 6 0) (50 5 1)
(39 I 1 0) (50, 2 1)
(38 6) (50, 1)
(37 • 3) (23 0 0)
(37 I 2 1) (22. 1 (l)

(65 5 I 0) (21 5 1)
(65,10) (21,31.)
(64 5 0) (21 2, 1)
(64 I 2 , 0)
(63 , 5)
(63 , 3 I 1)
(62 , 5 1)
(62 2, 1)
(60 0 0)
(59 Z 0)
(59 I 1 0)
(58 I S 1)
(58 3 1)
(57 , S I 1)
(57 J 2 1)
(36 I 0 0)
(35 , 1)
(3S , 0 1)
(31. , 0 , 1)

= 1 I:'

, = I q 3)
1 Q I, (T 0 (.3 1 r.13 S "~ "'" rr:2sL. ~ "'-,,() 0 s g~_~l.1~'2~S~~~~"~' ~S~3;;.;~ ____ ;;;:; ••• _=t=,.=)\ S h f au 1 r s = • '\. .':' - , 2 h °th; I!i • _

.1npuC5 5 "

.oucpucs i/

., Gt9M
PIA B~

o 0 0 0 0 ---------------------------1
X 0 0 X 0 -------------------1-----~--
a x 1 0 0 ---1----------1----1--------
1 X 0 X 0 ---1---------------1--------
1 X 0_1 X ---1--1------------1--------
o X 0 a 1 ---1---------------1---:----
x x 0 1 a ---1---1----------1--------
x X 0 X X ---------1--1-~-1-----------
o X x x 0 -----1---1--1-----------1---
o 0 x 0 X ------------1---------------
X lOX X -1---1------------------1---
X lOX 0 --------1-------------------
o X 0 X -----1----------------------
x x 0 X
1 X a x x
o x x 0 x
x x 0 X 1
X X 0 0 x
o 0 o 1 X
0 0 1 X 0
1 0 0 1 0
0 1 0 1 0
0 1 X X 0
0 0 1 1 0
1 0 o 1 X
0 1 X 0 X
0 X 0 1 0
0 000 1
1 X 000
0 1 0 0
0 1 0 0 0
0 o 1 0 0

x 0 x
0 1 X

X 1 0 1
0 1 1 X 0
X 0 o 0 0
0 X 1 0
0 0 x 0 0

0 x X
1 X 0 1
X [0 0
x 0 0 1 1
0 X I X 0

0 0 0 0
1 0 X
0 0 0 x

0 1 0 0 x
0 0 0 X 1
0 0 1 0 X
X 0 0 0 1
X 1 0 X
0 o 0 0
x x 0 1
1 0 0
1 X 0 1 0
0 x x 0 0
0 0 x x 0
0 0 0 x 0

0 x 0 0 0
1 X 0 0
0 x 0
I 1 0 1
0 X 0 1

0 0 0
Q Q C'

1 1 o V 1

0 0 0

0 [1 0

0 0 0 1

" 1 () 1

0 0 0 0 0

0 0 1 0

1 0 1 0

0 1 0 0

1 0 0 0

0 0 1

I I 0 [I
0 0 1 0 0

1 0 0 0 0

0 0 0 0 I

0 0 0

0 0 0 1 0

-----1----------------------
-----1--------------------1-
----------------1-------1---
------------------------1-1-
------------------------1---
---------------1------------
-----------------------1----
-----------------------1----
-----------------------1----
-1--------------1-----------
----1-----------------------
----1-----------------------
-1-------1------------------
--1--------------1----------
--1-------------------------
--1-------------------------
---------------------1------
----------1--1--------------
--------1----1------------1-
------1-1----1------1-------
-------------1--------------
------1---------------------
1-----1---------------------
-----------1----------------
1-----1--------1----1-1----­
-----------1----------------
------[---------------------
-----------------1-------1--
1------------------------1-­
-----------1-------------1--
-------1-----------------1--
-----------------1-------1--
-----------------1----------
------------------[---------
---------------1-1----------
----1------------1-----1----

------------------1---------
--------1---------1---------
--------------------------1-
----------1-------1---------

--------------------1-------
1--------------------------­
----1--1--------------------
-------1--------------------
-------1--------------------
-----------1----------1-----
--------------------1-'-----
1---------------------,----­
---------------,------1-----
--------------1--------1----
,-------------------[-1----­
--------------1-------------
1- ... , - -- _

--1(---(--11------1 1 --------

---1------1---1---- 1- 1---- 1-
--[[------11--1---11------ 1-
--111-111-1--111-1-1-1-1-11-
--11-111-11-111-111-1- 1- 11 -
1-1-1-1-1----111-1---1-1-1--
--1----------- 1----- 1-------
--1-------- 1-- 1--- 1---------

-----------1 ------1-------1-

(;:!~;~i!!!;!!,~;~;~:;;;:;:~
1---------- 1--1--- 1- 1-------

I-------------I-~~-~~-------

0 0 0 0
a a a

1---------- 1-- 1- I 1
-------1--- 1-- 1---1--1-

__ ...ll.....L..U.~~~~

" > I' '

(76 , 25) (44
~20

, 24) (18 , 22) (73 . 27) (70 , 25) (43 24)
(86 26) (69 25) (42

(o ~ 22)
, 24) (76 . 21) (83 26) (68 , 25) (41 24) (63 , 21) (82 26) (65 25) (40 24) (61 21) (81 26) (63 25) (39 24) (59 21) (80 26) (62 25) (38 24) (47 21) (79 26) (49 25) (37 24) (30 21) (78 26) (45 25) (36 24) (25 21) (77 , 26) (38 , 25) (35 24) (23 s 2~.)

(75 26) (37 25) (34 24) (o : 21)
(74 26) (36 25) (33 , 24) (85 20)
(68 26) (35 25) (32 24) (79 20)
(67 26) (31 25) (31 24) (78 20)
(66 26) (29 25) (30 24) (73 20)
(65 26) (23 , 25) (29 24) (72 20)
(64 26) (19 25) (28 , 24) (71 20)
(63 26) (12 , 25) (27 , 24) (70 , 20)
(62 , 26) (2 25) (26 24) (69 , 20)
(61 26) (0 25) (25 24) (68 , 20)
(60 , 26) (86 24) (23 , 24) (67 , 20)
(55 26) (85 , 24) (22 24) (66 , 20)
(54 26) (84 24) (21 24) (65 20)
(53 26) (83 , 24) (19 24) (fl4 , 20)
(50 26) (82 24) (18 . 24) (62 , 20)
(49 26) (81 24) (12 24) (61 , 20)
(48 26) (80 24) (11 24) (60 20)
(46 26) (79 24) (9 : 24) (58 , 20)
(45 26) (78 24) (5 : 24) (57 , 20)
(44 26) (77 24) (2 , 24) (52 20)
(43 26) (76 , 24) (0 24) (SO 20)
(42 26) (75 24) (83 23) (49 , 20)
(41 26) (73 24) (82 23) (48 20)

(40 26) (72 24) (eo 23) (46 , 20)

(39 26) (71 24) (79 23) (45 20)

(37 26) (70 24) (74 23) (44 20)

(35 26) (69 , 24) (69 23) (42 20)

(34 26) (68 24) (65 23) (40 20)

(33 26) (67 24) (63 23) (38 20)

(32 26) (66 24) (.49 23) (36 . 20)

(29 26) (65 24) (38 23) (34 20)

(28 26) (64 24) (3 1 23) (31 20)

(27 ·26) (63 24) (27 23) (30 20)

(24 26) (62 24) (23 . 23) (28 , 20)

9 . 23) (27 20)
(23 26) (61 , 24) (

o . 23) (26 I 20)
(21 26) (60 24) (

(85 22) (24 20)
(20 26) (59 24)

(84 22) (23 20)
(19 26) (58 24)

(73 22) (21 20)
(12 26) (57 24)

(72 22) (20 20)
(5 26) (56 24)

(71 22) (19 20)
(4 26) (54 . 24)

) (18 20) (70 22
(3 26) (53 24)

) (9 , 20)
24) (69 . 22

(2 26) (52
) (1 20)

24) (68 22
(86 25) (51

(67 22) (o I
20)

(81 25) (50 24)
) (86 19)

(49 24) (66 , 22
(80 25)

(65 , 22) (84 19)
(79 25) (48 24)

) (83 19)
24) (52 22

(78 25) (47
22) (82 : 9)

(46 24) (30
)

(23 , 22) (31 1 <J
(45 , 24)

