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ABSTRACT 

A computer aided method for analyzing the testability 

of Programmable Logic Arrays (PLAs) is described. The 

method, which is based on a functional verification 

approach, estimates the complexity of testing a PLA 

according to the amount of single undetectable faults in 

the array structure. 

An analytic program (FACTPLA) is developed to predict the 

above complexity without analyzing the topology of the 

array as such. Thus, the method is technology invariant 

and depends only on the functionality of the PLA. The 

program quantitatively evaluates the effects of 

undetectable faults and produces some testability measures 

to manifest these effects. 

A testability profile for different PLA examples is 

provided and a number of suggestions for further research 

to establish definitely the usefulness of some functional 

properties for testing were made. 
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INTRODUCTION 
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1.1 INTRODUCTION 

The rapid evolution of semiconductor technology 

t owa rds higher device densities has increased the effort 

to prove the design validations manufacturing quality~ and 

I onge r term operational reliability. With increasing 

circuit density, a vast amount of data processing and 

storage are required to perform testing. Examples of this 

type indicate that a test pattern generation program could 

run for several weeks for complex circuits like that of a 

Micro Vax computers. This can account for about 60% of 

the cost of test. It has been noticed that the best 

measure of 

simulation 

the test 

programs; 

effectiveness 

the most 

has involved fault 

costly part of test 

preparation in Large Scale Integration (LSI) and Very 

Large Scale Integration (VLSI) environments. Such programs 

are usually based on a simple fault model for the circuit 

under test. The cost of the test may increase to such an 

extent as to regard the circuit as untestable, i . e • the 

and cost of test pattern generation, evaluation 

application are beyond the budget. 

Most automated test generation procedures assume 'single' 

since multiple faults analysis is, in general, 

much more complicated [1]. The reason for such complexity 

come from 

signal 

the fact that multiple faults assume some sort 

of independencies that may defeat fault 

sensitization required to generate the test patterns. 

This implies that eve ry single fault is detected and 

repaired before some other fault can occur. 
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In practice, however, most digital circuits tend to 

contain various undetectable faults. Due to the phenomenon 

among faults, the existence of such of masking 

undetectable faults has a great influence on testing high 

scale integrated circuits. 

In the following review the basic issues and problems in 

testing digital circuits are briefly discussed. Recent 

techniques to overcome the testing problem, namely 

design for testability 

introduced. 

and testability analysis, are also 

1.2 FAILURE MECHANISMS 

The design of a digital system can be viewed as a 

sequence of transformations of design representations at 

different levels of abstraction [2] 

(a) functional (informational) representation, 

(b) logic (gate) representation, 

(c) physical (circuit or geometric) representation. 

Thus, when modeling a circuit malfunction, an appropriate 

model for the malfunction must be established at each 

level. This is a "failure" in the circuit level, "fault" 

in the gate level, and "error" in the informational level. 

However, for ease of computation, the fault 

possess some basic properties 

model 

1. easily definable and manipulatable by computer, 

should 

2 . able to reflect a variety of technological 

and 

failures, 



3 . able to give a satisfactory coverage 

failures. 

of 

4 

the actual 

In digital environments, a switching variable can have one 

out of two logical values; ZERO and ONE. Hence, 

is easier to handle at the gate fault modeling 

representation and most fault detecting techniques have 

adopted this policy. Accordingly, the stuck or stuck at 

fault model represents a typical logical fault model which 

is frequently considered. In this model, an arbitrary 

s ig na I Ii ne k in the circuit is assumed to be fixed 

permanently at either logical 0, k stuck at ZERO (k S@ 0), 

or logical 1, k stuck at ONE (k S@ 1). 

For testing purposes, single stuck at fault model, in 

which the circuit is assumed to contain at most one stuck 

fault l is widely used. More complex gate level 

models are the multiple stuck and bridging faults. 

multiple stuck fault model~ it is assumed that 

fault 

In the 

signal 

lines can have values that are fixed and independent of 

the other signals in the circuits. The bridging fault 

model assumes that two signal lines are connected together 

so that a wired logic occurs. 

However, the above classes of gate level faults have 

drawbacks [3] 

1 • there are many switch level faults which do not 

some 

fall 

into these classes. Some switch level shorts and 

opens can not be modeled by many gate level faults 

because they involve a modification of the function 

realized by the relevant logic diagram. 
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the logic diagram does not always constitute a real 

model of the circuit diagram. For instance, in MOS 

technology many stuck at faults in a gate level 

representation of a MOS device do not correspond to 

any physical failures of interest. 

with increasing circuit density, logic level 

representation 

blocks. 

s wi t c hes 

Also, 

then 

results 

·when 

in large number of component 

considering bi directional 

as many as 15 logic levels have to be 

considered. The complexity of testing and the number 

of test patterns will increase accordingly. 

Figure 1.1 illustrates a failure that can not be modeled 

as a stuck fault. The nMOS complex gate given in Figure 

1.1 consists of a LOAD and a DRIVER. If the input to a 

Field Effect Transistor (FET) is logic 1 , then a 

conducting path between its other leads exists. Otherwise, 

these leads do not conduct. If, due to some input 

assignment, a conducting path between the ou tpu t of the 

gate ~nd ground exists, then the output of the gate is at 

logic ZERO. However, if there is no such path, then the 

depletion transistor in the LOAD section of the gate will 

pull up the output to Vdd (logic ONE). Obviously, there 

are 4 possible conducting paths which may force the output 

to logic ZERO. 

Now, if the permanent connection between Ul and U2 in the 

above gate is broken for some reason, then only two 

conducting paths remain, i . e . F + This 

'faulty' function does not correspond to any stuck fault 
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in the equivalent logic diagram of the gate. 

Accordingly) fault models, other than stuck and bridging 

faults, have gained popularity. Current efforts are being 

directed towards modeling failures at both switch and 

functional levels. An advantage of testing switch level 

failures is that in some cases it may be possible 

utilize the structural properties (regularity, 

to 

for 

instance) of the circuit to obtain a much simpler test set 

compared to the one generated to the gate level 

representation. However, testing switch level failures 

involves a much greater amount of complexity. On the other 

hand, functional level fault models help reduce the 

complexity of testing highly dense circuits. In this case, 

a very accurate fault model is required so that it can 

reflect the interconnection structure of the transistor 

c i rcu it. 

1.3 TESTING PROBLEMS 

In today's technology, the Integrated Circuit (IC) 

chip represents the smallest physical element which has to 

be considered in the manufacturing environments. At the 

disk end of the IC fabrication process, the wafer 

(approximately 75mm in diameter) is containing many copies 

(called die) of the IC arranged in a rectangular matrix. 

Typically, only a minority, perhaps 30%, of these copies 

work properly. Hence, the actual step of testing begins at 

the fabricated wafer [4]. Figure 1.2 shows a simplified 

flow chart for testing the ICs. Test Tl is performed to 
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check whether the fabrication process has been carried out 

satisfactory. 

Having established that the wafer contains an acceptable 

percentage of good circuits, the actual copies must now be 

tested (test T2) on wafer. 

testing can be recognized 

Three different types of Ie 

1 • wafer sort each Ie on the wafer must be tested to 

identify the good circuits) 

2 • parametric testing parameters such as propagation 

delay and drive currents are checked, and 

3. functional testing: determine whether or not the Ie 

carries out the function for which it was designed. 

Due to access limitations on wafer, parametric and 

functional testing are restricte4 at this stage. Hence, 

the Ie must also be tested after it is packaged (test T3), 

a fte r it is mounted on a board, and perhaps periodically 

after it is placed in a system. However, among these, 

functional testing has been shown to be the most expensive 

part of the process. As the technology progresses towards 

high levels of integration, the ratio between the number 

of devices on a chip to the chip input/output pins 

increases considerably. Such chip 'complexity' has caused 

a rapid increase in 

testing. 

the cost of performing functional 

In the following, the problems involved in testing digital 

circuits are presented in terms of two parameters; the 

cost of functional testing and the effects of undetectable 
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faults. 

1.3.1 Cost of Functional Testing 

The basic procedure of functionally testing digital 

circuits involves three main activities [5] 

1 • 

2 . 

3 • 

Test Pattern Generation (TPG) deriving and 

selecting a set of input stimuli which is either 

'exhaustive', 

generated. 

'random') 

Test Pattern Evaluation 

or 'algorithmically' 

(TPE) justifying the 

effectiveness of the test patterns using one of two 

different techniques; fault simulation and 

fault insertion. 

Test Application and Fault Finding (TAFF) applying 

the test pattern to a real circuit by means of 

sophisticated Automatic Test Equipment (ATE). 

Accordingly. the cost of testing digital circuits may be 

divided into 

1 • 

2 • 

TPG cost relates to one of two parameters 

(i) the computer time required to run the TPG program 

plus the capital cost of 

(automatic)) 

developing the program 

(ii) the number of man hours required for a person to 

write the test pattern plus the increase in system 

development time caused by the time taken to develop 

the tests (manual). 

TPE cost depends mainly on fault simulation 

techniques. Such techniques require an accurate model 
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of the circuit under test and repeated evaluation of 

circuit signals for each fault tak~n from the fault 

list. It has been proved that fault simulation run 

times represent the most considerable contributor to 

overall testing cost [5]. 

3. TAFF cost: depends on 

(i) the cost of Automatic Test Equipments and their 

interface requirements for different types of 

circuits, 

(ii) the tester time required to apply the test. 

The Automatic Test Equipments have become very 

exp ens ive and the computing time required to 

calculate the input patterns to be applied to the 

circuit has become very costly. 

1.3.2 The effect of undetectable faults 

A digital circuit is said to be redundant with respect to 

some fault if the fault is undetectable, i . e • , the 

function realized by the circuit with the fault present is 

equal to the function realized by the ~ircuit without the 

f aul t [ 1] • In sketch (a) of Figure 1 .3 ) the fault a S@O 

(or S@1) is not testable since the output F is equal to 

logic 'ONE' if and only if X =X 
1 2 

=1 regardless of whether 

this fault is present or not. Most testing methods are 

based on the assumption that the network under test is 

irredundant. Therefore, a great amount of computation may 

be wasted in trying to find tests for undetectable (or 

redundant) faults. Beside, the existence of undetectable 

faults in any circuit has a great influence on two of the 



X3~a~-L_.-/ 

(S@O) 

(a) Undetectale fault Ct 

a 
(S@ 1) 

(S@O) 

(b) Fault a Masks Fault. {3 

t 
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Fig. 1.3 illustrations of undetectable Faults in Digital Circuits 
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most important aspects in functional testing 

(i) Fault Masking 

In a general digital circuit, a non_detectable fault may 

mask the detection of a normally detectable fault for a 

given test pattern. An example of fault masking is shown 

in sketch (b) of Figu re 1.3. The fault a (S@l) is 

undetectable at the output node F because of the 

inconsistent assignment at inputs Xl' X
2

, and X
3

• The 

fault ~ (S@O) is detectable at F by the input test 

(110), which is the only test available for this fault. 

However, the presence of a (S@l) prevents (masks) the 

detection of ~ (S@O). The above masking phenomenon is 

defined below 

Definition 1.3.1. A redundant fault f. masks a testable 
1 

fault f. under the test T if and only if T detects f. but 
J 1 

does not detect the combined fault f.f • 
1 j 

Fault masking phenomenon may also be described by a direct 

graph' (see sketch c of Figure 1.3). Generally, each node 

in the graph represents a fault (single or multiple) and 

an arc goes from node A to node B with label t if fault A 

masks faults B under test t, i.e., B is detected but AB is 

not. If the 'masking graph' is designed for a given test 

set, i.e., a complete single fault test set, the labels of 

its arcs may be omitted [29]. Note that fault masking may 

occur in irredundant circuits as well. As an illustration, 

consider the following NAND gate 

a 
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The test "X==O~ Y==l" detects the single fault "line a S@l". 

If a S@l and ~ S@1 are both present, then the above test 

will not detect the fault a S@l. This masking is not a 

problem as the test "X==1, Y==1" detects the fault ~ S@1. 

Nevertheless, in a general combinational circuit, the 

existence of loops of successively masking faults is 

greatly affects the ability of single fault test 

cover mUltiple faults as well. 

sets to 

(ii) Multiple Fault Detection 

In a general digital circuit, there are many more mUltiple 

faults than 

contain up to 

single 

(3
k 

faults. A circuit with k lines may 

-1) possible multiple faults [ 1 ] • 

Accordingly, the consideration of various multiple faults 

would be extremely impractical. on the other hand, the 

single fault model does not accurately cover various 

failures which can o c cu r in highly dense circuits. 

However, previous research on mUltiple faults has come to 

the assumption that a complete single fault test set also 

detects most of the multiple faults [1]. The validity of 

this assumption is greatly affected by the amount of 

undetectable faults and the possibility of fault masking 

occurrence. 

1.4 TESTABLE DESIGN ISSUES 

Undoubtly, the discussion given in the last section 

has indicated that it is not enough just to design a 

circuit, after it is built it has to be tested easily. 

Furthermore, it has been justified that testing costs 
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contribute considerably (50% - 60%) in overall product 

cost. Current trends for increasing circuit density have 

significantly decreased system hardware cost. The 

implication of such trends had led to a situation in which: 

1 . testing is becoming more difficult since the number 

of pins per IC is not increasing in proportion to the 

number of gates per IC. Thus, the ability to 

.... control .... and 'observe .... signal values for the logic 

on chip is reduced) and 

2 . the percentage of system cost due to testing is 

increasing drastically. 

It appears, therefore, that the only economical method to 

reduce testing costs is to include circuitry on each chip 

to facilitate testing. The expenditure, in the design 

stage, of adding such circuit overheads will result in 

overall reduction in cost. Two key concepts are involved 

in all strategies of designing testable circuits; 

controllability (a measure of the ability to set and reset 

every node internal to the circuit), and observability (a 

measure of the ability to observe the state of any node in 

the circuit). These circuit attributes reflect the degree 

of circuit testability. there exist two main 

techn~~ues which relate to circuit testability: 

1 • Design For Testability (DFT) addresses the testing 

problem during design by building testability in the 

circuit by design, and 
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Testability Analysis a DFT method that approximates 

the difficulty of testing before generating the test 

patterns. 

1.4.1 Design for testability 

These techniques improve control and observation 

properties of the digital circuits. They may be divided 

into two main categories 

1 • 

2 . 

Ad Hoc directed towards correcting specific design 

features that create testing problems. The most 

direct way to do this is to introduce test points, 

that is, additional circuit inputs and outputs to be 

used in the testing mode. These points allow the 

internal signals to be controlled and observed during 

testing. Such technique is seen to be specific and 

not generally applicable to VLSI and WSI due to the 

Ie pin limitations. On the other hand, it has been 

estimated that the complexity of test pattern 

gen~rating and fault simulation is proportional to 

the number of logic gates to the third power [7]. 

Therefore, the partitioning of large circuits and the 

indivi2uRl testing of the sub circuits should reduce 

the overall testing cost. However, this method is 

still unhelpful if the sub circuits contain many 

memory devices which require initialization. 

Structured 

generally 

have been 

applying a set of design rules which are 

applicable. 

introduced to 

Basically, 

control 

these techniques 

and observe the 
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memory devices, therefore, the test generation 

problem could be reduced to the one of just testing 

the combinational logic. 

Scan Set, Random Access 

Scan techniques (Scan Path) 

Scan, and Level Sensitive 

Scan Design LSSD) permit access to internal nodes of 

a circuit without requiring a separate external 

connection for each node accessed. Scan Path is the 

most recognizable approach to describe the concept of 

these techniques. In the testing mode of Scan Path 

circuits, all registers or flip flops are converted 

into s hif t 

shifting in 

responses to 

registers and connected as scan path for 

test patterns 

a tester. 

and 

The 

shifting out 

IBM LSSD uses 

test 

this 

approach. However, due to the nature of serial data 

transmission this approach involves a time delay for 

applying the tests and receiving the responses. 

Furthermore, expensive test equipments and storage 

for a large number of test patterns and responses are 

required. Alternatively, Built in Self Testing 

(In Chip Tester or Built in Logic Block Observation) 

uses some silicon area to eliminate the disadvantages 

associated with Scan techniques. On the other hand, 

this method suffers many drawbacks. For instance, the 

extra c!!i~cn area devoted for the test circuitry 

reduces reliability and computational capacity of the 

chip, as well as efficient automated test procedure 

is required. A review of most DFT techniques is well 

presented in a paper by Williams and Parker [7] 



1.4.2 Testability Analysis 

Having established the philosophy that 

overheads and general design constraints 

significant in the design method, it is vital 

15 

additional 

are 

that 

very 

the 

designer has all the necessary information to make his 

design judgments. For instance, it is desirable to 

to 

limit 

the "extra additions" to those necessary insure 

adequate testability of the design. Therefore, a need for 

a 'testability measure' has become widespread. It is easy 

to argue that the use of an Automatic Test Pattern 

Generation (ATPG) program may provide a measure for the 

circuit testability. For example, parameters such as the 

run time of the program, the number of test patterns, and 

the fault coverage may constitute the above measure. 

However, two difficulties are associated with such direct 

approach 

1 • the large e xp ens e involved in running the ATPG 

program, and 

2 • the lack of information about how to improve the 

test:abillty of a circuit with poor testability 

measure. 

Alternatively, testability analysis programs have been 

developed to estimate the design testability by predicting 

the cost (running time) of generating the test patterns. 

These programs tend to quantify the circuit properties of 

controllability and observability prior to determine its 

testability without actually running any ATPG program. 

Program [ 8 ] ) , SCOAP (Sandia 
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'Controllability Analysis Program [9]); TESTSCREEN [10]. 

VICTOR (VLSI Identifier of Controllability, Testability, 

Observability, and Redundancy [11]), and CAMELOT (Computer 

Aided Measure for Logic Testability [ 1 2] ) are the most 

popular testability measure programs. 

1.S SUMMARY 

In the light of the above discussion, the very large 

scale digital circuits make testing extremely difficult) 

and when test patterns can not be obtained within the 

allowed computation time, it will be difficult to achieve 

a high rate of test coverage. Furthermore, mUltiple fault 

faults coverage mus t also be adequate since these 

represent an 

Testability 

important 

analysis 

parameter 

p rog rams 

in VLSI environment. 

have been offered as 

solutions to the problems of test complexity and coverage. 

The information obtained by such programs may be used to 

develop 

testable 

some design constraints for achieving easily 

designs. For instance, advance knowledge of all 

redundant faults and their masking influences could be 

used to estimate the complexity of testing, multiple fault 

coverage capability of a single fault test set and, hence: 

the degree of testability for a given digital circuit. 

Clearly, the philosophy behind any test strategy may serve 

to systematically obtain such knowledge. Functional 

testing of 2 level AND OR networks seems to be very 

attractive in this context. 
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The above concept represents the theme of the work 

established in this thesis as applied to programmable 

logic arrays; one of the most popular structures in VLSI 

design. FACTPLA (Functional Analysis and the Complexity of 

Testing PLAs) is a fast, compact and systematic program 

which has been developed to identify redundant faults and 

quantify their masking effects in general PLAs. The 

contact fault model has been adopted as it represents the 

most dominant failure model in these arrays. The program 

a Is 0 indicates the way with which more realistic test 

patterns may be chosen for a PLA, i . e • , which patterns 

s houl d be included in the test set in order to cover "as 

many mUltiple faults as possible. 

Chapter 2 of this thesis introduces PLAs, as an 

increasingly powerful tool for LSI and VLSI design. 

Various types of faults that are apt to occur in a PLA are 

analyzed and the contact fault model is justified. A brief 

review of the previous strategies for testing PLAs is also 

discussed. 

The theoretical strategy for the FACTPLA program is 

presented in Chapter 3 • The method of prime implicant 

testing of irredundant 2 level AND OR networks, as 

suggested by Kohavi [13], is elaborated prior to analyze 

the effects of undetectable faults in a PLA. This is 

analyzed and based upon the functional specification of a 

P LA (a s a set of product terms), therefore generating 

testability criteria. for the array structure. A simple 

hueristic is used by adopting the decimal code of the 
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product term as an ordered set of minterms. The policy of 

choosing the realistic tests for detectable faults is also 

justified. 

Chapter 4 presents the implemented FACTPLA algorithms for 

predicting the 

difficulty of 

impact 

testing 

of 

the 

redundant contact faults on 

PLA. The applications and 

complexity of such algorithms are also discussed. 

Suggestions to direct a future research towards deriving a 

more testable PLA 

applications of the 

Chapter 5. 

structure and 

FACTPLA program 

generalizing the 

are summarized in 
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2.1 INTRODUCTION 

Considerable technological achievement over the last 

few years has produced an increasing level of integration 

of components onto a single Integrated Circuit (IC) chip. 

Very Large Scale Integration (VLSI) plays a major role in 

the development of complex digital systems. 

S tan dar d. I C s have been produced to meet several 

requirements of both simple combinational circuits and the 

more complex sequential networks. There are some 

applications, however, that require a circuit which is not 

available in standard IC form. The concept of custom or 

semi custom design has been 

flexibility and easy design 

int roduced 

changes. In 

to provide 

practice, 

different digital semi custom ICs can be classified as 

belonging to one of the following main groups [2] 

(i) Gate Arrays (or Uncommitted Logic Arrays, ULAs) 

(ii) Cell Based Systems 

(iii) Programmable Logic Devices ( Matrix Logic) 

Programmable Logic Devices are basically capable of 

implementing arbitrarily complex logic functions in sum of 

products (SOP) forms. Depending on the manufacturer, the 

best_known examples of these devices are the familiar PROM 

(Programmable Read Only Memory) and FPLA (Field 

Programmable Logic Array). Recently, PAL (Programmable 

Array Logic), FPGA (Field Programmable Gate Array) and 

FPLS (Field Programmable Logic Sequencer) have been 

introduced and added to the category of these devices. 



Figure 2 . 1 represents an overall architecture which 

summarizes the comparison between PROM, FPLA and PAL. It 

is obvious that all these devices perform similar logic 

functions) the differences are determined by whether the 

AND matrix, the OR matrix or both are programmable. 

2.2 THE STRUCTURE OF PROGRAMMABLE LOGIC ARRAYS 

Basically, the PLA is a logical element designed to 

produce sum of products expressions. It allows more 

efficient use of the silicon area by representing a set of 

logic functions in a compressed yet regular form. A PLA 

implements a two stage combinational logic through a pair 

of adjacent rectangular arrays. Thus, conceptually a PLA 

may be viewed as a collection of 2 level AND OR or 

NAND NAND or NOR NOR networks. 

The PLA is an important building block for VLSI c i r cu its. 

It is commonly used to design instruction decoders of 

microprocessors, and combinational circuitry of 

finite state machines. The key technological advantage of 

using a PLA in an IC technology relies on the 

straightforward mapping between the symbolic 

representation and its physical implementation. Any 

combinational logic function can be described by a logic 

cover. For PLAs this logic cover is represented by a pair 

of matrices, called input and output matrices. The 

symbolic _ physical mapping is obvious in Figure 2.2. In 

this Figure, each input variable of the logic function is 

represented by a column in the input matrix in sketch (a). 
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ARRAY 

p 

OR 
ARRAY 

(a) PROM: AND array pre_programmable. Fully decoded n inputs 
n 

yield to all m = 2 possible product terms. 

OR array user_programmable. Any combination of the 

m products can be ORed onto one of the R outputs. 

(b) FPLA: AND array user_programmable. Generate a chosen 
n 

products of m «2) products from n inputs. 

OR array user_programmable. Any combination of the 
n 

m products «2) can be ORed onto one of the R outputs. 

(c) PAL : AND array user_programmable. Generate a chosen products 
n 

of m «2) products from n inputs. 

OR array pre_prograamble. Groups of products are ORed 

onto the R outputs according to a pre_arranged pattern. 

Fig. 2.1 a Comparison of Programmable Logic Devices 
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In sketch (b) of Figure 2.2, each variable corresponds to 

a p ai r of columns in the left part of the physical 

implementation. Every implicant of the logic function is 

represented by a row in the symbolic representation • The 

input part of each row represents a logical product of 

some input variables. Finally, every output of the logic 

function corresponds to a column in the right part of the 

physical array. 

The implementation of a particular logic function is 

performed by "programming" the PLA, i.e., by placing (or 

connecting) an appropriate device at the intersection 

points (between the rows and columns) specified by '1' or 

'0' in the symbolic representation. The grid 

(intersection) points between the input/output columns and 

the product lines (rows) are called crosspoints. The left 

part of the PLA structure shown in Figure 2.2(b) is called 

the SEARCH or PRODUCT TERM array, while the right part is 

called the READ or SUMMING array. A cross (contact) in 

the SEARCH array represents the presence of an input 

variable (uncomplemented or complemented) in the relevant 

product term, while a cross in the READ array represents 

the presence of a product term in some output function. 

Accordingly, every PLA will 

(devi'ces or fusible links) 

structure personality. 

have specific 

which define 

personalities 

the overall 
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PLAs are sized or specified by the following description 

n * m * p 

whe re 

n number of input variables, 

m total number of unique p_terms, 

p number of output functions. 

Thus, in a general 

m(2n+p) crosspoints. 

(n,m,p) PLA structure, there are 

Partitioning the inputs to a PLA is performed with the aid 

of a Bit Partitioning Network (BPN). Single and Double 

decoders are the most common BPN used in PLAs [6]. 

2.2.1 PLA Implementation 

PLAs are compatible with different technologies. For 

example, in the AND_OR bipolar transistor implementation, 

the AND matrix is implemented with diodes, and the OR 

matrix is implemented with bipolar transistors. This 

provides the designer with the ability to program his 

array by blowing fusible links within the array. 

In another fabrication method, the implementation is 

possible with MOSFET technology where the presence or 

absence of gate connections define the function realized. 

This is the case with NMOS technology where NAND gates can 

be made as well as NOR gates. However, in MOS technology, 

it is convenient to exploit the use of NOR gates rather 

than NAND gates (in terms of 

design). Thus, the NOR NOR 

performance and ease of 

NMOS PLA implementation is 

most common in VLSI MOS circuits [2]. 
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However, a simple schematic diagram (identical to the 

physical representation) has been adopted to represent the 

PLA implementation of switching functions. For instance, 

the bipolar FPLA realization and the MOSFET implementation 

of thePLA shown in Figure 2.2 is illustrated in Figure 

2.3 and 2.4 respectively. 

For fault analysis and test generation purposes, the 

personality of a PLA has been defined using two different 

procedures for input and output columns [ 1 4] • In other 

words, the functionality (personality) of a PLA can be 

represented by a 0 1 matrix defined as follows 

definition 2.2.1 given a row and an "output" column in a 

f aul t free PLA, if there is a cross between the two (or, 

there is no cross), then a 1 contact (correspondingly, a 

o contact) is said to exist between the row and the 

column. 

definition 2.2.2 given a row and an "input" column in a 

fault free PLA, if there is a cross between the two (or, 

there is no cross), then a 0 contact (correspondingly, a 

1 contact) is said to exist between the row and the 

column. 

The personalized crosspoints between input lines and rows 

will be referred to as input contacts, while the 

personalized crosspoints between 

will be called output contacts. 

output lines and rows 
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Fig. 2.3 FPLA Realization (Bipolar Technology) 

Fig. 2.4 nMS?S NOR_NOR PLA (MOSFET Technology) 
\ 
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The personality matrix for the PLA structure shown in 

Figure 2. 2 is given below . . 

