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Abstract—In this paper, the synchronization problem is stud-
ied for an array of N identical delayed neutral-type neural
networks with Markovian jumping parameters. The coupled
networks involve both the mode-dependent discrete time-days
and the mode-dependent unbounded distributed time-delaysAll
the network parameters including the coupling matrix are ako
dependent on the Markovian jumping mode. By introducing
novel Lyapunov-Krasovskii functionals and using some anattical
techniques, sufficient conditions are derived to guaranteehat
the coupled networks are asymptotically synchronized in man
square. The derived sufficient conditions are closely relad
with the discrete time-delays, distributed time-delays, mde
transition probability and coupling structure of the networks.
The obtained criteria are given in terms of matrix inequalities
that can be solved efficiently by employing the semi-definite
programme method. Numerical simulations are presented to
further demonstrate the effectiveness of the proposed appach.

Index Terms—Synchronization; neutral-type neural networks;
Markovian jumping systems; discrete time-delay; unbounde
distributed time-delay; Kronecker product.

I. INTRODUCTION

after the theory of deterministic chaos has been developed.
Since then, the synchronization research has been extended
to the case of more complex systems, for example, the large-
scale and complex networks of chaotic oscillators [14]],[34
the coupled systems exhibiting spatio-temporal chaos and
autowaves [28], [41], and the array of coupled neural neta/or
with or without delays [7], [27], [37].

In practice, due to the finite speeds of the switching and
transmitting signals, time delays exist in various RNNSs, [1]
[16], [17]. It is well known that time delays may result in os-
cillatory behaviors or network instability (periodic okafion
and chaos). So far, most of the existing results relatedeo th
synchronization analysis for RNNs have been concerned with
the discrete delay (point delay) case. Recently, the Higid
delay has received an increasing research interest duesto th
presence of an amount of parallel pathways with a variety
of axon sizes and lengths. Furthermore, as a combination of
both discrete and distributed delays, the so-called miked-t
delays have gained much research attention and many rélevan
results have been reported in the literature, see e.qg. [33],

[39] and the references therein. It should be pointed out tha

N the last decade, recurrent neural networks (RNNS) hargher than occurring in the system states (or outputsk-tim
drawn noticeable attention from many researchers workigglays can also appear in the derivatives of system stales [4

in a variety of areas such as signal and image processing, [@%], [26], [40]. This kind of time-delays is referred to as
sociative memories, combinatorial optimization and awben the neutral time-delays that can find a variety of applicio
control [1], [12], [18], [24], [30]. While traditional nea in practice such as chemical reactors, transmission lines,
networks have been successfully applied in static dateebagartial element equivalent circuits in VLSI systems, antkie
classification and prediction problems for various engiimge \olterra systems [8]. Because of possible presence of aleutr
systems, the dynamical behaviors of the RNNs have recen§¢lays in implementing RNNs in VLSI circuits, the RNNs
gained a lot of research interests due to their capabiliti@sth neutral terms have stirred some attention in the past fe
of using dynamical temporal behavior to process arbitragears, see e.g. [8], [9], [19].

sequences of inputs. Motivated from both the basic scienceDuring the course of implementation, the RNNs often
and the technological practice, the study of synchroreératiencounter the information latching problems [5], that I t
problems among an array of neural networks has been @étwork states have finite representations (also callesteris,
active topic of research in the past few years, see [13], [1phtterns, or modes) where the switching among the finitestat
[20], [22], [23] for some recent publications. Note that thgs sometimes governed by Markovian chain Such kind of
original notion of synchronization dates back to the 198Qsndom mode switches may result from abrupt phenomena
such as stochastic failures and repairs of the network com-
ponents, changes in the interconnections of network nodes,
or sudden environment switching. As such, the so-called
Markovian jumping recurrent neural networks (MJRNNS) have
attracted a great deal of research interest [31], [36], [42]
in the past decade. For example, in [36], the exponential
stability problem has been first addressed for a class of
delayed recurrent neural networks with Markovian jumping
parameters. In [42], the problem of exponential stabiligs h
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been investigated for a class of stochastic neural netweitks If A is a matrix, denote by|A|| its operator norm, i.e.,
both Markovian jump parameters and mixed time delays. |4| = sup{|Az| : |z| = 1} = /Amax(ATA) where
[31], a noise-induced stabilization method has been prghos\,,.x(-) (respectivelyin(-)) means the largest (respectively,
for RNNs with mixed time-varying delays and Markoviarsmallest) eigenvalue of. The Kronecker product of amx m
switching parameters. In [38], the passivity analysis hesnb matrix X and ap x ¢ matrix Y is defined by amp x mg matrix
conducted for discrete-time stochastic neural networkh wiX ® Y as follows

both Markovian jumping parameters and mixed time delays.

Summarizing the discussion made so far, the RNNs of- ¥ o Ty
ten exhibit the phenomena of signal transmission delays XY= : :
and possess Markovian mode jumping behavior, where the z,1Y o xpmY

delays could be of discrete, distributed and neutral types.