COr.1"INUE fAUL: D/\1

..-

19) ; '-) , (80 (67 18) (79 16)
L ~ •

(11 J 16) (79 , 19) (64 , 18) (78 16) (10 . 16) (78 19) (63 18) (77 16) (9 16) (77 I 19) . (62 18) (76 16) (6 16) (76 , 19) (60 18) (75 16) (5 16) (75 , 19) (54 , 18) (74 16) (4 16) (74 , 19) (51 18) (73 16) (3 16) (73 , 19) (47 18) (72 16) (2 16) (64 , 19) (45 , 18) (71 16) (1 16) (63 , 19) (44 18) (70 16) (0 16) (62 1 19) (41 18) (68 16) (86 15) (61) 19) (39 18) (67 , 16) (85 , 15) (60 , 19) (35 > 18) (66 , 16) (84 , 15)
(58 19) (34 18) (65 , 16) (70 15)
(57 19) (33 18) (64 16) (69 15)
(55 , 19) (31 18) (63 16) (66 , 15)
(54 , 19) (30 18) (62 , 16) (65 15)
(53 19) (29 18) (61 16) (63 15)
(52 19) (28 18) (60 16) (59 15)
(51 19) (27 18) (59 , 16) (58 15)
(50) 19) (26 18) (58 , 16) (52 15)
(49 , 19) (25 18) (56 , 16) (30 15)
(48 • 19) (22 18) (55 , 16) (23 15)
(46 , 19) (21 18) (54 16) (o , 15)
(45 , 19) (12 18) (53 16) (80 14)
(44 19) (11 18) (52 16) (79 , 14)
(43 19) (10 , 18) (51 16) (77 14)
(42 19) (S , 18) (50 , 16) (76 14)
(41 19) (2 , 18) (49 16) (63 14)
(40 19) (86 17) (48 16) (61 14)
(39 19) (85 17) (47 16) (59 14) ,
(38 , 19) (84 , 1 7) (46 16) (58 14) ,
(37 19) (33 17) (45 16) (57 14)
(36 19) (82 1 7) (44 16) (56 14)
(35 19) (81 17) (42 16) (55 , 14)
(34 19) (79 17) (41 16) (54 , 14)
(33 19) (78 1 7) (40 16) (52 14)

(32 19) (68 17) (39 , 16) (51 14)

(31 19) (65 17) (38 16) . (50 , 14)

(29 19) (63 , 17) (36 , 16) (49 14)

(28 , 19) (62 17) (35 16) (48 , 14)

(27 19) (59 17) (34 16) (47 14)

(26 19) (58 17) (33 , 1 6) (43 , 14)

(24 19) (52 17) (32 16) (38 14)

(23 19) (42 1 7) (3 1 16) (37 14)

41 17) (30 16) (35 14) (21 19) (
36 , 1 7) (29 16) (34 14) (20 19) (
30 1 7) (28 16) (33 . 14) (19 19) (

) (27 1 7) (27 16) (3 1 14) (13 19
(30 14) (16 19) (21 1 7) (26 16)

1 7) (25 16) (29 14) (14 19) (18
(2. 7 14) (13 1"9) (5 . 17) (24 1 6)
(26 14) (1 2 19) (o ; 1 7) (21 16)
(25 1 4)

(9 , 19) (86 16) (20 1 6)
(23 14)

(o , 19) (35 , 16) (18 1 6)
(") '1 1 4)

18) (84 16) (1 7 16) (84
(2 1 14)

(83 16) (16 16) (82 18)
(20 1 .~)

(32 16) (14 1 IJ) (81 18)
13 1 tJ) (19 1 .';)

) (81 1 6) (
) (80 18

1 2 16) (13 1 :.
(7 1 18) (8U , 16) (

(67 . 1 8)

(64 18)

----.. I---''l~-r- T \·L~r.- F";lJL~ 8.\"::- :" .. \ __ v.' , '--' . - -)

I" ..
~~

(15 , 14) (49 12) (45 . 11) (53 , 9)
(12 , 14) (48 12) (44 , 11) (52 , 9)
(11 , 14) (47 12) (41 11) (51 , 9)
(9 t 14) (46 I 12) (40 11) (50 , 9)
(8 14) (45 , 12) (39 I 11) (48 . 9)
(6 • 14) (44 , 12) (35 , 11) (47 • 9)
(5 : 14) (43 , 12) (34 11) (46 9)
(0 , 14) (42 I 12) (33 , 11) (45 9)
(85 , 13) (41 12) (-31 11) (44 9)
(80 , 13) (40 , 12) (30 I 11) (43 , 9)
(79 , 13) (39 , 12) (29 11) (42 , 9)
(78 , 13) (38 , 12) (28 , 11) (41 9)
(75 , 13) (37 12) (26 , 11) (40 , 9)
(68 , 13) (36 I 12) (25 11) (39 , 9)
(67 , 13) (35 , 12) (22 , 11) (38 , 9)
(63 , 13) (34 , 12) (21 11) (37 , 9)
(62 13) (33) 12) (18 , 11) (36) 9)
(60) 13) (32 12) (11 , 11) (35 , 9)
(59 , 13) (31, 12) (10 , 11) (34 , 9)
(54 13) (30 12) (2. 11) (33 , 9)
(49 , 13) (29) 12) (o , 11) (32 , 9)
(45 13) (28 12) (85 , 10) (31 I 9)
(40) 13) (27 12) (84 • 10) (30 , 9)
(38) 13) (26 12) (63 , 10) (29 , 9)

(o - 13) (24 12) (61 • 10) (28 , 9)

(86 12) (23 12) (60 , 10) (27 , 9)

(85 12) (22 12) (37 10) (26 , 9)

(84 12) (21 12) (23 , 10) (24 , 9)

(83 12) (20 12) (18 , 10) (23 I 9)

(82 12) (19 , 12) (86 , 9) (22 . 9)

(81 12) (18 , 12) (85 • 9) (21 9)

(80 , 12) (17 12) (84 , 9) (20 , 9)

(79 12) (16 12) (83 , 9) (19 9)

(78 12) (14 12) (82 , 9) (18 9)

(77 12) (13 12) (81 9) (17 9)

(76 12) (1 1 12) (80 , 9) (16 9)

(7S 12) (10 1 12) (79 , 9) (14 , 9)

(74 12) (6 12) (78 9) (13 : 9)

(73 12) (5 12) (77 9) (1 1 , 9)

(7 1 12) (4 12) (76 9) (10 9)

(70 12) (3 12) (75 , 9) (6 . 9)

(69) (2 12) (74 9) (5 9)
12

(68 12) (1 12) (73 9) (4 9)

(67 12) (0 12) (72 9) (3 9)

(66 12) (84 1 1) (70 9) (2 9)

() (81 1 1) (69 9) (1 9)
65 12 (0 9)

(80 , 1 1) (68 9)
(64 12) (85 8)

(78 , 1 1) (67 9)
(62 12) (84 , 8)

(73 1 1) (66 9)
(61 12) (83 8)
(60 12) (65 11) (65 9)

(64 • 1 1) (64 9) (82 8)
(59 12) (80 8)

(62 1 1) (62 9)
(58 12) (61 9) (79 8)

(57 12) (61 1 1)
(60 9) (7.'3 8)

(56 1 2) (59 1 1) (77 8)
(56 1 1) (59 9)

(5S 12) (7 S 8)

) (54 1 1) (58 9)
(54 12 I 7:.- 8) (57 9) ~

(S3 12) (S3 1 1) (68 8)
(52 1 1) (56 9)

(52 12) (5S 9) (67 3)

(51 12) (5 1 1 1)
) (6:'- 8)

(47 1 1) (S4 , 9
(50 12)

COt'.'T I ::UE L\Li LT OAT ~ --)

123
(63 , 8) (18 , 7) (58 5) (82 3)
(62 8) (15 , 7) (57 5) (81

(55 ?) 3) J -

(60 8) (12 , 7) (56 5)
(54 ')) (80 3)

, ...

(59 , 8) (9 7) (55 5) (79
(52 , 2)

3)
(58 , 8) (5 7) (54 (50 ')) 5) (78 3) -

) (2 7) (:'9 ?) (55 , 8 (53 5) (77 3)
7) (-'<6 ')) (54 8) (1 (52 5) (76 3)

(52 8) (0 7) (-'+5 ')) (51 5) (75 3) (44 ") (49 8) (79 6) (49 5) (74 3) (40 2) (45 8) (78 6) (47 5) (64 3) (39 ')) (40 8) (77 6) (46 5) -(63 3) (38 ')) (39 8) (76 6) (45 , 5) , (62 3) (36 ?) (38- , 8) (75 6) (44) -, 5 (61 3) (33 2)
(33 8) (74 6) (43 5) (60 3) (32 2)
(30 8) (70 6) (42 5) (55 3) (31 2)
(27 8) (69 , 6) (41 5) (54 3) (24 2)
(26 8) (68 6) (40 , 5) (53 3) (21 2)
(24 8) (67 6) (39 5) (52 3) (20 ')) -(21 8) (66 6) (38 5) (51 3) (14 2)
(20 8) (64 6) (37 , 5) (50 , 3) (9 2)
(9 , 8) (63 6) (36 5) (49 , 3) (6 2)
(4) 8) (62 6) (35 5) (48 3) (4 2)
(0 , 8) (60 6) (34 , 5) (46 3) (3 2)
(85 7) (55) 6) (33 5) (45 3) (1 2)
(84 7) (54 6) (32 5) (44 3) (0 2)
(80 7) (45 6) (31 5) (43 3) (36 1)
(76 7) (40 6) (30 5) (42 3) (85 1)
(75 7) (33 6) (29 , 5) (41 3) (83 1)
(74 7) (29 , 6) (28 5) (40 3) (79 1)
(73 7) (24 6) (26 5) (39 3) (77 1)
(70 7) (23 6) (25 , 5) (37 , 3) (76 1)
(69 7) (20 , 6) (24 , 5) (35 3) (75 1)
(63 7) (o , 6) (23 5) (34 , 3) (72 1)
(61 7) (86 , 5) (22 5) (33 3) (70 1)
(60 7) (85 , 5) (21 , 5) (32 I 3) (68 ,)