Xl Xl X
2 

X
2 X3 X3 FI F2 F3 

I 0 0 I I 0 0 I 0 

0 I 0 I 0 I 0 I I 

0 I I I I 0 I 0 0 

0 I I 0 0 I I I 0 

2.2.2 PLA Folding 

Being general purpose and programmable, the PLA is not 

always a dense layout for specific functions. Most PLA 

personality matrices are very sparse, so that a 

straightforward mapping to physical design will result in 

a significant waste of the silicon area. It is possible to 

recover some of this lost area by topological manipulation 

of the array. This kind of manipulation is known as 

"folding", but it has the disadvantage of reducing the 

permutability of the inputs and outputs at the same time 

as reducing the area [2]. 

Rowand column folding of a PLA are techniques which 

attempt to reduce the area by exploiting its sparsity. 

Figure 2.5 shows a 5 input, 6 output, 8_product terms PLA 

using an 'equivalent' area for a 5 input, 4 output, 

4 product terms PLA plus It is easy to 

realize that the OR plane is folded on both sides of the 

AND plane which is situated in the middle. All rows and 

some columns have been split to allow for more product 
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Fig. 2.5 Illustration of PLA Folding 
Zl 23 
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terms and output functions, thereby resulting in a denser 

PLA. It should be noticed, however, that the realization 

of such structure imposes certain decomposability 

properties on the output functions. For example, Z2 does 

not depend on inputs il and i
2

; Zs is independent of i
3

, 

i 4 , is and so on. Therefore, the design of compact PLA 

structures requires very complex decomposability and 

functional separability algorithms. 

2.2.3 Impact of PLAs on Logic design 

In additional to cost effectiveness and optimum memory 

features, PLAs introduce some other design advantages 

1. Fast and smaller system design. 

The design and implementation time can be reduced 

considerably due to the programmability and 

flexibility of the arrays. 

2. Easy design changes - edit flexibility. 

The uncomplemented or complement values of any input 

variable may be selected by some programming method. 

However, if both values are programmed (selected) in 

a product term, this term will never be selected 

since X.X = O. In FPLAs, the above feature may be 

used to deactivate (remove) any previously programmed 

p roduc t term. Moreover, unprogrammed inputs 

represent don't care assignment, therefore additional 

input variables can be added to the old product term 

at any time by programming the desired don't care 

conditions. Also, a sum of products expression can be 

bv adding new product terms. This can be 
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done by further a programming process in the OR plane 

of the PLA. 

2.3 FAULT MODELING IN PROGRAMMABLE LOGIC ARRAYS 

When testing digital circuits) most of the physical 

failures are modeled at different description levels using 

various types of fault models. For the analysis of faults 

in PLAs, the simple schematic diagram shown in Figure 2.2) 

is used. In that Figure, stuck at faults; shorts, and 

crosspoint defects are the most likely fault behavior to 

occur. In the rest of this section, the relationships 

among these faults are presented prior to justify the 

validity of crosspoint defects as the basic fault model 

for PLAs. 

2.3.1 Stuck at Faults 

With this fault model, one of the lines in the PLA is 

stuck permanently to one of the two logic values; it is 

commonly caused by a short to ground or to power. 

Depending on the type of the implementational circuitry, 

the effect is considered as one or more lines of the 

equivalent logical model being stuck at 0 (S@O) or stuck 

at 1 ( S @ 1 ) • For example, for a PLA constructed with NOR 

technology, the value on a product line (or on an output 

line) is a NOR function of all the devices (contacts) on 

it. Thus, all stuck at faults in a general PLA structure 

can be represented by three fault categories in the 

equivalent 2_level NOR_NOR network. These fault categories 

are described below: 
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(a) Stuck at faults on input (bit) lines. 

One of the input leads of the NOR gates in the first level 

is stuck at logic ZERO or logic ONE. The number of inputs 

to each NOR gate in this level is determined from the 

personality of the relevant product line in the search 

array. For fault detection purposes, only input lines S@O 

of the NOR gate have to be considered [1]. 

In Figure 2.2, if an input line L is stuck at ZERO with 

only one contact on it, then a literal corresponding to 

this contact must have belonged to some product line p • 

Accordingly, P may be activated by a proper input stimuli 

and, hence, the effect of the S@O fault will be equivalent 

to the missing contact between lines Land P. 

the fault can be sensitized and the effect 

through one of the outputs containing P. 

is 

Therefore, 

propagated 

On the other hand, if there exist more than one contact on 

L, then L S@O fault will be equivalent to a multiple 

contact fault whose components are all single missing 

contact faults on the same input column. These fault 

components are equivalent to single S@O faults occurring 

simultaneously at the same logic level. It is well known 

that stuck at faults can not mask each other if they occur 

at the same logic level [16]. Therefore, the above fault 

is still detectable. However, if L has no contacts on it, 

then no sensitive path exists, and the fault is redundant. 

(b) Stuck at Faults on product (word) lines. 

These faults are considered as stuck at faults on the 

innut leads of the NOR gates in the second logic level. 
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It is obvious from the previous discussion that a fault of 

this type is equivalent to some crosspoint defect where a 

contact at the crosspoint is missing. 

(c) Stuck at Faults on output (function) lines. 

In this case, both S@O and S@1 faults must be considered. 

The faults are equivalent to missing and extra contact 

faults along the faulty output line. However, in a single 

output PLA, the output line has contacts on all its 

crosspoints with the product lines. Thus, all tests for 

the missing of these contacts cause the output line to 

have logical value O. Accordingly, an output line S@O 

fault is not guaranteed to be detected by such tests. 

2.3.2 Bridging Faults 

This is a short between two adjacent or crossing lines of 

the PLA. The commonly used stuck at fault fails to model 

logic circuit shorts [15]. Bridging faults are defined to 

model these circuit 

lines are connected 

malfunctions. 

accidentally, 

When two neighboring 

a wired logic is 

performed at the connection. Since there are two types of 

wired logic functions, namely the wired logic AND and the 

wired logic OR, therefore, there are two types of Bridging 

faults. For instance, in NMOS technology, an AND 

between the shorted lines occurs 

<-- bridging fault ====) 

function 
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Since most logic circuits are built by one of the logic 

families, only one type of bridging fault, either AND or 

OR will be considered at a time. However, if the shorted 

lines have the same personality then the resultant fault 

effect is undetectable since both lines assume the same 

logic value. Nevertheless, such fault has no influences on 

the functional operation of the circuit and, hence, the 

short is not important. Therefore, the key factor for 

investigating the effects of shorts is to assume different 

logic va lu e s on the affected lines. The set of all 

possible shorts in a PLA structure may includes the 

following 

(a) shorts between output lines. 

The short is testable if there exist a device at the 

crosspoint between one of the shorted lines and one of 

the product lines, such that no device between 

P and the other shorted line 
k 

OR ~ ----~F-~~-r--~~ 
r., ! )--/--i. L.-+...J+--+--"""-- I} 

Y 

Any test pattern detecting the extra contact defect at 

the crosspoint between P
k 

and F
j 

is qualified to detect 

the short under consideration. Depending on 

implementational circuitry, 

output F. 
1 

( 0 Re d s h 0 r t) or on 

the short is detected 

output F. 
J 

(ANDed short). 

the 

on 
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(b) shorts between input lines (one or two decoders). 

Let X. and X be the two shorted lines, then 
1 j 

with a single decoder: only one of the input lines has 

logic value ONE (decoder output) 

'D 
E 
C 
0 

Xi 

D Xj 
E 
R 

-

r 
) shon / L 

h f-J, 
A 
N 
D 

A 
R 
R 
A 
Y 

If X = 1, then two possible cases may be considered 
i 

( i) X. becomes logical ONE (ORed short). Hence, the short 
J 

is detected by a test pattern for the extra contact 

defect at the crosspoint between X. and product line 
1 

P
k

, such that Xj has a contact with P
k

. 

(ii) X. becomes logical ZERO 
1 

(ANDed short). Hence, the 

short is detected by a test pattern for the missing 

contact defect at· the crosspoint between X. 
1 

and 

product line P , such that X. has no contact with Pl· 
I J 

with two decoders 

D 
E 
C 
0 
D 
E 
R 

'--

D 
E 
C 
0 
D 
E 
R 

'---

consider the following case 

Xi . 

1/ 
) ~ort 

Xj 

r ..., 
L ~, 

. 

A 
N 
D 

A 
R 
R 
A 
Y 
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(i) if the short is ORed, the fault is detected in the 

same manner described in case ( i) of the single 

decoder. 

(ii) if the short is ANDed, the fault is detected in the 

same manner described in case (ii) of the single 

decoder if and only if X. = o. 
J 

However, if X. 
J 

1, a 

test pattern other than those belonging to the 

contact defects test set is needed. 

(c) shorts between product lines (AND plane). 

Consider the following case : 

A 
N 

Xi 
V-

r h 
D 

1/ L fJ, 
Xj 

A 
R 
R 
A 
Y 

(i) if the short is ANDed, the fault is detected by a 

test pattern for the extra contact defect at the 

crosspoint between Xi and Pk + 1 

(i) if the short is ORed, the fault is detected by a test 

pattern for the missing contact defect at the 

crosspoint between Xi and P
k 

provided that P k + 1 = 1. 

(d) shorts between product lines (OR plane). 

Consider the following case 

o 
R 

A 
R 
R 
A 
Y \ 

-----4~--4-----~ ~ 

rh 
1/ LJ.J, 

F· J 

(i) if the short is ORed, the fault is detected by a test 

pattern for the extra contact defect at the 

crosspoint between P k + 1 and F j . 
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( i ) if the short is ANDed, the fault is detected by a 

the missing contact defect at the test pattern for 

crosspoint between P
k 

and F
Jo 

if and only if P = O. 
k+l 

(e) crossline shorts (AND or OR planes). 

In this case, the short occurs between the metalization 

and diffusion layers of the chip. An extensive analysis in 

[16] and [17] shows that a crossline short is equivalent 

to a mUltiple stuck fault at some logic level of the 

logical diagram. Therefore, these faults are guaranteed to 

be detected by some crosspoint defect tests. 

Undoubtly, the above analysis reveals the influences of 

layout and personality of a PLA on the coverage of 

stuck at and short fault. However, it has been concluded 

that any complete single crosspoint fault test set for a 

PLA is also a very good test for most stuck and bridging 

faults [16]. 

2.3.3 CROSSPOINT DEFECTS 

This fault is the absence (missing) or the unnecessary 

presence (extra) of a cross connection or device between a 

bit line (input column) and a product line or between a 

product line and a sum (output) line. Recall the 

definitions of crosspoint contacts given in section 2.2.1, 

crosspoint defects may also be defined as follows 

definition 2.3.1 a single 0 contact (I-contact) fault is 

said to exist in a PLA structure if due to some failure, a 

O-contact (1 contact) of the fault free PLA becomes a 

1 contact (0 contact) in the faulty PLA. 
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This type of fault is usually assumed for PLAs because it 

is more accurate than the other two types. The 

justifications for using the contact fault model 

summari;;?;ed below 

may be 

1. fault collapsing can be performed within the contact 

fault model [18]. Extra contact fault, at the 

cro~spoint of an already selected input variable in 

the AND plane, dominates a missing contact fault in 

2 . 

3 • 

the OR plane for the same row. For example, in 

NOR NOR technology, the relevant product line is 

showing forced to zero as can be seen in Figure 2.6; 

such an arrangement and its 

representation. Thus, a test for this 

equivalent 

particular 

f aul t is qualified as a test for the "existence" of 

the product term P in the map of the output function. 

the number of (single) crosspoint faults and 

crossline bridging faults is a function of the area 

of the PLA, while the number of the other (single) 

faults is linear in the number of input, output, and 

product lines. Since crossline bridging faults are 

equivalent to some stuck at faults (see previous 

section), then the number of the contact faults is by 

far the largest of all the three types. Hence, the 

size (length) of a single contact fault test set may 

a Is 0 

cover 

be the largest. Accordingly, a higher fault 

will be achieved by adopting this model. 

the contact fault model allows efficient generation 

of compact, technology invariant tests. The 
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(b) equivalent representation in NOR_NOR technology 

Fig. 2.6 Fault Collapsing in PLAs 
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structural regularity, and the ability of 

representing contact f It au s at a higher, functional 

level are good justifications. 

2.3.4 THE PRODUCT TERM FAULT MODEL 

As physical failures, crosspoint defects in a PLA may be 

viewed as incorrect wire connections on the equivalent 

logical diagram of the PLA. These connections are, in 

f ac t, the programming points (crosspoints) of the search 

and read arrays of the PLA. Figure 2.7(a) shows a simple 

schematic diagram of a 4 input PLA implementing two 

switching functions 

- -
F = X X + X X + X X X 

1 01 12 123 

With the aid of Figure 2.7, the product term fault model 

is described below: 

(1) Growth Faults, G 

If an input literal is disconnected from an AND gate, the 

implicant generated by this gate will "grow" since it 

becomes independent of some input variable. The effect is 

equivalent to a missing contact fault in the search array. 

In Figure 2.7(a), a missing contact fault (q 1 ) in the 

search array causes 

(Xl) as is illustrated in Figure 2.7(b). 

(2) Shrinkage Faults, S 

to an If an input literal becomes incorrectly connected 

AND gate, then the corresponding implicant "shrinks". 
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(d) Fault q3 : Appearance of P3 ,. (e) Fault q4 or q5 : 
Disappearance of PI 

Fig. 2.7 Effects of Contact Faults on PLA Product Tcnns 
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implicant P
2 

Figure 2.7(c). 

an extra contact fault (q 2 ) 

to shrink 

(3) Appearance Faults, A 

If an AND gate becomes incorrectly connected 
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causes the 

to an OR 

gate, then an implicant "appears" th f h on e map 0 t e 

correspo~ding output. This is equivalent to an extra 

contact fault in the read array. The effect of the extra 

contact fault (q3) is shown in Figure 2.7(d) 

(4) Disappearance Faults, D 

If an AND gate becomes incorrectly disconnected from an OR 

gate, then the corresponding implicant "disappears" from 

the map of the relevant output function. Thus, a missing 

contact fault (q4) will cause the disappearance of the 

implicant PI as shown in Figure 2.7(e). 

(5) Vanish Faults, V 

If X. (X.) is an input variable already connected to some 
J J 

AND gate, then an incorrect connection of X. 
J 

(X.) to the 
J 

same AND gate will cause the corresponding implicant to 

"vanish" • The effect is identical to the disappearance of 

an implicant from the map of the output function. 

To summarize, therefore 

1 • an input 0 contact fault is the same as a growth 

fault, 

2 • an output o contact fault is equivalent to an 

appearance fault, 
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4 . 

an input I_contact fault is equivalent 

vanish or shrinkage fault, and 

an output 1 contact fault is the 

disappearance fault. 

2.4 TESTING PROGRAMMABLE LOGIC ARRAYS 

The increasing popularity, in terms 

37 

to either a 

same as a 

of structural 

regularity and flexible means of implementing 

of Programmable Logic Arrays (PLAs) has circuits, 

logic 

imposed 

the necessity to establish efficient test procedures for 

these arrays. 

Several approaches have been reported to generate a 

minimum or near minimum test set for a PLA. They all are 

affected, to some extent, by the basic fault model they 

use and by the size of the PLA. In the following 

subsections, a brief discussion on the use of various 

fault models to generate tests for PLAs is presented. 

2.4.1 Using The PLA Logic Model 

Muelhdrof [19] and Cha [20,21] have used classical stuck 

at fault test generation algorithms after modeling the PLA 

as a functionally equivalent logic network. For example, 

in MOSFET Technology, NOR gates are usually used to 

implement the required function. 

possible to employ a program that will 

Accordingly, it 

use a stuck at 

is 

zero 

(S@O) criterion for all input lines of all NOR gates, and 

both S@O and S@1 faults for all output lines of all NOR 

gates to generate a complete test set. The procedure 

always involves the selection (activation) of one product 
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always involves the selection (act; t" ) f 
~va ~on 0 one product 

line by assigning suitable input values (activity pattern 

contains o , 1, and X : do not care) on the input columns 

of the PLA. 

It is obvious that the computational time of the above 

test scheme increases considerably with the size of the 

PLA due to the large number of component blocks produced 

by adopting such a scheme. 

2.4.2 Using The PLA Personality 

Ostapko [22] used an abstract matrix representing the 

AND OR personality of the PLA. In this method, for every 

single crosspoint defect, it is necessary to determine the 

equivalent bit pattern change that results from that 

defect. Thus, given a PLA personality, crosspoint fault 

detection is the same as testing that the ZEROS and ONES 

of the personality matrix are functionally correct. Each 

row in the personality matrix is regarded as a multi part 

cube where the number of the cube parts depends on the 

number of decoder networks. The method uses global cube 

ordering and cube operations to derive the tests. The 

resulting bit change can be analyzed to see whether or not 

it would be detected. Thus, during the test generation 

process the method requires repeated fault simulation to 

determine the fault cover. 

Eichelberger [23] associated with every used crosspoint 

defect 
a stuck at fault and established the necessary and 

sufficient conditions to sensitize a test path through the 

OR DIane of the PLA. The method uses a matrix representing 



39 

the PLA without expansion into . 1 equlva ent logic blocks. It 

e xp 10 its the concept of redundant testing and expands its 

application to generate tests for PLAs. 

As thi complexity of the PLA increases, random testing 

becomes inefficient due to the 1 arge number of 'used' 

crosspoints. The probability of detecting a missing 

crosspoint with a random pattern is not better than 1/2
n

, 

where n is the number of used cross points [23]. 

2.4.3 Using The PLA Functional Specification 

Somenzi [18], Smith [17], and Bose [ 1 4 ] have used the 

cubical notation (see Appendix A) to represent the PLA 

personality and to specify the set of the product terms. 

Figure 2.8(a) shows a PLA specification matrix of the 

following switching function 

- -
FI = X 

I
X

3 
X + X

2
X

3 
+ X

1
X

3 4 

- -
F2 = X

I
X

3
X

4 
+ X

2
X

3 
+ X

2
X

3
X

4 

In [ 1 8] , fault simulation is required to establish an 

Excitation Cube, EC, representing the fault effect. The EC 

is obtained by assigning proper logic values at the faulty 

bit of the cube under consideration (see Figure 2.8(b)). 

Fault effect propagation is performed by selecting those 

conditions 
in EC which cause one of the outputs to depend 

on the fault to be covered. The necessary condition for 

preventing fault propagation is defined as a Masking 

Function MF; which is obtained always by deleting the 

faulty cube from the PLA specification matrix as shown in 

Figure 2.8(c). 
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A complete test set for a particular crosspoint defect is 

given by 

EC - MF 

where (-) denotes the "set difference" operation, i.e., to 

obtain those conditions in EC not covered by MF (see 

Appendix A). 

The methods described in [14] and [17] use the same policy 

given in [18] as they analyze a crosspoint defect at a 

higher levelo The effect of actual physical failures is 

viewed in terms of changes in the product term 

configuration on a Karnaugh Map, that is growth, 

shrinkage, 

terms. 

appearance, and disappearance of the product 

In [17], fault simulation and backtrack procedures are 

required to perform fault sensitization to the outputs and 

consistency assignments to the inputs. On the other hand, 

the method described in [14] involves mass computations to 

perform the necessary comparisons between the cubes 

representing the product terms. The complexity of the 

algorithms employed by this approach grows geometrically 

with the number of the product terms in the PLA. 

2.5 FAULT MASKING IN PROGRAMMABLE LOGIC ARRAYS 

An important problem in fault detection is to verify 

whether a single fault test set is able to detect all 

multiple faults. A test derived for the detection of some 

fault may fail this purpose in the presence of another 
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fault [29]. Similarly, a set of diagnostic tests derived 

for a general PLA structure is not necessary a valid set, 

if a fault occurrence in the structure is preceded by the 

occurrence of some undetectable (redundant) faults. If a 

testable fault is masked, the output may indicate no fault 

during testing yet give erroneous response during normal 

operation. The above phenomenon, called "masking" among 

faults, has a great impact on fault detection in PLAs. 

definition 2.5.2. A single contact fault (ql) is said to 

be masked by another single contact fault (q2) for an 

i n put v e, c tor X , 
t 

if X 
t 

tests 

simultaneous fault qlq2" 

but does not test the 

Referring to the logical view of the contact fault model, 

the following properties specify all the necessary 

conditions under which masking might take place in a PLAo 

In these properties let 

G denotes the set of all growth faults, 

A denotes the set of all appearance faults, 

S denotes the set of all shrinkage faults, 

V denotes the set of all vanish faults, 

D denotes the set of all disappearance faults, and 

U : denotes the "set union" operation (see appendix A) 

property 2.5.1 For a given test vector X
t

, a detectable 

fault from the set (GUA) existing on some product line L. 
1 

of the PLA, can be masked only by 'one' fault from the set 

(SLJDLJV) also existing on the same product line Lio 
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~roperty 2.5.2 For a given test vector x , 
t 

a detectable 

fault from the set (SLJDLJV) existing on some product line 

L. of the PLA, can be masked only by a fault from the set 
1 

(GLJA) existing on some product line other than L .• 
1 

The above two properties are based on lemmas 2 and 3 

respectively as defined by Agarwal [25] where equivalent 

relationships have been proved. 

2.6 MULTIPLE FAULT DETECTION IN PLAs 

The problem of mUltiple fault detection irr PLAs is 

mostly directed to the evaluation of the single fault test 

set capabilities to detect multiple faults. The 

evaluation is based on a rather general assumption ; an 

irredundant PLA structure. 

Agarwal [25] has proposed a modeled network, called Stuck 

At Equivalent, SAE, network, which represents the complete 

PLA structure. Each single crosspoint defect (contact 

fault) is functionally equivalent to some stuck at fault 

in the modeled network. The SAE network is shown to be a 

3 level, internal fanout free with respect to any output 

line, network. In an irredundant, internal fanout free 

network, every multiple stuck at fault of size 2 or 3 

(number of simultaneous faults) is covered by any test set 

that covers only the single stuck at faults of the network 

[26,27]. Accordingly, it has been stated that 

"Every complete single contact fault test set of an 

irredundant PLA covers every mUltiple fault of size 2 or 

3" [25]. 
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For multiple contact faults of size 4 and larger, the 

concept of the 4-way masking cycle is involved. This 

phenomenon occurs when four components ( f
1

, f
2

, and 

f 4 ) of a mUltiple fault of size 4 or more, are distributed 

such that fl masks f4' f4 mask f
3

, f3 masks and 

masks This phenomenon may be described by the 

following direct graph: 

An irredundant PLA with n inputs, m product terms, and p 

outputs has been proved to have the following property 

"Out of ( m(2n
r
+p » , 

r~4, different contact faults of size 

m 
most (2).(n + r, at faults are not 

covered by every complete single contact fault test set of 

thePLA". 

At the worst case, the maximum number of contact faults of 

m 4 
(2).(n + p/2) , as reported size 4 with 4-way masking is 

in [25]. 

A close investigation to the above coverage Figures shows 

that for an irredundant PLA with n=16, m=48, and p=8, 

there are two cases to be considered: 

case (i) r=4 the number 

( m ( 2 n
4

+ p ) ) • the total 

m 4 
(2).(n + p/2) is a mere .03% of 
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Thus, 99.97% of all mUltiple contact faults of size 4 are 

to be covered by each single contact test set. 

case (ii) r>4 in this case, if r becomes large the bound 

h ( m(2n+p)) becomes greater t an . 
r 

Thus, a practical use of the above property is only 

convenient for values of r not exceeding 8. 

Similar evaluations have been described in [28] and [ 2 9 ] 

by Rajski and Tyzer. They quantitatively predicted the 

mUltiple contact fault coverage capability of a single 

contact fault test set in a PLA. The problem is studied 

from the point of view of the theory of combinations. 

They have shown that some of the multiple faults of size 

r, r~4, which contain a 4-way masking could be detected by 

a single fault test set of the PLA. The validity of this 

point depends on the types and locations of the fault 

components other than those involved in the 4-way masking 

cycle. 

2.7 SUMMARY 

Test sets derived for the detection of single crosspoint 

defects in a PLA can not be safely used, if the PLA 

contains undetectable crosspoint faults. This is due to 

the phenomenon of masking among faults. The necessary 

conditions under which fault masking might take place in 

PLAs are presented using the product term fault model. 

The work presented in [25,28,29] is based on an 

"irredundant" PLA. The attempt was to predict the ability 

of single fault test sets to detect multiple faults. The 
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coverage results given in the above papers, however, 

not be used for PLAs having redundant faults, unless 

can 

the 

PLA is converted to a crosspoint irredundant structure for 

testing purposes. 

No known method exists to convert a general PLA structure 

to an irredundant one without using extra hardware. For 

example, the control input procedure described by 

Ramanatha [30] implies that a number of control inputs 

(extra input columns) may be added to obtain a crosspoint 

irredundant PLA structure. 

Other techniques have been proposed to augment a PLA for 

improving its t est a b'i lit Y [3 1 - 3 7 ] • They all are based on 

the idea of adding extra hardware to achieve high fault 

coverage and to overcome the problems of undetectable 

faults. Therefore, an extra silicon area must be devoted 

to serve for testing purposes, and faults in this 

additional test circuitry (mostly sequential) must also be 

considered. 

Ln the following Chapter, the influences of undetectable 

contact faults in PLAs are analyzed. The prime implicant 

method for testing irredundant two level AND OR networks 

[16] is elaborated for the sake of such analysis. 
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CHAPTER TIIREE 

FAULT MASKING EVALUATION IN PROGRAMMABLE LOGIC ARRAYS 
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3.1 INTRODUCTION 

The existence of undetectable faults represents one 

of the most important aspects in functional testing. 

Within tbe test generation process, even an exhaustive 

search may fail to find a test for a fault, i.e., no test 

exists. The fault is undetectable (or redundant) and the 

effort has been wastedo Therefore, efficient test 

generation requires advance knowledge of all redundant 

faults. In this context, the complexity of testing a 

digital circuit may be considered as related to the 

following parameters 

(a) The total number of redundant faults. This number has 

a great influence on the computational time of any 

automated test procedure. 

( b ) The multiple fault coverage capabilities of the 

single fault test set. 

Redundant 

functional 

faults may be determined by analyzing the 

characteristics of the circuit, while multiple 

fault coverage may be approximated by considering the 

limitations on the single fault test patterns to detect 

the above parameters multiple faults as well. Obviously, 

are closely related, that is, the ability of a single 

f aul t t es t set to cover mUltiple faults decreases 

drastically as the number of redundant faults increases. 

In the following section, a simple method for testing 

irredundant two level AND OR networks is presented. 
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The method is shown to be a good vehicle for analyzing and 

predicting the effects of undetectable faults in PLAs. 

3.1 PRIME IMPLICANT METHOD FOR TEST GENERATION 

KOHAVI [13] has shown how a minimal set of tests for 

an irredundant 2 level AND OR network may be derived from 

the set of prime implicants of the function under 

consideration. Based on the classical stuck at fault 

model, a complete test set can be generated without 

analyzing the topology of the circuit. Sketch (a) of 

Figure 3.1 shows an example of an irredundant 2 level 

AND OR circuit. Karnaugh Map representation is shown in 

sketch (b). It is well known that for a fanout free 

combinational circuit, any set of tests which detects all 

stuck faults on primary inputs will detect all stuck 

faults in the rest of the circuit [1]. Thus, only stuck at 

ZERO (S@O) and stuck at ONE (S@I) faults on input leads of 

the AND gates need to be considered. 

It is obvious that the AND gates in Figure 3.1(a) have one 

toone correspondence with the prime implicants. Thus, a 

stuck at fault in an AND gate will reveal some functional 

change in the corresponding prime implicant. This change 

manifests itself as a growth or disappearance of the 

relevant prime implicant. 

