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Abstract 

Climate change is a global issue and the effects on fish populations remain 

largely unknown. It is thought that climate change could affect fish at all levels of 

biological organisation, from cellular, individual, population and community. This 

thesis has taken a holistic approach to examine the ways in which climate change 

could affect fish from both tropical, marine ecosystems (Great Barrier Reef, 

Australia) and temperate, freshwater ecosystems (non-tidal River Thames, Britain).  

Aerobic scope of coral reef fish tested on the Great Barrier Reef was 

significantly reduced by just a 2°C rise in water temperature (31, 32 and 33°C, 

compared to the current summer mean of 29°C) due to increased resting oxygen 

consumption and an inability to increase the maximal oxygen uptake. A 0.3 unit 

decline in pH, representative of ocean acidification, caused the same percentage loss 

in aerobic scope as did a 3°C warming. Interfamilial differences in ability to cope 

aerobically with warming waters will likely lead to changes in the community 

structure on coral reefs with damselfish replacing cardinalfish. 

Concerning Britain, there is evidence of gradual warming and increased 

rainfall in winter months over a 150 year period, suggesting that British fish are 

already experiencing climate change. It was evident from an analysis of a 15 year 

dataset on fish populations in the River Thames, that cyprinid species displayed a 

different pattern in biomass and density to all the non-cyprinid fish population, 

suggesting that there will be interfamilial differences in responses to climate change. 

Using a Biological Indicator Approach on the three-spined stickleback, Gasterosteus 

aculeatus, a 2°C rise in water temperature resulted in a stress response at the cellular 

and whole organism level. A 6°C rise in temperature resulted in a stress response at 

the biochemical level (higher cortisol and glucose concentrations), cellular level 

(higher neutrophil: lymphocyte ratio) and whole organism level (higher ventilation 

rate and lowered condition factor, hepatosomatic index and growth). G. aculeatus is 

considered to be temperature tolerant; therefore these results indicate that climate 

change may prove to be stressful for more temperature-sensitive species.  This study 

has demonstrated that climate change will have direct effects on fish populations, 

whether they are in temperate regions such as Britain or in tropical coral reefs, but 

with strong interfamilial differences in those responses.  
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Chapter 1. Introduction 

 

1.1 Climate Change 

 

Climate change is one of the biggest threats to ecosystems and yet despite 

much scientific research and media interest, the responses of ecosystems remain 

largely unknown. The Intergovernmental Panel for Climate Change (IPCC) defines 

climate change as: 

 ‘A change in climate that is attributed directly or indirectly to human activity that alters 

the composition of the global atmosphere and that is in addition to natural climate 

variability observed over comparable time periods’.  (IPCC, 2007). 

Human activity, particularly the burning of fossil fuels for energy, has 

escalated since the industrial revolution. The burning of fossil fuels produces vast 

quantities of carbon dioxide (CO2), which is also a naturally occurring greenhouse 

gas. Without CO2 our climate would be around 30°C colder (FSBI, 2007) and so at 

natural levels, greenhouse gases are essential for life as we know it. However, since 

man’s dependence on fossil fuels, CO2 concentration in the atmosphere has increased 

from 280ppmv (parts per million by volume) to 385ppmv (Soloman et al., 2008), 

with all greenhouse gas emissions having increased by 70% between 1970 and 2004 

(IPCC, 2007; Guinotte & Fabry, 2008). This concentration of CO2 is not thought to 

have been experienced in the last 650,000 years. Not only is the amount of 

greenhouse gases in the atmosphere increasing, the rate of increase is also the fastest 

seen at any time in the last 10,000 years (FSBI, 2007; IPCC, 2007). Greenhouse 

gases such as CO2 and methane (CH4) affect the absorption, scattering and emission 

of radiation within the Earth’s atmosphere and as a result are changing our climate. 

Today there is evidence from all continents and most oceans that natural systems are 

being affected by regional changes in climate, such as gradual warming over time 

and ocean acidification (EEA, 2012; IPCC, 2007). Predicting the consequences of 

climate change is one of the biggest and most important challenges facing scientists. 

