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ABSTRACT 

Asset and Liability Management (ALIvI) is a well-established method, which enables companies 

to match future liabilities with future cash flow streams of assets. The first stage is to develop a 

deterministic model with forecast cash flow streams. In reality this can lead to results that are 

often volatile to deviations of future cash flows from their predicted values. 

There are two main stages to this problem. Firstly, there is the issue of representing the future 

uncertainties. To this end we have developed a scenario generator that forecasts alternative 

realizations of future cash flows streams of different assets using alternative scenarios about a 

financial Index and the Capital Asset Pricing Model (CAPM). Considering this with the 

deterministic model leads to the creation of ALM models which incorporate uncertainty. 

Having represented the uncertainty, we use an optimisation model to generate the current 

decisions concerning acquisition and disposal of assets. This model is a two stage stochastic 

programming model that aims to achieve targeted cash flows for each future year. Risk is 

represented in the form of assigning shares to different risk groups. In this thesis we describe 

our models of randomness and how they are captured in the two-stage stochastic programming 

model. We compare our model to a mean-variance representation. Both models are simulated 

through time. Backtesting is used to investigate the quality of both approaches. 
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Chapter 1: INTRODUCTION 

1.1 Investment Characteristics 

In our epoch a phenomenon that characterises a vast majority of individuals, businesses and 

organisations around the world is to invest considerable amounts of their savings. By investing 

in shares, bonds, mutual funds or other financial derivative products makes them feel 

comfortable and enthusiastic that they could earn more on their investment rather than put the 

money in a bank and wait patiently for it to grow from the interest rates. They also like to 

manage any potential liabilities that they might have in the near or distant future. 

Most investment decisions share three key characteristics in varying degrees. 1) The investment 

is partially or completely irreversible. The initial cost of investment is at least partially sunk 

[134]. For example capital controls may make it impossible for foreign (or domestic) investors 

to sell assets and reallocate their funds and investments in new workers thus, investment could 

be partly irreversible because of high costs of living, training and firing. 2) There is uncertainty 

over the future rewards from the investment. 3) The timing of the investment remains 

unknown. These characteristics interact to determine the optimal decisions of investors. 

A way to make a 'safe' investment incorporating the above three characteristics and others such 

as risk is to develop an integrated system or model. 

1.2 Risks and Investment 

Investors who wish to allocate their assets and manage their liabilities must develop a strategic 

risk management system. There is a plethora of fmancial risks with the most important being 

market, credit and currency risk. 

In the stock market, market risk is associated with the movements in the market index of 

portfolio retulTIS [135]. According to the Capital Asset Pricing Model (CAPN!) , [22], all 

securities must be priced so that their expected returns at equilibrium are a linear combination of 

the risk-free return and the market index portfolio return. The weight of the latter for a 
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particular security is the security beta (~), which indicates the relative marginal variation of the 

returns of that security with respect to the market portfolio. The CAP:NI is a single-factor model 

of security returns i.e. it assumes a single source of risk: the market. In more general models one 

encounters several independent risk factors. Each risk factor has a risk premium associated with 

it and, at equilibrium, security returns are determined as the swn over all factors of the total 

value of that factor in the security. This hypothesis is termed as Arbitrage Pricing Theory 

(APT), [4]. Credit risk covers the up or down grading of a borrower's credit worthiness. These 

changes are caused by changing prospects on the issuer's ability to meet all future obligations. 

Currency risk is the risk caused by exchange-rate fluctuations. Investors who own portfolios in 

foreign currency denominated securities will lose when exchange rates depreciate and gain when 

they appreciate. 

1.3 Modelling Investment Strategies 

Optimisation models are required to incorporate risk and uncertainty. If it is asswned that an 

investor's preference can be represented by some utility function over the mean and variance of 

the portfolio's returns, thus favouring portfolios with higher means and lower variances. The 

optimal portfolios for this investor are those that achieve the highest expected return for a given 

level of risk. Such portfolios are called mean-variance portfolios and are analysed in detail in a 

later chapter of this thesis. Mean-variance models have the characteristic that they take a 

decision at a time t and not beyond that. They are often called static models. 

Having introduced the single-period CAP M and APT models and the static mean-variance, a 

broader modelling concept is the one of stochastic programming. In cases where uncertainty 

prevails at all the stages of the planning horizon and corrective action (recourse) would be 

possible between periods t and t + 1 , then stochastic programming models become appropriate. 

Asset and Liability Management (ALM) modelling is successfully employed by using stochastic 

programming. AL:NI modelling incorporates the uncertainty in a unique manner, which is the 

generation of scenarios. 



1.4 Thesis Outline 

Chapter 1 gives a general introduction to investment characteristics and how these can be 

employed into modelling systems. It introduces the concepts of capturing and then modelling 

uncertainty. Two topics that this thesis covers in a novel way. 

Chapter 2 discusses the single-period models in asset pricing. The mean-variance model and its 

formulation is analysed. The advantage of such models is that investors could build optimal 

portfolios under conditions of uncertainty by using statistical measurements of expectation and 

variance of return. The drawback is that if there are too many shares then the covariance matrix 

generation consumes large computational time. The mean variance framework has been one of 

the most popular models in empirical validations and comparisons. The CAPM and APT 

single-period factor models are also analysed and compared. The empirical validations of such 

models proved to be of enormous interest as their conclusions support their use and usefulness 

in the finance industry. 

Chapter 3 introduces the concept of representing uncertainty. Forecasting procedures like 

stochastic processes (Geometric Brownian motion) and econometric techniques are discussed. 

The authors own scenario generator that incorporates uncertainty is analysed in detail. The 

generator produces consistent share and Index scenarios by using the CAPM. 

In Chapter 4, optimisation models that incorporate the uncertainty are introduced. The 

Quadratic programming (QP) models are first analysed. The Wait-and-See, Expected-Value and 

Here-and-Now approaches are presented together with their inter-relationship and bounds. 

Two-stage and multi-stage stochastic linear models are given special treatment because the 

concept is used for the computational study of this thesis. 

In Chapter 5, the ALM modelling is given special attention, as it is the main topic of this thesis. 

The author's new ALIvr study is presented together with its contributions to this field. 



Chapter 6 presents the computational study, the findings and its results. This study also 

introduces a comparison of the ALM model with a Quadratic model, run with exactly the same 

data. The S&P 100 share Index is as well compared with the two models. 

Finally, Chapter 7, concludes the research by pointing out the key findings and future directions. 



Chapter 2: SINGLE-PERIOD RANDOM CASH FLOWS 

2.1 Introduction 

Single-period investment models were the starting point in asset pricing. Mean-Variance single-

period models are characterized by the fact that the covariance term has to be evaluated. The 

drawback is that if there are too many shares to be evaluated then the covariance matrix 

generation takes large computational time. Other pricing models include the Capital Asset 

Pricing Model (CAPM), which is a special case of the Arbitrage Pricing Theory (APT) and is one 

of the most tested and widely used models. This chapter describes the Mean-Variance, CAPM 

and APT models explaining the theory behind these concepts. Empirical tests that have been 

performed by various academics and professionals in the finance and economics field are also 

discussed. Other pricing models within the CAPM concept are also analysed. 

The background of the mean-vanance framework is introduced together with a simple 

Markowian outline formulation of the modeL The Markowitz concept provides the milestone 

for single-period investment theory and together with the CAPM and the APT gave the 

initiative to develop completely new and innovative investing techniques. 

2.2 The Mean-Variance Model 

2.2. 1 Background 

In June 1952 a leading academic journal published an article entitled 'Portfolio Selection'. Its 

author was Harry Markowitz [45], (although the full exposition was available several years later 

in 1959), [46], an unknown graduate student at that time. The topic that Markowitz chose for 

research was classified by many journals as too dicey and speculative. His objective was to use 

the notion of risk to construct portfolios 1 for investors who 'consider expected return a 

desirable thing and variance of return an undesirable thing [47]. Variance is a statistical 

I The word has a Latin root. Portare which means to carry and foglio which means leaf or sheet. So, the actual meaning of 

Portfolio is a collection of paper assets. 
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measurement of how widely the returns on an asset vary around their average. The greater the 

variance or standard deviation around the average, the less the average return will indicate about 

what the outcome is likely to be. One other key insight in Markowitz's methodology is that of 

diversification. He declares 'diversification, is both observed and sensible; a rule of behaviour 

which does not imply the superiority of diversification must be rejected both as a hypothesis and 

as a maxim'. With diversification one can combine a group of risky securities with high­

expected returns into a relatively low-risk portfolio, so long as the covariances among the 

returns are minimized. 

The investors' problem after Markowitz's research can be separated into three levels [48]. First, 

is that investors must obtain estimates (which are not simply point estimates) of future 

outcomes for individual securities. This is the task of security analysis. Attention should be 

made for the risk of each security and its relation to other securities. Using a suitable set of such 

estimates the investor needs to identify the set of efficient portfolios. The definition of an 

efficient portfolio is if and only if it offers a higher overall expected return than any other 

portfolio with comparable risk. This second task is the portfolio analysis. To perform this task 

Markowitz designed a specific algorithm (formally known as quadratic programming). The final 

task that investors face is the portfolio selection. Having identified the efficient portfolios it is a 

question of which one to choose. This depends on the individual investor and how he/she 

prefers to treat risk with regard to expected returns. 

2.2.2 The Markowitz Model 

The Markowitz concept provides the milestone for single-period investment theory. The 

problem explicitly addresses the trade-off between expected rate of return and variance of the 

rate of return in a portfolio [28]. Markowitz showed that investors could build optimal 

portfolios under conditions of uncertainty by using statistical measurements of expectation and 

variance of return. These portfolios are identified and the efficient set can be found by solving a 

quadratic problem. 
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Assuming that there are n assets whose expected rates of return or mean are ~, r2 , ... , ~ and 

the covariances are a i ,), for i,j=1,2, ... ,n. A portfolio is defined with weights w;, 

i =1,2, ... , n , that sum to 1. In order to find a minimum-variance portfolio, the portfolio return 

is fixed at some arbitrary value r. The mathematical formulation of the Markowitz problem is 

as follows (the following is only an overview for the understanding of the mean-vanance 

concept and extensive discussions and formulations are found in Chapter 4). 

Minimiz"" 1 In e- w.w·a·· 
2 

I j l,j 

j,)=1 

n 

Subject to I Wj ~ = r 
;=1 

n I Wj = 1 Wj ~ 0, i = 1, ... ,n 
;=1 

The fraction ! in front of the variance is for ease of expressing the partial derivative equations. 
2 

By varying the level of return a graph can illustrate the answer to this problem (graph 2-1): 



25 

20 

Expected 
return (r), in 

15 percentage 

10 

5 

Graph 2-1: Efficient Frontier (Pareto Analysis) 
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Graph 2-1, represents a plot in standard deviation-return terms whose efficient set forms the 

efficient frontier of an investment. An investor would want to increase the expected return 

hence to go up, and to reduce risk hence to go to the left of the line. Points A, B, C, and Dare 

supposed to be portfolios and Markowitz calls them efficient portfolios as they offer the 

highest-expected returns for a given standard deviation. The line has the characteristic of 

offering the same mean rate of return but different standard deviations or variances. Point D is 

also known as the minimum-variance point (MVP). As investors prefer portfolios with the 

smallest standard deviation Oeftmost point on the line), they seek to minimize risk (measured by 

standard deviation), so they are said to be risk averse. Graph 2-2, below, shows two different 

investments of portfolios which both have an expected return of 10%. Investment A, has a 

greater spread of possible returns. The spread is measured by the standard deviation, which in 

this case is 15% for A and 7.5% for B. Investors would prefer B to A for two reasons. Firstly, 

it has a lower standard deviation and secondly, it has a greater spread of possible returns, 

meaning it is more risky. 



Graph 2-2: Two possible investments or portfolios 
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2.3 Empirical Validation of the Mean-Variance model 

Mean-Variance portfolio analysis by Markowitz's research [45], [49], [46], provided the first 

quantitative treatment of the tradeoff between profit and risk. This issue though raised many 

questions and was the cause of extensive research, tests and validations. Efficient portfolios 

have the property of using a Von Neumann-Morgenstern [50] utility function, which maximizes 

the expected utility of the return on an investment. This concept was widely used by other 

researchers in the mean-variance field. Work in utility functions which are justified by their 

relationship to the corresponding risk premiums within the mean-variance framework have been 

made by Tobin in 1958 [51], Pratt in 1964 [52], Lintner in 1970 [53], Arrow in 1971 [54], 

Rubinstein in 1973 [55], Duncan in 1977 [56], Kira and Ziemba in 1980 [57], Ross in 1981 [58], 

Hubermann and Ross in 1983 [59], Pratt and Zeckhauser in 1987 [60], Li and Ziemba in 1989 

and 1993 [61],[62]. Markowitz [46], discussed the advantages and disadvantages of replacing the 

variance by alternative risk measures. These considerations and the framework of stochastic 

dominance were exploited by Levy in 1992 [63], Levy and Wiener in 1998 [64]. Asymmetric risk 

measures like expectation of loss and semi variance were tackled by Markowitz, Todd, XU and 

Yamane in 1993 [69], King in 1993 [68], Ogryczak and Ruszczynski in 1999 [71]. Bawa and 

Lindenberg in 1977 [65]. Konno in 1990 [66], used a piecewise linear risk function. Konno and 

Yalnazaki in 1991 [67] and Zenios and Kang in 1993 [70], dealt with the mean-absolute 
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deviation as a risk measure. Rockafellar and Uryasev in 2000 [72] and Uryasev in 2000 [73] 

introduced the Conditional Value-at-Risk or CVAR as their risk measure. 

Many researchers used different approaches within the mean-vanance framework to 

alternatively represent risk. The Markowitz problem though has two main difficulties that made 

it impossible to be established as the only technical model. The first drawback is that the 

computational time to generate the covariance matrix is very large. The other disadvantage is 

that Quadratic Programming is more difficult to solve than linear programs. Furthermore, 

Markowitz's model neither utilizes transactions costs nor any taxes. For these reasons people 

started to look into alternative models to compensate the risk issue. 

2.4 Market Equilibrium 

A simple definition of the Market Equilibrium is as follows. The return of an asset depends on 

two factors, the assets initial price and its final price. Suppose that investors decide to invest in 

the market in order to synthesize their portfolios. Asset prices, which have large demand, tend 

to increase while those with low demand tend to decrease. The change in asset prices affects the 

estimates of asset returns resulting in investors reconstructing their portfolios. This process is 

repeated until demand has an absolute match with supply. The process at this stage is then said 

to be in equilibrium. The theory of equilibrium is usually applied to assets that are repeatedly 

traded over time, such as the stock market. 

The Capital Market Line (CML), shows the relation between the expected rate of return and the 

risk of return for asset portfolios or efficient assets (graph 2-3). It is also referred to as a pricing 

line. This line states that as risk increases, then the corresponding expected rate of return also 

lllcreases. 
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Graph 2-3: The Capital Market Line (CML) 

r 

In mathematical terms, the CML is translated as: 

where "FM and a M are the expected value and the standard deviation of the market rate of 

return. r and a are the expected value and the standard deviation of the rate of return of an 

arbitrary efficient asset and rf is the risk free asset 

rM -rf The slope of the CML is: K = . This value is also called the price of risk. 
aM 

2.4.1 Overview of the CAPM 

The CML does not show how the expected rate of return of an individual security is related to 

its individual risk. However, this relation is explained by the Capital Asset pricing Model. 

CAPM was initially developed by Sharpe in 1963, 1964 [21], [22], and Treynor in 1961 [23]. 

Future developments were made by Lintner in 1965b, 1969 [24], [25], Mossin in 1966 [26], and 

Black in 1972 [27]. It is a model of capital market equilibrium which attempts to measure and 

price risk. The CAPM is a factor model and relates the expected return of an asset to its 
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systematic risk. The required expected rate of return on any asset (If) equals the t'isk free rate of 

return (rf ) plus a risk premium. Its mathematical formulation is: 

where or fJ. = cov(If' rM ) 

I var(rM) 

If is the expected return of the asset i 

rf is the interest rate 

r M is the expected rate of return of the Market index 

Pi is the beta value of asset i 

(J"i,M is the covariance of asset i with the Market index 

(J" 2 M is the variance of the Market index 

The risk premium can be thought of as the extra compensation, above the risk free rate, that the 

investors require for investing in the market portfolio. It is the product of the quantity of risk 

with the price of risk. The price of risk is the difference between the expected rate of return on 

the market portfolio and the risk free rate. The market Index could be referred to as the FTSE 

100 or the S&P 100 etc. The quantity of risk usually called beta is a number that measures the 

degree to which the expected return on an asset moves with the expected return on the market. 

An asset with a high beta is one that is sensitive to moves in the overall market and tends to 

move in the same direction. On the other hand, if beta is zero, then that asset has no tendency 

to move with the market. The variance (0- 2. ) is the degree of possible deviation from the mean. 

Covariance of two or more variables is their mutual dependence. Suppose that two random 
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variables Xl ,x2 ' have the property a l2 = 0, then they are said to be uncorrelated (one yariable 

gives no information about the other). While if a l2 > 0 then the two variables are said to be 

positively correlated (if one variable is above its mean then the other is likely to be above its 

mean) and in the case of a l2 < 0 the variables are said to be negatively correlated (if one 

variable is below its mean then the other is likely to be above its mean). 

The CAPM is a pricing model but the (standard) equation 2.2, contains only expected rates of 

return. So, if one wants to price a particular asset with a price P and a payoff Q, 2.2 becomes: 

p=--_Q~-­
l+rj +f3CrM -rj ) 

2.4.2 The Securiry Market Line 

(2.3) 

By regarding the CAPM formula (2.2) as a linear relationship it can be graphically expressed in 

Graphs 2-4, 2-5. The relationship is termed the Security Market Line (SML). Graph 2-4, 

expresses the linear variation of r ,in covariance form with cov(r, rM ), (horizontal axis). In 

this case the market portfolio corresponds to point a ~ on the horizontal axis. In graph 2-5, the 

linear relationship is expressed in beta form, where beta is the horizontal axis. The market 

portfolio corresponds to point f3 = 1 . 

The SML expresses the risk-reward asset structure according to the CAPM: the risk of a 

particular asset is a function of its covariance with the market or a function of its beta [28]. 



r 

Graph 2-4: The expected rate of return increases linearly as the 
covariance of the market increases 

Graph 2.4 Graph 2.5 

r 

cov(r,r M) 
1 

Gr.aph 2-5: S.ML: The expected rate of return increases linearly 
as 11lcreases 

In order to understand why beta plays the dominant risk role in the CAPM fonnula 2.2 can be 

written as: 

The expected value of the above fonnula according to the CAPM implies E( ci ) = 0 . 