Any input to an AND gate s@1 causes a "growth" in the 

corresponding prime implicant. Figure 3.1(c) illustrates 

the effect on the prime implicant PI due to ql S @ 1 ) , 

i . e • , 
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the map of the output function. 

Definition 3.1.1 The set of extra minterms contributed by 

a growth fault is called the growth term. 

Obviously, there are n growth terms (or faults) associated 

with the prime implicant which is corresponding to an n 

input AND gate. 

Definition 3.1.2 Any minterm that is covered by a growth 

term and does not belong to the function under 

consideration is called a free minterm. 

Since the prime implicant grows to contain a growth term, 

then any free minterm that is covered by the growth term 

will detect this particular growth fault. It can be seen 

from Figure 3.1(c) that any minterm that belongs to the 

set { 4,5 } is qualified as a test for ql. Hence, a 

possible minimal growth test set for the circuit example 

given in Figure 3.1(a) could be { 5,10 }. 

On the other hand, if a s@O fault occurs on an AND gate 

output, then it affects the behavior of the network as if 

the corresponding prime implicant was deleted from the map 

of the output function. This effect is shown in Figure 

3.1(d) where the fault q2 (s@O) causes the prime implicant 

P2 to vanish. 

Definition 3.3.3 For a given output function, any minterm 

that is covered by a prime implicant is said to be unique 

if it is not covered by any other prime implicant of the 

function under consideration. Otherwise, it is said to be 

bound. 
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Clearly, every unique minterm belonging to some implicant 

is qualified as a test for the existence of the relevant 

implicant. Thus, choosing a unique minterm 'arbitrary' 

from ~ach prime implicant in the circuit example of Figure 

3.1 yields the complete disappearance test set { 12,3,6 }. 

The minimal test set to detect all single stuck at faults 

for the above circuit is the union of the growth and 

disappearance test sets; that is { 3,5,6,10,12 }. 

Obviously, the above testing method is not applicable to a 

general PLA structure since it does not account for all 

possible contact faults. For instance, shrinkage and 

appearance faults are not covered by such method. 

Nevertheless, this method may be expanded, using decimal 

codes for the minterms, to identify redundant faults and 

evaluate their masking effects on normally detected faults 

in PLAs. Therefore, an analytic program can be designed to 

evaluate a difficulty measure for testing a PLA without 

analyzing 

Chapter, 

referred 

the 

the 

to 

Complexity of 

topology of the array structure. In this 

theoretical concept for such program, 

as FACTPLA Functional Analysis and the 

Testing PLAs, will be established. The 

described approach is shown to be technology invariant and 

applicable to the folded versions of a PLA. The 

mathematical notion of the set theory is used to describe 

the formal aspects of the program, and some of the 

operations on sets that are used in this Chapter are given 

in Appendix A. 
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3.3 FUNCTIONAL LEVEL CHARACTERIZATION 

In some cases, it may be possible to make use of the 

functional characteristics of a general digital circuit in 

order to explore some of its structural properties. Fo r 

instance, the regularity of a PLA structure may introduce 

some useful properties at a higher level. The similarity 

between PLAs and the familiar sum of products expressions 

is used for this purpose. For a general sum of products 

expression, the cubical notation is used to represent the 

possible binary codes, or n tuples, of each product term 

in a general multidimensional space (see Appendix A). 

Karnaugh Map can be considered as an attempt to project 

this multidimensional space onto a 2 dimensional space. It 

is obvious that the actual dimensionality is determined by 

n; the number of input variables. 

In the sequel, the notion of sets is used such that all 

the sets are assumed to be 'finite', i.e, having only a 

finite number of elements. The number of elements in a 

finite set A is called the 'cardinality' of A and is 

denoted by IAI. Furthermore, it is very convenient to 

assume that all the sets are subsets of a fixed universal 

set (denoted by U) • In the context of this thesis, 

however, the elements of U are the decimal codes of all 

the minterms found in the multidimensional space 

determined by n. In other words 

U = { x 
n o ~ x ~ 2 -1 } 

Also, the definitions of the set 'union', 'intersection', 

and "'proper subset' operations (denoted by U' n, and C 
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respectively) are given in Appendix A. Now, some basic 

definitions which are used in the rest of this thesis are 

presen.ted. 

Definition 3.3.1 A product term P is said to be of size R 

if it contains R minterms. 

Clearly, the size of any product term is equal to 

where i ~ O. 

Definition 3.3.2 Two minterms covered by a product term 

are said to be adjacent if they differ in only one bit, 

i.e., the difference between their decimal codes is 2i , 

where i ~ O. 

Definition 3.3.3 Let A and B be two sets of the same 

cardinality such that 

A = { x : x ~ 0 }, B = { y : y ~ 0 }. 

If, for every i, element x. in A is adjacent to element y. 
~ ~ 

in B, then set A is said to be adjacent to set B or vice 

v e r sa. 0 nth e 0 the r han d, i f A and B don 0 t h a vet he -s am e 

Gardinality then a 'set adjacency' operation, denoted by 

(ADJ), may by defined as follows 

A (AD J) B = { x. 
~ 

where y. 
J 

the 

e 1 erne nt in B adjacent to x. } , and 
~ 

B (ADJ) A = { Yi IYi - x j I 2k where x. the 'first' , 
J 

element in A adjacent to y. } , for k ~ O. 
~ 

Obviously, the set {A (ADJ) B} is not necessary equal to 

the set {B (ADJ) Ar. 

Example. Let A {O,1,3,S,6,7,8} and B {8,lO,13,21, 31 r. 

Then A (ADJ) B {O,S,8 }, and 
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B (ADJ) A = { 8,10,13,21 } 

Generally, any given minterm (m) is adjacent to a set of 

minterms ( S ) • This set may be generated using the 

following expression [24] 

S 
(i-I) 

m + [2(i-l)] [(_1)m/2 ] -------- (1) 

for i=1,2, •. n where 

n the number of the input variables which define the 

multidimensional space containing m, and 

m/2(i-l) is defined as an integer divide. 

Recall the possible modifications that are apt to occur 

for a product term due to some physical failure, the 

following property hold. 

property 3.3.1 For any product term P of size R, there are 

( i ) n - Log
2

R 

(ii) 2Log
2

R 

possible Growth faults (= Vanish faults) 

possible Shrinkage faults. 

where n is the number of input variables. 

proof 

(i) A product term P of size R may grow to contain a 

growth term gt of size R also. Each minterm in 

adjacent only to one minterm in the original product 

term P. Now, if R=l (canonical term), then 

the number of possible growth terms (faults) in P = 

the number of all possible adjacent minterms = n. 

Thus, for a given value of n, if R increases, the 

number of the growth terms (or faults) decreases. 

This relationship can be described by the following 

Table 



n 
~ 

i R = 2i 1 2 3 4 5 

0 1 1 2 3 4 5 
1 2 1 2 3 4 
2 4 1 2 3 
3 8 1 2 
4 16 1 <-- possible 

Since each entry in the above Table represents 

number of growth faults, then it is obvious that 

the number of growth faults = n - i 

i 
Now, R = 2 , then 

Log
2

R = i -------- (3) 

from (2) and (3) we have 

-------- (2) 

the number of growth faults = n - Log
2

R. 
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growth 

a 

(ii) In this case, the number of shrinkage faults in any 

product term does not depend on the dimensionality of 

the space defined by n. A product term P of size R 

may shrink to half of its original size. The shrunk 

term (the rest of the minterms in P) constitutes an 

implicant of size R/2. Hence, the total number of 

possible shrunk terms (or shrinkage faults) in P can 

be arranged in the following Table : 

i R=2
i 

possible implicants of size R/2 

1 2 2 
2 4 4 
3 8 6 
4 16 8 

From this Table, it is easy to realize that the total 

number of possible shrinkage faults in P = 2 * i = 
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It should be noticed that for i=O the product term 

contains only one minterm, i.e., P contains the maximum 

number of literals. This means that all input variables 

are personalized in this product term, and this case is 

excluded from the definition of shrinkage faults. 

The above property is general to a PLA structure specified 

as a set of n tuple cubes. If, for a given product term 

cube, the number of the X_component is k, then the size R 

(as defined above) of this cube is 2k (hence, k = Log
2
R). 

By definition, shrinkage faults occur due to the incorrect 

connections of the unpersonalized (X component) input 

variables (complement or uncomplemented) to some product 

line. 

Thus, all possible shrinkage in the product cube = 

2 * the number of X_components = 2 * Log 2 R 

Obviously, the number of all possible growth faults will 

be equal to the number of the non X_components. Thus, if n 

represents the number of all input variables to the PLA, 

then 

·bl th· the product cube = n - k all POSSl e grow ln 

Example. let p. be the cube ( 1XX10XOX ), where n = 8, 
1 

K = 4. Therefore, R = 2k = 16 and 

possible growth faults in Pi = n - k = 4, 

possible shrinkage faults in P = 2Log R = 8. 
i 2 
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3.4 REDUNDANT FAULTS IDENTIFICATION IN PLAs 

Generally, the adoption of the crosspoint fault model 

in PLAs presents a clear distinction between redundant 

faults at the functional level. For instance, the presence 

of undetectable stuck at faults in a general digital 

circuit can be associated with redundancy. This is shown 

clearly for the circuit given in sketch (a) of Figure 3.2. 

The stuck at 0 fault on line k is undetectable and, if the 

function is implemented with a PLA, the disappearance 

contact fault at the junction between column f and P is 2 I 

equally undetectable (sketches b and c). Now, if the line 

k is removed, the resulting circuit is irredundant. 

However, removing the connection (device) between f2 and 

PI results in one undetectable appearance fault. Thus, the 

circuit is 'logically' irredundant while the PLA is 

contact redundant. 

Now, the product terms of a general PLA are not restricted 

to be prime implicants. However, we do assume that all of 

the product terms are essential with respect to some 

output function. Thus, deleting any product term from the 

sum of products expression is guaranteed to cause a 

logical change in the map of the output function(s). If 

the PLA does not have any redundant product terms, then 

all vanish faults would be detectable because, if a 

product term vanishes, then at least one output function 

would be affected, provided the product term is not 

redundant. Redundant product terms will be assumed to have 

been removed from the array. Similarly, in a multiple 
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output PLA any contact in the OR plane causing an 

undetectable disappearance fault can be removed without 

changing the function of the array. For instance, the PLA 

structure shown in Figure 3.3 has an obvious redundant 

contact at the junction between the product line and 

the output column f • 
2 

It can easily be realized that this 

particular contact causes P to be redundant with respect o 
to f 2 · Hence, the function realized by this PLA will 

remain the same with or without this contact. 

The removal of such contacts can easily be undertaken by 

inspecting the maps of the output functions individually. 

Accordingly, each fault belonging to the union set of all 

vanish and disappearance faults is guaranteed to be 

detected by 'any' complete single contact fault test set. 

In this context, a complete single fault test set is 

assumed to contain a test pattern for every detectable 

sing I e fault in the circuit under consideration. 

Therefore, only redundant growth, shrinkage, and 

appearance faults need to be considered. 

In the following subsections, the basic theoretical 

concept for identifying redundant faults in PLAs is 

presented. The method is based on manipulating the 

decimal representation of the product terms. Two 

parameters associated with every product term in the PLA 

are suggested. The adjacent Table and the partitions of a 

product term are defined to be the vehicle for the 

analysis presented in the rest of this thesis. These 

parameters represent a new view for the use of the product 
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term fault 

the sequel, 

model presented in the previous Chapter. In 

the 'bound', 'unique', and 'free' minterms 

will be used as they defined in section 3.2. 

3.4.1 Redundant Growth Faults 

Based on property 3.3.1(i) of the previous section, it is 

possible to establish a numerical Table for any product 

term P such that, every column in the table represents a 

possible "growth fault". Obviously, every row of the 

Table represents the set of all minterms adjacent to a 

particular minterm in P. This Table will be called the 

"Adjacent Table" for the product term P. Figure 3.4 shows 

a simple PLA and the relevant Tables. In this Figure, 

column q1 

Po due 

in 

to 

the table of Po represents the growth term of 

the missing contact fault q1, column q2 

represents the growth term of due to the missing 

contact fault q 2 , and so on. Two different types of 

tagging are used to distinguish between the entries 

(mi nterms) of the adjacent Table. The 'circled' minterms 

in the Table are those belonging to the output function 

under consideration, while the minterms tagged with an 

'asterisk' (on the left side of the Table) represent 

bounded minterms with respect to some output function. It 

should be noticed that for different output functions, the 

structure (in terms of the tagging) of the adjacent Tables 

will. be different. The notion of the adjacent Table may be 

derived formally using property 3.3.1 with the aid of the 

following definition. 
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Definition 3.4.1 If A and B are sets, the complement of B 

in A written as A B, is defined by 

A - B = { x : x E A , x ~ B }. 

Now, if P is a product term of size R, then a set (A) may 
p 

be defined as follows 

(A) = { x. : x is a decimal code for some minterm in P } 
P 1 i 

such that x. ) x. for i)j and 1~i,j~R. 
1 J 

Also, let (8) be a set whose elements are themselves sets 
p 

written as 

where s. 
1 

a possible set that is adjacent to 

definition 3.3.3), 

n : number of input variables. 

" 

(A) 
p 

The set s. is generated using the following expression 
1 

s . 
1 

for 1 ~ j ~ R, 

integer divide. 

-------- (4) 

) x./2
(i-l) 

x r- (A , and is 
j ~ P J 

defined as 

(see 

an 

From property 3.3.1, if R)l then some of the si's sets 

must be 'equal' to (A) • 
p 

of P is the set (AT) where 
p 

(AT) = (8) - (A) 
p p p 

n 

Accordingly, the Adjacent table 

= ( US
i 

) - (A)p 
i=1 

-------- (5) 
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Obviously, (A) - (A) = cD (the empty set). 
p p Thus, the 

actual number of the sets that are generated by expression 

(5) is limited by n and it is equal to (n - 1 R) og2 ,as it 

has been proved in property 3.3.1. Hence, expression (5) 

becomes 

(AT) = gf 1 U gf
2 ... U gf 

P n-log
2

R 
n-log2R 

= U gf. -------- ( 6 ) 
j=l J 

where 

gf. = s . - (A) 4= cD 
1 1 P 

the fault set for some growth fault in P • 

Now, since the columns of an ~djacent Table represent 

growth fault sets, then any free (uncircled) minterm in 

each column is qualified to be a test vector for the 

relevant growth fault. In other words, if F represents the 

set of all product terms belonging to the function under 

consideration, i.e., 

m 
F = L(A) .Cu 

pl 
(u the universal set) -------- (7) 

then any fault set satisfying the condition 

( f) ( F - (A)Pi =ffl g Pi - W 
-------- (8) 

represents a redundant growth fault in p .• 
1 

For instance, 

if the contact at q8 on P
2 

of Figure 3.4 is missing 

incorrectly, then (A)P2 grows to contain the fault set 

( 1 , 5 , 9 , 13) . Column q8 of the Table of P
2 

shows that no 

minterm is free and, hence, the fault is undetectable. 
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It is worth noting that the order of the columns in a 

given Table 

locations of 

product line. 

has some similarity with the physical 

the 

It 

contact faults on the corresponding 

is easy to realize that the first column 

represents the last missing contact defect in the product 

1 i ne, the second column represents the defect next to the 

last one, and so on. Fortunately, such arrangement, which 

is very attractive for locating the redundant growth 

faults in a PLA, represents the exact way with which 

expression (1) of section 3.3 works. 

The concept of the growth Table may also be used to 

generate the complete set of single growth fault test 

patterns in PLAs. Later on in the Chapter, the policy of 

chosing more realistic test patterns for multiple fault 

coverage in PLAs is described. 

3.4.2. Redundant Shrinkage Faults 

An extra contact fault 

variable in a product 

at 

line 

some unpersonalized input 

causes the corresponding 

product term to shrink to half of its original size. A 

simple heuristic will be used to represent all possible 

shrunk terms (the rest of minterms left due to a shrinkage 

fault). This will be done simply by ordering the decimal 

codes of the minterms constituting a product term in an 

ascending manner. Recall the adjacent relationships in the 

n dimensional space, it is easy to realize that for a 

product term P of size R, all possible shrunk terms may be 

obtained by a simple partitioning process. The number of 

the partitions in P is determined by its size R. 
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If R = 2i , 1 2 3 , 1 = , , ••• , then the number of the partitions 

in P is equal to i. Indeed, each partition contains a 

pair of blocks; one represents the shrunk term and the 

o the r represents the fault responsible for it. In other 

words, each block is equivalent to an extra contact fault 

at one of the two columns of an input variable X" where 
1 

X, is unpersonalized in P. 
1 

Figure 3 .5 illustrates the 

partitioning process and the resultant blocks for 

different product terms. Now, if (A) is defined in manner 
p 

given in the previous subsection, then the set of 

partitions (PT) in 

(PT) 
p 

the term P 
Log

2
R - 1 

= U I, 
" 0 1 1= 

where R the size of P, and 

I. 
1 

partition i. 

the two 

may be described below : 

-------- (9) 

blocks (or fault sets) 

In Mathematical terms, each partition 'decomposes' 

of 

(A) 
p 

into two non_empty disjoint subsets (or blocks) of the 

same 'cardinality' (number of elements). The derivation 

of the first block in partition i from (A) is given below 
p 

(where i = 0 being the first partition) 

( B) . 
1 

2i 

U b ik where b ik = [xstart~limit 
k=l 

such that 

start = 

limit = (1/2 + j)(R/2i) - 1 

for 0 ~ j ~ 2i - 1 

x E (A) ] 
p 



(a) (A)p= ( 0,1,2,3 ) 
----... R=4=2 

then P is partitioned as follows 

PTo = (0,1) (2,3) 

PTI = (0,2) (1,3) 

2 

(b) (A)p= { 0,1,2,3,16,17,18,19 ) 3 
----- R=8=2 

then P is partitioned as follows 

PTo= (0,1,2,3) (16,17,18,19) 

PTI = (0,1,16,17) (2,3,18,19) 

PT2= (0,2.16,18) (1,3,17,19) 

(c) (A)p= (4,5,6,7,12,13,14,15,20,21,22,23,28,29,30,31 ) 

then P is partitioned as follows 

PTo= (4,5,6,7,12,13,14,15) (20,21,22,23,28,29,30,31) 

PTI = (4,5,6,7,20,21,22,23) (12,13,14,15,28,29,30,31) 

PT2 = (4,5,12,13,20.21,28,29) (6,7,14,15,22,23,30,31) 

PT3 = (4,6,12,14,20,22,28,30) (5.7,13,15,21,23,29,31) 

Fig. 3.5 Examples of the Product Tenn Partitions 

4 
R = 16 = 2 
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The above partitions will be used to diagnose all 

redundant shrinkage faults in a PLA. But first, two types 

of product terms must be defined : 

definition 3.4.1. A product term P. is said 
1 

to be non-

isolated (with respect to a given output function) if it 

contains at least one minterm which is covered by some 

other p roduc t term p. (i + j ) of the function under 
J 

consideration. Otherwise, p. is said 
1 

to be an isolated 

product term. 

Again, if R represents the size of the term P, then it is 

possible to obtain the set of shrinkage tests for P 

according to one of the following cases 

case(i) R = 1 in this case, (A) 
p 

contains only one 

element that is responsible to detect any extra contact 

fault on the product line P. 

case(ii) R = 2 if P is isolated, then both elements of 

(A) will constitute a complete shrinkage test for P. 
p 

However, if P is non_isolated, then at least one of the 

elements in (A) must be a 'unique' minterm and, hence, it 
p 

will detect only one of the possible two shrinkage faults 

in P. 

case(iii) R > 2 in this case, the set of shrinkage tests 

for P may be derived from one of the following pairs 

(X
1

+
j 

,x
R

_
j

) for 0 ~ j ~ R/2 - 1 

where x.~(A) and 1 ~ i ~ R 
1 P 

Figure 3.6 illustrates the concept of these pairs for a 

general product term, while the rational justification of 



Let (A) = { 0,1,2,3,16,17,18,19 } 
p . 

(i) P is isolated 

then possible shrinkage tests for P 

(0,19) or (1,18) or (2,17) or (3,16) 

(ii) P is non isolated 

then possible pairs are 

(0,19) ,(1,18) , (2,17) , and (3,16) 

(a) assume that 1,3, 16, and 17 are boundedminterms then 

a 'complete' shrinkage test for P could be (0,19) 

(b) assume that 0, 1,3, and 17 are bounded minterms then 

a 'complete' shrinkage test for P coul be (19,2,16) 

(c) assume that 0, 1,2, and 3 are bounded minterms then 

a possible shrinkage test for P could be (19,16) or (18,17) 

(not complete) 

(d) assume that 1,3,17, and 19 are bounded mintenns then 

a possible shrinkage test for P could be (0,18) or (2,16) 

(not complete) 

Fig. 3.6 Shrinkage Test exist<?nce for a Product Term 
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using them is given below 

1 • 

2 . 

P is isolated then all the minterms belonging to P 

are unique. Thus, any minterm in P is qualified as a 

test for some shrinkage faults. In fa c t , every 

unique minterm detects half of all possible shrinkage 

faults in P. This is easily verified from the 

partitions of P. In Figure 3.5, every minterm is 

belonging to only one block (or shrinkage fault set) 

of each partition and, hence, is qualified to detect 

half of the total shrinkage faults. Furthermore, the 

partitions show that any two minterms chosen to 

detect all possible shrinkage faults in P must 

constitute one of the pairs given above. 

Accordingly, for an isolated product term, any pair 

from the set (X
1
+

j 
,x

R
_

j
), o ~ j R/2 - 1, is 

qualified as a complete shrinkage test for that term 

(see Figure 3.6(i». 

Obviously, in a PLA, no redundant shrinkage faults 

exist on any row carrying an isolated product term. 

P is non isolated in this case, at least one of the 

minterms of P must be bound. Generally, it may not 

be possible to find a pair of shrinkage tests in the 

manner given for the isolated product term. However, 

one of the minterms of P should be unique and hence 

. 
belongs to one of the above pairs. Therefore, any 

given pair 

component, say 

component xb is 

x , 
a 

such that 

is unique, 

one of 

then 

also unique, P will have 

the pair .... s 

if the other 

a complete 
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shrinkage test and no redundant shrinkage faults 

(case (a) in Figure 3.6). However, if xb is bounded 

for all possible pal'rs, th . en any two unlque minterms, 

X b1 and x
b2

' of P which are adjacent to will 

constitute a complete test set for the other half of 

shrinkage faults in P (case (b) in Figure 3 • 6) • The 

validity of this point can be easily verified by 

considering the resultant partitions brought out by 

the shrinkage faults in terms of K map 

representation. 

If the above condition does not hold for any pair, 

then no complete shrinkage test exists for P and it 

must contain some redundant shrinkage faults. These 

faults are redundant with respect to any test set. 

It follows immediately that all redundant shrinkage faults 

can be identified by a simple inspection of the partition 

blocks shown in Figure 3.5. For a given partition, if all 

minterms belonging to one block of the partition are 

bounded, then the other block represents a shrunk product 

term caused by a 'redundant' shrinkage fault. Let F be 

defined in the manner given in expression (7) and V be the 

set of all common elements, i.e., 
m 

V = ( A ) PIn (A) P 2 ••• n (A ) Pm = [11 (A) P i ---- (10) 

Then, any block, say the first block B1 , in partition j of 

the d P satisfying the condition pro uct term i 

represents a 

(B ) - V = ([> 
j1 Pi 

-------- (11) 

redundant shrinkage fault in P" 
1 
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The locations of redundant shrinkage faults in a general 

product line P are determined directly from the set of 

partitions of P. The Partitions are arranged such that 

the first partition represents the first unpersonalized 

(X_component) input in the cube of the product term, and 

its first block represents an extra contact fault at the 

complemented input column, while its second block 

represents an extra contact fault at the uncomplemented 

input column. 

3.4.3 Redundant Appearance Faults 

For a multiple output PLA, appearance faults must be 

considered, in addition to shrinkage and growth faults. 

Appearance faults are caused by an unnecessary presence of 

extra contacts in the OR plane of the PLA. Consider a 

product term p. 
1 

(i
th 

row), which belongs to the function 

f (J
. th 

. output 
J 

column) but does not belong to fk (k
th 

output column). Now, under an extra contact fault at the 

junction of 
. th th 

the 1 row and k column, the product term 

p. appears on 
1 

the map of the output function f
k

• 

. 
Obviously, any minterm which is covered by Pi but not 

qualifies as a test pattern for the appearance fault in 

question. 

In the following section, the policy of using the adjacent 

Tables and partitions for evaluating the effects of 

masking among faults in PLAs is presented. 
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3.5 MASKING INFLUENCES ON MULTIPLE FAULT COVERAGE 

A multiple fault is detected if at least one of its 

components is detected [29]. Figure 3.7 shows a bridging 

fault between two output columns in a nMOS PLA. Assume 

that the short is ORed, then it will be equivalent to the 

mUltiple contact fault qlq2 q 3 in the OR plane of the PLA. 

If one of the fault component or 

testable, then the multiple fault is testable by a test 

for such component. 

Accordingly, to guarantee the detection of a multiple 

f a ul t , at least one of its fault components should not be 

masked by any redundant fault in the circuit. The concept 

of fault masking is further elaborated below. 

Let Ta be the set of all possible test patterns for the 

single fault a in a general digital circuit (note that Ta 

may contain only one pattern). If a is proceeded by some 

"masking" fault f3, then two different cases have to be 

considered 

(a) fault ~ masks fault a for all the patterns in Ta. This 

masking phenomenon, written as f3a ' may be represented by 

the following set 

M = max { ( 6a ) t. ti E Ta l- for 1 {.. i {.. ITal 
l 

Then f3a is 'true 
, 

if and only if ~ is undetectable. 

Therefore, a difficulty measure (MASK) may be defined to 

ma rk the existence of every such condition. If k 

represents the number of the undetectable faults, L 

represents the number of the testable single faults in a 



PLA Outputs PLA Outputs 

1 

(a) nMOS PLA with a Short Fault (b) Equivalent Faulty Circuit 

Fig. 3.7 Effects of Bridging Faults in PLAs 



given circuit, then 

(MASK ),8 

(MASK) 
c c t 

------- (12) 

K L 

= L Lj ------- (13) 

i=1 ((3i ) 
aj j=1 

(b) fault (3 masks fault a for some patterns 
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Obviously, the simultaneous fault a(3 could be detected by 

some patterns in Tex even if (3 was undetectable. However, 

this type of masking has less restriction than the one 

described in case(a). hence, if D is a proper subset' 

(see Appendix A) from the set M described above, then 

D = {( (3a ) t. 
1 

ti E Ta }- C M for 1 ~ i ~ IDI 

The ref 0 r e , (3a i s 'true' if and only if (3 is undetectable 

f a ul t . In general, a difficulty measure (RISK) may be 

defined to count the patterns in Ta under which (3 masks a. 

Again, if K represents the number of the undetectable 

faults, L represents the munber of the detectable faults 

in the circuit, then 

(RISK)(3 ------- (14) 

k LID' 
(RISK)cct =LLLj ------- (15) 

i=1 e=1 (pi ). 
fJae J=1 

At the functional level, the key concept in evaluating the 

above measures is to consider first the effect of the 
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masking fault. This strategy is vital if the masking 

fault was undetectable. 

3.5.1 Masking Evaluation in a Single Output PLA 

Consider the simple PLA structure given in Figure 3 .8. 

