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Abstract

This thesis is concerned with the development, design, and analysis of simple and efficient
numerical quadrature methods for integrals on finite intervals with endpoint singularities,
for integrals on the real line of steepest descent type, for integrals on finite intervals with
branch point singularities near the interval of integration, and for integrals on the real line
of Laplace type with branch point singularities near the path of integration.

In Chapter 1 we develop and analyse a numerical quadrature method, known as the
variable transformation method, for integrals on finite intervals with endpoint singularities.
The idea of this variable transformation method is based on the Euler—-Maclaurin formula,
and seems to have been suggested first by Korobov in 1963. From the Euler—Maclaurin
formula, it is obvious that the trapezium rule is an excellent numerical quadrature method
for integrands that are periodic, and for integrands whose derivatives near the endpoints
of the interval of integration decay rapidly. To make the integrands always satisfy these
properties, the notion is to introduce a mapping function and substitute it into the
integrals. This variable transformation method is also sometimes called a periodizing
transformation.

For integrals on the real line of steepest descent type, integrals on finite intervals with
branch point singularities near the interval of integration, and integrals on the real line
of Laplace type with branch point singularities near the path of integration, we design
numerical quadrature methods and analyses based on the numerical quadrature method
for integrals on finite intervals with endpoint singularities via suitable substitutions.

These new numerical quadrature rules and analyses are illustrated and supported
through numerical experiments. As larger applications we consider in Chapters 3 and 5
the problems of efficient evaluation of the impedance Green’s function for the Helmholtz

equation in a half-plane and half-space, important problems of acoustic propagation.
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Glossary of Symbols

and Special Functions

Sets and Spaces

N set of natural numbers

Z set of integers

R set of real numbers

C set of complex numbers

|z| absolute value of a real or complex number z

Cla, b] space of real- or complex-valued continuous functions
on the interval [a, b]

C™a, b space of m times continuously differentiable functions

{ai,...,am} set of m elements aq,...,an

U\V difference set U\V :={z € U : £ ¢ V'} for two sets U and V

F: XY a mapping with domain X and range in Y

Norms

|| ' H norm on a linear space
'l ' H1 L1 norm of a function

H . ||oo maximum norm of a function

Special Functions

¢ Riemann zeta function

r gamma function



Ju Bessel function of the first kind of order v

) delta function
erfc complementary error function
1 ) . )
Hg ) Hankel function of the first kind of order zero
E; exponential integral
Miscellaneous
€ element inclusion
C set inclusion
U union of sets
N intersection of sets

Q

approximately equal

~ asymptotically equal
A Laplacian operator
max maximum

sup supremum

|z] largest integer < z
exp exponential function
Re z real part of z

Im 2 imaginary part of z
arg z argument of z

| end of proof



Main Assumptions in the Thesis

Assumption 1.1 The function w : [—1,1] — [—1,1] is bijective, strictly increasing, and
infinitely differentiable (i.e., w € C*[—1,1]). Further, w is an odd function with, for

some integer p > 2,

and
w® (£1) # 0.

Assumption 2.1 For some ¢ € N, f € C90,00) and there exists ¢ > 0 and r > 1/2 such
that, forn =0,1,...,q, it holds that

IFM @) <e(l+8)7", 0.

Assumption 2.1’ For some € > 0 and 0 € (0,7/2], the function [ is analytic on Dep,

where (see Figure 2.1)

Deg = {z €C:|arg(z+e¢)| < 0}.
Further, for some ¢ >0 and r > 1/2,

If(2) <cl+12))7",  2€Dep.

Assumption 4.1 For some ¢ € N and b, with =1 < b, <1 it holds that f € C1(—1,b,) N
C4(by, 1), and that there exist ¢ >0 and a with 0 < a < 1 such that, for j =0,1,...,4q,

(T +t)t—b] 1>

, —l<t<by,
CL 1+0b, 4

(| <
\f ()l_ﬁ ’(1—t)|t—b|'“_1‘j
c - r , b, <t < 1.




Assumption 4.1’ For some € > 0, and b = b, + ib; € C with b; > 0, the function f is

analytic in Dep, where (see Figure 4.1)
D,y = {z € C:dist(z,[-1,1)) < e\ {br +4t: > bi .
Further, for some ¢ >0 and o with 0 < a <1,
f(2) <Cle~b*7h, 2 €Dy

Assumption 5.1 For some ¢ € N and B, > 0, it holds that f € C%0, B;) N CY(B,, o0),

and that there exist ¢ > 0 and o with 0 < o < 1 such that, for n=0,1,...,q,
IF™ (@) <elt— B "1+,  t€[0,B,)U(B,,00).

Assumption 5.1’ For some e > 0, § € (0,7/2], and B = B, +iB; € C with B; > 0, the

function f is analytic in (see Figure 5.1)

Dey,p = Da,@\{Br +at:t > Bi};
where Dy g is defined by (see Figure 2.1)

D, g := {zE(C: |arg(z +¢) | <0}.
Further, for some ¢ > 0 and o > 0,

f(2)] <Elz=BI* M1 +2))7**,  z€Depp



Main Theorems and

Corollaries in the Thesis

Theorem 1.3 Suppose that w satisfies Assumption 1.1, f € S¥*, for some q € N and
a >0, with 1 < ap < q. Then the error in the quadrature (1.26) can be bounded by

17 = Il < €, N,

in the case ap ¢ N, where the constant C' depends only on q, o, and on the function w. If

ap = q, then
1f = Infl < eC|f| N

for every e > 0, where c. > 0 depends only on ¢.

Theorem 2.5 Suppose that w satisfies Assumption 1.1, f satisfies Assumption 2.1, and
1< s < q, where s := (r —1/2)p. Then, for s ¢ N, the error in the quadrature (2.13) can
be bounded by

|Jf = Infl <cC(1L+pT)NT?,

where the constant C depends only on g, r, and on the choice of the function w.

Corollary 2.1 Suppose that w satisfies Assumption 1.1, f satisfies Assumption 2.1', and
1 < s < g, where s := (r —1/2)p. Then, for s ¢ N, the error in the quadrature (2.13) can

be bounded by

Ec(l + pq) N—S
(Esin )9

b

|Jf = Inf| <

where € = min{e,1} and the constant C depends only on q, r. and on the choice of the

function w.



Theorem 4.1 Suppose that w satisfies Assumption 1.1, f satisfies Assumption 4.1, g € N,
and 1 < ap < gq. Then, if ap ¢ N, the error in the quadrature (4.9) can be bounded by

If —Inf|<cCN—°P,
where the constant C depends only on q, a and on the function w. If ap = q, then
\If —Inf| < cse CNOY,

for every § > 0, where cs > 0 depends only on 4.

Corollary 4.1 Suppose that w satisfies Assumption 1.1, f satisfies Assumption 4.1,
g€N, and 1 < ap < q. Then, if ap ¢ N, the error in the quadrature (4.9) can be bounded
by

~

~ cC
If —Inf| < =% N0
1= IS Gy

with

0 = min c ;
N Rji+1-al’
where the constant C depends only on q, o and on the function w. If ap = q, then

~ C§EC 5—
I “INf < = ~ N q,
1 =il < 5

for every § > 0, where cs > 0 depends only on 0.

Theorem 5.1 Suppose that w satisfies Assumption 1.1, f satisfies Assumption 5.1, ¢ € N,
and 1 < ap < q. Then, for ap ¢ N, the error in the quadrature (5.12) can be bounded by

|[Jf — INF| <TC(L+ p")N ™7,
where the constant C depends only on q, @, and on the function w. If ap = g, then
|Jf — INF| < cs€C(1+ p?) N9,

for every 6 > 0, where cs > 0 depends only on ¢.



Corollary 5.2 Suppose that w satisfies Assumption 1.1, f satisfies Assumption 5.1

q €N, and 1 < ap < q. Then, for ap ¢ N, the error in the quadrature (5.12) can be
bounded by

cC(1+ p%)

Jf —INF| <

NP

with

& = min{ 2 r
B Rn+l—al’
where the constant C' depends only on q, o, and on the function w. If ap = q, then

cscC(1 + p?)
wi(l —w)l-@

|Jf — INF| < N9,

for every 0 > 0, where cs > 0 depends only on 4.



Chapter O

Introduction

The main objective of this thesis is the development, design, and analysis of numerical
quadrature methods suitable for integrals on finite intervals with endpoint singularities,
for integrals on the real line of steepest descent type, for integrals on finite intervals with
branch point singularities near the interval of integration, and for integrals on the real line
of Laplace type with branch point singularities near the path of integration.

The problem of numerical quadrature is quite old, going back to the Greek quadrature
of the circle by means of inscribed and circumscribed regular polygons, and is surveyed
in the monographs by Davis and Rabinowitz [16], Engels [17], Smith [47], Krommer and
Ueberhuber [34], and in numerous conference proceedings, e.g. Brass and Hammerlin [9],
Espelid and Genz [19]. A major area of theoretical work in numerical integration has
occurred in the area of integral equations and the related boundary element method.
Recent work has focussed on the development of efficient methods for treating different
types of kernels (e.g. weakly singular, Cauchy singular, and hyper-singular kernels) that
arise in applications. These applications include both evaluation of integrals arising when
the boundary integral equations are discretised (see e.g. Kress [32], Hayami [21], Schwab
and Wendland [44]) and evaluation of integral representation of fundamental solutions to
the governing partial differential equations (see e.g. Chandler-Wilde and Hothersall {12],
Hearn [22], Monacella [40], and Linton (35, 36]). Integrals of a sort arising in both these
types of applications are addressed in this thesis.

In Chapter 1 we consider the evaluation of fjll f(t) dt, where f may have endpoint
singularities. This type of integral with specific weight functions containing the singularity

of f can be numerically evaluated by a class of numerical quadrature rules collectively
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known as Gaussian quadrature rules, see e.g. Davis and Rabinowitz [16], Engels [17].
Kress [33], Atkinson [3], Smith [47], Isaacson and Keller [28], and Blum [8]. Other methods
for evaluating this type of integral include SINC quadrature, see e.g. Bialecki [6, 7], Lund
and Bowers [38], and Stenger [48, 49].

A well-known method for this type of integral is a numerical quadrature method called
the variable transformation method. The notion of this variable transformation method
is to substitute ¢ = w(z) in fjll f(t) dt, leading to the expression f_+11 w'(z) f(w(z)) dz,
choosing w : [~1,1] = [~1,1] to be bijective, infinitely differentiable, and having all or
many derivatives vanishing at +1. The idea of employing variable transformations, also
called periodizing transformations [34], seems to have been suggested first by Korobov [31]
in connection with the numerical approximation of integrals on the unit hypercube by
lattice rules (cf. Sidi [46]). Since then, there are a number of transformation methods
which have appeared in the literature with different transformations w, called mapping
functions in this thesis. These transformations have been proposed by Korobov [31], Sag
and Szekeres [43], Schwartz [45], Iri et al. [27], Takahasi and Mori [50], Mori [41], Hua and
Wang [23], Sidi [46], and recently proposed by Kress [32, 33]. All variable transformation
methods discussed by these authors are based on the Euler-Maclaurin formula [16], which
shows that the trapezium rule is very accurate for evaluating the integral f_+11 g(t) dt when
g is smooth and many derivatives of g vanish at the endpoints. In Chapter 1 we consider
a numerical quadrature method, based on the Euler-Maclaurin formula, for integrals on
finite intervals with endpoint singularities similar to the methods used by above authors.
We develop an analysis of transformation methods suitable for the mapping functions
proposed by Korobov [31], Sidi [46], and Kress [33]. Thus we can apply our analysis
to the mapping functions given by these authors. Comparing this numerical quadrature
with Gaussian quadrature, an advantage of this quadrature method is that weights and
abscissae of this method are easily generated, leading to convenience of implementation.
More crucially, these methods are robust with respect to the nature of the singularity
which does not need to be known precisely as in Gaussian quadrature.

For integrals on the real line of steepest descent type in Chapter 2, integrals on finite
intervals with branch point singularities near the interval of integration in Chapter 4.
and integrals on the real line of Laplace type with branch point singularities near the

path of integration in Chapter 5, we design numerical quadrature methods and analyses
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based on the numerical quadrature method for integrals on finite intervals with endpoint
singularities contained in Chapter 1 via suitable substitutions.

As larger applications we consider in Chapters 3 and 5 the problems of efficient
evaluation of the impedance Green’s function for the Helmholtz equation in a half-plane
and half-space, important problems of acoustic propagation. We would like to mention at
this early state of the thesis that all numerical computations in this thesis are performed
by using the interactive programming system, Matlabd.

In summary, the numerical quadrature rule and analysis contained in Chapter 1 is the
cornerstone of this thesis. It will be used and applied throughout the other chapters of
this thesis to develop numerical quadrature methods for integrals on finite intervals with
endpoint singularities, integrals on the real line of steepest descent type, integrals on finite
intervals with branch point singularities near the interval of integration, and integrals on

the real line of Laplace type with branch point singularities near the path of integration.



Chapter 1

A Numerical Quadrature Method

for Integrals on Finite Intervals

with Endpoint Singularities

We consider the problem of finding the numerical value of
+1
If = f(t)dt, (1.1)
1

where f(t) may have singularities at ¢t = +1.

In the case that f(t) = p(t)g(t) with g € C*°[—1,1] and p > 0 a sufficiently simple
function containing the singularity of f, the classical method for approximating the integral
(1.1) is to use Gaussian quadrature for the weight function p, leading to approximations

for If of the form
N
S asg(b). (1.2)
i=1

In (1.2), a1,...,an € (0,00) and by,...,by € (—1,1) are, respectively, the weights and
abscissae of the quadrature rule. For details of Gaussian quadrature, see e.g. Davis and
Rabinowitz [16], Kress [33], Atkinson [3], Smith [47], Isaacson and Keller [28], and Blum [8].
These weights and abscissae are tabulated for certain functions p, e.g. p(t) = (1+¢)%(1 —t)b
for a,b > —1, in [1] or can be calculated by using standard subroutine libraries, e.g. [37].
Other methods for evaluating the integral (1.1) when f has singularities at 1 include

SINC quadrature, see e.g. Bialecki [6, 7], Lund and Bowers [38], and Stenger [48, 19].
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In this chapter, we consider a version of the quadrature method discussed in
Korobov [31], Sag and Szekeres [43], Schwartz [45], Iri et al. [27], Takahasi and Mori [50].
Mori [41], Hua and Wang [23], Sidi [46], and recently proposed by Kress [32, 33]. All
quadrature methods discussed by these authors are based on the Euler-Maclaurin
formula [16], which shows that the trapezium rule is very accurate for evaluating
integrals of the form (1.1) when f is smooth and many derivatives of f vanish at +1. In
these papers a variable transformation, sometimes called a periodizing transformation [34].

of the form ¢ = w(z) is applied, leading to the expression

+1
If = /_1 w'(z) f(w(z)) dz. (1.3)

In all the papers above, w € C*®°[—1,1] is injective and a large number or all derivatives

of w vanish at +1. Sag and Szekeres [43] proposed the TANH transformations,

w(z) = tanh (120952) , (1.4)

— T

for some ¢ > 0. Iri et al. [27] proposed the so-called IMT transformations,

~ /Ox ¢(s)ds w5
) /01 bs)ds |

w(z)

with

1—=x

o) = (-2 ). (1.6

for some ¢ > 0. Mori [41] proposed the Double Exponential transformations,

w(z) = tanh <a sinh (%‘%)) , (1.7)

for a,b > 0. Note that the functions w given by (1.4), (1.5) with (1.6), and (1.7) all satisfy
that w € C®[—1,1], and that all the derivatives of w vanish at 1.
The following are examples of functions w € C*°[-1,1] with only derivatives up to a

certain order vanishing at +1. Korobov [31] proposed the Polynomial transformations,

/ (1—32)’”_1 ds

O \
1

/ (l—sz)p_lds
0

w(x) = for p= 2, 3., (18)
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Sidi [46] proposed the SINE transformations,
7 7r3)p—1
COS —— ds
(=%
1 -1
/0 (cos %S)p ds

In 1998 Kress [33] also suggested a new mapping function w, equations (1.31) and (1.33)

w(z) =

, for p=2,3,.... (1.9)

of this thesis. All these mapping functions w are applied to one-dimensional integrals of
the form (1.1) via the representation (1.3) by the authors above. However, Beckers and
Haegemans [4] also consider a lattice rule for approximating multiple integrals, and apply
this transformation method with w given by (1.4), (1.5) with (1.6), and (1.7).

In this chapter we will develop an analysis of transformation methods satisfying that

w € C®[—1,1] with

Thus our analysis can be applied to the functions w given by equations (1.8), (1.9), or

(1.31) and (1.33). We consider the case discussed by Kress [33], where
FPOIsca-2t, =010,

for some ¢ € N and « in the range 0 < o < 1. Our analysis follows closely that of
Kress [33], but we generalise his results by considering the case o > 1 as well as the
case 0 < a < 1. More importantly, we sharpen his analysis considerably, establishing
higher rates of convergence with the same assumptions on f. The rates of convergence we
establish match those seen in the numerical experiments we carry out, in nearly all cases.

For ¢ € N and a > 0, by §9%[a, b] we denote the linear space of g-times continuously

differentiable functions f : (a,b) = R for which

sup [FD@)|[t-a)0 -] <00,  j=0,1,....q
a<t<b

On S%%[a, b] we define the norm

= max Ssup |f(j)(t)|[(t—a)(b—t)]j+1_a. (1.10)
J=0,.vq g<t<b

”qu,a,[a,b] :

Then if f € §9%[a,b], it holds that, for j = 0,1,...,4q,

FD®)] < |IF ], oy —a) b= 0“7, a<t<b (1.11)

We abbreviate S9¢[—1,1] and || - lg,e[~1,1] DY S§9% and || - ||q,a» Tespectively. Clearly,

S22 = S if go > ¢y and a1 2 @2 and || + lg1,00 < |- llga,00-
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1.1 The Trapezium Rule

Our numerical quadrature method will be based on the trapezium rule, the error in which is
quantified by the Euler-Maclaurin formula (e.g. Davis & Rabinowitz [16] and Kress [33]).

As usual, given ag, a1, ...,any € C, we abbreviate the sum %ao—i—al +as+---+ay-1+ %aN

1
by Z a; and we use the notation Ny := NU {0}. The following is the version of the
=0
Euler-Maclaurin formula that we require. We remind the reader that the Riemann zeta

function is defined by
ad 1
Z — s> 1.
et ns
Theorem 1.1 Let k € Ny, g € C*[a,b] N C*™(a,b) with
b
/ g%+ (z)] dz < oo, (1.12)
and, in the case that k > 1,
g™ (@) =g™ @) =0, m=12,...,k. (1.13)

Define h = (b—a)/N, zj = a+ jh for j =0,1,...,N. Then

" b T —a
/ da:whz glz) + (W[ @R (B ) de, (119
a

where, for 7 =1,3,5,...

i1 e 2sin 27rla:
Pj( = B Z (2rl)i z€R,
=1
and, for j =2,4,6,...,
o @]
J_z 2 cos 27rla:
Pj( 2 Z (2nl)] , z € R
I=

Proof. We first prove the result under the assumption that g € C*1[a,b]. Let [z] denote

the largest integer < z. It is easy to see that P;(z) is the Fourier series of the piecewise

linear periodic function with period one, T — |z] — 1/2. Thus
P(z)=z—|z]-1/2, z€R\Z (1.15)

Also

Pl(z)=1. z€R\Z (1.16)
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and

P(17)=-P(07) =1/2. (1.17)
Clearly, forn = 2,3,4, .. .,
Po(0) = Pa(1) = (=1)*F 2(2m) "¢(n) =: ba-1, (1.18)
and
P/(z) = Py_1(z), z€R\Z. (1.19)

(This last equation holds for all z € R for n > 3.) Suppose now that G € C**1[0, N]. By
using (1.16), (1.17), and integration by parts,

/ G(z)dz = - /01 G'(z)P(z) dz

Hence, using (1.18), (1.19), integration by parts, and induction, we find that

t\Dlr—x

k
/ Gla)dz = 2(G(0) +G(1) + (116 (GP(1) - GV (0))

j=1
1
+ (=1 G¥FD(2) Py (2) da.
0

Thus, fori =1,2,..., N,

So

/ON G(z)dz = é [/_1 G(z) da:]

N k
ZIIG +Z 1), G(] N) — G(J)(O))
j=0 j=1
N
+(-1)F [ GEY (@) Prya (2) da (1.20)
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Substituting z := hy + a in f; g(z) dz, we obtain

/abg(ﬂﬁ)dfv = h/ONg(hera)dy

where we have used the formula (1.20), which applies since g € C**1[a,b] so that G €
Ck*1[0, N], where G(y) := g(hy +a), 0 <y < N. Applying (1.13), we get

° N ’ zT—a
/ g(z)dz=h} g(xj>+(—h>’°+1/ g% (@) Py () da.
a ]:0 a

If g € C*[a,b] N C**1(a,b) and (1.13) holds then, for 0 < ¢ < (b —a)/2, g € C¥*}{a +
g,b — €]. Thus, where Z; = a+e+jh, for j =0,1,...,N, with h = (b —a — 2¢)/N, it
holds that

b—e N ~ b
/ g@)dz = 1S " g(5;) + (—h)’““/ G.(x) dz, (1.21)
a+te §=0 a
where
g(k+1)(w)pk+l(_—x_?“€), at+e<z<b-—g,
o h
Ge(z) =
0, otherwise.

Now, for a < z < b, Ge(z) — g* D (z) Pry1(552) as € — 0 and |Ge(z)] < |g%+1) ()]
|Pes1lloo- Thus, by the dominated convergence theorem, letting & — 0% in (1.21) we

obtain (1.14). ]

Corollary 1.1 If the conditions of Theorem 1.1 are satisfied, for some k € Ny, then

b N y Ck: b (k+1)
[ otarde =Y o) < g [ 1o V(@)]
a j___o a

where
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Proof. From Theorem 1.1

N
"
z)dz —h ) g(z;)
Jj=0

b
S hkl—{-l/
a

b
< | Pesal o 71 g% H D (2)] da

g% (@) Pew ()| do

Nk+1/ | k+1) |d.’L‘

where Cp = || Pey1]loo(b — @)¥*1. From the definition of Py1; and (1.15) it follows that
[Pe+1lloo = 1/2 if k = 0 and || Pey1lloo < grer¢(k+ 1), k € N. u

Theorem 1.2 Let g € S¥*2%q,b] with k €Ny and k+1 < o < k+ 2. Then

b N 114
/ glz)dz — 1Y g(a;)
a jZO

where C is a constant dependent only on a, b, «, and k.

—Q

< Cllglliszafan™ "

Proof. Throughout the proof, we let C' > 0 denote a generic constant dependent only on

a, b, a, and k. Since g € S¥*22[a,b] and o > k + 1, g € C¥[a, b N C**+2(a,b) with

/|g<k+1 ;dx<ug||k+zaab]/ a)(b— 2)]° ™ do < oo,

and, in the case that £k € N,

Thus the conditions of Theorem 1.1 are satisfied and, applying this theorem, we obtain

that
da:—hz < BN+ | L)), (1.22)
where
a+h _ b _
I —/a g (:L‘)Pk+1( . )dl‘+/b_hg (x)Pk+1< - )dﬂ?,
and

b—h Tr—a
I - / ¢V (2) Peys dz.
27 Joen ( h )
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By (1.11),

a+h
‘Ill < C|’9|ik+2,a,[a,b]/a [(;v —a)(b— 15)] R

b
+ C”9Hk+2,a,[a,b]/b_h [(z —a)(b- x)]a_k‘Q dz

< ChoTH Hg||k-|—2,a,[a,b]' (1.23)

By integration by parts, and (1.11),

= [ (S0 [ R (25

b—h
< Ch{|g(k+1)(a+h)| + |g(k+1)(b— h)| +/

, |g(k+2)($)| dCL‘}
a

b—h

< Ch”g||k+2,a,[a,b] {ha_k_Q +/a [(50 —a)(b— CL’)]a—k—3 dw}

+h

< Cha_k_1||gulc+2,a,[a,b]' (1.24)

(Note that this last step is where the condition that a < k+ 2 is required.) So, combining
(1.22), (1.23), and (1.24),

b N,
[ ot ds—13"o(ay)| < one
a =0

||g||lc+2,a,[a,b]

< C||g||k+2,a,[a,b]N_a'
|

Remark 1.1 If g € S¥*2*+2[q b] then g € S¥*22a,b] for 0 < o < k + 2, so that, from
Theorem 1.2 we deduce that

b N 1!
/ g@)dz — 1S "g(z;)
a ]____0

for all a < k + 2, where C is a constant dependent only on a, b, o, and k.

< C||g||k+2,k+2,[a,b]N_a

Corollary 1.1 implies that the trapezium rule is very effective for the evaluation of
(1.1) if f is smooth and many derivatives of f vanish at 1. To make use of this fact when
f € §%° for some q € N and o > 0, we will make the substitution t = w(z) in (1.1) where

the function w satisfies the following assumptions.
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Assumption 1.1 The function w : [-1,1) — [-1,1] is bijective, strictly increasing, and
infinitely differentiable (i.e., w € C®[-1,1]). Further, w is an odd function with, for

some integer p > 2,
w(-1) =wW(1) =0, j=1,2,....p—1,
and
w®)(£1) # 0.

Assuming that Assumption 1.1 holds, we will approximate the integral (1.1) by
substituting ¢ = w(z) to obtain that

+1 +1
ROEE / o(z) dx,

1

where

g(z) = w'(z) f (w(z)), (1.25)

and then apply the trapezium rule. Applying the trapezium rule with 2N + 1 points we
get that, since w'(—1) =0 = w'(1),

N-1

If = Inf= ) axf(ew), (1.26)

k=1-N

where, for k=1-N,...,N — 1,

ay ‘= %/.—w’(%) , T 1= w<]—]:[~) . (1.27)

Inf, given by (1.26), can be viewed as a new quadrature rule for If = f_+11f(t) dt,
appropriate when f has endpoint singularities, with ax and z; the weights and abscissae
of the quadrature rule, respectively. From the property of w in Assumption 1.1, it can be

seen that ax and z; have the symmetry properties that

a_jp = ak, T = — Tk, k‘—:l—N,,N—l (128)

Further, it is obvious that if p increases, by Assumption 1.1 and Taylor’s theorem applied

to w(k/N), the abscissae z; and z_j of the quadrature rule are graded more closely

towards the endpoints 1 and —1, respectively.
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Note that, if for some a > 0, V : [-1,1] — [0,qa] is bijective, strictly increasing, and

infinitely differentiable with, for some integer p > 2,

vi(-1)=0, j=1,2,...,p—1, (1.29)
and
v (—1) £0, (1.30)
then
_Viz) —V(-2)
w(z) = V@)tV (z) —-1<z<1, (1.31)

satisfies Assumption 1.1. In particular

Vi (z)V(—=z) + V'(—z)V(z)

N (PR ek

>0, -1<z<1.

Clearly, if for some b > 0, v : [-1,1] — [0, b] is bijective, strictly increasing, and infinitely
differentiable, with v'(—1) # 0, then V(z) = [v(z)]P satisfies (1.29) and (1.30). Thus,
examples of functions satisfying (1.29) and (1.30) are

V(z)=(1+2z)", ~1<z <1, (1.32)

and, as suggested by Kress [33],

p
Viz) = [(%_1>x3+1x+%] . —1<z<1. (1.33)
P p

A further example, for which we will make calculations, is

exp(—(l—l—m)‘l), -1<z<1,
V(a:) = (1.34)
0, z = —1.

With V given by (1.34), w given by equation (1.31) does not satisfy Assumption 1.1,

but w : [~1,1] — [-1,1] is bijective, strictly increasing, infinitely differentiable, an odd

function, and
w(j)(—l) = w(j)(l) =0, 7 € N.

The graphs of w(z) and w'(z) against z for each function 1" are depicted in Figures 1.1,

1.2 and 1.3, respectively. In Figure 1.2 it is seen that the choice (1.33). more sophisticated
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than (1.32), ensures that w'(0) = V'(0)/V(0) is fixed, independent of p, which in turn
ensures, from (1.27), that the density of quadrature points z; around z = 0 remains fixed
as p increases.

Through the remainder of this chapter, we assume that f € S?* for some g € N and

a > 0, that w satisfies Assumption 1.1, and that g is given in term of f by (1.25).
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Figure 1.1: w(z), w'(z) vs. z, with w given by equations (1.31) and (1.32).
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Figure 1.2: w(z), w'(z) vs. z, with w given by equations (1.31) and (1.33).
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1.2  Error Analysis

Our error analysis will be based on an application of Corollary 1.1. Before applying
Corollary 1.1, the following lemmas are needed to prove that the derivatives, up to a
certain order, of g(z) := w'(z) f(w(z)) vanish at z = +1. As usual, for ¢ € C[-1,1], we let
[8llco := max_1<c<1|#(C)] and, for ¢ € C(=1,1), let ||p]l := [T} |¢(t)| dt, if the integral
exists.

Throughout this section, we let C,C’ > 0 denote generic constants, whose value
depends at most on the values of ¢, in S?% p in Assumption 1.1, and on the choice of

the function w.
Lemma 1.1 If the conditions of Assumption 1.1 are satisfied, then
Cl+z)P <1lzxw(z) <C'(1+£z)?, -1<z<1
for some 0 < C < C' dependent on the choice of function w, and p in Assumption 1.1.

Proof. From Taylor’s theorem and the assumptions on w, we obtain that, for —1 <z <1,

wlP)(€)(1 + z)?

14+ w(z) = p

for some £ € [—1,z]. Thus

(p) 1 p
0<1l4+w(x) < Hw HO;’)'( ~2) , -1<z<1.

Further, since w®) is continuous and wP) (=1) # 0, for some € > 0,

W (1)

: <|lwP(z), -1<z<-1+e.
Thus
Ci(1+z)? <14 w(z), —1<z<~1+c¢,
where
Cy:= —___Iw(pz);!—lﬂ.

It is also true that, for every € > 0,

(1 + w(:v))(l + :E)p
op

<1+ w(z), —l+e<z <1
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Thus
Co(1+z)P <1+ w(z), —l+e<z <1,
where
Cp = 2_111&:11%51{1 +w(z)}.
So
Cl+z)’ <1+ w(z), ~-1<z<1,
with

C := min {C’l, C’g}.

We argue in the same way for 1 — w(z), except that we use the fact that, for —1 <z <1,

_wP )~z

1 —w(z) = p
for some ¢ € [z, 1], that, for some € > 0,
IiUmglw(”)(a:ﬂ, l1-e<z <1,
and that, for every € > 0,
(1—w(e)) (1 -z)" <l-w(z), -l1<z<l-—e¢

2P -

|
Lemma 1.2 If the conditions of Assumption 1.1 are satisfied, then for j =1,2,...,p—1,
lw ()] < C(1 — 2P, —-1<z<1.