As such, it should be of both theoretical and practical sighe asterisk+ in a matrix is used to denote term that is
nificance to consider the synchronization problem of suéhduced by symmetnE|[z] andE[z|y| will, respectively, mean
RNNs. Unfortunately, the synchronization issue farkovian the expectation of: and the expectation of conditional on
jumping neutral-type neural networks with mode-dependent Matrices, if their dimensions are not explicitly statede a
mixed time-delay®as received very little research effort dueassumed to be compatible for algebraic operations.
primarily to the mathematical complexity. It is, therefptiee

motivation of our current investigation to shorten such p ga

by launching a study on the synchronization problem for [I. PROBLEM FORMULATION

Markovian jumping neural networks of neutral type whatie . . .
discrete, distributed and neutral delays are mode-depenhde Let r_(?‘) (t=0) be_a nght—con_tlnuoqs_ Markov chain on a
and the distributed delays are allowed to be unboundiei$ probability space taking values in a f|_n|te state spate=
noticeable that, in two recent papers [2], [3], the pasgiaiid {1,2,...,no} with generatodl = {m;;} given by

stability analysis problems have been addressed for neatal { A+ o(A), if i %,

works of neutral type with Markovian jumping parameters anB{r(t+A) = j | r(t) = i} = V7 A T o(A), if i
(%] 9 - J

time delays, where the time-delays are not mode-dependant.
In this paper, we are concerned with the synchronizatifere A - 0, andr; > 0 is the transition rate from to j if

problem for a new class of continuous-time neural networ?s# i while

of neutral-type with Markovian jumping parameters as well

as mode-dependent mixed time-delays. Note that the mixed T = — Z”U"

time-delays comprise both the discrete and distributedydel il

that are all dependent on the Markovian jumping mode.

The main contributions of this paper can be highlighted a

follows: 1) some novel analysis techniques are developed

tackle the mathematical difficulty resulting from the prese

of the mode-dependent neutral delays; 2) a new Lyapu

functional is proposed to reflect the Markovian jumps of the. _ Lo _

delay bounds; and 3) a unified framework is established tox (1) = Br(t)in(t = m,rq) = Alr®)ze(?)

For a given array ofV identical neutral-type neural net-
orks, we assume that each single neural network consists of
n'heurons and the dynamicsiah neutral-type neural network
nics) Vgoverned by

handle the Markovian jumping parameters, neutral terms and + B(T(t))f(fk () + C(r(t)g(xx (t = T2.0(1))
mixed time-delaydVe derive sufficient conditions to guarantee _T‘“(t_)
that the coupled networks are asymptotically synchronined +D(r () /wfa s)h(ze(s))ds +u®), (1)

mean square. Note that the derived sufficient conditions are
expressed by means of the system parameters, discrete timeere i (t) = [zpi(t), zk2(t), -, zea(t)]T is the state
delays, distributed time-delays, mode transition prolitgizind ~ vector of the kth delayed neural networkA(r(t)) =
coupling structure of the array of neural networks. Suchdgon diag{a: (r(t)), az(r(t)), ...,an(r(t))} > 0 is a diagonal ma-
tions are in the form of LMIs, which could be easily checketfix with a; representing the rate with which thigh neu-
by utilizing the recently developed interior-point metisodron will reset its potential to the resting state in isola-
available in Matlab toolbox, and no turning of parametet®n; B(r(t)) = (bi;(1(t)))nxn, C(r(t)) = (cij(r(t)))nxn,
will be needed. Numerical simulations are presented théurt D(r(t)) = (dij(r(t)))nxn and E(r(t)) = (eij(r(t)))nxn
demonstrate the effectiveness of the proposed approach. denote connection weight matrices of the neurong,) =
Notations: The notations are quite standard. ThrougHu1(t),...,u,(t)]” is the input vector function; ang'(:) =
out this paperR"” and R"*™ denote, respectively, the- (f1(:), f2(-);-. fu (DT, 9() = (91(-),92(); o, gn ()T,
dimensional Euclidean space and the set ofralk m real h(-) = (h1(:), ha(-), ..., hn(-))” denote the activation function
matrices. The superscriptl™ denotes matrix transposition vectors;r; ..,y andr, .y denote the mode-dependent discrete
and the notationX > Y (respectively,X > Y) where time delays whilers, ) characterizes the mode-dependent
X and Y are symmetric matrices, means th&t — Y is upper bound of the distributed time-delay.
positive semidefinite (respectively, positive definitg).is the Consider the following linearly coupled dynamical system
n X n identity matrix. | - | is the Euclidean norm iflR™. comprising the aboveV identical neutral-type neural net-
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works: Let
E0() = (= Tra) — A(®)zs(8) + BO(0) i (0) ot) = (@0,
T Or)g(enlt - 7o) falt) = (@ (®) 7 walt))sn f(on ()7
e [T Ae®) = (7@ (0), g  (wat))s o g  (an ()
+ D)) | el - e)hlen(s))ds +uf) ha(t) = (W7 (s (6)), A7 (ealt)). oo BT (2 (1))

ut) = (@ () u” (1), u”()"
With the above symbols and the Kronecker product of matri-
) ces, we rewrite the system (2) in the following compact form:
whereI'(r(t)) = diag(y1(r(t)), 12 (r(£)); s ¥ (r(t))) > 0'is .
a diagonal matrix linking theth state variable of each neuraf’(*) = (v ® E(r())i(t = 71r) — (Iv @ A(r()))x(1)