Obviously, the adjacent tables and the partitions indicate 

that the structure is irredundant, i . e • , contains no 

redundant faults. Nevertheless, this structure may be 

used to illustrate the effect of fault masking in a 

general PLA. 

In Figure 3.8, for the missing contact fault al on PO' any 

pattern- in the set Tal' where 

Tal = { 36,37,38,39,44,45,46,47,52,54,60,62 } c: gfal 

is qualified to detect ale Now, the extra contact fault ~l 

on the same product line masks the detection of al for 
I 

some tests in Tal. The effect of this phenomenon is 

determined from the masking fault (~l in this case) in the 

following manner. Due to ~l, the product term PO shrinks 

to 

[(A)pO]~l = { 4,5,6,7,20,21,22,23 } 

Then the masking should be represented by the combined 

effect of both faults such that the effect of ~l dominates 

the effect of ale 

according to the 

reduced In other words, Tal should be 

reduction in the adjacent Table of Po 

caused by the fault ~l. In this context, the ....set 

adjacency .... operation, defined in section 3.3, may well be 

used to express this masking dominancy. Accordingly, only 

the patterns in the set 
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Fig. 3.8 EffecS of Fault Masking in PLAs 
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Adjacent Tables 
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[Ta1 ]{31 = Tal (ADJ) [(A)PO]{31 

= { 36,37,38,39,52,54 } 

can detect the simultaneous fault a1{31. 

On the other hand, the product term PI shrinks to 

[(A)P1]{32 = { 19,23,27,31,51,55,59,63 } 

due to the extra contact fault {32. From the partitions of 

PI, any pattern in the set 

T{32 = { 17,25,49,53,57,61 } 

is qualified to detect {32. However, if fault a1 exists, 

then it will mask {32 for some tests in T {32. In this case, 

the combined effect of a1 and {32 is determined from the 

growth fault set of the masking fault a1; gf
a1

. Any 

element in which also belongs to gf
a1 

is 

to detect the simultaneous fault a1{32. 

realize that the patterns in the set 

[T{32 ]a1 = T{32 n gfa1 

{ 53,61 } 

fail to detect a1{32. 

disqualified 

It is easy to 

The following examples illustrate the influences of fault 

masking due to 'redundant' faults in a general PLA 

structure. 

Example 1. For the PLA structure shown in Figure 3.9(a), 

the extra contact fault at the junction between Xo and P5 

causes an undetectable shrinkage fault The 

adjacent Table of P
5 

shows that for the growth fault ~, 
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Fig. 3.gb Effects of Fault Masking for Different Tests 
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the available tests are the minterms 4 (0100), 5 (0101), 

and 12 (1100). Assume that the single contact fault test 

set T includes the patterns (0100) and/or (0101) but not 
s 

(1100), then a will not be detected by the set T , if the 
s 

redundant fault (3 is also present. It is easy to realize 

that under the test (0100) or (0101), the value on the 

output F 2 will not be affected by the multiple fault a{3. 

For both tests, F2 will have the same logic value with or 

without the fault a{3. This is illustrated in Figure 

3.9(b), where the logical change in the signal values has 

been traced for all available tests for a. However, 

during the normal operation, for the input vector (1100) 

F2 will have logic ZERO without the fault a{3 and logic ONE 

with the fault. Then output of the PLA will be incorrect 

f or this input. 

Example 2. For the PLA structure shown in Figure 3.10(a), 

a is a missing contact fault which causes Po to contain a 

redundant growth fault. For the extra contact fault (3 at 

the junction between the available tests are 

the minterms 24 (11000), 25 (11001), 28 (11100) , and 29 

(11101). For both inputs (11000) and (11001), the presence 

of the multiple fault a{3 does not alter the logic value 

at the output of the PLA. This is shown clearly in Figure 

3.10(b) where the output response is shown to be affected 

only by applying the tests (11100) or (11101). Thus, one 

of the two minterms, (28) or (29), should be included in 

T 
s 

to ensure the detection of the multiple fault a~. 
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3.5.2 Masking evaluation in a Multiple Output PLAs 

The existence of appearance faults in a general PLA 

structure has imposed the following consequences: 

• ( i ) a detectable extra contact (shrinkage) fault in the 

input part of row i of a PLA may be masked (on a 

given test vector) by a redundant appearance fault in 

row j, j*i (property 2.5.2 in Chapter 2). 

(ii) a possible case of property 2.5.1 (in Chapter 2) 

could be interpreted as follows 

"for a given test vector, X , a 
t 

detectable appearance 

f aul t can only be masked by a redundant shrinkage 

fault in the same row of the PLA". 

Accordingly, the following two cases complete the 

evaluation of the effects of redundant faults in PLAs 

case (i) (on the same row of the PLA) 

let (3 be a redundant shrinkage fault on row i of a 

such that the partition of p. due to this 
~ 

fault contains the two blocks B1 and B2 where 

B1 = the shrunk term = [(A)Pi](3' and 

B2 = the fault set. (empty in this case) 

For the output function f
k

, 1~k~z, such that P 
i 

does not 

belong to f
k

, an extra contact fault , "Y, at the junction 

between P. and fk causes the appearance of P . on the map 
1 ~ 

of the function f k • If, due to fault (3, B1 C F (see 
k 

expression (7) in section 3.4.3 for the definition of the 

then (3 masks"Y and the simultaneous fault {3"Y is 

undetectable. 
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case (ii) (on different rows of the PLA) 

let l' be a redundant extra contact fault at the junction 

between row i and the output column k of a (n,m,z) PLA. A 

normally detectable shrinkage fault ~ in row j such that 

and p. 
J 

j 4= i 

"I. Let B~ be 

belongs to fk only, may be masked by the fault 

the fault set of ~. If B~ C (A)Pi' then the 

simultaneous fault ~"I is undetectable. 

Again, it should be noticed that in the above two cases 

the effect of the masking fault is considered first. The 

combined effect of both faults is then analyzed prior to 

evaluate the masking effect. 

In the next Chapter, the analysis of the redundant contact 

faults is shown to be performed by a simple inspection and 

manipulation of the adjacent Tables and partitions 

produced for each product term. 

3.6 SUMMARY 

A concept for evaluating the effects of redundant 

f a ul t s in PLAs has been presented. A new description for 

the product term fault model is formulated in terms of two 

sets associated with each term; the adjacent Table set and 

the set of partitions. These sets are analyzed and 

possible redundant faults have been shown to exist within 

three types of contact faults. These faults (g r ow t h, 

shrinkage, and appearance) can be identified and their 

masking influence on detectable faults may be evaluated by 

investigating the adjacency relationships and the 

properties of the output function(s). Such analysis may 
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be carried out before the actual derivation of any single 

contact fault test set (T ) 
s 

in a PLA takes place. 

Therefore, the complexity of testing and the ability of T 
s 

to cover more mUltiple faults can be established by 

producing some difficulty measures for the actual fault 

masking in the array. In the next Chapter, the algorithmic 

realization of the above concepts and the estimation of 

the complexity of the implementation is presented. 
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CHAPTER FOUR 

FACfPLA PROGRAM IMPLEMENTATION 
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4.1 INTRODUCTION 

In the previous Chapter, two difficulty measures have 

been established and shown to have a great influence on 

the complexity of testing a PLA. The evaluation of these 

measures is embodied in a general analytic program 

(FACTPLA) Functional Analysis and the Complexity of 

Testing 

steps 

PLAs. The basic program consists of two main 

identifying the 

evaluating their masking 

redundant 

effects 

contact faults and 

in PLAs. For testing 

purposes, 

structures 

the distinction between two different PLA 

having the same silicon area is based on the 

differences between 

(i) the effects of fault masking (MASK measure), and 

(ii) the restrictions on single fault test patterns to 

cover multiple faults (RISK measure). 

The above two measures have been evaluated from the 

parameters of adjacent Tables and partitions which are 

defined in Chapter 3. The measures are obtained for every 

redundant single contact fault. The first (MASK) measure 

accumulates the possible masking occurrence due to 

redundant single faults, while the second (RISK) measure 

indicates the difficulty of testing multiple faults due to 

the arbitrary choice of the single fault test patterns. 

Indeed, a redundant fault in a general digital circuit 

makes testing difficult regardless that the fault is 

single or embodied in a more general multiple fault. 

Accordingly, the values of the above measures reflect the 
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effectiveness of any test set derived on the single f aul t 

assumption bases. In VLSI environment, predicting such 

effectiveness is vital due to the increasing number of 

multiple faults which have to be considered. In the rest 

of this Chapter, the algorithmic realization and 

application of FACTPLA program is presented, 

complexity of computation is also discussed. 

and the 

4.2 FAULT DATA STRUCTURE 

Obviously, the redundant contact faults in a PLA 

represent the framework of the analysis performed by 

FACTPLA program. Figure 4.1 illustrates the fault data 

structure constituting the bases of FACTPLA's algorithms 

presented in the following sections. In this Figure, a 

redundant contact fault on some row, say row i, of the PLA 

is either a shrinkage or growth fault in the AND plane, or 

an appearance fault in the OR plane of the array. The 

effects of every redundant fault are associated with the 

MASK and 

testing) 

RISK measures which reflect the difficulty (of 

imposed by the fault in question. The 

'MASK RISK' relationships depend mainly on the location of 

the redundant fault in the array structure. 

Note that disappearance faults "are excluded form the 

structure shown in Figure 4.1. In the previous Chapter, 

redundant disappearance faults are shown to have no 

effects on other faults in a PLA (see Figure 3.3). The 

removal of the contacts (devices) causing such faults 

would not change the functionality of the array. 



redundant contact 
fault in row i 

extra contact missing contact extra contact 
, shrinkage' · growth • , appearance' 

risk on growtJt risk on shrinkage risk on shrinkage 
tests orrow 1 tests of row J tests of row J 

masks growth masks shrinkage masks shrinkage 
faults in row i faults in row J faults in row J 

masks appearance 
faults In row j 

Fig. 4.1 Fault Data Structure 



78 

However, large PLAs may contain many such contacts and 

their existence represents anther difficulty of testing 

the PLA. Later on in the Chapter, a simple algorithm to 

identify such contacts, which cause a potential increase 

in the computational time of testing, shall be presented. 

Also, in his paper, Bose [14] has shown that most of the 

appearance faults could be covered by shrinkage fault test 

patterns. In this thesis, however, no restrictions shall 

be assumed on appearance tests as they represent a small 

percentage of the complete test set. 

4.3 PROGRAM STRUCTURE 

The structure of FACTPLA program is illustrated in 

Figure 4.2. The flow of information among the program main 

routines is well understood by considering each routine 

individually 

(1) The INPUT FILE 

The file input to the program contains the description of 

the PLA distributed among three sets of data 

(a) the set [m,n,z,max] where 

m is the number of product terms, 

n is the number of input variables, 

/ 
z is the number of output functions, and 

max is the number of product terms belonging to the 

largest function; the function with the maximum 

number of terms. 
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I 
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(b) the set of product term cubes constituting the PLA. 

( c ) the set of output functions containing the .... numbers .... 

of the terms in each function. 

The PLA example given in Figure 3.9(a) of the previous 

Chapter is described to FACTPLA program as follows 

set (a) 6 , 4 ,3, 4 

1 X X 1 
1 X 1 X 

set (b) X 1 1 1 
0 0 X X 
X 1 1 X 
X 0 0 X 

o , 1 , 2 
set (c) 3,4 

0,3,4,5 

(2) EVALUATEl: Decimal code generation routine 

The underlying heuristic in FACTPLA program is the 

adoption of decimal codes to represent the functionality 

of the PLA. The product terms are analyzed by the program 

as .... ordered .... sets of integer numbers representing the 

minterms. Such arrangement has reduced the computation 

time and the complexity of the whole program. Figure 4.3 

illustrates a general flow chart for this routine, while 

Appendix B contains the detailed symbolic representation 

describing the derivation of the decimal codes in the 

manner needed by the program. 

(3) EVALUATE2: Fault identification routine 

Having generated the decimal codes of the product terms, 

it is necessary to identify the set of minterms which are 

common (bounded) between two or more terms. Generating the 



I START 1 

R= 2 X, X =.·X· 
elements in BinP 

setstorsge 
of size A = R * n 

R 1 

? 

>1 

store B inP in 
every row of 

of A 

, 

Generate Binary 
codes of the 

rows in A 

Calculate the Decimal 
code for every row 

in A 

, 
I END I 

, 

BinP : Product Term Cube 

R : Size of Product Term 

n : input variables 

store BinP in 
the first row 

of A 

Fig. 4.3 Decimal Code Generation of Product Tenns 
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'intersection vector' between the terms represents the 

first task of this routine (see Appendix B for this step). 

The second and basic task of the routine is the actual 

identification of the redundant contact faults (growth, 

shrinkage, and appearance) in the PLA structure. In the 

next section, the detailed procedures for this step are 

presented. It should be noticed that FACTPLA assumes a 

'complete' single fault test set, that is, a test pattern 

for every testable fault is included in the test set. 

Therefore, a fault node is considered if and only if the 

corresponding fault is redundant with respect to all the 

relevant output functions. In other words, a fault on row 

i of the PLA is redundant if and only if is redundant with 

respect to every function containing p.' 
1 

(4) EVALUATE3: Measures evaluation routine 

This routine constitutes the heart of FACTPLA program. It 

evaluates the (MASK) and (RISK) measures for every 

possible redundant contact fault in the PLA. A special 

compact nodal structure has been set up to contain the 

fault's information. There is a node for every class of 

the redundant faults, therefore, a total of 3 nodes are 

used for redundant growth, shrinkage, and appearance 

faults. Every node contains the location and the relevant 

difficulty measures for some redundant fault. the layout 

of such structure is illustrated in (6) below, while the 

establishment of each fault node is described in detail in 

the next section. 
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It is worth noting that the strategy of evaluating the 

MASK RISK measures has also indicated the way with which 

good tests for multiple faults may by chosen. Such worthy 

information provide a good heuristic for any test 

generation procedure. 

(5) EVALUATE4: Redundant contacts identification routine 

FACTPLA program strategy assumes that a large PLA may 

contain some redundant contacts (devices) in the OR plane 

of the array. This is due to the fact that current 

minimization procedures for large boolean expressions may 

optimize some of the minimality criteria. In other words, 

although a PLA may be designed to contain a minimum number 

of product terms (or rows), some of these terms may still 

be redundant with respect to some of the output functions 

(see Fig. 3.3 in the previous Chapter) • This routine 

evaluates the amount of these contacts which are caused by 

such optimization techniques. 

(6) The DISPLAY routine 

This routine displays the output data in the manner 

presented by the EVALUATE3 routine above. The fault node 

is described below where 

m. 
~ 

c = 

row i in the PLA, 

input variable j to the PLA, 

output k from the PLA, and 

1 the uncomplemented column (bit line) of input nj 

o the complemented column (bit line) of input nj 
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fault node location measures 

growth (m.,n.) MASK, RISK 
~ J 

shrinkage (m.,n.,c) MASK, RISK 
~ J 

appearance (mi,f
k

) MASK, RISK 

Fault Data Structure 

In an advanced stage, the displayed fault information may 

be analyzed against the basic functional properties of the 

PLA prior to develop some heuristic guide information that 

he lp logic minimization techniques to arrive at the 

best to test circuit. 

In the following section, FACTPLA program for single 

output PLAs is presented. Generalization to multiple 

output PLAs will be considered later on in the Chapter. 

4.4 FACTPLA FOR A SIMPLE (n,m,l) PLA 

In this section, the basic PLA structure is assumed 

to have n input variables, m product terms and one output 

function. Accordingly, the total number of contacts ina 

(n,m,l) PLA is m(2n+l). All product lines will contribute 

to the output function and appearance faults need not be 

considered. Thus, the masking measure (MASK) is assumed to 

consist of two parts the masking of detectable growth 

f a ul t s by some redundant shrinkage fault on the same row, 

and the masking of detectable shrinkage faults by some 

redundant growth fault on different rows of the PLA. 



The restrictions on single growth fault tests for 

product term p. can be evaluated directly from 
1 

adjacent Table of P .• 
1 

Such restrictions are imposed by 

existence of some redundant shrinkage fault in row i • 

the other hand, since the shrinkage tests for p. 
1 

i nvo I ve d in p. 
1 

itself then the restrictions 
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a 

the 

the 

On 

are 

on 

single shrinkage fault tests for P. are evaluated from the 
1 

partitions of p .• 
1 

In this case, the restrictions on 

shrinkage tests are imposed by the existence of some 

redundant growth fault in row j, j4=i. Higher values of 

the (RISK) measure indicate that maximizing the multiple 

f aul t coverage may by achieved with longer test lengths, 

while higher values of the (MASK) measure reveal poor 

multiple fault coverage by a single fault test set. 

4.4.1 Algorithms for a (n,m,l) PLA 

Basically, two main analytic algorithms for redundant 

f a ul t s consideration in a general 

considered. This is illustrated by the simple flow chart 

given in Figure 4 • 4 • In this Figure, algorithm 4.4.1 

identifies all redundant growth faults in the product term 

p. 
1. 

and evaluates their masking effects on the detectable 

shrinkage faults of other product terms. Algorithm 

identifies all redundant shrinkage faults in p. 
1. 

4.4.2 

and 

evaluates their masking effects on the detectable growth 

faults of p. itself. 
1 

These algorithms are described below 

where 

(MASK) : denotes the masking of growth faults 
s g 

due 

to redundant shrinkage faults, 



I i=i+l I 
r. 

I i=O 1 

Algorithm 4.4.1 

mask evaluation 
for 

redundant growth 
faults in Pi 

Algorithm 4.4.2 

mask evaluation 
for 

redundant shrinkage 
faults in Pi 

NO 

, 

update masking 
measures 

i=m 
? 

YES 

I STOP I 

Fig. 4.4 Fault Masking Evaluation in A (n,m,I)_PLA 
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(MASK) : denotes the masking of g_s shrinkage faults 

due to redundant growth faults, 

(RISK) : denotes the restriction (due to redundant s_g 

shrinkage faults) on growth tests to cover multiple 

faults, 

(RISK) : denotes the restriction (due to redundant g_s 

growth faults) on shrinkage tests to cover multiple 

faults, and 

R. : denotes the size of p. (number of minterms in 1 1 

P . ) • 
1 

Again, it should be emphasized that the minterms are 

arranged in ascending order such that the representation 

of any product term begins with the lowest minterm and 

ends with the highest one (see the definition of (A) in 
p 

the previous chapter). 

~A~I~g~o~r~i~t~h~m~4~.~4~.~1~~(~f~o~r~r~e~d~u~n~d~a~~nt~g~r_~ow~t_h __ f __ a_u_l_t_s ___ i_n ___ Pil 

Procedure 4.4.1(a) fault identification. 

Procedure 4.4.1(b) fault location & measures evaluation. 

Procedure 4.4.1(a) 

1 • Generate the adjacent Table of p. as follows 
1 

(a) for each minterm (M) of Pi' obtain the set S 

possible minterms adjacent to M using the 

expression: 

S = M + 
(k-l) 

[2(k-l)] [(_1)M/2 ] 

of all 

following 
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where l~k~n and is defined as an integer 

divide. 

(b) the result of (a) above is a Table of n columns and R. 
1 

rows. 

P .• 
1 

2. 

3 • 

Element every column which is exactly identical to 

For the Table generated in step 1, tag all the 

minterms belonging to the function 

consideration. 

In the above Table, any column, say (column)., 
J 

under 

whose 

minterms were all tagged represents a redundant 

column (or undetectable fault). 

Procedure 4.4.1(b) 

1. Set (RISK) and (MASK) to zero. 
g s g s 

2 • 

3 • 

locate the redundant growth faults on row i in the 

following manner. If (column). of the adjacent Table 
J 

of p. was redundant, then the bit change at the 
1 

( .)th .. f h b f p. ddt n-J posltlon 0 t e cu eo. 1S re un an . 
1 

evaluate (RISK) and 
g s 

follows: 

(a) for every product 

(MASK) for (column). 
g s J 

term P , q+i, 
q 

if the size 

as 

R =1 
q 

then check if the only minterm of P belongs to 
q 

(column) .• If it does, then 
J 

(MASK) = (MASK) + 1. 
g_s g_s 

However, if the size R >1, then go to step (b) below. 
q 

(b) perform the partitioning process on p. 
q 

Every 

partition of P will have two blocks, and every block 
q 
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contains an implicant of size R /2 
q 

(Appendix B 

illustrates a symbolic representation for such 

partitioning process). Tag the bounded minterms in 

the partition blocks. For any block, say (block)k' 

if the set of 'unique' minterms in (block) 
k 

belonged to (column). then 
J 

(MASK) = (MASK) + 1 . g s g s 

Otherwise, for every unique minterm, 

that is belonged to (column). do 
J 

(RISK) = (RISK) + 1. 
g s g s 

in 

were all 

(block)k' 

4. Repeat step 2 and 3 for every redundant column in the 

table generated by procedure 4.4.1(a). 

Figure 4.5 illustrates the application of algorithm 4.4.1 

on the first row of a simple PLA. 

_A_I~g~o_r_l_·_t_h_m ___ 4_._4 __ ._2 __ (~f_o_r ___ r_e_d_u __ n_d_a_n __ t __ s_h __ r_i_n_k_a~g_e __ f __ a_u_l_t __ s __ i_n ___ Pil 

Procedure 4.4.2(a) fault identification & location 

Procedure 4.4.2(b) measures evaluation 

Procedure 4.4.2(a) 

1 • Perform the partitioning process on p. to obtain the 
1. 

possible partitions and tag the bounded 

minterms. 

2. Scan partitions of Pi' If, for a given partition, say 

of the minterms = [(block) , (block) ], the set 
a b (PT) . 

J 

belonging to one block, say (block)a were all tagged 

(redundant block) , then mark this block as a 

redundant fault in row i. Obviously, the other 

block, (block)b in this case, represents a shrunk 
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Fig. 4.5 Application of algorithm 4.4.1 on PO 
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term caused by this particular fault. The location 

of the fault is determined from the order of the 

partitions in the manner described in the previous 

Chapter. 

Procedure 4.4.2(b) 

1 • 

2 • 

to zero. 

Assume that a block, say (block) , in partition j 
a 

of 

p. was redundant. Then obtain the 'adjacent Table' of 
1 

the other block, (block)b' and perform the necessary 

tagging (note that the whole original product term p. 
1 

should be removed from the Table). In this Table, for 

every column whose minterms were all tagged do 

(MASK) = (MASK) + 1. 
s g s_g 

Otherwise, for every tagged minterm (in the above 

column) do 

3. Repeat step 2 for every partition of P .• 
1 

Figure 4.6 illustrates the application of algorithm 4.4.2 

on the first row of a simple PLA. 

4.4.2 Application on Switching Theory 

Most minimization procedures tend to obtain a minimal 

sum_of products expression for a given switching function, 

after establishing some criteria for minimality. Consider 

the minimization of the function F(x,y,z) 

F(x,y,z) -= xyz + xyz + xyz + xyz + xyz + xyz 
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Combining the first and second, second and third, forth 

and fifth, fifth and sixth terms yields a reduced function 

for F 

F(x,y,z) = xz + yz + yz + xz •.••••••...•..... (1) 

The above sum of products expression is said to be 

irredundant or irreducible, since no term or literal can 

be deleted without altering its logical value. However, 

combining the first and second, third and sixth, forth and 

fifth terms of F results in : 

F(x,y,z) = xz -+ xy + yz . . . . . . . . . . . . . . . . . . . . . . ( 2 ) 

Similarly, the combinations of the first and forth, second 

and third, fifth and sixth terms yield a third irredundant 

expression 

F(x,y,z) = xy + yz + xz . . . . . . . . . . . . . . . . . . . . . . ( 3 ) 

While all three expressions are irredundant, only the 

latter two are minimal. Consequently, an irredundant 

expression is not necessarily minimal, nor is the minimal 

expression always unique. Note that the minimality 

criteria depend on two parameters the number of prime 

implicants and the number of literals in each such prime 

implicant. 

Now, realized as PLA structures, expression 2 and 3 yields 

the same number of product lines and contacts 

(connections) in the array. Thus, from the design point 

of view, the choice between the two possible realizations 

seems to be arbitrary. However, the algorithms presented 

ection assume a third (testability) 
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criterion for chosing the best PLA realization. For 

example, Figure 4.7 shows 3 different single output PLA 

structures which realize the same switching function F. 

The P,LAs are specified by structural personalities where 

they contain the same number of contacts (devices). Note 

that all the structures have the same number of 

undetectable single contact faults. Nevertheless, the 

firs t PLA is shown to have less difficulty measures and, 

hence, the easiest to test structure. In the concluding 

part of this thesis, the general functional properties 

that help arriving at the 'best' realization are 

discussed. 

4.5 FACTPLA GENERALIZATION TO MULTIPLE OUTPUT PLAs 

In the case of multiple output PLAs, shrinkage and 

growth faults in any row must be checked through different 

output functions since a complete single fault test set is 

assumed to exist always. A fault q, where q belongs to the 

union set of all shrinkage and growth faults in row i, is 

redundant if and only if q is redundant with respect to 

all output functions containing P" 
1. 

In Figure 4.8 the 

missing contact fault a causes P
5 

to grow. Now, although a 

is redundant with respect to the output function f
1

, it 

can still be detected through fOe On the other hand, the 

shrinkage fault (3 of the product term Po can not be 

detected through fO or f 2 . Thus, (3 is redundant and it 

must be considered for fault masking evaluation. 
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In addition to the above faults, appearance faults must 

now be considered. As it was pointed out in the previous 

Chapter, identifying appearance faults and evaluating 

their masking influences are based on two objects; a 

product term p. and an output function 
1 

does not belong to f. 
J 

f. 
J 

such that P 
i 

Also, In'VLSI environments logic functions may have up to 

30 input and output and more than 100 product terms. Thus, 

exact logic minimization, which involve generation of all 

prime implicants and extraction of a minimum prime cover, 

is impractical. indeed, the problem of extracting a 

minimum prime cover is known to belong to the class of 

NP complete problems[38]. Obviously, the computation time 

of such problems increases drastically with the increase 

number of implicants. Hence, the need for optimization 

techniques to generate a near minimum cover may results in 

the inclusion of some redundant contacts in the OR plane 

of a PLA. 

Accordingly, the following algorithms complete the fault 

masking analysis for a general PLA structure. Algorithm 

4.5.1 evaluates redundant shrinkage and appearance fault 

effects in row i of the PLA, while algorithm 4.5.2 

identifies all redundant contacts in the OR plane of the 

array. 

Algorithm 4.5.1 (for a product term Pil 

In this algorithm let 

(MASK) : denotes the masking of shrinkage faults due 
a s 

redundant appearance faults of P . , 
1 

to 
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(MASK)S a: denotes the masking of appearance faults due to 

redundant shrinkage faults in p., 
1 

(RISK) : 
a s 

denotes the restriction (due to redundant 

appearance faults) on shrinkage tests to cover mUltiple 

faults. 

Procedure 4.5.1(a) redundant shrinkage faults effects 

Procedure 4.5.1(b) redundant appearance faults effects 

Procedure 4.5.1(a) (on the same row of the PLA) 

1. Set (MASK) to zero. 
s a 

2 . 

.3 • 

Assume that (block) of partition j 
a 

of the product 

term p. was redundant (see algorithm 4.2.2). Thus the 
1 

other block, (block)b in this case, represents the 

shrunk term of P .• 
1 

For every output function, f
k

, 

such that p. does 
1 

not belong to fk and (block)b 

belongs to the set of terms constituting fk do 

(MASK) = (MASK) + 1. 
s a s a 

Repeat step 2 for the other redundant blocks in 

partitions. 

p .... S 
1 

Procedure 4.5.1(b) (on different rows of the PLA) 

1. Set (RISK) and (MASK) to zero. 
a s a s 

2 • For every output function, f k , 

belong to fk do 

such that P does 
i 

not 

(a) if P. belongs to the 'set of terms'" 
1 

constituting 

then mark the extra contact fault at the junction 

between Pi and fk as a redundant appearance fault. 