(59 7) (84 5) (20 , 5) (31, 3) (66)

(58 7) (83 , 5) (19 , 5) (29 , 3) (64)

(54 7) (81 5) (18 , 5) (28 3) (62)

(52 7) (80 5) (1 1 I 5) (27 , 3) (54 , 1)

(50 7) (79 5) (6 , 5) (26 3) (5 1 1)

(49 7) (78 5) (4 5) (24 3) (47)

(48 7) (77 5) (3 , 5) (23 , 3) (45)

(47 7) (76 5) (2 , 5) (21 , 3) (.4 1 1)

(46 7) (75 5) (1 5) (20 , 3) (39 , 1)

(44 7) (74 5) (o , 5) (19 , 3) (35)

(42 7) (73 5) (82 , 4) (18 , 3) (34)

(4 1 7) (72 5) (78 4) (16 3) (3J ,)

(38 7) (71 5) (75 , 4) (14 3) (30 ,)

(37 7) (70 5) (74 4) (1 3]) (29 ,)

(36 7) (69 5) (69 , 4) (12 , 3) (21 1)

(7) (68 5) (65 4) (84 2) (1 1 1)
35 (83 '))

(63 4) ~. 0)
(31 7) (67 5) f.Jr)

5
, (54 4) (82 2) 76 o)

(30 7) (66 /

5) (42 4) (81 2) (~ 5 I))
(29 7) (65 (77 2) IJ) (27 4) (~)

(27 7) (64 5)
I _

(
, , ')) ~ , 0)

5) (20 , 4) 0-' , (I ,

(25 7) (63
(63 ')) 7 I) ,))

(24 7) (62 , 5) (o , 4)
(62 ')) 6.1 • ())

5) (86 3) -
(23 7) (6 1

(60 ')) f_' \.~ o)
(20 7) (60 5) (34 3)

(58
.,) (,~~ 1.1)

5) (83 3) - .
(19 7) (59 ,

CO:;:- 1~;US F,\L' ~~:~ D;\:- ... - --'

---_.....--------/
(64 0)
(62 0)
(61 , 0)
(59 , 0)
(58 0)
(53 , 0)
(52 , 0)
(51 0)
(47 0)
(46) 0)
(45 " 0)
(44 0)
(42 0)
(40 , 0)
(39 , 0)
(36 , 0)
(34 , 0)
(33 0)
(32 0)
(30 0)
(29 , 0)
(28 0)
(26 0)
(25 0)
(23 0)
(22 0)
(21 0)
(18 , 0)
(11 0)
(10 , 0)
(0 , 0)

= 1048

a s mask = 220

ag s risk = 22

Gr fault location
(row input)
===============

(S4 4)
(S4 3)
(54 0)
(65 1)
(77 4)
(77 1)
(77 0)
(78 3)
(79 4)
(79 3)
(81 4)
(81 0)
(83 4)
(83 3)
(83 2)
(83 1)
(84 . 4)
(84 3)
(84 2)
(84 1)
(85 4)
(85 2)
(27 4)
(27 2)
(27 0)
(28 4)
(28 3)
(71 1)
(74 0)
(75 , 4)
(75 3)
(7 SO)
(80 4)
(80 2)
(24)
(23)
(34)
(S 3)
(52)
(5 0)
(56 4)
(82 4)
(82 3)
(82 2)
(82 0)
(86 4)
(86 3)
(86 2)
(31 4)
(36 1)
(38 1)
(76 4)
(76 3)

(76 1)
(64 3)
(64 0)
(44 0)
(46 1)
(49 1)
(1 4)
(29 4)

Sh.fault location
(row input bit line)
==================­
(35 3
(22 2
(22 3
(25 2
(25 4
(3 3
(24 4
(12 4
(13 0
(I} . 1
(13 4
(34 0
(39 3
(39 4
(56 1
(56 2
(57 2
(57 3
(11 3
(50 0
(36 0
(38 2
(58 3
(9 2
(9 _ 4
(33 4

4
2
3

o)
1)
1)
1)
1)

o)
1)
1)
o)
o)
1)
o)
o)
o)
1)
o)
o)
1)
o)
o)
1)
1)
1)

1)
1)
o)
o)
1)
o)

(18
(15
(45
(46
(1
(1

40)
o . 0)
30)

(53 0
(17 0
(17 1
(17 4
(51 0
(51 4

o)
1)
o)
o)
o)
o)

-===::::::===

(29 2)
Gr faults = 62 g_s_CJ3sk = 189

1'1-
~ t

o
x
o
1
1
o
X
X
o
o
x
x
o
X
1
o
X
X
o
o
1
o
o
o
1
o
o
o
1
o
o
o

1
X
o
X
o
o

x
x
o

1
o
o
o
x
x
o
x

I
o
o
o
o
I
o
I
o

0
0
X
X
X
X
X
X
X
0
1
1
X
X
X
X
X
X
0
0
0
1
1
0
0
1
X
0
X
1
1
0
X
1

1
0
X
0

X
1
0
X

0
1
0
1
0
0
0

0
X

X
X
0
0
X

X
X

I
::
1

0
0
1
0
0
0
0
0
X
X
0
0
I
0
0
X
0
0
0
1
0
0
X
1
0
X
0
0
0
1
0
1
0
0
0
1
0

X
0
0
0
0
1

0
0
0
0
0
[

0
0
0
0
0
0
X
X

0
0
0
0
()

I

0

0 0
X 0
0 0
X 0
1 X
0 1
1 0
X X
X 0
0 X
X X
X 0
0 X
1 X
X X
0 X
X
0 X
1 X
X 0
1 0
1 0
X 0
1 0
1 X
0 X
1 0
0 1
0 0
0 0
o· 0
0 0
X 1
1 X

1
X 0
0 0
1 0
0 0
X X
1
0

.1

X ()

0 0
X

0 X

0 X
X [

0 X

0 [

X

0
[

0
1 0
0 0
X 0
X 0
0 0
0 1
[1

1 1
0 1

0 ()

PLA B\.11

------------------ ---------1 ------------------ -1--------
---1----------1----1--------
---1---------------1--------
---1--1------------1--------
---1---------------1--------
---1----1----------1--------
---------1--1---1-----------
-----1---1--1-----------1---
------------1---------------
-1---1---~--------------1---

--------1-------------------
-----1----------------------
-----1----------------------
-----1--------------------1-
----------------1-------1---

----------------------1-1-
------------------------1---
---------------1------------
-----------------------1----
----------------------- 1 - - - -
-----------------------1----
-1--------------1-----------
----l----~--------------~---

----1-----------------------
-1-------1-----------------~

--1--------------1----------
--1-------------------------
--1-------------------------
---------------------1------
----------1--1--------------
--------1----1------------1-
------1-1----1 ------[-------
-------------1--------------
------1---------------------
1-----1--------------------­
- - - - - - - - - - - 1 - - - - - - - - - - - - - - - -

1 - - - - - 1 - - - - - - - - [- - - - 1 - 1 - - - - -
-----------1----------------
------1---------------------
- - - - - - - - - - - - - - - - - 1 - - -- - - -1 --
1------------------------[-­
-----------[-------------[--
-------[-----------------1--
-----------------1-------1--
-----------------1----------
------------------1---------
- - - - - - - - - - - - - - - 1 - 1 - - - - - - - - - -
- - - - [- - - - - - - - - - - - [- - - - - [- - - -
------------------1---------

--------1------- --1--- ------

--------------------------[-
----------1------- 1- --------

--------------------l-------
------1---------------------

---------------1--[--------- ______ _
-------1------------- ______ _
-------1-------------
-----------1---------- 1-----
_______________ -----1-1-----

1---------------------1----­
____ - - - - - - - - - - - 1 - - - - - - 1 - - - -­
______________ 1-------- 1

~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

SEE t':\IJLL OAT.'" --) 

l~S 



App tau1c lv~tion 
( raw , output) 
============= 

( 64 • 26 ) 
(62 26) 
(61 26) 
(60 26) 

( 55 • 26 ) 
( 54 , 26 ) 
(53 26) 
(50 26) 
(48 26) 
(46 26) 
(45 26) 
(44 26) 
(42 26) 
(41 26) 
(40 26) 
(39 26) 
(34 26) 
( 33 • 26 ) 
(32 26) 
(28 26) 
(27 26) 
(24 26) 
(21 26) 
(20 26) 
( 5 , 26 ) 
( 4 , 26 ) 
( 3 , 26 ) 
(62 25 J 
(45 25) 
( 37 , 25 ) 
(35 25) 
(31 25) 
( 29 , 25 ) 
(23 25) 
(19 25) 
(2 25) 
(64 24) 
(63 24) 
(62 24) 
(61 24) 
( 60 24) 
(59 24) 
(58 24) 
(57 24) 
(56 24) 
(54 24) 
(53 24) 
(52 24) 
(51 24) 
(50 24) 
(49 24) 
(48 24) 
( 47 24) 
(46 24) 
(45 24) 
(44 24) 
(43 24) 