Furthennore, by using the beta definition cov( ci ,a M ) = O. F onnula 2.4 can be expressed by 

using these two last statements: 

= 0 + /3/ a M 2 + /3/0+ var(c i ) 

:2 2 () = /3i a M + var ci (2.5) 
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The first part of the right hand side of 2.5, fii 2 (J'M 2 , is termed as 'systematic risk' and it has t\\'O 

characteristics: a) it is associated with the market and it cannot be reduced by di\~ersification 

because every nonzero beta asset contains this risk and b) the second part, var( ci ), is termed as 

'nonsystematic', 'idiosyncratic' or 'specific risk'. This type of risk has exactly the opposite effect 

from the systematic risk. It is uncorrelated with the market and can be reduced by 

diversification. It must be mentioned that systematic risk (measured by beta), is important as it 

directly combines the systematic risk of other assets. 

2.5 Assumptions of the CAPM 

The CAP M is based on equilibrium rates of return, which make it unrealistic and it is developed 

in a hypothetical world. For this case the following assumptions have been made from investors 

to support this model [29]: 

1. There are no market imperfections like taxes, regulations or restrictions on short selling. 

2. Investors are price takers and have homogeneous expectations about asset returns that 

have a joint normal distribution. 

3. Asset markets are frictionless and information is costless and available to all investors. 

4. There exists a risk-free asset such that investors may borrow or lend unlimited amounts 

at a risk-free rate. 

5. Investors are risk-averse individuals who maximize the expected utility of their end-of-

period wealth. 

6. The quantities of assets are fixed, marketable and perfectly divisible. 
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2.6 Empirical Tests and Validity of CAPM 

The initial testing of the CAPM concentrated on the properties of the S1LL. :Lvfeaning that if the 

market portfolio is mean-variance efficient, then there will be a linear positive relationship 

between beta and the expected returns. Black, Jensen and Scholes in 1972 [30], concentrated on 

the SML. Their results are in favour of the CAPM. Fama and MacBeth's in 1973 [18], research, 

also concentrated on the properties of SML. They attempted to predict the future rates of 

return of portfolios on the basis of risk variables estimated in previous periods. Again the 

results were highly supportive of the CAPM. In 1977 Roll [31], wrote an extensive working 

paper in which he criticized Black, Jensen, Scholes and Fama, MacBeth's research claiming that 

their tests were tautologicaL He stated that it was not improbable to obtain results like theirs no 

matter how stocks were priced in relation to risk in the real world. He also claimed that since 

the only real prediction of the CAPM is that the market portfolio is efficient, this is the 

prediction that should be tested. Others include Miller and Scholes in 1972 [32], Blume and 

Friend in 1973 [33], Blume and Husick in 1973 [34], who found that economic factors other 

than the beta play an important role in the modeL Basu in 1977 [35], found that low 

price/ earnings portfolios have higher rates of return than the CAPM could explain. 

Ltzenberger and Ramaswamy in 1979 [36], concluded that the market requires higher rates of 

return on equities with high dividend yields. Gibbons in 1982 [37] and Stambaugh in 1982 [38], 

explained how returns are positively related to beta and the relationship appears to be linear. 

Also, unsystematic risk is not priced in the market. Overall their results support the CAPM. 

Reinganum in 1981 [39], showed that size and earnings per share are important along with beta. 

He concluded that beta is not the only variable that explains the expected return. Keim in 1983 

and 1985, [40]-[41], came with the conclusion of seasonality in stock returns the so-called 

January effect. Shanken in 1985 [42], put forward a variety of tests whether the market portfolio 

is mean-variance efficient Fama and French in 1992 [43], examined the relationship between the 

expected rates of return and other financial and accounting variables. This was the first study 

investigating these issues. They found that beta had no explanatory power either on its own or 

when it is included with other accounting variables like kTerage. Their main conclusion wa~ 
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that beta coefficient was dead. Antoniou, Garrett and Priestley in 1995 [44], found that the 

more general multi factor APT model provides a more accurate description of the risk return 

relationship than the CAPM. This accuracy can be improved further by including the market 

portfolio in the APT specification. Therefore, the market portfolio has a role to play in pricing 

risky assets, but within a multi factor framework. 

2.7 Arbitrage Pricing Theory (APT) 

Asset pricing models are the link between literature theories and the behaviour of stock markets. 

They are used in pricing the individual risky assets or even within a portfolio, which provides a 

thorough understanding of business cycles, calculate the corresponding discount rates and 

finally take the appropriate investment decisions. 

The Arbitrage Pricing Theory, or APT, was first formulated by Merton [1], and then by Ross[2]. 

APT offers a testable alternative to the Capital Asset Pricing Model (CAP:M) and it does not 

request which portfolios are efficient. It assumes that each stock's return depends partly on a 

number of macroeconomic factors and 'noise' (events that are unique to that particular 

organization). The return is assumed to obey the relationship in formula (2.6): 

Return = a + b1 (rractor 1) + blrfactor ~ + b3(rfactor 3) + ....... + noise (2.6) 

The theory does not state what the factors are and this has been a subject of empirical tests. 

Some stocks though could be sensitive to a particular factor for example Texaco would be more 

sensitive to an oil factor than Pepsi. Thus, if factor 1 represents changes in oil prices, b l will be a 

higher value for T exaco than for Pep si. 

2.7.1 Risk andAPT 

For any stock there are two main sources of risk (Brealy, Myers [3]). First is the risk, which is 

associated with the spread of the macroeconomic factors, which cannot be eliminated by 

diversification (the spread of a portfolio into different investments in order to minimize the risk 

exposure). Second is the risk uniquely associated with the organisation. Although 
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diversification does indeed eliminate uruque risk (see empirical evidence), the expected risk 

premium on a stock is a affected by factor or macroeconomic risk. 

APT argues that the stock's expected risk prenuum should depend on the expected risk 

premium associated with each factor and the stock's sensitivity to each of the factors (b b b 
I' 2' )' 

etc.). Thus, the formula is (2.7): 

Expected risk premium on investment= r - r
f (2.7) 

= b l (rractor 1 - rf ) + b2(rfactor 2 - rf ) + ..... . 

Quoting from Brealy, Myers [3], formula (2.7), states the following: "If you plug in a value of 

zero for each of the b's in the formula, the expected risk premium is zero. A diversified 

portfolio that is constructed to have zero sensitivity to each macroeconomic factor is essentially 

risk-free and therefore must be priced to offer the risk-free rate of interest. If the portfolio 

offered a higher return, investors could make a risk-free (or 'arbitrage') profit by borrowing to 

buy the portfolio. If it offered a lower return, one could make an arbitrage profit by running the 

strategy in reverse. A diversified portfolio that is constructed to have exposure to, say, factor 1, 

will offer a risk premium, which will vary in direct proportion to the portfolio's sensitivity to that 

factor". 

APT applies to well-diversified portfolios where the unique risk has been diversified. However, 

if this theory applies for all diversified portfolios then it should apply to the issue of the 

individual stocks, which must give an expected return proportionate with its contribution to 

portfolio risk. As far as the APT is concerned, this contribution relies upon the issue of the 

stock's sensitivity in return to unexpected changes in the macroeconomic factors. 
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2.8 Empirical Evidence on APT 

The empirical tests of APT involve the determination of a) systematic or nondiversifiable factors 

that explain asset returns and b) whether risk premiwns are associated with the factor betas 

(pricing 0 f factors). 

Researchers exploit the issue that the APT does not say anything about the nature of the 

pervasive factors or their number and thus two main approaches have been used in an attempt 

to determine their nature and nwnber. The first approach is Factor Analysis and the second is 

Principal Component Analysis. These are both statistical methods to extract factors from 

historical returns. In particular, the second approach uses a set of Economic and Financial 

factors to represent pervasive sources of risk. 

2.8. 1 Factor AnalYsts 

Factor Analysis is a natural method of extracting factors: 

where .Q is systematic risk and W is unsystematic risk. Factor Analysis takes Q, the variance-

covariance, and extracts common correlations amongst the assets and stops when for example 

95% of the covariance of returns has been explained by the factors. 

Roll and Ross in 1980 [4], performed the first test of the APT using factor analysis. After they 

constructed portfolios of stocks, they found 4-5 systematic risk factors. Chen in 1983 [5], by 

using this analysis showed that APT outperforms the CAPM. Dhrymes, Friend and Gultekin in 

1984 [6], found that if one increases the nwnber of assets in a portfolio then the nwnber of 

factors extracted from it, is also increased. Dhrymes, Friend, Gultekin and Gultekin in 1985 

also found [7], that if the time period under investigation changes so does the number of factors. 

Overall, results from factor analysis studies are questionable as firstly the technique has certain 

statistical limitations and secondly the number of factors is indeterminate. The number of 
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factors may vary according to the sample size and the nwnber of time senes obsen'ations. 

Furthermore, one has to raise the issue of whether the different versions of the technique are 

compatible with each other in order to produce consistent results. Dhrymes and associates in 

1984 [8] and 1985 [9] did exactly that. They questioned the validity, performance and empirical 

results obtained from the factor analysis technique. 

2.8.2 Pn'ncipal Component AnalYsis 

The alternative approach that researchers use is principal component analysis. This method also 

extracts factors, from the covariation of returns, as described by Chamberlain and Rothschild in 

1983 [10]. Trzcinka in 1986 [11], Connor and Korajczyk in 1988 [12], Brown in 1989 [13], and 

finally Shukla and Trzcinka in 1990 [14], found that up to 5 pervasive factors could well be 

present. This is consistent with the dominance of a market factor in stock returns, as researched 

by King in 1966 [15]. Connor and Korajczyk in 1988 [16], and Brown in 1989 [13], detected 

one dominant factor, which is the equally weighted market index. 

Neither factor analysis nor the principal component analysis techniques are adequate to 

determine the number of factors and testing for pricing. 

2.8.3 Economic and Financial Factors 

An alternative approach to test the APT is to pre select economic variables as factors based on 

the economic theory and intuition to determine the degree to which the set of factors explains 

the cross-sectional variation in returns according to the APT's pricing relation. Any factor that 

either affects the future cash flows of the organization or the discount rate is a candidate as a 

pervasive source of systematic risk. Chen, Roll and Ross (CRR) in 1986 [17], by using the Fama 

and MacBeth [18] procedure, identified four sources of systematic risk: unexpected inflation, 

unexpected industrial production, change in expected inflation and changes in the term structure 

of interest rates. Similar results to CRR have been published by Burmeister and Wall in 1986 

[19] and Berry, Burmeister and IvlcElroy in 1988 [20]. 
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Tests and research such as these on APT provide much more empirical meaning to the models 

and usefulness in investment practice. 

2.9 CAPMv.APT 

The CAP M and the APT are two theoretical models that enable investors to price risky assets. 

The appropriate measure of risk in the CAP M sceptic is the covariance of returns between the 

risky asset and the market portfolio of all the assets. On the other hand the APT model is more 

general indeed as a plethora of factors may explain asset returns. For each individual factor 

within the APT framework, the appropriate measure of risk is the sensitivity of asset returns to 

changes in that individual factor. The empirical tests for the APT have shown that asset returns 

can be explained by approximately four factors and have relaxed the concept of the variance of 

an asset return as one of them. The market portfolio plays an important role in the CAPM, as it 

does not in the APT. Both the CAPM and the APT can be applied to cost of capital and capital 

budgeting problems. Since the CAPM has not perfectly been empirical validated and tested, its 

main implication has been defended and that is the fact that the beta or systematic risk, remains 

a valid measure of risk. 

2.10 Other pricing models 

Two very important pricing models within the CAPM framework are described in this section. 

The Consumption-Based CAPM (CCAPM) and the Multibeta CAPM (ICAPlvI). These two 

alternative models are an extension of the original CAPM with more assumptions and a 

different concept on asset pricing. 

The Consumption-based CAPM was developed by Rubinstein in 1976 [74], Breeden and 

Litzenberger in 1978 [75] and Breeden in 1979 [76]. The sceptic of CCAPi\l is that the 

covariance of an asset with aggregate consumption growth is a better measure of systematic risk, 

rather than the covariance with the return on a market index. The assumptions of tl1e CCAPtvl 

are: 

1. There are no taxes or transaction costs in the capital market. 
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2. Investors seek to maximize a lifetime utility consumption function that increases in a 

marginally decreasing rate, with higher levels of real consumption. 

3. Multiperiod horizon. 

Chen, Roll and Ross have done empirical tests on the CCAPM in 1983 [77], where they tested 

whether innovations in macroeconomic variables are risks that are rewarded in the stock market. 

Trying to create a more realistic asset pricing model with more realistic assumptions and more 

amenable empirical testing, Merton in 1973 [1], came with the Multibeta CAP M or ICAPM. He 

relaxed the assumption that the investment opportunity set and the riskless rate are constant 

over time. The point, which makes this model more consistent with reality, is that, the 

investment opportunity changes stochastically over time. Merton showed that investors' 

portfolio decisions would be in accordance with a three-fund separation theorem. The three 

funds are: 

1. the riskless asset. 

2. the market portfolio. 

3. a portfolio whose returns are perfectly negatively correlated with changes ill the 

investment opportunity. 

This theorem states that given a set of n risky assets and the riskless asset investors would be 

indifferent between choosing portfolios from among the original (n + 1) assets or from three 

portfolios ('mutual funds') constructed from these assets. 
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Chapter 3: MODELLING OF UNCERTAINTY 

3.1 Introduction 

The common problem among short and long-term investors is how to represent uncertainty. 

Investors who wish to achieve goals and meet future obligations need to establish the market 

expectations, which means that they have to establish their beliefs for the major asset categories 

such as stocks, bonds, currency, etc., in different regions of the world. Some investors express 

their expectations in terms of distributions of the return or interest rates for the different asset 

classes. The challenge is first to convert these expectations into an asset allocation format [78], 

which possibly a stochastic programming model can handle and second to construct an 

optimisation model which gives the optimal asset mix given this input. 

The first part, the scenario generation, is in fact the most challenging. Scenario generation is the 

construction of possible future asset outcomes. The second part is discussed in Chapter 4. 

There is a need for accurate and efficient algorithms in scenario generation as in many cases 

when there are many asset classes the scenario generation can become a bottleneck process: the 

input data procedure could be computer-time consuming. Stochastic processes are widely used 

for scenario generation. It is critical that the decision-makers can express the market 

expectations in a way that they find most convenient and move a step forward to convert these 

expectations to model the inputs in a consistent manner. 

This chapter gives an insight of how to model uncertainty and how it is possible to generate 

scenanos. Scenarios can be generated by using econometric techniques, time series or stochastic 

processes (wiener processes and the Geometric Brownian Motion). Major scenario systems, 

which are used in the market, for long term strategic asset liability planning are discussed and 

analysed. 

The authors own scenario generator system is fully analysed, discussed and numerical examples 

and illustrations are given. 
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3.2 Stochastic Processes 

Any variable whose value changes over time in an uncertain way is said to follow a stochastic 

process. There are two types of stochastic processes [79], the discrete-time and the continuous­

time. The discrete-time process is defined as the value of a variable that can change only at 

certain fixed points in time. In a continuous-time stochastic process changes can take place at 

any time. For stock prices a continuous-time stochastic process is considered. A stochastic 

process can be described as a variable that evolves over time in a random way. A descriptive 

example would be the temperature in Athens. It usually rises from early morning at 6 o'clock 

until 4 o'clock in the afternoon and then drops for the rest of the time. Another example in the 

financial field would be the variation of a stock price. It fluctuates randomly providing a 

positive return in some time periods and negative returns in others. Both these examples are 

continuous-time stochastic processes in the sense that the time period is a continuous variable. 

Stock prices are usually assumed to follow a particular type of stochastic process, which is the 

Markov process. This process has the characteristic that only the present value of a variable is 

relevant for predicting the future value. The past history of the variable and the way that the 

present has emerged from the past are irrelevant. 

3.2.1 Wiener Process - Geometric Brownian Motion 

Robert Brown [80] was a Scottish botanist and during his career he studied the way that pollen 

was transmitted in plants. He observed that pollen could be broken down into particles. These 

particles did not come to rest even in still water and 'danced' in a seemingly haphazard and very 

irregular way N.H. Bingham [81]. This discovery gave the initial 'push' to scientists to further 

apply it to other fields like mathematics and physics. In the field of physics, the Brownian 

motion can be defined as the motion of a particle that is subject to a large number of small 

molecular shocks. After Brown, the mathematician Norbert Wiener, constructed a stochastic 

process which contains all the properties for a rigorous mathematical model of Browruan 

motion: 



1. Continuous Paths, so the process can model the displacement through time, of particles 

that move continuously, just like Brownian particles do. 

ii. No Drift, or zero mean displacement. 

111. Mean Square displacement proportional to time or variance. 

lV. Normally Distributed increments (variance that increases linearly over the time interval 

[81 D. 

A Wiener process obeys the Markov rule, (mentioned above), which creates the probability 

distribution of future values of the process, based only on its current value. 

The stochastic process of Brownian motion is now called a 'Wiener process'. It has the same 

foundations and roots of Brownian Motion but with sophisticated terms and relations added. 

In order to understand a Wiener process, consider a small interval of time /).t and let the change 

in process ( during /).t be /). ( then: 

Lemma 1: the relationship of /). ( with /).t is: 

/). ( = c.fit where E is a random variable taken from a normal distribution 

with mean of zero and standard deviation of 1. 

Lemma 2: /).('s values for any two different short intervals of time /).t are completely 

independent 

From Lemma 1, /).( has a normal distribution with: 

mean of /).( = 0 

standard deviation of /).( = .fit 
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variance of i1( = i1t 

Lemma 2, deflnes that ( follows a Markov process. 

This model is applied to value stocks and shows how to predict their future pnce ill the 

following way: 

Let S be the stock price and the expected drift rate (average drift per unit of time) in S be f.1S 

where J1, is a constant parameter. So, in a short time interval of time I1.t , the expected increase 

in S is f.1S i1t . 

If the variance of the model is always zero then: 

dS = Ji,dt 
S 

In practice, the stock price has volatility. If er is deflned as the variance rate of the proportional 

change in the stock price, then that means that a 2/)",t is the variance of the proportional change 

in the stock price at time /)",t and a 2 S 2/)",t is the variance of the actual change in the stock price 

dS 
- = Ji,dt + ad!; 
S 

S during i1t and leads to the following model: 

The equation above is known as Geometn'c Brownian motion. 

The variance cr is referred to as the stock price volatility. 

The discrete-time version of the model is: 

or 
i1S r-:-: 
- = J1,i1t + CJc -V i1t 
S 

/)",S = J1,Si1t + aSc~ (5.1) 
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where !:::"S is the change in the stock price S 

!:::"t is a small time interval 

E 1S a random variable from a standardized normal distribution (a normal 

distribution with a mean of zero and standard deviation of 1). 