Proof. From Taylor’s theorem, for j = 1,2,...,p—1and 0 < z <1 there exists £ € (z, 1)
such that
w1 (@ - )" w@ @)@~ 1P
Dz =S ¥ , + .
wi(z) =) (n —j)! (p—17)!

n=j

wP) (€)(z — 1)P
(p—J)!
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by Assumption 1.1. Thus

||w(p)Hoo(1 _ x)p—j

w?(z)] < S 0<es<l
< fw®| @-zP?,  0<z<l
It follows also that
w(z)] = [wd(—z)| < CL+ 2P, —1<z<o.
Thus, for y =1,2,...,p—1,
lw?(z)] < C(1 — 2P, -1<z<1.

Lemma 1.3 If f € §%* for some a > 0 and q € N and Assumption 1.1 holds then, for

7=0,1,...,q,
f9 (w(z))| < Ol f]], o1 — 2 let7p, ~l<z<1.
Proof. From (1.11),
FIOI< | f], 0=, —1<t<
Since w(z) € (—1,1) for z € (—1,1), it follows using Lemma 1.1 that

19 (w(z))] < 1£]l, o [(1 = w(z)) (1 T w(@))]o N
< Hf\lq,a[C(l —2)P(1 4 g)P]e" 177

= |1 — 22y

|
The next few results are concerned with obtaining bounds for the derivatives of g(z) :=
w'(z) f(w(z)). For expressions for these derivatives we need the following.

For r =0,1,...,¢,and j =0,1,...,7, let uj € C*°[-1,1] be defined recursively by

ug(z) = w'(z),

fdu;(a:), if =0,
T
+1 — ¢ du”
u3 (:v)—J “é("") iy (2)w (2), if j=1.2....rn
Z
| ur (z)w'(z), if j=r+1
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Lemma 1.4 If f € C9(—1,1) and g is defined by (1.25) then g € C%(—1,1) and. for
r=0,1,...,q,

Proof. For r = 0,

Ifre{0,1,...,¢—1} and

then

g7t (z) =

I
Q.
8
~
£

Remark 1.2 In the proof of the following lemma, we make use of the following elementary

fact. If F € C*®[-1,1] and, for somen € Z,
|F(z)| < C(1 —zH)", —l<z<l,
then
1

IF'(z)] < C'(1—2%)"7, ~l<z<1. (1.35)

(This is clear from Taylor’s theorem in the case n > 1. and in the case n <1 (1.35) holds

automatically for all F € C*°[-1,1].)
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Lemma 1.5 If w satisfies Assumption 1.1 then, forr =0,1,...,q, and j =0,1,....r.
[u}(z)] < O(1 — g?)P~1tip—T, —l<z<1. (1.36)
Proof. From Lemma 1.2
lug(z)| = |w'(z)] < C(1 — 22)P~1, ~-l1<z<l, (1.37)
o (1.36) holds for r = 0. If r € {0, 1,... ,q} and
lui(z)] < C(1—2?)P~1HP—r i =0,1,...,n —-l1<z<1,

then

duo

‘US—H ‘ — < C(l N mQ)p—l—('r-H)’

and, for j =1,2,...,r, using (1.37),

u @) < |22 g @)
< O(1 — g2y 1=,
while
11 ()| = Jur(2)w'(2)]

< O(l . $2)p—1+('r+1)p—(r+1)_

Thus (1.36) holds with r replaced by ~ + 1. By induction the result is established. |

Lemma 1.6 If f € §9¢%, for some ¢ € N and o > 0, Assumption 1.1 holds, and g is
defined by (1.25), then, forr =0,1,...,q,

90 (@) < C||f||, (1 =227, —1<z <],
so that g € STP with
191l 0 < ClIF g o

Proof. From Lemma 1.3,

1fD(w(2))] < C||f]], o (1 = z?) 7P,



Chapter 1 23

and from Lemma 1.5,

[w(2)] < O(1— Py,

Thus
[45(2) P (w(x))] < O], 4 (1 = z2)P71.
Using Lemma 1.4, we find that
97 (@) < O f], o1 —&®)P T,

and the result follows from (1.11). |

The following theorem is the main result of this chapter, and will be used throughout

the other chapters of this thesis.

Theorem 1.3 Suppose that w satisfies Assumption 1.1, f € S92, for some g € N and
a >0, with 1 < ap < q. Then the error in the quadrature (1.26) can be bounded by

17 - Infl < C| ], N7,

in the case ap ¢ N, where the constant C depends only on q, a, and on the function w. If

ap = q, then
1f — Infl < e:C|f], N0
for every € > 0, where cc > 0 depends only on ¢.

Proof. By Lemma 1.6, g € S9°P, with ||glig,ap < C||fllg,o- Hence and by Theorem 1.2, if
ap ¢ N,

11f = Infl < Cllgll, o, N7

g,ap
< CHqu,aN—ap'
In the case ap = g, the result follows on noting Remark 1.1. [

We finish this section with a comparison of this last theorem with results of previous
authors. Theorem 1.3 is closest to Theorem 9.33 in Kress [33] who has considered the

convergence of Iy f under the same Assumption 1.1 on w, and with the same assumption

that f € S»*. Kress shows that

If —Infl=0O(N"") as N — o (1.38)
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in the case that ¢ is an odd integer > 3 with ¢ < ap. Sidi [46] also has a similar estimate.
He makes a slightly stronger assumption than Assumption 1.1 on w, requiring additionally
that w'(z) has the asymptotic expansion

oo
w(z) ~ Y e(1—2)P" 1 a5 £ — 1
J=0

with €g > 0. (The fact that w is odd implies a similar behaviour as z — —1%.) He
restricts attention to two cases, that in which f € C9[—1,1] for some sufficiently large ¢
and that in which f(z) = (1 + z)*1(1 — 2)#~!g(z), where a > 0, 8 > 0 are not integers
and g € C?[—1,1]. In this latter case, he obtains that

If —Infl=O(N"%) as N — oo, (1.39)
where

w =min{ap,fp},

provided g is sufficiently large.

The convergence rate predicted by Theorem 1.3 is greater than that predicted by
(1.38), by as much as two for some values of ap (consider ap = 4.999, for example, for
which Kress predicts that (1.38) holds only for ¢ = 3). The convergence rate predicted
by (1.39) coincides with that predicted by Theorem 1.3, where they both apply, but
Theorem 1.3 is a much more general result (for example the result of Sidi does not apply
to f(z) = log(1 — z?) sinz, but Theorem 1.3 applies to this example since f € ST for all
a € (0,1) and g € N).
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1.3 Intervals Other Than [-1, 1]

The above sections consider the evaluation of If = fjll f(t)dt when f € ST°[-1.1].

Clearly, by a simple linear transformation, we can apply the above method and analysis

to evaluate, more generally,
_ b
If ::/ f(t) dt,
a
where f € §7%[a,b]. Precisely, if f € $2%[a, b] then

N b
if = / £(t) dt
+

~ o~

1
=/ fz)dz =1f

~Inf=Inf= > arf(zk), (1.40)
=1

where, for k=1—-N,...,N — 1,

and

Flo) o= (b;a>f<(b—a)x2+b+a>_

Further, for fe S§9%[—1,1], it can be shown that

171

wemef ()7 (597

Thus, applying Theorem 1.3, we obtain

g,a,[—1,1] < MHqu,a,[a,b]’ (141)

where

Theorem 1.3’ Suppose that w satisfies Assumption 1.1, f € 89%[a,b], for some g € N
and a > 0, and 1 < ap < q. Then the error in the quadrature (1.40) can be bounded by

Tf = Infl S CM||f |l g afan™
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in the case ap ¢ N, where the constant C depends only on q, o, and on the function w. If

ap = q, then

If = InF1 < ccCM|f ||, ooV

for every € > 0, where c. > 0 depends only on €.

Proof. From |ff — INNf| = |If— INfI, the results follow from Theorem 1.3, and (1.41). W
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1.4 Numerical Examples

Let
F(®) = (1 — )% Lcos(nt) (1.42)

for some o > 0, and n > 0. As an example to illustrate the use of the quadrature rule
(1.26), we will consider the problem of finding the numerical value of
+1
If = f(t) dt, (1.43)
1

for n =0,4,16 and a = 0.5,1.5. Note that the exact value of the integral (1.43) is

[ VL() 0
F(oz—i—%)’ ’
If =<
@Ja_%(n), TL>0,
L (5)7°

where J,, denotes the Bessel function of the first kind of order v. In particular, if & = 1/2
then I'f =7 ifn =0, nJo(n) if n > 0, and if o = 3/2 then If = 7/2 if n = 0, ZJ;(n)
if n > 0. For these values of n and «, the graphs of f(z) against = are depicted in
Figures 1.4 and 1.5. To see and appreciate the advantages of substituting the Kress form
of the mapping function w, given by (1.31) and (1.33), into the integral If, we also depict
the graphs of g(z) = w'(z) f(w(z)) against z for « = 0.5,1.5, n = 4 and, some values of p,
in Figures 1.6 and 1.7, respectively. It can be observed qualitatively in these figures that
the integrand g(z) is smoother than f(z), for the same choices of n and a, in particular
near the endpoints 41, where this smoothness increases as p increases. Near *1, g(z) is
flatter as ap increases, in accordance with Lemma 1.6.

In the following results, the integral If is estimated by Iy f, the quadrature rule
approximation (1.26), with 2N — 1 points. We note that, since f is even, and in view of

the symmetry properties (1.28),

N-1

Inf =aof(z0) +2 ) axf(ax), (1.44)

k=1

where, for k=1,...,N — 1,
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To enable comparison with the theoretical results of the error analysis, we will compute

the Estimated Order of Convergence (EOC) for this quadrature rule, given by

— If —Infl

In this and all numerical examples in the thesis, we use the interactive programming
system, Matlab, to carry out computations. We stop here to consider the effect of machine
accuracy on our computations. From the quadrature rule approximation (1.44), we can

see that the last abscissa

wamal(57) (o-4)

In finite machine precision, this number will be indistinguishable from w(1) = 1 if N is

large enough. Precisely, if w is calculated from (1.31), i.e., using

w(zx) = -1<z<1,

V(z) +V(-z)’
then w(z) will evaluate as 1 if V(z)—V (—z) evaluates as the same number as V (z)+V (—z).
This will happen when |V (—z)/V(z)| < €, where € is the smallest number such that 1 +e¢
is distinguishable from 1. Thus zy_;1 will evaluate as 1 for N > Ny, where Ny is the
solution of

V(*5%2)

V%)

(1.46)

If f(1) or f(—1) are undefined, as is the case for f given by (1.42) for o < 1, then, in
finite machine arithmetic, I f will be undefined for N > Ny. This can be fixed in part

by redefining f(#£1) to have the value zero or, equivalently, by replacing

N-1

INf = Z ar f(Tk) (1.47)

k=1-N

N-1

I9f:= Y Daxf(Ces), (1.48)

|Oer <1
where Cay and Ok denote the machine values for a; and zx. However, by not placing any
abscissae in the intervals (—1,—1+¢€) and (1 —¢,1), it can be argued that the formula

(1.48) ignores these parts of the integrals, making an error which may be estimated as

+1

—14e¢
EIEVJf:/_1 F(t)dt+ f(t)dt.

1—¢
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If f € 8% for some @ > 0 and g € N, this error is bounded by

+1
ERS1 S 2l [ (- ) ar

—£

Q

£
2l | u i

2%

(07

11, o (1.49)

If o > 1, this is of the same size as the machine precision but, if 0 < o < 1, €* can be

appreciably bigger than ¢. E.g. with f given by (1.42) with n = 0 and a = 0.5,

+1
EJf = 2/ (1 —12)"Y2g¢ ~ 2%/2 ¢ .

1—¢

In our implementation of Matlab,
€~ 2.220 x 10716, (1.50)
SO
EQf ~2%%/e ~ 4.2 x 1078, (1.51)

We will see below that this is an approximate limit on the accuracy that can be obtained
with (1.48) when N — oo.
From (1.46), we find that the analytic value of Ny for equation (1.32) is

1+¢el/p 1
No= 7 = 537 (1.52)
that the analytic value of Ny for equation (1.33) is
(30— 4)(1 + &%) + /(39 — 4)*(1 + £'/7) — 8p(3p — 6)€l/P (1 + £1/7)
NO ~ 4p51/i”
2p81/1’
and that the analytic value of Ny for equation (1.34) is
—lne—/ e 1-21
Ny = 1—1Ine l+In“e ne (154)

2 T2
With e given by (1.50), we tabulate values of Ny obtained from equations (1.52). (1.53).
and (1.54), in Table 1.11. Recall that for N > Ny, Iy f is undefined if f(+1) is undefined.
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In the tables of values of Iy f and related errors we show below, whenever Iy f evaluated
as NaN (Not a Number), which we expect to occur for N > Ny, we replace the (unknown)
value of I f by that of IE f, given by (1.48), putting numerical values calculated using
I%,] f in brackets to distinguish them from values calculated using Iy f.

All numerical results in Tables 1.1-1.6 are evaluated using the mapping function w
given by equations (1.31) and (1.33), suggested by Kress [33]. For comparison purposes,
we also show results, in Tables 1.7-1.8, computed using the mapping function w given by
equations (1.31) and (1.32), and results computed using the mapping function w given
by equations (1.31) and (1.34), in Tables 1.9-1.10. Recall that we compute the error in
estimating If with Iy f given by (1.44). So we calculate and tabulate the EOC given by
(1.45) in these tables. We also show at the top of each column the value of ap: recall that
it has been shown in Theorem 1.3 that, as N — oo, |If — Inf| = O(N®™°P) for e = 0 if
ap ¢ N, for every € > 0 if ap € N with ap > 2. To aid the comprehension of numerical
results, we have put the smallest error for each value of N in a box.

We can see below that the characteristics of the error in estimating If with Iy f
depends on n, a, the range of p, and the mapping function w. So we will investigate these

tables separately, pointing out interesting features as follows:

Tables 1.1, 1.2, and 1.3 (& = 0.5, n = 0,4, 16)

Considering these tables together, we can see that as p increases, the range of N for
which the EOC stabilises at ap reduces.

For p = 2(1)9 [except p = 6], initially as IV increases from N = 2, the EOC fluctuates
and then it stabilises at ap. It is observed that the EOC fluctuates again when the error
reaches about 10~8. This 1078 level is consistent with the prediction of (1.51). Using
(1.48) for large values of N when (1.47) is undefined does not offer any improvement. We
have no explanation as to why the results for p = 6 are much better in terms of faster
than anticipated convergence rate and seemingly less effect of rounding errors, at least
initially for N < 256. For p =6 [ap = 3], similarly, as N increases from N = 2, the EOC
fluctuates and it stabilises at ap + 1. Then it fluctuates again when the error reaches
about 10710,

For p = 10(5)25, as N increases from N = 2, the EOC increases significantly and
drops again when the error level 10~% is approached. An asymptotic 10~" error level as

N — oo is also observed for these values of p. However, an EOC of ap is never discernible:
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we guess that rounding error effects intervene before this asymptotic convergence rate is
achieved.
In Table 1.3 (n = 16), the errors are larger when N is smaller, reflecting the increased

complexity of the integrand.

Tables 1.4, 1.5, and 1.6 (o« = 1.5, n = 0,4, 16)

As predicted by (1.45), since @ = 3/2 > 1, there is no problem with rounding errors
in this case. It is seen that results close to machine precision are obtained for all p.

For p = 2 [ap = 3], again a larger than expected EOC of ap + 1 is obtained.

For p = 3(1)5, stabilisation for a while at an EOC of ap is observed. As p increases,
the range of N for which the EOC stabilises at ap reduces.

For p = 6(1)10, 15(5)25, an EOC of ap is never discernible, again, we imagine, because

of the intervention of rounding error effects.

Tables 1.7 and 1.8 (oo = 0.5,1.5, n = 4, w given by (1.31) and (1.32))

The calculations in these tables are identical with those in Tables 1.2 and 1.5 except
that the function w is different, given by the simpler formulae (1.31) and (1.32). The more
sophisticated function w of equations (1.31) and (1.33), proposed by Kress [33], achieves
an approximately constant density of integration points around z = 0 as p increases. By
contrast, (1.31) and (1.32) give a decreasing density of points around z = 0 as p increases,
the points being redistributed towards £1. On the whole, the results in Tables 1.2 and
1.5 are better, at least for smaller values of N. In particular, in Tables 1.2 and 1.5, for
N = 2,4,8,16,32, the minimum error achieved over all values of p is much better than

in Tables 1.7 and 1.8, respectively, and for large values of N there is not much to choose

between these tables.

Tables 1.9 and 1.10 (o = 0.5,1.5, n = 4, w given by (1.31) and (1.34))

We note that w given by equations (1.31) and (1.34) does not satisfy Assumption 1.1
since wP)(£1) = 0 for all p € N. So Theorem 1.3 does not apply in this case, though, since
wP)(£1) = 0 for all p € N, we would expect that \If —Infl=0O(N"")as N — oo for all
r € N. However, for a = 0.5, we can see that the quadrature rule (1.26) with w given by
(1.31) and (1.34) will encounter effects of rounding errors even for N not too large (from

Table 1.11, for N > 37), suggesting that the quadrature rule (1.26) is overgraded, i.e., that
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its abscissae are too close to +1. Comparing Tables 1.9 and 1.10 with Tables 1.2 and 1.5,
in which identical calculations are carried out except that w given by (1.31) and (1.33) is
used, we see that w given by (1.31) and (1.34), which has all derivatives vanishing at +1.
leads to much less accurate results than w given by (1.31) and (1.33) with p = 6, which

has only derivatives up to order 5 vanishing at +1.
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f(x)
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f(x)
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-1 -0.8 -0.6 -0.4 -0.2 0 0.2 04 0.6 0.8 1

Figure 1.4: f(z) vs. z, with f given by equation (1.42) for n = 0,4,16 and @ = 0.5.
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Figure 1.5: f(z) vs. z, with f given by equation (1.42) for n = 0,4.16 and a = 1.5.
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ot
5

(=]

-0.5

g(x)= w (x) f(w(x))

-15

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 04 0.8 0.8 1

g(x)= w (x) F(w(x))

g(x)= w (x)F(w(x))

-1 -0.8 -08 -0.4 -0.2 ] 0.2 0.4 0.6 o8 1

Figure 1.6: g(z) vs. z, with f given by equation (1.42) for n = 4 and a = 0.5.
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g(x)= w (x) F(w(x))

g(x)= w (x)F{w(x))

15 L 1 1 1 1 1 L 1 L
-1 -0.8 -0.6 -04 -0.2 0 0.2 04 0.6 0.8 1

glx)= w (x)f(w(x))

-25 L

Figure 1.7: g(z) vs. z, with f given by equation (1.42) for n = 4 and a = 1.5.
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Table 1.1: n=0,a =05, If =

p=2, ap=1.0 p=3, ap=15 p=4, ap=2.0
N |If—INf| EOC |If—INf| EOC |If—INf| EOC
2 5.4159E—01 3.4867TE—01 1.6212E-01
1.0564 1.5286 1.9525
4 2.6042E—-01 1.2086E—-01 4.1886E—02
1.0291 1.5139 2.0056
8 1.2760E—01 4.2319E—-02 1.0431E—-02
1.0148 1.5067 2.0015
16 6.3151E—02 1.4893E—02 2.6051E—-03
1.0075 1.5033 2.0004
32 3.1413E—-02 5.2536E—03 6.5110E—-04
1.0037 1.5016 2.0001
64 1.5666E—02 1.8553E—-03 1.6276 E—04
1.0019 1.5008 2.0000
128 7.8227E—-03 6.5559E—-04 4.0690E—-05
1.0009 1.5004 2.0000
256 3.9088E—-03 2.3172E-04 1.0173E—05
1.0005 1.5002 2.0000
512 1.9538E—03 8.1915E—05 2.5431E-06
1.0002 1.5001 2.0000
1024 9.7672E—-04 2.8959E—-05 6.3578E—-07
1.0001 1.5000 2.0043
2048 4.8832E—-04 1.0238E—05 1.5847E—-07
p=5 ap=25 p=6, ap=3.0 p=7 oap=3.5
N |If—INf| EOC |If—INf| EOC |If—INf| EOC
2 2.5374E—-02 5.9704E—-02 9.8951E—-02
1.4419 6.1604 5.5761
4 9.3395E—-03 8.3469E—-04 2.0741E-03
2.4429 4.0888 3.5271
8 1.7177E—03 4.9054E-05 1.7992E—04
2.4722 4.0236 3.5757
16 3.0956E—-04 3.0162E—-06 1.5089E—05
2.4857 4.0058 3.5362
32 5.5269E—-05 1.8775E—-07 1.3007E—06
2.4927 3.9947 3.5252
64 9.8197E—06 1.1778E—08 1.1297TE—07
2.4963 3.9701 3.0661
128 1.7403E—-06 7.5154E—10 1.3490E—-08
2.4987 —1.4235
256 3.0793E-07 2.0159E-09 (1.0119E—07)
2.4941 —3.2021 (0.7316)
512 5.4658E—08 1.8552E—08 (6.0940E—08)
2.2821 (0.6098)
1024 1.1237E—-08 (8.8040E—09) (3.9932E—08)
(—1.6897) (0.3394)
2048 (6.9460E—08) (2.8401E—08) (3.1562E—08)
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p=28, ap=4.0 p=9, ap=4>5 p=10, ap=25.0
N |1f —Inf| EOC [I[f—1Inf] EOC |1f —Inf| EOC
2 || 9.9871E—02 6.9896E—02 1.5783E—02
7.5007 5.6997 2.4234
4 || |5.5146E—04 1.3449E—-03 2.9422E—03
2.7823 6.2852 10.2655
8 || 8.0160E—05 1.7244E—-05 2.3903E—06
4.0092 4.3597 5.8849
16 || 4.9782E—06 8.3994E—07 4.0450E—08
4.0016 4.4029 2.8575
32 || 3.1080E-07 3.9703E—08 5.5812E—09
3.7553 2.4345
64 || 2.3015E—08 7.3444E—09 (7.3843E—08)
0.5586 (0.8003)
128 || 1.5627E—08 (2.2580E—08) (4.2402E-08)
(—1.1940) (0.2706)
256 || (1.8995E—08) (5.1661E—08) (3.5151E—08)
(—0.3586) (0.7805) (—0.0813)
512 || (2.4354E—08) (3.0075E—08) (3.7188E—08)
(—0.3316) (0.0858) (0.2185)
1024 || (3.0648E—08) (2.8339E—08) (3.1962E—08)
(—0.1271) (—0.1945) (—0.1313)
2048 || (3.3471E—08) (3.2429E—-08) (3.5008E—08)
p=15 ap=175 p=20, ap=10.0 p=25ap=125
N || |If-1Inf| EOC |1f —Inf| EOC |1f - Inf| EOC
2 || 4.4122E-01 9.4406E—01 1.3486E+00
5.8005 8.0372 5.8199
4 || 7.9163E—03 3.5939E—03 2.3873E—02
11.8626 6.3065
8 || |2.1257E—06 4.5405E—05 (7.6575E—05)
4.7727 (12.5465)
16 || 7.7765E—08 (4.3376E—09) (1.2800E—08)
(—2.6658) (3.1431)
32 || (3.9542E-08) (2.7525E—08) (1.4489E—09)
(0.3304) (0.6579) (—3.6542)
64 || (3.1448E—08) (1.7446E—08) (1.8242E—08)
(—0.0704) (—0.8287) (—1.0178)
128 || (3.3021E—08) (3.0985E—08) (3.6937E—08)
(—0.3350) (—0.2024) (—0.0693)
256 || (4.1652E—08) (3.5651E—08) (3.8754E—08)
(—0.0321) (0.0478) (0.0909)
512 || (4.2590E—08) (3.4489E—08) (3.6389E—08)
(0.0632) (0.2032) (—0.0074)
1024 || (4.0766E—08) (2.9958E—08) (3.6575E—08)
(—0.0551) (—0.0739) (0.0807)
2048 || (4.2353E—08) (3.1533E—08) (3.4585E—08)
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Table 1.2: n =4, a=0.5, If = nJy(4) =~ —1.2477

p=2, ap=1.0 p=3, op=15 p=4, ap=20
N \If —Inf| EOC |[If —Inf] EOC Hf—Inf| EOC
2 6.5041E-01 4.8109E—-01 3.5563E—-01
1.9326 2.6100 3.6622
4 1.7038E-01 7.8801E—02 2.8092E—02
1.0307 1.5106 2.0426
8 8.3395E—-02 2.7656E—02 6.8188E—03
1.0146 1.5064 2.0016
16 4.1278E—-02 9.7345E—03 1.7028E—03
1.0074 1.5032 2.0004
32 2.0533E-02 3.4340E—-03 4.2559E—-04
1.0037 1.5016 2.0001
64 1.0240E—-02 1.2127E—-03 1.0639E—04
1.0019 1.5008 2.0000
128 5.1132E—03 4.2852E—04 2.6597E—05
1.0009 1.5004 2.0000
256 2.5550E—03 1.5146E—04 6.6492E—06
1.0005 1.5002 2.0000
512 1.2771E-03 5.3543E—05 1.6623E—06
1.0002 1.5001 2.0000
1024 6.3843E—04 1.8929E-05 4.1557TE—07
1.0001 1.5000 2.0043
2048 3.1919E-04 6.6922E—06 1.0358E—07
p=5 ap=25 p=6, ap=3.0 p=7, ap=35
N [If —INnf] EOC Hf—1Infl EOC [If —Inf] EOC
2 3.0644E-01 3.1776E—01 3.6947E—01
4.9003 5.1495 4.9575
4 1.0262E—-02 8.9527E—03 1.1891E—-02
3.1923 8.1384 6.7344
8 1.1226E—03 3.1773E-05 1.1168E—04
2.4720 4.0104 3.5012
16 2.0234E—-04 1.9715E—06 9.8630E—06
2.4857 4.0058 3.5362
32 3.6126E—05 1.2272E—-07 8.5019E—-07
2.4927 3.9947 3.5252
64 6.4186E—06 7.6985E—09 7.3845E—08
2.4963 3.9701 3.0661
128 1.1375E—06 4.9124E-10 8.8175E—09
2.4987 —1.4235
256 2.0127TE—-07 1.3177E—-09 (6.6143E—08)
2.4941 —3.2021 (0.7316)
512 3.5727TE—08 1.2127E-08 (3.9833E—08)
2.2821 (0.6098)
1024 7.3452E—-09 (5.7546E—09) (2.6102E—-08)
(—1.6897) (0.3394)
2048 (4.5402E—08) (1.8564E—08) (2.0630E—08)
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p:8, ap:40 p= 9, ap:45 p= 10, C!p:50
N |If —Inf]| EOC |If — Iy fl EOC |[If—1Inf] EOC
2 4.4534E-01 5.3413E—01 6.2866E—01
5.2613 6.8911 5.8995
4 1.1611E—02 4.5001E—03 1.0532E—02
8.9632 5.9360 5.8616
8 2.3264E—05 7.3505E—05 1.8113E—04
2.8378 7.0648 12.7461
16 3.2540E—06 5.4902E—07 2.6365E—08
4.0016 4.4029 2.8534
32 2.0315E—07 2.5952E—08 3.6481E—09
3.7553 2.4345
64 1.5044E—08 4.8006E—09 (4.8267TE—08)
0.5586 (0.8003)
128 1.0215E—08 (1.4760E—08) (2.7716E—08)
(—1.1940) (0.2706)
256 || (1.2416E—08) (3.3768E—08) (2.2977E—08)
(—0.3586) (0.7805) (—0.0813)
512 | (1.5919E—08) (1.9658E—08) (2.4308E—08)
(—0.3316) (0.0858) (0.2185)
1024 || (2.0033E—08) (1.8524E—08) (2.0892E—08)
(-0.1271) (—0.1945) (—0.1313)
2048 || (2.1878E—08) (2.1197E—08) (2.2883E—08)
p=15 oap=175 p=20, ap=10.0 p=25, oap=12.5
N |If — Iy f EOC \If —Inf EOC |If —Infl| EOC
2 1.0862E+00 1.4547E+00 1.7274E+00
2.6073 1.8239 1.4366
4 1.7826E—01 4.1090E—01 6.3816E—01
9.8468 6.3414
8 1.9358E—04 5.0674E—03 (1.6034E—-02)
11.5683 (13.0059)
16 6.3747E—08 (5.4460E—08) (1.9493E—06)
(1.5979) (11.0072)
32 || (2.5847TE—08) (1.7992E—08) (9.4709E—-10)
(0.3304) (0.6579) (—3.6542)
64 || (2.0556E—08) (1.1403E—08) (1.1924E—08)
(—0.0704) (—0.8287) (—1.0178)
128 || (2.1584E—08) (2.0253E—08) (2.4143E—08)
(—0.3350) (—0.2024) (—0.0693)
256 || (2.7226E—08) (2.3303E—08) (2.5331E—08)
(—0.0321) (0.0478) (0.0909)
512 || (2.7839E—08) (2.2543E—08) (2.3785E—08)
(0.0632) (0.2032) (—0.0074)
1024 || (2.6646E—08) (1.9582E—08) (2.3907E—08)
(—0.0551) (—0.0739) (0.0807)
2048 || (2.7684E—08) (2.0611E—08) (2.2606E—08)