N
+ Zwkj (r()T(r(t)z; (1), k =1,2,.., N, (2)

network if 7, (r(t)) # 0; W = (w;;(r(t))) € RNV is the + v ® Br))ie(t) + (v © C(rH)
coupling configuration matrix of the system withy; (r(t)) > x gt — m2.)) + (In ® D(r(t)))/ 7;(2(2 oh(a(s))ds
0 (¢ # j) but not all zero. —oo

Remark 1:In the array of coupled neural networks (2), the +u(t) + W(r(t) @ L'(r(t))=(t). (8

distributed delaﬂf;f“(” o(t—s)h(xy(s))ds is included with
the upper bound dependent on the Markov chain. Note that they.finition 1: The coupled system (2) or (8) is said to be

time-delays can vary from—oo t0 ¢ — 75 ,.(;) in a distributed 541y asymptotically synchronized in mean square if
way. As such, the unboundedness and the mode-dependence

of such a distributed time-delay would have a great impact on Jim Elzg(t) —2(t)]* =0

the stability analysis on the overall coupled system. Fer th

practical applications of such unbounded distributed ydgla N0!ds for anyk. 7 € {1,2,..., N'}. _ o
we refer the authors to [10], [11], [21]. It is worth mentiogi '™ this paper, we aim to deal with the synchronization
that the finite distributed delays, which are another type BfoPlem of the system (8) coupled by an array’\boidentical
distributed delays whose lower and upper bounds are b#played neutral-type neural networks with Markovian jump-
limited, have been intensively investigated in [35], [3@9]. N9 parameters. The coupled networks involve both mode-

Throughout this paper, we make the following assumption@?pe”dem discrete time-delays and distributed timeydel_a
Assumption 1:The  coupling  configuration  matrix with the mode-dependent upper bound. The coupled matrices

W(r(t) = (wi;(r(t) is symmetic (ie.,W(r(t)) = are allowed to be mode-gepenFjent as WeII.. By constructing
w7 (r(t))) and satisfies novel Lyapunov-Krasovskii functionals and using some ynal
ical techniques, we shall derive easy-to-verify sufficieah-
N N ) ditions to guarantee the coupled system to be asymptgticall
Z;ww' = Z;W =0,4=12,.,N. ®) synchronized in mean square. The obtained criteria arengive
J= J=

in terms of matrix inequalities that can be solved efficigntl
Assumption 2:As in [21], for j € {1,2,...,n},Vs1,s2 € by employing the semi-definite programme method.
R, s1 # so, the neuron activation functions satisfy

fi(s1) — fi(s2) [1l. M AIN RESULTS AND PROOFS
AT A 4) . . . .
J $1 — So J Before stating our main results, we introduce the following
_gi(s1) —gj(s2) N lemmas.
oj = 51 — 5 s o5, ®) Lemma 1 ([20]):Let U = (aij)nxn, P € R™", @ =
_hi(s1) —hy(s2) _ (1,23, ., ay)", and y = (y1 43 , .., yp) " with @, y; €
VST T, S (6) R~ If 4 =uT and each row sum df is zero, then
wherel;, If, o5, o}, v;, v] are some constants. d"USPy=— > oz — )Py — ).
Remark 2:As discussed in [21], the constarifs, I, o, ISi<jshN
a;', e v;.L in Assumption 2 are allowed to be positive, Lemma 2 ( [20]): Suppose thaBB = diag{31, B2, ..., Bn}
negative or zero. Hence, the resulting activation funatiois a positive semi-definite diagonal matrix. Lef =
could be non-monotonic, and more general than the us gl,ys,....,y,)T € R, and H(y) = (h1(y1),h2(y2), ...,
sigmoid functions. In addition, when using Lyapunov sti&pil 7, (y,,))? be a continuous nonlinear function satisfying
theory to analyze the stability, such a description is paltdirly hi(s)

suitable since it quantifies the lower and upper bounds of the [ < ——= < lj, s#0, seR, i=1,2,...n (9)
activation functions that offer the possibility of redugithe 5
induced conservatism. with [ andlj being constant scalars. Then

Assumption 3:The delay kernep(-) : [0, +00) — [0, +00) TR — 2T BL T()\B <0
is continuous and integrable, and also satisfies y BLiy — 2y BLaH(y) +H' (y)BH(y) <
where Ly = diag{{{I7,I5ly,...,.; 17} and Ly =

“+o0 “+o00
t— tags -
/0 p(s)ds < 400, /0 sp(s)ds < +o00.  (7) diag{ll ;—ll L2 -2H2 ok erln 1.
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Lemma 3 ( [22]): Let M be a positive semi-definite ma-the top of the page hold forl < k <1 < N, 1 < i < ny,

trix, a(-)
F(-) : (—o0,a] — R™ be a vector function. If the integrations
concerned are well defined, the following inequality holds:

(" worrom) a ([
/_; a(s)ds (/_; a(s)fT(s)Mf(s)dS> . (10)