Models have been used to predict the effects of different scenarios of CO2 emissions, 
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which depend largely on population growth and economic development. At present 

there is a movement to become ‘greener’ and more eco-friendly, with other sources 

of energy such as renewable and nuclear energy receiving more attention. However, 

even with a complete cessation of CO2 emissions, changes in the climate will still be 

seen for the next 50 years due to the inertia in the climate system (FSBI, 2007; 

IPCC, 2007). 

By applying the Atmosphere-Ocean General Circulation Model (AOGCM), 

the IPCC has defined four main scenarios for climate warming, as described in the 

Special Report for Emissions Scenarios (SRES) (IPCC, 2007). These four scenarios 

(A1, A2, B1 and B2) take into account the possible changes in lifestyle, economy 

and technology over the next 100years.  A1 describes a world where there is rapid 

population and economic growth, with the sub-scenario A1F1 describing a global 

community reliant on fossil fuels, resulting in the greatest warming. A2 describes a 

heterogeneous world with population expansion combined with slow economic 

growth and technological development. B1 describes a convergent world with high 

population growth with the economy shifted to service and information industries. 

B2 describes a lower population growth rate with emphasis being on local solutions 

to economy and environmental sustainability. Figure 1.1 shows that even under 

predictions of relatively lower emission scenarios (B1 & B2) there will still be 

increases in temperature, whereas the highest increases in temperature would occur 

in the A1F1 scenario (IPCC, 2007). The IPCC has not attributed any likelihood to 

the above scenarios. Predicitions on the exact nature of how climate will vary are 

difficult due to the inherent uncertainity in population growth and how society will 

function and therefore uncertainity in future carbon emissions.  

Air temperature is the primary controlling factor governing water 

temperature in rivers and oceans. Air temperature has increased by approximately 

0.06°C per decade over the last century (Daufresne et al., 2003), with 2 main periods 

of warming between 1910-1945 and 1976 onwards (IPCC, 2007) with the decade 

2002-2011 being 0.8°C warmer than pre-industrial levels (EEA, 2012). Models for 

future air temperature predict a rise of between 1.1-6.4°C globally (EEA, 2012) 

resulting in an increase of 2-4°C in Britain (EEA, 2012; FSBI, 2007) and a 1-3°C in 

tropical regions such as the Great Barrier Reef over the next 50-100years (Lough, 

2007).  
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Figure 1.1. Predicted global surface temperature increases  for the early (2020-2029) 

and later (2090-2099) 21st century relative to the period 1980-1999 under three SRES 

emissions scenarios (A2 [top], A1B [middle] and B1 [bottom]) based on the 

Atmosphere-Ocean General Circulation Models (AOGCMs) (IPCC, 2007). 

 

Climate change is a truly global issue which will impact all oceans and 

landmasses. However, some regions will be more severely affected than others and 

some ecosystems will be more sensitive to changes in their environment. Changes in 

climate are predicted to be more pronounced towards the poles and high latitudes 

(FSBI, 2007; Rombough, 1997) and so it is anticipated that Britain will be 

significantly affected (FSBI, 2007). The main effect will be a warmer climate caused 

by the build-up of greenhouse gases trapping the heat energy from the sun. There is 

already strong evidence that the climate of Britain is changing. Central England was 

0.5°C warmer in the 1990’s compared with the 1961-1990 average and temperatures 

are predicted to continue to rise (Graham & Harrod, 2009). Research on the 

ecological effects of climate change in Britain has focused on terrestrial animals, and 

shows a general movement into northerly latitudes (Crick et al., 1997) and 

phenological changes such as earlier breeding seasons (Crick et al., 1997), earlier 

migration timing in birds (Crick, 2004) and earlier first appearances of butterflies 
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(Roy & Sparks, 2000). Fish, however, will be exposed to different environmental 

parameters to land-based animals. Freshwater fish are constrained by their 

environment (Daufresne et al., 2003) and so cannot move to different locations if 

conditions become unfavourable where they are, which marine fish can do, at least to 

some degree. It is thought that the impact of climate change will be greater on 

freshwater species than marine, especially those in northerly latitudes (FSBI, 2007). 