The term }JAt 1S the expected value of the return and the term (J'C..{i;i is the stochastic 

(6.1) 

component of the return. Equation (5.1) can be expressed as follows: 

where Q;(I1, (J) denotes a normal distribution with mean 11 and standard deviation (J' . 

3.2.2 Monte Carlo S imttfation 

A Monte Carlo simulation of a stochastic process is a procedure for sampling random outcomes 

for the process. An example of how the simulation works according to the share price process 

is as follows: 

The S&P 100 share Index in 2000 had an expected return of 13% per annum with a standard 

deviation or volatility on retum of 21 % per annum. Considering changes in the share price at 

intervals of 3.65 days leads to !l =0.13, a =0.21 and ~t =0.01. Equation (5.1) then becomes: 

!:::"S = 0.13*0.01S +0.21.J0.01SE 

or 

!:::"S = 0.0013S +0.021SE (7.1) 



A path for the Index can be simulated by repeatedly sampling for 6 from (j/ ( 0,1) and substituting 

into equation (7.1). The initial Index price was 434.47 and for the fust period, c is sampled as 

0.46. From equation (7.1), the change in the Index is: 

!1S = 0.0013*434.47+0.021 *434.47*0.46 = 4.756 

At the beginning of the second time period the Index price is therefore 4.756 + 434.47 = 

439.226. Table 3-1 shows a particular set of outcomes, which have actually been used for the 

current research. 

Table 3-1: Simulation of the S&P 100 Share Index with 1.1. = 0.13, a = 
0.21 and Llt = 0.01 years . 

434.47 
439.231 
442.786 
454.370 
461.620 
461.737 
454.907 
467.319 
476.987 
487.171 
470.939 
464.728 

0.46 
0.323 
1.183 
0.697 
-0.049 
-0.766 
1.237 
0.923 
0.954 
-1.648 
-0.689 
0.996 

4.761 
3.554 
11.584 
7.250 
0.116 
-6.830 
12.412 
9.667 
10.184 

-16.232 
-6.210 
10.327 

The above is one possible pattern of the S&P 100 Index movement, which means that different 

random samples would lead to different Index paths. There are 12 different time intervals and 

obviously by repeatedly simulating movements for the Index, its complete distribution at the 

end of this time interval could be obtained. 

The Geometric Browruan Motion together with the Monte Carlo Simulation could be extended 

to generate scenarios for shares and Indexes. It is a straightforward method and it is used by 

many academics and researchers to model uncertainty. Nevertheless, it is not the only method 

used. The next section is dedicated to other econometric techniques and methods that are used 

to model uncertainty. 
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3.3 Econometric Techniques 

Econometric modelling and in particular time series analysis, in both its theoretical and empirical 

aspects, has been for many years an integral part of study of financial markets, with empirical 

research beginning with the papers by Working [82], Cowles [83], [84] and Cowles and Jones 

[85]. 

Working focused on stock prices and commodities and insisted on the fact that they resemble 

accumulations of purely random changes. Cowles concentrated on the ability of market analysts 

and financial services to predict future price changes. He concluded that there was little 

evidence that they could. Cowles and Jones reported evidence of positive correlation between 

successive price changes. 

Stochastic processes (analysed above) belong to the Univariate linear stochastic model sector. 

The Autoregressive (AR) and Moving Average (MA) processes also belong to this sector. Their 

combination is also widely used and it is known as the ARMA process [86]. Their integrated 

formulation is known as the autoregressive-integrated-moving average or ARIMA [87],[88]. 

These kinds of models are statistical models, which use time series for forecasting. It should be 

emphasized that stock prices are not the only financial time series [89],[90],[91], of interest as 

there are financial markets other than those for stocks, most notably for bonds and foreign 

currency, but there also exist the various futures and commodity markets. 

A different group of models is that of the Univariate non-linear stochastic models. These 

models are capable of modelling higher conditional moments, such as the autoregressive 

conditionally heteroskedastic (ARCH) model intr:Jduced by Engle [92]. The popularity of 

ARCH models can be seen in an extensive survey made by Bollerslev et al. [93]. Further issues 

in ARCH models can be found in Milhoj's [94] and Weiss's research [95]. A practical difficulty 

with ARCH models is that very often estimations lead to the violation of the non-negativity 

constramts. To obtain more flexibility, a further extension to the generalized .ARCH or 

GARCH has been proposed by Bollerslev [96],[97]. 
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Another group of models is the regression models. Vector autoregressive or VAR process is 

one of the widely used methodologies. In V AR models, each member of a group of random 

variables is expressed as a linear function of past values of itself or past values of the other 

members of the group. V AR is based on the work of Hansen [98], White [99] and White et al. 

[100]. 

3.4 Scenario Generation 

Having introduced in the previous chapter the concept of the CAPM and in this chapter the 

framework of the stochastic processes and in particular the Wiener process and the Geometric 

Brownian Motion, the author's own scenario generator is now analysed in detail. 

3.4.1 Generating Scenarios for the S&P 100 Index 

The theory of stochastic processes and in particular the Geometric Brownian motion with drift 

is utilized to generate forecasts for the S&P 100 U.S. stock market Index. By using formula 5.1, 

(the discrete-time version of the Brownian motion), 

!:"S = j1S!:"t + CJS E.[ii 
with f.1, mean, (drift) and a, standard deviation, were calculated by taking monthly historical 

data. These two variables were calculated by considering 5 years of historical values. !:"t was 

calculated in monthly terms (0.0833). E, was simulated as mentioned in 3.2.2, (sampling 

repeatedly from qJ (0,1)). This was achieved by using MS Excels' random number generation 

option. The routine of continuously repeating and generating the Index scenarios was achieved 

by using the Monte Carlo simulation procedure. The start date was August 1997 and the close 

date was June 1998. A complete year or 12 months were considered to model the uncertainty 

annually because it would give an insight of the performance of the Index. If half a year or 6 

months were considered then the study would be inadequate as this would not capture any 

effects as the tum-of-the-year, Christmas period, or any other dates which are crucial for shares 

in general and Indexes (rise or drop) in particular for this case. From the 12 months, six \"alues 

were considered which represent the year as a whole meaning that forecasted \"alues of every 
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other month are taken . 1997 and 1998, were the initial dates for forecas ting but for back testing 

reasons and further research the scenarios framework was expanded to model a decade. That 

means the actual start date was January 1988 and the end date was January 1998. TIlls particular 

decade was crucial as the majority of the worlds Indexes, including the S&P 100, faced 

unexpected falls and rises. Falls were reported in the recession of the US economy in 1991 and 

from 1992 it began its current upswing. Below is a graphical representation of the S&P 100 

Index actual values and sample scenarios using the Geometric Brownian motion. 
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Graph 3-1: S&P 100 and 29 sample scenarios. The bold dark blue line 
is the actual value of the Index. 

S&P 100 and Sample Scenarios 
(August 1997-August1998) 

Aug-97 Sep-97 Oct-97 Nov-97 Dec-97 Jan-98 Feb-98 Mar-98 Apr-98 May-98 JLrl-98 JuI-98 Aug-98 

Time Periods (months) 

Table 3-2, illustrates the above graph in numbers. A total of 92 scenarios were generated using 

the Geometric Brownian Motion. A random sample of 29 is illustrated below to show that 

'good' and 'bad' scenarios are taken into consideration. 
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456.91 437 .14 

436.71 442.28 

459.1 466.04 

459.94 472.23 

468.79 485 .81 

501.93 493 .59 

528.91 498.95 

536.48 511.08 

529.04 518 .07 

554.56 522.29 

550.93 534.05 

470.91 559 .73 

434.47 434.47 

471.46 446.67 

475 .14 431 .32 

467.64 444.27 

487.76 450.11 

498.84 469.71 

507.71 494.62 

501.97 481.62 

486.89 492.18 

470.56 520.51 

488.04 532.08 

509.10 527.43 

529.1 551.6 

Table 3-2: T he Actual S&P 100 Value and 29 random SCenarios 
(August 1997 -August 1998) 

434.47 434.47 434.47 

412.01 453.52 442.71 451.08 450.15 407 .35 437.98 

426.87 466.56 466.11 458.68 447 .78 408.06 427 .75 

449.04 468.15 446.12 477 .55 440.55 406.85 430.58 

438.40 491 .64 468.24 523 .76 466.67 411.51 426.77 

414.98 469.56 463 .14 563 .28 493.46 423.78 429.92 

430.04 504.32 471.78 549.24 512.48 437 .50 447 .24 

446 .87 520.70 478.65 553 .85 522.38 443 .70 458 .93 

434.89 537 .07 450.96 548.24 507.87 437 .76 467 .31 

438.97 535 .37 445 .60 561.06 509.72 442.27 483. 11 

440.71 578.10 439.08 582.80 521.57 450.93 478.73 

456.43 587.43 452.78 606.41 506.97 450.68 500.23 

473 .92 592.15 449.48 603.20 517.1 8 442.88 500.43 

434.47 434.47 434.47 434.47 434.47 434.47 434.47 

433.6 455 .72 428 .95 447 .2 458.53 461.73 450.37 

431.23 473 .71 479.01 431 458.15 458.74 462.84 

438.53 473.37 491.32 437 .91 470.93 468 .76 437 .74 

453.26 474.4 545 .42 455 .74 493.09 459.52 451.4 

461.7 497 .22 558 .57 466.38 51 4.28 497.04 460.08 

510.65 503.40 552.28 468.6 529 .96 498.58 446.69 

530.35 532.12 577.2 475 .33 51 9.3 510.31 453.75 

543 .72 521.57 576.76 464.71 541.25 502 460 

545.2 557 .73 589.47 488.51 543.55 54 1.34 461.24 

560.04 583 .83 6 17.8 489.34 554.72 534.75 466 .08 

580.62 545.57 627 .1 489.68 544.32 541 .86 468.03 

598.12 533 .55 643.85 483 .58 565 554.72 480.25 

434.47 434.47 

444.28 441.07 

458.62 441.02 

470.63 452.5 

473.34 465 .83 

504.13 469.58 

503 .52 496.60 

494.48 523 .54 

484.57 508 .33 

468.85 534.97 

48 1.1 8 539.15 

478.35 545 .14 

499.03 583 .25 

434.47 434.47 

457 .09 460.36 

465 .96 472.7 

464.97 46 1.09 

463 .92 477. 1 

480.1 507 .27 

497 .94 521.11 

498 .95 529 .76 

490.97 533 .58 

506.78 530.95 

498.75 542. 1 

51 6.36 524.92 

505.06 530.68 
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434.47 434.47 434.47 434.47 434.47 434.47 434.47 434.47 

469.49 437.66 454.97 449.251 418 .3709 427.95 16 435.1159 454.9761 

470.59 456.73 486.29 438.3 11 5 446.3717 426.4532 405 .9488 466.2791 

456 472.65 496.89 465.303 1 439.6765 439.361 1 4 18.5757 470.4291 

459 .16 496. 13 542.78 489.5465 460.598 414.823 462. 8513 470.6443 

465 .14 541.68 563.21 504.1471 483 .5223 399.9989 498 .7826 488.5362 

475.46 543 .88 588.54 535 .911 8 514.777 399.3077 493.8499 486.5266 

482.39 543 .78 626.37 572.6673 510.9444 399.8403 5 10.4631 526.945 I 

502.41 557 .47 609.7 590.2671 514.9492 430.7154 542.7251 529 .799 

482.4 579.32 603 .08 560.9796 501 .4235 431 .6838 553 .5898 524.2425 

494.1 627 .15 597 .94 553 .9517 519 .6388 428.2306 540.0053 526.5941 

541 .6 622.94 593.21 549.0797 515 .2277 431.9846 569.3858 529 .3267 

578.53 631 .89 582.29 562.6066 513 .7069 430.9596 583.6892 514.8408 

The scenario generator (Figure 3-1) so far consists of the geometric Browni an motion used 

together with a Monte Carlo simulation in Visual Basic code (Excel ). This technique 

reproduces the Index scenarios 

IN OUT 

Monte Different 
Brownian Carlo VBA Scenarios 

Motion Simulation 
(S&P) 100 

Figure 3-1: T he scenario Generator fo r the Index 

The difficulty raised at this stage is generating individual share prices in the S&P 100. For shares 

and Index consistency, an econometric or another type of model must be utilized. The main 

purpose of scenario generation is to generate scenarios for different asset classes. At this stage 

the shares asset class is nonexistent and completely inconsistent. The CAPM model provides a 

means for mapping the Index scenarios into prices for individual shares. 
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3.4.2 Interest Rates Scenan'os 

Interest rates are characterized by a process named mean reverSlOn. Mean reverSIOn IS a 

tendency for certain random variables to return over time to a long-run average level. For 

example, interest rates and implied volatilities tend to be mean reverting. Exchange rates and 

stock prices tend to be non-mean reverting. It is not possible to ascertain if a variable is mean 

reverting by looking at its performance over any short period of time. This is because a mean 

reverting tendency often reveals itself over long horizons. Graph 3-2 provides an intuitive 

illustration of the difference between mean reverting and non-reverting behaviour. 

Non-Mean Reverting 

Graph 3-2: Mean and Non-Reverting processes 

In the literature there are many interest rate models and the majority of them deal with fixed 

income securities. Well-known models have been developed by Cox, Ingersoll and Ross or CIR 

[117], who explain in detail the term structure (relationship among the yields on default-free 

securities that differ only in their term to maturity) of interest rates. Vasicek in 1977 [11 8], 

derived a general form of the term structure of interest rates. Hull and White made an extension 

of the Vasicek model in 1990 [119] . Ho and Lee in 1986 [120], presented an interest rate model 

in the fOim of a binomial tree of bond prices with several parameters. Giles in 2000 [121], 

constructed a rather simple model on U.K. interes t rate and inflation forecasting. This model 

uses upward and downward interes t rate targets. 
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The model used in this research is the Black, Derman and Toy's model [122]. This model of 

interest rates can be used to value any interest-rate-sensitive security. It is applied to a Treasury 

zero-coupon bond option - a long-term coupon-bearing instrument issued by the government 

to finance its debt. Coupon is the interest rate on a fixed income security, determined upon 

issuance, and expressed as a percentage of its face value. Zero-coupon bond is the one, which 

pays no coupons, is sold at a deep discount to its face value or the nominal amount assigned by 

the issuer and matures at its face value. The model has three key features: 

1 Its fundamental variable is the short rate - the annualised one-period interest rate. 

2 The model takes as inputs the yield curve - a curve that shows the relationship 

between yields (the annual rate of return on an investment, expressed as a 

percentage. For bonds and notes, it is the coupon rate divided by the market price) 

and maturity dates for a set of similar bonds, usually Treasuries, at a given point in 

time - and the volatility curve (array of yield volatilities). 

3 The model varies an array of means and an array of volatilities for the future short 

rate to match the inputs. As the future volatility changes, the future mean reversion 

changes. 

The term structure of interest rates is quoted in yields. Today's annual yield, y, of say the N-year 

zero-coupon Treasury in terms of its price, S , is given by the y that satisfies: 

S = 100 
(1+ yt 

where S is the expected price of a security S say one year from now 

100 is the maturity price of S in one year from now 

Y is the annual yield 
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N is the duration in years of the security S 

The yields Yl/ (yield that can m ove up) and Y d (yield that can m ove down) one year from now 

corresponding to the security prices S u (price that can move up) and S d (price that can move 

down) are given. Suppose that a = S u,d and b = Y u,d then: 

100 
a=----

(1+bt-1 

This is the methodology behind the BDT's model of forecasting short rate interest rates. This 

methodology has been followed to produce a scenario for the risk-free asset o f the CAPM. 

Table 3-3 shows the actual interest rates and the scenatio, which was genetated using the above 

method. Graph 3-3 illustrates the actual intetest rates and an average sample path of 10 

different interest rates scenarios. 

Table 3-3: Scenario for Interes t Rates 

Aug-97 5.14 5.14 
Sep-97 4.95 4.98 
Oct-97 4.97 5 
Nov-97 5.14 5.11 

Dec-97 5.16 5.14 

lan-98 5.04 5.06 

Feb-98 5.09 5.04 

Mar-98 5.03 5.08 

Apr-98 4.95 5.02 

May-98 5 4.98 

lun-98 4.98 4.96 

lul-98 4.96 4.93 

Aug-98 4.9 4.8 
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5.6 

5.4 

5.2 

~ 5 -Q) 
Cl 
S 4.8 
c:: 
8 

4.6 ... 
Q) 
Q. 

4.4 

4.2 

4 

Interest Rates and 10 Scenarios 

2 3 4 5 6 7 8 9 10 11 12 13 

Time Periods (months) 

- Actual Interest Rat~ 

Scenario 2 

- Scenario 3 

Scenario 9 

. __ . Scenario 10 

Graph 3-3: The path o f 10 random sample scenarios and the actual 
interest rates 

The result of the above graph indicates that the BDT model is a good methodology for interest 

rates prediction. Although it cannot closely follow the actual path it captures the trend. 

3.4.3 The CAPM and scenario consistenry 

CAPM is a factor model, which consists of the risk free asset or the interes t rate, the market or 

index return and the beta of the share, which acts as a risk measurement. The formula, 

(analysed in Chapter 2), is the following: 

So far, r M is the only variable known after its scenarios were generated. The risk free asset, rj , 

must be computed. A mean reverting model was used for this purpose, which was developed 

by Black, Derman and Toy (known as BDT model and described in the previous section). Only 

one scenario was generated for the risk-free asset (interest rate), as it does not affect the models' 

performance as much as the Markets' expected rate of return and the beta values o f the stocks. 
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Th b I f h h f3 
cov(r , r M ) 

e eta va ues 0 eac s are were calculated by applying: i = I 

var(rM) 
Betas were 

calculated by using the above formula in a MS Excel spreadsheet. N ew betas were produced in 

order to correspond with each of the ten years of this study. Initially the betas were held 

constant throughout the period of forecasting. However, this led to some large errors on model 

validation. The model was improved by dynamically updating the betas using all the time series 

of return data including forecast data upto the current forecast period. This technique provided 

better forecasts. Table 3-4 lists some companies, (used in this study), and their corresponding 

beta (~), estimated at a particular date. 

Table 3-4: Beta (~) values in August 1997 (S&P100) 

GD General Dynamics 0.32 
AA A1coa Inc. 1.22 
GM General Motors 1.29 
KO Coca Cola Co. 0.47 
PEP PepsiCo Inc. 1.05 

DOW Dow Chemicals 0.74 
IFF International FlavlFrag 0.82 

HRS Harris Corp. 0.76 
NT Nortel Networks 1.69 

HWP Hewlett -Packard 1.28 

GE General Electric 1.16 

HON Honeywell International 0.95 

ROK Rockwell International 0 .5 

RTN.B Raytheon Co. 0.43 

TEK Tektronix Inc. 1.99 

TXN Texas Instruments 1.45 

DIS Disney 0.86 

BNI Burlington Northern Santa Fe Corp. 0.6 

AEP American Electric Power -0.28 

SO Southern Co. -0.2 

In order to capture more than half the number of the shares from the S&P 100, 59 of them 

were randomly chosen. At this stage, consistency has been achieved with the Market scenarios, 

betas and interest rates by using the CAPM. For example, Index' scenario number 1 (out o f 92) 

would be consistent for all the 59 shares given the corresponding interes t rates and betas 

corresponding to each share. Below, there are graphs accompanied from tables that illustrate 

different scenarios and share prices. 