Lemma 4 (Schur Complement [6]§5iven constant matri-
ces(y, 2y, Q3 whereQ; = QT andQ, > 0, then

a(s)7(3)ds )

<

Ql"’Q?)Q 193<O

|

Lemma 5 (Barbalat's Lemma [32])Let f be a nonnega-
tive function defined on0, +00). If f is Lebesgue integrable
on [0, +o0) and is uniformly continuous o0, +oc), then

lim £(t) =

t——+oo

For presentatlon convenience, in the following, we denot

if and only if
]
Q3

Q3

% <o

Ly =diag{l{ I, ..., l;T1},
[ S A
Lo=di L L oo
2 1ag{ ) 9 i ) )
=diag{o{ oy ,...,0 0.},
+ - + -
o, +o0 ol 4+ o
Yo =di L L ..z n
2 1ag{ ) 9 i ) }7
T =diag{v; vy, ...,viv},
+ - + -
vy + v v+ v
Ty =di L L .. = n
2 1ag{ 2 ) ) ) }7
71 = max {m.5}, Ta= ax {25}, Ts= max {755},
Ty = min {n;} L= 0in {n) 13= min {6}

122)( {Umial}-

The main results of this paper are given in the following

theorem.

Theorem 1:Under Assumptions 1-3, the system (8) is glob-

ally asymptotically synchronized in mean square if theristex
six positive definite matrice$, P», P53, @, R and .S, and
three sets of positive definite diagonal matricks®; and
Q;(1 <7 < ngp) such that the following LMIs (11) shown at

: (—o0,a] — [0,400) be a scalar function and where

—+o0

p=7 itslgﬂw(S), @i :/T p(s)ds, (12)
& = a; + %@(F% —13), k1 =7(F1 — 1) + 1, (13)
H11(i) = —R-A(i) — A()P; + P; — Nwy (i )(PF( )
)Pi) — (A»Ll + 6»21 +7T1)
+ mekl (i) (L@ A()QI'())
—me ()() () (14)
E12(1) = PiB(i) + AiLa — k1 Nwi ())T(4)QB(i), (15)
Es3(i) = [ (7'2 —75)+ 1R — 6, (16)
E4(i) = P,C(1) — kiNwi () (1)QC(3), a7)
H55(1) = aZS Q;, (18)
Ei6(i) = PD(i) — s Nwy ()I'(0)QD(i), (19)
Eir(i) = ( ) — k1 Nwg ()T (D) QE(9), (20)

andw!? (i) is the (k, 1)-th entry of matrix[I¥’ (i)]2.
Proof: Definez,(-) by z;(s) = z(t + s) (—oo0 < s < 0)
gnd denote
N -1
-1

-1
N -1

-1
v=| 0O -
-1 -1 N-=1]yun
In order to tackle the synchronization problem of (8), wednt

duce the following Lyapunov-Krasovskii functional canalie:

6
V(ze,t,r(t) = Vil(ze,t,7(t)) (21)
k=1
where
Vi, t,r(t) = 2" () (U @ Pry)z(t),
Valontor(®) = [ 5 ()U @ Qlis)ds
thly,‘(t)
Va(ae,t,r(t) = | 9" (2(s))(U ® R)g(x(s))ds,
t77—2,7‘(t)
Va(zy, t,r(t)) = ﬁ/Tl /t 7 (0)(U @ Q)i(0)dods
+ﬁ/72 /ti g’ (z(9))(U @ R)g(z(6))dbds,
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%(wtvt,r(t))=/+osz(8) tt h* (a(n))
i (;)@S s ( ))dnds,
ot /” [ [ v
T;J®S t( S( ))dndsdu

with ¢ defined in (12).

Let .Z be the weak infinitesimal generator of the random

+7 / T U e Qis)ds.  (24)
t—71

Similar to (24), it follows that

LVs(wr,t,1) < g7 (x(1)(U © R)g(x(t))
— 0" (2(t = 72.0)(U ® R)Q((t — 72.))

t—1.

o7 (2(5)) (U ® R)g(x(s))ds. (25)

t—To

process{(z,r(t)), t > 0} along the network8) defined by It is easy to see

1
LV (x4, t,1) = AILH(}+ A [E[V(mHA, t+ A rt+A) |

r(t) =i] — V(ay,t, z)}

Then, we have
6

LV (e, t,1) =Y LVi(w, 1) (22)
k=1
where LV (z,t,4) (K = 1,2,---,6) are calculated as
follows.
First of all, it follows that

.,?Vl (:vt,t,i)
= 27 (U @ Py [(In @ B()ilt = 7,0))
— (In® A(i))x(t) + (In ® B(3))f(x(t))
+ Iy ® C(1))9(x(t — 72,1)) + (In @ D())

X /__Tw o(t — s)h(x(s))ds + u(t)
] + Yo

(RE(Z)))x(t = Tir()

— ( Jz(t) + (U @ (PB(i)))f (x(t))
+( )9(z(t = 72,4)) + (U @ (PD(i)))
[ et = sihtas)ds + NW (i) @ (RL@)a )
+ 2" (t)(U @ Pi)a(t), (23)

where we have used the facts tHatV (i) = NW (i) and
U @ u(t) = 0, which are not difficult to verify.
Next, it can be obtained that