(b) for every product term p., j=#=i and P belongs 
J j 

to 
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perform the partitioning process to obtain P 's 
j 

partitions; Any block of (PT) 
Pj 

whose 

unique (with respect to f
k

) minterms were all 

belonged to p. represents a masking condition. 
1 

Thus, 

for every such condition do 

(MASK) = (MASK) + 1. 
a s a s 

Otherwise, for every minterm (in the above block) 

which is unique with respect to fk and belong to Pi 

do 

(RISK) = (RISK) + 1. 
a s a s 

(c) repeat (b) for every block in the 

partitions. 

set of P.'s 
J 

Algorithm 4.5.2 (Identification of redundant contacts) 

Let R dev be denotes the total number of redundant 

contacts in the OR plane of the PLA. 

1. Set R dev to ZERO. 

2 . For an output function f . , 
1 

any product term p. 
J 

belonging to f . 
1 

such that all of P 's minterms are 
j 

also 'bounded' with respect to f. then 
1 

R dev = R dev + 1. 

3. Repeat step 2 for every output function. 

4.6 EXPERIMENTAL RESULTS 

In this section, the experience of applying FACTPLA 

on different PLA structures is discussed. Appendix C 

contains data on 13 different PLAs, which have been 
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collected from various sources, while Table 4.1 summarizes 

the results given in the Appendix according to FACTPLA. 

The first column of Table 4.1 contains the PLAs arranged 

according to their alphanumeric names. The amoun.t of 

undetectable single contact faults are given in the second 

column. These faults are redundant with respect to any 

functionally generated single fault test test. 

The RISK and MASK values, given in the third and forth 

columns respectively, reveal the impact of 'bad' design on 

multiple faults coverage in a PLA. The last column in 

Table 4. 1 gives an idea about the amount of undetectable 

faults as compared to the total number of possible growth, 

shrinkage, and appearance faults, that is, f or a 

total redundant faults 
undetectability % = 

Total possible faults 

where m 
n - R L ( Log

2 Total growth faults = i ) 
;=1 

Total shrinkage 

and 

Total appearance 
faults 

m 
faults = L( 2 * Log 2 R

i
) 

;=1 

m f 

= ( m * f ) - (L Lj ) 
i=l 0=1) 

P.f.f. 
I J 

* 100 

see property 3.3.1 

see section 3.4.3 

Now, it is very convenient to normalize the RISK and MASK 

values by certain parameters so that the complexity of 

testing a PLA may be estimated according 

personality structure of the PLA itself. 

proceeding to do so, the theoretical upper 

tfls~ length for a PLA has to be defined. 

bound 

to the 

Be for e 

on the 



single Total Total undetectability 
PLA undetectable faults RISK MASK % 

PLA_5X 157 224 305 11% 

PLA_BW 1148 43 '1075 42% 

PLA_BWI 496 51 511 23% 

PLA_CONI 7 38 3 6% 

PLA_DIL 15 1168 10 3% 

PLA_F2 12 1 12 12% 

PLA_MAS 42 65 140 5% 

PLA_MID 1 0 40 0.37% 

PLA_MISEX1 99 220 499 17% 

PLA_RD53 20 4 10 8% 

PLA_RD73 199 34 73 14% 

PLA_SA02 111 552 104 12% 

PLA_SR 16 180 0 6% 

Table 4.1 Testability Profile for differents PLAs (1) 
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Since the strategy of FACTPLA program assumes that growth 

and shrinkage tests constitute the vast majority of the 

patterns in the test length, only these tests shall be 

considered henceforth. Now, in the previous chapter it has 

been shown that up to 3 patterns may be needed to detect 

all testable shrinkage faults in a general product term 

(see sec~ion 3.3). Therefore, in a PLA with m rows the 

upper bound on the shrinkage tests is 3m. On the other 

hand, a product term grows into different coordinates and 

no two growths can overlap. Hence, the worst case for 

testing growth faults is to have a distinct test pattern 

for every possible missing contact fault, that is (n -

It follows immediately that the theoretical upper bound on 

the test length for a (n,m,f)_PLA may be given by 

Theoretical upper 
= 

bound on test length 

m 

3 * m + [( n - Log 2 Ri ) 
i=l 

Accordingly, the worst case for covering multiple faults 

in a PLA is to assume that all the patterns having RISK 

values do belong to the test set. Therefore, the 

testability criterion of multiple faults in a PLA may be 

give n by 

RISK on 
Multiple fault % = 

coverage 

Total RISK 

Theoretical upper bound 
on the test length 

* 100 
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Similarly, since the MASK values account for those 

testable which are masked from detection, then it 

is very convenient to normalize these values by the amount 

faults 

of the testable faults . , 1.e., 

Total MASK 
MASK % = * 100 

Total testable faults 

where 

testable faults = Total faults - Total redundant faults 

The normalized values for the PLA examples in question are 

summarized in Table 4.2. Note that some of the RISK and 

MASK measures in Table 4.2 have an effect of ()100%). This 

is explained below. 

The FACTPLA program is a pre test generation technique 

which tends to estimate the complexity of testing a PLA. 

Hence, the values of RISK measures are evaluated for all 

possible qualified test patterns without knowing exactly 

which tests will be included in the final test length. 

Therefore, without loss of generality, it is natural to 

assume that, at the worst case, all tests with RISK values 

are included in the final test length. In some cases, the 

amount of such tests may exceeds the theoretical upper 

bound of the test length. 

On the other hand, a testable contact fault may be masked 

by more than one redundant fault under various tests. For 

instance, a testable growth fault on row i of a PLA may be 

masked by more than one shrinkage fault on the same row. 



theoretical upper 
Single detectable PLA bound on test length RISK MASK 

fanlt~ % % 

PLA_5X 512 1272 43% 24% 

PLA_BW 611 1557 7% 57% 

PLA_BW1 435 1620 11% 31% 

PLA_CONl 50 105 76% 2% 

PLA_DIL 186 437 >100% 2% 

PLA_F2 72 84 1% 14% 

PLA_MAS 535 712 12% 19% 

PLA_MID 97 270 0% 15% 

PLA_MISEX1 218 483 >100% >100% 

PLA_RD53 240 218 1% 4% 

PLA_RD73 1263 1217 2% 6% 

PLA_SA02 597 780 92% 13% 

PLA_SR 139 220 >100% 0% 

Table 4.2 Testability Profile for different PLAs (II) 



PLA 
Complexity 
of testing 

PLA_MISEXI >100% 

PLA_SA02 52% 

PLA_DIL 51% 

PLA_SR 50% 

PLA_CONI 39% 

PLA_5X 33% 

PLA_BW 32% 

PLA_BWI 21% 

PLA_MAS 15% 

PLA_MID 7% 

PLA_F2 7% 

PLA_RD73 4% 

PLA_RD53 2% 

Table 4.3 The Complexity of Testing different PLAs (III) 



96 

Hence, the amount of masking conditions may exceeds the 

total number of single testable faults in the PLA. 

However, for more a accurate estimation of the complexity 

of testing a PLA, both measures have to be considered 

simultaneously. In this case, the complexity of testing 

indicates the effectiveness of a single fault test set to 

cover more mUltiple faults. Such complexity will be 

defined by the mean value of both measures 

complexity of RISK% + MASK% 
% = 

testing 2 

In Table 4.3 the PLA examples in question are 

according to their testing complexity defined by the above 

expression. 

4.7 SUMMARY 

The analytic program presented in the previous 

sections produces measures for testability investigation 

in PLAs. The procedures of the FACTPLA program may be 

considered for estimating the complexity of the whole 

program. For instance, the memory requirement for 

generating and manipulating the adjacent tables and 

partitions of the product terms is limited by the size of 

the largest 
product term. At any instant of the program, 

only 'one' adjacent Table and 'one set' of partitions are 

required. 
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Accordingly, the storage required in the main computation 

of the FACTPLA program may be described below 

Log
2

R .R 
max max + R • n 

max ,,----- ----------for partitions for adjacent tables 

where Log R 
2 max 

is the number of partitions in the 

largest product term, 

R 
max 

is the size of the largest product term, and 

n is the number of inputs to the PLA. 

It follows that the operations in FACTPLA relate linearly 

to the number of product terms and the amount of redundant 

faults. Both MASK and RISK evaluations are completed after 

a single pass through the set of product terms. 

Another factor to consider here is the ease with which 

'more realistic' test patterns can be generated for a PLA. 

The functional verification approach embodied in the 

program may be used to obtain such patterns, that is, the 

PLA under normal condition performs the intended 

operation, even if some redundant faults exist. It is 

obvious that the derivation of such patterns can be 

achieved directly from the adjacent Tables and partitions 

of the product terms. A straightforward application of any 

minimal cover routine on these Tables and partitions 

yields a minimal test length for the PLA. 

Now, to achieve minimal fault masking and higher coverage 

of multiple faults, the adjacent Tables and partitions may 

be updated by removing those 'free' minterms (from the 

~. T a b I ~ S ) ~m!--~aTI·~ u e' min t e r m s (f rom the par tit ion s) w hi c h 
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belong to redundant fault sets Ccolumns in the Tables and 

blocks in the partitions). Thus, applying the same minimal 

cover routine, another test length can be achieved and a 

new testability criterion may be established by comparing 

both test lengths. It is worth noting that increasing the 

f aul t coverage is achieved without augmenting 

structure of the PLA, therefore, reducing the chances 

the 

of 

f aul t occurrence in the sequential circuits involved in 

most of the augmentation techniques [31-37]. 

However, FACTPLA program analyzes the functional 

specification of PLAs without considering the topology of 

the arrays as such. Thus, as far as the properties of the 

output functionCs) remain the same, the program is 

technology invariant and may also be applied to the folded 

versions of the PLAs. 



CHAPTER FIVE 

CONCLUSIONS AND FUTURE WORK 
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5.1 CONCLUDING REMARKS 

With the advent of VLSI, the circuit complexity of 

chips has been increasing exponentially_ Considerable 

effort has been made to incorporate regular structures 

into circuit design. As one of such structures, 

Programmable logic arrays presently occupy an extremely 

useful role 

other hand, 

in the design of complex VLSI chips. On the 

the steadily growing chip complexity is 

associated with testing difficulties; particularly in the 

area of mUltiple fault detection in these chips. It is for 

this reason that considerable attention is being devoted 

for testing PLAs effectively. 

The introductory part of this thesis identified the need 

to consider the influences of undetectable faults on 

testing and testability aspects in digital circuits. Being 

the example vehicle of the above consideration, a PLA is 

introduced in Chapter 2 and the problem of testing PLAs is 

identified in the light of the following topics 

2 • 

3 • 

Fault modeling 

malfunctions 

represented. 

Derivation of 

relates to determining how various 

can be logically or functionally 

a complete single contact fault test set 

relates to the computational difficulties despite 

various heuristic based test generation algorithms 

reported in the literature. 

Multiple fault detection: relates to the problem of 

quantitatively predicting the multiple fault coverage 



4 • 

5 • 

The 
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capability of a single fault detection test set (T ) 
s 

in a PLA. Moreover, augmenting T in order to obtain 
s 

a mUltiple fault detection test set (T ) represents 
m 

another problem. 

Effect of untestable contact faults relates to the 

increasing complexity of the computations involved in 

the algorithms mentioned in (2) above. Furthermore, 

untestable contact faults become important when one 

attempts to show that most other faults can be 

covered by test patterns designed to cover only 

single crosspoint faults. 

Designing easily testable PLAs relates to the 

different trade offs over the parameters associated 

with the extra test circuitry (e.g., the number of 

additional pins, fault coverage, the number of test 

patterns, .•• etc.). 

work established in this thesis presents an 

alternative for estimating the complexity of testing in 

PLAs. The described approach expresses such complexity in 

terms of the effects of masking among faults. 

Undetectable faults identification and fault masking 

evaluation have been combined to yield an analytic program 

for testability investigation in PLAs. The program 

(FACTPLA) analyses the functional specification and 

investigates the adjacency relationships among the product 

terms constituting the PLA. 
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Two testability measures, related to the effect of fault 

masking and restriction on single fault test patterns to 

cover multiple faults, are produced. A record of all 

undetectable contact faults is also given. The main 

application of the program is to distinguish between 

different PLA structures by considering their testability 

measures. 

Since the properties of the output function(s) are 

investigated without considering any topological aspect, 

the program can be applied to large PLAs and to the folded 

PLA structures as well. 

5.2 FUTURE WORK 

The main aim of traditional minimization techniques 

is to simplify a boolean function f(x
1

,x , ••• ,x ) to find 
2 n 

an expression g(x
1

,x , ••. } x ) which is equivalent 
2 n 

to f 

and which minimizes some cost criteria. The most common 

cost criteria are 

1 • minimum number of appearances of literals 

(complemented or uncomplemented) in a product term, 

2. minimum number of literals in a sum of products (sop) 

expression, and 

3 • minimum number of terms in a sum of products 

expression provided there is no other such expression 

with the same number of terms and with fewer 

literals. 

Now, cost is defined as merely the number of AND (or the 

product terms) gates required in the realization. Such 
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definition is quite natural for the PLA. Thus, the third 

criterion above seems to be the most relevant one for PLA 

structures. However, as it was illustrated in chapter 4, 

a minimal sum of products expression produced by most 

minimization techniques is not necessary unique. Hence, 

for the same output function, there may exist several PLA 

realizations with different functional properties 

affecting the array's testability. 

Now, the values calculated for the testability measures in 

this thesis are used to estimate the testability within a 

particular PLA as well as to compare the testability of 

different PLAs. This is due to the normalization of the 

absolute measures by certain common factors which are 

affected significantly by the functionality (realization) 

of each PLA. This is clearly illustrated by the histogram 

format (Figure 5.1) developed to show that the amount of 

crosspoints (as a function of the area of a PLA) is 

irrelevant to the complexity of testing, and hence, the 

testability of a PLA. Therefore, a worthy motivation 

towards further research may be directed to : 

1. define those functional properties that affect the 

2 • 

complexity of testing. For instance, unateness, 

linear separability, symmetry •• etc., may be proved 

to have good or bad impact on testing. 

define the 'design style" that help reduce the 

complexity of testing. As far as a PLA is concerned, 

the design style may be confined by the "shape" of 

the output (OR) plane of the array. For example, in 
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some cases a PLA is designed such that each of its 

product lines is belonged to one and only one output 

function (in Appendix C , PLA 5X, and 

PLA RD73 are some examples of such design). 

A systematic way to identify the impact of the combination 

of the above two parameters need to be established. Such 

motivation will be of great theoretical and practical 

interset. Furthermore, generalizing and integrating 

FACTPLA within a complete CAD tool for logic minimization 

"'with emphasis on testability'" is appreciated when 

considering the following argument. 

Previous experience on generating tests for digital 

circuits shows that most of the search time of an ATPG 

algorithm is wasted on undetectable faults (see Figure 

5.2a). Now, the 

the 

knowledge provided by FACTPLA could be 

ATPG algorithm if it picks up an used to guide 

undetectable fault. At the worst case, the computer run 

time of FACTPLA may be equivalent to that of the ATPG 

algorithm. The important conclusion of this fact is 

depicted in sketch (b) of Figure 5. 2 where the 

acceleration of the ATPG algorithm is achieved. An 

effective reduction in the total search time is not the 

only advantage of FACTPLA. Another area which has been 

proven to be of value in Chapter four is the consideration 

of multiple faults. Essentially, the generation of 

effective test patterns which detect as many multiple 

faults as possible is achieved. 
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APPENDIX A 

A.I The Cubic Notation 

The most straightforward representation for a logic 

function is the 'tabular form' or 'truth table'. In this 

form, the function outputs are specified for each possible 

combination of the inputs. F or example, the function 

- -F = XYZ + XYZ + XYZ 

is specified as follows 

X Y Z F 

o o o 1 

o o 1 o 

o 1 o 1 

o 1 1 o 

1 o o o 

1 o 1 o 

1 1 o 1 

1 1 1 o 

The above specification may also be mapped into a 

geometrical representation in which points in 

n dimensional space are used to represent the possible 

binary codes or n tuples. Karnaugh map may be considered 

as an attempt to project this n dimensional space onto a 

2 dimensional map (this is usually effective for up to 5 

or 6 variables). 

Accordingly, logic functions with 3 variables may be 

represented as a 3 dimensional unit cube as shown in 

Figure A.l. Each canonical product term (minterm) of the 
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function is associated with a unl'que pOl'nt ( ) 
vertex of the 

cube. The cubical representation for the above function 

is illustrated in Figure A.2, where the indicated vertices 

represent the existence of the corresponding minterms in 

the original function. Planes and edges are used to 

represent the non canonical product terms since each 

vertex is distance one apart ( i . e . only one variable 

changes its logical value between two adjacent vertices). 

For example, Figure A.3(a) represents the product term 

(2), while Figure A.3(b) represents the product term (Y2). 

Using the above notation, switching function expressions 

may be specified and manipulated as an arrays of n tuples 

(cubes). Thus, a complete algebra may be established with 

defined operations on arrays of cubes to perform any 

computer manipulation on switching functions. 

A.2 The Mathematical notion of sets 

In this section, the notion of set and its basis 

operations, used in the material given in chapter 3, is 

introduced. 

A set is simply a collection of objects without 

repetition. Each object in a set is called an element of 

that set. For example, a product term may be described as 

b representl"ng the decimal codes of a set of integer num ers 

its minterms. If an element, X, is a member of a set A, 

then it is written as X EA (read X in A or X belongs to 

I 

A), and if X is not an element in A then we write X tf- A 

(read X not in A or X does not belong to A). 



(0,0,0) 

. (0,1,1) (1,1,1) 

(0,0,1) (1,0,1) 

(0,0,0) 

'" '" '" '" 
(0,0,0) 

Fig. A.3(a) 

I 
I 
I 
« 

J- i~,2~02 __ 

.Fig. A.l 

I 
I 
« 
I 
I 
, (0,1,0) 

(1,0,0) 

s-------
" '" '" 

Fig. A.2 

(1,0,0) 

(1,1,0) 

(1,1,0) 

(0,1,1) YZ (1,1,1) -------

Fig. A.3(b) 

Cubical Representation of Swithcing functions 
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III 

A set A is a subset of set B, written ACB, if and only 

if eve ry element of A is a member of the set B. If A is 

not a subset of B, we write Acj:.B. Then 

{ 1,2,4 }C{ 1,2,3,4,5 } 

and 

{ 2,4,6 }ct{ 1,2,3,4,5 }-

The basic operations on sets are the binary operations, 

union (U), intersection (n), and difference (-). 

If A and B are sets then these operations are 

follows 

defined as 

A U B 

A n B 

consists of all elements in either A or B, 

consists of all elements in both A and B, 

A - B consists of all elements in A but not in B. 

For example, if A = { 0,1,3,5 }, B 

A U B = { 0,1,2,3,5 }, 

A n B = { 3,5 }, and 

A - B = {0,1 }. 

{ 2,3,5 }- then 
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APPENDIX B 

Appendix B contains the detailed symbolic 

repres~ntation of some of the most important routines in 

FACTPLA program. Figures B1 (in the next two pages) 

illustrates the complete flow chart for deriving the 

decimal code (DeeP) of a product term (BinP) in the manner 

required by the program. Figure B2 shows the derivation of 

the intersection vector (common minterms) between product 

terms and P 
2 

Finally, figure B3 illustrates the 

partitioning of a product term (P) of size (R) to obtain 

the Log
2

R partitions. Each partition has two blocks, 

referred as block 0 and block 1 in the flow chart. 



1 

: ....•........................... 

i = i + 1 

.......................................................... 

R'S' • LZe of the Product Tam p 

B' inP : Product Tam Cube 

DeeP : Decimal Code of BioP 

binary & Temp . ~ • prary Storage 

~ ....•.......•........... .•....•..•.......••.•..•••.. 

NO 

YES 

i = i + 1 

...................................................................................................... : 
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--
~----------------------~* 

: ......•..... ~ .....•••....•.•.••. ..•................................ .... ................................................................................................................ .............. .. 

i = i + 1 NO 

NO 
'-..,. binary(i,j) == 

"'- 'X' 

k=k+l 

j = j + 1 

start = sUrt + 2 • (ajh) 
limit = (a/h) + (j+ I) • (2 • (a/h» 

YES 

................ 
.............................................................. ................................................ 

Fig. 131 Decim:li Code Derivation of a Product Term Cube 

. ................ " 



j=j+l 

NO 

NO 

DecPi = 0 
k=O 

YES 

NO 

w=n-(j+l) 

w 
k=2 

DccPi = DccPi + k 

i = i + 1 

Fig. B 1 Decimal Code Derivation of a Product Tem1 Cube 

114 



FALS 

j = j + 1 

START 

INPUf 
Pl.Rl 
P2.R2 

i = 0 
s=o 

vCClOr(s) = Pi 
s=s+l 

Rl : Size of Term PI 

R2 : Size of term P2 

i = i + 1 

Fig. B2 Generation of the Intersection Vector between twO terms 
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INPUT 
b = lottR.. a = R!2 

t ;'0, i = ° 

FALSE 

Temp <--p 
h = 2\ j = ° 

start = 0, limit = a/h 

FALSE 

partition(i,O,s) = Temp 
s = s + 1 , Temp = -1 

L-_______ k_=.-.!} + I 

start = start + 2 • (a,Ih) 
limit = a/h + G+1) ·-(2 * (a,Ih» 

END] 

b: number of partitions 

a : size of the partition block 

Temp: temparay storage 

s=O 
k=O 

~ 16 

K<R FALSE 

if Temp i- -1 
partition(i,l.s) = Temp 

s = s + 1 

/r~-----~F:::;i~b~_~BU~J.[titioning :.l Product T~ml \P) of Si:~c (R) 

----l 

I 
I 

I 
j 

I 
I 
I 

I 

, 
- I 
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APPENDIX C 

Appendix C contains the results of PACTPLA on several 

PLA examples. The personality of each PLA is specified by 

0, 1 , and X (don't care) in the input part of the product 

term (or row), and 1 and 0 (or"") in the output part. The 

locations of undetectable (g r ow t h, shrinkage, and 

appearance) faults are listed and the total values of the 

measure (MASK and RISK) are also given. 

Note that the locations of faults are specified by m, n, 

f, and c where 

used for the first row (product line), 

: used for the first i npu t variable (growth 

case), 

used for the first output column (function), and 

c : used for input columns (shrinkage fault case) 

that 

c = 0 

c = 1 

for the complemented bit line, and 

for the uncomplemented bit line. 

fault 

such 



___ ~=~~:~~~;~tQ~~~S_7~'~O _____ ~A 5X 
_products 75 

x X X 0 X X X 
X X X X lOX 
X X X X 0 1 0 
XXXXIOI 
1 X X X 0 1 0 
01XXX01 
X 0 0 X X X 1 
XOIIXXO 
X 100 X X 0 
OXIOXXX 
lXllXXX 
OlOlXXX 
lXOOXXX 
100 X X X X 
X 0 0 1 X X X 
XIXOXXX 
Xl1XXXX 
X X 0 1 X X X 
XXI0XXX 
XXXXlll 
lXXXllX 
OOXXIXO 
1 X X X 0 1 1 
XIXXOll 
l1XXXOI 
lXlXXOl 
111XI0X 
llXllOX 
OOXXXIO 
o XXXOO 1 
X 0 0 X 0 0 1 
III X 0 X 0 
1 1 X lOX 0 
OXXXI00 
X 0 X X 100 
XXOOIOO 
Xl110l0 
OOXXXlO 
100XXOX 
OXllXOI 
0111XOX 
1 X 0 0 X 0 0 
1 1 1 X X 1 X 
1 1 X 1 X 1 X 

o 0 X 0 X X 1 
X 1 1 I X X 
1 1 1 X X X 
11X1XXI 
1 0 1 X X X 0 
Xliii 1 X 

OXXOlXO 
OXOXIXO 
X XII 0 1 1 
OOXOO X 
000 X 0 X 
OXXOXIO 
OXOXXIO 
OOXOOXI 
000 X 0 X 
1 X X XII 
X 1 X XII 1 
o 0 1 1 I 1 X 
OXXOlXO 
OXOX1XO 
I 1 X X 1 X 1 
OXOXXIO 
10XXXOO 
OOXOXIX 
OOOXXIX 
1 1 X X X 1 
1 X 1 X X 1 

01 XOXXO 
OIOXXXO 

--------1-
1--------­
-1--------
-1--------
--1-------
---1------
----1-----
----1-----
----1-----
-----1----
-----1----
-----1----
-----1----
-----1----
------1---
------1---
------1---
-------1--
-------1--
--------,.-1 
---------1 
1---------
1---------
1--------­
-1--------
-1--------
-1--------
-1--------
-1--------
--1-------
--1-------
--1-------
--1-------
--1-------
--1-------
--1-------
--1-------
---1------
---1------
---1------
---1------
---1------
---1------
---1------
----1-----
----1-----
----1-----
----1-----
----1-----
---------1 
1---------

1---------
1---------
-1--------
-1--------
-.1--------
-1--------
--1-------
--1-------
--1-------
--1-------
--1----
--1-------
--1-------

--1-------
---1------

---1------
---1------
---1------

---1---
---1------
----1-----
----1-----

App_.fault locacion 
( r(Y.I , output) 
c:::======:::.====== 

( 60 
( 59 
( 73 
( 69 
( 66 
( 62 
( 57 
( 55 
( 53 
( 50 
( 44 

41 
35 
18 
15 
12 

, 9 ) 
9 ) 
8 ) 

, 8 ) 
8 ) 
8 ) 
8 ) 
8 ) 
8 ) 
8 ) 
8 ) 
8 ) ( 

( 
( 
( 
( 
( 
( 
( 
( 
( 
( 
( 
( 
( 
( 
( 
( 
( 
( 
( 

( 
( 
( 
( 
( 
( 
( 
( 
( 

( 

( 
( 

( 

( 
( 

( 
( 
( 

( 

( 
( 

( 
( 
( 

( 
( 

,8) 
I 8 ) 

8 ) 
, 8 ) 

9 I 8 ) 
8 I 8 ) 
14 , 7 ) 
11 , 7 ) 
9 , 7 ) 
73 • 6 ) 
49 6) 
46 6) 
45 , 6 ) 
42 6) 
40 6) 
36 6) 
31 , 6 ) 
26 , 6 ) 
8 • 6 ) 
41 5) 
38 , 5 ) 
58 4) 
57 , 4 ) 
30 4) 
56 3) 
55 3) 
54 3) 
53 3) 
28 3) 
51 2) 
50 2) 
21 , 2 ) 
67 1) 
66., 1 ) 
37 1) 
3 &, ) 
4 , 1 ) 

63 , 0 ) 
62 , 0 ) 
3 S , 0 ) 
34 ,0 ) 
33 , 0 ) 
27 ' 0 ) 
26 ' 0 ) 
3 , 0 ) 