10



Chapter 1

Table 1.3: n =16, a = 0.5, I f = nJo(16) ~ —5.4946 x 101

p=2, ap=1.0 p=3, ap=1.5 p=4, ap=20
N [If—Inf| EOC 1If—Inf| EOC |[If—INnfl EOC
2 3.1060E4-00 2.9364E+-00 2.2792E+00
1.0251 1.1683 1.3394
4 1.5262E4-00 1.3065E4-00 9.0066E—01
3.5972 4.9882 6.9320
8 1.2611E-01 4.1165E—02 7.3763E—03
1.0602 1.5292 1.5640
16 6.0476 E—02 1.4262E—-02 2.4948E-03
1.0074 1.5032 2.0004
32 3.0083E—02 5.0311E-03 6.2353E—04
1.0037 1.5016 2.0001
64 1.5002E—02 1.7768E—03 1.5587E—04
1.0019 1.5008 2.0000
128 7.4915E—03 6.2783E—-04 3.8967E—05
1.0009 1.5004 2.0000
256 3.7433E—-03 2.2191E-04 9.7418E—06
1.0005 1.5002 2.0000
512 1.8710E-03 7.8446E—05 2.4354E-06
1.0002 1.5001 2.0000
1024 9.3537E—04 2.7733E—-05 6.0886E—07
1.0001 1.5000 2.0043
2048 4.6765E—04 9.8048E—06 1.5176 E—Q7
p=5 ap=25 p=6, ap=3.0 p=7, ap=35
N |[If —1Inf| EOC |[If—1Inf| EOCC IIf—1Inf]| EOC
2 1.4073E4-00 6.1903E—01 4.5558E—02
1.8931 2.2375 -3.6235
4 3.7888E-01 1.3127E-01 5.6152E—-01
6.9528 3.4441 3.8647
8 3.0584E—-03 1.2061E—02 3.8546E—02
3.3669 12.0297 11.3980
16 2.9645E—-04 2.8845E—-06 1.4284E—-05
2.4857 4.0038 3.5195
32 5.2929E—05 1.7980E—-07 1.2456E—06
2.4927 3.9947 3.5252
64 9.4039E—06 1.1279E—-08 1.0819E—07
2.4963 3.9701 3.0660
128 1.6666E—06 7.1972E—-10 1.2919E—-08
2.4987 —1.4235
256 2.9489E—-07 1.9306E—09 (9.6907E—08)
2.4941 —3.2021 (0.7316)
512 5.2344E—-08 1.776 TE—08 (5.8360E—08)
2.2821 (0.6098)
1024 1.0761E-08 (8.4312E-09) (3.8242E-08)
(—1.6897) (0.3394)
2048 || (6.6519E—08) (2.7198E—08) (3.0226E—08)
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p=28, ap=4.0 p=9, ap=45 p=10, ap=>5.0
N\ If-Infl EOC | |If - Inf]| EOC | |If—Inf] EOC
2 || 3.0680E—01 4.8377TE—01 5.3900E—01
~1.5507 —1.2540 —1.3150
4 || 8.9878E—01 1.1538E+00 1.3410E4-00
3.2148 2.5892 2.0754
8 || 9.6807E-02 1.9173E—-01 3.1819E—01
14.8644 15.1164 14.5810
16 || 3.2455E—06 5.3975E—06 1.2982E—05
3.4468 7.1493 11.2461
32 || 2.9764E—07 3.8022E—08
3.7553 2.4345 (—3.7258)
64 || 2.2041E—08 (7.0716E—08)
0.5586 (0.8003)
128 || 1.4965E—08 (2.1624E—08) (4.0607E—08)
(—1.1940) (0.2706)
256 || (1.8190E—08) (4.9473E—08) (3.3663E—08)
(—0.3586) (0.7805) (—0.0813)
512 || (2.3323E—08) (2.8802E—08) (3.5614E—08)
(—0.3316) (0.0858) (0.2185)
1024 || (2.9351E—08) (2.7139E—08) (3.0608E—08)
(—0.1271) (—0.1945) (—0.1313)
2048 || (3.2054E—08) (3.1056E—08) (3.3525E—08)
p=15, ap=75 p=20, ap=10.0 p=25 oap=125
N || |If-Inf] EOC | |If—Inf] EOC | |If - INnf]| EOC
2 || 1.3571E-01 3.8819E—01 7.8713E—01
—3.4723 —0.5684 ~0.3301
4| 1.5061E+00 5.7563E—01 9.8951E—01
0.6461 —0.5842
8 || 9.6240E—01 8.6299E—01 (1.0224E—01)
10.1813 (2.4613)
16 || 8.2884E—04 (1.5721E—04) (1.8566E—02)
(12.5519) (21.0464)
32 || (3.7870E-08) (2.6181E—08) (8.5729E—09)
(0.3305) (0.6480) (=1.0270)
64 || (3.0116E—08) (1.6707E—08) (1.7469E—08)
(—0.0704) (—0.8287) (—1.0178)
128 (3.1623E—08) (2.9673E—08) (3.5373E—08)
(—0.3350) (—0.2024) (—0.0693)
256 || (3.9889E—08) (3.4142E—08) (3.7113E—08)
(—0.0321) (0.0478) (0.0909)
512 | (4.0787E—08) (3.3028E—08) (3.4848E—08)
(0.0632) (0.2032) (—0.0074)
1024 || (3.9040E—08) (2.8689E—08) (3.5026E—08)
(—0.0551) (—0.0739) (0.0807)
2048 || (4.0560E—08) (3.0198E—08) (3.3120E—08)
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Table 1.4: n=0,a=1.5, If = n/2

p=2, ap=3.0 p=3, ap=45 p=4, ap=26.0
N\ f-1Ing) EOC | |If—INf] EOC | |If—1Inf] EOC
2 || [5.2037E—03 7.9525E—03 5.5261E—02
5.3283 6.8776 9.0321
4 || 1.2952E—04 6.7629E—05 1.0556E—04
3.9939 4.2374 7.7530
8 || 8.1295E—06 3.5856E—06 4.8932E—07
3.9988 4.4075 6.0103
16 || 5.0850E—07 1.6895E—07 7.5911E—09
3.9997 4.4576 6.0031
32 || 3.1787E—08 7.6895E—09 1.1835E—10
3.9999 4.4794 6.0008
64 || 1.9868E—09 3.4472E-10 1.8483E—12
4.0000 4.4898 6.0007
128 || 1.2418E-10 1.5343E—11 2.8866E—14
3.9999 4.4956 4.4374
256 || 7.7616E—12 6.8012E—13 1.3323E-15
4.0031 4.5584 1.0000
512 || 4.8406E—13 2.8866E—14 6.6613E—16
3.8807 5.0224 —0.7370
1024 || 3.2863E—14 8.8818E—16 1.1102E—15
4.6245 —2.0000 —0.8480
2048 || 1.3323E-15 3.5527E—15 1.9984E—15
p=>5 ap=7>5 p=6, ap=9.0 p=7, ap=10.5
N |If - Inf] EOC | |If—INf]| EOC | |If—INf] EOC
2 || 1.2246E-01 1.9579E—01 2.6628E—01
7.8849 7.3457 8.0077
4 || 5.1811E—04 1.2037E—03 1.0346E—03
13.2541 15.0568 11.8127
8 || 5.3034E-08 3.5316E—08 2.8761E—07
7.7402 13.0131 19.6115
16 || 2.4803E-10 4.2719E-12 3.5905E—13
7.6211 10.0618 8.6591
32 || 1.2599E-12 3.9968E—15 8.8818E—16
7.4702 3.1699 -
64 || 7.1054E-15 4.4409E—16 [ o ]
- ~2.1699 -
128 | [ 0o ] 1.9984E—-15 2.2204E—16
_ ~3.0000
256 || 4.4409E-16 [ o ] 1.7764E—15
~0.5850 0.6781
512 || 6.6613E—16 1.7764E—15 1.1102E—15
~1.8745 1.0000 —0.8480
1024 || 2.4425E—15 8.8818E—16 1.9984E—-15
—0.4475 —0.8074 ~1.3536
2048 || 3.3307E-15 1.5543E—015 5.1070E—15
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p=8, ap=12.0 p=9, ap=13.5 p=10, ap=15.0
N |1f - Inf] EOC [1f —Inf| EOC [1f —Inf| EOC
2 || 3.2915E—01 3.8250E—01 4.2621E—01
8.2749 6.1026 5.1039
4| 1.0627E—03 5.5664E—03 1.2393E—02
10.8531 13.3272 11.0877
8 || 5.7450E—07 5.4160E—07 5.6945E—06
22.9559 24.3011 24.4526
16 || 7.0610E—14 2.6201E—14 2.4802E—13
8.3129 5.8826 9.1254
32 || 2.2204E—16 4.4409E—16 4.4409E—16
0 1.0000 -
64 || 2.2204E-16 2.2204E—16 0
128 0 2.2204E—16 0
256 || 6.6613E—16 0 6.6613E—16
—0.7370 2.5850 -
512 || 1.1102E—15 2.2204E—16 [ o ]
- —3.0000 -
102 || [ 0o ] 1.7764E—15 4.4409E—16
- —0.9069 —3.0000
2048 || 1.3323E—15 3.3307E—15 3.5527E—15
p=15 ap=225 p=20, ap=30.0 p=25 ap=375
N [1f — Inf]| EOC |1f —Inf| EOC [If —Inf| EOC
2 || 5.3734E—01 5.6402E—01 5.6951E—02
3.0920 2.5065 2.5216
4| 6.3016E—02 9.9261E—02 9.9183E—04
9.8921 7.7463 5.8172
8 || 6.6316E—05 4.6228E—04 1.7591E—07
18.5824 16.9398 16.9778
16 || 1.6895B—10 3.6772E—09 1.3629E—09
19.5373 22.9812 -
32 || 2.2204E-16 4.4409E-16 [ o ]
~1.0000 1.0000 -
64 || 4.4409E—16 2.2204E—16 2.2204E~16
—0.5850 —1.0000 ~1.5850
128 || 6.6613E—16 4.4409E—16 6.6613E—16
0.5850 —0.5850 -
256 || 4.4409E-—16 6.6613E—16 0
~1.8074 0.5850 -
512 || 1.5543E-15 4.4409E—16 2.2204E—16
0.8074 ~2.1699 ~2.5850
1024 || 8.8818E-16 1.9984E—15 1.3323E—15
~2.3923 —0.2895 0.5850
2048 || 4.6629E—15 2.4425E—15 8.8818E—16
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Table 1.5: n =4, a = 1.5, If = TJ;(4) ~ —5.1870 x 10~2

p=2, ap=3.0 p=3, ap=4.5 p=4, ap=6.0

N [If —INf]| EOC [If —Inf]| EOC Hf—1Inf] EOC

2 4.7685E—-01 4.9729E-01 5.5910E-01
8.5017 10.2763 7.9099

4 1.3156E—03 4.0100E—-04 2.3247E-03
7.9897 7.4051 12.7413

8 5.1761E—06 2.3658E—06 3.3950E—-07
3.9703 4.4197 6.0960

16 3.3023E-07 1.1054E—-07 4.9632E—-09
3.9927 4.4588 6.0035

32 2.0744E-08 5.0268E—09 7.7362E—11
3.9982 4.4796 6.0010

64 1.2981E-09 2.2533E-10 1.2079E—12
3.9995 4.4898 5.9842

128 8.1159E—11 1.0029E—11 1.9082E—-14
3.9999 4.4949 11.4252

256 5.0729E—-12 4.4478E—-13 6.9389EK—18
3.9989 4.4657 —2.5850

512 3.1730E—-13 2.0130E—14 4.1633E-17
3.9859 4.6320 —2.3219

1024 2.0026E—14 8.1185E—16 2.0817E—-16
3.9024 1.1424 -0.9511

2048 1.3392E—15 3.6776E—16 4.0246E—16

p=5  ap=75 p=6, ap=29.0 p=7, op=105

N [If —Inf| EOC [ If —Inf]| EOC |[If—Inf| EOC

2 6.4061E—01 7.2310E-01 7.9660E—01
6.6882 5.5982 4.7156

4 6.2120E—03 1.4926E—02 3.0318E—-02
13.3336 11.1520 9.9873

8 6.0174E-07 6.5595E—06 2.9871E—05
11.8578 21.1480 25.1863

16 1.6213E—10 2.8229E—12 7.8236E—13
7.6210 10.1342 12.4608

32 8.2362E—13 2.5119E—15 1.3878E—16
7.5350 6.4998 0.7370

64 4.4409E-15 2.7756E—17 8.3267TE—17
4.7370 —0.5850 —1.4150

128 1.6653E—16 4.1633E-17 2.2204E—-16
0.1926 —1.1155 0.6781

256 1.4572E—16 9.0206E—-17 1.3878E—16
—0.8171 —1.6919 0.2345

512 2.5674E—-16 2.9143E—-16 1.1796E—16
3.6245 -0.4406 —0.9125

1024 2.0817E-17 3.9552E—16 2.2204E-16
—3.7370 1.8329 —0.7004

2048 2.7756E—16 1.1102E-16 3.6082E—16




Chapter 1

p=38, ap=12.0 p=9, ap=13.5 p=10, ap=15.0

N \[f —Infl EOC | |If —Inf] EOC | |If—Inf| EOC

2 || 8.5757E~01 9.0597E—01 9.4336E—01
4.0262 3.4834 3.0481

4 || 5.2635E—02 8.1005E—02 1.1405E—01
9.3849 9.2201 9.5821

8 || 7.8727E—05 1.3583E—04 1.4880E—04
24.1591 20.7433 18.7256

16 || 4.2025E—12 7.7382E—11 3.4328E—10
15.4008 18.7103 21.1007

32 1.8041E—16 1.5266E—16
—1.6521 —0.6215 —0.9329

64 || 3.0531E—16 2.7756E~16 2.9143E—16
1.8745 0.8625 3.3923

128 || 8.3267E—17 1.5266E—16

—~1.5443 —1.5178 —2.4594

256 || 2.4286E—16 4.3715E—16 1.5266E—16
—0.6781 1.4537 —0.1844

512 || 3.8858E—16 1.5959E—16 1.7347E—16
0.5594 1.0641 3.0589

1024 || 2.6368E—16 7.6328E—17 2.0817E—17
—0.3959 —2.0000 —3.8745

2048 || 3.4694E—16 3.0531E—16 3.0531E—16

p=15 ap=225 p=20, ap=30.0 p=25ap=37.5

N IIf - Inf| EOC | |If —Infl EOC | |If —Inf]| EOC

2 || 1.0290E+00 1.0474E+00 1.0510E+00
1.7632 1.1910 0.9499

4| 3.0313E—01 4.5876E—01 5.4410E—01
6.7295 5.4159 5.2848

8 || 2.8566E—03 1.0746E—02 1.3957E—02
15.7100 13.8778 11.8507

16 || 5.3291E—08 7.1383E—07 3.7791E—06
28.5165 32.5821 27.4195

32 | 1.3878E—16 1.1102E—16 2.1053E—14
—0.1375 —0.5850 3.9971

64 || 1.5266E—16 1.6653E—16 1.3184E—15
0.6521 0.2630 4.2479

128 || 9.7145E—17 1.3878E—16 6.9389E—17
3.8074 0.6215 —0.4854

256 || 6.9389E—18 9.0206E—17 9.7145E—17
—5.6724 —0.8845 —1.3219

512 || 3.5388E—16 1.6653E—16 2.4286E—16
2.6724 0.6781 2.5443

1024 || 5.5511E—17 1.0408E—16 4.1633E—17
~1.3923 —1.3785 —3.3458

2048 || 1.4572E—16 2.7062E—16 4.2327E—16
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Table 1.6: n =16, a = 1.5, If = &J;(16) ~ 1.7749 x 1072

p=2, ap=30 p=3, ap=4.5 p=4, ap=6.0

N |If —Infl EOC [If—Inf] EOC |If —INf]| EOC

2 || 1.5426E+00 1.4176E+00 1.1723E400
0.7010 0.7789 0.9795

4| 9.4893E—01 8.2622E—01 5.9452E—01
7.1107 8.6674 6.8160

8 || 6.8660E—03 5.2764E—03
13.7937 13.6150 19.4680

16 || 4.8349E—07 1.6197E—07 7.2758E—09
3.9918 4.4589 6.0043

32 || 3.0389E—08 7.3648E—09 1.1334E—10
3.9981 4.4796 6.0007

64 || 1.9019E—09 3.3013E—10 1.7702E—12
3.9995 4.4899 5.9818

128 || 1.1891E—10 1.4693E—11 2.8009E—14
3.9999 4.4954 5.1085

256 || 7.4320E—12 6.5140E—13 8.1185E—16
4.0006 4.5148 0.8931

512 || 4.6432E—13 2.8495E—14 4.3715E—16
4.0183 4.8489 0.9773

1024 || 2.8654E—14 9.8879E—16 2.2204E—16
4.2109 2.1325 ~0.7549

2048 || 1.5474E—15 2.2551E—16 3.7470E—16

p=5 ap=75 p=6, ap=9.0 p=7 ap=10.5
N || If-1Infl EOC | |If —Inf] EOC | |If—Inf| EOC
2 || 9.5213E—01 8.2375E—01
1.4709 2.7512 3.6545
4 || 3.4349E—01 1.2235E—01

4.3161 1.5423 —0.5023

8 || 1.7245E—02 4.2007E—02 8.7496E—02
24.8646 20.2882 17.7249

16 3.2807E—08 4.0389E—07
8.8705 22.8509 30.3010

32 || 1.2064E—12 4.3368E—15 3.0531E—16
7.6242 3.6012 0.0332

64 || 6.1132E—15 3.5735E—16 2.9837E—16
4.7386 0.0718 1.2563

128 || 2.2898E-16 3.4001E—16 1.2490E—16
~0.2035 0.4053 —1.8524

256 || 2.6368E—16 2.5674E—16 4.5103E—16
0.4406 —0.2168 0.1895

512 2.9837E—16 3.9552E—16
—0.5850 0.1783 ~0.5334

1024 || 2.9143E-16 2.6368E—16 5.7246E—16
0.5097 —0.3067 1.4594

2048 || 2.0470E—16 3.2613E—16 2.0817E—16
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p=28, ap=12.0 p=9, ap=135 p=10, ap=15.0

N 1If—Inf| EOC [If—Inf] EOC [If—Inf| EOC

2 7.8213E-01 8.0913E—-01 8.4228E—01
1.8577 1.2264 0.8927

4 2.1581E-01 3.4581E—-01 4.5367TE—01
0.4770 0.5345 0.4657

8 1.5505E—01 2.3874E—-01 3.2851E-01
16.3200 16.2276 15.6164

16 1.8953E—06 3.1113E—-06 6.5395E—06
32.0367 36.1210 31.8292

32 4.3021E—16 4.1633E—17 1.7139E-15
0.3692 —1.7726 5.3634

64 3.3307E—16 1.4225E—16 4.1633E—17
—0.2730 0.2701 —1.7004

128 4.0246E—16 1.1796E—16 1.3531E-16
0.2141 —0.9125 —1.0896

256 3.4694E-16 2.2204E-16 2.8796E—16
0.1203 0.1420 —0.5076

512 3.1919E-16 2.0123E—16 4.0939E—16
—0.3833 —0.8969 0.9284

1024 4.1633E—16 3.7470E—16 2.1511E-16
0.7984 —0.1640 —1.0902

2048 2.3939E—-16 4.1980E—16 4.5797E—16

p=15, ap=225 p=20, ap=30.0 p=25 ap=375

N [If —Inf]| EOC |[If —Inf| EOC [If —INf] EOC

2 9.4909E-01 9.7568E—-01 9.8102E—-01
0.6442 3.0475 0.5998

4 6.0729E-01 1.1801E-01 6.4734E—-01
0.0800 —1.4126 1.9097

8 5.7454E-01 3.1415E-01 1.7229E-01
9.6879 6.1974 3.2244

16 6.9658E—04 4.2808E—03 1.8434E-02
29.8489 24.1337 25.8454

32 7.2040E—13 2.3257E~—10 3.0576E—10
11.2043 20.7130 17.4158

64 3.0531E—-16 1.3531E—16 1.7486E—15
0.6521 —1.6919 0.9112

128 1.9429E—16 4.3715E—16 9.2981E—16
—0.1468 0.1699 1.1592

256 2.1511E-16 3.8858E—16 4.1633E—16
—0.7600 0.4854 —0.0818

512 3.6429E—16 2.7756E—16 4.4062E—16
0.1907 —0.4854 0.3305

1024 3.1919E—16 3.8858E—16 3.5041E—-16
—0.5317 0.0525 1.3007

2048 4.6144E—16 3.7470E—16 1.4225E-16

_
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Table 1.7: n =4, a = 0.5, If = nJo(4) ~ —1.2477. The mapping function w is given by
(1.31) and (1.32).

p=2, ap=1.0 p=3, ap=15 p=4, ap=20
N [If - 1Inf] EOC [ f—1Inf]| EOC [If—1Inf] EOC
2 6.5041E-01 1.4999E4-00 2.3998E4-00
1.9326 4.0340 2.8025
4 1.7038E—-01 9.1563E—-02 3.4398E-01
1.0307 2.8184 7.0010
8 8.3395E-02 1.2980E—-02 2.6854E—03
1.0146 1.5136 2.6586
16 4.1278E—02 4.5463E—-03 4.2530E—-04
1.0074 1.5067 1.9994
32 2.0533E—-02 1.5999E-03 1.0637E—04
1.0037 1.5034 1.9998
64 1.0240E—02 5.6433E—04 2.6596E—05
1.0019 1.5017 2.0000
128 5.1132E—-03 1.9929E—-04 6.6491E—06
1.0009 1.5009 2.0000
256 2.5550E—-03 7.0416E—05 1.6623E—06
1.0005 1.5004 2.0001
512 1.2771E-03 2.4888E—05 4.1555E-07
1.0002 1.5002 2.0001
1024 6.3843E—-04 8.7981E—06 1.0388E—07
1.0001 1.5001 2.0095
2048 3.1919E—-04 3.1104E-06 2.5800E—-08
p=25 ap=25 p=6, ap=3.0 p=7, ap=3.5
N [If —1Inf| EOC [If—Inf] EOC |[If—Infl EOC
2 3.1701E4-00 3.8560E+00 4.4858E+-00
1.9412 1.4953 1.2540
4 8.2550E—-01 1.3677E400 1.8809E4-00
5.9613 4.4621 3.4568
8 1.3249E-02 6.2057E—-02 1.7130E-01
8.8892 12.2091 9.8653
16 2.7943E—-05 1.3107E—-05 1.8365E—04
2.4857 9.7168 12.2142
32 4.9891E—-06 1.5575E—08 3.8652E—08
2.4863 3.7755 4.0890
64 8.9040E—-07 1.1374E—09 2.2713E-09
2.4929 —0.4653
128 1.5818E—07 1.5702E—09 (3.4613E—-08)
2.4976 (0.9781)
256 2.8010E—-08 (5.9244E—08) (1.7571E—08)
2.6633 (0.6447) (0.1139)
512 4.4215E-09 (3.7893E—08) (1.6238E—08)
(0.4360) (—0.0875)
1024 (3.5464E—08) (2.8009E—08) (1.7252E—-08)
(0.6084) (0.3270) (—0.2348)
2048 (2.3262E—-08) (2.2330E—08) (2.0302E-08)
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p=38, ap=4.0 p=9, ap=45 p=10, ap=5.0
N |If —Inf| EOC |[If — Infl EOC [If —Inf| EOC
2 || 5.0753E+00 5.6358E400 6.1759E+00
1.1149 1.0297 0.9747
4 || 2.3433E+00 2.7604E-++00 3.1427E+00
2.7648 2.2778 1.9299
8 || 3.4478E—01 5.6921E—01 8.2480E—01
8.1673 6.8790 5.8711
16 || 1.1994E—03 4.8361E—03 1.4092E—02
19.0389
32 (1.2274E—07) (3.7922E—07)
(1.2870) (3.1358)
64 || (4.1176E—08) (5.0295E—08) (4.3144E—08)
(0.8304) (0.4400) (0.5854)
128 || (2.3156E—08) (3.7074E—08) (2.8754E—08)
(0.3279) (0.6205) (0.1745)
256 || (1.8448E—08) (2.4115E—08) (2.5478E—08)
(—0.2546) (0.1402) (0.0830)
512 || (2.2009E—08) (2.1882E—08) (2.4055E—08)
(0.0244) (0.0184) (—0.0441)
1024 || (2.1640E—08) (2.1605E—08) (2.4801E—08)
(0.0315) (0.0663) (0.0057)
2048 || (2.1173E—08) (2.0634E—08) (2.4702E—08)
p=15 ap=7.5 p=20, ap=10.0 p=25 ap=125
N f—Inf| EOC If—Inf] EOC [[f—Inf] EOC
2 || 8.7408E+00 1.1247E+401 1.3748E+401
0.8748
4 || 4.7666E-+00 (6.1630E+00) (7.4683E-00)
(0.9745) (0.9032)
8 || (2.1109E+400) (3.1365E+00) (3.9933E+00)
(3.0626) (1.9270) (1.4196)
16 || (2.5265E—01) (8.2480E—01) (1.4927E4-00)
(8.8782) (5.8457) (4.1215)
32 || (5.3693E—04) (1.4342E—-02) (8.5760E—02)
(13.8068) (15.0661) (11.3463)
64 || (3.7467E—08) (4.1809E—07) (3.2940E—05)
(0.3071) (4.1758) (10.5939)
128 || (3.0282E—08) (2.3133E—08) (2.1313E—08)
(0.1324) (0.1417) (—0.0970)
256 || (2.7627E—08) (2.0969E—08) (2.2794E—08)
(0.0249) (~0.0545) (0.0858)
512 || (2.7154E—08) (2.1776E—08) (2.1479E—08)
(—0.0216) (0.0417) (—0.0712)
1024 || (2.7564E—08) (2.1156E—08) (2.2566E—08)
(0.0355) (0.0012) (—0.0041)
2048 || (2.6893E—08) (2.1139E—08) (2.2629E—08)
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Table 1.8: n =4, a = 1.5, If = §J;1(4) = —5.1870 x 10~2. The mapping function w is

given by (1.31) and (1.32).

p=2, ap=3.0 p=3, ap=45 p=4, op=6.0

N IIf —1Inf| EOC Hf—Inf] EOC [If—Inf] EOC

2 4.7685E—01 1.3800E4-00 2.0110E4-00
8.5017 3.6679 2.0675

4 1.3156E—-03 1.0858E—-01 4.7978E—-01
7.9897 11.8064 7.3518

8 5.1761E—-06 3.0314E-05 2.9372E-03
3.9703 11.5331 19.7548

16 3.3023E—-07 1.0229E—-08 3.3200E-09
3.9927 4.3934 11.4352

32 2.0744E—-08 4.8672E—10 1.1990E—-12
3.9982 4.4519 6.0042

64 1.2981E—09 2.2239E-11 1.8680E—14
3.9995 4.4771 6.8095

128 8.1159E—11 9.9855E—13 1.6653E—16
3.9999 4.4860 2.5850

256 5.0729E—12 4.4562E—14 2.7756E—-17
3.9989 4.6658 —3.5236

512 3.1730E—-13 1.7555E—-15 3.1919E-16
3.9859 4.1756 —0.6262

1024 2.0026E—14 9.7145E-17 4.9266E—16
3.9024 —3.0255 2.4493

2048 1.3392E-15 7.9103E—-16 9.0206E—17

p=5 ap=75 p=6, oap=90 p=7, ap=105

N |[If —Inf] EOC |[If—Inf] EOC [If —Inf] EOC

2 2.5424E4-00 3.0497E+00 3.5514E4-00
1.4322 1.1720 1.0642

4 9.4215E-01 1.3535E4-00 1.6984E4-00
4.9725 3.5411 2.6381

8 3.0008E—-02 1.1628E—-01 2.7283E-01
14.4825 11.1307 8.8232

16 1.3109E-06 5.1858E—-05 6.0235E—04
29.0411 27.6954 22.7533

32 2.3731E-15 2.3860E—-13 8.5200E-11
4.2479 10.6101 22.5496

64 1.2490E—-16 1.5266E—16 1.3878E—17
—0.9175 0 —3.8074

128 2.3592E—16 1.5266E—16 1.9429E—-16
—0.2345 0.4594 —0.3626

256 2.7756E—-16 1.1102E—-16 2.4980E—-16
1.8625 —0.3219 1.8480

512 7.6328E—17 1.3878E—16 6.9389E—17
-1.7105 0.2345 —0.2630

1024 2.4980E-16 1.1796E—-16 8.3267TE—17
1.1699 —1.3049 3.5850

2048 1.1102E-16 2.9143E-16 6.9389E~18

ol
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p=38, op=120 p=9, ap=13.5 p=10, op=15.0
N If —Inf]| EOC | |If—Inf] EOC | |If - Inf| EOC
2 || 4.0518E+00 4.5518E+00 5.0519E+00
1.0193 1.0006 0.9930
4 || 1.9990E+00 2.2750E+00 2.5383E+00
2.0577 1.6821 1.4386
8 || 4.8014E—01 7.0894E—01 9.3647E—01
7.1444 5.8770 4.8964
16 || 3.3939E—03 1.2063E—02 3.1444E—02
19.1328 16.3678 14.1890
32 || 5.9040E—09 1.4264E—07 1.6835E—06
24.7575 31.6739 33.6500
64 || 2.0817E—16 4.1633E—17 1.2490E—16
—0.0931 1.5850 —~1.0780
128 || 2.2204E—16 2.6368E—16
0.4150 —3.7004 1.0780
256 || 1.6653E—16 1.8041E—16 1.2490E—16
0.7776 0.1155 1.1699
512 || 9.7145E—17 1.6653E—16 5.5511E—17
—0.8365 —0.3692 —3.0444
1024 || 1.7347E—16 2.1511E—16 4.579TE—16
—1.1375 0.7843 3.4594
2048 || 3.8164E—16 1.2490E—16 4.1633E—17
p=15ap=225 p=20, op=30.0 p=25ap=375
N 1If - Inf] EOC | |If~Inf] EOC | |If—Inf) EOC
2 || 7.5519E+00 1.0052E+01 1.2552E+01
0.9903 0.9926 0.9941
4 || 3.8014E+00 5.0519E+00 6.3019E+00
1.0398 0.9936 0.9894
8 || 1.8490E+00 2.5372E+00 3.1742E+00
2.3109 1.4401 1.1423
16 || 3.7263E—01 9.3509E—01 1.4380E+00
7.8581 4.8780 3.2480
32 || 1.6061E—03 3.1801E—02 1.5136E—01
20.6202 14.1183 10.3170
64 || 9.9644E-10 1.7882E—06 1.1866E—04
26.0975 33.0000 25.8503
128 || 1.3878E—17 2.0817E—16 1.9614E—12
—3.3219 3.9069 13.2019
256 || 1.3878E—16 2.0817E—16
~1.3219 —2.5850 _
512 || 3.4694E—16 8.3267E—17 [ o ]
3.0589 ~1.3219 -
1024 2.0817E—16 6.9389E—17
—0.7370 —0.3410 —0.6781
2048 || 6.9389E—17 2.6368E—16 1.1102E—16
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Table 1.9: n =4, a = 0.5, If = nJy(4) =~ —1.2477. The mapping function w is given by

(1.31) and (1.34).

N [If —Inf] EOC
2 || 5.0316E—01
10.8160
4 || 2.7910E—04
—6.1806
8 || 2.0245E—02
3.8647
16 || 1.3897E—03
7.3095
32 || 8.7604E-06
64 || (6.0798E—08)
(2.2446)
128 || (1.2829E-08)
(0.6901)
256 || (7.9516E—09)
(—0.8291)
512 || (1.4126E—08)
(—0.7888)
1024 || (2.4405E—08)
(—0.0150)
2048 || (2.4659E—08)

Table 1.10: n =4, a = 1.5, I'f = $J1(4) = —5.1870 X 10~2. The mapping function w is

given by (1.31) and (1.34).

N || |[If-1Inf| EOC

2 || 2.6997E—01
3.5531

4 || 2.2999E—02
7.1850

8 || 1.5805E—04
7.5697

16 || 8.3198E—07
9.1566

32 || 1.4578E—09
13.7339

64 || 1.0700E—13
8.3579

128 || 3.2613E—16
1.6477

256 || 1.0408E—16
~2.0000

512 || 4.1633E—16
1.1520

1024 || 1.8735E—16
~1.1031

2048 || 4.0246E—16
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Table 1.11: Ny computed from (1.52), (1.53), and (1.54)

p || No (1.52) | Ny (1.53) | Ny (1.54)
37
2 || 33554432 | 33554432
3 82570 | 137617
4 4096 8192
5 676 1486
6 203 474
7 86 209
8 45 113
9 28 70
10 19 48
15 6 15
20 4 9
25 3 6

o4



Chapter 2

Numerical Quadrature Methods
for Integrals on the Real Line of

Steepest Descent Type

In this chapter, we consider the problem of evaluating numerically the integral

400 9
/ e P ®(s) ds, (2.1)
— 00
for p > 0 in the case when @ is a smooth function on the real line. We may write (2.1) as
+00 5
Jf = / e P f(s?) ds, (2.2)

-0

where f :[0,00) = C is defined by

(B(Vs) + ®(—5)).