LVo(wy,t,1)
= @' (1)(U®Q)(t)

—i—ZWU/

tle

= ()(U®Q)() Tt = 14) (U ©Q)i(t — 1)

2l /;:11

J#i

< WU @ Q)i(t) — " (t — 1)U © Q)i(t — 714)

+ W (3) t)(U ® Pj)x(t)

= 227 (1) (U

7

(

U® (PA®))
U® (B,C>))

— & (t = 713) (U @ Q)ir(t — 71,4)

#T(s)(U ® Q)i(s)ds

LVi(a,t,1) = 7(T1 — Ttl)'r ) (U ® Q)i(t)
- 7?/t T ()(U @ Q)i(s)ds
+ 7 (T2 —Tz)gT( ) (U @ R)g(x(t))

—7r/t )(U @ R)g(x(s))ds. (26)

LVs(w4,1,1)
“+o0
:/» o(s)dsh” (2(t))(U @ S)h(x(t))

Then, it follows

+oo
- / .go(s)hT(:C(t —$))(U @ S)h(z(t — s))ds

no —+00 t
3o / (o) | W @) @ S)ha(n)dnds

= (@)U © S)h(a(0)
- / ot — T (2(5))(U © S)h(z(s))ds

+oo t
e [ [

J#i . ;
i [l [ W)U © S)haln)dnds
- aihT(giEt))(U ® S)h(z(t))
= [ = T as)(U @ S)ha(s)ds

(M)(U @ S)h(z(n))dnds

; ' T
+;WU /Tsf(s) /t,Sh (x(m)(U @ S)h(x(n))dnds
< aih™ (2(1))(U ® S)h(z(t))
‘/”Z(t—@hT( ())(U @ S)h(x(s))ds
of [ e
= aih (ot £O)U © Sha()
‘/ “olt — )" (@(5) (U © )h(a(s)ds

o f e

wherecq; is defined in (12).

+7 max ¢(s
T3<s<T3

)(U ® Sh(a(n))dnds

U ®S)

)h(z(n))dnds, — (27)
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Finally, we have

LV (x4, t,1)
= o f [ e

_gp/ /hT (t — ) (U @ S)h(a(t — 5))dsdu

(U ® S)h(z(t))dndsdu

3278 ~ T O)(U @ SHh(a(?)
o [ [ W) o Shet)dnds. @)

Substituting (23)-(28) into (22) yields that

< 2:7(1) [( ® (PE(i)&(t = T1.0())
)a(t) + (U @ (PB(i)))f (x(t))
)

" 0(alt — 72.0) + (U ® (PD(3)))
< [l = s)h(als)ds + NW (i) @ (PE(D)a(0)

+2T (U ® Fi)x(t) + [7(F1 — 1) + 12T (t)
x (U@ Q)a(t) —a" (t —71,)(U ® Q)ir(t — 71,4)

7

- (U (BA(D)
(U ® (RC@)

+[7(T2 — 7o) + 1] " (2(t))(U @ R)g(x(1))
= 9" (2t = m20)(U ® R)g(ar(t — 72.))
+ah" (@(1))(U @ S)h(x(t))

—/ Tip(t - s)hT(a:(S))(U ® S)h(z(s))ds, (29)

— 00

whered; is defined in (13).

For the sake of the presentation simplicity, we also denote

zr(t) =z (t), fult) = flze(t) — f(@(t)),
k(t) — g(zi(t), h

hi(t) = h(zk(t)) — h(zi(t)).

Xk (t)

Ou(t) = g(
By applying Lemma 1 to (29), we have

gV(.’Iit,t,Z’)
- 3 ado [PiE(z')xkl(t—n i) = PrA() X (t)

1<k<I<N
+ PB(i)fu(t) + PiC()0 (t — 72,0) + PD(0)

X /t o (p(t — S)ﬁkl( )dS — kal( )PF( )Xkl( )}

+ Z {sz VP Xt (t) — Xy (t — 71,0) QX (t — 71.5)
1<k<I<N

+ [7(T2 — Tp) + 1G4 (£) Ry, (1)
— QL (t — 72.0) Ry (t — 7,0) + Gihig (£)Shya (1)
- / "ot — )R () Shw(s)ds

+ [ﬁ_(ﬂ — 1)+ 1T (1) (U @ Q)i(t). (30)

6

From Assumption 2 and Lemma 2, we can deduce that

Xy (£)Ai LyXgr () — 25, (8) A Lofp (t)

+u (At <o, (31)
X (1) 05T Xaa (1) — 2x4; (£)©; 5220 (t)

+ 91 ()08, (1) <0, (32)
Xkl(t)Q Tlxkl(t) — 2X£l (t)QiTgﬁkl (t)

+h (R (1) < 0. (33)

Also, in terms of Lemma 3, it is easy to see that
t—T311' 7 _
[ et R e)Shu(s)ds

1 t—T3,4 7
> —fi T )ds / o(t — s)hy,(s)dsS
X / - o(t — s)hg(s)ds
1 t—T73,i t—73,; _
- <p(t — S)hkl( )dsS/ o(t — s)hg(s)ds.(34)