(42 24) 
( 41 , 24 ) 
(40 24) 
(39 24) 
(38 24) 
( 37 • 24 ) 
(36 24) 
(35 24) 
(34 24) 
(33 24) 
(32 24) 
(31 24) 
(30 24) 
(29 24) 
( 28 , 24 ) 
(27 24) 
(26 24) 
(25 24) 
(23 24) 
(22 24) 
(21 24) 
(19 24) 
(18 24) 
(12 24) 
(11 24) 
( 9 , 24 ) 
( 5 , 24 ) 
( 2 , 24 ) 
( 0 , 24 ) 
(31 23) 
( 27 , 23 ) 
(23 23) 
( 52 , 22 ) 
(30 22) 
(23 22) 
( 18 , 22 ) 
( 0 • 22 ) 
( 62 20) 
(61 20) 
(60 20) 
(45 20) 
(42 20) 
(40 20) 
(34 20) 
(30 20) 
( 23 , 20 ) 
( 0 , 20 ) 
(64 19) 
(62 i9) 
(58 19) 
(55 19) 
(54 19) 
(52 19) 
(44 19) 
(40 19) 
(33 19) 
(36 19) 
( 33 . 19 ) 
(31 19) 
(29 19) 

(28 19) 
( 27 , 19 ) 
(26 19) 
(24 19) 
(21 19) 
( 20 , 19 ) 
( 0 , 19 ) 
(44 18) 
(31 18) 
(27 18) 
(62 17) 
(52 17) 
(42 17) 
(41 17) 
(30 17) 
(27 17) 
(21 17) 
( 18 • 17 ) 
(5,17) 
(64 16) 
(63 16) 
(62 16) 
(61 16) 
(60 16) 
(59 16) 
(58 16) 
(56 16) 
(55 16) 
(54 16) 
(53 16) 
(52 16) 
(51 16) 
( 50 , 16 ) 
(49 16) 
(48 16) 
(47 16) 
(46 16) 
(45 16) 
(44 16) 

(42 16) 
(41 16) 
(40 16) 
( 39 , 16 ) 
(38 16) 
(36 16) 
(35 16) 
(34 16) 
(33 16) 
(32 16) 
( 31 . 16 ) 
(30 16) 
( 29 . 16 ) 
(28 16) 
(27 16) 
(26 16) 
(25 16) 
(24 16) 
(21 16) 
(20 16) 
(113 L6) 

(17 16) 
( 16 , 16 ) 
(14 16) 
(13 16) 
(12 16) 
(11 16) 
( 10 , 16 ) 
(9 16) 
(6 16) 
(5 16) 
(4 16) 
(3 16) 
(2 16) 
(1 16) 
(0 16) 
(52 15) 
(30 15) 
(23 15) 
(31 14) 
(29 14) 
(62 13) 
(60 13) 
(54 13) 
(45 13) 
(40 13) 
(64 12) 
(62 12) 
(61 12) 
(60 12) 
( 59 • 12 ) 
(58 12) 
(57 12) 
(56 12) 

(55 12) 
(54 12) 
( 53 • 12 ) 
(52 12) 
(51 12) 
(50 12) 

(49 12) 
(48 12) 
(47 12) 
(46 12) 
(45 12) 
(44 12) 

(43 12) 
(42 12) 
(41 12) 

(40 12) 
(39 12) 
(38 12) 

(37 12) 
(36 12) 
( 35 1 2 .) 
( 3:' 1 2 ) 
(J] 12) 
(]2 12) 
( J I 12) 
(]O 12) 
( 2 (~ ~ 2 

126 

(28 12 
( 27 , 12 
(26 1 ..., 

, 4 ~ 

(24 1 ..., , - ~ 

(23 : .) . - ~ 

( 22 12 
(21 12 
( 20 , 12 
( 19 , 12 
( 18 • 1::: 
( 1 7 12 
(16 12 
( 14 , 12 
(13 1 :: 
(11 1 2 
( 10 1 :: 
(6 12 
(5 12 
(4 1 :: 
(3 12 
(2 12 

(1 1 2 
(0 12 
( 52 1 1 
( 44 , 1 1 
( 31 , 11 
( 18 , L 1 
( 0 , 1 1 
(64 9 
(62 9 
(61 9 
(60 9: 
( 59 , ') 
( 58 . 9 
( 57 , 9 
( 56 , 9 
( 55 q 

( 5-'+ • 9 
( 5] 9 
( 52 9 
( 5 1 , 9 
(50 9' 
(48 9 

( :.. 7 

( 46 
( .:. 5 
( -'+-'+ 
( .:.] 

( .:. 2 
(d 
( :,0 
( ] 9 

( J5 
( 37 
( ]6 

35 
( ]. 

( ]] 

( 3 .: 
] I 

9 
') 

q 

9 ' 
9 
'J 
'j , 

'. 

'J 

- - ''\ 



( 30 , 9 ) ( 55 ) 6 ) 127 
( 54 4 ) ( 29 9 ) ( 54 , 6 ) ( 42 4 ) ( 28 9 ) ( 45 , 6 ) ( 27 4 ) ( 27 9 ) ( 40 ) 6 ) ( 20 ( 26 9 ) ( 4 ) 33 , 6 ) ( 64 3 ) ( 24 9 ) ( 29 , 6 ) ( 62 3 ) ( 23 , 9 ) ( 24 6 ) ( 55 3 ) ( 22 9 ) ( 23 6 ) ( 54 3 ) ( 21 , 9 ) ( 20 6 ) ( 52 3 ) 

( 20 9 ) ( 64 5 ) ( 44 3 ) 
( 19 , 9 ) ( 63 5 ) ( 40 3 ) 
( 18 ) 9 ) ( 62 5 ) ( 33 3 ) 
( 17 , 9 ) ( 61 5 ) ( 31 , 3 ) 
( 16 9 ) ( 60 5 ) ( 29 , 3 ) 
( 14 9 ) ( 59 5 ) ( 28 , 3 ) 
( 13 9 ) ( 58 5 ) ( 27 , 3 ) 
( 11 9 ) ( 57 5 ) ( 26 3 ) 
( 10 9 ) ( 56 , 5 ) ( 24 3 ) 
( 6 9 ) ( 55 , 5 ) ( 21 3 ) 
( 5 9 ) ( 54 5 ) ( 20 3 ) 
( 4 9 ) ( 53 , 5 ) ( 64 2 ) 
( 3 9 ) ( 52 5 ) ( 52 2 ) 
( 2 9 ) ( 51 5 ) ( 44 2 ) 
( 1 9 ) ( 49 , 5 ) ( 21 2 ) 
( 0 9 ) ( 47 5 ) ( 64 1 ) 
( 64 8 ) ( 46 5 ) ( 62 1 ) 
( 62 8 ) ( 45 5 ) ( 54 1 ) 
( 60 , 8 ) ( 44 5 ) ( 51 1 ) 
( 55 8 ) ( 43 5 ) ( 47 1 ) 
( 54 , 8 ) ( 42 5 ) ( 45 1 ) 
( 52 ) 8 ) ( 41 5 ) ( 41 1 ) 
( 45 ) 8 ) ( 40 5 ) ( 39 1 ) 
( 40 , 8 ) ( 39 , 5 ) ( 35 1 ) 
( 39 , 8 ) ( 38 , 5 ) ( 34 1 ) 
( 33 > 8 ) ( 37 , 5 ) ( 33 1 ) 
( 30 , 8 ) ( 36 , 5 ) ( 30 1 ) 
( 27 , 8 ) ( 35 , 5 ) ( 29 1 ) 
( 26 8 ) ( 34 • 5 ) ( 21 1 ) 
( 24 8 ) ( 33 , 5 ) ( 11 1 ) 

( 21 8 ) ( 32 , 5 ) - ( 29 I 0 ) 

( 20 , 8 ) ( 31 , 5 ) ( 23 o ) 
( 4 , 8 ) ( 30 , 5 ) 

( 59 7 ) ( 29 , 5 ) 

( 58 7 ) ( 28 , 5 ) 

( 54 7 ) ( 26 , 5 ) 

( 52 7 ) ( 25 , 5 ) 

( 38 7 ) ( 24 , 5 ) 

( 37 7 ) ( 23 , 5 ) 

( 35 7 ) ( 22 . 5 ) 

( 31 7 ) ( 21 5 ) 

( 30 7 ) ( 20 . 5 ) 

( 29 7 ) ( 19 , 5 ) 

( 23 7 ) ( 13 . 5 ) 

( 20 7 ) ( 1 1 , 5 ) 

( 19 , 7 ) ( 6 5 ) 

( 2 , 7 ) ( 4 5 ) 

( o , 7 ) ( 3 , 5 ) 

( 7 5 ) 
( 64 6 ) - , 

( 62 6 ) ( 1 , 5 ) 

( 60 6 ) ( o , 5 ) 

CO ~;~ I \'L: E r ;\U L -: J,\T.; - - '; 



/ 
S~.fault location 
( row input bit line ) 128 
========================== 

( 35 3 0 ) 
( 22 2 1 ) 

( 22 3 1 ) 

( 25 2 1 ) 
( 25 4 1 ) 

( 3 3 0 ) 

( 24 4 1 ) 

( 12 4 1 ) 

( 13 0 0 ) 