N —

fls) =

It is clear that different numerical quadrature methods may be appropriate for evaluating
(2.1) or (2.2) depending on the magnitude of p. We implement and discuss three different
numerical quadrature methods aimed at different ranges of p. For p not too small, Gaussian
quadrature for weight function e=s’ (Gauss-Hermite quadrature) is an appropriate and
standard method and this is discussed in Section 2.1. Clearly this Gauss quadrature
method is not appropriate if p = 0. In Sections 2.2 and 2.3 we propose and analyse
quadrature methods which the theoretical analysis suggests are suitable for small and
intermediate ranges of p, respectively. Another method very suitable for the evaluation of

(2.1) when p is not too small is the trapezium rule with an equal mesh size over (—o0, +00),

95
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as first noted by Goodwin [20] and see Hunter [24] for an important application close to
that of Chapter 3. This method can be modified to retain high accuracy in the presence

of poles of ® on or near the path of integration: see Hunter [25, 26].

2.1 Gaussian Quadrature

To evaluate (2.1) using Gaussian quadrature with weight function e_”’Q, we substitute

VP s =z for p > 0, and then apply Gauss-Hermite quadrature to get

[ erean g [T (G)wm S5 me(),

where the abscissa z; is the jth zero of the Hermite polynomial of degree N (Andrews [2]),

[N/2]

k
Z - ]\?) ];2 (2z)V 2k, (2.3)

and the weight is (Abramowitz and Stegun [1])

- 2NINw
" N Hyalw P .

From (2.3) and (2.4) it can be seen that the abscissae z; < 3 < --- < zx and weights w;

have the symmetry properties that
Tj= —TN+1-j Wj; = WN+1-73 ]:1a2a7N (25)

Equivalently, we can substitute \/p s = z in (2.2) and apply Gauss-Hermite quadrature
to Jf to get

GH 1 zj 1 ¢ Zj
Jf=J = wifl 2L )= w~<1>( )
I \/ﬁfz]<f>> ﬁ;Jﬁ
Note that, in view of (2.5),
N 2
2 T
JGH = ’UJf -2 )
oN f \/ﬁ;:l: j <p

where z; and w; are here the abscissae and weights for the Gauss—Hermite quadrature

rule of degree 2N.
A further alternative is first to substitute ps? = ¢ in (2.2) and then apply generalised

Gauss-Laguerre quadrature with weight function t~1/2e7t to get

1 [y t oL 1 & t;
S— 2t ) dt= J = — ) W (—), 2.6
\/5/0 t~ % f(p) t N f \/ﬁ;w]f p (2.6)
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where the weights w; and abscissae t; are tabulated for N = 1,2,...,15 in Concus et
al. [15], or can be calculated by using standard subroutine libraries [37]. It can be shown

that
I =I5 .

A modified Gauss-Laguerre quadrature method has been employed in [12], neglecting the
smaller weights in the quadrature rule. It also has been suggested in [12] that this modified
quadrature can be cheaper than, but almost as accurate as, the standard Gauss-Laguerre
quadrature. In the following theorems, we present a preliminary bound on the derivatives
of an analytic function f and the error estimates for Gauss-Laguerre quadrature method
used in [12].

Theorem 2.1 Forn >0, let D, :={z € C: |z| <n or Rez > 0 and |Imz| < n} denote
that part of the complex plane lying within distance n of the positive real azis. If, for some
C > 0, g(z) is analytic and |g(z)| < C in D, then, for all non-negative integers n and
t >0,

The following notations are introduced and will be used in Theorem 2.2:

~ o0
Jg :=/ t=1/2e7tg(t) dt,
0

m
Jn,mg::Z{Djmg(tj,n), m=12,...,n, n=12,...,
j=1

where Wi p, Won,---,Wnp a0d 0 < t1p < top < -+ <lpp are the weights and abscissae

of the n-point Gauss-Laguerre quadrature method for weight function t=1/2¢=t and the

error in Jy ,, g 18

Enmg:= fg —Jnm g

Theorem 2.2 [12] If, for some C > 0, g(2) is analytic and |g(z)| < C in Dy for n >0,

then
(1) |Enn gl < enC, where ey is independent of g and en — 0 as n — oo;
g (2n)V2m
(47) |Enngl < —WC’;

n
(41) |Enm gl < |Enngl+C Z Wjn-
j=m+1
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Theorem 2.3 If, for some C >0, f(z) is analytic and [f(z)| < C in D, forn > 0, then
the error in the Gauss-Laguerre quadrature can be bounded by

7f — G| < N)W2x p—(2N+1/2)

77)
Proof. From (2.6), Theorem 2.2 (4), and the fact that t/p € Dy iff t € D,,, we have that,
where g(t) := f(t/p),

N

1 © B 1 _
[Jf =I5 | = ]%/O t1/%¢ tg(t)dt—jﬁ;w

= EnnNg

< C(QN)' V 27Tp_1/2
= (20m)2N

C(2 )'\/_ (2N+1/2)
(2n)2N
[ |

Clearly this quadrature method will be very accurate when p is large even for fairly small

values of V.

2.2 A Quadrature Method Suitable for p Small

We apply the quadrature method and error analysis, developed in Sections 1.1 and 1.2,
to numerically evaluate Jf, for p small. For the purpose of the later error analysis, we

require that f satisfies the following assumption.

Assumption 2.1 For some g € N, f € C[0,00) and there exists ¢ > 0 and r > 1/2 such

that, for n =0,1,...,q, it holds that
M@ <c(l+)T ", >0

Note that if ® is analytic in a neighbourhood of the real axis then f is analytic in a
neighbourhood of the positive real axis, so that certainly f € C*°[0,00). In the examples
we study later, f will be analytic in a sector of the complex plane containing the positive

real axis, and Assumption 2.1 will follow from the following assumption on f.
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Assumption 2.1' For some ¢ > 0 and 9 € (0,7/2), the function f is analytic on D, .

where (see Figure 2.1)
Deg = {z €C:|arg(z +€)| < 9}.
Further, for some ¢ >0 and r > 1/2,
f(@) <el+1{2)™",  z€Dep.
Lemma 2.1 Let f satisfy Assumption 2.1'. Then, where & = min{e, 1},
FP@ < Call+0)77,

fort >0 and n=0,1,..., where

~ nl¢antr

" (Esin@)n

Proof. From Cauchy’s integral formula with circular contour Cy(t), the circle of radius 7

centred at ¢, and with n = (€ + ¢t)sin6 (see Figure 2.2),

n n! f(2)

< n!
S |f(2)]

|~
< MC max (14 |z])~".
n" z€Cy(t)

Now n < %(1 + t) so that (see Figure 2.2), for z € Cyp(t), 1 +]2| > 1+t —n > (1 +1).

Thus

" nl¢ 1+¢t\"
7] < (59

Throughout this section we let Cr, > 0 denote a generic constant whose value depends at

most on m € N, and we let C > 0 denote a generic constant whose value depends at most

on the values of ¢, r in Assumption 2.1.
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To apply the results and methods from Chapter 1, we substitute s = u/\/1 — u? in
(2.2) and see that

+1
Jf =/ F(u)du = IF, (2.7)

-1

where
_ f(Pw)e PP
F(u) := =2 -l<u<l,
u2
P(u) := ——5 >0, —-l<u<l.
l—u

For p = 0 the function F' may be weakly singular at +1. For p > 0, because the function
e PP g infinitely differentiable and all its derivatives vanish at £1, the function F
inherits these properties if f € C*[0, 00). From Theorem 1.1 it follows that the trapezium
rule is superalgebraically convergent when applied to evaluating f_+11 F(u)du for p > 0.
However, e P < 1 and e "™ — 1 as p > 0 for —1 < u < 1. Thus the error in the
trapezium rule for p small must be approximately the error for p = 0. But for p = 0 the
trapezium rule applied to f_+11 F(u)du will converge only slowly. Thus the trapezium rule
will not be satisfactory for p small. Instead we consider the application of the method
of Chapter 1 which involves first substituting u = w(z) for some function w satisfying
Assumption 1.1 and then applying the trapezium rule.

To apply the error analysis of Section 1.2, we have to show that F' € S¥%[—1,1] for
some ¢ € N and o > 0, or in other words that, for j = 0,1,...,q and some C' > 0 which

is an upper bound for ||F||4,q;
FO@)| < 01 —u?)* 9, —1<u<l.

By Leibnitz’s rule, the jth derivative of F(u), for -1 <u <1, is

J . k
: - k _
FO(w) =) { (;) Y™ (w) [Z (n) A ) Y (u>} } , (2.8)
k=0 n=0
where
Fi(u)=(1-u®)"%?  Fu):=e?"M,  Fu):=f(P).
For F| and its derivatives, it can easily be shown that, for m =0,1,...,
1™ (0)] < Cp(1—u?) 7327 —l<u<l. (2.9)

To obtain bounds on F,, F3 and their derivatives, we need the following lemmas.
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Lemma 2.2 Form =0,1,..., P (u) has poles of order not more than m +1 at £1, so

that
|P™ (w)] < Cr(1 —u?)™™ 1, —l<u<l.

Proof. From the Laurent expansions of P centred on +1, the validity of this lemma is

obvious. n

The next few results are concerned with obtaining bounds for the derivatives of G(u) :=
g(P(u)). For expressions for these derivatives we need the following.

Form=0,1,...,and j =0,1,...,m, let U be defined recursively by

U (u) = 1,
(AU (u) o
f 7=0
du ’ tJ ’
U™t (y) = { dU(u) m e
;) ziu + U (u)P'(u), if 5=1,2,...,m,
L U (u) P! (u), if j=m+1.

Note that this definition implies that UJ*(u) = 0 if m € N. Since P(u) is a meromorphic
function with poles only at +1, it is easy to see that U]m(u) is also a meromorphic function

with poles only at =1.

Lemma 2.3 For m = 0,1,..., and j = 0,1,...,m, Uj"(u) has poles of order not more

than m + j at £1, so that
U ()] < Cm(1 —u?) ™™, —l<u<l.

Proof. Clearly, the lemma is true for m = 0. If m € {0,1,.. .} and U™ has a pole of order

not more than m + 7, for 7 = 0,1,...m, then

_ dUg* (u)
T du

Ug+ (u)

has a pole of order not more than m + 1 and, for j = 1,2,...,m, using Lemma 2.2

dU™(u
opte) = 22 g )P )

has a pole of order not more than m + 1 + j. Further,

Um it (u) = U (u) P’ (u)
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has a pole of order not more than m +m + 2 = (m + 1) + (m + 1). Thus, the lemma

follows by induction. [
Lemma 2.4 If g € C*°(—1,1) and G(u) := g(P(u)) then, for m =0,1,...,
G (u) = U (w)gP (P(u)), —l<u<l.
§=0
Proof. We use a proof by induction. For m = 0,
G (u) = G(u) := g(P(u)) = Ug (u)g(P(u)).
If me{0,1,...} and
QM (y) = zmj UmM(u)gP(P(w), —-l<u<l,
7=0
then
T rdU™(u) . :
G 0) = 3 [T g0 (P + U )P g ()|
§=0
™ (1 ™ 1dU™ (u .
= B ypy + 30 [T + U7 P ] a9 (Pl
j=1
+ U (u)P' (w)g™ ) (P(u))
m+1 .
= 3 U () (P(w).
3=0
[

Now we bound the derivatives of Fy and F3. Using Lemma 2.4 and Lemma 2.3, since

Fy(u) = e PP®) for —1 <u < 1 and P(u) > 0, then, for m=0,1,...,

FE™ )] < S |UP )| plePP
7=0
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where s := pP(u) = pu?/(1 — u?). Let u; := max,;>p s’e™*. Then

;

(1 — u?) mZz"pf, if w?<1/2,
IFém)(u)\s<

(1 —u?) Zzﬂu], if w?>1/2

so that
Crm (14 ™) (1 —u?)™™, if u?<1/2,
™ ()] <
Crn(1 —u?)™™, if u?>1/2,
and
|y W] <Cn(l+p™1-u®)™, -lI<u<l (2.10)

Similarly, using Lemma 2.4 and Lemma 2.3, since F3(u) = f(P(u)) for —1 < u < 1 and
P(u) > 0,14 P(u) =1/(1 — u?), and Assumption 2.1 holds, then, for m = 0,1, ...,

| ()] < Z|Um () f9(P(u))|

7=0

IA
o
Q
3
NNt
—
|
1
N
3
—
Do
~
g

< cCp(l —u?)™™™, (2.11)
Theorem 2.4 If Assumption 2.1 holds then, for j =0,1,...,q,
IFO@)| <cCl+p)(1—ud)™327, —1<u<l,
where the constant C > 0 depends only on g and r.

Proof. Using (2.8) to (2.11), we find that

' k
PO < O+ MY {(1 —u?) RIS W’“}
n=0

k=0
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Note that we have shown that if Assumption 2.1 holds then F € §9°[—1,1] with a =
r—1/2, and

7], o < cC+p9), (2.12)

where the value of the constant C > 0 depends only on ¢ and 7.
Choosing w € C*°[~1, 1] which satisfies Assumption 1.1 and applying the quadrature
rule (1.26) to (2.7), we get that (note that F is an even function)

N-1
Jf = INf :=aoF(0) + 2 arF(zy), (2.13)
k=

—

where, for k=1,...,N — 1,

and

f(P(u)e PP u?
(1—u2)3/2 P(“)izl_ug > 0, -1<u<l

F(u) :=
In view of the bound (2.12) and applying Theorem 1.3, we get the following error estimate.

Theorem 2.5 Suppose that w satisfies Assumption 1.1, f satisfies Assumption 2.1, and
1 < s < q, where s := (r —1/2)p. Then, for s ¢ N, the error in the quadrature (2.13) can
be bounded by

|Jf = Infl <cC1+p))NT7,
where the constant C depends only on q, v, and on the choice of the function w.

Combining Theorem 2.5 with Lemma 2.1, we obtain the following corollary.

Corollary 2.1 Suppose that w satisfies Assumption 1.1, f satisfies Assumption 2.1', and
1< s <gq, where s := (r —1/2)p. Then, for s ¢ N, the error in the quadrature (2.13) can

be bounded by

EC:(]‘ + pq) N——S
(€sinB)9

H

|Jf = Inf| <

where € = min{e, 1} and the constant C depends only on g, r, and on the choice of the

function w.
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Remark 2.1 Note that Theorem 2.5 and Corollary 2.1 apparently do not apply if s is
an integer. However, note that if Assumption 2.1 or 2.1' hold with a particular value of
r > 1/2, then they also hold with r replaced by v’ for 1/2 <r' <r. Thus, if s = (r—1/2)p
is an integer, Theorem 2.5 and Corollary 2.1 can be applied with s’ := (r' —1/2)p for all

1/2 <7’ <r, for which s' is not an integer. Thus, for all 6 > 0,

|Jf — Inf| = O(N°~%) as N — oo.
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Im A

Figure 2.1: D,y in Assumption 2.1,
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Im A

Figure 2.2: D, ¢ and the circular contour Cy(t) used in the proof of Lemma 2.1.
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2.3 A Quadrature Method for Intermediate Values of p

In this section, the starting point is similar to the procedure used in Section 2.2 to get
(2.7), except that we first substitute s = /st where x := pg/p and py > 0 is a parameter
at our disposal. We then substitute ¢ = u/A/1 — u? in (2.2) to get

+1
Jf = / u) du = IG, (2.14)

where

Glu) = V&S (kP (u))e—PoP()

(1= 2)32 : -1 <u<l,

2

P(u) = >0

[z 2V —1l<u<l.

Without the substitution s = v/« t, or in other words if we choose py = p, we obtain the
expression (2.7) for Jf, in other words G = F. The effect of including the substitution
s = y/rt is thus to replace e ?F®) with e=#°F(*), The idea is to choose a fixed value for
po so that e PP which is infinitely differentiable and has all derivatives vanishing at
+1, is evaluated accurately by the trapezium rule.

The jth derivative of G(u), for —1 < u <1, is

GV (u Z{()G< - )[i(ﬁ)Gé’“‘"Ru)Gg")(u)”, (2.15)

where
Gi(u) = (1—u?)™2,  Gau)=ePM, Gy(u) := V& f(kP(u)).

We argue for G1 and G3 in the same way as the results in Section 2.2. For G, and its

derivatives, it can easily be shown that, for m =0, 1,...,

GV ()] < Om(1 =) ™27, —l<u<L, (216)
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For G3, provided Assumption 2.1 holds, then, for m = 0,1,...,q, by Lemmas 2.4 and 2.3.

G ()| < VRS U (w)w! £9) (kP (u))]

3=0

m

/R S (1 = w2) Ik ) (kP (u)

§=0

IN

ku? \ T
Scom\/_z l—u I I (1+ >

2
=0 1—u

_ch\/_Zl—u m(H(”_Ql)UQ)_T—j.

1—wu

To bound this expression observe that for 0 < k <1, -1 <u <1, 1+ (k — D)u2 > &.
Also observe that for kK > 1, 1 + (k — 1)u2 > 1 and (1 —w?)7" 7 < (1 —u?)"""™ for

j=0,1,...,m. Thus, for -1 <u < 1,

ch\/_Zn (1—ud)r—m, if 0<k<1,

7=0
G5™ ()] < ¢
ch\/_Zn']l—u -m if k>1,
3=0
so that
cCrr TTY2(1 —u?2)r—m, if 0<k<1,
Gy (w)] <
¢ Crr™t1/2(1 — u?)r—m, if k>1,
and, for k > 0,
GYM ()] € Ok 2 4 x™H2) (1 -y ™™, —1<u<l (2.17)
Let
C[-1,1] == {¢ € C®[-1,1] : ™ (£1) =0, m =0, 1,... } (2.18)

Then Gy € C°[—1,1], and arguing similarly to the proof of Lemma 1.2, we obtain that,

for every p e Nand m =0,1,...,

|G(m) I < C(1—u?)P™, ~l<u<l, (2.19)

where the constant C > 0 depends on pg, p, and m.
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Theorem 2.6 If Assumption 2.1 holds then, for every p € N and j = 0, 1,....q,
GO <O 24 pm W) 1 —u2pH=3/270 _qcycl,
where the constant C > 0 depends only on q, r, p and py.

Proof. Using (2.15) to (2.19) and absorbing all the binomial coefficients into the constant
C, we find that

GO ()] < O 2 4 5mH172)

{(1 _ u2)—3/2—j+k i(l _ u2)p+rk}
n=0

< CC(K,_T+1/2 + /{m+1/2) (1 _ u2)p+r—3/2—j

M- I

=
I
o

< CC(K—T+1/2 + ,{u.m+1/2)(1 _ u2)p+r—3/2—j

< cC(p Y2 4 pa7 12y (1 — 42yt —3/2-7,

We have shown that if Assumption 2.1 holds then, for all @ > 0, G € §% with
|G| y0 S cCl™ 12+ p70712), (2.20)

where the constant C' > 0 depends only on ¢, r, @, and pyg, so that G and its derivatives up
to the ¢th order vanish at +1. Thus the trapezium rule approximates to /G will converge

rapidly. Since G is even and vanishes at +£1, this approximation is

1 N ok ]
TnG .= — | G(0) + 2 Gl=]|- (2.21)
N N[ kz::l <N>

In view of the bound (2.20) and applying Theorem 1.2, we get the following error estimate.

Theorem 2.7 Suppose that f satisfies Assumption 2.1, ¢ €N, ¢ > 2, and a < q. Then

the error in the quadrature (2.21) can be bounded by
IJf — TnG| = |IG — TyG| < cClp" ™2 4 p~ T Y2)N ™,

where the constant C depends only on q, r, o, and py.

Combining Theorem 2.7 with Lemma 2.1, we obtain the following corollary.
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Corollary 2.2 Suppose that f satisfies Assumption 2.1, g € N, ¢ > 2, and oo < q. Then
the error in the quadrature (2.21) can be bounded by

EC(pT_1/2 + p—q—1/2)
(€sinf)?

|Jf —TnG| < N~%,

where € = min{e, 1} and the constant C depends only on ¢, r, a, and po.
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2.4 Numerical Examples

Let

1

fle) = 1+z

(2.22)

As an example to illustrate the use of the quadrature rule (1.26) applied to integrals on
the real line of steepest descent type, we will consider the problem of finding the numerical

value of
+00 2
Jf = / e P57 f(s?) ds, (2.23)
— o0

for p = 0,0.00001, 0.0001,0.001,0.01, 0.1, 1. Substituting s = u/A//1 — u? in (2.23) and then

u = w(z) using the Kress form of w given by

V@ -V
w(z) = Vo) + V(o) 1<z <1, (2.24)
1 1 1 117
V(iL‘) = [(5—1—)>$3+§.’E+§:| s —1§£13§]., (225)
for some p > 2, we see that
Jf = /HF(U) du = /+1 w'(z)F(w(z))dz, (2.26)
-1 -1
where
f (P (u))e=rP _ ¥ l<u
P =" pr > W= i<u<l

To illustrate the use of the quadrature method (2.26), the graphs of the integrands F(u)
and w'(z) F(w(z)), for p = 0,0.001, 1, are depicted in Figures 2.3-2.5, respectively. It can
be observed qualitatively in these figures that the integrand w’(z)F(w(z)) is smoother
than F(u), for the same choice of p, in particular near the endpoints 1, where this
smoothness increases as p increases.

In the following results, the integral Jf is estimated by Jyf, the quadrature rule
approximation (2.13), with 2N — 1 points. We note that, since F' is even, and in view of
the symmetry properties (1.28),

N-1
INf =aoF(0) +2 ) apF(zk). (2.27)
k=1
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where, for k=1,...,N — 1,

o = L —w( X

For f given by (2.22), the analytic value of the integral Jf can be evaluated by using
equations (7.1.3) and (7.1.4) in [1] and that erfcz = % [ e~ dt. Using these equations,

we obtain that

Jf = mePerfc (\/p).

All numerical results in Tables 2.1-2.7 are evaluated using the mapping function w
given by (2.24) and (2.25), suggested by Kress [33]. In our example f(z) = 1/(1 + z),
the parameter r in Assumption 2.1 is 1. Recall that we compute the error in estimating
Jf with Jyf given by (2.27). So we calculate and tabulate the EOC given by (1.45) in
these tables. We also show at the top of each column the value of (r — 1/2)p: note that it
follows from Theorem 2.5 that, as N — oo, |Jf — Iy f| = O(N~%) where s = (r — 1/2)p.

In Figure 2.6, we plot against p the error in estimating Jf, with f given by (2.22),
by Jissf, the quadrature rule approximation (2.13). In Figure 2.7, we plot against p the
error in estimating Jf, with f given by (2.22), by the approximation (2.21). Figure 2.6
suggests that the quadrature rule approximation (2.13) is an accurate quadrature method
for 0 < p < 10, though the accuracy deteriorates somewhat around 10710, Alternatively,
the trapezium rule approximation (2.21) is a quadrature method that is accurate for
1072 < p < 10.

In Table 2.1, we can see that the predicted convergence rate (r — 1/2)p = p/2 is
observed for p = 2 — 9 (except p = 6 for which the predicted convergence rate is 6/2 = 3,
and the observed rate is 4). We show this convergence rate graphically in Figure 2.8.

As discussed at the beginning of Section 2.2 (page 60), for p > 0 we expect that
|Jf — Jnyf| = O(N~T) as N — oo for every r > 0. However, since |Jf — Jn f| depends
continuously on p, if p is small this superalgebraic rate of convergence will not be
discernible until NV is large. This is observed in Table 2.2 which repeats the calculations
of Table 2.1 but with p = 0.00001 rather than p = 0. Comparing Tables 2.1 and 2.2, we
see that the corresponding errors differ, for the same values of N and p, by no more than
~ 0.01. As a result. EOC values of =~ p/2 are observed for N small for p = 2,3. Similarly.
Tables 2.3-2.7 repeat the same calculations but with p increasing from one table to the

next by a factor of 10, from 0.0001 to 1. The corresponding errors in Tables 2.1 and 2.3
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differ by no more than ~ 0.04 and an EOC of ~ p/2 is observed for N small for p = 2. As

p increases, the superalgebraic rate of convergence becomes apparent for smaller values of

N.
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Figure 2.3: F(u), w'(z)F(w(z)), with w given by equations (1.31) and (1.33) for p = 0.
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Figure 2.4: F(u), w'(z)F(w(z)), with w given by equations (1.31) and (1.33) for p = 0.001.
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Figure 2.5: F(u), w'(z)F(w(z)), with w given by equations (1.31) and (1.33) for p = 1.
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Table 2.1: p=10
p=2, (r—1/2)p=1.0 p=3, (r—1/2)p=1.5 p=4, (r—1/2)p=20
N |Jf — In f] EOC |Jf = JInf]| EOC |Jf — Jnf| EOC
2 || 5.4159E—01 3.4867E—01 1.6212E—01
1.0564 1.5286 1.9525
4 || 2.6042E—01 1.2086E—01 4.1886E—02
1.0291 1.5139 2.0056
8 1.2760E—01 4.2319E-02 1.0431E—02
1.0148 1.5067 2.0015
16 || 6.3151E—02 1.4893E—02 2.6051E—03
1.0075 1.5033 2.0004
32 || 3.1413E-02 5.2536E—03 6.5110E—04
1.0037 1.5016 2.0001
64 1.5666E—02 1.8553E—03 1.6276E—04
1.0019 1.5008 2.0000
128 || 7.8227E—03 6.5559E—04 4.0690E—05
1.0009 1.5004 2.0000
256 || 3.9088E—03 2.3172E—04 1.0173E—05
1.0005 1.5002 2.0000
512 1.9538E—03 8.1915E—05 2.5431E—06
1.0002 1.5001 2.0000
1024 || 9.7672E—04 2.8959E—05 6.3578E—07
1.0001 1.5000 2.0043
2048 4.8832E—04 1.0238E—05 1.5847E—07
1.0001 1.5000 2.0106
4096 2.4415E—04 3.6198E—06 3.9326E—08
p=5 (r—1/2)p=25 p=6, (r—1/2)p=3.0 p=T, (r—1/2)p=3.5
N |Jf — In§]| EOC |7f — Inf] EOC |Jf — In f] EOC
2 2.5374E—02 5.9704E—02 9.8951E—02
1.4419 6.1604 5.5761
4 || 9.3395E—03 8.3469E—04 2.0741E—03
2.4429 4.0888 3.5271
8 1.7177TE—03 4.9054E-05 1.7992E—04
2.4722 4.0236 3.5757
16 3.0956E—04 3.0162E—06 1.5089E—05
2.4857 4.0058 3.5362
32 5.5269E—05 1.8775E—07 1.3007E—06
2.4927 3.9947 3.5252
64 || 9.8197E—06 1.1778E—08 1.1297E—07
2.4963 3.9701 3.0661
128 1.7403E—06 7.5154E—10 1.3490E—08
2.4987 —1.4235
256 3.0793E—07 2.0159E—09 (1.0119E—-07)
2.4941 —3.2021 (0.7316)
512 || 5.4658E—08 1.8552E—08 (6.0940E—08)
2.2821 (3.9932E08) (0.6098)
1.1237E—08 8.8040E—09 9 -
1024 ( ) (—1.6897) , E_08) (0.3394)
2048 6.9460E—08 2.8401E—08) 3.1562E—08
( ) (0.6103) ( (—0.0014) (—0.0432)
4096 || (4.5502E—08) (2.8429E—08) (3.2521E—08)