3 



Aug' 97 
Sep '97 
Oct ' 97 
Nov ' 97 
Dec '97 
Jao'98 
Feb '98 

Mar'98 
Apr '98 
May'98 
Juoe'98 
J uly '98 
Aug '98 

Actual 

67.75 
66.25 
69.06 
69.13 
73 .44 
75.31 
76.69 
76.38 
87.38 
83 .31 
84.75 
90.94 
86.75 

100 

90 

80 

70 

j 60 
c 
(1) 

.,9; 50 

~ 40 
IQ 

> 30 

20 

10 

o 

Scenariol 

67.75 
75 .703 18 
75 .72486 
72.59936 
66.73664 
69.10188 

67.342 
69.71 205 
73.53862 
63.69011 
62.05427 
62.17758 
67. 11 947 

Table 3-5: General E lectric and sample scenarios 

Scenario2 

67 .75 
70.99984 
68.44384 
65 .71153 
65.62363 
68.955 85 
71.82071 
82.58994 
74.20515 
71.01 845 

78 .2463 
75 .83271 
68.39776 

Scenario3 

67.75 
58.862 

61. 82594 
68.35516 
71.25 196 
76.53766 
79.71198 
83.42707 
78.20754 
83.54529 
80.96582 
84.04162 
78.4575 

Scenario4 

67 .75 
66.684 18 
72.69923 
73.97001 
79.1234 

80.22869 
79.71654 
89.75717 
87.79111 
86.75475 
87.29929 

80.7171 
88.88304 

G raph 3-3: General Elec tric 

General Electric 

ScenarioS 

67 .75 
67.33467 
60.03564 
62.44283 
73.22658 
7 1.6 1428 
67.05 198 

68.7398 
70.49246 
75.78886 
74.49363 
84.49642 
84.25671 

Oct- Nov- Dec- Jan- Feb- Mar- Apr- May- Jun- Jul- Aug- Sep- Oct­
W W W W W W W W W W W W W 

Time Periods (months) 

Table 3-6: Disney and sample scenarios 

Actual Scenariol Scenario2 Scenario3 Scenario4 ScenarioS 

Aug' 97 26.64 26.64 26.64 26.64 26.64 26.64 
Sep '97 26.06 27.6122 22.3313 25 .73456 26.01757 26. 18151 
Oct '97 28.12 26.362 13 23.45403 28.16304 22.75548 26.87534 
Nov'97 28.37 25 .2046 26.20081 28.71513 23.77099 29.94646 
Dec '97 31.33 25 .04502 27.30228 30.78937 28.19797 26.78536 
J ao'98 32.93 26.16045 29.2253 30.90667 27.1 8258 29.23739 
Feb '98 36.1 27.15465 30.33365 30.44217 25.04996 28 .36222 

Mar '98 35 .06 31 .54597 31.77063 34.55699 25.64253 28 .89234 

Apr '98 36.98 27.67245 29. 23906 33 .35809 26.0978 26.77316 

May'98 42.22 26.101 87 3 1.177 32.61 4 18 28.0263 1 28.00764 

Juoe'98 38.23 28.83278 29.86294 32.58024 27.27253 30.62259 

July'98 35 .48 27.59987 30.86047 29.58103 31.08915 30.33 11 4 

Aug '98 33 .56 24. 18974 28.12648 32.44644 30.52297 30.09676 

Scenario6 

67 .75 
67.71 149 
69.66608 
76.84444 
69.85037 
76.36466 
74. 84854 

76.3968 
72.05452 

75.6588 
82.58904 
82.52282 
83 .07063 

Scenario7 

67.75 
68.38802 
70.501 54 
74.92 14 1 
71 .42941 
65 .67096 
66.83919 
78. 98939 
84.16159 

80.3205 
79.84845 
92.86677 
83.765 16 

\~ 

- -Scenario 1 

Scenario 2 

-- Scenario 3 

--Scenario 4 

--Scenario 5 

- - Scenario 6 

--Scenario 7 

Scenario6 Scenario7 

26.64 26.64 
26.475 86 29.430 13 

27.2372 30.72676 
29.1337 35 .38375 

27.48989 34.78608 
24.71759 35 .63346 
25 .00722 34.48787 
29.93217 31. 17208 
31.7878 35 .03359 

29.88887 34.43535 
29.45582 38.66585 
34.51 535 41.47384 
30.252 19 43.2 1003 
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Aug' 97 
Sep '97 
Oct '97 
Nov'97 
Dec '97 
Jao'98 
Feb'98 

Mar'98 
Apr '98 
May'98 
Juoe'98 
July '98 
Aug '98 

50 

45 

40 
_ 35 
Cl) 

~ 30 
c: 
8. 25 --Q) 

20 :::J 
iii 
> 15 

10 

5 

0 

Actual 

29.06 
29.83 
29.87 
28 .88 
31.12 
29.93 
30.35 
31.86 
34.21 
35 .58 
36.67 
38.33 
30.69 

45 

40 

35 

Ii) 30 
~ 
~ 25 
Q. --Q) 20 
:::J 
iii 
> 

10 

5 

0 

G raph 3-4: D isney 

Disney 

Oct- NoVo Dec- Jan- Feb- Mar- Apr- May- Jun- Jul- Aug- Sep- Oct-
97 97 97 98 98 98 98 98 98 98 98 98 98 

Time Periods (months) 

T 
Table 3-7: Ralston Purina and sample scenarios 

Scenario! Scenario2 Scenario3 Scenario4 ScenarioS 

29.06 29.06 29.06 29.06 29.06 
29.98542 24.5127 24.94953 25 .61767 31.51534 
28.69218 25 .68059 25 .17793 27.64027 32.57043 
27.53162 28.57032 24.12368 28.58059 34.09814 
27.36667 29.71205 21 .63248 30.35433 31.95666 
28.48007 31.65189 20.68593 33.94603 30.9971 
29.48747 32.76909 19.73407 34.09034 32.36972 
34.02312 34.24984 19.15161 32.4445 33.47256 

30.0087 31.61131 21.33408 32.21453 31.81846 
28.35938 33.56884 20.03588 28.03608 33.49622 
31.15728 32.19992 21.63899 24.63396 28.1897 

29.8637 33.19297 23.78611 24.47397 31.80569 
26.28485 30.31769 23 .96116 24.13976 31.4983 

G raph 3-5: Ralston Purina 

Ralston Purina 

Oct- NoVo Dec- Jan- Feb- Mar- Apr- May- Jun- Jul- Aug- Sep- Oct-
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 

Time Periods (months) 

-Actual 

'--Scenario 1 

Scenario 2 

- - Scenario 3 

--Scenario 4 

--ScenarioS 

- -Scenario 6 

--Scenario? 

Scenario6 Scenario? 

29.06 29.06 
28.89842 30.990 18 
25.16854 33.2319 
29.09065 35 .12698 
24.00682 35.64619 
24.99666 34.61613 
25.79168 34.43422 
27.28696 34.55961 
28.89435 38.86654 
30.52913 33.18528 
25 .90695 32.16861 
25 .35503 32.91379 
24.85578 36.84563 

i*J 

-Actual 

--Scenario 1 

Scenario 2 

--- Scenario 3 

--Scenario 4 

--ScenarioS 

--Scenario 6 

--Scenario 7 
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Aug' 97 
Sep '97 
Oct '97 
Nov'97 
Dec '97 
J an '98 
Feb '98 
Mar'98 
Apr '98 
May'98 
June'98 
July'98 
Aug '98 

Aug ' 97 
Sep '97 
Oct '97 
Nov'97 
Dec '97 
J an '98 
Feb '98 

Mar '98 
Apr '98 
May'98 
June'98 
July'98 
Aug '98 

Table 3-8: Colgate and sample scenarios 

Actual Scenario! Scenario2 Scenario3 Scenario4 ScenarioS 

36.69 36.69 36.69 36.69 36.69 36.69 
33 34. 11 02 34.64235 29.65541 33 .7984 37.46885 

35.5 32.7006 39.3516 1 34.4054 35.6909 1 38.97674 
32.8 1 34.19698 43.55343 34.62971 37.46642 40.80777 
36.03 33 .3448 1 45 .15406 37.2606 40.82298 38.13717 
37.44 39.32383 44.6 11 96 45.53985 45.49872 37 .36154 
38.8 1 39.80452 44.46207 48.17673 52.79048 39.43538 
39.59 4 1.72468 44.04769 44.37064 52.98359 40.97998 
43.87 46.77935 48.16803 4 1.53742 48.93548 39.21357 
44.56 41.1 0299 57.24307 45 .66824 55 .58943 41.82009 
44.75 38.9 1863 61.2 1145 46.92685 61.7009 34.90911 
44. 12 39.57769 54.46428 40.76555 68.06575 40.07259 
44.87 42.6243 1 5 1.69939 41. 15223 63.18371 40.33635 

Graph 3-6: Colgate 

Colgate 
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Oct- Nov- Dec- Jan- Feb- Mar- Apr- May- Jun- Jul- Aug- Sep- Oct­
W W W 00 00 00 00 00 00 00 00 00 00 

Time Periods (months) 

Table 3-9: Occidental PTL 

Actual Scenario! Scenario2 Scenario3 Scenario4 ScenarioS 

25.3 1 25.31 25.3 1 25 .31 25.31 25 .31 
24.63 23.95434 20.88004 23.42091 24.30995 23.98725 
26.8 1 24.56829 23.55737 25 .22082 25.61498 25 .08989 
28.75 26.2 1727 25 .89117 28.54142 25.5471 26.3318 
30.25 24.81797 29.70923 29.66955 26.04666 28.36349 
28.8 1 22.36533 32.54243 34.52258 25.67762 30.87953 
25.88 22.54976 34.65985 32.31837 27.97446 35 .07253 
26.25 26.67772 35.88842 28.70787 28.32687 35.10217 
28.81 28.10754 38.45628 27.42974 23 .99714 32.2488 
29.3 1 26.4468 38.71721 25.48108 23.21394 35.85659 

27 26.0 1888 40.33812 25.37996 24.65563 39.09969 
27.13 30.10269 42.541 28 27 .08128 24. 19952 42.3569 

21.69 26.43045 38.78835 31.44912 22.17396 38.77828 

Scenario6 Scenario7 

36.69 36.69 
33.87003 36.74664 
29.23637 39.78076 
34.07867 42.0881 1 
27.69276 42.89047 
29.27896 42.07097 
30.50626 42.13618 
32.49544 42.3900 1 
34.92885 48.59865 
37.39697 41.30009 
3 1.50285 40.22347 
31.02995 41.56795 
30.89534 47.68785 

~-':' Actual 

Scenario 2 

-- Scenario 3 

--Scenario 5 

--Scenario 6 

--Scenario 7 

Scenario6 Scenario7 

25.31 25 .31 
24.03173 25 .8183 
20.96497 27.62282 
24.18992 29.19539 
20.02426 29.5943 

20.7683 28.65871 
21.37551 28.45509 
22.57803 28.53974 
23 .81798 31.94631 
25 .08206 27 .29002 
21.30895 26.4 1667 
20.81709 26.95889 
20.32 127 29.99546 
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Graph 3-5: Occidental PTL 

Occidental PTL 

Oct- Nov- Dec- Jan- Feb- Mar- Apr- May- Jun- Jul- Aug- Sep- Oct-
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 

Time periods (months) 

--Scenario 1 

Scenario 2 

The above graphs and tables show how the CAPM is applied to generate scenanos. These 

results can also be validated by applying confidence intervals analysis. APPENDIX I presents 

all the shares utilised in this study. 

3.4.4 Confidence Intervals AnalYsis 

There are numerous statistical procedures, like hypothesis testing for example, to investigate the 

quality of scenario generation, but confidence interval analysis seems a more informative 

approach. 

An interval estimate of an unknown population parameter is a random interval constructed so 

that it has a given probability of including the parameter. 

A confidence interval is a numerical range, from a lower to an upper bound, within which the 

true value lies with a stated probability, usually 95%. 

The width of the confidence interval gives an idea about how uncertall1 we are about the 

estimates. A very wide interval may indicate that more data should be collected before anything 

very definite can be said about the parameter. 
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The confidence interval analysis is used in all shares for all scenarios . The formula is as follows: 

i ±1.96 Fn 

where i is the mean of a random sample 

± 1.96 is the upper/lower bound for a 95% confidence interval 

a ..r;; is the sample standard deviation 

Consider Disneys' share during the period of 05/ 08/ 1997 to 05/ 08/ 1998. A 95% confidence 

interval for the price of this share is calculated by following the procedure for all the twelve time 

periods to capture the whole year. Table 3-10 illustrates the results of a confidence interval 

analysis for Pep siCo. 

Table 3-1 0: Confidence Interval for PepsiCo 

Aug '97 35.10995 37.6011 34.6 
Sep'97 36.06558 39.26703 36.79 
Oct '97 37.02315 40.65516 37.38 
Nov'97 36.93741 41 .83441 37.31 
Dec'97 37.96136 44.28019 36.5 
Jan '98 38.03817 45.66248 35.25 
Feb'98 39.01481 46.99884 36.56 
Mar '98 38.77457 46.75268 44.69 
Apr '98 39.57247 48.63038 40.1 9 
May'98 39.20802 49.431 44 42 

June '98 39.33723 50.42536 43.69 
AUfl. '98 39.35569 50.4836 37.75 

Graph 3-9 shows PepsiCo's share actual path together with a confidence interval analysis of 

95%. Confidence Interval Analysis has been carried out for all 59 shares. 
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G raph 3-9: Confidence Interval Analysis for PepsiCo. 

Confidence Interval Analysis for PepsiCo 

Oct- NoY- Dec- Jan- Feb- Mar- Apr- May- Jun- Jul- Aug- Sep-
97 97 97 98 98 98 98 98 98 98 98 98 

Time Periods (months) 

The confidence interval technique has been carried out successfully not only for the shares but 

also for the Index's scenarios. 

Figure 3-2, shows schematically the structure adopted for the scenario generator system and the 

links between each variable. 
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Figure 3-2: Scenario Generator System 
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3.5 Scenario Generators 

The most important issue in financial modelling is the data. The number and fonn of the 

scenarios are the most crucial factors in the size and complexity of any financial model. There 

are a number of scenario generators constructed by leading academics and institutions. Their 

careful selection is crucial for a successful application. The most well known scenario generators 

are referenced in this section, as they are state-of-the-art systems. 

Carino, Ziemba and Myers [101] and Carino and Ziemba [102], have constructed one of the 

leading scenario generators for the Russell (financial institution) -Yasuda Kasai (insurance 

organization). This scenario generator uses econometric techniques to produce 256 different 

scenarios for 7 asset classes (stocks, bonds etc.). The strongest assumption of the scenarios is 

that they are independent across periods, which substantially reduces the amount of data. The 

generator creates scenario outcomes from the input (historical) data using several adjustments. 

In a most recent study Geyer, Herold, Kontriner and Ziemba [108], developed a scenario 

generator for a pension fund for the Bank of Vienna. The generator uses means, standard 

deviations and correlations from historical data for equities and bonds. The total number of 

scenarios was 960. 

Another robust scenario generator was developed by Mulvey and Thorlacius [103], Mulvey et aL 

[104], for the Towers Perrin Tillinghast, the worlds largest actuarial consulting companies. The 

generator uses econometric techniques to generate scenarios for interest rates, inflation and real 

yields. There are also currencies and stock returns. The innovation of this generator is that it is 

calibrated in more than 17 countries throughout America, Europe and Asia. The number of 

scenarios generated was 500. 

Dempster et al. [105], have been involved in scenario generation systems. The first is the Swiss 

Re/Falcon Asset Model. The system uses a non-linear autoregressive AR econometric 

technique for forecasting. For each country (as it is an international application), both economic 

and financial variables were projected. The second Consigli and Dempster [106), is the C.\LtvI-
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WATSON model for a pension fund, where up to 2688 scenarios were generated for 5 asset 

classes and 5 funds. Again the system used economic factors like interest rates for eyaluating 

the scenarios. 

Zenios [107], has developed a system for ftxed income securities. This system uses interest rate 

contingencies. A similar methodology with this research was done by Consiglio and Zenios 

[116]. They use the Monte Carlo simulation procedure, calibrated using historical observations 

of volatility and correlations, to generate jointly scenarios of interest rates and exchange rates. 

512 scenarios were produced for tracking International Indices. 

Other scenario generator systems have been developed by Yakoubov et al. [109], where they 

utilized fundamental macroeconomic factors. They considered price and salary inflation for 

U.K. bonds, overseas and U.K. equities. Kouwenberg [110], generated scenarios for liabilities 

and the economic scenarios were generated using a VAR model. Mulvey et al. [111], proposed 

well-known estimation techniques critical to scenario generation. Dupacova [114] and 

Dupacova et al. [115], concentrated on the representation of the data and underlined the issue of 

probability distributions and their manipulation. 



Chapter 4: INCORPORATING UNCERTAINTY 

4.1 Introduction 

Having developed a methodology for capturing uncertainty, this chapter focuses on 

incorporating it into optimisation models. The simplest form is a single period model. The most 

common and widely used are the quadratic programs or QP. They incorporate uncertainty by 

estimating return and variance. A more complex formulation is that of multiple time period 

models. 

This chapter gives an insight into single period quadratic or mean-variance models, and then the 

framework of multiple time period models for tackling uncertainty (wait-and-see, expected value 

and here-and-now) and their relationships are discussed. The here-and-now approach is the 

basic concept behind the stochastic linear programs, which are analysed by considering the 2-

stage and multi-stage methodologies. Furthermore, the end effects in multi-stage stochastic 

programs and their implications are debated. Extensions of stochastic programming into Asset 

and Liability Management (ALM) are exploited and finally a computational financial study is 

introduced. 

Optimisation problems are made up of three basic ingredients [123]: An objective function, 

which needs to be minimized or maximized. For instance, in a manufacturing process, the 

profit might need to be maximized or the cost minimized. Almost all optimisation problems 

have an objective function. A set of unknowns or variables, which affect the value of the 

objective function. In the manufacturing problem, the variables might include the amounts of 

different resources used or the time spent on each activity. Variables are essential because their 

non-existence, cannot define the objective function and the problem constraints. Sets of 

constraints that allow the unknowns to take on certain values. For the manufacturing problem, 

it does not make sense to spend a negative amount of time on any activity, so all the 'time' 

variables are constrained to be non-negative. Most problems require constraints, however, the 
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field of unconstrained optimisation does not need any constraints at all. Within the finance field 

general optimisation techniques for portfolio selection problems can be found in [137]. 