( 13 1 0 ) 
( 13 4 1 ) 
( 34 0 0 ) 
( 39 3 0 ) 
( 39 4 0 ) 
( 56 1 1 ) 
( 56 2 0 ) 
( 57 2 0 ) 
( 57 3 1 ) 
( 11 3 0 ) 
( 50 0 0 ) 
( 36 0 1 ) 
( 38 2 1 ) 
( 58 3 1 ) 
( 9 2 1 ) 
( 9 , 4 , 1 ) 
( 33 4 0 ) 
( 18 4 0 ) 
( 15 2 1 ) 
( 45 3 0 ) 
( 46 4 0 ) 
( 1 0 0 ) 

( 1 3 0 ) 

( S3 0 0 ) 
( 17 0 1 ) 

( 17 0 ) 

( 1 7 4 0 ) 
( S 1 0 0 ) 

( S 1 4 0 ) 

Sh_faults = 38 s g mask 8 s a mask = 354 (T 0 cal rna s k 362) 

s_g_risk 29 

App_faults = 458, a s mask = 149, a s risk 22 



.inputs 7 

.outputs 2 PLA CONl 

.products 9 

X 1 X X 1 X X 1 0 
lXllXXX 1 0 
X 0 0 1 X X X 1 0 
o 1 X X X 1 X 1 0 
X' 0 x x 0 x x 0 1 
1 X X X 0 X X 0 1 
o X X X X X 0 0 1 
0 lXXlXX 0 1 
lOXOXXX 0 1 

Sh fault location 
( row input . bit line ) 
==============~=========== 

( 8 4 1 ) 
( 7 6- 1 ) 
( 5 1 1 ) 

( 4 6 1 ) 

( 4 0 0 ) 
( 3 4 0 ) 

Sh f aul ts = 6 s _.g_.mask 
s_g_ 

App fault location 
( row. , output) 
============== 
(7 0) 

risk 

App_ faults = 1 a 5 mask 

= 
= 

129 

0 s a mask 1 (Total mask = 1) 

22 

2 a 5 risk == 16 



./ 

.inputs 13 

.outputs 4 PLA DIL 

.products 20 

0 1 X X X X X X 0 X o 1 X 
0 1 X X X X X X 0 1 0 X 0 

- 1 -
- 1 -

0 1 X X X X X X 0 1 X 1 0 - 1 -
1 0 X X X X X X 0 X 0 1 X 1 -
1 0 X X X X X X 0 1 0 X 0 1 
1 0 X X X X X X 0 1 X 1 0 1 - - -
X X o 1 X X X X 0 0 1 0 X - 1 
X X 1 0 X X X X 0 0 1 0 X 1 - - -
X X X X 0 X X 0 0 0 1 1 X 1 
X X X X o 1 X 0 0 0 1 1 X - 1 
X X X X 1 0 X o 0 0 1 1 X 1 - - 1 
X X X X 0 X 0 1 0 0 1 1 X - 1 
X X X X 0 X 1 0 0 0 1 1 X - 1 -
X X X X 1 o 0 1 0 0 1 1 X 1 - 1 -
X X X X X 0 1 0 0 0 1 1 X - 1 
X X X X 0 1 0 X 0 0 1 1 X - 1 
X X X X 0 1 X X 0 1 1 0 X - 1 
X X X X 0 1 X X 0 1 X 0 1 - 1 
X X X X 1 0 X X 0 1 1 0 X 1 - - -
X X X X 1 0 X X 0 1 X 0 1 1 - - -

Sh fault location .. 
( row input bit line ) 
========================== 

( 4 1 1 0 ) 
( 5 10 1 ) 
( 18 12 0 ) 
( 19 10 0 ) 
( 1 1 1 0 ) 

( 2 10 1 ) 

( 9 6 1 ) 
( 15 7 1 ) 

( 16 12 0 ) 

( 1 7 10 0 ) 

( 12 5 1 ) 
( 14 4 1 ) 

Sh faults 12 s_g. mask 0 s a mask 7 (Total mask 

s g risk 1040 

App. fault location 
(row output) 

============== 
(9 3) 
(12 3) 
( 1 4 3) 

J a s rna sk J 3 S risk 128 

DO 

7) 



131 

, 
4 .inputs 

.outputs 4 PLA. F2 

.products 12 

X 0 1 0 1- --
0 X 1 0 1-:--
o ·0 1 X 1---

1 0 X 0 - -1 -
1 X 0 0 --1-

1 0 0 X --1-

0 1 X 0 -i--

X 1 0 0 -1--

0 1 0 X -1--
0 0 X 1 ---1 
X 0 0 1 - - -1 
0 X 0 1 ---1 

Sh fault location 
( row , input . bit line ) 
========================== 

( 11 , 1 . 1 ) 
( 10 : 0 : 1 ) 
( 9 2 1 ) 
( 5 3 1 ) 
( 4 1 1 ) 
( 3 2 1 ) 
( 8 , 3 1 ) 
( 7 0 1 ) 
( 6 2 1 ) 
( 2 3 1 ) 
( 1 1 1 ) 
( 0 0 1 ) 

Sh faults = 12. s -g-mask = o : S a mask = 12 (Total mask = 12 ) 

s -g- risk = 1 



.inputs 9 

.outputs 7 
_products S4 

PLA MAS 

QIIXOOOXI 
o 0 0 X 0 000 1 
1 X X X 0 000 1 
X X X X 0 0 0 1 0 
X 0 X X 0 001 1 
110XOOOll 
o llXOO 100 
o 0 0 X 0 0 100 
1 X X X 0 0 lOX 
011XOOI01 
000XOOI0 1 
X X X X 0 0 1 1 0 
X X X X 0 0 1 1 1 
o X X X 0 100 X 
101XOI000 
110XO 1 000 
1 0 1 X 0 100 1 
110XO 1001 
o 11XO LOIO 
XOXXOI01X 
1 10XO 10 IX 
01 XOI011 
XXXXO 1100 
OXXXO 110 1 
01 XOlII0 
101XOl110 
o 11XOll11 
000X01l11 

10XOll11 
XXIOIOOOI 
X X a a 1 000 1 
XXXO 10010 
XXIOIOOll 
XXOO 10011 
XXI01010X 
XXOO 10100 
XXOO 010 
XXI010 IX 
X X 0 0 l' 0 1 0 
XXOOI0111 
XXI0l 000 
XXOO 11000 
XXI011001 
:\XOO 11001 
XXI0 10 0 
XXOO 1010 
XXI0 t 1011 
XXOOI 011 
XXIOll100 

XXOO 11100 
XXI011101 
XXOOll101 
XXXO 1110 
XXXO 1111 

Gr faults 

o 0 1 000 0 
0010100 
0010100 
0010100 
0010100 
0011000 
0010000 
0010100 
0011000 
0010 lOa 
0011000 
0011000 
0100100 
0100100 
0100100 
o 1 1 a 000 
0110000 
0110100 
a 100 100 
0110000 
0110100 
0110000 
1100000 
1101100 
1 000 000 
100 0 100 
100 1 000 
1001100 
1011000 
000 1 000 
0001100 
o 0 0 1 0 0 
o 0 0 I 0 0 
0011000 
0011010 
0011001 
o 100 001 
o 100 0 1 0 
0100001 
010 100 1 
o 010 1 0 
o 0 1 1 a 1 

0101100 
000 1 000 
0001100 
0100000 
0101110 
0011001 
0011110 
o 1 1 1 0 a 1 

00000 10 

0000 0 a I 
1110 000 

1111000 

g 5 rlSK. 65 

Gr fault location 
(~'ow input) 
================ 

( 24 
( 24 
( 26 
( 27 
( 52 
( 14 
( 15 
( 15 
( 16 
( 17 
( 18 
( 21 
( 36 
( 38 
( 42 
( 45 
( 45 
( 1 
( 1 
( 4 
( 6 
( 6 
( 6 
( 10 
( 33 
( 35 
( 29 
( 29 
( 29 
( 29 
( 32 
( 32 
( 4 J 
( 43 
( 43 
( 4 J 

44 
44 
50 
50 
5 1 
5 1 

8 ) 
7 ) 
7 ) 
7 ) 
8 ) 
a ) 
8 ) 
7 ) 
7 ) 
7 ) 
7 ) 
1 ) 
7 ) 
3 ) 
7 ) 
7 ) 
6 ) 

7 \ 
C ) 
8 ) 
8 ) 
7 ) 
a ) 
a ) 
5 ) 
5 ) 
7 ) 
6 ) 
5 ) 
2 ) 
8 ) 
5 ) 
8 ) 
7 ) 
5 ) 
') ) 
·3 ) 
5 ) 
8 ) 
5 ) 
8 ) 
5 ) 

132 



.inputs 10 

.outputs 1 1 PLA MID 
-products 12 

X 
X 
X 
X 
X 
X 
X 
1 
X 
x 
X 
x 

X X 0 1 0 0 1 
X X 0 1 1 0 1 
X X 1 0 0 0 1 
X X 1 0 1 0 1 
X X 1 1 0 0 1 
X X 1 1 1 0 1 
X X 0 0 1 0 1 
X X X X X 0 0 
X X X X X 1 0 
x 0 0 0 0 0 1 
1 X X X X 0 0 
X 1 0 0 0 0 1 

Gr fault location 
(row input) 
----=========== 

(2 4) 