80
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p=38, (r—1/2)p=4.0 p=9, (r—1/2)p=45 p=10, (r—1/2)p=5.0
N |Jf = JInf| EOC |Jf = JInf] EOC |Jf = JInfl EOC
2 || 9.9871E—02 6.9896E—02 1.5783E—02
7.5007 5.6997 2.4234
4 |l 5.5146E—04 1.3449E—03 2.9422E—03
2.7823 6.2852 10.2655
8 || 8.0160E—-05 1.7244E—05 2.3903E—06
4.0092 4.3597 5.8849
16 || 4.9782E—06 8.3994E—07 4.0450E—08
4.0016 4.4029 2.8575
32 || 3.1080E—07 3.9703E—08 5.5812E—09
3.7553 2.4345
64 || 2.3015E—08 7.3444E—09 (7.3843E—08)
0.5586 (0.8003)
128 || 1.5627E—08 (2.2580E—08) (4.2402E—08)
(—1.1940) (0.2706)
256 || (1.8995E—08) (5.1661E—08) (3.5151E—08)
(—0.3586) (0.7805) (—0.0813)
512 || (2.4354E—08) (3.0075E—08) (3.7188E—08)
(—0.3316) (0.0858) (0.2185)
1024 || (3.0648E—08) (2.8339E—08) (3.1962E—08)
(—0.1271) (—0.1945) (~0.1313)
2048 || (3.3471E—08) (3.2429E—08) (3.5008E—08)
(0.1745) (0.0745) (—0.0586)
4096 || (2.9657E—08) (3.0797E—08) (3.6459E—08)
p=15 (r—1/2p=75 | p=20, (r—1/2)p=10.0 | p=125, (r—1/2)p=125
N || |Jf=Jdnf] EOC | |Jf—-Jnf| EOC | |Jf—Jnf] EOC
2 || 4.4122E-01 9.4406E—01 1.3486E+00
5.8005 8.0372 5.8199
4 || 7.9163E—03 3.5939E—03 2.3873E—02
11.8626 6.3065
8 || 2.1257E—06 4.5405E—05 (7.6575E—05)
4.7727 (12.5465)
16 || 7.7765E—-08 (4.3376E—09) (1.2800E—08)
(—2.6658) (3.1431)
32 || (3.9542E—08) (2.7525E—08) (1.4489E—09)
(0.3304) (0.6579) (—3.6542)
64 || (3.1448E—08) (1.7446E—08) (1.8242E—08)
(—0.0704) (—0.8287) ( —1.0178)
128 || (3.3021E—08) (3.0985E—08) (3.6937E—08)
(—0.3350) (—0.2024) (—0.0693)
256 || (4.1652E—08) (3.5651E—08) (3.8754E—08)
(—0.0321) | (0.0478) (5.6389E_05) (0.0909)
512 || (4.2590E—08 3.4489E—08 . -
( ) (0.0632) ( (0.2032) (—0.0074)
1024 || (4.0766E—08) (2.9958E—08) (3.6575E—08)
(—0.0551) (—0.0739) ( 0.0807)
2048 || (4.2353E—08) (3.1533E—08) (3.4585E—-08)
(0.0053) (—0.0128) (—0.0253)
4096 || (4.2198E—08) (3.1814E—08) (3.5196E—08)
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Table 2.2: p = 0.00001

p=2 (r—1/2p=10 | p=3, (r—1/2)p=15|p=4, (r—1/2)p=20
N || |Jf—=JInf| EOC | |Jf - JNnf| EOC | |Jf - Jnf] EOC
2 || 5.3044E—01 3.3753E—01 1.5099E—01
1.0891 1.6195 2.2825
4 {| 2.4933E—01 1.0985E—01 3.1035E—-02
1.0959 1.7933 5.4812
8 {| 1.1665E—01 3.1691E—02 6.9479E—04
1.1529 2.5687 —2.0853
16 || 5.2457E—02 5.3419E—03 2.9485E—03
1.3042 1.8882 2.1906
32 || 2.1242E-02 1.4431E—03 6.4587E—04
1.7032 7.2125 3.7783
64 || 6.5237E—03 9.7299E—06 4.7073E—05
3.4433 —2.2625 7.0701
128 || 5.9974E—04 4.6686E—05 3.5032E—07
0.6591 6.4893 8.7177
256 || 3.7980E—04 5.1964E—07 8.3213E~10
3.2302 9.2414 17.5156
512 || 4.0474E—05 8.5853E—~10 4.4409E—15
4.4256 12.1045 —0.2630
1024 || 1.8834E—06 1.9496E—13 5.3291E—15
16.2373 3.9707 3.5850
2048 || 2.4380E-11 1.2434E—14 4.4409E-16
0.2611 2.4854 —3.4594
4096 || 2.0344E-11 2.2204E-15 4.8850E—15
p=5 (r—1/2)p=25|p=6, (r—1/2)p=3.0 | p=7, (r—-1/2)p=35
N || |Jf=JInT| EOC | |Jf—Jn{| EOC | |Jf = JIn ] EOC
2 || 1.4274E—02 7.0775E—02 1.0999E—-01
3.5403 2.6993 3.2881
4 || 1.2269E-03 1.0897E—02 1.1260E—02
—2.2330 2.1481 1.4177
8 || 5.7679E—03 2.4586 E—03 4.2145E—03
1.8137 1.5882 3.3710
16 || 1.6407E—03 8.176TE—04 4.0736E—04
3.8267 7.1026 3.5430
32 || 1.1563E—04 5.9495E—06 3.4948E—05
4.1803 3.2215 7.2839
64 || 6.3782E—06 6.3786E—07 2.2427TE—-07
8.0149 9.1352 13.1211
128 || 2.4659E—08 1.1344E—09 2.5172E~11
15.05347 17.2845
256 || 7.2520E—13 7.1054E—15
6.6733 0.5406
512 || 7.1054E-15 4.8850E—15
3.0000
1024 || 8.8818E—16
2048
4096
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Table 2.3: p = 0.0001

p=2, (r—1/2)p=1.0 p=3, (r—1/2)p=15 p=4, (r—1/2)p=20
N |Jf — JInf| EOC |Jf = INf] EOC |Jf = Inf| EOC
2 || 5.0674E—01 3.1392E—01 1.2754E~01
1.1636 1.8444 3.6707
4 || 2.2620E-01 8.7420E—02 1.0015E-—02
1.2563 2.7888 —0.1062
8 || 9.4690E—02 1.2650E—02 1.0780E—02
1.5283 1.3708 2.1607
16 || 3.2827E—02 4.8913E—03 2.4110E—03
2.4376 3.4048 5.4775
32 || 6.0598E—03 4.6181E—04 5.4115E—05
2.2249 2.2362 4.3730
64 1.2963E—03 9.8020E—05 2.6116E—06
3.9204 6.2175 7.3264
128 || 8.5614E—05 1.3173E—06 1.6272E—08
2.7740 7.9882 15.3164
256 1.2517E—05 5.1879E—09 3.9879E—13
6.3610 14.6801 6.4886
512 1.5229E—07 1.9762E—13 4.4409E—15
7.9209 5.9903 2.3219
1024 || 6.2837E—10 3.1086E—15 8.8818E—16
14.3879 —1.0000 ~1.3219
2048 || 2.9310E—14 6.2172E—-15 2.2204E—15
3.0444 1.4854 —1.2630
4096 || 3.5527E—-15 2.2204E—15 5.3291E—15
p=5 (r—1/2)p=25 p=6, (r—1/2)p=3.0 p=7, (r—1/2)p=235
N |Jf — Inf] EOC |Jf — Inf) EOC |Jf — Inf| EOC
2 || 8.9761E—03 9.3769E—02 1.3266E—01
—1.1346 1.9098 2.8898
4 || 1.9708E—02 2.4956E—02 1.7899E—02
3.1384 1.5643 3.1307
8 || 2.2381E—03 8.4384E—03 2.0436E—03
0.7105 3.1423 1.5265
16 1.3677E—03 9.5572E—04 7.0935E—04
5.0151 5.1588 5.6413
32 || 4.2296E—05 2.6753E—05 1.4212E—05
8.4383 14.2180 8.4050
64 || 1.2193E-07 1.4038E—09 4.1927E—08
9.2026 6.8191 14.1437
128 || 2.0694E—10 1.2433E—11 2.3164E—12
18.8299 131880 (3.5527E—15)
256 || 4.4409E—16 1.3323E-15 . -
° 4409 —1.0000 —1.0000 (—0.5850)
512 8.8818E—16 2.6645E—15 ( 5.3291E-15)
1.0000
1024 || 4.4409E—16 (3.5527E—15) (0)
(=0-4594) (2.2204E—15)
204 3.5527E—15 4.8850E—15) 2. -
R ) (—0.5850) ( (0.6521) (—0.4854)
4096 || (5.3291E—15) (3.1086E—15) (3.1086E—15)
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Table 2.4: p = 0.001

p=2 (r—1/2)p=1.0 p=3, (r—1/2)p=15 p=4, (r—1/2)p=2.0
N |Jf — JInf| EOC |Jf = JInTf]| EOC |Jf — Jnf| EOC
2 4.3540E—01 2.4355E—-01 5.8698E—02
1.4393 3.0860 0.7386
4 1.6055E—01 2.8681E—02 3.5179E—02
1.9911 0.8567 3.5885
8 4.0388E—02 1.5839E—02 2.9245E—03
5.1399 2.7158 1.3507
16 1.1455E—03 2.4109E—03 1.1467E—03
—0.9156 4.3347 4.6025
32 2.1608E—03 1.1948E—04 4.7204E—05
3.3696 4.6807 8.1830
64 || 2.0906E—04 4.6585E—06 1.6242E—07
5.0358 11.5104 13.3640
128 6.3730E—06 1.5969E—09 1.5406E—11
11.1396 13.0706 13.4973
256 2.8248E—09 1.8563E—13 1.3323E—15
8.8355 0
512 6.1835E—12 0 1.3323E-15
10.7653 —1.4150
1024 3.5527E—15 3.1086E—15 3.5527E—15
—~0.9069 0 0.1926
2048 6.6613E—15 3.1086E—15 3.1086E—15
—0.1806 1.8074 —0.7776
4096 7.5495E—15 8.8818E—16 5.3291E—15
p=5, (r—1/2)p=2.5 p=6, (r—1/2)p=3.0 p=7, (r—1/2)p=35
N |Jf — Inf| EOC |Jf = INf] EOC |7f = In f EOC
2 7.5799E—02 1.5804E—01 1.9378E—-01
0.8556 3.6392 2.5622
4 4.1889E—02 1.2684E—02 3.2810E—02
3.1307 0.6561 8.4604
8 4.7826E—03 8.0496E—03 9.3146E—05
5.4722 4.0932 —2.4952
16 1.0774E—04 4.7162E—04 5.2515E—04
6.4514 5.7091 6.1952
32 1.2311E-06 9.0155E—06 7.1672E—06
6.7122 10.6196 12.3461
64 1.1742E—08 5.7302E—09 1.3766E—09
16.4274 17.9774 17.8633
128 1.3323E—13 2.2204E—14 5.7732E—15
7.2988 5.6439
256 8.8818E—16 4.4409E—16 (0)
—1.3219 —1.0000 45E—15)
2204E—15 8.8818E—16 (2.6645E—
o1 2220 1.3219 S27E-15) (—0.4150)
_ — 3.5 -
1024 8.8818E—16 (4.4409E—16) ) ( | (<0.1699)
7732E—15 4.4409E—16 (3.9968E—15
2048 || (5.773 ) (0.5505) ( ) (—4.5850) (0.8480)
4096 || (3.9968E—15) (1.0658E—14) (2.2204E-15)
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Table 2.5: p =0.01

p=2 (r—1/2)p=10 p=3, (r—-1/2)p=15 p=4, (r—1/2p=20
N |Jf — JIn | EOC |Jf — In f| EOC |Jf = Jnf] EOC
2 2.4450E—01 6.2135E—02 1.0775E-01
3.4180 0.3049 2.2331
4 2.2875E—02 5.0298E—02 2.2920E—02
0.6749 2.4919 1.8509
8 1.4328E—02 8.9414E—03 6.3537E—03
3.3129 6.6843 5.0750
16 1.4418E—03 8.6943E—05 1.8850E—04
4.0076 4.5002 7.1636
32 8.9640E—05 3.8419E—06 1.3147E—06
8.2577 8.4584 12.1228
64 2.9288E—07 1.0922E—08 2.9478E—10
8.0674 15.8865 17.7554
128 1.0918E—09 1.8030E—13 1.3323E—-15
16.3225 8.6653 0.5850
256 1.3323E—14 4.4409E—16 8.8818E—16
2.9069 -2.3219 —0.5850
512 1.7764E—15 2.2204E—15 1.3323E—15
0.4150 ~0.8480 —0.7370
1024 1.3323E—15 3.9968E—15 2.2204E-15
—1.8745 0 —1.1375
2048 4.8850E—15 3.9968E—15 4.8850E—15
1.1375 —1.0780 0
4096 2.2204E—15 8.4377TE—15 4.8850E—15
p=5  (r—1/2)p=25 p=6, (r—1/2)p=3.0 p=7, (r—1/2)p=35
N |Jf = In ] EOC |Jf —In{] EOC | |Jf—Jnf| EOC
2 2.2263E—01 2.8036E—01 2.8623E—01
2.1593 2.1541 5.0806
4 4.9839E—02 6.2987E—02 8.4584E—03
4.6040 3.5561 0.2702
8 2.0494E—03 5.3550E—03 7.0138E—03
3.1081 4.5084 5.0742
16 2.3768E—04 2.3529E—04 2.0820E—04
8.6278 8.2714 9.7083
32 6.0082E—07 7.6147TE—07 2.4888E—07
12.2058 13.5277 15.3859
1.2719E-10 6.4476E—11 5.8127E-12
o4 9 18.1277 16.1476 12.6761
128 4.4409E—16 8.8818E—16 8.8818E—-16
—1.0000 —0.5850 BE—15)
_ i —15 2.2204E—
256 8.8818E—16 1.3323E ( (~0.2630)
2.6645E—15
512 0 0 ( ) (0.5850)
) —~16 2.2204E—15 (1.7764E—15)
1024 888185 ( ) (—0.6781) ( TE-15) (—1.0000)
1.3323E—15 3.5527E—15 3.5527E
2048 | ( ) (—2.5850) ( ) (—1.6439) (—0.4594)
4096 || (7.9936E—15) (1.1102E—14) (4.8850E—15)
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Table 2.6: p=10.1

p=2 (r=1/2p=10 | p=3, (r—1/2)p=15 | p=4, (r—1/2)p=20
N |Jf — Jn f] EOC |Jf — Inf| EOC |Jf = Inf] EOC
2 6.6217E—02 1.6776E—01 2.1695E—01
2.9051 2.4795 5.9936
4 8.8398E—03 3.0081E—02 3.4049E—03
4.8410 4.7354 1.3061
8 3.0843E—04 1.1293E—03 1.3769E—03
6.0792 6.4202 6.9261
16 4.5617E—06 1.3187E—05 1.1323E-05
10.6125 9.9232 12.4804
32 2.9138E—09 1.3582E—08 1.9814E—09
8.9254 15.7735 17.2818
64 5.9930E—12 2.4247E—13 1.2434E—14
12.1352 8.0928
128 1.3323E—15 8.8818E—16 0
0 1.0000
256 1.3323E—15 4.4409E—16 4.4409E—16
—0.4150 0 0
512 1.7764E—15 4.4409E-16 4.4409E—16
—0.5850 —1.5850 —2.0000
1024 2.6645E—15 1.3323E—15 1.7764E—15
0 0 —0.3219
2048 2.6645E—15 1.3323E—15 2.2204E—15
—2.3692 1.5850 0
4096 1.3767E—14 4.4409E—16 2.2204E—15
p=5 (r—1/2p=25 | p=6, (r—1/2)p=3.0 | p=7, (r—1/2)p=35
N |Jf — Inf] EOC |Jf = Inf] EOC |Jf—Jn /] EOC
2 1.8561E—01 7.9431E—02 8.6767E—02
2.1239 0.5550 1.3210
4 4.2584E—02 5.4065E—02 3.4729E—02
7.6012 3.7992 5.1565
8 2.1931E—04 3.8838E—03 9.7369E—04
3.0609 9.2030 7.2355
16 2.6281E—05 6.5897E—06 6.4615E—06
11.4393 8.3549 8.1229
32 9.4636E—09 2.0127E—08 2.3179E—08
18.1552 18.4565 18.2798
64 3.2419E—14 5.5955E—14 7.2831E—14
5.1898 5.9773 6.3576
128 8.8818E—16 8.8818E—16 8.8818E—16
1.0000 —0.5850
256 4.4409E—-16 1.3323E—-15 ( 4.4409E-16)
—1.5850 0
512 1.3323E—15 1.3323E—15 (0)
—0.4150
1024 1.7764E—15 (3.5527E—15) (1.7764E—15)
(2.0000)
2048 || (1.7764E-15) (8.8818E—16) (0)
(0.4150) (1.0000)
4096 || (1.3323E-15) (4.4409E—16) (1.0658E~-14)
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Table 2.7: p=1
p=2, (r—1/2)p=1.0 p=3, (r—1/2)p=15 p=4, (r—1/2)p=2.0
N |Jf — INf| EOC |Jf — JInf] EOC |Jf = Jn f] EOC
2 7.2872E—02 1.4173E—01 2.2760E—01
9.6032 4.3773 3.9325
4 || 9.3695E—05 6.8197E—03 1.4907E—02
1.7595 6.1598 6.6580
8 2.7672E—05 9.5387E—05 1.4762E—04
10.7098 10.3620 8.9651
16 1.6523E—08 7.2477TE—08 2.9537E—07
26.1490 16.6596 16.9967
32 2.2204E—16 7.0011E~13 2.2586E—12
—1.0000 10.6225 11.7274
64 || 4.4409E—16 4.4409E—16 6.6613E—16
—~1.3219 —1.5850 —0.4150
128 1.1102E—15 1.3323E—-15 8.8818E—16
1.3219 0.2630 —0.3219
256 4.4409E—16 1.1102E-15 1.1102E—15
0 —0.4854 2.3219
512 || 4.4409E—16 1.5543E—15 2.2204E—16
—1.0000 —1.0000 —1.0000
1024 || 8.8818E—16 3.1086E—15 4.4409E—16
—0.3219 0.4854 —2.7004
2048 1.1102E-15 2.2204E—15 2.8866E—15
—1.3785 —1.0704 0.1155
4096 2.8866E—15 4.6629E—15 2.6645E—15
p=5 (r—1/2)p=25 p=6, (r—1/2)p=3.0 p=7, (r—-1/2)p=3.5
N |Jf = JInf] EOC |Jf = In EOC |7f — Inf] EOC
2 2.9202E—-01 3.2640E—01 3.3941E—-01
4.5318 7.0559 3.7424
4 1.2624E—02 2.4531E-03 2.5360E—02
4.9943 2.2045 3.9877
8 3.9608E—04 5.3223E—04 1.5986E—03
8.9213 8.0254 8.3657
16 8.1695E—07 2.0427E—06 4.8465E—06
19.4170 15.5129 16.9311
32 1.1671E—12 4.3687E—11 3.8785E—11
12.3597 16.0010 15.8293
64 2.2204E—16 6.6613E—16 6.6613E—16
—2.3219 1.5850 —0.4150
128 1.1102E—15 2.2204E—16 8.8818E—16
—0.4854 —~2.3219
256 1.5543E—15 1.1102E—15 (2.2204E—16)
1.8074 0 (—1.5850)
512 4.4409E—16 1.1102E-15 (6.6613E—16)
—2.0000
1024 1.7764E—15 (2.2204E—16) (0)
(—4.0000) ( E15)
2048 1.5543E—15 3.5527E—15) 1.9984E—
( ) (—0.5146) ( (1.1926) (0.8480)
4096 || (2.2204E-15) (1.5543E—15) (1.1102E-15)
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Chapter 3

Efficient Evaluation of the
Half-Plane Impedance Green’s
Function for the Helmholtz

Equation

In this chapter, we consider the problem of efficient evaluation of the half-plane impedance
Green’s function for the Helmholtz equation. We develop methods based on applying the
quadrature rule (2.13) and the main results in Chapter 2 to representations for the Green’s
function in terms of Laplace-type integrals of the form
00

/O t712e7Pf(t) dt, (3.1)
where p > 0, and f(t) is an analytic function in a sector of the complex plane containing
the positive real axis and satisfying Assumption 2.1’ in Section 2.2.

For p not too small, this type of integral can be effectively evaluated by Gauss-Laguerre
quadrature as discussed in Section 2.1, and this method has been applied to evaluation
of the half-plane impedance Green’s function in Chandler-Wilde and Hothersall [11, 12].
For p large, asymptotic approximations, see e.g. Bender and Orszag [5] and Jones [29],
based e.g. on Watson’s lemma [5] are also accurate. Clearly, however, this Gauss-Laguerre
quadrature method is not appropriate if p = 0, and is not accurate for p small. So the

main objective of this chapter is to numerically evaluate the integral (3.1) for p small.
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For completeness of this thesis and to see Laplace-type integrals of the form (3.1) in
a real problem, we will start this chapter in Section 3.1 with a description (taken in quite
large part from [11, 12]) of the problem of acoustic propagation from a monofrequency
coherent line source above a plane of homogeneous surface impedance. A generalised
asymptotic expansion for this Green’s function in the far field using the modified steepest

descent method of Ott [42] is presented in Chandler-Wilde and Hothersall [13].

3.1 Formulation of the Problem

We consider a model of outdoor sound propagation from a coherent line source (situated in
a homogeneous and stationary fluid medium) parallel to a homogeneous impedance plane.
This problem is effectively two-dimensional in the plane perpendicular to the line source
(see Figure 3.1). Let Gg(r,rp) denote the acoustic pressure at the point r when a unit
strength monopole source is located at rg and the impedance plane has relative surface
admittance 8 (with 8 = 0 for a rigid boundary and Re > 0 for an energy-absorbing

boundary). Then Gg(r,rg) satisfies the inhomogeneous Helmholtz equation
(A +k*)Gp(r,rg) = =8(r —ro), rev, (3:2)
the impedance boundary condition

aiGg(r, ro) + 1kBGg(r,ro) =0, r € 0U, (3.3)
Y

the Sommerfeld radiation and boundedness conditions,

2 Gglr,ro) — ikGa(r,xo) = olr™/%),  Glr,xo) = O, (3.4)

uniformly in 6 as r — oo with 0 < 6 < m, where (r, ) are the plane polar coordinates of r.
We assume throughout that Re 8 > 0, and express G4(r,ro) as the sum of Go(r,rp) and

a correction Pg(r,rp), i.e.,
Gp(r,ro) = Go(r,r0) + Ps(r, T0), (3.5)

where

Golr,ro) = 7H (kR) + ZH (kR) (3.6)
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is the solution of equations (3.2) and (3.3) for 8 = 0, found by the method of images. Here
Hgl) is the Hankel function of the first kind of order zero which has a representation as a

Laplace-type integral as

2% [® t—1/26(i—t)z
HY () = __/ vie &
o (2) mo t_2)P dt, Rez >0, (3.7)

or can be efficiently and accurately evaluated using e.g. equations (9.4.1) through (9.4.3)
in [1]. To find P, we substitute (3.5) back into equations (3.2) to (3.4) and solve the

boundary value problem for Pg by applying Fourier transform methods and the result

(Erdelyi et al. [18]) that

e (1) 2 2\1/2\ ix 2 2 42y1/2
1X1 _ 1Y (k“—t
/_Oo Hy ' (k(Y? +X%) " )e dx_me (k7=

So we obtain an ordinary differential equation with boundary conditions which can be
solved to obtain an expression for the Fourier transform of Pg. Taking the inverse Fourier

transform and substituting ¢ = ks, we get

_iB [ exp (B[ (y +y0)(1 — s7)Y/? — (& — z0)s] )
21 J_ (1 — s2)1/2((1 — s2)1/2 + B)

with Re {(1 — s?)/2},Im {(1 - s%)1/2} > 0.

To make this representation for Py suitable for numerical quadrature, the integrand is

ds, (3.8)

Pg(r,rg) =

simplified and the branch point singularities at s = £1 removed by making the substitution
s = cosf. Then the resulting integrand is deformed in the complex plane to the steepest

descent path. As a result, the following representation for Pg is derived in [11, 12]:

Ps(r,ro) = —ﬂf:p/oo ¢12e=Pt £ (1) dit, ImB>0 or Rea; >0, (3.9)
0
where
B B+ (1 +1t) ;
T = =2 P = ian)(t —ias)’ (3.10)
v = cos by,
ar = 1+ By F (1 - )20 -2, (3.11)

with Re {(1 — 62)1/2}, Re {(t — 22’)1/2} > 0. Further, to remove the only singularity lying
near the real axis —oo < t < oo, we regularize the integrand by removing the simple pole

in f(t) at ia, by defining g(t) by

g(t) = f(t) - ¢ (3.12)
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where C' is the residue of f(¢) at t = ia... From the definition of f(t) and the identity

(B+7—7a1)® = —ay(ax — 2)(1 — 42),

we see that [11, 12]

i(iay)l/? s 12 3
= W’ —Z < arg{(za+) } < I
Thus, at least for Im 3 > 0,
,Beip 00 12—t ,Beipcr o0 t—l/Qe—pt
Pg(r,rg) = — / 17/ %ePg(t) dt — / , dt. (3.13)
T Jo T Jo t—iay
Now, from equations (7.1.3) and (7.1.4) in [1], we have that
%z [© et 2 .
- /0 o dt = e * erfc (—1iz2), Imz > 0. (3.14)

Thus, by making the substitution pt = s? into the second integral on the right hand side

in (3.13) and using equation (3.14), we see that, for Im 3 > 0,

etP [ B B ei,o(l—aJ,) in
Ps(r,rp) :—ﬁ7r /0 t71/%¢ Pto(t) dt—zfl_werfc (e /4 /p\Jay), (3.15)

where

e—-’iﬂ'/4\/a+
(1-62)12(t —day)’

with Re y/ay,Re {(1 - ﬂ2)1/2} > 0. In fact, since (3.9) and (3.15) are equal for Img3 > 0

9(t) = 1(t) -

and are both analytic in Re 8 > 0 with the cut § > 1 removed, by analytic continuation
and continuity arguments [11, 12], they are equal for all 8 with Re3 > 0 except 8 = 1.
Thus (3.15) holds for Re 8 > 0, 3 # 1. The only singularities of g(t) are a pole at t = ia_
and a branch point singularity at t = 2.

In order to obtain an integrand that decreases more rapidly when ¢ — oo (note that

g(t) = O(t™ 1) as t — oo while f(t) = O(t~3/%) as t — 00), we introduce h(t) defined by

C
h(t) = g(t) —h
o C
f(t) ZC(]. —Rea+) (3 ]())
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where
Zi+ = 1 + 'LIm a+.

For Re 8 > 0, B # 1, we write equation (3.15) in the form

ip poo ip 00 1—1/2 —pt
Ps(r,ro) = _pe / =20ty dt + PELC / e
0 0

s s t—1ia4
,Beip(l_a-i-) i
C2(1- g2)12 erfe (e \/py/ay). (3.17)

Substituting pt = s? and using equation (3.14) again in the second part of the right hand
side of (3.17), we have that, for Re3 > 0 and 8 # 1,

ﬁe“’/o" 1/e Beir(1=84+) /g p N
Pp(r,ro) = - 126~ Pth(t) dt + in/4
5(r,rp) myh e (t)dt + 2= P as erfc (e Vovay)
IBeip(l—a+) —in
~ =gy e (€T Vovay), (3.18)

and

e™/%(1 — Rea)/ay
(1= B2 M2t —day)(t — i)’

with Re/a4,Re {(1 — ﬂ2)1/2} > 0. The only singularities of the analytic function h(t)

(3.19)

h(t) = £(8) + 5

are poles at t = ia_ and t = 7a, and a branch point at ¢t = 24, and h(t) = O(t=3/2) as

t — oo.

3.2 Evaluating FP;3(r,ro)

To apply the quadrature rule (2.13) to evaluate equation (3.9) and the first part of the
right hand side in equation (3.18), we substitute ¢t = s* into (3.9) and (3.18), and use the

notation in Chapter 2 that

400 )
JU :=/ e "5 W (s?) ds.
—o0
Thus, (3.9) and (3.18) become
Beiv

T

Ps(r,rg) = Jf, ImB>0 or Reay >0 (3.20)
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and, for Re3 >0, 8 # 1,

ﬁeip(l_a+)\/a+
(1-p)2ya,

ﬁeip(]-_a‘}')
2(1- )2

Bet?
Pjs(r, = — h
3(r,ro) - Jh + 5

exfe (e~ /p/ 1)

erfc (e7™*\/p\/as). (3.21)

To apply the results in Section 2.2, we will show that f and A satisfy Assumption 2.1’ in
the following theorems. As in [11, 12], we restrict attention to the case || < 1, which

range of § includes most values of interest in outdoor sound propagation.

Theorem 3.1 For 0 < v <1, |8 <1, |1 -] <£0.1, the function f, given by (3.10),
satisfies Assumption 2.1 withe =1/4,0 =7/6, r =3/2 and c=398. Ify =0, |B] <1,
|1 — B < 0.1, then Assumption 2.1" is satisfied with ¢ = 1/4, 0 = /6, r = 5/2 and
c=199.

Proof. For |B| <1, |1 -] <0.1,0 <y <1, it can be seen that
mpgl <01, |1-p)Y? <Vv02z, |Im{(1-pY)"2} < V0T,

(The third inequality is from | Im {(1 —BQ)l/Z}I = %(ll ~3%|—Re(1-75%) ]1/2, equation
3.7.27 in [1]) and hence that

Rea_ >1, Rea;>1-+v02>0552, |Imax|<v0.11<0.332,  |ax| <21

It follows that the function f is analytic on Dy ». For t € D 1x, we find that

1l
16

2(1+t), if 0<vy<L,
1B+ y(1+1t)] < (3.22)
1, if v=0,
and (see Figure 3.2),
31
It —2i| > dy = %— > 1.6, (3.23)
\/§( 0332 1 )
g | > dy = 21— = - —=] > 057, (3.24)
|t a . ) 9 \/g 4\/3_
V3 0332 1 )
Cda.| > dy = — (0552 — —— — —=] > 0.18. (3.25)
ol 2 = g N

To see how to make use of these bounds, suppose that A € C,

4] < K,
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and that, for ¢t € D1 «,
4’6

[t —iA| > B > 0.
Then, for ¢ > K, we find that
B
— (14|t i <
), i <
t—id] >
c— K
1 i >
(1), i >
so that
t—iA| > C(L+[t)), te€Dy., (3.26)
where
B _
C := min __’ﬂ i
14c¢ 1+4c¢
We choose ¢ = B 4+ K to maximise C, giving
B
C=——. 3.27
1+ B+ K (3:27)

Applying these bounds with A = 2, B = 1.6 and K = 2, we see from (3.23) that, for

te Dl usg)
476
1.6
—%l > — (14|
=2 2 Ty gt
= Saep. (3.28)
23
Similarly, from (3.24), we see that
t—ia|> 2C(1+]t), teDis, (3.29)
= 367 iE

and, from (3.25),

t—iay] > —(1+]f]), teD (3.30)

164

1=
4'6

Combining inequalities (3.22), (3.28) to (3.30), for 0 <~y < 1,

f()] <2 (%)_1/2&%4)‘1(%)_1(1 +|t)) 732

< 398(1 + Jt|)*2
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Arguing in the same way for v = 0, except that we use the fact that |3+ (1 + it)] <1in

this case, we obtain
|F(1)] < 199(1 + |¢])~5/2.

Theorem 3.2 For 0 < v <1, Ref >0, |8 <1, |1-p8>0.1, the function h, given
by (3.19), satisfies Assumption 2.1" withe = 1/4, 0 = /6, r = 3/2 and ¢ = 845832. If
v=0,[8 <1, |l -0 >0.1, then Assumption 2.1' is satisfied with ¢ = 1/4, 6 = /6,
r =2 and ¢ = 681158.

Proof. For |B] <1, |1 -] > 0.1, 0 <~ <1, it can be seen that
Rea_ > 1, Reay > 2 —Rea_, lImai|§\/§,
and also that

V2> (1= HY2 > V019, < (1432 <1+ 24+t com
>|(1-p87 > lVay| < ( )7, lax| < \/3-+\/§

Note that a4 may be outside or inside D; ». Let

1l m
16

c1 := dist (2@,1)%,%), co = dist (za_,D%,%), cs = dist (za+,D%’%)

be the distances of the singularities of the function A from D1 ». To assist in bounding h

4’6
on D% =, we choose 7 so that 0 < 27 < ¢;, for j = 1,2,3, and define D% x D D% x by
)6 ) 3

Di x, if dist (iay,D1 ) > T,

4’6 4’6

Dy =
4’6

D1 U{z€C:|z—day| <7}, if dist(iay,D1x)<T

4’6 4’6

~

Then the function A is analytic on D1 ~. We need to bound

1w
1’6

M= sup [h(&)|(1+][t)*?
teD

1=
16

Since

\

1+|t|§g{1+t|, for teD

k]

1
4°
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with equality when ¢t = —1/4, we have that

M < (5/3)%% sup |h(t)(1+1)%?]
teD

< (5/3)%% sup |n(t)(1 + )32,

4°6
since D L x cD Lz Now, by the maximum principle for analytic functions, it follows that
M < (5/3)*% sup |A()(1+1)%2. (3.31)

6

Fort € 85; =, we find that

4’6
2(1 + [t]), if 0<y<1,
18+ (1 +1t)] < (3.32)
1, if =0,
and (see Figure 3.3)
|t — 2i| > ¢1 — 27, (3.33)
|t —ia_| > c2 — 27, (3.34)
It —iay| > c3 — 2T, (3.35)
|t —iay| > T (3.36)
Lower bounds for ¢, ¢, and c3 are
8v3—1
c] > e = —£8—— > 1.6,

V3 V2 1)
>e0 = —[(1—-22———1]>0.03,
€2 = € 2( \/§ 4\/§

c3 > ey > 0.03.
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Then we choose 7 = 0.01 so that 0 < 27 < ¢j, for j = 1,2,3. Hence, from inequalities

(3.33) to (3.36), we obtain, for t € D, x, that

b

|
o

It — 2i] > 1.58,

It —ia_| > 0.01,

It —ia,| > 0.01,

|t — z'a+| > (0.01.