4.2 Quadratic Models 

Harry Markowitz [45], introduced the theory of efficient portfolios where for a given risk they 

yield the highest expected return. This set of portfolios is known as the efficient set and can be 

identified by solving a quadratic program. Chapter 2 gives an extensive discussion about the 

Markowitz's mean-variance model. When plotted in a risk-return graph the efficient set forms 

the efficient frontier. In order to compute the variance/ covariance-a measure of the degree of 

possible deviations from the mean (average value obtained by regarding the probabilities as 

frequencies)- a quadratic function that measures risk needs to be computed. To minimize the 

variance the quadratic function should also be minimized. Quadratic programming utilizes a 

quadratic objective but the constraints are linear equalities or inequalities. 

Consider the Quadratic program (QP): 

Minimize 
1 n 
- "w.wG' .. 
2 L...J 1 ) I,) 

j,j=1 

11 

Subject to LwjF; = r (Cl) 
j=1 

n LWj = 1 (C2) 
;=1 

i = 1, ... ,n 

where F; is the expected return of asset i and r is the desired level of the portfolio's return. w; 

are the weights of the portfolio i =1,2, .. . ,n and G'j,j are the covariances for stocks iy' =1,2, .. . ,n. 

The objective function is to minimize the covariance. Constraint (Cl), specifies the expected 

return on the portfolio and (C2) satisfies the fact that all the portfolio money is inyested in 



different assets. By indicating a level of expected return for the portfolio the QP computes the 

corresponding minimum variance. By considering different levels of return, and the 

corresponding portfolio variance then the results can be plotted graphically (minimum variance 

versus specified return). This curve represents the efficient frontier. The characteristic of these 

portfolios is that they have the highest return for a given level of risk and vice versa. Some 

additional restrictions-constraints can be added to the quadratic model such as cardinality, buy­

in threshold and roundlots. The first restricts the number of companies allowed in a portfolio. 

A buy-in threshold constraint defines the minimum level (threshold) that a share can be 

purchased. The last constraint restricts the investor to make transactions in multiples of these 

roundlots. 

Special computer packages are available in the market for solving the QP's, but small sized 

problems can be solved easily in spreadsheet programs. In the financial sector there are 

powerful frame stations that can solve QP's with hundreds or even thousand of assets. 

Researchers have tried to find techniques to reduce computational times. A well known 

academic, Professor Pardalos, published [136] a paper where he utilises parallel algorithms for 

Quadratic programs in order to cut down the computational time. 

Many users of mean-variance optimisation models obtain poor results because of errors in 

forecasting asset returns and this is a major drawback. Often this is due to the common practice 

of naively extrapolating historical returns and correlations into the future and producing 

portfolios that are optimal, based on past data. Setting investment allocations this way produces 

poor future performance. By minimizing the variance one actually makes allowance for the 

uncertainty and does not effectively target it. Another disadvantage in quadratic programming is 

that if there are too many assets the covariance matrix becomes difficult to compute. Models 

that use more than just one time period and efficiently manage uncertainty are discussed in the 

next section. 
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4.3 Planning Models Incorporating Uncertainty 

Consider a portfolio optimisation problem. In a deterministic approach the underlying 

assumption is that the returns of the equities traded in the market are known parameters [124]. 

The optimal solution of this problem would contain as many shares as possible of the equity 

with the highest assumed return. This means that if one asset seems superior to another, the 

latter will never, ever appear in any recommended portfolio. The returns of a portfolio 

selected by a deterministic model may be significantly different from those expected. It is 

uncommon for investors to attempt to implement the solution of a deterministic portfolio 

optimisation problem. To overcome this problem diversification constraints are added to the 

modeL Diversification improves risk-adjusted returns. It can provide some hedge against the 

volatility of the individual assets. Diversification is best achieved by owning different asset 

classes rather than trying to pick the 'best' securities in a given market or sector. This is 

because even in the unlikely event that one truly possesses that skill, when that particular 

market torpedoes, so will his/her portfolio. Due to the lack of satisfactory solution in these 

kinds of problems different techniques can be utilized to compensate this disadvantage. Post-

Optimal analysis on the solution such as sensitivity analysis [125], in the sense that if the solution 

of the problem is sensitive to a particular parameter then its value is revised, and scenario 

analysis is carried out (discussed in the previous chapter). Scenario analysis within a model 

captures the uncertainty at a particular time period or periods and can lead to Stochastic 

Programming (SP). Stochastic models tackle the disadvantages of deterministic models directly. 

The assumption of the uncertain parameters of the model to be known is relaxed by assuming 

that their distributions are known [126], [127]. 

To gain insight one first solves all the individual scenarios using the wait-and-see technique. 

Next, one looks for feasibility by solving the expected value problem and finally one makes a 

decision about the uncertainty before carrying out the here-and-now technique. In the following 

three sub-sections, the different approaches to the stochastic problem are discussed. 

51 



Let (Q, F, p) denote a (discrete) probability space where mE Q denotes realizations of the 

uncertain parameters and P(~(m)) the corresponding probability. The realizations of A, b, c 

for a given m as: 

4.3.1 The Wait-and-See Approach 

The Wait-and-See (WS) approach [124] assumes that one can wait until the uncertainty is 

resolved at the end of the planning horizon and an outcome m E Q can be monitored, before 

any optimal decision x can be made. This approach assumes perfect information about the 

future, which is unrealistic and usually such a solution, is not implementable and it is known as 

the 'passive approach'. Wait-and-See models are often used to analyse the probability 

distribution of the objective value, and it can be said that it consists of a family of Linear 

Programming models, each associated with an individual scenario in the event tree. The 

problem can be formulated as follows: 

z(m) = min c(m)x 

b· xE FOJ su Ject to 

The expected value of the Wait-and-See solutions is defined as: 

zws = E[Z(m) ]= IZ(m)p(m) 
(LEQ 

Figure 4-1 shows a generic scenario tree for the wait-and-see (WS) approach: 
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Figure 4-1: Scenario tree for WS 

In the expected-value (EV) approach the stochastic parameters are replaced by their expected 

values [124]. This EV model is a linear program, as the uncertainty is dealt with before it is 

introduced into the underlying linear optimisation modeL The EV problem is formulated and 

solved to gain some insight into the decision problem. By letting the constraints: 

F{J} = {xlAx = b,x ~ 0 } for (A,b,c){J) or ~(W) 

the expected value problem is be reconsidered where: 

(A,b,c)= ~ = E[~(W) ]= LP(W);(W) 
WEQ 

then the optimisation problem is defined as: 

Zev = mincx 

subject to x E F == {xlAx = b } 
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where: 

• z = ex represents the objective function 

• x is a (n x 1) vector of unknown decisions, which are discovered by soking the 

problem, hence it is called the decision variable 

• e IS a (1 x n) vector of known data and represents the coefficients of the objective 

function 

• A is a (m x n) vector of known data and represents the technical coefficients 

• b is a (m x 1) vector of the known data representing the right hand side values 

• Ax = b represent the constraints 

Letting x * ev be the optimum solution to the above expected value problem then this solution 

can be evaluated for all possible scenarios (J) E Q , the corresponding objective function values 

can be determined and the expectation of the expected value can be computed as follows: 

If however, an (J) exists such that: x * ev (l F (J), that is, x * ev IS not be feasible for some 

realizations of the random parameters then in this particular case Z eev ~ +00 is set. Figure 4-2 

shows a generic scenario visualization for the EV approach . 

0-0. . -O--Oscenarlol 

• • 
tpl tp2 ... 

Figure 4-2: Generic scenario visualization for the EV approach 
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4.3.3 The Here-and-Now Approach 

This underlines the true stochastic optimisation problem. A decision x has to be made 'here 

and now', before observing an outcome from Q [124]. The decision maker takes his decision 

at the present point in time without waiting to find out the actual values of the random 

parameters at a future point in time. The value x is chosen such that the expected 

costs E[c, x] assume a minimum: 

Zhn = min E[cx] 

subject to xE F 

The optimal objective function value Z hn denotes the minimum expected costs of the stochastic 

optimisation problem. It is noted that x has to be feasible for all scenarios-realizations (J) E Q. 

The optimal solution x * E F hedges against all possible contingencies (J) E Q that may occur 

in the future. 

4.3.4 Inter Relationship and Bounds of the Approaches 

The relationship between the three different approaches for a minimization problem IS as 

follows [124]: 

The difference z - z is defined as the expected value of perfect information or EVPI. It hn \Vs 

measures the maximum amount a decision maker is willing to pay in return for complete and 

accurate information about all the future scenarios. A small EVPI indicates that better forecasts 

will not lead to much improvement. A large EVPI indicates that the representation of 

uncertainty needs more refinement. 
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A different measure is the value of the stochastic solution known as VSS: 

VSS = Z - Z eev hn 

VSS measures how much better the solution of the stochastic optimisation problem is in 

relation to the expected solution of the expected value approach. A small VSS indicates that 

there is not much benefit in solving the here-and-now problem. The larger that measure 

becomes the more important it is to solve the stochastic optimisation program. 

EVPI and VSS can be bounded as follows [124]: 

o ~ EVP I ~ Zh - Z ~ Z - Z and n ev eev ev 

o ~ VSS ~ z - Z eev ev 

4.4 Stages of Stochastic Linear Models 

Stochastic programs are mathematical programs where some of the data incorporated into the 

objective or constraints is uncertain [128]. Uncertainty is usually characterized by a probability 

distribution on the parameters. Although the uncertainty is rigorously defined, in practice it can 

range in detail from a few scenarios (possible outcomes of the data) to specific and precise joint 

probability distributions. The outcomes are generally described in terms of elements w of a set 

W. W can be, for example, the set of possible demands over the next few months. 

When some of the data is random, then solutions and the optimal objective value to the 

optimisation problem are themselves random. A distribution of optimal decisions is generally 

unimplementanble. Ideally, we would like one decision and one optimal objective value. 

In the following two subsections the 2-stage and multi stage stochastic programming models are 

analysed and their formulations are discussed. 
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4.4.1 Two-Stage Stochastic Models 

The fundamental idea behind stochastic linear programrrung IS the concept of recourse. 

Recourse is the ability to take corrective action after a random event has taken place. A simple 

example is the two-stage recourse. 

~ A variable x is chosen in order to control the situation at this very time period 

~ Some random incident happens lets assume during the night 

~ At the next time period a recourse action y is taken in order to correct what the random 
incident may have caused. 

In two-stage stochastic programming formulations one decomposes the model into two main 

parts. The first par involves taking a decision x that is feasible for all scenarios WE .Q and has 

minimum expected costs. That is the first stage decision. The second stage decision y(w) 

compensates for and adapts to different scenarios m. The decision x is made only with the 

knowledge of the distribution (m, p(W)) of the random parameters, while the second stage 

decision is made after the realisation of the random parameters. The sequence of events is the 

following: 

First Sta2"e Decision r I Observation r I Recourse Decision-Second StaQ"e Decision 

Two-stage linear programs with recourse form an important class of models, which incorporate 

uncertainty within an optimisation model. It is obvious that under uncertainty, the 

circumstances lead to the fact that not all information for the future is available and parameters 

like demand and prices are modelled by random variables. Under this situation the activities that 

cannot be postponed for the future should be planned here-and-now. Decisions for remaining 

activities are postponed until further or better information is available. The main issues of the 

two-stage stochastic program (SP) are classified as: 

• identifying the first stage decision variables and the related deterministic parameters 

• identifying the recourse variables and related random parameters 
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The two-stage SP is fonnulated as follows [124]: 

subject to 

where: 

min z = ex + E(JJQ(x, m) 

Ax=b 

x~o, 

Q(x, m) = min f(m )y(m) (a) 

subjectto D(w )y(m) = d(m) + B(m)x 

y(m) ~ O. 

mEQ 

The matrix A and the vector b are known with certainty. The function Q(x, m) , referred to as 

the recourse function, is in turn defined by the linear program (a). the technology matrix D(w), 

also known as the recourse matrix, the right-hand side d(m), the inter-stage linking matrix 

B(m) and the objective function coefficients f(m) of this linear program are random. For a 

given realization m, the corresponding recourse action y(m) is obtained by solving the problem 

set out in (a). 

The difficult part in these problems is to make a decision during the first stage that satisfies all 

scenarios m E Q and minimises the expected costs for the second stage. In these kinds of 

stochastic problems the first time period decision x, is independent of which second time 

period scenario actually occurs. These are called the non-anticipativity constraints. 

By considering Q being discrete and finite with Q = {I, ... , K} defining an index set, the 

deterministic equivalent algebraic fonnulation of the problem is as follows: 
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subject to Ax =b I 

= b 2 

= b 3 

......... ...... ......... .... .. .. ... .... .. ....... 

x~o 
" " 

where: 

• K E .Q represents the different values each scenario can take 

• P K is the probability of occurrence for each different state of the world 

This representation clearly shows that for each scenario m the second stage decision y(m) 1S 

the solution of a linear program. 

Figure 4-3 illustrates a generic scenario tree for the two-stage here-and-now SP 

0-0---

~ 
I 

First Stage 

Ip=O Ip=1 Ip="[-} Ip="[ 

'-'0-0 scenario 1 

'-'0-0 scenario 2 

-_ '0-0 scenario 3 

---0-0 scenario 4 

---0-0 scenario 5 

-_ '0-0 scenario 6 

---0-0 scenario 7 

-_.0--6 scenario n 

Second Stage 

IP=HI tp=T-1 tp=T 

Figure 4-3: Generic scenario t ree fo r the two-stage here-a nd-now SP 
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4.4.2 Multi-Stage Stochastit' Models 

Multi-stage stochastic programs are an extension to the above two-stage SP with recourse but 

with m ore stages. A planning horizon is considered and is divided into a number of discrete 

time periods o f equal lengths for points t = 1, ... , T . The first time period's decisions are known 

with certainty. The second stage decisions are m ade after the result in the second time period 

has been observed but without knowing anything about time period 3 and so on. The main 

objective is to minimize the expected costs of all decisions taken. The sequence of events and 

decisions is shown below: 

I .' " ."H·" , ',' .~. ~ , " 

Decision Random Event of Nature Decision Random Event of N ature 

The multi-stage models formulation is as follows: 

subject to 

-b - I 

t = 1, ... ,T 

where: 
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• t E (1, ... , T) represents the planning horizon 

• 

the objective function 

• The vectors and matrices: ;: - (b c A A) ~I - I' I' 11 , ... , IT Vt E [2, ... ,T], are random 

parameters on a probability space (Q, F, p) 

The objective function is a sequence of nested optimisation problems corresponding to different 

stages. At time period 1 the user has to pick out a decision whose outcome completely relies on 

the futw:e realizations of the corresponding multi-stage stochastic program. The solution of this 

program is referred to as the here-and-now. After that, for each realization of the history ;1 of 

the data process up to time t, a recourse problem is considered in which decisions are allowed 

to be a function of observed realization (xl_1';I) only. The multi stage stochastic programming 

problems capture the concept of the uncertainty through the different stages. This is why it is 

more realistic to make corrections (recourses) at different time periods when new stages of 

uncertainty take place. Figure 4-4 represents a generic form of scenario tree that corresponds to 

the multi-stage here-and-now SP. 
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Figure 4-1: A generic scenario tree illustration for the multi-s tage hcrc­
and-now SP 

4.4.3 End-Effects in MultiStage Mode/J 

The end-effects period is designed to reduce the effects of ending the model at a finite horizon, 

while in reality the firm expects to operate indefinitely beyond the horizon_ It assumes that 

continuity of the model is vital, as realistically any institution will continue to function after the 

planning horizon of the model. Carino and Ziemba [101], [102], developed a multi-stage 

financial planning stochastic model for Russell-Yasuda (RY)- In their model they utilize but not 

implement the end-effects methodology_ Ziemba argues that for financial models, end effects 

are less important and do not appear in the subsequent models but only in their general study_ 

The methodology considers the base problem up to period T (defined by the user), and then a 

steady-state terminal value drxr is added to the objective function- This term and the 

constraints associated with it create an extra time period in the base problem. Thus, the 

problem has T + 1 periods. Grinold [129] , [130], [131] studied various approaches for adding 

the steady-state period and wrote the basic papers for deterministic models. He used thi 
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methodology for an energy-planning model. The most widely used technique is the dual 

equilibrium. The idea behind this technique is to assume that the dual variables of the T stage 

problem increase period by period in proportion to the assumed discount factor. E nd-effects 

are important when one makes factories or other capital goods - with financial models, one 

usually can get away without end-effects in financial ALM models and use the extra modelling 

space for a bigger model in the earlier periods. The technique of the end-effects and its 

formulation appears in APPENDIX Ill. Stochastic Programming models are not only used 

within the financial or the energy-production field. An example of different industries where SP 

is applicable is illustrated in table 4-1. 

Energy Production Machine Scheduling Portfolio Planning Crew Scheduling 

Energy Distribution Production Planning 
Asset and Liability 

Farm Planning 
Management 

Electrical Generation Supply Chain Financial Variables 
Blending 

Capacity Planning Management Forecasting 
Inventory Strategic Investment Traffic 

Demand Forecasting Management Decisions Management 
Energy Costs Demand Forecasting Depot Location 

Estimation 

Table 4-1: Applications o f Stochastic Programming Models 
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Chapter 5: ALM MODELS - A REVIEW AND NEW 

DIRECTIONS 

5.1 Introduction 

One of the most challenging and at the same time difficult problems that investors and 

organizations face, is that of the management of their assets and the commitment to cover their 

future liabilities. In order to achieve desirable returns the assets must be inves ted over a period 

of time subject to certain constraints that the institution or individual might have. Requirements 

like taxes, policies, legal and regulatory issues, transactions costs and obviously their liability 

commitments [133]. The main problem faced is that most of them fail to diversify successfully 

across time or markets and in particular fail to match their liability streams. Many inves tors and 

organizations face the dilemma of [132] : 

Buy and you'll be sorry, 
Sell and you'll regret, 

Hold and you'll worry, 
Do nothing and you'll fret 

Asset and Liability Management (ALM) modelling is a field of great practical importance and 

high complexity thus resulting in a challenging research area that provides users with organized 

and diversified systems to help manage their financial commitments in an increasingly complex 

and difficult fmancial world. Such m odels, force diversification and therefore help minimize the 

possibility of financial disasters or any other embarrassing situations, while at the same time 

providing adequate advice in ordinary circumstances balancing the investors situation. 
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5.2 Foundations of ALM 

ALM refers to those who wish to achieve goals and meet future obligations by utilising optimal 

investment policies. Application areas of ALM do not only include insurance companies, 

pension plans or banks but also wealthy and ordinary individuals. Because these investors 

possess future goals and liabilities they must make investment decisions while considering the 

use of their funds, in other words, investing for a purpose. The key issue is to develop an 

optimisation model for supporting the decision-making concerning the allocation of assets and 

managing the liabilities over several time periods in such a way that the liabilities are met and the 

goals of the company are achieved. Stochastic programming optimisation models are used to 

evaluate long-term investment strategies. These types of problems-models have an inherently 

stochastic nature. The roots of stochasticity include besides the assets (shares, bonds, etc.) the 

liabilities, which could be any future commitments. Consequently adequate models for ALM 

should account for the stochastic nature of the problem. 