Qi ) _ —00

From (30)-(34), it follows that

fV(l’t,tZ)
< > &GO [PEOR(t - 1) — PAGX()

1<k<I<N
+ P B( )fk[( ) + PiC(i)gkl (t — To i) + PlD(Z)

X / o (p(t — s)ﬁkl(s)ds — kal( )P F( )Xkl( )

+ > [XEOPx ) =G - 70 @kt - )
1<k<I<N

+ [7(T2 — 7o) + 10k () Ry, (t) — Ty (t —
X Qg (t — T24) + aihy, (£)Shy (t)

1 t—T3,4
t_S hkl dSS/

()(AL1+® Y1+ Q7 )Xkl()

— T2, Z)R

t—Shkl }

(673 — 00

p>

1<k<I<N
— X (1) A LoFra (8) + Ty () AT (£) — 2X5,(£)0: S0y (1)
+ 00 (19304 (1) — 2K ()9 oy (8) + Ay () (1)
+ (77— 1) + 1T (1)U @ Q)i(t), (35)

wherek; is defined in (13).

For the last term in the above inequality, we have
&7 (1) (U @ Q)i(t)
= |(IN®E®@)z(t—71,:) — (In® A®))x(t)
+ (In ® B(i)f(2(2)) + (In ® C(i))9(z(t — 72,i))

+(IN®D(i))[ T ot — s)h(a(s))ds + u(?)

+W(E)®

X Lil'(t — 7'171') —

I‘(z’)x(t)} (U®Q) [ (Iv ® E(i))
(In ® A(i))z(t)
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+ (In ® BE(0) + (v © CO)alalt — 7,)
+uN®mm[:mwwﬂmu@mﬁm@
W (i) @ T(i)a(t)]
- [(1N®E( Vit — 714) — (In ® A(i))z(t)
+ (U © BE) + Iy © CO)alalt — 7.)
0 [ - oG]
(I @ B@)ilt — m)

)x(t) + (In © B(@))f (x(t))
)9zt —724)) + (In @ D(i))

X /tooﬁ ot — s)h(:v(s))ds} + 227 ()

X (W(i) @ T60) (U © Q) |(Iv ® B(@))i(t - m,)
(IN ® A( )z(t) + (In @ B(i))f(z(t))

+ (v @ C(0)g(2(t — m2,)) + (In @ D(i))
(

< [ - ntetsis] + o O (W0 @ 1)
x (U®Q)(W(i) @ T(i)x(t). (36)

Noticing the relationships

A\/

+({Un®D

-

x (U®Q)
—-(In®A
+(In®C

==

(WO@POMU@@ N(W (i) @ (T($)Q),
(W(i) @ T(i)) (U ® Q) (W (i) @ (i)
= NW@HI*® (T(H)QT(i)),

we can infer from Lemma 1 that

T (U @ Q)i(t)
- ¥ [E(i)i(kz(f —71.0) — A(D)Xp (1)

1<k<I<N
+ B(i)fr(z(t)) + C(0)0y (t — 72,6)
t—T3,4 T
D(i) / ot — s)hk (s)ds} Q[E(i))'(kl(t —71)
A(i)Xpr (t) 4+ B(@)fri (x(t) + C(0)0y (t — 72,6)

D(i) /_t ot — )P s] 2N Y x

1<E<IKN
% w (D ()Q B0 (t = 71,6) — A0)xwa (1
+ B(i )szgE 2(t)) + C (1) (t — 72,0)
D) [ &wwmm>}

N> xGOwl) (P HQI(E)x (L),

1<k<I<N

(37)

Substituting (37) into (35) leads to

LV (wetiE= Y xh(E ) [Ta()

1<k<I<N

+ AT ()R1QA()] X (t, 1), (38)

7
where ¥, (7) is defined as
Ell(i) Elg(i) @izg 514(i) erg Elﬁ(i) X’i17
* —A; 0 0 0 0 0
* * -R 0 0 0 ,
* * * E55(i) 0 0
* * * —%S 0
* * * * * *1 —-Q
and

A(i)=[—A(i) B(i) 0 C(>i) 0 D(i) E()],

vualt,) = }h@) Tals) gh(t) ghlt -7 A
T

L T 8P (s)ds ua(t = 1)]

In terms of Lemma 4, (11) is equivalent to

\I/kl( ) + .AT( )HlQA(Z) <0 (39)
(1<k<I<N, 1<i<ng).
Let Po = max{)\mdx(\ljkl( )+AT( )KIQA ‘ 1< k<

I <N, 1<i<ng}. Obviously,py < 0 and it then follows
from (38) that

ZV(CCt, t, Z)

IN

Po Z Xgl (tv i)Xkl (tvi)

1<k<I<N

POZ

1<k<I<N

IN

|Xkl(t)|2. (40)

Therefore, we have
t,r(t)) t
=EV(x(0),0 T(O))—i—E/O LV (xz(s),s,r(s))ds

EV (x(?),

SEV(I(O) 0, T +p0 Z / E|Xkl |2d8 (41)

1<k<I<N

Sincepy < 0 andV (z(t), t,
(41) that

> /E|xkl )2ds < ﬂEV( (0), 0

1<k<I<N

r(t)) > 0, it follows readily from

,7(0), (42)

which implies that the integral 3> [, E|xu(s)[?ds <

1<k<I<N
—+00.