X X 
X X 
X X 
X X 
X X 
X X 
X X 
1 1 
0 1 
X X 
1 1 
X X 

Gr faults = 1. g_s_mask 

133 

0 l 1 0 0 0 1 0 0 0 1 
0 0 1 1 0 0 0 1 0 a 1 
0 1 1 0 0 0 0 1 0 0 1 
0 0 1 1 0 1 0 1 0 0 1 
0 l 1 0 0 1 0 1 0 0 1 
0 0 1 1 0 0 0 0 1 0 1 
1 0 1 0 0 0 0 0 a 1 0 
1 0 0 0 0 1 0 0 0 0 0 
1 0 0 0 0 1 0 0 a 0 0 
1 0 0 a 0 1 0 0 a 0 0 
1 0 0 0 1 0 0 o 0 0 0 
1 0 1 0 1 0 0 o 0 0 0 

o 



·inputs 8 
. outputs 7 
.products 32 

0111XXXX 
1010XXXX 
o 1 0 X X X.X X' 
0011XXXX 
100 1 X X X X 
o 0 1 X X 1 X X 
o X 0 0 X X 1 X 
o 1 X 1 X X X X 
100 1 X X X X 
o 1 0 X I" X X X 
o 0 1 0 X 0 X X 
000 0 X X 0 X 
1010XXXX 
XOI0XOXX 
o lOX X X X 0 
01000 X X X 
010 X X X X X 
o XII X- X X X 
X 0 lOX X X X 
o X 0 0 X X X X 
100 1 X X X X 
010 X X X X X 
OXI1XXXX 
1 0 0 1 X' X X X 
1010XXXX 
o 0 1 X X 1 X X 

o X 0 0 X X 1 X 
o lXlXXXX 
100 1 X X X X 
1 0 lOX X X X 
o lOX 0 X X X 
XO 10XOXX 

Sh fault location 

PLA MISEXI 

1 000 0 0 0 
1 000 000 
0100000 
0100000 
o 100 000 
o 100 000 
0100000 
o 0 100 0 0 
0010000 
o 0 1 0 0 0 0 
o 0 1 0 000 
o 0 1 0 0 0 0 
000 100 0 
000 1 000 
000 1 000 
0001000 
0000100 
0000100 
000 0 100 
0000100 
0000100 
o 000 0 1 0 
0000010 
0000010 
0000010 
0000010 
0000010 
000 O. 0 0 1 
000 0 0 0 1 
0000001 
0000001 
o 0 000 0 1 

( row . input bit line) 
========================== 

(31 0 0) 
(30 3, 0 ) 
(29 S 1) 
(26 1 0) 
(2S 3 0) 
(19 1 0) 
(16 3 1 .) 
(IS 7 1) 
(13 0 0) 
(12 S 1) 
(9 J 0) 
(6 I 0) 
(S J, 0 ) 
(J SO) 

Sh faults = 14 s_g_Qask 
s g [i sk == 

3 s.J roa 5 k 

108 

App faults 85 k 457 J S risk a .s [13S 

--- -"\ 

13.'; 

App fault location 
( r-o\o1 , ou tpu t ) 
============= 

(24 6) 
(23 6) 
(20 6) 

( 15 6) 
(13 6) 
(12 6) 
( 10 6) 
(8 6) 
(7 6) 
(4 6) 
(1 6) 
(0 6) 
(30 5) 
(29 5) 
(28 5) 
(27 5) 
(20 5) 
(17 5) 
(16 5) 
( 15 5) 
(14 5) 

( 12 . 5 ) 
(9 5) 
(8 5) 
(7 5) 

(6 5) 

(5 5) 
(4 5) 
(3 5) 

(2 5) 
(1 5) 
(0 5) 
( 3 1 4) 

(30 4) 
( 29 4) 

(28 4) 
( 27 4) 

( 26 4) 
(25 4) 

( 24 4) 

( 23 4) 

(22 4) 

( 2 1 4) 

( 15 4) 

(14 4) 

(13 4) 
(12 4) 

(11 4) 
( 10 4) 
(9 4) 
(8 4) 
(7 4) 

(6 4) 

(5 4) 
(4 4) 

(34) 
(2 4) 
(1 4) 
(04) 
(31 3) 
(29 3) 
(24 3) 

( 10 3) 
( 1 , 3 ) 
(28 2) 
(27 2) 

( 23 2) 

(20 2) 

(4 2) 
( 0 , 2 ) 
( 30 • 1 ) 
( 28 ) 
( 26 ) 
( 25 1) 

( 23 1) 
( 2 1 1) 
( 20 1) 
( 16 1) 
( 15 • 1 ) 
(14 1) 
(9 1) 
( 8 . 1 ) 
(29 0) 
(24 0) 

( 1 2 0) 

39 (T 0 (a 1 rna s k 

1 1 2 



.inputs 5 

.outputs 3 

.products 

1 X 1 1 t 
1 1 X 1 1 

I 1 I t X 
1 I I X 1 
X 1 1 1 1 
0 1 X 0 1 
X 0 1 1 0 
0 0 1 X 1 
1 X 0 0 1 
1 X 1 0 0 
1 1 0 X 0 
0 1 1 X 0 
1 0 0 1 X 
0 X 0 1 1 
X 1 0 1 0 
X 0 1 0 1 
0 1 1 1 0 
0 0 0 1 0 
0 I 0 0 0 
I 1 1 1 1 
0 0 1 0 0 
0 0 1 1 1 
1 1 1 0 0 
1 1 0 1 0 
0 1 1 0 1 
0 1 0 1 1 
1 0 1 1 0 
1 0 0 0 0 
1 1 0 0 1 
0 0 0 0 1 

0 1 0 1 
0 0 1 

Sh faults 

PLA RD53 
32 

1 - -
I--
1 --

Sh fault location 1--
( input bit 1 -.- row , line ) 
==============~=========== --1 
( 15 0 1 ) ) --1 
( 14 0 0 ) - -1 , I 

( 10 3 0 ) ! , - -1 
( 7 3 1 ) I --1 
( 4 0 0 ) I --1 
( 3 3 0 ) --1 
( 2 4 0 ) - - 1 
( 1 2 0 ) , - - 1 
( 0 1 0 ) --1 

--1 
-1-
-1- -- ---------

-I-
-l- App fault location -- 1 - ( row output ) 
- 1 - = ============= 
- 1 - ( 31 2 ) 
- 1 - ( 30 2 ) 
- 1 - ( 28 2 ) 
-1- ( 26 2 ) 
- 1 - ( 25 2 ) 
- 1 - ( 24 2 ) 
- 1 - ( 23 2 ) 
- 1 - ( 22 2 ) 
- 1 - ( 21 2 ) 
- 1 - ( 16 2 ) 

( 19 0 ) 

9, s g_mask = 8, s a mask 
s _ g_risk = 4 

2 (Total mask 10) 

App_faults = 11 a s mask 0 a s risk o 

~ 1 ::: 



1XXI1X1 
X 1 XII X 1 
11XX1X1 
llXllXX 
1 1 X 1 X X 1 
l1XXl1X 
X 1 XII 1 X 
11XXX11 
11X1X1X 
X1XXl11 
1 X X XII 
lXI1XXI 
X X XLIII 
IX-XII X 
XIX1X11 
111XXIX 
X11XX11 
XI1XIIX 
XX11Xli 
XII 1 X 1 X 
1XIXI1X 
XXI111X 
111XXXl 
XXIXlll 
XlIII X X 
XI1XIX1 
XX111Xl 
111XIXX 
lXI11XX 
1 1 1 X X X 

XII X 1 X 
lXXIX 1 
X 1 1 X. X 1 
lXIXX'll 
1 X 1 X X 1 
XOOOI10 
100X100 
OlOOX 0 
10010XO 
1 OXOOO 
o 0 0 X 0 
1 0 0 0 0 1 X 
o 0 X 0 0 1 
X 0 0 1 0 0 
10XOOOl 
o lOX 0 0 
00110XO 
0110XOO 
X 0 0 001 
001XOOI 
1 0 1 X 0 0 0 
000 1 X 1 0 
1 XII 1 
00XI100 
0010XI0 
o 0 0 X 0 1 
X 0 0 100 
o 1 X 0 0 0 
X 10000 
010001X 
1 1 1 1 X 1 
100(}10X 
)(010010 
o 0 0 lOX 
o 0 I ~, Q ... 