(3.37)

(3.38)

(3.39)

(3.40)

To make use of these bounds, we use the argument leading to the inequality (3.26), with

C given by (3.27). Applying these bounds with A = 2, B = 1.58 and K = 2, we see from

(3.37) that, for t € oD

1,
476

1.58
|t — 21| >

— (1 + |t
- 1+1.58+2( +1¢l)

79
= —(1+1).
2o (1 [H])

Similarly, from (3.38), we see that

1 ~
—ta_| > —(1+|t]), ted
t—ia-| 2 Z(1+4)

¥

N

from (3.39),

~ S ~

and from (3.40),

: 1 ~
|t—za+| Zﬁ(lﬁ‘lﬂ)a tE@’D%’

Combining inequalities (3.32), (3.41) to (3.44), for 0 <~y <1,

Ih(8)] < 2(572%)1/2(5%)_1(3—11—1)—1(1 + [¢)) =%/

< 845832(1 + )32

us
6

)

[-3E]

)

L]

5

1/2 —1/2 —1
187 19 1
i (T@) (1 * \/g) (T@) <311> (1171

~1
) (14112

(3.41)

(3.42)

(3.43)

(3.44)
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Arguing in the same way for v = 0, except that we use the fact that |8+ v(1 +4t)| <1 in

this case, we obtain
|h(t)] < 681158(1 + |t])~2.

Combining Theorems 3.1 and 3.2 with Corollary 2.1, we obtain the following theorems.

Theorem 3.3 Suppose that Assumption 1.1 on w holds and that || < 1, |1 — 8] <0.1.
Suppose also that ¢ € N, s ¢ N, and 1 < s < q. Then, where C is a constant whose
value depends only on q, s, and on the choice of w and, in particular, on the value of p in

Assumption 1.1, it holds that
|Jf —INFI S C(L+p)) N7,
provided also s <p if 0 <y <1, s<2pify=0.

Theorem 3.4 Suppose that Assumption 1.1 on w holds and that || <1, |1 — 5] > 0.1
Suppose also that ¢ €N, s ¢ N, and 1 < s < q. Then, where C is a constant whose
value depends only on q, s, and on the choice of w and, in particular, on the value of p in

Assumption 1.1, it holds that
|Jh — Jyh| < C(1+p")N77,
provided also s < p if 0 <y <1, s<3p/2ify=0.

Note that both these theorems predict a faster convergence rate when 7y = cos 0y =0, 1.e.,

when the angle of incidence §y = 7/2 in Figure 3.1.



Chapter 3

)

99

R U

rg = (.’,U(), yO)

r{) = (2o, —Y0)

r=(z,9)
R = |r —rg|
R =|r —rj
to

U

oUu

2

position of the source

position of the image of the source

position of the receiver

distance from the source to the receiver
distance from the image to the receiver

the angle of incidence

the region y > 0 above the impedance boundary

the boundary y =0

Figure 3.1: The positions of the source ro and the receiver r above the homogeneous

impedance plane. The cross-section is in the plane perpendicular to the line source.
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Imz A
'y
2 T
1 ds3
l 0.552 -
| &
n -
—1 Rez
0.332
3

Figure 3.2: Regions of the complex plane referred to in the proof of Theorem 3.1. The
shaded wedge-shaped region is D 1. The other shaded area is the part of the complex

plane in which 7a and 7a_ lie, with ia_ additionally restricted to lie in Imza_ > 1.
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Imz A

€2

o

Figure 3.3: Regions of the complex plane referred to in the proof of Theorem 3.2. The

shaded wedge-shaped region is D1 . The other shaded area is the part of the complex

1l
46

plane in which ia_ lies.
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3.3 Numerical Results

In the following results the expression for Pg(r,rg) in (3.20), and the first part of the
right hand side in (3.21) are estimated by Jy f and Jyh, respectively, the quadrature rule
approximation (2.13), with 2N — 1 points. We note that, since F is even, and in view of
the symmetry properties (1.28),

N-1
INf =aoF(0) +2 ) apF(z), (3.45)
k=1

where, for k=1,...,N — 1,

and

f(P(u))e= PP u?
(1—wu2)32 P(u) := >0, -l<u<l.

F(u) := =1

The evaluation of the complementary error function, which occurs in (3.21), is discussed
in Matta et al. [39], Chien et al. [14], and Chandler-Wilde [10].

As an example to illustrate the use of this quadrature rule applied to Laplace-type
integrals of the form (3.1) with f(¢) given by equations (3.10) and (3.19), we choose
g =0.99-0.01%,0.1 —0.2¢, y =0,1, and p =0,0.1, 1.

For p = 0, the analytic value of Ps(r,rg) is given, for 0 <y <1, as (see [11, 12]),

-1/, if =1,

if goifl =g
_27r(1 — ﬁ2)1/2 In (ﬂ + i(l _ ﬁ2)1/2>’ if f 75 1,

where Re {(1——,6’2)1/2} > 0 and the principal value of the logarithm is taken. For p = 0.1,1,

Pﬁ(r7 rO) =

we do not know the analytic values of Pg(r,rg), so we will approximate the error in
estimating Ps(r,rp), for 8 = 0.99 — 0.01, v = 0,1, p = 0.1,1 by |Bl|Inf — Jan fl/ 7.
Similarly, we will approximate the error in estimating Pg(r, rg), for §=0.1-0.27,y =0. 1.
p=0.1,1, by |B||Jnh — Jonh|/7.

Al numerical results in Tables 3.1-3.12 are evaluated using the mapping function w
given by equations (1.31) and (1.33), suggested by Kress [33]. Recall that we compute the
error in estimating JF with JyF given by (3.15), that it has been shown in Theorem 3.3

that, as N — oo, |Jf — Inf| = O(N %) for s <pif 0 <y <1, s<2pify=0 and that
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it has been shown in Theorem 3.4 that, as N — oo, |Jh — Jyh| = O(N~9) for s < p if
0<y<1,s<3p/2ify=0.

The error in estimating Pg(r,rg), for 8 = 0.99 — 0.014, p = 0,0.1,1, is shown, for
v = 0 and 1, in Figures 3.4 and 3.5, respectively. From these figures, it is seen that
numerical results close to machine precision level 1071% are obtained for p = 2 — 7 for
N large enough, and that the error in estimating Ps(r,rg) decreases significantly when
p increases (these observations are also confirmed by the numerical values tabulated in
Tables 3.1-3.6).

In Table 3.1, we can see that the predicted convergence rate 2p is observed for p = 2, 3.
In Table 3.2, the predicted convergence rate p is observed for p = 2,4,6. In Table 3.2,
a convergence rate p +1 = 4, when the predicted rate is p = 3, is observed again, as
in Chapter 1 and Chapter 2. For Tables 3.3-3.6, we can see that, for the same p, the
behaviour of observed rate is similar to that of Chapter 2. So we refer to the discussion
concerning the continuity of p in Section 2.4.

The error in estimating Pg(r,rg), for 5 = 0.1 — 0.24, p = 0,0.1,1, is shown, for
v = 0 and 1, in Figures 3.6 and 3.7, respectively. From these figures, it is seen that the
numerical results close to machine precision level 10716 are obtained for p = 2 — 7 for
N large enough, and that the error in estimating Pg(r,rg) decreases significantly when
p increases (these observations are also confirmed by the numerical values tabulated in
Tables 3.7-3.12).

In Table 3.7, we can see that the predicted convergence rate 3p/2 is observed for
p = 3,4. In Table 3.8, the predicted convergence rate p is observed for p = 2,4,6. In
Table 3.7, a convergence rate 3p/2 + 1 = 4, when predicted rate is 3p/2 = 3, is observed.
In Table 3.8, convergence rates p+1 = 4 and p+ 1 = 6 are observed, when predicted
rates are p = 3 and p = 5, respectively. Again for Tables 3.9-3.12, we can see that, for
the same p, the behaviour of observed rate is similar to that of Chapter 2. So we refer to

the discussion concerning the continuity of p in Section 2.4.
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Table 3.1: 8 =0.99-0.015,vy=0,p=0
Pg(r,ry) = —0.31618786918623 + 0.00213484680592:
NaN indicates that an implementation problem is encountered as described in Section 1.4

due to some zj evaluating to +1 in (3.45).

p=2, 2p=40 p=3, 2p=6.0 p=4, 2p=280
N ERROR EOC ERROR EOC ERROR EOC
2 || 1.9199E-01 2.2146E—01 2.4190E—01
3.4045 2.8611 2.3269
4 || 1.8131E—02 3.0481E—02 4.8214E—02
8.2707 7.3551 6.3241
8 || 5.8707E—05 1.8617E—04 6.0178E—04
9.5457 15.5896 13.9685
16 || 7.8550E—08 3.7754E—09 3.7541E—08
3.9889 7.6705 18.9190
32 || 4.9471E—09 1.8532E—11 7.5738E—14
3.9974 6.0003 8.8188
64 || 3.0976E—10 2.8949E—13 1.6772E—16
3.9993 5.9388 —0.4052
128 || 1.9369E—11 4.7194E—-15 2.2211E-16
4.0000 5.1992 —0.5972
256 || 1.2106E—12 1.2846E—16 3.3599E-16
4.0018 —0.2473 —0.4896
512 || 7.5568E—14 1.5248E—16 4.7175E—16
p=25 2p=10.0 p=6, 2p=120 p=7, 2p=14.0
N ERROR EOC ERROR EOC ERROR EOC
2 || 2.4926E-01 2.4874E—01 2.4488E—01
1.9069 1.5706 1.2946
4 || 6.6468E—02 8.3740E—02 9.9826E—02
5.5052 4.8884 4.4178
8 || 1.4635E—03 2.8274E—03 4.6704E—03
12.6225 11.6112 10.8040
16 || 2.3209E-07 9.0379E—07 2.6124E—06
24.9465 23.2407 21.6898
32 || 7.1781E-15 9.1183E—14 7.7225E—13
4.9605 8.6072 12.9983
64 || 2.3054E—16 2.3383E—16 9.4379E—17
—0.3078 0.6421 0.4165
128 || 2.8538E—16 1.4983E—16 7.0711E-17
—0.2865 —0.1069
256 || 3.4806E—16 1.6136E—16 NaN
0.0005 —1.9276
512 || 3.4793E-16 6.1385E—16 NaN
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Table 3.2: 8=10.99 — 0.01i, y =1, p = 0
Pg(r,ro) = —0.31618786918623 + 0.00213484680592;
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NaN indicates that an implementation problem is encountered as described in Section 1.4

due to some zj evaluating to %1 in (3.45).

p=2, 1lp=20 p=3, 1p=30 p=4, 1p=40
N ERROR EOC ERROR EOC ERROR EOC
2 || 7.1743E-02 1.1260E—01 1.5773E—-01
3.8624 3.5912 3.1449
4 || 4.9328E—03 9.3431E—~03 1.7833E—02
2.5842 7.3906 6.3605
8 || 8.2259E—04 5.5680E—05 2.1703E—-04
2.0048 7.7461 8.4083
16 || 2.0497E—04 2.5935E—07 6.3878E~07
1.9989 3.9992 3.9940
32 || 5.1280E-05 1.6218E—-08 4.0090E—08
1.9997 3.9990 4.0005
64 || 1.2822E-05 1.0143E—-09 2.5048E—09
1.9999 3.9998 4.0001
128 || 3.2057E—06 6.3407E—11 1.5654E~10
2.0000 3.9999 4.0000
256 || 8.0145E—07 3.9631E—12 9.7833E—12
2.0000 3.9996 4.0000
512 || 2.0036E—07 2.4777E~13 6.1147E—13
p=25 1lp=5.0 p=6, 1lp=6.0 p=7, 1lp=70
N ERROR EOC ERROR EOC ERROR EOC
2 || 1.9056E-01 2.0986E—01 2.1936E—01
2.8134 2.5165 2.2651
4 || 2.7109E-02 3.6676E—02 4.5633E—-02
5.6839 5.1502 4.7278
8 || 5.2734E—04 1.0328E—03 1.7221E—03
11.8271 10.8182 10.0104
16 || 1.4514E-07 5.7202E—07 1.6697E—06
11.1554 12.9876 20.9721
32 || 6.3631E—11 7.0431E-11 8.1169E—13
6.0034 5.9985 9.2720
64 || 9.9192E—13 1.1016E—12 1.3129E—-15
5.9952 5.9979 4.5465
128 || 1.5550E—14 1.7237E—14 5.6185E—17
5.5145 5.3968
256 || 3.4019E—16 4.0913E—16 NaN
0.4172 1.2573
512 || 2.5476E—16 1.7115E—16 NaN
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Table 3.3: 8 =0.99 —0.013, y =0, p=0.1
Pgs(r,ro) =~ —0.31049907365896 — 0.04500700474089; (withp = 4. N = 64)
Ps(r,ro) ~ —0.30636827082809 — 0.07358297926066: (by Gauss-Laguerre quadrature)
NaN indicates that an implementation problem is encountered as described in Section 1.4

due to some zj evaluating to £1 in (3.45).

p=2, 2p=40 p=3, 2p=6.0 p=4, 2p=8.0
N\ BIINS = Jan fl/m EOC | |BIlUNf = Janfl/m EOC | IBIVINf = Jon fl/m EOC
2 1.7846E—-01 2.0288E—01 2.2510E-01
3.3269 2.7634 2.2554
4 1.7785E—02 2.9880E—-02 4.7145E-02
8.2632 7.3292 6.2977
8 5.7889E—-05 1.8581E—-04 5.9931E—-04
11.0623 14.3552 13.7483
16 2.7072E—-08 8.8659E—09 4.3550E—-08
9.5612 11.1619 13.5738
32 3.5836E—11 3.8695E—12 3.5715E—12
14.4419 15.8712 15.9560
64 1.6102E—-15 6.4559E—17 5.6185E—17
3.8091 —2.3921 —0.6550
128 1.1487E-16 3.3887E—-16 8.8471E-17
—0.1887 1.5412 —1.0020
256 1.3092E—-16 1.1643E—-16 1.7719E-16
—1.8215 —1.9338 0.5870
512 4.6276E—16 4.4485E—16 1.1796E—16
p=5, 2p=10.0 p=©6, 2p=12.0 p=7, 2p=14.0
N || 18llUnf - Jonfl/r  EOC | 1BlUnf - Janfl/x  EOC | |BllJxf~ Joxfl/x  EOC
2 2.4272E—-01 2.5855E—01 2.7460E—-01
1.8974 1.6524 1.4901
4 6.5153E—02 8.2247E—02 9.7753E—-02
5.4878 4.8737 4.4071
8 1.4519E—-03 2.8054E—-03 4.6076E—-03
12.4768 11.6201 10.8088
16 2.5472E-07 8.9121E-07 2.5686E—-06
16.8759 16.6571 17.3790
32 2.1179E—-12 8.6236E—12 1.5069E—11
14.1458 16.9232 15.9955
64 1.1685E—16 6.9389E—-17 2.3066E—16
1.6814 —1.0000
128 3.6429E—-17 1.3878E—~16 NaN
—3.7382 —0.4875
256 4.8613E—16 1.9457E—16 NaN
—0.7162 o
512 7.9861E—16 NaN NaXN
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Table 3.4: 8=0.99 — 0.014, y=1, p=0.1
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Pg(r,rg) =~ —0.27196976811781 — 0.07688789372251i (with p =4, N = 64)

Pg(r,ro) = —0.27170762031381 — 0.076018506610667 (by Gauss-Laguerre quadrature)

NaN indicates that an implementation problem is encountered as described in Section 1.4

due to some zj evaluating to +1 in (3.45).

p=2, 1lp=2.0 p=3, 1lp=3.0 p=4, 1p=4.0
N || IBIlINf = Jonfl/m EOC | |BllInf — Jonfl/m EOC | |BllInf = Janfl/7 EOC
2 7.5718E—02 1.0620E—-01 1.2537E-01
4.4132 3.7192 2.7194
4 3.5538E—-03 8.0632E—03 1.9036E—02
5.6909 6.8852 5.9387
8 6.8794E—05 6.8211E—05 3.1035E—-04
6.5815 6.1560 8.3313
16 7.1834E—-07 9.5659E—07 9.6357TE—07
8.6838 10.4040 11.4900
32 1.7469E—-09 7.0603E—-10 3.3501E-10
18.2884 17.8500 18.4171
64 5.4565E—15 2.9883E—-15 9.57T09E—16
4.0291 4.6832 3.9468
128 3.3422E~-16 1.1632E—16 6.2063E—-17
—0.0199 —2.2619 —0.4290
256 3.3887E—16 5.5788E—~16 8.3555E—-17
1.7030 —0.4865 —2.2603
512 1.0408E-16 7.8160E—16 4.0030E—16
__
p=35 1p=5.0 p=6, 1lp=6.0 p=7, 1lp=7.0
N [ |BIlINf — Jan fl/m EOC | |Bl|Inf — Janfl/x EOC | |Bl|INf = Jonfl/m EOC
2 1.3547E—-01 1.4206E—-01 1.4781E-01
2.2228 1.9626 1.7122
4 2.9021E—-02 3.6449E—-02 4.5113E-02
5.6516 5.0337 4.9401
8 5.7733E—-04 1.1127E-03 1.4695E—03
10.7294 10.6812 9.2660
16 3.4006E—-07 6.7769E—-07 2.3869E—06
9.3332 12.6480 12.9991
32 5.2723E—10 1.0558E—10 2.9154E—-10
19.0193 16.5354 21.5171
64 9.9226E—16 1.1116E—-15 9.7145E-17
2.6599 5.3237
128 1.5701E—16 2.7756E—17 NaN
2.1781 —3.1102
256 3.4694E—17 2.3967E-16 NaN
—2.1330
512 1.5218E—-16 NaN NaN
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Table 3.5: 8 =0.99 — 0.01i, y =0, p= 1
Py(r,ro) ~ —0.07374153763450 — 0.25888728209860; (with p = 4, N = 64)
Ps(r, ro) ~ —0.07374181647900 — 0.25888793298985i (by Gauss-Laguerre quadrature)

NaN indicates that an implementation problem is encountered as described in Section 1.4

due to some zj evaluating to +1 in (3.45).

p=2, 2p=4.0 p=3, 2p=6.0 p=4, 2p=8.0
N || 18IlUnf —Jenfl/x  EOC | |BIlInS = Janfl/m  EOC | |B|lUnf—Jonfl/x  EOC
2 1.1590E—-01 1.2870E—-01 1.4214E—-01
3.0347 2.5753 2.1938
4 1.4144E—02 2.1594E—02 3.1068E—-02
7.9751 6.9259 5.7652
8 5.6212E—05 1.7760E—04 5.7125E—-04
16.7556 15.3008 13.8593
16 5.0803E—10 4.3998E—-09 3.8437E—-08
20.1249 21.8929 22.1249
32 4.4431E—-16 1.1298E—15 8.4042E—15
1.3960 4.3472 8.2422
64 1.6883E—16 5.5511E—17 2.7756E—-17
—0.6745 —2.1983 —2.0949
128 2.6946E—16 2.5476E—16 1.1857E—16
—0.2444 —0.6100 —1.2288
256 3.1919E—-16 3.8883E—16 2.7790E—16
—0.0860 1.0009 —0.8556
512 3.3880E—16 1.9429E—16 5.0287E—-16
p=5, 2p=10.0 p=6, 2p=120 p=7, 2p=14.0
N || 1BIlINSf — Jan fl/7 EOC | |B|UNSf — Jan fl/m EOC | |Bl|INf — Janfl/7 EOC
2 1.5465E—01 1.6686E—01 1.7871E-01
1.9334 1.7508 1.6189
4 4.0489E—-02 4.9582E—02 5.8184E—02
4.9183 4.3501 3.9348
8 1.3391E—-03 2.4312E-03 3.8045E—03
12.5982 11.5343 10.5388
16 2.1596E-07 8.1969E—-07 2.5575E—06
21.2380 23.0027 20.4675
32 8.7315E—14 9.7531E-14 1.7639E—12
9.0145 9.4789 14.7947
64 1.6883E—-16 1.3668E—16 6.2063E—17
0.1946 1.1390
128 1.4752E—16 6.2063E—17 NaN
—0.4240
256 1.4752E—16 8.3267TE—17 NaN
—0.1389
512 1.6244E—16 NaN NaN
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Table 3.6: 8=0.99—-001i,y=1,p=1
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Pg(r,rp) =~ —0.00903780772042 — 0.17497316464342i (withp =4, N = 64)

Pg(r,ro) = —0.00903780769558 — 0.17497316468676: (by Gauss-Laguerre quadrature)

NaN indicates that an implementation problem is encountered as described in Section 1.4

due to some zj evaluating to +1 in (3.45).

p=2, 1p=20 p=3, 1p=3.0 p=4, 1lp=4.0
N || 1Bl Inf — Jan fl/® EOC | 1B||Inf — Jonfl/7 EOC | Bl INf — Jan fl/m EOC
2 2.9835E—02 4.0521E—02 5.3142E—02
3.4749 2.9109 2.5398
4 2.6834E—03 5.3877E~03 9.1384E—03
8.9063 6.5565 5.3946
8 5.5928E—06 5.7242E—05 2.1724E—04
12.1892 14.3281 12.0419
16 1.1976E—09 2.7830E—09 5.1520E—08
17.4698 15.8912 17.3616
32 6.5974E—15 4.5793E—14 3.0592E—13
6.1471 9.6881 14.4281
64 9.3095E—17 5.5511E—17 1.3878E—17
0.3169 —0.5000 —3.1699
128 7.4734E—17 7.8505E—17 1.2490E~16
—1.1610 —~1.3219 —0.1520
256 1.6711E—16 1.9626E—16 1.3878E—16
—0.0888 —0.8923 0.6610
512 1.7772E-16 3.6428E~16 8.7771E—17
p=5, 1p=35.0 p=6, 1lp=6.0 p=17, 1p=70
N || 1BlInSf— Janfl/m EOC | 18| INSf — Janfl|/m EOC | |B||INnf — Janfl/7 EOC
2 6.3383E—-02 7.1217E—02 7.7820E—02
2.4181 2.3776 2.2894
4 1.1859E—02 1.3704E—02 1.5919E—02
4.7332 4.0425 3.5981
8 4.4587TE—04 8.3166E—04 1.3145E—03
11.4955 10.8915 10.4077
16 1.5442E—-07 4.3779E-07 9.6770E—07
17.0128 16.0351 AE11 16.2904
i —12 6.5195E—12 1.2074E~
32 1.1678E—1 5. 1606 16,1807 17.0519
64 3.1032E—17 8.7771E—17 8.8861E—17
—1.6893 0.5000
128 1.0007E—16 6.2063E—17 NaN
—1.5788 —1.2680
256 2.9894E—16 1.4947E—16 NaN
0.1731 )
512 2.6513E—16 NaN NaN
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Figure 3.6: Error in estimating Ps(r,rp) vs. N, with h given by equation (3.19).
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Figure 3.7: Error in estimating Pj(r,ro) vs. N, with h given by equation (3.19).
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Table 3.7: B=0.1—10.2i, y=0, p=0
Ps(r,19) = —0.05700591319878 + 0.08720197355569

114

NaN indicates that an implementation problem is encountered as described in Section 1.4

due to some zj evaluating to +1 in (3.45).

r=2, 3p/2=3.0 p=3, 3p/2=45 p=4, 3p/2=6.0
N ERROR EOC ERROR EOC ERROR EOC
2 1.9048E—03 2.2761E—-03 2.5404E—-03
3.5773 2.8413 2.2546
4 1.5957TE—04 3.1761E—04 5.3235E—-04
10.7175 8.1322 6.5105
8 9.4768E—-08 1.1320E-06 5.8389E—06
5.0949 10.1674 13.4792
16 2.7729E-09 9.8440E—10 5.1132E-10
3.9922 4.4905 9.5842
32 1.7424E-10 4.3791E-11 6.6615E—13
3.9981 4.4945 6.0037
64 1.0905E—11 1.9428E—12 1.0382E—14
3.9995 4.4952 5.8371
128 6.8177E—-13 8.6146E—14 1.8161E—16
4.0001 4.5024 3.7100
256 4.2608E—14 3.8008E—15 1.3878E—17
4.0025 4.6247 1.0000
512 2.6584E—15 1.5407E—16 6.9389E—18
p=5, 3p/2=175 p=26, 3p/2=9.0 p=17, 3p/2=10.5
N ERROR EOC ERROR EOC ERROR EOC
2 2.5942E—-03 2.4856E—03 2.2905E—-03
1.8168 1.4498 1.1239
4 7.3634E—-04 9.0991E-04 1.0510E—-03
5.4902 4.7701 4.2228
8 1.6382E—05 3.3347E—-05 5.6289 E—05
12.2658 11.4836 10.8319
16 3.3266E—09 1.1645E—08 3.0882E—-08
18.8498 22.0045 20.3599
32 7.0412E—15 2.767TE—15 2.2950E—14
8.8259 11.6915
64 1.5516E—17 0 6.9389E—18
128 1.5516E—17 1.3878E—17 0
256 0 0 NaN
512 0 6.9389E—18 NaN
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NaN indicates that an implementation problem is encountered as described in Section 1.4

Table 3.8: 3=0.1—-02i,v=1,p=0

Pg(r,rg) = —0.05700591319878 + 0.08720197355569:

due to some zj evaluating to 1 in (3.45).

N ERROR EOC ERROR EOC ERROR EOC
2 2.9776E—-02 4.3840E—-02 5.6486E—02
4.3090 3.5215 3.0558
4 1.5022E—-03 3.8178E—-03 6.7929E—-03
2.9719 7.4750 6.6209
8 1.9147E—-04 2.1459E—-05 6.9017TE—-05
2.0484 8.5295 8.9884
16 4.6289E—05 5.8074E—08 1.3589E-07
1.9988 3.9801 3.9077
32 1.1582E—-05 3.6801E—09 9.0542E-09
1.9997 4.0008 4.0004
64 2.8960E—06 2.2988E—10 5.6572E—10
1.9999 4.0012 4.0001
128 7.2403E-07 1.4356E—-11 3.5354E—11
2.0000 4.0010 4.0000
256 1.8101E—-07 8.9664E—13 2.2096E—12
2.0000 4.0009 3.9995
512 4.5253E-08 5.6006E—14 1.3815E—13
p=5 1p=25.0 p=6, 1lp=6.0 p=7 1p=70
N ERROR EOC ERROR EOC ERROR EOCC
2 6.4872E—-02 6.9932E—-02 7.2931E-02
2.6639 2.3434 2.0801
4 1.0236E—02 1.3779E—-02 1.7248E—02
5.8995 5.3492 4.9121
8 1.7148E—04 3.3804E-04 5.7287E—04
11.5119 10.6908 10.0639
16 5.8720E—08 2.0450E—-07 5.3522E—07
11.9972 13.6470 20.2262
32 1.4363E—11 1.5942E-11 4.3636E—13
6.0026 6.0017 10.4866
64 2.2402E—-13 2.4880E—13 3.0413E—-16
5.9872 6.0055 1.6319
128 3.53156E—15 3.8728E—15 9.8131E-17
5.6411 5.4457
256 7.0763E—17 8.8861E—17 NaN
0.1803 —0.3324
512 6.2450E—-17 1.1189E-16 NaN
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Table 3.9: 8 =0.1-0.2;,y=0, p=0.1
Pg(r,ro) =~ —0.06676531983090 + 0.08144988555515¢ (with p = 3, N = 64)
Ps(r,ro) =~ —0.06677901439626 + 0.08146750512402¢ (by Gauss—Laguerre quadrature)
NaN indicates that an implementation problem is encountered as described in Section 1.4

due to some zj evaluating to +1 in (3.45).

p=2, 3p/2=230 p=3, 3p/2=45 p=4, 3p/2=6.0
N || IBllINh = Jonh|/m EOC | |Bl|Inh — Jonh|/m EOC | |Bl|INnh — Jonh|/m EOC
2 1.5349E—-03 1.7471E-03 1.9040E-03
3.2938 2.4976 1.9151
4 1.5652E—04 3.0937E—~04 5.0486E—04
9.6043 8.1409 6.3437
8 2.0109E-07 1.0960E—06 6.2164E—06
6.3357 9.1324 11.3582
16 2.4897E-09 1.9530E—-09 2.3681E—09
9.1107 10.7731 11.7395
32 4.5035E—12 1.1161E-12 6.9255E—13
14.7953 17.2953
64 1.5838E—16 6.9389E—18 0
4.5126 —1.0000
128 6.9389E—18 1.3878E—17 1.3878E—17
256 0 0 0
512 0 6.9389E—18 0
p=5, 3p/2=75 p=6, 3p/2=9.0 p=7, 3p/2=105
N 1Bl INh = Janh|/m EOC | |Bl|IJnh — Janh|/7 EOC ]ﬂHJNh—JzNhl/ﬂ' EOC
2 1.9549E—-03 1.9491E—-03 1.9466E—03
1.5039 1.2043 0.9921
4 6.8930E—04 8.4590E—04 9.7868E—04
5.4081 4.6952 4.1707
8 1.6234E—-05 3.2653E—05 5.4340E—-05
12.6515 11.8370 10.6183
16 2.5230E—09 8.9251E-09 3.4570E—-08
11.5875 13.7237 14.2783
32 8.1987E—13 6.5972E—13 1.7398E—-12
16.8503 17.9358
64 6.9389E—18 0 6.9389E—18
128 0 0 NaN
256 1.3878E—17 0 NaN
512 0 NaN NaN
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Table 3.10: 8 =0.1-0.2:;,y=1, p=0.1
Pg(r,ro) =~ —0.07167929633026 + 0.06548823755866: (with p = 3, N = 64)
Ps(r,rg) =~ —0.07112801617726 + 0.064732005398447 (by Gauss-Laguerre quadrature)

NaN indicates that an implementation problem is encountered as described in Section 1.4

due to some zx evaluating to 1 in (3.45).