The concepts of 'achieving goals' and 'meeting liabilities', are certainly two very important issues 

but to be successfully implemented and achieved they need to be researched hierarchically 

assessing the individual's or institutions: 

1. Specific goals 

11. Investment objectives 

111. Investment knowledge 

IV. Risks 

v. V olacility tolerance 

Specific goals of an individual can be an early retirement, college education for their children or 

buying a vacation home. For institutions it can be to provide retirement benefits to participants 

. f d t fu d Even when such in a particular scheme or fund the charitable pursUlts 0 an en owmen n. 

goals are expressed in such a manner they lack specificity. A characteristic example is what does 

retirement really mean. Will it be at the age of 50, 55 or 60? What lifestyle does tlle retirce han' 
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. . d~ 
ill mm . From an institutions perspective, goals generally involve a target return on capital and 

the ability to provide prompt payments to their customers arising out of contractual obligations. 

Cash flows are also a goal that has to be specified for the day-to-day progress of any institution. 

Thus, management's role is to be proactive in reacting to changes in the environment. 

Once the goals are clearly specified, the next step is to develop the investment objectives. These 

objectives are also often more ambitious than can realistically be achieved. Pension fund 

companies often realise too late that their clients wish to modify their lifestyles a few years prior 

to retirement. 

Investment management is the secret for long-term success and depends on the individual's or 

institution's understanding of how their portfolios are structured and the manner in which they 

will behave. ALM can include as many home or foreign asset classes (shares, bonds) as the user 

wishes. This provides a well-diversified portfolio. 

ALM models incorporate uncertainty as discussed in chapter 4. In ALM one is not only 

interested in maximising wealth but also to limit the exposures to possible losses. These 

exposures can be defined as risk. There are two types of risks: intrinsic and contextual as 

Ziemba [133], characteristically states. Intrinsic risk refers to uncertainty surrounding a single 

security-share where its price fluctuates accordingly to the market. This type of risk cannot be 

easily eliminated through diversification strategies by asset-only investors. On the other hand, 

risks that are unrelated to market movements, the so-called non-systematic risks, can be 

mitigated through diversification across asset classes but also among elements such as interest 

rates and liabilities. For example, currency risk can be eliminated by diversifying through assets 

in different countries of the world. 

Volatility tolerance is an important issue. The issue here is the amount of \'olatility that an 

institution or an investor can tolerate. If the incremental retum expected from common stocks 

. ffi . t £ th \Tolatili· h· of returns, then the \'olatili~! tolerance is 1S not su C1ent to compensa e or e l} L.~ 
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appropriately lowered [1 32]. O ften investment strategies look for volatility tolerances signs 

based on the investors or institutions situation. As an example, an individual who is working for 

one employer for a lifetime and his hobby is golf, may be more volatile-averse than for someone 

who changes jobs relatively often in advancing his career and likes to rock climb at the 

weekends. 

Good ALM modelling requires an amount of research in these five different areas described 

above. This will set a foundation in determining the exact goals that someone would like to 

achieve and meet the future liability obligations. Having achieved this the ALM model can 

perform the optimisation subject to the individual's constraints and give realis tic solutions to the 

problem. 

Figure 5-1, illustrates how the planning and design of asset-liability portfolios could possibly be 

performed. Any asset portfolio requires its constraints, which are an input by the user. These 

could include limitations in certain asset trades. Asset portfolio's data should fit the capital 

markets expectations. This can be achieved by generating scenarios that capture fu ture 

expectations. The time horizon of the investment should be clear according to the user's needs. 

The cash flow testing is performed to decide the investment strategy that should be followed in 

association with the credit availability by the organisation or individual. If there is enough cash 

on reserve then the strategy is given the green light to go forward. 

Asset-L iability 
Management 

Asset Portfolio r-

C redrting Strategy 

to' igun.: 5-1: ,\ sset and J ,iability Management hierarchy 
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5.3 A Review of ALM Models 

Asset and Liability Management is a methodology that attracts a big maJonty of financial 

organisations, private investors and academics. It is the challenge of meeting these goals that 

would make them gain competitiveness over their rivals. Stochastic models are sophisticated 

integrated systems that incorporate uncertainty, institutional constraints and policies. In the 

literature there is a considerable number of such systems mainly developed by academics to be 

used by financial institutions. One of the most well known is that of Carino and Ziemba's 

'Russell-Yasuda'model [101], [102]. The model assists the finn in deciding how available funds 

should be allocated among potential investments to provide returns to cover liabilities and 

provide for long-term growth of the finn's wealth. There are several asset classes such as bonds 

and shares. The model uses a piecewise linear convex cost function in the objective function of 

the multi-stage stochastic model to minimize the shortfalls occurred in every time period for 

every target not met. The main focus is in the liability side. Liability balances change over time 

as scheduled payments are made, as reserves are set aside for existing obligations, or as new 

obligations are taken on. Klaasen [112], [113], considers a problem of an investor who faces a 

sequence of liability payments in the future, and wants to construct a portfolio of securities that 

allows him to meet these liabilities under a variety of plausible scenarios. From all feasible 

portfolios he wants to choose the one that optimises a given criteria such as minimum cost. He 

uses a multi-stage stochastic linear model, which explicitly includes portfolio rebalancing when 

new data information becomes available. Time aggregation techniques are used. This technique 

is performed in state n at time t in an event tree by replacing the transitions to the successors 

of its successors. Aggregation eliminates some trading dates in an event tree as Klaasen 

characteristically argues and this affects dividends and riskless one-period securities. Time 

aggregation is performed when one chooses to do so in parts of the event tree, where one thinks 

or knows that they are less critical to an optimal solution. 

Mulvey et. aL [103], [104], use an asset and liability management system (CAP:Link) for Towers 

Perrin-Tillinghast. The system simulates asset and liability decisions across a long-term planning 
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horizon of 5-15 years. It simulates asset policy with liability decisions so that the company's 

wealth or pension plan surplus is maximized, while maintaining a safe level of operations. There 

are three main features that make this model unique: a set of structural economic factors (such 

as interest rates) for driving both assets returns and liability movements, a set of policy rules that 

underlie the decision making processes and a full actuarial analysis of pension design and cash 

flow liabilities for each economic scenario. A multi-time period stochastic programming model 

is utilized and 500 scenarios are developed. Asset and Liability Management under uncertainty 

for fixed income securities are discussed in Zenios's paper [107]. The problem was the 

mismatch of assets and liabilities that exposed some organizations to substantial interest rate 

risk. An organization faced the problem of maturing liabilities while its assets had a long 

remaining time to mature. Zenios uses a multi-stage optimisation stochastic model where the 

first-stage decision deals with the purchase of a portfolio of fixed-income securities. The 

uncertain future is the level of interest rates and the cash flows that will be obtained from the 

portfolio. The second stage decision deals with borrowing decisions when the fixed-income 

cash flows lag the target liabilities. Scenarios of interest rates are based on Monte Carlo 

simulation of the term structure. He also includes decisions to rebalance the portfolio at some 

future time period(s), by purchasing or selling securities. The objective (terminal wealth), is 

computed by accumulating the total surplus net of any outstanding debt at the end of the 

planning horizon and liquidating any securities that remain in the portfolio. 

Dempster [129], has developed a multi-period asset and liability stochastic model the so called 

CALM model. This model is designed for pension fund management and it uses 5 asset classes 

and five funds. The objective is to maximize terminal wealth at the end of the horizon. The 

model utilizes 10 stages with five investment opportunities (bank deposit, fixed rate securities, 

index-linked securities, share index, real estate). The liabilities in this case are borrowings with a 

penalty rate when the target is not achieved. The future uncertainty affects price processes, 

interest rates and pension payments. Up to 2688 scenarios were gencr:lted \vith equal 

probability. Professor AD Wilkie, developed the \'V'ilkie lvfodel [130),[131], \vhich is a stochastic 
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asset model that models the random behaviour of various economic series (including price and 

wage inflation, short and long interest rates share vields and dividends and h ) 
, I ~ , exc ange rates oyer 

time. Wilkie's model is based on actual data from the U.K. for the period 1924-1991 and is 

formulated as a set of simultaneous autoregressive equations of up to the third order in recursive 

form, all dependent on an underlying inflation process. It generates data paths for annual 

returns in the U.K. market for ordinary shares, fixed-interest irredeemable bonds, bank deposits, 

index-linked securities and real estate together with predictions of annual pension payments and 

an estimated reassurance-to-close representing future payment liabilities discounted to the 

horizon. These are also used for calculating the required random coefficients for the CALM 

model. The Wilkie model is frequently used in asset liability modelling work to help assess 

financial risk for pension funds, insurance companies and charities. 

One of the latest studies in ALM is that of Ziemba et.al. [108]. It is a financial planning ALM 

model developed for Austrian pension funds. The model uses a multiperiod stochastic linear 

progratn.t:nillg framework with a flexible number of time periods of varying length. Various 

forecasting models yield inputs that provide the generation and aggregation of multiperiod 

discrete probability scenarios for random return and other model parameters. The correlation 

across asset classes, of bonds, stocks, cash and other financial instruments, are scenario 

dependent using multiple covariance matrices that correspond to differing market conditions. 

Austrian pension law and policy considerations are modelled as constraints in the optimisation. 

A concave risk averse preference function is to maximize the expected present value of terminal 

wealth at the specified horizon net of expected convex (piecewise linear) penalty costs for wealth 

and benchmark targets in each decision period. This model's characteristics have similarities 

with the study that is performed by the author of the present thesis. His new ALM study and 

the contribution within the ALM field is described in the following section. 

70 



5.4 A New ALM Study 

After researching the financial literature ALM is a most interesting field for further 

developments. It is a complex environment as it involves data analysis, conceptualising specific 

needs, avoiding exposure to high risks while meeting certain goals and liabilities. 

The contribution of this study to the Asset and Liability Management-ALlYL field can be 

separated into several areas. Scenario generation using geometric Brownian motion with drift is 

utilised to generate scenarios for the S&P 100 share Index. The Monte Carlo simulation is used 

to repeat the routine of generating automatically the Index's scenarios. Having done that the 

Capital Asset Pricing model is used to achieve the consistency within the Index scenarios and 

shares. Interest rates scenarios are generated using the Black, Derman and Toy model. 

Numerical values of the mean, standard deviation and beta values are calibrated using a 60 

months period of historical data. Shares, Index and interest rates scenarios are validated by 

using a 95% confidence interval analysis. Having achieved the modelling of uncertainty (by 

fitting past data to forecast their future movements), a measurement of risk had to be modelled. 

This was done by grouping the 59 shares used for this study into risk groups. These risk groups 

were developed by taking the S&P 100 as a benchmark. Its mean and standard deviation was 

measured and accordingly with those of the shares they were grouped into 5 risk groups in line 

with the Index's performance. The optimisation part of the study involved the construction of a 

2-stage stochastic programming model. The optimisation runs the simulation (scenarios) by 

identifying decision strategies that best fit the proposed objective that is the maximisation of the 

portfolio's return for a given target at a specific time period. The risk parameter of the model is 

the risk groups that control the shares standard deviation and allocate them in the portfolio. 

Transactions costs are considered in every trade that occurs. Liabilities are considered in the 

form of a loan in the situation when the target-return is not achieved. No interest is assumed 

for the outstanding liabilities. The above ALM integrated modelling system is run and 

dynamically rebalanced automatically through the construction of \'isual Basic macro 

commands. 
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Chapter 6: A COMPUTATIONAL STUDY 

6.1 Introduction 

This chapter presents analytically the computational study. The framework implemented for 

this study is discussed and a schematic representation is given in the next section. The 

Quadratic Programming model and the 2-stage Stochastic Programming model's algebraic 

forms are then presented. The results are shown in the form of tables. The purpose for this is 

to examine the risk profiles performance of the two models. The strategy is to assume that no 

investments at the beginning of the planning period exist so an initial portfolio for both the QP 

and SP is first solved. Then, the models are updated with new data and rebalanced every two 

months for a period of 10 years. The Quadratic programming model's results with the 

corresponding risk levels are presented followed by the Stochastic Programming model's results. 

A comparison of the QP and SP is then presented and discussions concerning the two 

techniques are given. The Index S&P 100 and the risk free asset are also compared with the QP 

and SP. 

The investigation is concentrated on the results of the first run of the scenario generator. 

6.2 A Framework for Computational Experiments 

The framework that was developed to enable the current study to be performed successfully is 

described in this section. 

The need of Stochastic Programming in this particular study was essentiaL Asset prices are 

largely volatile and uncertain especially when one is trying to make forecasts. Similarly, all the 

liabilities have a large degree of variability. Furthermore, issues like volatile market periods i.e. 

interest rates rise/cut etc., can be represented only by implementing an SP. This is due to the 

fact that by generating scenarios, which are able to reflect stock market anomalies investors can 

gain access to assets that would never be selected by using other types of models such as the 

QP. 



6.2.1 Histon'cal Data 

The framework for the historical data is the following: all historical data were gathered in ..\fS 

Excel. The expected monthly rate of return was estimated from the mean series of past 

monthly returns. The covariance between two assets was estimated on the basis of 'sample 

covariance' over the same series of monthly returns. The disadvantage here is that when 

estimating the true rate of return, sample estimates of stock returns can be unreliable and 

unstable. For that reason many organisations, investors and academics in order to decrease the 

sampling error produce sample estimates based on lengthy history of past returns. 

The historical set used in this study range over a period of 60 months Oanuary 1983-January 

1988). This period though was dynamically changed to reflect the updating (rebalancing) of the 

data from August 1988-June 1997. The whole procedure was done automatically by using 

codes-macros in Visual Basic (MS Excel). 

6.2.2 Models procedure 

A Quadratic Programming model and a 2-stage Stochastic Programming model were utilised 

using the mathematical programming language MPL. FortQP and FortMP respectively were the 

solvers utilised. The solvers have been developed by the mathematical research group at Brunel 

University. A ten-year investment period (August 1988-June 1998) is considered. The problem 

is to determine an investment strategy for each of the 10 years of the investment period. But as 

this does not reflect the realistic institutions or investors strategies the rebalancing technique was 

adopted. 

The assumption is that there are no investments at the beginning of the planning period. The 

two models are solved to generate the initial optimum hedged portfolios using historical 

statistics as described above. This historical set was used to compute the QP's mean-variance 

and as an input to the SP's scenario generator. In every two monthly time periods after the 

initial portfolio was developed, the two models with their parameters (historical sets, mean 

variance, scenarios set), were updated and re-balanced (adjust) from the initiJl portfolio weights 

73 



to fonn a new optimal QP and SP's portfolios. The re-balancing process is carried out until the 

end of the planning horizon November 1997. Input and output data are stored using MS Excel. 

An integrated VBA routine is used to call MPL to adjust the model according to the changed 

parameters and also to generate and update all the data used. Once the data are read in Excel 

and the model is generated it is sent to the solver. As soon as it is solved, a solution file is 

generated which is read back by the spreadsheet. 

Below, is a schematic representation of the framework of the study. In the next chapter the 

algebraic fonnulation of the SP and QP models used for the study are analysed and the results 

obtained presented. 

VBA 
Integrated 

Coding 

Reads 
Solutio 

Solution Output 

MPL (QP, SP) models adjustment-

.... 

_~ ""_1 ___ : __ 

MPL .. 
SP Model :- ---MPL-----: 

Sends Data QP Model , , 
--,---------

Sends Input 
to Solver 

1 
1 
1 
1 
1 

.n 
Results 

Weights from initial 
portfolios are transferred 
to re-balance and run the 
rebalanced models every 
other two months. 
Procedure repeated until 
November 1997 

Figure 6-1: Framework of the study 
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6.3 The QP's Algebraic Fonn Utilised for the Study 

Introduced in Chapter 2, the mean-variance framework also known as Quadratic Programming 

is widely used for comparison purposes and validations. Before presenting the SP model's 

framework developed by the author purely for this study, it is essential to show the QP's 

formulation as its parameters and results are used for comparing it with the SP. 

Indices: 

l = 1. .. 59,( n), denotes the shares 

, = 1 ... Z, denotes the number of risk groups that the shares are classified into. In this case 

there are 5 different risk groups. 

Model Coefficients: 

re = 0.025, denotes the transactions costs for every trade 

Re turn;, denotes the returns of the shares estimated from historical data 

WO;, denotes the original weights of the model-used for the second run of the model 

COY .. , denotes the covariance matrix of the shares 
I.j 

lambda denotes the numerical value of the risk. In this case it varies and it is split into 5 , 

different values: 0, 0.25, 0.5, 0.75 and 1. For the underlying study, lamda values are simply 

distinguished by 5 different risk profiles: min, medium-low, medium, medium-high and max. 

gamma = 1 -lambda 

P ( denotes the threshold level for each risk group in the portfolio 

Models Decision Variables: 

W; , denotes the weights of asset i in the model 
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B; , denotes the amount of asset i bought 

S; , denotes the amount of asset i sold 

R , denotes the return of the portfolio 

Objective Function: 

59 59 

min gamma * L LW; * COY;,} * Wj -lambda * R 
;=1 j=1 

It can be seen from the objective function of the model that by varying the lamda, one can get 

different returns of the portfolio. 

Weights Constraints: 

59 

C1: LW; = 1, 
i=1 

C2: W; = B;, used in the first run of the model Vi 

C3: W. = Wo. + B - S. Vi 
I I I I 

Transactions Constraints: 

59 59 59 

C4: R = IWi * Retum; - IB; *TC- Is; *TC 
;=1 ;=1 ;=1 

This constraint incorporates the transactions costs in the buying and selling of shares. 

Risk Constraints Group 

n 

CS: LW; ~ P, *IWi ,'=l. .. Z 
;=1 

The risk group constraint is analysed in the Stochastic :LvIodel's algebraic formulation 



Bounds: 

Si ~WOi 

The bounds constraint is important as it actually stops short selling. 

The bounds constraints conclude the description of the QP's algebraic formulation. In the 

following section the analysis of the 2-stage Stochastic Program model is introduced. 