. , 
= 57. a s rna s I~ = 1 1 2 3 5 App f3ults 

r 1 s,~ 

Sh_faulC locacion 

( rev , input I bit line ) 
~~====c==~==~=a~_~=Q=~_a~ 

( 49 I 6 , 0) (33 3 1) 
( 49 • 0 0) (33, 2 1) 
( 20 , 6 J 0) (33 1 1) 
( 19" 0 , 0) (32 5 0) 
(16 3 1) (32 I 2 0) 
( 15 , 2 , 0) (31, 5 , 0 ) 
(13 3 I 1) (31, 3 (l) 
(12 1 1) (3 a 0 1) 
( 74 , 3 , 1) (56, 4 , 1 ) 
(73 2 1) (56 I J ) 
( 48 I 3 0) (56 1, 1 ) 
( 47 2 0) (55. 4 1) 
( 46 3 0) (55 I 2 1) 
( 45 0 0) (55, 1 . 1 ) 
( 44 , 2 , 1) (54, 6 , 1 ) 
( 8 , 0 • 1) (54 I 3 1) 
( 7 , 0 I 0 ) (53 6 1) 
(72 1 0) (53, 2 1) 
( 71 , 3 0) (28 4 1) 
( 71 ,2 0) (28 3 1) 
(70 6 1) (28 2 1) 
(70 3 1) (27, 6 0) 
( 69 ,6 1) (27 2 I 0 ) 
(69 2 1) (26 6) 0 ) 

1 ' h. ~ , 

(68 2 1) (26 3 0) 
( 67 ,3 1) (25 4 0) 
( 67 1 1) (25, 1 0) 
(66 2, 1) (24 4 0) 
(66 1, 1) (24 2 0) 
( 43 6 0) (52) 1 • 0 ) 
(43 2 0) (52. 0 0) 
(42 6 0) (S1) 5 1) 
(42 3 0) (51) 3 I ) 

(41 1. 1) (51, 1 ) 
(40 6 0) (50 5 1) 
( 39 I 1 0) (50, 2 1) 
( 38 6 ) (50, 1) 
( 37 • 3 ) (23 0 0) 
( 37 I 2 1) (22. 1 (l) 

(65 5 I 0) (21 5 1) 
(65,10) (21,31.) 
(64 5 0) (21 2, 1 ) 
( 64 I 2 , 0 ) 
( 63 , 5 ) 
( 63 , 3 I 1 ) 
( 62 , 5 1) 
(62 2, 1 ) 
(60 0 0) 
(59 Z 0) 
( 59 I 1 0) 
( 58 I S 1) 
(58 3 1) 
( 57 , S I 1 ) 
( 57 J 2 1) 
( 36 I 0 0) 
( 35 , 1) 
( 3S , 0 1) 
( 31. , 0 , 1 ) 

= 1 I:' 

, = I q 3) 
1 Q I, (T 0 ( .3 1 r.13 S "~ "'" rr:2sL. ~ "'-,,() 0 s g~_~l.1~'2~S~~~~"~' ~S~3;;.;~ ____ ;;;:; ••• _=t=,.=)\ S h f au 1 r s = • '\. .':' - , 2 h °th; I!i • _ 



.1npuC5 5 " 

.oucpucs i/ 

., .... Gt9M 
PIA B~ 

o 0 0 0 0 ---------------------------1 
X 0 0 X 0 -------------------1-----~--
a x 1 0 0 ---1----------1----1--------
1 X 0 X 0 ---1---------------1--------
1 X 0_1 X ---1--1------------1--------
o X 0 a 1 ---1---------------1---:----
x x 0 1 a ---1---1----------1--------
x X 0 X X ---------1--1-~-1-----------
o X x x 0 -----1---1--1-----------1---
o 0 x 0 X ------------1---------------
X lOX X -1---1------------------1---
X lOX 0 --------1-------------------
o X 0 X -----1----------------------
x x 0 X 
1 X a x x 
o x x 0 x 
x x 0 X 1 
X X 0 0 x 
o 0 o 1 X 
0 0 1 X 0 
1 0 0 1 0 
0 1 0 1 0 
0 1 X X 0 
0 0 1 1 0 
1 0 o 1 X 
0 1 X 0 X 
0 X 0 1 0 
0 000 1 
1 X 000 
0 1 0 0 
0 1 0 0 0 
0 o 1 0 0 

x 0 x 
0 1 X 

X 1 0 1 
0 1 1 X 0 
X 0 o 0 0 
0 X 1 0 
0 0 x 0 0 

0 x X 
1 X 0 1 
X [ 0 0 
x 0 0 1 1 
0 X I X 0 

0 0 0 0 
1 0 X 
0 0 0 x 

0 1 0 0 x 
0 0 0 X 1 
0 0 1 0 X 
X 0 0 0 1 
X 1 0 X 
0 o 0 0 
x x 0 1 
1 0 0 
1 X 0 1 0 
0 x x 0 0 
0 0 x x 0 
0 0 0 x 0 

0 x 0 0 0 
1 X 0 0 
0 x 0 
I 1 0 1 
0 X 0 1 

0 0 0 
Q Q C' 

1 1 o V 1 

0 0 0 

0 [ 1 0 

0 0 0 1 

" 1 () 1 

0 0 0 0 0 

0 0 1 0 

1 0 1 0 

0 1 0 0 

1 0 0 0 

0 0 1 

I I 0 [ I 
0 0 1 0 0 

1 0 0 0 0 

0 0 0 0 I 

0 0 0 

0 0 0 1 0 

-----1----------------------
-----1--------------------1-
----------------1-------1---
------------------------1-1-
------------------------1---
---------------1------------
-----------------------1----
-----------------------1----
-----------------------1----
-1--------------1-----------
----1-----------------------
----1-----------------------
-1-------1------------------
--1--------------1----------
--1-------------------------
--1-------------------------
---------------------1------
----------1--1--------------
--------1----1------------1-
------1-1----1------1-------
-------------1--------------
------1---------------------
1-----1---------------------
-----------1----------------
1-----1--------1----1-1----­
-----------1----------------
------[---------------------
-----------------1-------1--
1------------------------1-­
-----------1-------------1--
-------1-----------------1--
-----------------1-------1--
-----------------1----------
------------------[---------
---------------1-1----------
----1------------1-----1----

------------------1---------
--------1---------1---------
--------------------------1-
----------1-------1---------

--------------------1-------
1--------------------------­
----1--1--------------------
-------1--------------------
-------1--------------------
-----------1----------1-----
--------------------1-'-----
1---------------------,----­
---------------,------1-----
--------------1--------1----
,-------------------[-1----­
--------------1-------------
1- ... , - -- ..................... _ ....... ................... ... 

--1(---(--11------1 1 --------

---1------1---1---- 1- 1---- 1-
--[[------11--1---11------ 1-
--111-111-1--111-1-1-1-1-11-
--11-111-11-111-111-1- 1- 11 -
1-1-1-1-1----111-1---1-1-1--
--1----------- 1----- 1-------
--1-------- 1-- 1--- 1---------

-----------1 ------1-------1-

(;:!~;~i!!!;!!,~;~;~:;;;:;:~ 
1---------- 1--1--- 1- 1-------

I-------------I-~~-~~-------

0 0 0 0 
a a a 

1---------- 1-- 1- I 1 
-------1--- 1-- 1---1--1-

__ ...ll.....L..U.~~~~ 

" > I' ..... ' 



( 76 , 25 ) ( 44 
~20 

, 24 ) ( 18 , 22 ) ( 73 . 27 ) ( 70 , 25 ) ( 43 24 ) 
( 86 26 ) ( 69 25 ) ( 42 

( o ~ 22 ) 
, 24 ) ( 76 . 21 ) ( 83 26 ) ( 68 , 25 ) ( 41 24 ) ( 63 , 21 ) ( 82 26 ) ( 65 25 ) ( 40 24 ) ( 61 21 ) ( 81 26 ) ( 63 25 ) ( 39 24 ) ( 59 21 ) ( 80 26 ) ( 62 25 ) ( 38 24 ) ( 47 21 ) ( 79 26 ) ( 49 25 ) ( 37 24 ) ( 30 21 ) ( 78 26 ) ( 45 25 ) ( 36 24 ) ( 25 21 ) ( 77 , 26 ) ( 38 , 25 ) ( 35 24 ) ( 23 s 2~. ) 

( 75 26 ) ( 37 25 ) ( 34 24 ) ( o : 21 ) 
( 74 26 ) ( 36 25 ) ( 33 , 24 ) ( 85 20 ) 
( 68 26 ) ( 35 25 ) ( 32 24 ) ( 79 20 ) 
( 67 26 ) ( 31 25 ) ( 31 24 ) ( 78 20 ) 
( 66 26 ) ( 29 25 ) ( 30 24 ) ( 73 20 ) 
( 65 26 ) ( 23 , 25 ) ( 29 24 ) ( 72 20 ) 
( 64 26 ) ( 19 25 ) ( 28 , 24 ) ( 71 20 ) 
( 63 26 ) ( 12 , 25 ) ( 27 , 24 ) ( 70 , 20 ) 
( 62 , 26 ) ( 2 25 ) ( 26 24 ) ( 69 , 20 ) 
( 61 26 ) ( 0 25 ) ( 25 24 ) ( 68 , 20 ) 
( 60 , 26 ) ( 86 24 ) ( 23 , 24 ) ( 67 , 20 ) 
( 55 26 ) ( 85 , 24 ) ( 22 24 ) ( 66 , 20 ) 
( 54 26 ) ( 84 24 ) ( 21 24 ) ( 65 20 ) 
( 53 26 ) ( 83 , 24 ) ( 19 24 ) ( fl4 , 20 ) 
( 50 26 ) ( 82 24) ( 18 . 24 ) ( 62 , 20 ) 
( 49 26 ) ( 81 24 ) ( 12 24 ) ( 61 , 20 ) 
( 48 26 ) ( 80 24 ) ( 11 24 ) ( 60 20 ) 
( 46 26 ) ( 79 24 ) ( 9 : 24 ) ( 58 , 20 ) 
( 45 26 ) ( 78 24 ) ( 5 : 24 ) ( 57 , 20 ) 
( 44 26 ) ( 77 24 ) ( 2 , 24 ) ( 52 20 ) 
( 43 26 ) ( 76 , 24 ) ( 0 24 ) ( SO 20 ) 
( 42 26 ) ( 75 24 ) ( 83 23 ) ( 49 , 20 ) 
( 41 26 ) ( 73 24 ) ( 82 23 ) ( 48 20 ) 

( 40 26 ) ( 72 24 ) ( eo 23 ) ( 46 , 20 ) 

( 39 26 ) ( 71 24 ) ( 79 23 ) ( 45 20 ) 

( 37 26 ) ( 70 24 ) ( 74 23 ) ( 44 20 ) 

( 35 26 ) ( 69 , 24 ) ( 69 23 ) ( 42 20 ) 

( 34 26 ) ( 68 24 ) ( 65 23 ) ( 40 20 ) 

( 33 26 ) ( 67 24 ) ( 63 23 ) ( 38 20 ) 

( 32 26 ) ( 66 24 ) (.49 23 ) ( 36 . 20 ) 

( 29 26 ) ( 65 24 ) ( 38 23 ) ( 34 20 ) 

( 28 26 ) ( 64 24 ) ( 3 1 23 ) ( 31 20 ) 

( 27 ·26 ) ( 63 24 ) ( 27 23 ) ( 30 20 ) 

( 24 26 ) ( 62 24 ) ( 23 . 23 ) ( 28 , 20 ) 

9 . 23 ) ( 27 20 ) 
( 23 26 ) ( 61 , 24 ) ( 

o . 23 ) ( 26 I 20 ) 
( 21 26 ) ( 60 24 ) ( 

( 85 22 ) ( 24 20 ) 
( 20 26 ) ( 59 24 ) 

( 84 22 ) ( 23 20 ) 
( 19 26 ) ( 58 24 ) 

( 73 22 ) ( 21 20 ) 
( 12 26 ) ( 57 24 ) 

( 72 22 ) ( 20 20 ) 
( 5 26 ) ( 56 24 ) 

( 71 22 ) ( 19 20 ) 
( 4 26 ) ( 54 . 24 ) 

) ( 18 20 ) ( 70 22 
( 3 26 ) ( 53 24 ) 

) ( 9 , 20 ) 
24 ) ( 69 . 22 

( 2 26 ) ( 52 
) ( 1 20 ) 

24 ) ( 68 22 
( 86 25 ) ( 51 

( 67 22 ) ( o I 
20 ) 

( 81 25 ) ( 50 24 ) 
) ( 86 19 ) 

( 49 24 ) ( 66 , 22 
( 80 25 ) 

( 65 , 22 ) ( 84 19 ) 
( 79 25 ) ( 48 24 ) 

) ( 83 19 ) 
24 ) ( 52 22 

( 78 25 ) ( 47 
22 ) ( 82 : 9 ) 

( 46 24 ) ( 30 
) 

( 23 , 22 ) ( 31 1 <J 
( 45 , 24 ) 

COr.1"INUE fAUL: D/\1 
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19 ) ; '-) , ( 80 ( 67 18 ) ( 79 16 ) 
L ~ • 

( 11 J 16 ) ( 79 , 19 ) ( 64 , 18 ) ( 78 16 ) ( 10 . 16 ) ( 78 19 ) ( 63 18 ) ( 77 16 ) ( 9 16 ) ( 77 I 19 ) . ( 62 18 ) ( 76 16 ) ( 6 16 ) ( 76 , 19 ) ( 60 18 ) ( 75 16 ) ( 5 16 ) ( 75 , 19 ) ( 54 , 18 ) ( 74 16 ) ( 4 16 ) ( 74 , 19 ) ( 51 18 ) ( 73 16 ) ( 3 16 ) ( 73 , 19 ) ( 47 18 ) ( 72 16 ) ( 2 16 ) ( 64 , 19 ) ( 45 , 18 ) ( 71 16 ) ( 1 16 ) ( 63 , 19 ) ( 44 18 ) ( 70 16 ) ( 0 16 ) ( 62 1 19 ) ( 41 18 ) ( 68 16 ) ( 86 15 ) ( 61 ) 19 ) ( 39 18 ) ( 67 , 16 ) ( 85 , 15 ) ( 60 , 19 ) ( 35 > 18 ) ( 66 , 16 ) ( 84 , 15 ) 
( 58 19 ) ( 34 18 ) ( 65 , 16 ) ( 70 15 ) 
( 57 19 ) ( 33 18 ) ( 64 16 ) ( 69 15 ) 
( 55 , 19 ) ( 31 18 ) ( 63 16 ) ( 66 , 15 ) 
( 54 , 19 ) ( 30 18 ) ( 62 , 16 ) ( 65 15 ) 
( 53 19 ) ( 29 18 ) ( 61 16 ) ( 63 15 ) 
( 52 19 ) ( 28 18 ) ( 60 16 ) ( 59 15 ) 
( 51 19 ) ( 27 18 ) ( 59 , 16 ) ( 58 15 ) 
( 50 ) 19 ) ( 26 18 ) ( 58 , 16 ) ( 52 15 ) 
( 49 , 19 ) ( 25 18 ) ( 56 , 16 ) ( 30 15 ) 
( 48 • 19 ) ( 22 18 ) ( 55 , 16 ) ( 23 15 ) 
( 46 , 19 ) ( 21 18 ) ( 54 16 ) ( o , 15 ) 
( 45 , 19 ) ( 12 18 ) ( 53 16 ) ( 80 14 ) 
( 44 19 ) ( 11 18 ) ( 52 16 ) ( 79 , 14 ) 
( 43 19 ) ( 10 , 18 ) ( 51 16 ) ( 77 14 ) 
( 42 19 ) ( S , 18 ) ( 50 , 16 ) ( 76 14 ) 
( 41 19 ) ( 2 , 18 ) ( 49 16 ) ( 63 14 ) 
( 40 19 ) ( 86 17 ) ( 48 16 ) ( 61 14 ) 
( 39 19 ) ( 85 17 ) ( 47 16 ) ( 59 14 ) , 
( 38 , 19 ) ( 84 , 1 7 ) ( 46 16 ) ( 58 14 ) , 
( 37 19 ) ( 33 17 ) ( 45 16 ) ( 57 14 ) 
( 36 19 ) ( 82 1 7 ) ( 44 16 ) ( 56 14 ) 
( 35 19 ) ( 81 17 ) ( 42 16 ) ( 55 , 14 ) 
( 34 19 ) ( 79 17 ) ( 41 16 ) ( 54 , 14 ) 
( 33 19 ) ( 78 1 7 ) ( 40 16 ) ( 52 14 ) 

( 32 19 ) ( 68 17 ) ( 39 , 16 ) ( 51 14 ) 

( 31 19 ) ( 65 17 ) ( 38 16 ) . ( 50 , 14 ) 

( 29 19 ) ( 63 , 17 ) ( 36 , 16 ) ( 49 14 ) 

( 28 , 19 ) ( 62 17 ) ( 35 16 ) ( 48 , 14 ) 

( 27 19 ) ( 59 17 ) ( 34 16 ) ( 47 14 ) 

( 26 19 ) ( 58 17 ) ( 33 , 1 6 ) ( 43 , 14 ) 

( 24 19 ) ( 52 17 ) ( 32 16 ) ( 38 14 ) 

( 23 19 ) ( 42 1 7 ) ( 3 1 16 ) ( 37 14 ) 

41 17 ) ( 30 16 ) ( 35 14 ) ( 21 19 ) ( 
36 , 1 7 ) ( 29 16 ) ( 34 14 ) ( 20 19 ) ( 
30 1 7 ) ( 28 16 ) ( 33 . 14 ) ( 19 19 ) ( 

) ( 27 1 7 ) ( 27 16 ) ( 3 1 14 ) ( 13 19 
( 30 14 ) ( 16 19 ) ( 21 1 7 ) ( 26 16 ) 

1 7 ) ( 25 16 ) ( 29 14 ) ( 14 19 ) ( 18 
( 2. 7 14 ) ( 13 1"9 ) ( 5 . 17 ) ( 24 1 6 ) 
( 26 14 ) ( 1 2 19 ) ( o ; 1 7 ) ( 21 16 ) 
( 25 1 4 ) 

( 9 , 19 ) ( 86 16) ( 20 1 6 ) 
( 23 14 ) 

( o , 19) ( 35 , 16) ( 18 1 6 ) 
( ") '1 1 4 ) 

18) ( 84 16 ) ( 1 7 16 ) ( 84 
( 2 1 14 ) 

( 83 16 ) ( 16 16 ) ( 82 18 ) 
( 20 1 .~ ) 

( 32 16 ) ( 14 1 IJ ) ( 81 18 ) 
13 1 tJ ) ( 19 1 .'; ) 

) ( 81 1 6 ) ( 
) ( 80 18 

1 2 16 ) ( 13 1 :. 
( 7 1 18 ) ( 8U , 16 ) ( 

( 67 . 1 8 ) 

( 64 18 ) 

----.. I---''l~-r- T \·L~r.- F";lJL~ 8.\"::- :" .. \ __ v.' ....... , '--' . - -) 



I" .. 
~~ 

( 15 , 14 ) ( 49 12 ) ( 45 . 11 ) ( 53 , 9 ) 
( 12 , 14 ) ( 48 12 ) ( 44 , 11 ) ( 52 , 9 ) 
( 11 , 14 ) ( 47 12 ) ( 41 11 ) ( 51 , 9 ) 
( 9 t 14 ) ( 46 I 12 ) ( 40 11 ) ( 50 , 9 ) 
( 8 14 ) ( 45 , 12 ) ( 39 I 11 ) ( 48 . 9 ) 
( 6 • 14 ) ( 44 , 12 ) ( 35 , 11 ) ( 47 • 9 ) 
( 5 : 14 ) ( 43 , 12 ) ( 34 11 ) (46 9) 
( 0 , 14 ) ( 42 I 12 ) ( 33 , 11 ) ( 45 9 ) 
( 85 , 13 ) ( 41 12 ) ( -31 11 ) ( 44 9 ) 
( 80 , 13 ) ( 40 , 12 ) ( 30 I 11 ) ( 43 , 9 ) 
( 79 , 13 ) ( 39 , 12 ) ( 29 11 ) ( 42 , 9 ) 
( 78 , 13 ) ( 38 , 12 ) ( 28 , 11 ) ( 41 9 ) 
( 75 , 13 ) ( 37 12 ) ( 26 , 11 ) ( 40 , 9 ) 
( 68 , 13 ) ( 36 I 12 ) ( 25 11 ) ( 39 , 9 ) 
( 67 , 13 ) ( 35 , 12 ) ( 22 , 11 ) ( 38 , 9 ) 
( 63 , 13 ) ( 34 , 12 ) ( 21 11 ) ( 37 , 9 ) 
( 62 13 ) ( 33 ) 12 ) ( 18 , 11 ) ( 36 ) 9 ) 
( 60 ) 13 ) ( 32 12 ) ( 11 , 11 ) ( 35 , 9 ) 
( 59 , 13 ) ( 31, 12 ) ( 10 , 11 ) ( 34 , 9 ) 
( 54 13 ) ( 30 12 ) ( 2. 11 ) ( 33 , 9 ) 
( 49 , 13 ) ( 29 ) 12 ) ( o , 11 ) ( 32 , 9 ) 
( 45 13 ) ( 28 12 ) ( 85 , 10 ) ( 31 I 9 ) 
( 40 ) 13 ) ( 27 12 ) ( 84 • 10 ) ( 30 , 9 ) 
( 38 ) 13 ) ( 26 12 ) ( 63 , 10 ) ( 29 , 9 ) 

( o - 13 ) ( 24 12 ) ( 61 • 10 ) ( 28 , 9 ) 

( 86 12 ) ( 23 12 ) ( 60 , 10 ) ( 27 , 9 ) 

( 85 12 ) ( 22 12 ) ( 37 10 ) ( 26 , 9 ) 

( 84 12 ) ( 21 12 ) ( 23 , 10 ) ( 24 , 9 ) 

( 83 12 ) ( 20 12 ) ( 18 , 10 ) ( 23 I 9 ) 

( 82 12 ) ( 19 , 12 ) ( 86 , 9 ) ( 22 . 9 ) 

( 81 12 ) ( 18 , 12 ) ( 85 • 9 ) ( 21 9 ) 

( 80 , 12 ) ( 17 12 ) ( 84 , 9 ) ( 20 , 9 ) 

( 79 12 ) ( 16 12 ) ( 83 , 9 ) ( 19 9 ) 

( 78 12 ) ( 14 12 ) ( 82 , 9 ) ( 18 9 ) 

( 77 12 ) ( 13 12 ) ( 81 9 ) ( 17 9 ) 

( 76 12 ) ( 1 1 12 ) ( 80 , 9 ) ( 16 9 ) 

( 7S 12 ) ( 10 1 12 ) ( 79 , 9 ) ( 14 , 9 ) 

( 74 12 ) ( 6 12 ) ( 78 9 ) ( 13 : 9 ) 

( 73 12 ) ( 5 12 ) ( 77 9 ) ( 1 1 , 9 ) 

( 7 1 12 ) ( 4 12 ) ( 76 9 ) ( 10 9 ) 

( 70 12 ) ( 3 12 ) ( 75 , 9 ) ( 6 . 9 ) 

( 69 ) ( 2 12 ) ( 74 9 ) ( 5 9 ) 
12 

( 68 12 ) ( 1 12 ) ( 73 9 ) ( 4 9 ) 

( 67 12 ) ( 0 12 ) ( 72 9 ) ( 3 9 ) 

( 66 12 ) ( 84 1 1 ) ( 70 9 ) ( 2 9 ) 

( ) ( 81 1 1 ) ( 69 9 ) ( 1 9 ) 
65 12 ( 0 9 ) 

( 80 , 1 1 ) ( 68 9 ) 
( 64 12 ) ( 85 8 ) 

( 78 , 1 1 ) ( 67 9 ) 
( 62 12 ) ( 84 , 8 ) 

( 73 1 1 ) ( 66 9 ) 
( 61 12 ) ( 83 8 ) 
( 60 12 ) ( 65 11 ) ( 65 9 ) 

( 64 • 1 1 ) ( 64 9 ) ( 82 8 ) 
( 59 12 ) ( 80 8 ) 

( 62 1 1 ) ( 62 9 ) 
( 58 12 ) ( 61 9 ) ( 79 8 ) 

( 57 12 ) ( 61 1 1 ) 
( 60 9 ) ( 7.'3 8 ) 

( 56 1 2 ) ( 59 1 1 ) ( 77 8 ) 
( 56 1 1 ) ( 59 9 ) 

( 5S 12 ) ( 7 S 8 ) 

) ( 54 1 1 ) ( 58 9 ) 
( 54 12 I 7:.- 8 ) ( 57 9 ) ~ 

( S3 12 ) ( S3 1 1 ) ( 68 8 ) 
( 52 1 1 ) ( 56 9 ) 

( 52 12 ) ( 5S 9 ) ( 67 3 ) 

( 51 12 ) ( 5 1 1 1 ) 
) ( 6:'- 8 ) 

( 47 1 1 ) ( S4 , 9 
( 50 12 ) 

COt'.'T I ::UE L\Li LT OAT ~ --) 



123 
( 63 , 8 ) ( 18 , 7 ) ( 58 5 ) ( 82 3 ) 
( 62 8 ) ( 15 , 7 ) ( 57 5 ) ( 81 

( 55 ? ) 3 ) J -

( 60 8 ) ( 12 , 7 ) ( 56 5 ) 
( 54 ') ) ( 80 3 ) 

, ... 