p=2, 1p=2.0 p=3, 1lp=3.0 p=4, 1p=4.0
N || |8l Inh — Janhl|/m EOC | Bl|IJnh — Janhl/m EOC | |8l|Jnh — Janh|/m EOC
2 3.2972E-02 4.2688E—02 4.9651E—02
4.1242 3.5763 2.8747
4 1.8908E—-03 3.5788E—03 6.7697TE—03
7.6518 6.3653 6.8064
8 9.4022E—-06 4.3411E-05 6.0482E—-05
5.8401 7.6510 8.1559
16 1.6412E—-07 2.1598E-07 2.1206E—-07
8.6877 10.3980 11.4441
32 3.9802E—-10 1.6007E—-10 7.6107E—11
18.9584 17.9157 18.4799
64 7.8136E—16 6.4737E-16 2.0817E—16
3.4932 2.8650 2.7459
128 6.9389E—-17 8.8861E—17 3.1032E—-17
—0.0283 1.5178 —0.4240
256 7.0763E—-17 3.1032E-17 4.1633E—-17
0.5000 —2.3502 —1.2370
512 5.0037E—-17 1.5823E—16 9.8131E—17
p=5 1p=50 p=6, 1lp=6.0 p=7, 1lp=7.0
N |ﬂ||JNh—J2Nh|/7r EOC |,3||JNh—J2Nh|/7r EOC |ﬁ||JNh—J2Nh|/7l‘ EOC
2 5.4629E—02 5.8954E—02 6.3113E—02
2.4424 2.1025 1.8157
4 1.0051E—02 1.3728E—-02 1.7928E—02
5.9081 5.4115 4.8332
8 1.6737E—-04 3.2254E-04 6.2890E—-04
11.3028 11.7514 9.6420
16 6.6250E—08 9.3551E—08 7.8714E-07
9.1149 12.0159 13.5201
32 1.1949E—-10 2.2590E-11 6.7005E—11
19.2916 16.3885 19.8528
64 1.8619E—16 2.6331E—16 7.0763E—17
3.7459 3.7459
128 1.3878E-17 1.9626E—17 NaN
—2.3502
256 1.3878E—17 1.0007E—-16 NaN
—1.6610
512 4.3885E—17 NaN NaN
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Table 3.11: 8 =0.1-0.2;,vy=0,p=1
Pg(r,ro) ~ —0.11043681502955 — 0.00957558987026: (with p = 3, N = 64)
Pg(r,ro) ~ —0.11043681502854 — 0.00957558987042; (by Gauss-Laguerre quadrature)
NaN indicates that an implementation problem is encountered as described in Section 1.4

due to some zi evaluating to +1 in (3.45).

p=2, 3p/2=3.0 p=3, 3p/2=45 p=4, 3p/2=6.0

N | Bl INk = Janh|/m EOC | |Bl|Jnh — Jonhl/m EOC | |Bl| Inh — Janhl|/m EOC

2 7.6687TE—-04 8.5025E—-04 9.2003E—-04
2.9221 2.4009 1.9793
4 1.0118E—-04 1.6099E—-04 2.3333E-04
9.3141 6.7130 5.2945
8 1.5895E—-07 1.5346E—06 5.9452E—-06
14.7875 15.7506 13.2354
16 5.6205E—12 2.7834E—-11 6.1647E—10
16.6276 17.6065 19.0962
32 5.5511E—-17 1.3947TE—16 1.0999E—-15
2.0000 3.3291
64 1.3878E—17 1.3878E—17 0
128 1.3878E—17 0 0
256 0 0 0
512 0 0 0

p=6, 3p/2=90

p=17, 3p/2=105

N || 18Il Inh = Janhl|/m EOC | |Bl|Inh — Janh|/m EOC | |BllInh — Jonhl/w EOC

2 9.8189E—04 1.0531E—-03 1.1313E-03
1.7009 1.5262 1.4143
4 3.0202E—-04 3.6562E—-04 4.2444E—-04
4.4730 3.9343 3.5505
8 1.3599E-05 2.3916E—05 3.6224E—-05
12.6010 11.5284 10.3738
16 2.1890E—09 8.0964E—09 2.7300E—-08
18.5753 18.3045 18.6559
32 5.6043E—-15 2.5009E—14 6.6095E—14
10.8154
64 0 1.3878E-17 0
128 0 1.3878E—-17 NaN
256 0 0 NaN
512 0 NaN NaN
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Table 3.12: A =0.1—-02i,v=1, p=1
Pg(r,rg) ~ —0.05861168261500 — 0.03230345478596: (with p = 3, N = 64)
Ps(r,rg) = —0.05861167719527 — 0.03230345153251¢ (by Gauss-Laguerre quadrature)

NaN indicates that an implementation problem is encountered as described in Section 1.4

due to some zj evaluating to +1 in (3.45).

p=2, 1lp=20 p=3, 1lp=30 p=4, 1p=4.0
N || 18llJnh— Jonhl/x  EOC | |8llInh— Jonhl/x  EOC | |BIlJnh - Jawhl/m  BOC
2 1.8393E—-02 2.2545E-02 2.7086E—02
3.3932 2.8203 2.4432
4 1.7507E—03 3.1918E—-03 4.9806E—03
8.1311 7.4507 6.3245
8 6.2445E-06 1.8245E—-05 6.2148E—05
14.2609 13.4500 12.3394
16 3.1809E—10 1.6305E—09 1.1992E—-08
17.7265 17.2924 17.4112
32 1.4667TE—15 1.0157E—14 6.8801E—14
5.1386 10.6145
64 4.1633E—17 0 4.3885E—17
0.4240 —0.1893
128 3.1032E-17 4.3885E—17 5.0037TE—-17
—-0.3390 0.1610 0.1893
256 3.9252E-17 3.9252E-17 4.3885 E—17
—0.5850 —1.6610 —1.4339
512 5.8878E—17 1.2413E-16 1.1857E-16
p=95 1lp=25.0 p=6, 1lp=26.0 p=7, 1lp=7.0
N || |8llInh — Janh|/7 EOC | |Bl|Jnh — Janhl|/m EOC | |B8l|Jnh — Janh]|/m EOC
2 3.0868E—02 3.4079E-02 3.7003E-02
2.2420 2.0926 1.9445
4 6.5255E—03 7.9902E—03 9.6136E—03
5.2683 4.5030 4.1133
8 1.6932E—-04 3.5239E—-04 5.5546 E—04
11.6805 11.2759 10.4242
16 5.1584E—08 1.4211E-07 4.0424E-07
17.5968 16.5393 17.1402
32 2.6023E—-13 1.4921E-12 2.7985E—12
13.0338 16.2143 15.6215
64 3.1032E—-17 1.9626E—17 5.5511E—17
0.6610 0.5000
128 1.9626E—17 1.3878E—17 NaN
—1.5850 —2.8074
256 5.8878E—17 9.7145E-17 NaN
—0.9262
512 1.1189E-16 NaN NaN
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3.4 Conclusions

As mentioned in Section 3.2, we restrict our attention to the case when the relative surface
admittance [ is in the range |8| < 1, which range of § includes most values of interest
in outdoor sound propagation. From Section 3.2, we have two expressions for Ps(r,r)
which are complementary, and which we present using the notation in Chapter 2, that

+o00 )
JU ;=/ e P U (s?) ds.

—00

For |8 <1land |l -4 <01,

ip
Py(r, o) — _ﬂz Jf, (3.46)
where
. B+ (1 +1t)
flt) = (t— 20)1/2 (t —ial)(t —ia_)’
v = cos b,

ax = 1+ fyF (1 - V21— 472,

with Re {(1 — 6%)1/2},Re {(t — 2i)/2} > 0. For Re >0, |6 <1, and |1 — 8| 2 0.1,

BetP Betrl E+)\/a ;
Py(r, - = _Jn in/4
3(r,T0) + 20— ) a erfc (e VoV ay)
Igeip(l—a+)

T o e (e V/pvay), (3.47)

where

€i7r/4(1 — Rea+)\/a+
(L= P)VV2(t — as)(t — ids)]

h(t) = f(t) + 5
ZI:+ =1 —I—iIma+,

with Re v/a;,Re {(1 — ﬁ2)1/2} > 0. In other words, expression (3.46) is suitable when (3
is near 1, and expression (3.47) is suitable when [ is bounded away from 1.

Applying the quadrature rule approximation (2.13), Jyf, to evaluate Jf in (3.46)
and Jh in (3.47), we obtain the error bounds in Theorems 3.3 and 3.4, respectively. The

complementary error functions in (3.47) have been evaluated in this thesis by using the

code in Appendix A.
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From Theorems 3.3 and 3.4, we can see that the quadrature rule approximation (2.13)
is predicted to be an accurate numerical quadrature method, even for fairly small values
of N, for the evaluation of Jf and Jh, provided p > 0 is not too large.

We demonstrate the numerical analysis results of Theorems 3.3 and 3.4 by plotting the
error in estimating Pg(r,rg) against p, depicting it in Figures 3.8-3.9 (8 = 0.99 — 0.01:
and v = 0,1) and Figures 3.10-3.11 (8 = 0.1 — 0.02; and vy = 0, 1), respectively. We can
see that, for N = 64 and p = 6 or p = 7, the results are accurate, with error not more

than 10~1% when v = 0, not more than 1071% when v = 1, for 0 < p < 10.
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A Numerical Quadrature Method
for Integrals on Finite Intervals
with Branch Point Singularities

near the Interval of Integration

In this chapter, we will apply the quadrature method and error analysis in Chapter 1
to numerically evaluate If, where f may have a branch point singularity near or on the

interval of integration. We consider functions f satisfying the following assumptions.

Assumption 4.1 For some ¢ € N and b, with —1 < b, < 1 it holds that f € CY(—1,b.)N
C4(b;, 1), and that there exist ¢ > 0 and a with 0 < o <1 such that, for 5 =0,1,...,q,

( i . Ta—1—7
c (1 +1tlltb br| , —l<t<by,
FOmI < ‘ (4.1)
r _ N Ta—1—73
4 1t)ltb br| . b<t<l.
\ - Ur

Note that, in particular, the inequality (4.1) holds if f (9) satisfies the simpler bound
IFO@) <elt —b >, te(=1,b)N (b, 1)

It follows from this observation that Assumption 4.1 holds when f is analytic except for

a branch point singularity at b € C with Reb = by, precisely if f satisfies the following

assumption.

126
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Assumption 4.1' For some € > 0, and b = b, + ib; € C with b; > 0, the function f is

analytic in Dey, where (see Figure 4.1)
Dep = {z € C:dist(z,[-1,1]) < 6}\{br +ait:t> bi}.
Further, for some ¢ >0 and o with 0 < a < 1,
F@I<E -0, zeD,,
Lemma 4.1 Let f satisfy Assumption 4.1'. Then, for j =0,1,...,

fOW)| <ECHt—b 271, te 1,1\ {b ), (4.2)

where

and

~ . £ ]
0 := min{ —, ——— 5.
{R J+1-— a}
Thus, in the case —1 < b, < 1, f satisfies Assumption 4.1 for every q € N, with

c=c max Cj.
7=0,...,q

Proof. Let t € [-1,1]\{b,}, R = [t —b|, and 0 < § < min{l,e/R}. From Cauchy’s integral

formula with circular contour Crg(t), the circle of radius R centred at ¢ (see Figure 4.2),

(4) - _j'_/ Ad
If (t)l 211 Cro(t) (Z—t)j+1 z
< J
< g7 max 1)
e
< I max |z —b|*?

RI09 2cCre(t)

glc -1
= 2547 RO — 6)]”

J1e|t —bjetd
6i(1 —6)1-

< .
S Tpii—g)ra
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In the case that ¢/R < 1, taking the limit § — £~ we see that this bound holds also for
# = ¢/R. Then setting 6 = 6 (to minimise [7(1 — 8)17%]71), we obtain (4.2). ]
Before applying the quadrature method developed in Chapter 1 to If = f_+11 f(z)dz,

in the case when f satisfies Assumption 4.1, we write If as

by +1
If = f(z)dz + f(z)dz,
-1 by
and make a linear substitution to change the intervals of integration to [—1,1]. This gives
+1 "
if= [ Fdt=1f, (4.3)
-1
where
f(t) = fut) + fa(t), (4.4)
140, 1+b., 1-b,
t) = — —
f1(¢) ( 5 )f( 5t 5 ) 1<t<1, (4.5)
1—b\ .(1=b 1+,
f2(t)=< > )f( S+ J; ) “1<t<1. (4.6)

The singularities of fare thus just at 1. To apply Theorem 1.3 and apply the numerical
quadrature method of Chapter 1 to evaluate T f, it is sensible to check that fe 521?&[_1’ 1]

for some ¢ € N and a > 0, and to estimate ||f||(7,a. From equations (4.4) to (4.6),

~ 1+b,\; S (1+b 1-5 1—-056.\. ~/1-0b 1+5b
Dy = [ 2777 Vi+1e() Ty _ r 2 U i+1e(0) r r
P = (R e (e i)« (e (e )

so that, recalling that 0 < o < 1 in Assumption 4.1,

lf(])(t” < 02j+1_20‘(1 4+ br)a(l . t2)a—l—j + 02j+1—2a(1 . br)a(l _ t2)a—1—j
= 20121 4 b)) 4 (1 - b)) (1 - ¢7)* 1

< 20 21-0) (1 — ¢2)a-1d, (4.7)

Hence, we have shown that if Assumption 4.1 holds then f € §9%[—1,1], and, comparing

(4.7) with (1.10),

1F |, 5 < 207207, (4.8)

g, —

Our numerical method for evaluation of If, in the case that Assumption -1 holds.

will be to approximate If by I va, where the numerical integration rule I is defined by
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(1.26), with some function w satisfying Assumption 1.1. Explicitly

N-1

If wInf= Y apf(zy), (4.9)

k=1-N

where, for k=1—N,...,N — 1,

1 ,(k k
% =NYUiN ) Tk =Wl |

and fis given by (4.4). The error in this approximation is bounded in the next theorem.
Throughout the following error estimate, we let C' > 0 denote a generic constant, whose
value depends at most on the values of ¢, @ in Assumption 4.1, p in Assumption 1.1, and

on the choice of the function w.

Theorem 4.1 Suppose that w satisfies Assumption 1.1, f satisfies Assumption 4.1, q €
N, and 1 < ap < q. Then, if ap ¢ N, the error in the quadrature (4.9) can be bounded by

If —Inf| < cCN™P,

where the constant C depends only on q, o and on the function w. If ap = q, then
If —Inf| < cse CNOTY,

for every § > 0, where c; > 0 depends only on 4.

Proof. This result follows from Theorem 1.3, (4.3), and (4.8). [ |

Combining Theorem 4.1 with Lemma 4.1, we obtain the following corollary.

Corollary 4.1 Suppose that w satisfies Assumption 1.1, f satisfies Assumption 4.1, q €
N, and 1 < ap < q. Then, if ap ¢ N, the error in the quadrature (4.9) can be bounded by

~ cC
lIf_INf| S 'é’q(l _g)l_a

N~

with

o mind &
SR’
where the constant C depends only on ¢, a and on the function w. If ap =g, then
cscC

If —Inf| < = ~ N9,
11 =161 < 55

for every 6 > 0, where cs >0 depends only on 4.
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4.1 Numerical Examples

Example 1
Let

f(z) = (z — b)71/? (4.10)

where b = b, + 1b; € C with —1 < b, < 1, and b; > 0. Then
+1
If = F(&)dt = 2[(1 — by — b)Y —i(1 + b, +14b;)1/?].
1

We will illustrate the numerical scheme introduced above by using it to compute values of
If for different choices of b € C. All numerical computations in this example have been
carried out using the Kress form of the function w satisfying Assumption 1.1, given by
equations (1.31) and (1.33).

If b; > 0, then a suitable approximation for If is Iy f, given by (1.26). For, if b; > 0,
then f € C®[-1,1] C S%%[—1,1] for every ¢ € N and 0 < o < 1, so that Theorem 1.3

predicts that
1f = Inf1 < esCl| £, VP~ (4.11)

for every § > 0 and every a with 0 < a < 1, if w satisfies Assumption 1.1, where C,
here and below, denotes a constant which depends only on ¢, ¢, p, w, and ¢s a constant
which depends only on 6. Thus, by suitable choice of w, convergence of Inf to If at an

arbitrarily high order can be achieved. Further, for |b,| > 1, it follows from Lemma 4.1,

applied with @ = 1/2 and € =1, that, for j =0,1,...,

FO@)] < ECjlt b 712

< E21/2+j0j(1 _ t2)_1/2_j. (4.12)

Thus

“qu,l/2 S 521/2“3'3(1)??.(,(1 <

so that, applying Theorem 1.3 with @ =1 /2,

If — Inf| < c;6CNOP/2, (4.13)
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However, for —1 < b, < 1, from (1.10),

Hqu,a > sup |f'(H)|(1 -t}

-1<i1

1

== sup |t— b, —ib| Y21 —2)2 @
2 _1ci<t

> 5’);3/2,

where C > 0 depends only on b, and «, so that the bound on the right hand side of (4.11)
blows up as b; — 0. This suggests that applying the numerical quadrature of Chapter 1
to If will be inaccurate for small b;.

As an approximation which is accurate uniformly in b, and b; for —1 < b, < 1 and
b >0, 1 Nf will be used to evaluate If. We can see that f satisfies Assumption 4.1" with
a=1/2, ¢ =1, and € = 1. Thus, by Lemma 4.1, for -1 < b, < 1, b; > 0, f satisfies
Assumption 4.1 for every ¢ € N, with a constant ¢ > 0 in (4.1) dependent only on ¢. So,

if also w satisfies Assumption 1.1, applying Theorem 4.1,
If = Inf| < csCNOP/2, (4.14)

for every § > 0, where c; > 0 depends only on ¢ and C' > 0 depends only on p and w.

As a numerical example to show that finding the numerical value of If by [ Nf
rather than Iy f will improve the error in estimating the integral If, we have carried out
computations as follows.

Firstly, we vary b, in the range —1 < b, < 1 and choose b; = 0.001, evaluating the
error in estimating If with Ixf (see Figure 4.3). These results, coupled with those of
Figure 4.4, show that, for —1 < b, < 1, estimating If by Iy f is inaccurate for small b;.

Secondly, to show that the error in estimating If with I Nf is much smaller, and also
to show the fact, as predicted by Theorem 4.1, that the error in estimating If with I Nf
tends to zero as N — oo, uniformly in b, and b;, we repeat calculations of Figures 4.3 and
4.4 but with Iy f replaced by the more accurate estimate, I Nf. The results are depicted
in Figures 4.5 and 4.6. We can see that, for each p, the error in estimating /f with Ilggf,
is bounded uniformly in b, and b;, as predicted by Theorem 4.1. To see that the error in
estimating I f with Inf tends to zero as N — oo, we depict the result in Figure 1.8.

To summarise the numerical schemes used for different ranges of b,, we illustrate both

schemes in Figure 4.7, and see that [ N]? is a suitable numerical quadrature method for
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—1 < b, < 1, as predicted by (4.14). For |b,| > 1, In f can be used to estimate the integral
If, as suggested by (4.13).

To illustrate the rate of convergence, § — p/2 for arbitrary § > 0, in estimating If by
I Nf predicted by (4.14), we choose b, = 0 and b; = 0. Results are depicted and tabulated
in Figure 4.8 and Table 4.1, respectively.
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Table 4.1: b, =0, b; = 0, If = 2(1 — 4)

138

NaN indicates that an implementation problem is encountered as described in Section 1.4

due to some quadrature points evaluating to +1.

p=2, p/2=1.0 r=3, p/2=15 p=4, p/2=20
N || If-1Inf] EOC | |If —INf]| EOC | |If-INf| EOC
2 |l 3.9734E—01 2.4481E-01 1.0826E~01
1.0811 1.5196 1.8793
4 || 1.8781E—01 8.5386 E—02 2.9425E-~02
1.0430 1.5129 1.9985
8 || 9.1150E—02 2.9920E~02 7.3641E—03
1.0220 1.5065 1.9998
16 || 4.4885E—02 1.0531E—02 1.8413E—03
1.0111 1.5032 1.9999
32 || 2.2270E—02 3.7148E—03 4.6035E—04
1.0056 1.5016 2.0000
64 || 1.1092E—02 1.3119E~03 1.1509E—04
1.0028 1.5008 2.0000
128 || 5.5351E~03 4.6357TE—04 2.8772E—05
1.0014 1.5004 2.0000
256 || 2.7648E—03 1.6385E—04 7.1931E—06
1.0007 1.5002 2.0000
512 || 1.3817E—03 5.7922E—05 1.7983E—06
1.0004 1.5001 2.0000
1024 || 6.9070E—04 2.0477E—05 4.4957E—07
1.0002 1.5000 2.0043
2048 || 3.4531E—04 7.2395E—06 1.1206E—07
p=25, p/2=25 p=6, p/2=3.0 p=17, p/2=235
N || |[If-INf] EOC | |If—INf] EOC | |If=INf] EOC
2 |l 2.0157E—02 2.1672E—-02 2.5046E—02
1.6007 5.7139 4.6793
4 || 6.6462E—03 4.1290E—04 9.7753E—04
2.4517 3.5871 2.9414
8 || 1.2149E-03 3.4358E—-05 1.2725E—04
2.4725 4.0133 3.5761
16 || 2.1890E-—-04 2.1277TE—06 1.067T0E—05
2.4857 4.0033 3.5362
32 || 3.9081E--05 1.3268E—07 9.1973E—07
2.4927 3.9940 3.5252
64 || 6.9436E—06 8.3273E—09 7.9885E—08
2.4963 3.9693 3.0660
128 || 1.2306E—06 5.3165E—10 9.5389E—09
2.4987 —1.4230
256 || 2.177T4E—07 1.4256E—09 NaN
2.4941 —3.2020
512 || 3.8649E—08 1.3119E—08 NaN
2.2822
1024 || 7.9458E—09 NaN NaN
2048 NaN NaN NaN
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Example 2
Let

f(z) = (z —b)!/® (4.15)

where b = b, +1b; € C with —1 < b, < 1, and b; > 0. Then

+1
If = FE)dt =0.75[ (1 — by —ib;)*® — (=1 — b, —ib))*/?].
1

We carry out identical calculations to those of Example 1, except that the exponent in the
definition of f is 1/3 rather than —1/2, again illustrating the numerical scheme introduced
in this chapter by using it to compute values of If for different choices of b € C.

As in the case of Example 1, Theorem 1.3 predicts that the bound (4.11) holds for every
§ > 0 and every a with 0 < a < 1, if w satisfies Assumption 1.1. Thus, by suitable choice
of w, convergence of I f to If at an arbitrarily high order can be achieved. Further, for

|b-] > 1, it follows from Lemma 4.1, applied with o = 1 and € = 1, that, for y =0,1,...,

7] < ECst = bl

< EVCH(1 -7,
Thus

I, <& max C,

so that, applying Theorem 1.3 with o = 1,
If — Inf] < cse CN°7P.
However, for —1 < b, < 1, from (1.10),

1£],e = sup 1700 -2 = Co7 ",
’ —-1<t<1

where C > 0 depends only on b, and o, so that the bound on the right hand side of
(4.11) blows up as b; — 0. Again, this suggests that applying the numerical quadrature

of Chapter 1 to If will be inaccurate for small b;.
As in Example 1, the approximation I Nf can be shown to be accurate in the limit

b, — 0. For =1 < b, < 1,0 20, and if w satisfies Assumption 1.1, it follows from
Theorem 4.1 that

If —Inf| < csCN°TP (4.16)
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for every 6 > 0, where ¢5 > 0 depends only on ¢ and C > 0 depends only on p and w.
The numerical results show similar trends to those of Example 1, with some differences
due to the weaker singularity of f in this second example. Comparing Figures 4.9 and
4.10 with Figures 4.11 and 4.12, we see that I Nfis much more accurate than Iy f when
b; is small. The approximation Iy f is not so bad as in Example 1, however. In particular
it no longer holds that |If — Iy f| — oo as b; — 0. Figure 4.14 and Table 4.2 show that
the convergence rate predicted by (4.16) is achieved: in fact, a convergence rate of p + 1
rather than p is achieved for p = 3 and p = 5. Comparing Table 4.1 with Table 4.2, we see
that for the milder singularity of Example 2 there is no problem with rounding errors (see
the discussion at the end of Chapter 1). In particular, I Nf can be computed for all N and
p, in contrast to Example 1, and errors of approximating the size of machine precision are

achieved, whereas no errors are smaller than 5 x 1078 in Table 4.1.
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Table 4.2: b, =0, b; 2 0, If =1.125 + 0.64951905283833;

p=2 p=3 p=4

N || If-INf] EOC | |If—INnTf| EOC | |If—INf| EOC

2 1.7380E—02 2.3838E—-03 4.4170E-03
1.9120 3.7416 4.4345

4 4.6182E—-03 1.7821E-04 2.0427E-04
2.0031 4.0316 3.8801

8 1.1520E—-03 1.0896E—-05 1.3873E—-05
2.0087 4.0088 3.9859

16 2.8628E—-04 6.7690E—-07 8.7561E—07
2.0074 4.0022 3.9948

32 7.1203E—-05 4.2241E—-08 5.4925E—08
2.0052 4.0006 3.9979

64 1.7736E—05 2.6391E-09 3.4378E—-09
2.0035 4.0001 3.9991

128 4.4235E—06 1.6492E—10 2.1499E-10
2.0022 4.0001 3.9997

256 1.1042E—-06 1.0307E—11 1.3440E—-11
2.0014 4.0006 3.9983

512 2.757T7TE-07 6.4393E—13 8.4098E—13
2.0009 3.9726 4.0024

1024 6.8899E—08 4.1018E—14 5.2473E—14
2.0006 3.0044 3.9163

2048 1.7218E—-08 5.1119E—15 3.4755E—-15

p=25 p=©6 p="7

N || |[If=INF] EOC | |If—INT| EOC | |If—INf] EOC

2 3.6466E—02 8.4690E—02 1.4102E-01
7.5851 6.9441 6.6512

4 1.8991E—-04 6.8777TE—04 1.4030E-03
8.9324 10.7822 13.8519

8 3.8872E—07 3.9054E—-07 9.4887E—-08
6.0513 5.9804 9.5920

16 5.8616E—09 6.1857E—09 1.2295E—-10
6.0267 5.9977 8.0150

32 8.9906E—11 9.6803E—11 4.7529E-13
6.0158 5.9994 7.9688

64 1.3895E—12 1.5131E—-12 1.8971E—15
6.0320 5.9468 0.7447

128 2.1234E—14 2.4531E-14 1.1322E—-15
5.4184 5.3586 0.3390

256 4.9651E—16 5.9787E—-16 8.9509E—16
—2.0626 1.4290 —0.0325

512 || 2.0741E—15 2.2204E—16 9.1551E—16
0.4016 —2.6047 —0.5053

1024 1.5701E—15 1.3506E—15 1.2995E—15
1.5000 —-1.0391 —0.0606

2048 5.5511E—16 2.7756E—15 1.3552E—15
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Numerical Quadrature Methods
for Integrals on the Real Line of
Laplace Type with Branch Point
Singularities near the Path of

Integration

In this chapter, we will consider the problem of evaluating numerically the integral

Jf = /Ooe‘ptf(t) dt, (5.1)

0

where p > 0, i.e., the Laplace transform of f, developing methods which are accurate and
efficient for cases when function f is analytic but with a branch point singularity near

the positive real axis. Our results will apply in the case when f satisfies the following

assumption.

Assumption 5.1 For some ¢ € N and B, > 0, it holds that f € CY0, B;) N CY(B,.x),

and that there exist €> 0 and a with 0 < a <1 such that, forn =10,1,...,4¢,
f™ (1)) <elt— BleT A+ )% t€[0,Br) U (Br,00).

Assumption 5.1 holds in particular when the following assumption on f is satistied.

146
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Assumption 5.1' For some € >0, 6 € (0,7/2], and B = B +iB; € C with B; > 0, the
function f is analytic in (see Figure 5.1)
Deppi=Deg\{Br +it ¢ > B},
where De g 1s defined by (see Figure 2.1)
D,y := {zE(C: |arg(z + ¢€) | <0}.
Further, for some ¢ > 0 and o > 0,
If(2)| <€lz=BI* *(1+2))7%*,  2€D.yp.

Lemma 5.1 Let f satisfy Assumption 5.1. Then, forn=0,1,...,

F @) SECalt = Bolo M1+ )%, £ [0,00)\{B,}, (5.2)
where
C. = — n! 2,2:1
w1l —w)l-e
and

~ . n n
w:=minq —, ——— 5.
{R n+1-— a}
Thus, in the case B, € [0,00), f satisfies Assumption 5.1 for every q € N, with

c=c¢ max C,.
n=0,...,q

Proof. Let t € [0,00)\{B,}, R = |t — B|, € = min{e, 1}, n = (£ + t)sinf, and 0 < w <
min{1,n7/R}. From Cauchy’s integral formula with circular contour Cg,(t), the circle of

radius Rw centred at ¢ (see Figure 5.2),

|
(n) < n
()] < Rnwnzerggf(t)lf(dl
nlc

— B|*7H1 + |2]) %
< Rnwnzerggf(t)lz %7 (1 + |2])

Now 5 < %(1—|—t) so that, for z € Cgy(t), 1+|2| > 1+t—Rw > 1+t—n 2> %-(1+t). Thus

TARIGIE= Ri!jn [R(1 — w)]* (1 +t)/2] 2

— n!522a |t _ Bla—l——n(l + t)—2a
- w"(l _ w)l—a

n!¢2%a

< t— B, |01 (1 +t) 7%,
= u)n(l _w)l—al TI ( )
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In the case that n/R < 1, taking the limit w — %_ we see that this bound holds also for
w = n/R. Then setting w = @ (to minimise [w*(1 — w)'~71), we obtain (5.2). n

To apply the results and methods from Chapter 4, we make a substitution in (3.1) to
bring the range of integration to [—1,1]. Define the homeomorphism P : [-1.1) = [0, x)
by

=~ 1
P(u) := +u’ -1<u<l.
1—u
Substituting ¢t = ﬁ(u) into (5.1), we see that
Jf———/ F(u)du = IF, (5.3)
-1
where
R 2f(P —pP(u)
Flu) = HEW)e . —l<u<l.
(1—wu)?

Further, we write I F as

—~ by ~ +1 .
IF:/ F(u)du+/ F(u) du,
-1 br

where b, = 13‘1(BT) = (B, — 1)/(B; + 1), and make a linear substitution to change the

intervals of integration to [—1,1]. This gives

~ +1 ~
IF:/ F(u)du = IF, (5.4)
-1
where

F(u) = Fi(u) + Fy(u), (5.5)
= 1 br fany 1+b7~ ]-_bT
Fl(u)r-(_; >F< 5 U 5 ), —-l<u<l, (5.6)
~ 1—b\~/(1—0: 1+, _
Fg(u):< 5 )F( 5 u+ 5 >, -l<u<l. (5.7)

Our numerical method will be to approximate Jf by I ~F, defined by (1.26). To apply

the result of Theorem 4.1 to bound
\Jf — INF|=|IF — INF|.

we have to show that F satisfies Assumption 4.1. So we will pause to find the jth derivative

of F by arguing similarly to Section 2.2 to show that if f satisfics Assumption 5.1. then
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for 7 =0,1,...,9 and some C > 0,

. . .
(14 u)|u—b| 1*7177
C 1i~|b | , —l<u<b,,
~ r |
[P ()] < 4
(1 —u)|u— b, >
\ L T J

The jth derivative of ﬁ(u), for -1 <u<1,is

FO(u) =" { (2)1?1““’“)@) [Z (fj) EF (u) B (u>] } , (5.8)

k=0 n=0

where

Fiw):=201-w)2% B =™  Fu):= f(Pu).

F™ W] =Cn(1-w™™,  —1<u<l 59)

(Here and below C,, denotes a constant whose value depends only on m, not necessary
the same constant at each occurrence.) The proofs of Lemmas 5.2-5.4 below are simple

modifications of those of Lemmas 2.2-2.4, and are left as exercises for the reader.

Lemma 5.2 For m=0,1,..., ﬁ(m)(u) has a pole of order not more than m+1 at 1, so

that
1PM(4)] < Cp(1 —uw)™™ 1, —1<u<l.