6.4 The 2-stage Stochastic Programming Model 

This section describes a 2-stage stochastic programming model, for a financial portfolio 

optimisation. The problem is to determine an investment strategy for the next 12 months (12 

time periods). The goal is to maximize wealth after a period of 12 months. There are three time 

periods when the portfolio can be rebalanced. Rebalancing occurs at months 2, 6 and 12. 

To structure the portfolio, 59 shares that are traded in the S&P 100 American stock market 

Index were randomly chosen and 92 scenarios of alternative returns were generated using the 

technique described in chapter 3. The models notation and algebraic form are analysed and 

discussed below. 

Indices: 

tp = 1 ... 3, denotes the time periods 

l = 1 ... 59 (n) denotes the shares 

s = 1 ... 92, denotes the scenarios 

=l ... Z, denotes the number of risk groups that the shares are classified 

Model coefficients: 

= 1/92, denotes the probability of scenarios occurrence 

TC = 0.025, denotes the transactions costs for every trade 

r. l,s,lp 

) of the stocks for a an'en denotes the values (returns b-

scenario and time period 



denotes the initial weights of i 

t arg etrp denotes the required target return for each time period 

denotes the liability at time period tp 

lambda 
denotes the investors risk aversion (0 ~ lambda ::; 1) 

denotes the threshold level for each risk group in the 

portfolio 

Models Decision Variables 

B. I,S,rp denotes the Amount Bought of asset i, s at tp 

S. I,S,lp denotes the Amount Sold of asset i, s at tp 

denotes the Weights of asset i, s at tp 

denotes the deviation from the t arg et at tp 

sslacks,lP denotes the shortfall of s at tp 

return I s,p denotes the portfolio's return on each time period 

portjolioreturn lP denotes the total return of the portfolio 

Objective function: 

3 3 

MaxI portjolioreturntp * lambda - (I-lambda) * I devtp 
tp=1 tp=1 

The objective function of the model maximizes the portfolio's return in all three time periods 

but subtracts potential deviations from it. The 'multiplier' lambda, indicates the risk aversion 

of the user. If lambda = 1 then the model is transformed to a maximum risky one, which is an 

indication that the user is interested only in maximising the portfolio's return and he is not 

interested in the scenarios deviation from the target. 



The objective function can be satisfied subject to the following constraints 

Weights Balance Constraints Group: 

59 

Cl: IW;,s,IP = 1 
;=1 

C2: W;,S,IP=1 = Wo; + B;,S"P=1 - S;,s,IP=1 

C3: W .. =W .. I +B.. -So I,S ,Ip I,S ,Ip- I,S ,Ip I,S ,Ip 

V s,lp 

Vi,S 

tp = 2, .. "T , V. I,S 

The weights constraints group is very important as it is balancing the weights throughout the 

modelling procedure, Constraint 1, (Cl), makes the summation of all scenarios and time periods 

of the shares weights equal to the unity. C2 and C3 ensure that the new weights depend on 

what it is sold and bought. 

Utility Constraint Group: 

59 59 59 

C4: returns,lP = I'i,s"P * W;,S,IP - I Bi,s,IP * TC - I Si.S,IP * TC V S,lp 
i=l i=1 i=1 

92 

CS: portjolioreturnlP = I returns,lp * P.I 
s=l 

Constraint C4 ensures that the return reflects any losses incurred for trading. Hence, the two 

terms of transactions costs. CS denotes the total return of the portfolio. 

Target-Return Constraints Group: 

92 

C6: devlP = Isslacks"P * PI' VIP 
s=l 

C7: returns,lp - LIP + sslacks,lp ~ t argets,lp V S,lp 
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C6, is the constraint that according to the target return of the model, performs a type of a 

down side risk aversion contribution. It looks at the deviation from a given target (expected 

down side risk). The sslack, is an actual measure of how much the model de\1.ates from the 

target. 

Constraint C7 contributes to the target-return concept of the modeL It is the inequality between 

the return plus the shortfalls of a given t arg et for all scenarios and time periods. This 

constraint measures the under performance from the target by considering the shortfalls 

(sslack). The liabilities (L) are subtracted on the left hand side of the equality. It must be 

mentioned that in the comparison of the two models the liabilities are ignored. The Stochastic 

ALM programming model is run with the liabilities and is compared to the one without them. 

Non-Anticipativity Constraints Group (tp = 1) : 

C8: Wi,s=l.tp=1 = Wi,s'.tp=1 s' = 2, ... ,S 

C9: Bi.s=l,tp=1 = Bi.s'.IP=1 
s' = 2, ... ,S 

The non-anticipativity constraints are applied to two-stage and multi-stage stochastic programs 

only. In this case they are applied for the weights and the amount bought. This set of 

constraints ensures that at the 1 st time period all scenarios make the same decision. 

Risk Constraints Group 

n 

CI0: "W > P *" W , tp = l ... r, s = l ... S , , = l ... Z L...J i.s,tp - , ~ i,s.tp 
i=1 

, RiskGrades ™ introduced by The set of constraints from CI0, are the risk groups constraInts. 

f 1 tili' It is a risk indicator based on the 
RiskMetrics (2000) represents a new measure 0 vo a ty. 

th ' k' di T',-nicalh,', RiskGrades are measured volatility of the returns relative to e major mar et 111 ces. ) l' 

00 .1.
,\ value of 100 corresponds to an a\~erage RiskGradc, while a \'aluc ( It' 

in a scale from 0 to 10 . . ~ll 



zero should correspond to cash, and a value greater than 100 d'· ki correspon s to ns er than the 

market assets. RiskGrades can vary over time, and, thus, can help investors to dynamically­

monitor their exposure to the market risk. 

Based on the RiskGrades methodology we introduce the RiskGrotlfls constr,.,;nt ,hi h k r «.1..1> , \\ C wor s as 

follows. First, the risk grades of the asset universe, i=1..n, are computed. This can be relati\-e 

to the major financial indices, similar to the RiskGrades approach, or relative to any other index 

individually, similar to what it is followed in this study. The assets are then sorted and classified 

in Z different risk groups, &, relative to their Risk Grade value. Let g ( c n for (= 1 ... Z, and 

U g" = n, with g j n g ( :;t: 0 , \j (j, () , then the RiskGroup constraint can be incorporated in 

" 
the model in the form of a threshold constraint, that bounds each risk group to constitute a pre-

specified p % of the portfolio. 

( is split into 5 different risk groups. According to the market Index, the S&P 100 in this case, 

the volatility of the shares and the Index's were computed and then the shares were separated 

into the 5 groups. These groups control the risk of the portfolio. By having the five different 

risk groups the volatility of the portfolio is kept levelled according to the Index. A pre-specified 

P % threshold has been allocated and is 0.2. It has been kept constant so as shares can equally 

be selected from the lower to the highest risk group. 

The investor's perspective to risk is employed by using five different risk profiles: 'Low' risk 

profile corresponds to the utilization oflow risk and is achieved in both QP and SP by using the 

multiplier 'lambda'. For the 'Low' risk profile lambda equals O. The other risk profiles are 

'Medium-Low', 'Medium', 'Medium-High' and 'Max' with lambda to be equal to 0.25, 0.5, 0.7.5 

and 1 respectively. By utilising this multiplier one can eliminate the aggressi\-eness of the model. 

By using lambda =0 (or Low risk profile), the model goes for the lowest return possible. On 

the other hand by setting lambda = 1 (or Max risk profile), the model has the m:lximum risk 

possible hence the highest return. 
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In APPENDIX II the MPL formulation of the QP and SP is illustrated. 

6.5 SP versus QP Results 

This section provides the results of the two models. A comparison between the QP and the SP 

is performed. In the tables below, the results present the portfolio's returns (in percentage) of 

each model together with the standard deviation recorded for the period of August 1987 to July 

1989. The first table illustrates the QP and SP's results with the risk groups constraints and the 

second table without them. 
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· . Portfolio returns (%) with Risk Groups constraints for QP and SP . ~ 
Risk Profiles Low Med-Low Med Med,High Max ·· S&P Long Silo" 

, . :. . ~:. 100 'Int.Rates ,,,t.Rates 
Ret STDV Ret STDV Ret STDV Ret STDV Ret STDV 

OP 
Aug '97 -3.66 2,08 1.87 3,86 2.41 4.16 2.67 5.67 4.84 6.54 0.9 1.06 0.83 
Qct '97 -3.55 2.09 -2.67 3.77 -1.19 4 1.21 4.99 1.43 6.36 0.51 1 0.86 
Dec '97 0.52 2.1 1.1 9 3.8 1.3 4.08 2.87 4.98 5.82 6.26 5.31 0.98 0.85 
Feb '98 9.45 3.79 12.9 4.24 12.97 4.32 11 .03 5.08 13.3 6.42 9.12 0.99 0.83 
Apr '98 -7.18 3.49 -4.55 4.09 -3.82 4.19 -3.7 4.79 -2.57 6.96 6.88 0.95 0.83 
Jun '98 -8.32 3.63 -8.23 4.64 -8.1 4.86 -5.31 5.05 1.43 6.02 3.37 0.92 0.82 

SP 
Aug '97 4.66 3.73 6.38 4.56 8.93 5.33 11 .18 6.98 12.73 7.23 
Qct '97 0.13 2.56 1.44 4.44 2.91 4.87 6.13 6.52 10.51 7.14 
Dec '97 0.41 2.69 0.85 3.81 1.27 4.47 4.42 5.75 6.76 6.88 
Feb '98 4.84 3.94 10.082 4.8 10.93 5.95 10.94 6.87 11.009 7.19 
Apr '98 0.23 2.5 1 4.1 1.85 4.73 2.6 5.42 2.65 6.45 
Jun'98 -1.55 2.94 0.24 4.08 2.09 4.84 3.34 5.66 6.1 6.74 

Table 6-2: Results of QP and SP without the risk groups constraints 

Ret STDV Ret STDV Ret STDV Ret STDV Ret STDV 
OP 

Aug '97 -3 .78 3.66 -1.21 5.12 0.52 5.19 1.37 7.08 2.86 7.98 0.9 1.06 0.83 
Qet '97 -3.21 3.52 -2.46 5.28 -1.27 5.45 0.55 6.87 1.38 7.92 0.51 1 0.86 
Dec '97 0.83 3.7 1.17 5.04 1.47 5.33 2.31 7.32 6.25 8.51 5.31 0.98 0.85 
Feb'98 10.04 4.23 10.15 5.84 10.88 6.06 10.92 7.87 11.24 8.87 9.12 0.99 0.83 
Apr '98 -6 .27 4.04 -5.64 5.31 -3.29 5.72 -3 .22 7.55 -2.12 8.14 6.88 0.95 0.83 
Jun '98 -9 .44 4.18 -8.36 5.64 -7.21 5.87 -5 .37 7.65 -3.19 8.31 3.37 0.92 0.82 

SP 
Aug '97 4.71 4.67 5.71 5.41 6.33 6.22 10.57 7.66 8.31 8.41 
Qct '97 0.1 3.99 1.27 5.16 2.88 6.14 6.15 7.39 10.49 8.56 
Oec '97 0.56 4.22 0.81 5.07 1.27 5.89 5.11 7.27 6.76 8.39 
Feb '98 4.58 4.52 10.44 5.76 10.67 6.31 10.82 7.83 10.97 8.68 
Apr '98 0.17 4.17 1.32 5.24 1.53 5.77 2.54 7 2.74 8.07 
Jun '98 ·1.67 4.41 0.17 5.02 2.18 6.07 3.44 7.07 5.82 8.31 



Below is a table illustrating how the shares are split into the five different risk groups. A 

technique analysed in the SP's algebraic formulation. 

Table 6-3: Risk G roups (August 1987 - June 1989) 

;'{:' Low t ~ ,_ ' ' Medium-low ':: "., '- :.,~, Medium ", ' .,' ~/I;. Medium:High~ ~)~~~,; r:~, High ':'; .'::~", 
Share Volatility Share Volatility Share Volatility Share Volatility Share Volatility 

51 87.15256 19 141 .146 7 161.5975 12 179.3295 52 222.5819 
50 1 02.4869 30 144.7707 18 163.201 17 182.84 16 227.3929 
23 111 .7686 13 151 .225 6 163.4331 2 187.6225 31 227 .9387 
42 122.2563 57 152.5281 35 163.8707 56 195.0529 59 232.6694 
28 124.2831 34 153.6292 58 163.9077 53 203.0629 48 237 .9279 

20 125.0309 37 155.8044 3 171 .0793 8 207 .7655 32 239 .0175 

24 126.0978 21 157.6729 11 171 .1204 15 210.1896 55 241 .2076 

4 128.4727 41 158 .2573 36 171 .3694 46 214.7432 43 250.8758 

5 129.5509 27 160.8636 49 172 .1181 10 217.0404 40 269 .1823 

25 132.2664 39 161.0268 1 172.2439 44 219.4965 47 273.5209 

14 140.4589 9 161 .095 33 174.2912 54 219.5056 22 285 .0503 

26 161 .2262 45 178.6979 38 220.4419 29 376.1866 

In the following table the allocation of the shares that correspond to table 6-3 is presented. 

August 1987 is considered to show how shares are allocated-split when the risk groups are 

utilised and when the risk groups are not utilised (Basic QP, SP) . 

Risk Profiles 
Low 7 

Med-Low 4 
Medium 4 

Med-High 2 
Max 1 

Low 4 
Med-Low 4 
Medium 3 

Med-High 3 
Max 1 

Table 6-4: August 1987: The allocation of shares in the Portfolio and 
Risk Groups 

QP 
5 4 2 19 

11 3 2 1 
9 2 1 1 
8 2 2 1 
5 1 1 1 

SP 
15 4 4 2 
13 

3 3 1 
11 

3 3 1 
10 

2 2 2 
7 1 2 2 

10 
8 
5 
4 
1 

9 
7 
4 
4 
1 



The two graphs following show the QP and SP with the Index and the interest rates growth 

rates for the planning horizon of ten years. 
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Below is a representation from an investor's point of view. In tl1e case that hel she inve ted 

£100 at the beginning of the planning horizon and wants to see the wealth b . tl Y companng 1e 

two models the Index and the Interest rates. BQP and BSP stands f 'B " th . 'tl tl or aslC at IS W1 10ut 1e 

risk constraints group in the models formulations. 

Table 6-5: Wealth after 10 years of £1 00 invested 

Low 306.4 390.1 301.6 378.1 323.89 69.3 107.8 
Med-Low 349.1 444.3 337.7 436.8 
Med 358.7 474.5 354.4 468 .6 
Med-High 402.9 497 .3 405.9 499.5 
Max 500.2 548 509.5 51 2.9 

From the above results it is clear that the SP outperforms the QP. The SP has a fraction higher 

volatility than the QP but for the reason that it utilises scenarios makes it more coherent and 

reliable for forecasting. The risk groups play an important role in controlling the risk. It can be 

seen that it spreads out the allocation of shares resulting in not only choosing shares from all the 

risk groups but also creating a less volatile environment. In the QP model there is a large 

number of shares in the portfolio in the low risk profile but as we move up the risk profile scale 

they get fewer. This is because the QP goes for shares with high returns whose number is small. 

On the contrary the SP although in the low risk profile it has less shares in the portfolio as it 

moves to different risk proflles it does pick more shares than the QP and spreads the volatili ty. 

One more reason is that it has a greater choice of shares to choose from the scenarios and that 

lies into the reliability of the generator. 

Without the risk groups both models go for less shares. Towards the high risk pro61es shares in 

the portfolio drop dram atically with unfortunate results to the volatili ty being at its peak a there 

is no risk control. The portfolio's return in tl1e Medium-High and tfax risk profile i greater a-



is not what an investor would prefer despite the higher returns. Hel she prefers less return but 

controllable risk in all cases . 

6.6 Liabilities 

'Ibis section illustrates the results of the stochastic programrrun' g mod 1 'th th f e run W l e same set 0 

scenarios but in two different 'versions'. The first version is without liabilities and the second is 

when liabilities are utilized in the model's framework. Th ul e res ts are presented in percentage 

returns. 

Table 6-6: Liabilities of SP 

SP model returns (%) without liabilities 
Risk Profiles 

Low 4.66 0.13 0.41 4.84 0.23 -1.55 
Med-Low 6.38 1.44 0.85 10.082 1 0.24 
Medium 8.93 2.91 1.27 10.93 1.85 2.09 

Med-High 11 .18 6.13 4.42 10.94 2.6 3.34 
Max 12.73 10.51 6.76 11 .009 2.65 6.1 

SP model returns (%) with liabilities 
Low 2.66 -1 .87 -1 .59 2.84 -1.77 -3.55 

Med-Low 4.38 -0.56 -1.1 5 8.082 -1 -1 .76 
Medium 6.93 0.91 -0.73 8.93 -0.15 0.09 

Med-High 9.18 4.13 2.42 8.94 0.6 1.34 
Max 10.73 8.51 4.76 9.009 0.65 4.1 

The liabilities are assumed to be constant throughout the planning horizon of this study. 

Because of the reason that the data of the SP model are returns it is asswned that liabilities are 

2% or have a return of 0.02 for a period of twelve months . From the above graph it is clear that 

the performance o f the SP has been reduced due to the liabilities. 

6.7 S&P 100 Share Index, Long and Short tenn Interest Rates 

The use of the S&P 100 stock Index in this study is twofold. First, it is used as a benchmark to 

create the corresponding risk groups for the shares. Second, it is used for performance 

comparison purposes with the QP and SP. The graph below illustrates the growth rate of the 

Index, long and short-term interest rates for the underlying study period. 
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The next table shows the Index, Short and Long term interest rates returns in percentage. 

When the value of the market rises and the Interest rates drop then the two models do rise as 

well. They both make profits but with the following pattern. The models pick the largest 

amount of shares when the Low risk profile is utilised but as far as the risk groups is concerned, 

the majority of shares are distributed within the Low, Medium-Low and Medium risk groups. 

However, when the Index drops and Interest rates rise then shares take a rather aggressive swing 

on picking shares from the Medium-High and Max risk groups as they try to compensate the 

Index's losses and make profits and finally outperform its profile. This can be seen clearly in 

Graphs 6-1 and 6-2. 

The interest rates do not fluctuate as much as the Index's and obviously the models paths. 

Short Interest rates are less volatile than Long Interest rates. They generally follow the market's 

pattern but in some cases as seen in Graph 6-3 they move the opposite way. When they do 

drop though shares 'prefer' the higher risk groups just like when the Index drops. 