( 59 , 8 ) ( 9 7 ) ( 55 5 ) ( 79 
( 52 , 2 ) 

3 ) 
( 58 , 8 ) ( 5 7 ) ( 54 ( 50 ') ) 5 ) ( 78 3 ) -

) ( 2 7 ) ( :'9 ? ) ( 55 , 8 ( 53 5 ) ( 77 3 ) 
7 ) ( -'<6 ') ) ( 54 8 ) ( 1 ( 52 5 ) ( 76 3 ) 

( 52 8 ) ( 0 7 ) ( -'+5 ') ) ( 51 5 ) ( 75 3 ) ( 44 " ) ( 49 8 ) ( 79 6 ) ( 49 5 ) ( 74 3 ) ( 40 2 ) ( 45 8 ) ( 78 6 ) ( 47 5 ) ( 64 3 ) ( 39 ') ) ( 40 8 ) ( 77 6 ) ( 46 5 ) -( 63 3 ) ( 38 ') ) ( 39 8 ) ( 76 6 ) ( 45 , 5 ) , ( 62 3 ) ( 36 ? ) ( 38- , 8 ) ( 75 6 ) ( 44 ) -, 5 ( 61 3 ) ( 33 2 ) 
( 33 8 ) ( 74 6 ) ( 43 5 ) ( 60 3 ) ( 32 2 ) 
( 30 8 ) ( 70 6 ) ( 42 5 ) ( 55 3 ) ( 31 2 ) 
( 27 8 ) ( 69 , 6 ) ( 41 5 ) ( 54 3 ) ( 24 2 ) 
( 26 8 ) ( 68 6 ) ( 40 , 5 ) ( 53 3 ) ( 21 2 ) 
( 24 8 ) ( 67 6 ) ( 39 5 ) ( 52 3 ) ( 20 ') ) -( 21 8 ) ( 66 6 ) ( 38 5 ) ( 51 3 ) ( 14 2 ) 
( 20 8 ) ( 64 6 ) ( 37 , 5 ) ( 50 , 3 ) ( 9 2 ) 
( 9 , 8 ) ( 63 6 ) ( 36 5 ) ( 49 , 3 ) ( 6 2 ) 
( 4 ) 8 ) ( 62 6 ) ( 35 5 ) ( 48 3 ) ( 4 2 ) 
( 0 , 8 ) ( 60 6 ) ( 34 , 5 ) ( 46 3 ) ( 3 2 ) 
( 85 7 ) ( 55 ) 6 ) ( 33 5 ) ( 45 3 ) ( 1 2 ) 
( 84 7 ) ( 54 6 ) ( 32 5 ) ( 44 3 ) ( 0 2 ) 
( 80 7 ) ( 45 6 ) ( 31 5 ) ( 43 3 ) ( 36 1 ) 
( 76 7 ) ( 40 6 ) ( 30 5 ) ( 42 3 ) ( 85 1 ) 
( 75 7 ) ( 33 6 ) ( 29 , 5 ) ( 41 3 ) ( 83 1 ) 
( 74 7 ) ( 29 , 6 ) ( 28 5 ) ( 40 3 ) ( 79 1 ) 
( 73 7 ) ( 24 6 ) ( 26 5 ) ( 39 3 ) ( 77 1 ) 
( 70 7 ) ( 23 6 ) ( 25 , 5 ) ( 37 , 3 ) ( 76 1 ) 
( 69 7 ) ( 20 , 6 ) ( 24 , 5 ) ( 35 3 ) ( 75 1 ) 
( 63 7 ) ( o , 6 ) ( 23 5 ) ( 34 , 3 ) ( 72 1 ) 
( 61 7 ) ( 86 , 5 ) ( 22 5 ) ( 33 3 ) ( 70 1 ) 
( 60 7 ) ( 85 , 5 ) ( 21 , 5 ) ( 32 I 3 ) ( 68 , ) 

( 59 7 ) ( 84 5 ) ( 20 , 5 ) ( 31, 3 ) ( 66 ) 

( 58 7 ) ( 83 , 5 ) ( 19 , 5 ) ( 29 , 3 ) ( 64 ) 

( 54 7 ) ( 81 5 ) ( 18 , 5 ) ( 28 3 ) ( 62 ) 

( 52 7 ) ( 80 5 ) ( 1 1 I 5 ) ( 27 , 3 ) ( 54 , 1 ) 

( 50 7 ) ( 79 5 ) ( 6 , 5 ) ( 26 3 ) ( 5 1 1 ) 

( 49 7 ) ( 78 5 ) ( 4 5 ) ( 24 3 ) ( 47 ) 

( 48 7 ) ( 77 5 ) ( 3 , 5 ) ( 23 , 3 ) ( 45 ) 

( 47 7 ) ( 76 5 ) ( 2 , 5 ) ( 21 , 3 ) ( .4 1 1 ) 

( 46 7 ) ( 75 5 ) ( 1 5 ) ( 20 , 3 ) ( 39 , 1 ) 

( 44 7 ) ( 74 5 ) ( o , 5 ) ( 19 , 3 ) ( 35 ) 

( 42 7 ) ( 73 5 ) ( 82 , 4 ) ( 18 , 3 ) ( 34 ) 

( 4 1 7 ) ( 72 5 ) ( 78 4 ) ( 16 3 ) ( 3J , ) 

( 38 7 ) ( 71 5 ) ( 75 , 4 ) ( 14 3 ) ( 30 , ) 

( 37 7 ) ( 70 5 ) ( 74 4 ) ( 1 3 ] ) ( 29 , ) 

( 36 7 ) ( 69 5 ) ( 69 , 4 ) ( 12 , 3 ) ( 21 1 ) 

( 7 ) ( 68 5 ) ( 65 4 ) ( 84 2 ) ( 1 1 1 ) 
35 ( 83 ') ) 

( 63 4 ) ~. 0 ) 
( 31 7 ) ( 67 5 ) f.Jr) 

5 
, ( 54 4 ) ( 82 2 ) 76 o ) 

( 30 7 ) ( 66 / 

5 ) ( 42 4 ) ( 81 2 ) ( ~ 5 I) ) 
( 29 7 ) ( 65 ( 77 2 ) IJ ) ( 27 4 ) ( ~ ) 

( 27 7 ) ( 64 5 ) 
I _ 

( 
, , ') ) ~ , 0 ) 

5 ) ( 20 , 4 ) 0-' , ( I , 

( 25 7 ) ( 63 
( 63 ') ) 7 I) ,) ) 

( 24 7 ) ( 62 , 5 ) ( o , 4 ) 
( 62 ') ) 6.1 • () ) 

5 ) ( 86 3 ) -
( 23 7 ) ( 6 1 

( 60 ') ) f_' \.~ o ) 
( 20 7 ) ( 60 5 ) ( 34 3 ) 

( 58 
., ) ( ,~~ 1.1 ) 

5 ) ( 83 3 ) - . 
( 19 7 ) ( 59 , 

CO:;:- 1~;US F,\L' ~~:~ D;\:- ... - --' 



---_.....--------/ 
(64 0) 
(62 0) 
( 61 , 0 ) 
( 59 , 0 ) 
(58 0) 
( 53 , 0 ) 
( 52 , 0 ) 
(51 0) 
(47 0) 
( 46 ) 0 ) 
( 45 " 0 ) 
(44 0) 
(42 0) 
( 40 , 0 ) 
( 39 , 0 ) 
( 36 , 0 ) 
( 34 , 0 ) 
(33 0) 
(32 0) 
(30 0) 
( 29 , 0 ) 
(28 0) 
(26 0) 
(25 0) 
(23 0) 
(22 0) 
(21 0) 
( 18 , 0 ) 
(11 0) 
( 10 , 0 ) 
( 0 , 0 ) 

= 1048 

a s mask = 220 

ag s risk = 22 

Gr fault location 
(row input) 
=============== 

(S4 4) 
(S4 3) 
(54 0) 
(65 1) 
(77 4) 
( 77 1) 
(77 0) 
( 78 3) 
( 79 4) 
(79 3) 
(81 4) 
(81 0) 
(83 4) 
(83 3) 
(83 2) 
(83 1) 
( 84 . 4 ) 
(84 3) 
(84 2) 
(84 1) 
(85 4) 
(85 2) 
(27 4) 
(27 2) 
(27 0) 
(28 4) 
(28 3) 
(71 1) 
( 74 0) 
( 75 , 4 ) 
(75 3) 
( 7 SO) 
(80 4) 
(80 2) 
(24) 
(23) 
(34) 
(S 3) 
(52) 
(5 0) 
(56 4) 
(82 4) 
(82 3) 
(82 2) 
(82 0) 
(86 4) 
(86 3) 
(86 2) 
(31 4) 
( 36 1) 
(38 1) 
(76 4) 
(76 3) 

(76 1) 
( 64 3) 
(64 0) 
(44 0) 
(46 1) 
(49 1) 
(1 4) 
( 29 4) 

Sh.fault location 
(row input bit line) 
==================­
( 35 3 
(22 2 
(22 3 
(25 2 
( 25 4 
(3 3 
(24 4 
(12 4 
(13 0 
( I} . 1 
(13 4 
(34 0 
(39 3 
(39 4 
(56 1 
(56 2 
(57 2 
(57 3 
(11 3 
(50 0 
(36 0 
(38 2 
(58 3 
(9 2 
( 9 _ 4 
(33 4 

4 
2 
3 

o ) 
1 ) 
1 ) 
1 ) 
1 ) 

o ) 
1 ) 
1 ) 
o ) 
o ) 
1 ) 
o ) 
o ) 
o ) 
1 ) 
o ) 
o ) 
1 ) 
o ) 
o ) 
1 ) 
1 ) 
1 ) 

1 ) 
1 ) 
o ) 
o ) 
1 ) 
o ) 

( 18 
( 15 
( 45 
( 46 
( 1 
( 1 

40) 
o . 0 ) 
30) 

(53 0 
( 17 0 
( 17 1 
(17 4 
(51 0 
(51 4 

o ) 
1 ) 
o ) 
o ) 
o ) 
o ) 

-===::::::=== 

(29 2) 
Gr faults = 62 g_s_CJ3sk = 189 

1'1-
~ t 



o 
x 
o 
1 
1 
o 
X 
X 
o 
o 
x 
x 
o 
X 
1 
o 
X 
X 
o 
o 
1 
o 
o 
o 
1 
o 
o 
o 
1 
o 
o 
o 

1 
X 
o 
X 
o 
o 

x 
x 
o 

1 
o 
o 
o 
x 
x 
o 
x 

I 
o 
o 
o 
o 
I 
o 
I 
o 

0 
0 
X 
X 
X 
X 
X 
X 
X 
0 
1 
1 
X 
X 
X 
X 
X 
X 
0 
0 
0 
1 
1 
0 
0 
1 
X 
0 
X 
1 
1 
0 
X 
1 

1 
0 
X 
0 

X 
1 
0 
X 

0 
1 
0 
1 
0 
0 
0 

0 
X 

X 
X 
0 
0 
X 

X 
X 

I 
:: 
1 

0 
0 
1 
0 
0 
0 
0 
0 
X 
X 
0 
0 
I 
0 
0 
X 
0 
0 
0 
1 
0 
0 
X 
1 
0 
X 
0 
0 
0 
1 
0 
1 
0 
0 
0 
1 
0 

X 
0 
0 
0 
0 
1 

0 
0 
0 
0 
0 
[ 

0 
0 
0 
0 
0 
0 
X 
X 

0 
0 
0 
0 
() 

I 

0 

0 0 
X 0 
0 0 
X 0 
1 X 
0 1 
1 0 
X X 
X 0 
0 X 
X X 
X 0 
0 X 
1 X 
X X 
0 X 
X 
0 X 
1 X 
X 0 
1 0 
1 0 
X 0 
1 0 
1 X 
0 X 
1 0 
0 1 
0 0 
0 0 
o· 0 
0 0 
X 1 
1 X 

1 
X 0 
0 0 
1 0 
0 0 
X X 
1 
0 

.1 

X () 

0 0 
X 

0 X 

0 X 
X [ 

0 X 

0 [ 

X 

0 
[ 

0 
1 0 
0 0 
X 0 
X 0 
0 0 
0 1 
[ 1 

1 1 
0 1 

0 () 

PLA B\.11 

------------------ ---------1 ------------------ -1--------
---1----------1----1--------
---1---------------1--------
---1--1------------1--------
---1---------------1--------
---1----1----------1--------
---------1--1---1-----------
-----1---1--1-----------1---
------------1---------------
-1---1---~--------------1---

--------1-------------------
-----1----------------------
-----1----------------------
-----1--------------------1-
----------------1-------1---

----------------------1-1-
------------------------1---
---------------1------------
-----------------------1----
----------------------- 1 - - - -
-----------------------1----
-1--------------1-----------
----l----~--------------~---

----1-----------------------
-1-------1-----------------~ 

--1--------------1----------
--1-------------------------
--1-------------------------
---------------------1------
----------1--1--------------
--------1----1------------1-
------1-1----1 ------[-------
-------------1--------------
------1---------------------
1-----1--------------------­
- - - - - - - - - - - 1 - - - - - - - - - - - - - - - -

1 - - - - - 1 - - - - - - - - [ - - - - 1 - 1 - - - - -
-----------1----------------
------1---------------------
- - - - - - - - - - - - - - - - - 1 - - -- - - -1 --
1------------------------[-­
-----------[-------------[--
-------[-----------------1--
-----------------1-------1--
-----------------1----------
------------------1---------
- - - - - - - - - - - - - - - 1 - 1 - - - - - - - - - -
- - - - [ - - - - - - - - - - - - [ - - - - - [ - - - -
------------------1---------

--------1------- --1--- ------

--------------------------[-
----------1------- 1- --------

--------------------l-------
------1---------------------

---------------1--[--------- ______ _ 
-------1------------- ______ _ 
-------1-------------
-----------1---------- 1-----
_______________ -----1-1-----

1---------------------1----­
____ - - - - - - - - - - - 1 - - - - - - 1 - - - -­
______________ 1-------- 1 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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App tau1c lv~tion 
( raw , output) 
============= 

( 64 • 26 ) 
(62 26) 
(61 26) 
(60 26) 

( 55 • 26 ) 
( 54 , 26 ) 
(53 26) 
(50 26) 
(48 26) 
(46 26) 
(45 26) 
(44 26) 
(42 26) 
(41 26) 
(40 26) 
(39 26) 
(34 26) 
( 33 • 26 ) 
(32 26) 
(28 26) 
(27 26) 
(24 26) 
(21 26) 
(20 26) 
( 5 , 26 ) 
( 4 , 26 ) 
( 3 , 26 ) 
(62 25 J 
(45 25) 
( 37 , 25 ) 
(35 25) 
(31 25) 
( 29 , 25 ) 
(23 25) 
(19 25) 
(2 25) 
(64 24) 
(63 24) 
(62 24) 
(61 24) 
( 60 24) 
(59 24) 
(58 24) 
(57 24) 
(56 24) 
(54 24) 
(53 24) 
(52 24) 
(51 24) 
(50 24) 
(49 24) 
(48 24) 
( 47 24) 
(46 24) 
(45 24) 
(44 24) 
(43 24) 

(42 24) 
( 41 , 24 ) 
(40 24) 
(39 24) 
(38 24) 
( 37 • 24 ) 
(36 24) 
(35 24) 
(34 24) 
(33 24) 
(32 24) 
(31 24) 
(30 24) 
(29 24) 
( 28 , 24 ) 
(27 24) 
(26 24) 
(25 24) 
(23 24) 
(22 24) 
(21 24) 
(19 24) 
(18 24) 
(12 24) 
(11 24) 
( 9 , 24 ) 
( 5 , 24 ) 
( 2 , 24 ) 
( 0 , 24 ) 
(31 23) 
( 27 , 23 ) 
(23 23) 
( 52 , 22 ) 
(30 22) 
(23 22) 
( 18 , 22 ) 
( 0 • 22 ) 
( 62 20) 
(61 20) 
(60 20) 
(45 20) 
(42 20) 
(40 20) 
(34 20) 
(30 20) 
( 23 , 20 ) 
( 0 , 20 ) 
(64 19) 
(62 i9) 
(58 19) 
(55 19) 
(54 19) 
(52 19) 
(44 19) 
(40 19) 
(33 19) 
(36 19) 
( 33 . 19 ) 
(31 19) 
(29 19) 

(28 19) 
( 27 , 19 ) 
(26 19) 
(24 19) 
(21 19) 
( 20 , 19 ) 
( 0 , 19 ) 
(44 18) 
(31 18) 
(27 18) 
(62 17) 
(52 17) 
(42 17) 
(41 17) 
(30 17) 
(27 17) 
(21 17) 
( 18 • 17 ) 
(5,17) 
(64 16) 
(63 16) 
(62 16) 
(61 16) 
(60 16) 
(59 16) 
(58 16) 
(56 16) 
(55 16) 
(54 16) 
(53 16) 
(52 16) 
(51 16) 
( 50 , 16 ) 
(49 16) 
(48 16) 
(47 16) 
(46 16) 
(45 16) 
(44 16) 

(42 16) 
(41 16) 
(40 16) 
( 39 , 16 ) 
(38 16) 
(36 16) 
(35 16) 
(34 16) 
(33 16) 
(32 16) 
( 31 . 16 ) 
(30 16) 
( 29 . 16 ) 
(28 16) 
(27 16) 
(26 16) 
(25 16) 
(24 16) 
(21 16) 
(20 16) 
(113 L6) 

(17 16) 
( 16 , 16 ) 
(14 16) 
(13 16) 
(12 16) 
(11 16) 
( 10 , 16 ) 
(9 16) 
(6 16) 
(5 16) 
(4 16) 
(3 16) 
(2 16) 
(1 16) 
(0 16) 
(52 15) 
(30 15) 
(23 15) 
(31 14) 
(29 14) 
(62 13) 
(60 13) 
(54 13) 
(45 13) 
(40 13) 
(64 12) 
(62 12) 
(61 12) 
(60 12) 
( 59 • 12 ) 
(58 12) 
(57 12) 
(56 12) 

(55 12) 
(54 12) 
( 53 • 12 ) 
(52 12) 
(51 12) 
(50 12) 

(49 12) 
(48 12) 
(47 12) 
(46 12) 
(45 12) 
(44 12) 

(43 12) 
(42 12) 
(41 12) 

(40 12) 
(39 12) 
(38 12) 

(37 12) 
(36 12) 
( 35 1 2 .) 
( 3:' 1 2 ) 
(J] 12) 
(]2 12) 
( J I 12) 
(]O 12) 
( 2 (~ ~ 2 

126 

(28 12 
( 27 , 12 
(26 1 ..., 

, 4 ~ 

(24 1 ..., , - ~ 

(23 : .) . - ~ 

( 22 12 
(21 12 
( 20 , 12 
( 19 , 12 
( 18 • 1::: 
( 1 7 12 
(16 12 
( 14 , 12 
(13 1 :: 
(11 1 2 
( 10 1 :: 
(6 12 
(5 12 
(4 1 :: 
(3 12 
(2 12 

(1 1 2 
(0 12 
( 52 1 1 
( 44 , 1 1 
( 31 , 11 
( 18 , L 1 
( 0 , 1 1 
(64 9 
(62 9 
(61 9 
(60 9: 
( 59 , ') 
( 58 . 9 
( 57 , 9 
( 56 , 9 
( 55 q 

( 5-'+ • 9 
( 5] 9 
( 52 9 
( 5 1 , 9 
(50 9' 
(48 9 

( :.. 7 

( 46 
( .:. 5 
( -'+-'+ 
( .:.] 

( .:. 2 
(d 
( :,0 
( ] 9 

( J5 
( 37 
( ]6 

35 
( ]. 

( ]] 

( 3 .: 
] I 

9 
') 

q 

9 ' 
9 
'J 
'j , 

'. 

'J 

- - ''\ 



( 30 , 9 ) ( 55 ) 6 ) 127 
( 54 4 ) ( 29 9 ) ( 54 , 6 ) ( 42 4 ) ( 28 9 ) ( 45 , 6 ) ( 27 4 ) ( 27 9 ) ( 40 ) 6 ) ( 20 ( 26 9 ) ( 4 ) 33 , 6 ) ( 64 3 ) ( 24 9 ) ( 29 , 6 ) ( 62 3 ) ( 23 , 9 ) ( 24 6 ) ( 55 3 ) ( 22 9 ) ( 23 6 ) ( 54 3 ) ( 21 , 9 ) ( 20 6 ) ( 52 3 ) 

( 20 9 ) ( 64 5 ) ( 44 3 ) 
( 19 , 9 ) ( 63 5 ) ( 40 3 ) 
( 18 ) 9 ) ( 62 5 ) ( 33 3 ) 
( 17 , 9 ) ( 61 5 ) ( 31 , 3 ) 
( 16 9 ) ( 60 5 ) ( 29 , 3 ) 
( 14 9 ) ( 59 5 ) ( 28 , 3 ) 
( 13 9 ) ( 58 5 ) ( 27 , 3 ) 
( 11 9 ) ( 57 5 ) ( 26 3 ) 
( 10 9 ) ( 56 , 5 ) ( 24 3 ) 
( 6 9 ) ( 55 , 5 ) ( 21 3 ) 
( 5 9 ) ( 54 5 ) ( 20 3 ) 
( 4 9 ) ( 53 , 5 ) ( 64 2 ) 
( 3 9 ) ( 52 5 ) ( 52 2 ) 
( 2 9 ) ( 51 5 ) ( 44 2 ) 
( 1 9 ) ( 49 , 5 ) ( 21 2 ) 
( 0 9 ) ( 47 5 ) ( 64 1 ) 
( 64 8 ) ( 46 5 ) ( 62 1 ) 
( 62 8 ) ( 45 5 ) ( 54 1 ) 
( 60 , 8 ) ( 44 5 ) ( 51 1 ) 
( 55 8 ) ( 43 5 ) ( 47 1 ) 
( 54 , 8 ) ( 42 5 ) ( 45 1 ) 
( 52 ) 8 ) ( 41 5 ) ( 41 1 ) 
( 45 ) 8 ) ( 40 5 ) ( 39 1 ) 
( 40 , 8 ) ( 39 , 5 ) ( 35 1 ) 
( 39 , 8 ) ( 38 , 5 ) ( 34 1 ) 
( 33 > 8 ) ( 37 , 5 ) ( 33 1 ) 
( 30 , 8 ) ( 36 , 5 ) ( 30 1 ) 
( 27 , 8 ) ( 35 , 5 ) ( 29 1 ) 
( 26 8 ) ( 34 • 5 ) ( 21 1 ) 
( 24 8 ) ( 33 , 5 ) ( 11 1 ) 

( 21 8 ) ( 32 , 5 ) - ( 29 I 0 ) 

( 20 , 8 ) ( 31 , 5 ) ( 23 o ) 
( 4 , 8 ) ( 30 , 5 ) 

( 59 7 ) ( 29 , 5 ) 

( 58 7 ) ( 28 , 5 ) 

( 54 7 ) ( 26 , 5 ) 

( 52 7 ) ( 25 , 5 ) 

( 38 7 ) ( 24 , 5 ) 

( 37 7 ) ( 23 , 5 ) 

( 35 7 ) ( 22 . 5 ) 

( 31 7 ) ( 21 5 ) 

( 30 7 ) ( 20 . 5 ) 

( 29 7 ) ( 19 , 5 ) 

( 23 7 ) ( 13 . 5 ) 

( 20 7 ) ( 1 1 , 5 ) 

( 19 , 7 ) ( 6 5 ) 

( 2 , 7 ) ( 4 5 ) 

( o , 7 ) ( 3 , 5 ) 

( 7 5 ) 
( 64 6 ) - , 

( 62 6 ) ( 1 , 5 ) 

( 60 6 ) ( o , 5 ) 

CO ~;~ I \'L: E r ;\U L -: J,\T.; - - '; 
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S~.fault location 
( row input bit line ) 128 
========================== 

( 35 3 0 ) 
( 22 2 1 ) 

( 22 3 1 ) 

( 25 2 1 ) 
( 25 4 1 ) 

( 3 3 0 ) 

( 24 4 1 ) 

( 12 4 1 ) 

( 13 0 0 ) 

( 13 1 0 ) 
( 13 4 1 ) 
( 34 0 0 ) 
( 39 3 0 ) 
( 39 4 0 ) 
( 56 1 1 ) 
( 56 2 0 ) 
( 57 2 0 ) 
( 57 3 1 ) 
( 11 3 0 ) 
( 50 0 0 ) 
( 36 0 1 ) 
( 38 2 1 ) 
( 58 3 1 ) 
( 9 2 1 ) 
( 9 , 4 , 1 ) 
( 33 4 0 ) 
( 18 4 0 ) 
( 15 2 1 ) 
( 45 3 0 ) 
( 46 4 0 ) 
( 1 0 0 ) 

( 1 3 0 ) 

( S3 0 0 ) 
( 17 0 1 ) 

( 17 0 ) 

( 1 7 4 0 ) 
( S 1 0 0 ) 

( S 1 4 0 ) 

Sh_faults = 38 s g mask 8 s a mask = 354 (T 0 cal rna s k 362) 

s_g_risk 29 

App_faults = 458, a s mask = 149, a s risk 22 



.inputs 7 

.outputs 2 PLA CONl 

.products 9 

X 1 X X 1 X X 1 0 
lXllXXX 1 0 
X 0 0 1 X X X 1 0 
o 1 X X X 1 X 1 0 
X' 0 x x 0 x x 0 1 
1 X X X 0 X X 0 1 
o X X X X X 0 0 1 
0 lXXlXX 0 1 
lOXOXXX 0 1 

Sh fault location 
( row input . bit line ) 
==============~=========== 

( 8 4 1 ) 
( 7 6- 1 ) 
( 5 1 1 ) 

( 4 6 1 ) 

( 4 0 0 ) 
( 3 4 0 ) 

Sh f aul ts = 6 s _.g_.mask 
s_g_ 

App fault location 
( row. , output) 
============== 
(7 0) 

risk 

App_ faults = 1 a 5 mask 

= 
= 

129 

0 s a mask 1 (Total mask = 1) 

22 

2 a 5 risk == 16 



./ 

.inputs 13 

.outputs 4 PLA DIL 

.products 20 

0 1 X X X X X X 0 X o 1 X 
0 1 X X X X X X 0 1 0 X 0 

- 1 -
- 1 -

0 1 X X X X X X 0 1 X 1 0 - 1 -
1 0 X X X X X X 0 X 0 1 X 1 -
1 0 X X X X X X 0 1 0 X 0 1 
1 0 X X X X X X 0 1 X 1 0 1 - - -
X X o 1 X X X X 0 0 1 0 X - 1 
X X 1 0 X X X X 0 0 1 0 X 1 - - -
X X X X 0 X X 0 0 0 1 1 X 1 
X X X X o 1 X 0 0 0 1 1 X - 1 
X X X X 1 0 X o 0 0 1 1 X 1 - - 1 
X X X X 0 X 0 1 0 0 1 1 X - 1 
X X X X 0 X 1 0 0 0 1 1 X - 1 -
X X X X 1 o 0 1 0 0 1 1 X 1 - 1 -
X X X X X 0 1 0 0 0 1 1 X - 1 
X X X X 0 1 0 X 0 0 1 1 X - 1 
X X X X 0 1 X X 0 1 1 0 X - 1 
X X X X 0 1 X X 0 1 X 0 1 - 1 
X X X X 1 0 X X 0 1 1 0 X 1 - - -
X X X X 1 0 X X 0 1 X 0 1 1 - - -

Sh fault location .. 
( row input bit line ) 
========================== 

( 4 1 1 0 ) 
( 5 10 1 ) 
( 18 12 0 ) 
( 19 10 0 ) 
( 1 1 1 0 ) 

( 2 10 1 ) 

( 9 6 1 ) 
( 15 7 1 ) 

( 16 12 0 ) 

( 1 7 10 0 ) 

( 12 5 1 ) 
( 14 4 1 ) 

Sh faults 12 s_g. mask 0 s a mask 7 (Total mask 

s g risk 1040 

App. fault location 
(row output) 

============== 
(9 3) 
(12 3) 
( 1 4 3) 

J a s rna sk J 3 S risk 128 

DO 

7) 



131 

, 
4 .inputs 

.outputs 4 PLA. F2 

.products 12 

X 0 1 0 1- --
0 X 1 0 1-:--
o ·0 1 X 1---

1 0 X 0 - -1 -
1 X 0 0 --1-

1 0 0 X --1-

0 1 X 0 -i--

X 1 0 0 -1--

0 1 0 X -1--
0 0 X 1 ---1 
X 0 0 1 - - -1 
0 X 0 1 ---1 

Sh fault location 
( row , input . bit line ) 
========================== 

( 11 , 1 . 1 ) 
( 10 : 0 : 1 ) 
( 9 2 1 ) 
( 5 3 1 ) 
( 4 1 1 ) 
( 3 2 1 ) 
( 8 , 3 1 ) 
( 7 0 1 ) 
( 6 2 1 ) 
( 2 3 1 ) 
( 1 1 1 ) 
( 0 0 1 ) 

Sh faults = 12. s -g-mask = o : S a mask = 12 (Total mask = 12 ) 

s -g- risk = 1 



.inputs 9 

.outputs 7 
_products S4 

PLA MAS 

QIIXOOOXI 
o 0 0 X 0 000 1 
1 X X X 0 000 1 
X X X X 0 0 0 1 0 
X 0 X X 0 001 1 
110XOOOll 
o llXOO 100 
o 0 0 X 0 0 100 
1 X X X 0 0 lOX 
011XOOI01 
000XOOI0 1 
X X X X 0 0 1 1 0 
X X X X 0 0 1 1 1 
o X X X 0 100 X 
101XOI000 
110XO 1 000 
1 0 1 X 0 100 1 
110XO 1001 
o 11XO LOIO 
XOXXOI01X 
1 10XO 10 IX 
01 XOI011 
XXXXO 1100 
OXXXO 110 1 
01 XOlII0 
101XOl110 
o 11XOll11 
000X01l11 