For m=0,1,...,and j =0,1,...,m, let ﬁ]m be defined recursively by

U5 (u) = 1,
( Am
405" (w), if j=0,
du
gmtl(y) = { dU™ N . o
Uyt = &4 (u) + U™ (u)P'(u), if j=1,2....,m.
du
\ U™ (w)P'(u), if j=m+1.
Lemma 5.3 For m =0,1,..., and 3 =0,1,....m, ﬁ;”(u) has a pole of order not more

than m + 7 at 1, so that

07| < Cn(1 -0, —1Su<l
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Lemma 5.4 If g € C*°[-1,1) and G(u) := g(ﬁ(u)) then, form =0,1,...,

7=0

Using Lemma 5.4 and Lemma, 5.3, since ﬁg(u) = e=PPW) for _1 <u<1and ﬁ(u) >0,
then, for m =0,1,...,

= Cn(l—w)™> 57 (14u)7e*
—~

where § := pﬁ(u) = p(1 +u)/(1 — u). Thus, and since 57¢~° is bounded on [0, c0) for
every j and Z;”:Opj(l — u)je_pﬁ(“) < Z;”:O(Zp)j < (m+ 11+ (20)™) for -1 <u <0,
we see that

Crn(1+p™(1 —u)™™, -1<u<0,

Cn(1 — u)™™, 0<u<l,

so that

|ﬁ2(m)(U){ <Cn(l+p™M(1—-uw)™,  —-1<u<l (5.10)



Chapter 5 151

Similarly, using Lemma 5.4 and Lemma 5.3, since ﬁg(u) = f(ﬁ(u)) for -1 <u <1
and ﬁ(u) > 0, and Assumption 5.1 holds, then, for m =0,1,...,

B )] < 30 (07 () £ (B(w))|

J=0
m —1- 2
S”C\CmZ(l_u)—m—J 1+U_Br0¢ J 1+1+U a
m —1—3 -2
~ i |1+u 148677 2 «
=cC 1— m=J — "
mjgo( u) l—u 1-5b, (1—u>

a—1 m j
1—b \’
— ’\CmQ—a—l 1 — a+l-m |u | r
‘ (=) (1—b 2\ 5w

J=0

a—1 a—1l-m
SEQAl—W“*“[G%}%g +<%{%?) } (5.11)

since
T/ 1=b\’ 1—b, \’ 1-b \™
< 1 7 ) < N1 .
Z;<ﬂu—b0 “On+)&$%(mu—m0 —“”+)['FQu-m0 }

Lemma 5.5 If Assumption 5.1 holds then, for j =0,1,...,q,
[FO(w)| <O+ p)(1 =) [lu= b, + (1 = b)) [(1 = w)lu— b))

for u € [—-1,b,) U (b, 1), where by = (B, —1)/(B, + 1) € (=1,1), and the constant C >0

depends only on q and o.

Proof. Using (5.8) to (5.11), we find that

j o an
PO < 600+ (1~ e P Y 1+ (2535)

k=0 n=0

IA

~ q l—a a—1—j3 b a—1 1 1 _br 7
BO(L+p7)(1 = b) (L= w) o = b 1 (=

= GO+ 7)1~ br) 2l = bl + (1= ] [(1 = e = )7
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Corollary 5.1 If Assumption 5.1 holds then, for j =0,1,... 4,

~ 14+u)|u—b,| 1o 17
(cC’(l-I—pq)[( 1—)+-|b | , —l<u<by,
e . r -
|F9) ()] < 4
N 1 — _br Ta—1—j
cC(l—I—pq)[( 1u)|12 IJ , by <u <1,
\ — Ur

where by = (B, —1)/(B, + 1) € (=1,1), and the constant C > 0 depends only on q and «,
so that F satisfies Assumption 4.1 with ¢ = cC(1+ p9).

Proof. For u € (b,,1), we can see that |u — by| <1~1b,. Then, from Lemma 5.5,

FO ()] <501+ p) [ (1= wlu = b ]a_l"j.

1—b,

For u € (—1,b,), we can see that lu—b| <1l—wu,and1-5b, < 1—u. Then, from

Lemma 5.5 and together with 1 +u < 1+ b,,

. | R
W““WISECﬂ+p%m—bw%*7560u+0”[u+UWl mq .

140,
|
Choosing w € C*°[—-1, 1] which satisfies Assumption 1.1 and applying the quadrature
rule (1.26) to (5.4), we get that

N-1
Jf =~ INF = > ag F(zy), (5.12)
k=1-N

where, for k=1—-N,...,N —1,

iy [k
ak_—ﬁw N 3 T = N 3

and F is given by equation (5.5). Now, from Corollary 5.1, we can apply Theorem 4.1
with ¢ = ¢ C(1 + p?), and obtain the following error estimate.
Throughout the following error estimate, we let C > 0 denote a generic constant, whose

value depends at most on the values of g, a in Assumption 5.1, p in Assumption 1.1, and

on the choice of the function w.
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Theorem 5.1 Suppose that w satisfies Assumption 1.1, f satisfies Assumption 5.1. q €
N, and 1 < ap < gq. Then, for ap ¢ N, the error in the quadrature (5.12) can be bounded
by

|[Jf ~ INF| STC(L+ p )N,

where the constant C' depends only on q, o, and on the function w. If ap = q, then
|Jf —INF| < cseC(1 + p?) N9,

for every & > 0, where c5 > 0 depends only on 4.

Combining Theorem 5.1 with Lemma 5.1, we obtain the following corollary.

Corollary 5.2 Suppose that w satisfies Assumption 1.1, [ satisfies Assumption 5.1, q €
N, and 1 < ap < q. Then, for ap ¢ N, the error in the quadrature (5.12) can be bounded
by

cC(1+p9)

—ep
S0z

|Jf —INF| <

with

~ . n
WETM R nrl—af”
where the constant C depends only on q, a, and on the function w. If ap = q, then

0550(1 + pq) N(g_q
Wi(l—w)i-« ’

|Jf —INF| <

for every § > 0, where cs > 0 depends only on 6.
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Figure 5.1: D, g p in Assumption 5.1
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Im A

Figure 5.2: D, g p and the circular contour Crw(t) used in the proof of Lemma 5.1.
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5.1 Numerical Examples

Let

1
z) = :
f(z) 1:vi 5 (5.13)
where B = B, +1B; € C with B; > 0. We will consider the problem of finding the

numerical value of

Jf = /Oooe—f’tf(t) dt (5.14)

—~

for p = 0,0.00001, 1. Substituting t = P(u) = (1 + u)/(1 — ) in (5.14) and following the
steps leading from (5.3) to (5.4), we have

Jf =IF = /le F(u) du, (5.15)
-1

where, for —1 < u < 1,

2 2 2
~ N 1+ b,
- (5 ).
5o . 2f(Plu))esP
F(u) 10—
Again substituting u = w(z) where, for some integer p > 2,
V(z) = V(-z) .
= S -1<z <], (5.16)
(@) = oy 3 Vica) =T=
Viz) = 1.1 x3+lx+£]p, -1<z <1, (5.17)
' 2 p D 2
in (5.15), we see that
~ +1 ~
Jf =1IF = / w'(z)F(w(z))dz. (5.18)
-1

In the following results, the integral Jf is estimated by INF. the quadrature rule
approximation (5.12), with 2N —1 points, i.e., we approximate (5.18) by the trapezium

rule with 2N panels. Explicitly, this approximation is
N-1

Jf~InF= > aF(m). (>.19)
k=1-N
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where, for k=1—-N,...,N — 1,

ar = —1-w’ k = k
For f given by (5.13), for p = 0, the exact value of the integral (5.14) is

Jf = \/5[77/2 — arctan (z/\/i)]

For p = 0.00001, 1, we do not know the exact values of the integral Jf. But we need these
values to compare with the numerical values from quadrature rule approximation (5.19),
so we choose I12s ' together with p = 7 for the mapping function (5.16) and (5.17) as our
approximation to the exact values of Jf for the cases p = 0.00001, 1.

As predicted by Theorem 5.1, the error in estimating Jf with I ~F tends to zero as
N — oo, and uniformly in B, and B;. In Figures 5.3-5.4, we can see that, for each p,
the error in estimating Jf with I ~F is bounded uniformly in B, and B;, as predicted by
Theorem 5.1. To see that the error in estimating Jf with I Nﬁ tends to zero as N — 00,
we depict the results in Figures 5.5-5.7 for p = 0,0.00001, 1, respectively.

To illustrate the rate of convergence, predicted as § — p/2 for arbitrary ¢ > 0, in
estimating Jf by INﬁ, we choose B, = 1, B; = 0, and p = 0,0.00001,1. Results are
depicted and tabulated in Figures 5.5-5.7 and Tables 5.1-5.3, respectively. In our example
flz) = m, the parameter o in Assumption 5.1 is 1/2. Recall that we compute
the error in estimating Jf with Iy F given by (5.19). So we calculate and tabulate the
EOC given by (1.45) in these tables. We also show at the top of each column the value of

ap = p/2.
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B,=0, p=0.00001
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Figure 5.5: Error, |Jf — Ilggﬁi, withp=0and forp=2,...,7.
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Jf =V2[r/2 — arctan (i/\/2)] ~ 2.22144146907918 — 1.24645048028046i

Table 5.1: B, =1, B;=0,p=0

160

NaN indicates that an implementation problem is encountered as described in Section 1.4

due to some zj evaluating to +1 in (5.19).

p=2, p/2=1.0 p=3, p/2=15 p=4, p/2=20
N || [Jf=INF| EOC | |Jf—INF) EOC | |Jf — INF| EOC
2 || 4.3055E—01 2.7523E—01 1.2606E—01
1.0603 1.5265 1.9301
4 || 2.0646E—01 9.5535E—02 3.3081E—02
1.0312 1.5138 2.0045
8 || 1.0103E—01 3.3456E—02 8.2444E—03
1.0158 1.5066 2.0012
16 || 4.9962E—02 1.1774E—02 2.0594E—03
1.0080 1.5033 2.0003
32 || 2.4843E-02 4.1533E-03 5.1474E—04
1.0040 1.5016 2.0000
64 || 1.2387E—02 1.4668E—03 1.2868E—04
1.0020 1.5008 1.9998
128 || 6.1849E—03 5.1830E—04 3.2175E—05
1.0010 1.5004 1.9991
256 || 3.0903E—03 1.8320E—04 8.0490E—06
1.0005 1.5001 1.9963
512 || 1.5446E—03 6.4766E—05 2.0174E—06
1.0002 1.4998 1.9854
1024 || 7.7218E—04 2.2901E—05 5.0949E—07
1.0001 1.4993 1.9474
2048 || 3.8606E—04 8.1009E—06 1.3211E-07
p=5, p/2=25 p=26, p/2=3.0 p=7, p/2=35
N || |Jf—-InF| EOC | |Jf —INF]| EOC | |Jf — INF| EOC
2 || 1.8331E—02 4.8379E—02 7.7183E—02
1.3133 6.1746 5.5825
4 || 7.3762E—03 6.6976E—04 1.6107E—03
2.4414 4.1124 3.5014
8 || 1.3580E—03 3.8721E—05 1.4223E—04
2.4722 4.0260 3.5765
16 || 2.4474E—04 2.3768E—06 1.1922E—05
2.4855 4.0695 3.5450
32 || 4.3701E—05 1.4157E—07 1.0214E-06
2.4917 5.8730 3.6366
64 || 7.7700E—06 2.4156E—09 8.2124E—08
2.4904 —1.4567
128 || 1.3827E—06 6.6304E—09 0
2.4648 0.4142
256 || 2.5046E—07 4.9758E—09 NaN
2.2906 —2.5030
512 || 5.1191E—-08 2.8205E—08 NaN
1.7407
1024 || 1.5317E—09 NaN NaN
2048 NaN NaN NaN
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Figure 5.6: Error, |Jf — I128ﬁ|, with p = 0.00001 and for p =2,...,7.
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Jf ~ LogF =~ 2.21025366523428 — 1.24644294787069i (estimated with p = 7)

Table 5.2: B, =1, B; =0, p = 0.00001

162

NaN indicates that an implementation problem is encountered as described in Section 1.4

due to some zj evaluating to +1 in (5.19).

p=2, p/2=1.0 p=3, p/2=1.5 p=4, p/2=20
N || |Jf—INF| EOC | |Jf—INF| EOC | |Jf —INF| EOC
2 || 4.2074E—01 2.6540E—01 1.1618E—01
1.0960 1.6233 2.2528
4 || 1.9683E—01 8.6147E—02 2.4378E—02
1.1008 1.7700 2.7237
8 || 9.1774E—02 2.5258E—02 3.6905E—03
1.1460 1.9588 1.0377
16 || 4.1471E—02 6.4978E—03 1.7977E—03
1.2214 1.3122 2.5683
32 || 1.7786E—02 2.6166E—03 3.0310E—04
1.2236 1.5483 1.8770
64 || 7.6162E—03 8.9467E—04 8.2518E—05
0.9878 1.4503 2.0199
128 || 3.8404E—03 3.2740E—04 2.0347E—05
0.9726 1.4987 1.9992
256 || 1.9571E—03 1.1586E—04 5.0894E—06
1.0021 1.5001 1.9973
512 || 9.7710E—04 4.0960E—05 1.2747E—06
1.0005 1.4999 1.9892
1024 || 4.8837E—04 1.4483E—05 3.2107E—07
1.0001 1.4995 1.9622
2048 || 2.4416E—04 5.1222E—06 8.2398E—08
p=5 p/2=25 p=6, p/2=30 p=7, p/2=35
N || |Jf-InF| EOC | |Jf—-INF| EOC | |Jf —INF| EOC
2 || 7.9820E—03 5.8059E—02 8.7015E—02
0.8883 2.7564 3.6116
4 || 4.3122E-03 8.5925E~03 7.1186E—03
2.1464 1.5784 4.7334
8 || 9.7402E—04 2.8772E—03 2.6760E—04
1.4325 3.1480 0.0383
16 || 3.6086E—04 3.2460E—04 2.6059E—04
3.8691 12.3236 6.8595
32 || 2.4696E—05 6.3323E—08 2.2441E—06
2.2645 —0.2555 5.8052
64 || 5.1397E—06 7.5589E—08 4.0133E-08
2.5571 4.5114
128 || 8.7330E—07 3.3143E—09 0
2.4734 1.2006
256 || 1.5725E—07 1.4420E—09 NaN
2.3318 —4.2714
512 || 3.1235E—08 2.7848E—08 NaN
2.0912
1024 || 7.3306E—09 NaN NaN
2048 NaN NaN NaN
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Figure 5.7: Error, |Jf — I128ﬁ|, with p=1and forp=2,...,7.
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Jf = I1psF = 0.27475352508090 — 0.71667612129770; (estimated with p = 7)

Table 5.3: B, =1,B;=0,p=1

164

NaN indicates that an implementation problem is encountered as described in Section 1.4

due to some zj, evaluating to +1 in (5.19).

p=2, p/2=1.0 p=3, p/2=15 p=4, p/2=20
N || |Jf—INF) EOC | |Jf — INF| EOC | |Jf - INF]| EOC
2 || 1.0479E—01 6.4675E—02 2.8493E—02
1.1021 1.5427 1.8979
4 || 4.8814E—02 2.2199E—02 7.6454E—03
1.0423 1.5121 1.9966
8 || 2.3703E—02 7.7831E—03 1.9158E—03
1.0218 1.5065 1.9999
16 || 1.1674E—02 2.7394E—03 4.7899E—04
1.0110 1.5032 2.0000
32 || 5.7925E—03 9.6634E—04 1.1975E—04
1.0055 1.5016 1.9999
64 || 2.8851E—03 3.4127E—-04 2.9939E—05
1.0028 1.5008 1.9998
128 || 1.4398E—03 1.2059E~04 7.4857E—06
1.0014 1.5004 1.9993
256 || 7.1921E—04 4.2624E—05 1.8723E—06
1.0007 1.5001 1.9973
512 || 3.5943E—04 1.5068E—05 4.6896E—07
1.0003 1.4999 1.9892
1024 || 1.7967E—04 5.3279E—06 1.1812E—07
1.0002 1.4995 1.9622
2048 || 8.9826E—05 1.8844E—06 3.0312E—-08
p=5 p/2=25 p=6, p/2=3.0 p=7, p/2=35
N || |Jf - INF] EOC | |Jf - INF]| EOC | |Jf — INF| EOC
2 || 1.2264E—02 2.3968E—02 3.6579E—02
2.8238 7.4265 7.3024
4 || 1.7320E-03 1.3933E—04 2.3173E—-04
2.4530 4.0455 2.8346
8 || 3.1632E—04 8.4381E—06 3.2484E—05
2.4738 3.9333 3.5493
16 || 5.6943E—05 5.5232E—07 2.7747TE—~06
2.4856 4.0497 3.5429
32 || 1.0167E—05 3.3351E—08 2.3808E—07
2.4920 4.9533 3.6069
64 || 1.8074E—06 1.0765E—09 1.9540E—08
2.4920 —0.1776
128 || 3.2128E—07 1.2175E—09 0
2.4735 1.1992
256 || 5.7849E-08 5.3022E—10 NaN
2.3318 —4.2722
512 || 1.1491E-08 1.0245E—08 NaN
2.0913 o
1024 || 2.6965E—09 NaN NaN
2048 NaN NaN NaN
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5.2 Efficient Evaluation of the Half-Space Impedance
Green’s Function for the Helmholtz Equation

In Section 3.1, representations for the half-plane impedance Green’s function for the
Helmholtz equation have been obtained in terms of Laplace-type integrals of the form

00

/ t12e7Pt£(2) dt.

0
This Green’s function solves the problem of outdoor sound propagation with a coherent
line source parallel to a homogeneous impedance plane. So this is a two-dimensional
problem in the plane perpendicular to the line source.

In this section we consider the corresponding three-dimensional problem of a point
source above a homogeneous impedance plane. The solution to this problem is given by
(3.5) but now with Gy(r,rp), the solution for the case 8 = 0, given by

Golr,To) = _ﬁeikR _ %R,eikR”
where R and R’ are as in Figure 3.1. A derivation of a formula for Pg(r,rg) can be
obtained similarly to that in Section 3.1. Following steps leading to equation (3.9), it is
found that (cf. Kawai et al. [30])

kBe®
47

o
Ps(r,ro) = — /O t~1/2¢=PtE(t)dt, ImB>0 or Reas >0,

where p = kR/,

G(Vt) + G(—V1)
2t — 20)V2(t — iay)(t — ia_)’

F(t)=—
the constants a4 are given by (3.11),

G(s) := e HF 8P (1 +is%)y + s(s” — 2:)12(1 — )2 + B) H (kr sin ) sin g,

sing = (1+is7)(1 — )% +s(s> =201y, Re{(s* -2} >0.

A simpler and in many ways more suitable representation of Pg(r,rg) for numerical
integration purposes, given by Thomasson [51], is

kBe*
2

Ps(r,ro) = /Oooe—ptf(t) dt + Pj. (5.20)
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where

=~
N

1 -1 z
—Hg )(kr(l _ /82)1/2) e~ kB(z+ o), ImfB <0 and Reay <0,
Py = (5.21)

0, otherwise

r _;V(t), ImB <0 and Rea, <0,
f(t) = . (5.22)
, otherwise
L VIVt
with
W(t) =—(t—iaq)(t —1a_), (5.23)

and where the square roots in (5.22) are taken with argument in the range (—m/2,7/2).
In order to obtain an integrand that decreases more rapidly when t — oo, especially
important when p is small, and which satisfies that 7 > 1 in Assumption 5.1’ (note that

f(t) = O(t™1) as t — o0), we write Py as
Pﬁ = (Pﬂ — BP) + BP;. (5.24)

From (5.20), (5.22) and (5.23) (see Chandler-Wilde [10}),

E1(—i(1+7)p), (5.25)

Py(r,rg) = — o dt = —

ike' /°° e # ike” 1P

where E;(z) = [° %dt is the exponential integral. Clearly, from (5.20), (5.24) and

z

(5.25),
k,@eip /oo B t|: 1 ikﬂe—i’yp ] ps
Ps = e f(t) — 77— dt — —=——FE1(—i(1 +7)p) + P3.
—1(1 2
2 Jo i(t — (1 + 7)) T (5.26)
Using the notation in Section 5.1 that
_ lo0]
JF = / e PLF(t) dt,
0
we rewrite (5.26) as
p _ ' =P
py = B0 g RO g (i1 4 4)p) + P (5.27)
2m 2m
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oy

where

~ 1
i(t—i(1+ 7))’

and have that g(t) = O(t‘Q) as t — oo. To apply the results in Section 5.1, the function

g(t) = f(¢)

g is explicitly written as

V(= i(1+7))% + /(¢ = iay)/(t — ia_)
V(E = ia)/(E = ia- )yt — i(1 +7))?

(t = i1 +7)) = (t — iay)(t — ia_)
V= ia)3/(t — ia-)y/(E — i1+ 7))? W(E— (1 + 7)) — v/t —sar)/(t — ia_)]

i29(B— 1Dt — (1+7)2 + (B +7)?
V(t —ia4)V/(t —da_)v/(t —i(L+9))? [V(t —i(1 +7))* — V(t —daq)V/(t —ia-)]

- 2911 = Bllt|+ 1+ + 16+
= V&= ia )V = @ )W =1+ 2 VAE =L+ 7)) — V(= iax) Vit — )]

(5.28)

and then shown that function g satisfies Assumption 5.1' in the following theorem.

Theorem 5.2 For 0 < v < 1, |8 < 1, |1 — B| < 0.1, the function g, given by (5.28),
satisfies Assumption 5.1 with e = 1/4, 6 = /6, r =2 and ¢ = 1806. Ify =10, |B] <1,
11— 8| < 0.1, then Assumption 5.1' is satisfied with e =1/4, 0 = /6, r =3 and ¢ = 452.

Proof. We use the same facts from Theorem 3.1, it follows that function g is analytic on

Di1 z. For t € Dy =, we find that
4’6 476
s(1+1t), if 0<y<L,
291 — B|t| + L+ 12+ B +7]* < (5.29)
2, if ~v=0,

b —day] > —(1+|¢) 15.30)

[t = e+l 2 76 ! '

57 ]
—qa_| > —(1 tl). 5.31
t—ia ] > o (1+14) (5.31)

except that, for 0 <y < 1,

4/3-1_ i
t—i(l+9) > t—il > ‘/; >0.74. (5.32)
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Applying this bound with A = 1, B = 0.74 and K = 2, we see from (3.27) and (5.32)
that, for t € D

sy
’6

=

t=i(147)| 2

Z Tvomayic T

37
= —(1 . 5.
(L[t (5.33)

Combining inequalities (5.29) to (5.31), and (5.33), for 0 < v < 1,

9 \"V2/ 57 \"V2/ 37\ 37 9 \M2/ 57 \27! )
sl 57 - 57 )
lg(t)|_8(164> (367) (137) {137 (164) <367> } (11t

< 1806(1 + |¢]) 72,

Arguing in the same way for v = 0, except that we use 2y|1 — 8||t| + (1 +7)% + |8 +7|* < 2

in this case, we obtain

lg(t)] < 452(1 + [t])~°.
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Conclusions

In this thesis we have been concerned with the development, design, and analysis of simple
and efficient quadrature methods, based on the Euler-Maclaurin formula, for different
types of integrals with singularities, near or on the interval of integration. As example
applications we have considered the problems of efficient evaluation of the impedance
Green’s function for the Helmholtz equation in a half-plane and half-space, important
problems of acoustic propagation.

In Chapter 1 we have developed a numerical quadrature method for approximating
the integral f_+11 f(t) dt, where f may have endpoint singularities. The classical method is
Gaussian quadrature, but this method requires knowing the singularity exactly, factorising
out the singularity to leave a smooth remainder, and requires a relatively complicated
calculation of weights and abscissae. By contrast we consider a numerical quadrature
method, the variable transformation method, that it is robust with respect to the nature
of the singularity, and whose weights and abscissae are easily generated. This numerical
quadrature method requires, in brief, substituting ¢ = w(z), where w : [-1,1] = [-1,1]
i1s a smooth bijection with all or many derivatives vanishing at the endpoints, and then
applying the trapezium rule. The quadrature method and analysis developed in this
chapter have been applied throughout the other chapters of this thesis. The rates of
convergence we established match those seen in the numerical experiments carried out. in
nearly all cases, and our convergence analysis improves somewhat and sharpens previous
analysis of Kress [32, 33].

In Chapter 2 the problem of evaluating numerically the integral ff:co e"’32<1>(s)d.s.

for p > 0, has been considered. The magnitude of p is crucial for the choice of numerical
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quadrature method. For p not too small, Gauss-Hermite quadrature is an appropriate and
standard method, but this quadrature method is not appropriate if p = 0 or p is small.
For p small, we have proposed to change the interval of integration from (—oc, +2c) to
[—1,1] via a suitable substitution, and then applied the quadrature method and analysis
developed in Chapter 1. A complete analysis of this procedure is given showing that, with
appropriate choice of substitution ¢ = w(z), arbitrarily high orders of convergence can be
obtained as N — oo, where N is the number of quadrature points, uniformly in p with
p = O(1). These theoretical predictions have been confirmed by numerical experiments.

As an application in Chapter 3 we apply the quadrature method and analysis developed
in Chapter 2 to evaluate numerically the impedance Green’s function for the Helmholtz
equation in a half-plane. This Green’s function is represented in terms of integrals of the
form fj;o e””52<I>(3) ds. In this chapter, we establish error bounds that show that the
numerical quadrature approximations proposed are accurate for ranges of 3 (the relative
surface admittance) and 7 (the cosine of the angle of incidence) which cover the full
physical ranges of interest, provided p > 0 (the dimensionless distance from image to
receiver) is not too large.

In Chapter 4 we have considered the problem of finding the numerical value of the
integral f_+11 f(t) dt, where f may have a branch point singularity at b = b, +1b; € C
with —1 < b, < 1 and b; > 0. To apply the numerical quadrature method developed
in Chapter 1, we decompose the interval of integration at the branch point singularity
and then make a linear substitution to change the intervals of integration to [—1,1]. The
analysis shows that the error estimated by this procedure tends to zero as N — oo, where
N is the number of quadrature points, uniformly in b, and b;. The theoretical predictions
have been illustrated and supported through numerical experiments.

As an application of the numerical quadrature method developed in Chapter 4, we have
considered in Chapter 5 the problem of evaluating numerically the integral Joo e P f(t) dt,
where p > 0 and f has a branch point singularity at B = B, +iB; € C with B, € [0, 00)
and B; > 0. To apply the results in Chapter 4, we have proposed to change the interval
of integration from [0, 00) to [—1,1], decomposed the interval of integration at the branch
point singularity, and then made a linear substitution to change the intervals of integration
to [~1,1]. With appropriate choice of the substitution ¢ = w(z), the analysis shows that

arbitrarily high orders of convergence can be obtained as N — oo, where N is the number
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of quadrature points, uniformly in p and B, with p = O(1), B = O(1). The theoretical
predictions have been illustrated and supported through numerical experiments.

Several questions remain unanswered at the end of this thesis. In Chapter 1 (see
Section 1.4 and the numerical results) and intermittenly throughout the remainder of the
thesis we have encountered problems of rounding errors limiting the accuracy of some
calculations. In particular the accurate calculation of | fll f(t) dt is limited to some extent
by rounding errors whenever f(t) — co as t — +1, essentially due to f(t) evaluating
as f(+1) whenever we evaluate g(s) := w'(s)f(w(s)) and w(s) is closer than machine
precision to +£1. This might be cured by special schemes for evaluating the product
wg f(zx) accurately when the abscissa zy, is close to +1 and the weight wy is very small.
We have not taken any steps in this direction in this thesis.

An intriguing point which has arisen in the analysis throughout this thesis is that,
although our measured convergence rates match the theoretical error estimates in most
cases, whenever a convergence O(N ~3) is predicted the observed convergence is O(N~%).
There is some evidence also that the predicted O(N %) is actually O(N ~%). It would have
been interesting to pursue this discrepancy, perhaps with a view to using insights obtained

to design still more accurate schemes.
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Matlab Code for the

Complementary Error Function

In this appendix we list the Matlab code used in the thesis for computations of w(z) =
e~ erfc (—iz), for z € C, where erfc is the complementary error function. This code,
based on Padé approximations at 0 and oo in the first quadrant, 0 < argz < 7/2, and
symmetry relations to generate w(z) throughout the complex plane, is a conversion from

Fortran of the code in Appendix B of [10].

function w = was(z)
% was(z) is an approximation to w(z) = exp(-z"2)*erfc(-i*z)

al [1.128379167096,—.1977549371215,.06234968803838,—.005716150768281,

.000757964511326,-.00004483357225467, .000003330432838151 ,
-1.356221892408E-7,6.152777066963E-9,~-1.723902793323E-10,
4.748868498218E-12,-8.523479440253E-14,1.264689471534E-15,
-1.133411083999E-17,5.249830524266E-20] ;

bl = [1.,.4914109167483,.1161965834987,.01754614733595, .001893019337148,
.0001545988226598, .00000987240868436,5.016861789005E-7,
2.042710590219E-8,6.646171668219E-10,1.704983966924E-11,
3.352980251996E-13,4.792337044353E-15, 4.470542726687E-17,

2.061112405395E-19] ;

a2 [.5641895835478,-58.95781351972,2503.309361429,-56180.59450901,

726510.9174498, -5538647.253308,24468845.77449,-59099294.32842,

69059183.20797,-29890482.50154,2047332.214518] ;
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b2 = [1.,-105.000003614,4488.75031948,-101745.0112407,1335403.328746,
-10416146.43445,47740673.47245,-122761738.1863, 161124790.4129,
-896513777.86579,13427067 .55657] ;

real(z) ;

o]
1l

y = imag(z) ;

ay

abs(y) ;
abs(z) ;

az
p = abs(x) + ixay ;
if az > 6

q=P-*pP ;
0.4613135279626./(q-0.1901635091935) +

W
0.09999216171032./(q-1.784492748543) +
0.002883893874874./(q-5.525343742263) ;

W = 1*p.*W ;
elseif 2.3*ay + az.*(az-4.4) <0

q =DpP.-*p ;

w = ratnal(al,bi,q) ;

w = exp(-q) + i*p.*w ;
else

pinv = 1./p ;

q = pinv.*pinv ;

w = i*pinv.*ratnal(a2,b2,q) ;
end
if x.xy < 0
w = conj(w) ;
p = —conj(p) ;
end
ify==0&x<0
w = conj(w) ;
end

if y < 0
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x = real(q) ;

W= -u

w = w + 2xexp(q) ;
end

clear ay az p pinv q x y z

function y = ratnal(a,b,z)

% Where mil

length(a), m2

length(b),

%y = (a(1) + a()*z + ... + a(ml)*z"(mi-1))/
% (b(1) + b(2)*z + ...
A

af = fliplr(a) ;

+

b(m2)*z~ (m2-1))

NUMER = polyval(af,z) ;
bf = fliplr(b);

DENOM = polyval(bf,z) ;
y = NUMER./DENOM ;
clear NUMER DENOM =z
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