By Lemma 5, we have

> Exu()f =0,

1<k<I<N

lim
t——+oo

Ortlilf_gl E|zg(t) — 2,(t)]*> =0 for 1 < k <[ < N. In other
—+00

words, the system (8) is globally asymptotically synchzexi
in mean square. This completes the proof of the theoram.

The system (8) is rather general. In what follows, we
consider two special cases. In Case 1, we show that our
main results can be specialized to the synchronizationl@mob
for coupled system without involving the derivatives of the
past history (i.e.,E(r(t)) = 0), which reduces to a retarded
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* —A; 0 0 0 0
e * * Z33(1) 0 0 0
(i) = * * * -R 0 0 <0, (44)
* * * * Es55(1) 0
* * —%S
E1() PB(i)+ ALy 0% PC3) Q7Y PD(3) PE@G) —rA®G)Q
* —A; 0 0 0 0 0 VEIBT (i)
= * * * -R 0 0 0 VEICT (1)Q
o) = * * * * Zs5(1) 0 0 0 <0, (46)
* * * * * —aiiS 0 VEIDT (1)Q
* * * * * * -Q  RmET(i)
* * * * * * * -Q

functional differential equation. In Case 2, we considez thdefined as
same array of neural networks with discrete time-delay .only, = (i) E1(i) €8 Ew() EZir —RAG)Q

Case 1.In the case of(r(t)) = 0, the system (8) reduces 1>1k _A, 0 é 0 EBT(H)Q
tO E3 k 533(1) O O O
T (; )
(0) = ~(Iy ® AW(0)a(0) + (Iy © B () o T e
- 1
+(Un® C(T(t)))g(fﬂt(t — T2.i)) » » y . —Q
—T3,r(t)
+ (N ® D(T(t)))/i p(t —s)h(z(s))ds  and each symbol has its previous meaning ex@apti) =
FU(t) + W(r(£) @ T(r(t)(t). (43) éfgfg(i)—A(@PﬁPi—Nwm (i) (PL(@)+T(0)Pi) = (AiLa+
1441 ) -
For the system (43), the following result can be derived tase Remark 3:Notice that in the case d¥ (i) = 0 or I'(é) = 0
on Theorem 1. for all 4, the system (8) is uncoupled, and the dynamics

Corollary 1: Under Assumptions 1-3, the system (43) i®f each single neutral-type network is independent of the
globally asymptotically synchronized in mean square if¢heother networks. Hence, by means of Theorem 1, a sufficient
exist five positive definite matrice®,, P, Ps, R and S, and condition can be obtained to guarantee the global asyneptoti
three sets of positive definite diagonal matricks ©, and stability in mean square for each single neutral-type reura
Q;(1 < ¢ < ngp) such that the following LMIs (44) shown atnhetwork.

the top of the page hold forl <k <l < N, 1< i < ng, Corollary 3: Under Assumptions 1-3, the neutral-type neu-
where each symbol has its previous meaning exggpti) = ral network (1) is globally asymptotically stable in mean
—P;A(i)—A(#) P+ P;— Nwiy (i) (PT (1) +T () P;) — (A;L1 + Square if there exist six positive definite matrices, P,
0,51 + Q;T1). P, @, R and S, and three sets of positive definite diagonal
Case 2.In this case, withD(r(t)) = 0, the system (8) is matricesA;, ©; and;(1 < i < ng) such that the following
simplified as LMIs (46) shown at the top of the page hold for< i < ny,

where each symbol has its previous meaning exggpt:) =
i(t) = (In @ E(r(t)a(t — m0)) — (In @ A(r(£)))a(t)  —PA@G) — A(D) P, + Pi — (AiL1 + 021 + QT1).
+ (In ® B(r(t))f(z(t)) + (In ® C(r(t))) Remark 4:In this paper, the synchronization problem is
X g(x(t — 79.4)) + u(t) dealt with for a new class of continuous-time neural network
8 of neutral-type with Markovian jumping parameters as well
+W(r(t)) @ T(r(t))z(t). (45)  as mode-dependent mixed time-delays. Note that the mixed

For the system (45), the following result is readily avaiab time-delays comprise both the discrete a_”d d_istribgted;d;el
.that are all dependent on the Markovian jumping mode.