10XOll11 
XXIOIOOOI 
X X a a 1 000 1 
XXXO 10010 
XXIOIOOll 
XXOO 10011 
XXI01010X 
XXOO 10100 
XXOO 010 
XXI010 IX 
X X 0 0 l' 0 1 0 
XXOOI0111 
XXI0l 000 
XXOO 11000 
XXI011001 
:\XOO 11001 
XXI0 10 0 
XXOO 1010 
XXI0 t 1011 
XXOOI 011 
XXIOll100 

XXOO 11100 
XXI011101 
XXOOll101 
XXXO 1110 
XXXO 1111 

Gr faults 

o 0 1 000 0 
0010100 
0010100 
0010100 
0010100 
0011000 
0010000 
0010100 
0011000 
0010 lOa 
0011000 
0011000 
0100100 
0100100 
0100100 
o 1 1 a 000 
0110000 
0110100 
a 100 100 
0110000 
0110100 
0110000 
1100000 
1101100 
1 000 000 
100 0 100 
100 1 000 
1001100 
1011000 
000 1 000 
0001100 
o 0 0 1 0 0 
o 0 0 I 0 0 
0011000 
0011010 
0011001 
o 100 001 
o 100 0 1 0 
0100001 
010 100 1 
o 010 1 0 
o 0 1 1 a 1 

0101100 
000 1 000 
0001100 
0100000 
0101110 
0011001 
0011110 
o 1 1 1 0 a 1 

00000 10 

0000 0 a I 
1110 000 

1111000 

g 5 rlSK. 65 

Gr fault location 
(~'ow input) 
================ 

( 24 
( 24 
( 26 
( 27 
( 52 
( 14 
( 15 
( 15 
( 16 
( 17 
( 18 
( 21 
( 36 
( 38 
( 42 
( 45 
( 45 
( 1 
( 1 
( 4 
( 6 
( 6 
( 6 
( 10 
( 33 
( 35 
( 29 
( 29 
( 29 
( 29 
( 32 
( 32 
( 4 J 
( 43 
( 43 
( 4 J 

44 
44 
50 
50 
5 1 
5 1 

8 ) 
7 ) 
7 ) 
7 ) 
8 ) 
a ) 
8 ) 
7 ) 
7 ) 
7 ) 
7 ) 
1 ) 
7 ) 
3 ) 
7 ) 
7 ) 
6 ) 

7 \ 
C ) 
8 ) 
8 ) 
7 ) 
a ) 
a ) 
5 ) 
5 ) 
7 ) 
6 ) 
5 ) 
2 ) 
8 ) 
5 ) 
8 ) 
7 ) 
5 ) 
') ) 
·3 ) 
5 ) 
8 ) 
5 ) 
8 ) 
5 ) 

132 



.inputs 10 

.outputs 1 1 PLA MID 
-products 12 

X 
X 
X 
X 
X 
X 
X 
1 
X 
x 
X 
x 

X X 0 1 0 0 1 
X X 0 1 1 0 1 
X X 1 0 0 0 1 
X X 1 0 1 0 1 
X X 1 1 0 0 1 
X X 1 1 1 0 1 
X X 0 0 1 0 1 
X X X X X 0 0 
X X X X X 1 0 
x 0 0 0 0 0 1 
1 X X X X 0 0 
X 1 0 0 0 0 1 

Gr fault location 
(row input) 
----=========== 

(2 4) 

X X 
X X 
X X 
X X 
X X 
X X 
X X 
1 1 
0 1 
X X 
1 1 
X X 

Gr faults = 1. g_s_mask 

133 

0 l 1 0 0 0 1 0 0 0 1 
0 0 1 1 0 0 0 1 0 a 1 
0 1 1 0 0 0 0 1 0 0 1 
0 0 1 1 0 1 0 1 0 0 1 
0 l 1 0 0 1 0 1 0 0 1 
0 0 1 1 0 0 0 0 1 0 1 
1 0 1 0 0 0 0 0 a 1 0 
1 0 0 0 0 1 0 0 0 0 0 
1 0 0 0 0 1 0 0 a 0 0 
1 0 0 a 0 1 0 0 a 0 0 
1 0 0 0 1 0 0 o 0 0 0 
1 0 1 0 1 0 0 o 0 0 0 

o 



·inputs 8 
. outputs 7 
.products 32 

0111XXXX 
1010XXXX 
o 1 0 X X X.X X' 
0011XXXX 
100 1 X X X X 
o 0 1 X X 1 X X 
o X 0 0 X X 1 X 
o 1 X 1 X X X X 
100 1 X X X X 
o 1 0 X I" X X X 
o 0 1 0 X 0 X X 
000 0 X X 0 X 
1010XXXX 
XOI0XOXX 
o lOX X X X 0 
01000 X X X 
010 X X X X X 
o XII X- X X X 
X 0 lOX X X X 
o X 0 0 X X X X 
100 1 X X X X 
010 X X X X X 
OXI1XXXX 
1 0 0 1 X' X X X 
1010XXXX 
o 0 1 X X 1 X X 

o X 0 0 X X 1 X 
o lXlXXXX 
100 1 X X X X 
1 0 lOX X X X 
o lOX 0 X X X 
XO 10XOXX 

Sh fault location 

PLA MISEXI 

1 000 0 0 0 
1 000 000 
0100000 
0100000 
o 100 000 
o 100 000 
0100000 
o 0 100 0 0 
0010000 
o 0 1 0 0 0 0 
o 0 1 0 000 
o 0 1 0 0 0 0 
000 100 0 
000 1 000 
000 1 000 
0001000 
0000100 
0000100 
000 0 100 
0000100 
0000100 
o 000 0 1 0 
0000010 
0000010 
0000010 
0000010 
0000010 
000 O. 0 0 1 
000 0 0 0 1 
0000001 
0000001 
o 0 000 0 1 

( row . input bit line) 
========================== 

(31 0 0) 
(30 3, 0 ) 
(29 S 1) 
(26 1 0) 
(2S 3 0) 
(19 1 0) 
(16 3 1 .) 
(IS 7 1) 
(13 0 0) 
(12 S 1) 
(9 J 0) 
(6 I 0) 
(S J, 0 ) 
(J SO) 

Sh faults = 14 s_g_Qask 
s g [i sk == 

3 s.J roa 5 k 

108 

App faults 85 k 457 J S risk a .s [13S 

--- -"\ 

13.'; 

App fault location 
( r-o\o1 , ou tpu t ) 
============= 

(24 6) 
(23 6) 
(20 6) 

( 15 6) 
(13 6) 
(12 6) 
( 10 6) 
(8 6) 
(7 6) 
(4 6) 
(1 6) 
(0 6) 
(30 5) 
(29 5) 
(28 5) 
(27 5) 
(20 5) 
(17 5) 
(16 5) 
( 15 5) 
(14 5) 

( 12 . 5 ) 
(9 5) 
(8 5) 
(7 5) 

(6 5) 

(5 5) 
(4 5) 
(3 5) 

(2 5) 
(1 5) 
(0 5) 
( 3 1 4) 

(30 4) 
( 29 4) 

(28 4) 
( 27 4) 

( 26 4) 
(25 4) 

( 24 4) 

( 23 4) 

(22 4) 

( 2 1 4) 

( 15 4) 

(14 4) 

(13 4) 
(12 4) 

(11 4) 
( 10 4) 
(9 4) 
(8 4) 
(7 4) 

(6 4) 

(5 4) 
(4 4) 

(34) 
(2 4) 
(1 4) 
(04) 
(31 3) 
(29 3) 
(24 3) 

( 10 3) 
( 1 , 3 ) 
(28 2) 
(27 2) 

( 23 2) 

(20 2) 

(4 2) 
( 0 , 2 ) 
( 30 • 1 ) 
( 28 ) 
( 26 ) 
( 25 1) 

( 23 1) 
( 2 1 1) 
( 20 1) 
( 16 1) 
( 15 • 1 ) 
(14 1) 
(9 1) 
( 8 . 1 ) 
(29 0) 
(24 0) 

( 1 2 0) 

39 (T 0 (a 1 rna s k 

1 1 2 



.inputs 5 

.outputs 3 

.products 

1 X 1 1 t 
1 1 X 1 1 

I 1 I t X 
1 I I X 1 
X 1 1 1 1 
0 1 X 0 1 
X 0 1 1 0 
0 0 1 X 1 
1 X 0 0 1 
1 X 1 0 0 
1 1 0 X 0 
0 1 1 X 0 
1 0 0 1 X 
0 X 0 1 1 
X 1 0 1 0 
X 0 1 0 1 
0 1 1 1 0 
0 0 0 1 0 
0 I 0 0 0 
I 1 1 1 1 
0 0 1 0 0 
0 0 1 1 1 
1 1 1 0 0 
1 1 0 1 0 
0 1 1 0 1 
0 1 0 1 1 
1 0 1 1 0 
1 0 0 0 0 
1 1 0 0 1 
0 0 0 0 1 

0 1 0 1 
0 0 1 

Sh faults 

PLA RD53 
32 

1 - -
I--
1 --

Sh fault location 1--
( input bit 1 -.- row , line ) 
==============~=========== --1 
( 15 0 1 ) ) --1 
( 14 0 0 ) - -1 , I 

( 10 3 0 ) ! , - -1 
( 7 3 1 ) I --1 
( 4 0 0 ) I --1 
( 3 3 0 ) --1 
( 2 4 0 ) - - 1 
( 1 2 0 ) , - - 1 
( 0 1 0 ) --1 

--1 
-1-
-1- -- ---------

-I-
-l- App fault location -- 1 - ( row output ) 
- 1 - = ============= 
- 1 - ( 31 2 ) 
- 1 - ( 30 2 ) 
- 1 - ( 28 2 ) 
-1- ( 26 2 ) 
- 1 - ( 25 2 ) 
- 1 - ( 24 2 ) 
- 1 - ( 23 2 ) 
- 1 - ( 22 2 ) 
- 1 - ( 21 2 ) 
- 1 - ( 16 2 ) 

( 19 0 ) 

9, s g_mask = 8, s a mask 
s _ g_risk = 4 

2 (Total mask 10) 

App_faults = 11 a s mask 0 a s risk o 

~ 1 ::: 



1XXI1X1 
X 1 XII X 1 
11XX1X1 
llXllXX 
1 1 X 1 X X 1 
l1XXl1X 
X 1 XII 1 X 
11XXX11 
11X1X1X 
X1XXl11 
1 X X XII 
lXI1XXI 
X X XLIII 
IX-XII X 
XIX1X11 
111XXIX 
X11XX11 
XI1XIIX 
XX11Xli 
XII 1 X 1 X 
1XIXI1X 
XXI111X 
111XXXl 
XXIXlll 
XlIII X X 
XI1XIX1 
XX111Xl 
111XIXX 
lXI11XX 
1 1 1 X X X 

XII X 1 X 
lXXIX 1 
X 1 1 X. X 1 
lXIXX'll 
1 X 1 X X 1 
XOOOI10 
100X100 
OlOOX 0 
10010XO 
1 OXOOO 
o 0 0 X 0 
1 0 0 0 0 1 X 
o 0 X 0 0 1 
X 0 0 1 0 0 
10XOOOl 
o lOX 0 0 
00110XO 
0110XOO 
X 0 0 001 
001XOOI 
1 0 1 X 0 0 0 
000 1 X 1 0 
1 XII 1 
00XI100 
0010XI0 
o 0 0 X 0 1 
X 0 0 100 
o 1 X 0 0 0 
X 10000 
010001X 
1 1 1 1 X 1 
100(}10X 
)(010010 
o 0 0 lOX 
o 0 I ~, Q ... 

--1 
- - 1 
- - 1 
--1 
--1 
--1 
--1 
- -1 
- -1 
--1 
--1 
--1 
--1 
--1 
--1 
--1 
- -1 
- - 1 
--1 
--1 
- -1 
-- 1 
--1 
--1 
--1 
- - 1 
- -1 
--1 
--1 
--1 
--1 
--1 
- -1 
--1 
- -1 
1 - -
1 -­
I-­
I--
1 - -
1 - -
1 - -
1 --
1 - -
1 - -
1 - -
1 - -
1 - -
1 - -
1 - -
1 - -
1 - -
1 - -
1 - -
1 - -
1 - -
I - -
1 - -

1 - -
1 - -
1 - -
1 - -
1 - -

1 - -
1 -'-

PLA RD73 

1 I 1 X 1 
l1Xll11 
OII000X 
o X 1 0 
XII 1 
o lOX 
1 1 1 1 
o 0 1 0 

o 1 0 
111 
o 1 0 
1 X 
o X 

1 1 1 1 X 
X 100 0 1 0 
000 0 001 
000 100 0 
1000000 
1 0 0 1 0 o 1 
o 000 1 o 0 
o 0 0 1 1 
1 0 0 0 1 

o 1 
o 1 

o 1 0 1 0 o 1 
o 1 0 0 0 o 0 

1 1 
o 1 

o 0 0 1 0 
1 100 
o 01 1 
o 1 0 0 
1 000 
000 0 
1 0 1 0 
o 000 
o 1 0 0 
000 
o 0 1 0 
o 1 1 0 
o 0 1 0 

o 0 
o 1 

1 0 1 
1 0 0 1 
o 1 0 
100 
000 

o 
o 0 
1 0 1 
011 
o 1 0 
o 0 1 
1 1 
011 
101 
000 
o 0 1 
o 1 1 
100 
000 
1 0 
o 1 0 
1 0 0 
1 1 

o 
1 1 0 1 0 
0101.11 

o 1 0 I 
11001'00 
01010 0 

o 0 0 1 0 
o 1 1 0 0 0 
1 0 0 1 1 

0011100 
o 0 0 I 0 

1 1 0 0 1 
o 0 I 0 0 

0111000 
1110000 
1 0 1 1 0 1 
o 1 0 0 1 0 
o 1 1 1 1 0 1 

o 1 0 1 
I 0 I 0 

1 0 I 0 0 

1 I 
o 0 
o I 
o 0 1 I I 1 
10100 0 
o 1 1 0 I 
o 0 Oil 0 
1 0 101 1 I 

I-­
I --
1 --
1 - -
r--
1 --
1 --
1-­
I--
1-­
-1-
-1-
-1-
-1-
-1-
-1-
-1-
-1-
-1-
-1-
-1-
-1-
-1-
-1-
-1-
-1-
-1-
-1-
- 1 -
-1-
-1-
-1-
- 1 -
-1-
- 1 -
-1-
-1-
- 1 -
- 1 -
- 1 -
-1-
- 1 -
-1-

- 1 -
-1 -
- 1 -
- 1 -
-1-
- 1 -
- I -
- 1 -
- 1 -

- I -
- 1 -

- 1 -
- 1 -
- 1 -

- 1 -
- 1 -

- 1 -
- 1 -

- 1 -

- 1 -
- 1 -

o 1 0 0 0 
1 1 1 0 0 1 
01101 1 
1101 10 
1 1 0 0 

o 1 0 
11100 
o 1 1 1 liD' 
1110110 
1 1 1 1 1 1 

seE fAULT DATA 

136 

--) 

- 1 -
.. 1 -

- 1 -
- 1 -
- 1 -
.. 1 -
. 1 -

- 1 -
- 1 -
- 1 -



5"_ fault lOC~ll 
( roQ' , input , bit line ) 
====c===================== 

(34 5. 0 ) 
(34 3 0) 
(34 1 0) 
(33 4 0) 
(33 3 0) 
(33 1 0) 
(32 5 0) 
(32 4 0) 
(32 0 0) 
(31 4, 0 ) 
( 31 • 2 0) 
(31 1 0) 
( 30 ,6 0) 
(30 4 0) 
(30 1 0) 
(29 6 0) 
(29 5 0) 
(29 4 0) 
(28 6, 0 ) 
(28 5 0) 
(28 1 0) 
(27 6. 0 ) 
( 27 • 5 0) 
(27 3 0) 
(26 5 0) 
(26 1 0) 
(26 0 0) 
(25 5 0) 
(25 3 0) 
(25 0 0) 
(24 6 0) 
(24 5 0) 
(24 0 0) 
(23 3 0) 
(23 1 0) 
( 23 , 0 0) 
(22 5 0) 
(22 4 0) 
(22 3 0) 
(21 6 0) 
(21 1 0) 
(21 0 0) 
(20 6 0) 
(20 3 0) 
(20 1 0) 
(19 6 0) 
(19 4 0) 
(19 0 0) 
(18 4 0) 

(18 1 0) 
(18 0 0) 
(17 6 0) 
(17 3 0) 
(17 0 0) 
(16 4 0) 
(16 3 0) 
(16 0 0) 
(15 6 0) 
(15 4 0) 
(15 3 0) 
(14 4 0) 
( 14 , 2 0) 
(14 0 0) 
(13 6 0·) 
(13 2 0) 
( 1) 0 ) 
{12 2 0 \ 

( 12 ~ 0 0) 
(11,50) 
(11 4 0) 
(11 1 0) 
(10 3 0) 
(10 2 0) 
(10 1 0) 
(9 3 0) 
( 9 • 2 0) 
(9 0 0) 
(8 6 0) 
(8 4 0) 
(3,2.0) 
(7 4 0) 
(7 3 0) 
(7 2 0) 
(6 6 0) 
(6 2 0) 
(6 0 0) 
(5 6 0) 
( 5 , 3 0) 
( 5 , 2 0) 
(4 5 0) 
(4 4 0) 
(4 2 0) 
(3 6 0) 
(3 5 0) 
(3 2 0) 
(2 5 0) 
(2 3 0) 
(2 2 0) 
(1 5 0) 
(1 2 0) 
(1 0 0) 
<. 0 5 0) 
(0 2 0) 
(0 1 0) 
(76 0, 1 ) 
(75 6 0) 
(74 6 1) 
(73,5.0) 
(72 3 1) 
(71 O. 0 ) 
( 70 • 1 , 1 ) 
(69 6 1) 
(68 2 0) 
(67 ) 0) 
(66 6 1) 
(65 6. 1 ) 
(64 6 1) 
(63 6 1) 
(62 O. 1 ) 
(61 6. 1 ) 
(60 4 0) 
(59 6 1) 
( 58 , 0 1) 
(57 3 1) 
(56 0, 1 ) 
(54 4 1) 
( 52 ,1 0) 
( 47 • 4 1) 

( 43 , O. ) 
(39 3 ) 
( 37 , 4, ) 

( 36 . 3 ) 
(35 0 1) 

Sh faults 134 s g mask = 44, 

s g ~isk == 5 

s a rna sk 

.... pp. r aU.!. t lOCdl ion 

( r 01.1 , OU t pu t ) 
= ======:=..::::::=: =:.::: 

(140 2) 
(139 2) 
(138 2) 
(137 2) 
(136 2) 
(135 2) 
(134 2) 
(133 2) 
(132 2) 
(130 2) 
( 128 2) 
(126 2) 
(123 2) 
(122 2) 
(120 2) 
(116 2) 
(113,2) 
(108 2) 
(107 2) 
( 106 2) 
( 104 2) 
(101 2) 
( 75 2) 
(73 2) 
(71.2) 
( 68 2) 
( 67 . 2 ) 
(60 2) 
( 52 2) 
( 140 , 0 ) 
(131 0) 

(129 0) 
(127 0) 
(125 0) 
(124 0) 
(121 0) 

(119 0) 
(118 0) 
(117 0) 
(115 0) 
(114 0) 
(112 0) 
(Ill 0) 

(110 0) 
(109 0) 
( 105 0) 
(103 0) 
( 102 0) 
( 100 0) 
( 99 0) 
( 98 0) 
( 97 0) 

( 95 0) 
(94 0) 

( 93 0) 

( 92 0) 
( 90 0) 
(89 0) 
(88 0) 
( 87 0) 
(86 0) 
(84 0) 
( 83 0) 
(82 0) 
(80 0) 

29 (T 0 tal ~,' S K 
73) 

o as_risk 29 
/~P_fQUit~ - 65 a_~_~_m~a~s_k ______ .......... , 

137 



.iaput& 10 

.outputs 4 
_products 58 

/ 
PLA SA02 

x X 0 X 1 0 0 X X 0 
X X X X 0 0 1 X 0 0 
X 0 X X X 0 0 X 1 0 
o X 1 X 0 0 X X X 0 
X 1 X 0 X 0 X X 0 0 
1 X 0 X X 0 X 0 X 0 
X X X 0 X X X 0 X 0 
X 0 0 0 0 0 0 100 
111 100 0 100 
110 1 000 1 1 0 
101 1 100 100 
010 100 1 1 1 0 
111 1 100 1 1 0 
111 100 1 110 
111 1 101 100 
1101101110 
1011101110 
1010000 100 
0111101110 
010 1 1 0 1 0 1 0 
1111101010 
1010101100 
1 110 101 1 1 0 
o 1 X 1 1 0 1 0 1 0 
1 0 1 0 101 1 X 0 
1 0 0: 1 0 0 0 1 0 0 
010 1 000 100 
010 1 000 0 1 0 
o X 0 1 0 000 0 0 
000 1 0 000 0 0 
000 0 000 100 
X X X X X 1 X X X 0 
000 1 0 0 0 X 0 0 
101 1 1 0 X 1 0 0 
1111X00100 
X X X 0 1 0 0 X X 0 
010 1 1 0 1 X 1 0 
X 101 001 1 1 0 
11XIOOOI10 
X X 0 1 X O.X X 0 0 
X X X 1 0 0 X 0 X 0 
o X X 1 X 0 0 X X 0 
XI.XOXOXOXO 
X 0 X 1 0 0 X X X 0 
X X 1 X 0 0 X 0 X 0 
OXXXIXOXXO 
X 0 X X X 0 X 0 1 0 
o 1 X 0 X 0 X X X 0 
XXOXX01XOO 
X X X X X 0 1 000 
X 1 0 0 X 0 X X X 0 
o 0 X X X 0 X X 1 0 
X 0 X X 0 0 X X 1 0 
X X X X 100 0 X 0 
X 0 0 X X 0 X X 1 0 
OXXXX01XOO 
X 1 X 000 X X X 0 
X 1 X 0 X X 0 X X 0 

- 1 1 

1 1 
1 1 
1 1 
1 1 
1 1 
1 -

1 - - 1 
- 1 
- 1 - -
- 1 - -
- 1 - -
- 1 - -
- 1 
- 1 
- 1 
- 1 
- 1 - 1 
- 1 
- 1 
- 1 
- 1 
- 1 
1 
1 - - -
- 1 
- 1 
- 1 
1 -
- 1 
- 1 

1 -
1 - - -
1 -
1 -

1 
1 
1 

1 

1 
1 
1 
1 

1 
1 -

1 
1 1 
1 1 
1 1 
1 1 
1 1 
1 1 
1 1 
1 1 

- 1 1 
- 1 1 
- 1 -

V "_ . .L au-,,- L J.uca (lon 

(row input b-it 
~ line) 

===~;~====e========~===== 
(23 2 1) <. 57 <, 

( 28 : 1 . 1 ) (57 5 
( 32 . 7 : 1 ) ( 57 • 7 
( 36 , 7 I 1 ) ( 57 8 
(0 0 1) (35 2 
(0 7 1) (35 7 
(1 0 1) (39 0 
(1 2 1) ( 39 
(1 7. 1 ) (39 4 
(2 0 1) (39 6 
(2 2 1) (39 7 
(2 4 1) (40 0 
(2 7, 1 ) ( 40 
(3 7 1), ( 40 
(4 0 1) ( 40 

1 
2 
6 

(4 2 1) (40 8 
(4 4 1) (41 7 
(4 6 1) (42 0 
(4 7 1) (42 2 
(6 5, 0 ) (42 4 
(44 0 1) ( 42 6 
(45. 2 1) ( 42 
(45 5 0) ( 43 
(45 7 1) ( 43 
(46 0 1) ( 43 
(46 2 1) ( 43 

8 
o 
2 
6 
7 

(46 4 1) ( 43 8 
(46 6 1) 
(47 2 1) 
(47 4 1) 
(47 6 1) 
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1 ) 
o ) 

.1) 
1 ) 
J ) 
1 ) 
1 ) 
1 ) 
( \ 

o ) 
1 ) 
o ) 
1 ) 
o ) 
1 ) 
1 ) 
1 ) 
1 ) 
1 ) 
1 ) 
1 ) 

1 ) 
1 ) 
1 ) 

o ) 
1 ) 
o ) 

(47 7 1) 
(47 8 1) 

App fault locatio 
(r-;w outpU() 

(48 0 1) 
(48 4 1) 
(48 7 1) 
(49 0 1) 
(49 2 1) 
(49 4 1) 
(50 0 1) 
(50 4 1) 
(50 6, 1 ) 
(50 7 1) 
(50 8 ) 
(51 2 ) 
(51 4 1) 
( 51 . 6 1) 
(51 7 1) 
(52 0 1) 
(52 2 ) 
(52 6 ) 
( 52 7 ) 
(53 0 ) 
( 53 I 2 1) 
( 53 I 3 1) 
(54 0 ) 
(54 4 ) 
(54 6 1) 
(54 7 1) 
( 55 2 ) 
( 55 4 ) 
(56 7, 1 ) 
(56 8 I 1 ) 
( 57 I 0 ) 
( 57 2 ) 

::::=== ======== ==== 
( 
( 

8 , 
9 

( 10 
(11 
( 19 
( 21 
( 29 
( 30 
( 42 

n 
( 26 

( 27 
( 28 
( 29 
( 30 
( 32 

o ) 
o ) 
o ) 
o ) 
o ) 
o ) 
o ) 
o ) 
2 ) ., , 
.J 

J ) 
3 ) 
J ) 
3 ) 
3 ) 
J ) 

:=: 100) 

Sh faults :=: 95 
s a mask:=: 9 (Total mask 

s g mask :=: 91. 
s- g- risk :=: 514 

k 4 3 S risk 16. a s mas :=: 
38 

App faults _____ ~__L_..." 
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.inputs 10 

.outputs 3 PLA SR 
_products 15 

X X X X X X 1 0 1 1 0 o 1 
X X X X X 1 1 1 1 0 010 
X X 1 1 1 X 1 1 o 0 010 
0 X X '1 1 X 1 1 o 0 010 
0 1 X X 1 X 1 1 o 0 010 
X o 1 X 1 X 1 1 o 0 010 
0 1 X X X 1 1 1 1 X 010 
1 o X X X 1 1 1 1 X 010 
X X X X X 0 1 1 1 0 100 
X XII 0 X 1 1 o 0 1 o 0 
0 X X lOX 1 1 o 0 1 o 0 
0 1 X X 0 X 1 1 o 0 1 o 0 
XOIXOX 1 1 o 0 1 o 0 
o 1 X X X 0 1 1 1 X 1 o 0 
1 0 X X X 0 1 1 1 X 1 o 0 

Sh fault -location 
( row input bit line ) 
========:================= 

( 7 9 , 1 ) 
( 6 9 , 1 ) 
( 5 3 0 ) 
( 4 3 0 ) 
( 3 2 0 ) 
( 3 1 0 ) 
( ') 1 1 ) ... 
( 2 0 , 1 ) 
( l4 9 1 ) 
( 13 9 1 ) 

( 12 3 0 ) 

( 1 1 3 0 ) 

( 10 -2 , 0 ) 

( 10 I 1 0 ) 

( 9 , 1 1 ) 

( 9 0 , 1 ) 

16, s_ g mask = O- s a mask = 0 (To tal mask 0) 
Sh faults = 

s_g_ risk = 180 
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