--1 
- - 1 
- - 1 
--1 
--1 
--1 
--1 
- -1 
- -1 
--1 
--1 
--1 
--1 
--1 
--1 
--1 
- -1 
- - 1 
--1 
--1 
- -1 
-- 1 
--1 
--1 
--1 
- - 1 
- -1 
--1 
--1 
--1 
--1 
--1 
- -1 
--1 
- -1 
1 - -
1 -­
I-­
I--
1 - -
1 - -
1 - -
1 --
1 - -
1 - -
1 - -
1 - -
1 - -
1 - -
1 - -
1 - -
1 - -
1 - -
1 - -
1 - -
1 - -
I - -
1 - -

1 - -
1 - -
1 - -
1 - -
1 - -

1 - -
1 -'-

PLA RD73 

1 I 1 X 1 
l1Xll11 
OII000X 
o X 1 0 
XII 1 
o lOX 
1 1 1 1 
o 0 1 0 

o 1 0 
111 
o 1 0 
1 X 
o X 

1 1 1 1 X 
X 100 0 1 0 
000 0 001 
000 100 0 
1000000 
1 0 0 1 0 o 1 
o 000 1 o 0 
o 0 0 1 1 
1 0 0 0 1 

o 1 
o 1 

o 1 0 1 0 o 1 
o 1 0 0 0 o 0 

1 1 
o 1 

o 0 0 1 0 
1 100 
o 01 1 
o 1 0 0 
1 000 
000 0 
1 0 1 0 
o 000 
o 1 0 0 
000 
o 0 1 0 
o 1 1 0 
o 0 1 0 

o 0 
o 1 

1 0 1 
1 0 0 1 
o 1 0 
100 
000 

o 
o 0 
1 0 1 
011 
o 1 0 
o 0 1 
1 1 
011 
101 
000 
o 0 1 
o 1 1 
100 
000 
1 0 
o 1 0 
1 0 0 
1 1 

o 
1 1 0 1 0 
0101.11 

o 1 0 I 
11001'00 
01010 0 

o 0 0 1 0 
o 1 1 0 0 0 
1 0 0 1 1 

0011100 
o 0 0 I 0 

1 1 0 0 1 
o 0 I 0 0 

0111000 
1110000 
1 0 1 1 0 1 
o 1 0 0 1 0 
o 1 1 1 1 0 1 

o 1 0 1 
I 0 I 0 

1 0 I 0 0 

1 I 
o 0 
o I 
o 0 1 I I 1 
10100 0 
o 1 1 0 I 
o 0 Oil 0 
1 0 101 1 I 

I-­
I --
1 --
1 - -
r--
1 --
1 --
1-­
I--
1-­
-1-
-1-
-1-
-1-
-1-
-1-
-1-
-1-
-1-
-1-
-1-
-1-
-1-
-1-
-1-
-1-
-1-
-1-
- 1 -
-1-
-1-
-1-
- 1 -
-1-
- 1 -
-1-
-1-
- 1 -
- 1 -
- 1 -
-1-
- 1 -
-1-

- 1 -
-1 -
- 1 -
- 1 -
-1-
- 1 -
- I -
- 1 -
- 1 -

- I -
- 1 -

- 1 -
- 1 -
- 1 -

- 1 -
- 1 -

- 1 -
- 1 -

- 1 -

- 1 -
- 1 -

o 1 0 0 0 
1 1 1 0 0 1 
01101 1 
1101 10 
1 1 0 0 

o 1 0 
11100 
o 1 1 1 liD' 
1110110 
1 1 1 1 1 1 

seE fAULT DATA 

136 

--) 

- 1 -
.. 1 -

- 1 -
- 1 -
- 1 -
.. 1 -
. 1 -

- 1 -
- 1 -
- 1 -



5"_ fault lOC~ll 
( roQ' , input , bit line ) 
====c===================== 

(34 5. 0 ) 
(34 3 0) 
(34 1 0) 
(33 4 0) 
(33 3 0) 
(33 1 0) 
(32 5 0) 
(32 4 0) 
(32 0 0) 
(31 4, 0 ) 
( 31 • 2 0) 
(31 1 0) 
( 30 ,6 0) 
(30 4 0) 
(30 1 0) 
(29 6 0) 
(29 5 0) 
(29 4 0) 
(28 6, 0 ) 
(28 5 0) 
(28 1 0) 
(27 6. 0 ) 
( 27 • 5 0) 
(27 3 0) 
(26 5 0) 
(26 1 0) 
(26 0 0) 
(25 5 0) 
(25 3 0) 
(25 0 0) 
(24 6 0) 
(24 5 0) 
(24 0 0) 
(23 3 0) 
(23 1 0) 
( 23 , 0 0) 
(22 5 0) 
(22 4 0) 
(22 3 0) 
(21 6 0) 
(21 1 0) 
(21 0 0) 
(20 6 0) 
(20 3 0) 
(20 1 0) 
(19 6 0) 
(19 4 0) 
(19 0 0) 
(18 4 0) 

(18 1 0) 
(18 0 0) 
(17 6 0) 
(17 3 0) 
(17 0 0) 
(16 4 0) 
(16 3 0) 
(16 0 0) 
(15 6 0) 
(15 4 0) 
(15 3 0) 
(14 4 0) 
( 14 , 2 0) 
(14 0 0) 
(13 6 0·) 
(13 2 0) 
( 1) 0 ) 
{12 2 0 \ 

( 12 ~ 0 0) 
(11,50) 
(11 4 0) 
(11 1 0) 
(10 3 0) 
(10 2 0) 
(10 1 0) 
(9 3 0) 
( 9 • 2 0) 
(9 0 0) 
(8 6 0) 
(8 4 0) 
(3,2.0) 
(7 4 0) 
(7 3 0) 
(7 2 0) 
(6 6 0) 
(6 2 0) 
(6 0 0) 
(5 6 0) 
( 5 , 3 0) 
( 5 , 2 0) 
(4 5 0) 
(4 4 0) 
(4 2 0) 
(3 6 0) 
(3 5 0) 
(3 2 0) 
(2 5 0) 
(2 3 0) 
(2 2 0) 
(1 5 0) 
(1 2 0) 
(1 0 0) 
<. 0 5 0) 
(0 2 0) 
(0 1 0) 
(76 0, 1 ) 
(75 6 0) 
(74 6 1) 
(73,5.0) 
(72 3 1) 
(71 O. 0 ) 
( 70 • 1 , 1 ) 
(69 6 1) 
(68 2 0) 
(67 ) 0) 
(66 6 1) 
(65 6. 1 ) 
(64 6 1) 
(63 6 1) 
(62 O. 1 ) 
(61 6. 1 ) 
(60 4 0) 
(59 6 1) 
( 58 , 0 1) 
(57 3 1) 
(56 0, 1 ) 
(54 4 1) 
( 52 ,1 0) 
( 47 • 4 1) 

( 43 , O. ) 
(39 3 ) 
( 37 , 4, ) 

( 36 . 3 ) 
(35 0 1) 

Sh faults 134 s g mask = 44, 

s g ~isk == 5 

s a rna sk 

.... pp. r aU.!. t lOCdl ion 

( r 01.1 , OU t pu t ) 
= ======:=..::::::=: =:.::: 

(140 2) 
(139 2) 
(138 2) 
(137 2) 
(136 2) 
(135 2) 
(134 2) 
(133 2) 
(132 2) 
(130 2) 
( 128 2) 
(126 2) 
(123 2) 
(122 2) 
(120 2) 
(116 2) 
(113,2) 
(108 2) 
(107 2) 
( 106 2) 
( 104 2) 
(101 2) 
( 75 2) 
(73 2) 
(71.2) 
( 68 2) 
( 67 . 2 ) 
(60 2) 
( 52 2) 
( 140 , 0 ) 
(131 0) 

(129 0) 
(127 0) 
(125 0) 
(124 0) 
(121 0) 

(119 0) 
(118 0) 
(117 0) 
(115 0) 
(114 0) 
(112 0) 
(Ill 0) 

(110 0) 
(109 0) 
( 105 0) 
(103 0) 
( 102 0) 
( 100 0) 
( 99 0) 
( 98 0) 
( 97 0) 

( 95 0) 
(94 0) 

( 93 0) 

( 92 0) 
( 90 0) 
(89 0) 
(88 0) 
( 87 0) 
(86 0) 
(84 0) 
( 83 0) 
(82 0) 
(80 0) 

29 (T 0 tal ~,' S K 
73) 

o as_risk 29 
/~P_fQUit~ - 65 a_~_~_m~a~s_k ______ .......... , 

137 



.iaput& 10 

.outputs 4 
_products 58 

/ 
PLA SA02 

x X 0 X 1 0 0 X X 0 
X X X X 0 0 1 X 0 0 
X 0 X X X 0 0 X 1 0 
o X 1 X 0 0 X X X 0 
X 1 X 0 X 0 X X 0 0 
1 X 0 X X 0 X 0 X 0 
X X X 0 X X X 0 X 0 
X 0 0 0 0 0 0 100 
111 100 0 100 
110 1 000 1 1 0 
101 1 100 100 
010 100 1 1 1 0 
111 1 100 1 1 0 
111 100 1 110 
111 1 101 100 
1101101110 
1011101110 
1010000 100 
0111101110 
010 1 1 0 1 0 1 0 
1111101010 
1010101100 
1 110 101 1 1 0 
o 1 X 1 1 0 1 0 1 0 
1 0 1 0 101 1 X 0 
1 0 0: 1 0 0 0 1 0 0 
010 1 000 100 
010 1 000 0 1 0 
o X 0 1 0 000 0 0 
000 1 0 000 0 0 
000 0 000 100 
X X X X X 1 X X X 0 
000 1 0 0 0 X 0 0 
101 1 1 0 X 1 0 0 
1111X00100 
X X X 0 1 0 0 X X 0 
010 1 1 0 1 X 1 0 
X 101 001 1 1 0 
11XIOOOI10 
X X 0 1 X O.X X 0 0 
X X X 1 0 0 X 0 X 0 
o X X 1 X 0 0 X X 0 
XI.XOXOXOXO 
X 0 X 1 0 0 X X X 0 
X X 1 X 0 0 X 0 X 0 
OXXXIXOXXO 
X 0 X X X 0 X 0 1 0 
o 1 X 0 X 0 X X X 0 
XXOXX01XOO 
X X X X X 0 1 000 
X 1 0 0 X 0 X X X 0 
o 0 X X X 0 X X 1 0 
X 0 X X 0 0 X X 1 0 
X X X X 100 0 X 0 
X 0 0 X X 0 X X 1 0 
OXXXX01XOO 
X 1 X 000 X X X 0 
X 1 X 0 X X 0 X X 0 