Icﬁ)ﬁ?”?gi; 'Ejor;idczrll A:Srl:(r:?]?gg;z dlgg’;lgznszsf;?e(ﬁraﬁ'he novelty of the main results is fourfold: 1) due to the
g y asymp y Sy q consideration of the mode-dependent neutral delays, some

exist five positive definite matrice$;, P, P, Q, R and R, . . )
and two sets of positive definite diagonal matricés and novel analysis techniques are developed to tackle thetirggul
0:(1 < i < n) such that the following LMIs mathematical difficulty; 2) a new Lyapunov functional is pro
At == g posed to account for the Markovian jumps of the delay bounds;
$pu(i) <0 3) a unified framework is established to handle the Markovian
B jumping parameters, neutral terms and mixed time-delays;
hold for 1 < k <1 < N, 1 < i < ng, where® (i) is and 4) the main results established in Theorem 1 contain all
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the information of the considered coupling neural networkand the delayed kernel function is given bys) = e=3°. It
including physical parameters, Markovian jumping rates this not difficult to verify that

discrete time-delay as well as bounds on the distributed-tim

delays. In the next section, a simulation example is pravide Ly =%, =T, = diag{0, 0},

to show the usefulness of the proposed stability conditions Ly = %y = Ty = diag{—0.3, 0.2}.

V. AN With the parameters given above and by using the Matlab
' UMERICAL EXAMPLE LMI toolbox, we solve the LMI (11) and obtain the following

In this section, we present a simulation example so as 'gsible solutions:

iIIustrgte the usefulness of our main re_sult;. Our aim is t% [ 07524 —0.0691 py_ | 13868  —0.1239
examine the global asymptotic synchronization of the syste’! = | —0.0691 1.0418 |’ “2~ | —0.1239 1.3968 |’
(8) in mean square. o [ 07541 —0.0940 [ 00020 —0.0004
Consider a system coupled by four identical second-ordé? = | —0.0940 1.2698 |’ @ =] —0.0004 00037 |’
neutral-type neural networks with network parameters rgive { 21168 0.0213 } 6 [ 0.1123  —0.0000 }

as follows: ~ | 0.0213 1.5872 —0.0000  0.1123
5 92 3 A1 = diag{6.4715, 5.9952}, ©; = diag{21.9896, 18.3192},
M= 4 -5 1 |, A1) = [ (1) _8 5 } 7 Q1 = diag{7.0265, 6.7963}, A» = diag{7.4679, 7.5336},
2 4 —6 ' O, = diag{22.4617, 18.5736}, Q2 = diag{6.8619, 6.5830},
B(1) — 03 02 o) — 0.3 —0.1 As = diag{7.0148, 6.7889}, O3 = diag{21.9830, 18.3069},
W=102 —01 | “W=1 54 01 |* 2 =diag{7.0304, 6.8070}.
D(1) = [ 83 _OO; } , E(l)= [ 81 O(')l } , Therefore, it follows from Theorem 1 that the system (8)
L ' ' with given parameters is globally asymptotically synclized
A(2) = 10 ] . B(2) = [ 04 0.2 } 7 in mean square. The numerical simulation further confirms
L 0 —04 _ ) 0.2 -02 J the theoretical results. Fig. 1 and Fig. 2 display the evmfut
C(2) = 02 —-04 D) = 02 -04 of the states of the first neutral-type neural network withou
102 02 |’ L0 02 |7 coupling and with coupling, respectively. Fig. 3 shows tihat
(01 01 A |10 synchronization erroerr(t) approaches zero as— oc.
E@2) = 0.1 0.1 |’ (3) = 0 —05 |° Remark 5: It is worth to pointing out that the example given
(02 0 C 02 03] above is non-trivial. Note that the system matrxr(¢)) of
B(3) = 02 —02 | C(3) = 03 0 | the single network is unstable, which results in the inditgibi
- T - - of either single network or coupled system. This can also be
D(3) = 0.1 -0.2 . EQ3) = { 01 0.1 } , observed from Fig. 1 and Fig. 2. Nevertheless, as shown in
| 0.1 0.2 0 01 Fig. 3, the coupled system is synchronized. The numerical
simulation is in complete accord with the theoretical resul
-7 3 2 2]
3 -8 2 3
W= 49 o 6 2 |
2 3 2 -7 | )
S - : 3
2 -6 2 2
We =13 2 7 2 |
|2 2 —6 |
[ -8 3 3 2 Fig. 1. State Evolution of Single Network Without Coupling.
3 -7 2 2
WE=13 2 7 2 |
2 2 2 —6

(1) = diag{4, 3}, T(2) = diag{3, 3},
F(3) = dlag{47 4}7 T1,1 = 23 72,1 = 7,
731 =12, T120=1, 792 =06, 132 =1,

Ti,3 =3, 23 =6.5, 133 =0.8.

The activation functions are taken as follows

f1(s) = g1(s) = h1(s) = tanh(—0.6s),
f2(s) = ga(s) = ha(s) = 0.4 tanh(s),

Fig. 2. State Evolution of Single Network in Coupled System.
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Fig. 3. State Trajectory of the Synchronization Error.

V. CONCLUSIONS

In this paper, we have investigated the synchronization
problem for an array of linearly coupled neutral-type néur&t!
networks with Markovian jumping parameters and mixed time

delays. The discrete time delays are mode-dependent, and

tributed time delay is unbounded with mode-dependent upper

bound. By utilizing a novel Lyapunov-Krasovskii functidna
and the Kronecker product, we have shown that the addres
synchronization problem is solvable if several linear imatr

inequalities (LMIs) are feasible. A unified LMI approach
has been developed to establish sufficient conditions fer tf21]
coupled neural networks to be globally synchronized in mean
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