Table 6-7: Returns (%) of the S&P 100, Long and Short Interest Rates 

Aug Oct Dec Feb Apr Jun Aug Oct Dec Feb Apr Jun Aug Oct Dec Feb Apr Jun 

1988 -5.16 6.48 -0.1 3.85 6.22 1.3 1.23 1.35 1.42 1.44 1.36 1.32 1.48 1.5 1.5 1.51 1.38 1.35 
1989 10.95 -2.81 3.57 -5.12 0.56 8.13 1.27 1.27 1.29 1.30 1.29 1.24 1.33 1.32 1.42 1.46 1.41 1.48 
1990 -9.82 -5.4 7.11 12.12 2.1 -0.65 1.2 1.12 0.99 0.94 0.93 0.89 1.48 1.37 1.34 1.37 1.41 1.36 
1991 5.77 -1.44 4.74 -0.16 1.18 -1.46 0.83 0.68 0.64 0.63 0.61 0.52 1.32 1.28 1.31 1.33 1.31 1.23 
1992 0.14 -0.44 3.66 2.77 -0.13 2.36 0.48 0.54 0.49 0.48 0.51 0.5 1.26 1.24 1.18 1.14 1.14 1.05 
1993 2.77 -0.03 0.29 1 -4.3 -1.16 0.5 0.51 0.54 0.61 0.69 0.75 0.99 1.04 1.08 1.21 1.23 1.25 
1994 6.62 0.07 -2.09 6.29 7.03 6.21 0.83 0.93 0.96 0.94 0.91 0.9 1.32 1.31 1.27 1.23 1.1 1.14 
1995 2.41 4.78 5.4 5.31 2.17 2.7 0.88 0.86 0.81 0.83 0.85 0.84 1.06 1.01 1.04 1.13 1.18 1.14 
1996 -2.76 8.11 5.77 6.74 2.23 9.6 0.83 0.82 0.84 0.86 0.82 0.86 1.14 1.09 1.12 1.18 1.13 1.1 
1997 0.9 0.51 5.31 9.12 6.88 3.37 0.83 0.86 0.85 0.83 0.83 0.82 1.06 0.98 0.99 0.95 0.92 
1998 -5.16 6.48 -0.1 3.85 6.22 1.3 1.23 1.35 1.42 1.44 1.36 1.32 1.48 1.5 1.5 1.51 1.38 1.35 
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Chapter 7: CONCLUSIONS - FUTURE DIRECTIONS 

This thesis is concerned with Asset and Liability Management (ALIvI) modelling by USing 

stochastic programming. 

The research extends the sceptic of asset pricing models and focuses on how to model the 

uncertainty. Processes like the 'Wiener' or the Geometric Brownian Motion are discussed. 

Simulation techniques like the Monte Carlo are analysed. That kind of simulation procedure is 

one of the most widely used throughout the flnancial and banking sectors, as it is a 

straightforward method. Furthermore, econometric techniques that represent the uncertainty 

are introduced. Econometric models capture the behaviour of macroeconomic and 

micro economic variables. These models are used when one wants to incorporate factors like 

interest rates, inflation and others within an econometric framework-model in order to gain 

market consistency. Scenario generation, which is a sophisticated mathematical procedure of 

capturing the uncertainty is thoroughly discussed. The author's own scenario generator is 

analysed and random shares scenario samples are illustrated. Scenarios were also generated for 

the interest rates by utilizing an existing interest model. Capturing the uncertainty by generating 

scenarios is a very important aspect of the ALM framework as it is a mirror towards the optimal 

decisions. The scenario generator developed in this thesis is novel. Its contribution is: 

1. The Brownian motion stochastic process is used to generate the market scenarios by 

using the Monte Carlo simulation. The integration of the market and interest rates 

scenarios comes together in the CAPM formula after the 'betas' correlation is found. 

The same historical set was used to flnd the 'betas' and generate the market scenarios. 

The same market forecast is linked in every time period of the planning horizon with the 

shares 'betas' and interest rates. This process helps to get consistent scenarios between 

shares, market, interest rates and 'betas'. 

2. Data (scenarios) are generated such as they are already in a database format and directly 

linked witl1 the optimisation model. 
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3. Confidence intervals analysis is utilized for validation and robustness of scena~: :)S. 

Controlling the risk is an important issue in financial modelling. In this study this is performed 

in a novel way. The risk groups are employed to control the risk and allocate shares in the 

portfolio based on the volatility of the returns relative to the market Index. By introducing the 

risk groups into the models shares in the portfolio do not have large risk measures like standard 

deviation. A stochastic programming ALM model was used to encapsulate the above concepts 

and get optimum investment decisions. A mean-variance model has also been used to compare 

and test its performance versus the stochastic for over a period of ten years for shares that 

belong to the S&P 100 share Index. Different investor's risk perceptions are employed to 

accomplish this within a 'forward rolling' framework, which back-tests the performance of the 

portfolios. 

The stochastic programming framework outperforms and exhibits better results than the mean­

variance model. This confirms that for the current study the use of stochastic programming in 

financial planning is superior to other types of models such as the mean-variance in this case. 

When the two different model methodologies are compared with the S&P 100 share Index they 

both outperform the Index. 

Future considerations should include research of other risk measures like the CV AR 

methodology that could possibly be employed into the model. Furthermore, the utilization of 

econometric models to research how factors like inflation, Consumer Price Index and interest 

rates are correlated and put into the scenario generator. This would lead into the flexibility of 

the generator to create scenarios for different countries. Another topic that is going to be 

researched and considered in the future is the liabilities. The author will consider generating 

liabilities stochastically. This is more realistic in real life applications where one does not know 

his/hers future payment obligations with certainty. 
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APPENDIX I 

1. GENDYNAMICS 21 . HOMESTAKE MNG. 41 . XEROX 
2. ALCOA 22. BLACK & DECKER 42. MCDONALDS 
3. GENERAL MOTORS 23. BRISTOL MYERS SQUIBB 43. MAY DEPT.STORES 
14. COCA COLA 24. JOHNSON & JOHNSON 44. K MART 
5. PEPSICO 25. MERCK 45. SEARS ROEBUCK 
6. DOW CHEMICALS 26. BAXTER INTL. 46. WAL MART STORES 
7. INTL.FLAV.& FRAG. 27. COLGATE-PALM. 47. LIMITED 
8. HARRIS 28. PROCTER & GAMBLE 48. DELTA AIR LINES 
9. NORTEL NETWORKS (NYS) 29. BRUNSWICK 49. BURLlNGTON NTHN. 
10. HEWLETI-PACKARD 30. MINNESOTA MNG.& MNFG. 50. AMER.ELEC.PWR. 
11. GEN.ELEC. 31. UNITED TECHNOLOGIES 51 . SOUTHERN 
12. HONEYWELL 32. HALLlBURTON 52. WILLlAMS COS. 
13. ROCKWELL INTL.NEW 33. SCHLUMBERGER 53. BANK ONE 
14. RAYTHEON 'B' 34. OCCIDENTAL PTL. 54. US BANCORP DEL. 
15. TEKTRONIX 35. BOISE CASCADE 55. BANK OF AMERICA 
16. TEXAS INSTS. 36.INTL.PAPER 56. AMER.EXPRESS 
17. DISNEY (WALT) 37. WEYERHAEUSER 57. AMER.GENERAL 

18. CAMPBELL SOUP 38. AVON PRODUCTS 58. AMER.INTL.GP. 

19. HEINZ HJ 39. EASTMAN KODAK 59. MERRILL LYNCH 

20. RALSTON PURINA 40. POLAROI D I 
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APPENDIXII 

Quadratic Programming - Initial - model's MPL formulation: 

TITLE 
Initial_mean_ variance; 

INDEX 

i = DATABASE(returns,rowid); 
j = DATABASE(returns,colid); 

DATA 

Return[i]:= DATABASE(returns,"returns"); 
Cov[i,j]: = D A TABASE( covariance," cov"); 
TC:= EXCELRANGE("Markowitz results.xls",transaction_costs); 
lamda: = EXCELRAN G E("Markowitz results.xls " ,risk_profile); 
gamma:= 1 - lamda; 
tar_return: = EXCELRAN G E("Markowitz results.xls" , tar_return); 
relationA[i]:=EXCELLIST("Markowitz results.xls",relationIA); 
relationB [i]: = EXCELLIST(" Markowitz results.xls" ,relationIB); 
relationC[i]:=EXCELLIST("Markowitz results.xls",relationIC); 
relationD [i]: = EXCELLIST ("Markowitz results.xls 11 ,relation ID ); 
relationE[i]:= EXCELLIST(" Markowitz results.xls" ,relationIE); 

DECISION 

W[i] EXPORT TO EXCELRANGE ("Markowitz results.xls","weight"); 
B[i]; 

S[* 
R; 
holdings; 
risk_one_holdings; 
risk_two_holdings; 
risk_three_holdings; 
risk_four_holdings; 
risk_five~oldings ; 

MODEL 

Min portfolio=gamma * sum(i,j: W[i]*Cov[i,j]*W[i:=j]) -lamda* R; 

SUBJECT TO 

Weight:Sum(i:W[iJ)= 1; 

Transactions:R =Sum(i:\'Xi'[i] *Retul11 [iJ)-sum(i:TC*B [iJ)-sum(i:TC*S [iD; 

9) 



!RISK GROUPS 

all_holdings:Sum(i:W[i]) = holdings; 

group_one_holdings:SUM(i:W[i] where (relationA[i]=l))=risk_one_holclings; 

group_two_holdings:SUM(i:W[i] where (relationB[i]=l))=risk_two_holclings; 

group_three_holdings:SUM(i:W[i] where (relationC[i]=l))=risk_three_holclings; 

group_four_holdings:SUM~:W[i] where (relationD[i]=l))=risk_four_holclings; 

group_five_holdings:SUM(i:W[i] where (relationE[i] = 1)) =risk_five_holclings; 

bl:0.2*holclings<=risk_one_holclings; 

b2:0.2*holclings<=risk_two_holclings; 

b3:0.2*holclings<=risk_three_holclings; 

b4: 0 .2*holclings < = risk_four _ holclings; 

b5:0.2*holclings<=risk_five_holdings; 

End 
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Quadratic Programming - Rolling - model's MPL formulation: 

Title 
Quadra tic_R 1; 

INDEX 

i = DATABASE(retums,rowid); 
j = DATABASE(retums,colid); 

DATA 

Retum[i]:= DATABASE (returnsRl ,"returns"); 
Cov[i,j]:= DATABASE ( covarianceRl ," cov"); 
Wo[i]:= DATABASE(wI,"weights"); 
TC:= EXCELRANGE("Markowitz results.xls" ,transaction_costs); 
lamda:= EXCELRANGE("Markowitz results.xls",risk_profile); 
gamma:= 1 - lamda; 
tar_return: = EXCELRAN GE("Markowitz results.xls", tar_return); 
relationA[i]:=EXCELLIST("Markowitz results.xls",relationlA); 
relationB [i]: = EXCELLIST("Markowitz results.xls" ,relation 1 B); 
relationC[i]:=EXCELLIST("Markowitz results.xls " ,relation 1 C); 
relationD [i]:= EXCELLIST("Markowitz results.xls" ,relation 1 D); 
relationE[i]: = EXCELLIST("Markowitz results.xls 11 ,relation 1 E); 

DECISION 

W[i]EXPORT TO EXCELRANGE ("Markowitz results.xls","weightRl "); 
B[i]; 
S[i]; 
R; 
holdings; 
risk_ one_holdings; 
risk_two_holdings; 
risk_three_holdings; 
risk_four_holdings; 
risk_five_holdings; 

MODEL 

Mm gamma * sum(i,j: W[i]*Cov[i,j]*W[i:=j]) -lamda * R; 

SUBJECT TO 

WeightSum(i:W[i]) = 1; 

Transactions:R = Sum(i:W[i]*Return[i])-sum(i:TC*B[i])-sum(i:TC*S[i]); 

ExportWeights[i]: W[i] =Wo[i] + B[i]-S[i]; 



RISK GROUPS 

all_holdings: Sum(i:W [iJ) = holdings; 

group_one_holdings:SUM(i:W[iJ where (relationA[iJ=l))=risk_one_holdings; 

group_two_holdings:SUM(i:W~] where (relationB[iJ=l))=risk_two_holdings; 

group_three_holdings:SUM(i:W~J where (relationC[iJ=l))=risk_three_holdings; 

group_four_holdings:SUM(i:W[i] where (relationD[i]=l))=risk_four_holdings; 

group_five_holdings:SUM(i:W[i] where (relationE[iJ = 1)) =risk_five_holdings; 

b 1 :O.2*holdings<=risk_one_holdings; 

b2:0.2*holdings<=risk_two_holdings; 

b3:0.2*holdings<=risk_three_holdings; 

b4:0.2*holdings<=risk_four_holdings; 

b5:0.2*holdings<=risk_five_holdings; 

Bounds 

S[i] <=Wo[i]; 

END 
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Stochastic Programming model's MPL formulation: 

TITLE 

ModeLStochastic; 

DATA 

lamda = EXCELRAN GE("C: \ WINNT\Profiles \Administrator \Desktop \ George­
Inputs.xls" ,lamda); 
A=EXCELRANGE("C:\ WINNT\Profiles\Administrator\Desktop\George­
Inputs.xls" ,assets); 
S= EXCELRAN GE(" C: \ WINNT\Profiles \Administrator \Desktop \ George­
Inputs .xls " ,scenarios); 
T= EXCELRAN GE("C: \ WINNT\Profiles \Administrator \Desktop \ George­
Inputs.xls" ,timeperiods); 
gamma = l-lamda; 
relationA[i]:=EXCELLIST("Markowitz results.xls",relation1A); 
relationB[i]:=EXCELLIST("Markowitz results.xls",relation1B); 
relationC[i]:=EXCELLIST("Markowitz results.xls",relation1C); 
relationD [~: = EXCELLIST("Markowitz results.xls 11 ,relation 1 D); 
relationE[i]:=EXCELLIST("Markowitz results.xls",relation1E); 

INDEX 

shares= 1 .. A; 
scenarios=1..S; 
tp=l .. T; 

DATA 

r[tp,shares,scenarios]=EXCELRANGE("C:\ WINNT\Profiles\Administrator\Desktop\Georg 
e-Inputs.xls",Generic_Return); 
Wo [shares] = EXCELRAN G E(" C: \ WINNT\ Profiles \Administrator \Desktop \ George-
Inputs.xls" ,Generic_Holdings); 
TC= EXCELRAN GE("C: \ WINNT\Profiles \Administrator \Desktop \ George­
Inputs.xls 11 ,Transaction_Costs); 
P= EXCELRAN GE("C: \ WINNT\Profiles \Administrator \Desktop \ George-
Inputs.xls" ,probability); 
target [tp > 1] =EXCELRANGE("C:\ WINNT\Profiles \Administrator\Desktop \ George-
Inputs.xls " ,Generic_Risk); 
L[tp> 1]=(0.05,0.05); 

DECISION VARIABLES 

W[tp,shares,scenarios ]; 
Buy[tp,shares,scenarios] ; 
Sell[ tp,shares,scenarios]; 
sslack[tp,scenarios ]; 
surplus [tp,scenarios]; 
dev[tp]; 
return[tp,scenarios]; 
portfolio return [tp]; . . 
firststagehold[tp= 1 ,shares ]EXPORTTOEXCELRANGE("C: \ \\iINNT\Profiles \~\dlmrus tLl t()[ 

\Desktop \ George-Inputs.xls " ,Results); 



holdings; 
risk_one_holdings; 
risk_two_holdings; 
risk_three_holdings; 
risk_four_holdings; 
risk_five_holdings; 

MODEL 

Max value = lamda * Sum(tp:portfolioretum) - Sum(tp:gamma*dev); 

SUBJECT TO 

Weightstotal[scenarios,tp]:Sum(shares:W[tp,shares,scenarios])=l; 

Weightsbalance[tp=l,shares,scenarios]:W[tp=l,shares,scenarios]=Wo[shares] + Buy[tp=l,shares, 
scenarios] -Sell[ tp= 1 ,shares,scenarios]; 

Weightsbalance[tp> 1,shares,scenarios]:W[tp> 1,shares,scenari os]=W[shares,scenarios,tp-
1]+ Buy [tp > 1 ,shares,scenarios]-Sell[tp> 1 ,shares,scenarios]; 

Util[scenarios,tp]:Sum(shares:r*W)-sum(shares:TC*Buy)-sum(shares:TC*Sell)=retum; 

Totalwealth[tp]:Sum(scenarios:P*retum[scenarios,tp])=portfolioretum[tp]; 

Deviation[scenarios,tp]:retum-L+sslack=target+surplus; 

Totaldev[tp]:Sum(scenarios:P*sslack[scenarios,tp])=dev[tp]; 

firstholdings [tp= 1 ,shares] :SUM( scenarios:P*W) = firststagehold; 

na 1 [shares,scenarios> 1 ,tp= 1] :W[ scenarios ]=W[ scenarios-1]; 

na2[shares,scenarios> 1 ,tp= 1 ]:Buy[scenarios]= Buy[scenarios-1]; 

RISK GROUPS 

all_holdings:Sum(i:W[i]) = holdings; 

group_one_holdings:SUM(i:W[i] where (relationA[i]=l))=risk_one_holdings; 

group_two_holdings:SUM(i:W[i] where (relationB [i] = 1 ))=risk_two_holdings; 

group_three_holdings:SUM(i:W[i] where (relationC[i]=l))=risk_three_holdings; 

group_four_holdings:SUM(i:W[i] where (relationD[i]=l))=risk_four_holdings; 

group_five_holdings:SUM(i:W[i] where (relationE[i]=l))=risk_five_holdings; 

b 1 :O.2*holdings<=risk_one_holdings; 

b2:0.2*holdings < = risk_two _holdings; 

b3:0.2*holdings<=risk_three_holdings; 
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b4:0 .2*holdings < = risk_foill_holdings; 

bS:O.2*holdings<=risk_five_holdings; 

Bounds 

S ell [tp = 1 ,shares,scenarios]<=Wo; 

END 
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APPENDIX III 

This section illustrates the end-effects methodology in an energy planning model. 

TITLE 

DATA 

T=2; 
alpha=0.9; 
C[plant]=(29 ,38); 
K[plant]=(O.5 , 1); 
A[plant]=( 1 , 1); 
b[t]=(100,10S,110.2S); 
M=10000; 

INDEX 

Plant= ("AA","BB"); 
t= O .. T; 

DECISION 

x[plant,t]; 
z[t]; 
g[t]; 

MODEL 

Min SUM(t=O,Plant: C*x)+SUM(t=l,Plant: alpha*C*x)+ SUM (t=2,Plant: alpha*alpha*C*x)+ 

SUM(t: M*z); 

SUBJECT TO 

link[t=O]: SUM (plant: A *x[t]) +z[t] - g[t] = b[t]; 

link[t=l]: SUM (plant: K*x[t-1]) + SUM (plant: A*x[t]) +z[t] - g[t] = b[t]; 

link[t=T]: SUM (plant: K*x[t-1]) + SUM (plant: A*x[t]+K*alpha*x[t]) +z[t] - g[t] = b[t]; 

BOUNDS 

x[t]<=SO; 

END 
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