- 1 1 

1 1 
1 1 
1 1 
1 1 
1 1 
1 -

1 - - 1 
- 1 
- 1 - -
- 1 - -
- 1 - -
- 1 - -
- 1 
- 1 
- 1 
- 1 
- 1 - 1 
- 1 
- 1 
- 1 
- 1 
- 1 
1 
1 - - -
- 1 
- 1 
- 1 
1 -
- 1 
- 1 

1 -
1 - - -
1 -
1 -

1 
1 
1 

1 

1 
1 
1 
1 

1 
1 -

1 
1 1 
1 1 
1 1 
1 1 
1 1 
1 1 
1 1 
1 1 

- 1 1 
- 1 1 
- 1 -

V "_ . .L au-,,- L J.uca (lon 

(row input b-it 
~ line) 

===~;~====e========~===== 
(23 2 1) <. 57 <, 

( 28 : 1 . 1 ) (57 5 
( 32 . 7 : 1 ) ( 57 • 7 
( 36 , 7 I 1 ) ( 57 8 
(0 0 1) (35 2 
(0 7 1) (35 7 
(1 0 1) (39 0 
(1 2 1) ( 39 
(1 7. 1 ) (39 4 
(2 0 1) (39 6 
(2 2 1) (39 7 
(2 4 1) (40 0 
(2 7, 1 ) ( 40 
(3 7 1), ( 40 
(4 0 1) ( 40 

1 
2 
6 

(4 2 1) (40 8 
(4 4 1) (41 7 
(4 6 1) (42 0 
(4 7 1) (42 2 
(6 5, 0 ) (42 4 
(44 0 1) ( 42 6 
(45. 2 1) ( 42 
(45 5 0) ( 43 
(45 7 1) ( 43 
(46 0 1) ( 43 
(46 2 1) ( 43 

8 
o 
2 
6 
7 

(46 4 1) ( 43 8 
(46 6 1) 
(47 2 1) 
(47 4 1) 
(47 6 1) 

138 

1 ) 
o ) 

.1) 
1 ) 
J ) 
1 ) 
1 ) 
1 ) 
( \ 

o ) 
1 ) 
o ) 
1 ) 
o ) 
1 ) 
1 ) 
1 ) 
1 ) 
1 ) 
1 ) 
1 ) 

1 ) 
1 ) 
1 ) 

o ) 
1 ) 
o ) 

(47 7 1) 
(47 8 1) 

App fault locatio 
(r-;w outpU() 

(48 0 1) 
(48 4 1) 
(48 7 1) 
(49 0 1) 
(49 2 1) 
(49 4 1) 
(50 0 1) 
(50 4 1) 
(50 6, 1 ) 
(50 7 1) 
(50 8 ) 
(51 2 ) 
(51 4 1) 
( 51 . 6 1) 
(51 7 1) 
(52 0 1) 
(52 2 ) 
(52 6 ) 
( 52 7 ) 
(53 0 ) 
( 53 I 2 1) 
( 53 I 3 1) 
(54 0 ) 
(54 4 ) 
(54 6 1) 
(54 7 1) 
( 55 2 ) 
( 55 4 ) 
(56 7, 1 ) 
(56 8 I 1 ) 
( 57 I 0 ) 
( 57 2 ) 

::::=== ======== ==== 
( 
( 

8 , 
9 

( 10 
(11 
( 19 
( 21 
( 29 
( 30 
( 42 

n 
( 26 

( 27 
( 28 
( 29 
( 30 
( 32 

o ) 
o ) 
o ) 
o ) 
o ) 
o ) 
o ) 
o ) 
2 ) ., , 
.J 

J ) 
3 ) 
J ) 
3 ) 
3 ) 
J ) 

:=: 100) 

Sh faults :=: 95 
s a mask:=: 9 (Total mask 

s g mask :=: 91. 
s- g- risk :=: 514 

k 4 3 S risk 16. a s mas :=: 
38 

App faults _____ ~__L_..." 



139 

.inputs 10 

.outputs 3 PLA SR 
_products 15 

X X X X X X 1 0 1 1 0 o 1 
X X X X X 1 1 1 1 0 010 
X X 1 1 1 X 1 1 o 0 010 
0 X X '1 1 X 1 1 o 0 010 
0 1 X X 1 X 1 1 o 0 010 
X o 1 X 1 X 1 1 o 0 010 
0 1 X X X 1 1 1 1 X 010 
1 o X X X 1 1 1 1 X 010 
X X X X X 0 1 1 1 0 100 
X XII 0 X 1 1 o 0 1 o 0 
0 X X lOX 1 1 o 0 1 o 0 
0 1 X X 0 X 1 1 o 0 1 o 0 
XOIXOX 1 1 o 0 1 o 0 
o 1 X X X 0 1 1 1 X 1 o 0 
1 0 X X X 0 1 1 1 X 1 o 0 

Sh fault -location 
( row input bit line ) 
========:================= 

( 7 9 , 1 ) 
( 6 9 , 1 ) 
( 5 3 0 ) 
( 4 3 0 ) 
( 3 2 0 ) 
( 3 1 0 ) 
( ') 1 1 ) ... 
( 2 0 , 1 ) 
( l4 9 1 ) 
( 13 9 1 ) 

( 12 3 0 ) 

( 1 1 3 0 ) 

( 10 -2 , 0 ) 

( 10 I 1 0 ) 

( 9 , 1 1 ) 

( 9 0 , 1 ) 

16, s_ g mask = O- s a mask = 0 (To tal mask 0) 
Sh faults = 

s_g_ risk = 180 


	381156_0001
	381156_0002
	381156_0003
	381156_0004
	381156_0005
	381156_0006
	381156_0007
	381156_0008
	381156_0009
	381156_0010
	381156_0011
	381156_0012
	381156_0013
	381156_0014
	381156_0015
	381156_0016
	381156_0017
	381156_0018
	381156_0019
	381156_0020
	381156_0021
	381156_0022
	381156_0023
	381156_0024
	381156_0025
	381156_0026
	381156_0027
	381156_0028
	381156_0029
	381156_0030
	381156_0031
	381156_0032
	381156_0033
	381156_0034
	381156_0035
	381156_0036
	381156_0037
	381156_0038
	381156_0039
	381156_0040
	381156_0041
	381156_0042
	381156_0043
	381156_0044
	381156_0045
	381156_0046
	381156_0047
	381156_0048
	381156_0049
	381156_0050
	381156_0051
	381156_0052
	381156_0053
	381156_0054
	381156_0055
	381156_0056
	381156_0057
	381156_0058
	381156_0059
	381156_0060
	381156_0061
	381156_0062
	381156_0063
	381156_0064
	381156_0065
	381156_0066
	381156_0067
	381156_0068
	381156_0069
	381156_0070
	381156_0071
	381156_0072
	381156_0073
	381156_0074
	381156_0075
	381156_0076
	381156_0077
	381156_0078
	381156_0079
	381156_0080
	381156_0081
	381156_0082
	381156_0083
	381156_0084
	381156_0085
	381156_0086
	381156_0087
	381156_0088
	381156_0089
	381156_0090
	381156_0091
	381156_0092
	381156_0093
	381156_0094
	381156_0095
	381156_0096
	381156_0097
	381156_0098
	381156_0099
	381156_0100
	381156_0101
	381156_0102
	381156_0103
	381156_0104
	381156_0105
	381156_0106
	381156_0107
	381156_0108
	381156_0109
	381156_0110
	381156_0111
	381156_0112
	381156_0113
	381156_0114
	381156_0115
	381156_0116
	381156_0117
	381156_0118
	381156_0119
	381156_0120
	381156_0121
	381156_0122
	381156_0123
	381156_0124
	381156_0125
	381156_0126
	381156_0127
	381156_0128
	381156_0129
	381156_0130
	381156_0131
	381156_0132
	381156_0133
	381156_0134
	381156_0135
	381156_0136
	381156_0137
	381156_0138
	381156_0139
	381156_0140
	381156_0141
	381156_0142
	381156_0143
	381156_0144
	381156_0145
	381156_0146
	381156_0147
	381156_0148
	381156_0149
	381156_0150
	381156_0151
	381156_0152
	381156_0153
	381156_0154
	381156_0155
	381156_0156
	381156_0157
	381156_0158
	381156_0159
	381156_0160
	381156_0161
	381156_0162
	381156_0163
	381156_0164
	381156_0165
	381156_0166
	381156_0167
	381156_0168
	381156_0169
	381156_0170
	381156_0171
	381156_0172
	381156_0173
	381156_0174
	381156_0175
	381156_0176
	381156_0177
	381156_0178
	381156_0179