Fish inhabiting rivers are already under pressure from an array of factors such as 

pollution from urbanisation, chemical contaminants, sewage effluent and blocked 

migratory channels caused by weir construction. Climate change will exacerbate the 

current anthropogenic stresses (IPCC, 2007; Mulholland et al., 1997), making 

responses of fish more complex and difficult to predict. Few studies on the 

consequences of climate change have focused on freshwater fish, possibly due to the 

complex nature of such a study, but it is in these environments where the impact 

could be most dramatic. The responses of freshwater fish to these higher 

temperatures and other climatic changes are largely unknown. Given that freshwater 

fish are predicted to fair worse than marine species, it is important to investigate and 

understand the implications, primarily of warming waters, on freshwater species 

inhabiting British rivers.  

Similarly to Britain, there has already been a warming of 0.4°C in the 

average sea-surface temperature around the Great Barrier Reef (GBR) off the coast 

of Australia (Lough, 2007). Tropical regions, such as the GBR, will experience less 

dramatic temperature changes than British rivers; however the fish that live in these 

regions have evolved under a steady environmental regime. Whilst rivers are a very 

dynamic environment, coral reefs only grow in very specific conditions of ocean 

chemistry, salinity and temperature. These conditions have not changed dramatically 

in the last half a million years (Hughes et al., 2003) and therefore the organisms 

living here are not adapted to cope with large fluctuations in environmental 

conditions (Guinotte & Fabry, 2008). Consequently, it is possible that although the 

environmental changes will be smaller, the responses may be of a similar magnitude 

to those of fish in temperate regions.  
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1.2. Predicted changes to the reef environment 

 

The Great Barrier Reef (GBR) is a World Heritage Site that is protected as 

part of the Great Barrier Reef Marine Park. The Marine Park has a total area of 

350,000km
2
, with over 2900 separate coral reefs (Wachenfeld et al., 2007).  The 

GBR is extremely important in terms of its cultural and socio- factors and has been 

used by the aboriginal people earlier than recorded history. Today, the GBR brings 

in huge amounts of money to the Australian people. Tourism on the GBR brings in 

$6.1billion annually; commercial fishing contributes $119 million and recreational 

fishing a further $640 million annually, accounting for over 64,000 jobs in the 

marine park area (Wachenfeld et al., 2007). Therefore, aside from the obvious 

ecological point of view, a loss of both coral and fish diversity would drastically 

reduce the income to the area and so it is important to understand how climate 

change may alter the reef biome. There are many anticipated changes to this region, 

all of which will pose a significant stress on the ecosystem. A change in river flow, 

which may alter the sediment load onto the reef, has been predicted. The frequency 

and intensity of tropical cyclones is anticipated to increase, with more category 5 

cyclones. These intense cyclones are extremely damaging to anything in their path, 

including coral reefs, and can destroy vast areas of reef that have taken thousands of 

years to develop. Sea-level rise is another potential threat to coral reefs, as corals 

need to be in well-lit surface waters in order for photosynthesis to take place. 

However it is thought that the GBR is less vulnerable to moderate sea-level rise than 

other stressors, since the rate of coral growth is currently higher than the predicted 

rises in sea-level (Hoegh-Guldberg et al., 2007a). Warming of sea-surface water 

temperature is possibly the biggest threat, along with ocean acidification, both of 

which threaten to weaken the actual structure of the reef and therefore remove 

habitat for all the other reef organisms, such as fish. Increases in the atmosphere CO2 

concentration were responsible for the Paleocene-Eocene Thermal Maxima (PETM) 

that occurred 55 million years ago (Guinotte & Fabry, 2008). At this time, a rapid 

release of CO2 led to warming and ocean acidification that was thought to be the 

main driver in the mass extinction of coral reefs. It has taken global coral reefs 

millions of years to recover, yet the anthropogenic inputs of CO2 to the levels seen in 

the PETM are set to occur within the next 300 years. Therefore it is important to 

understand how the reefs of today will cope with the predicted changes in climate. 
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1.2.1. Temperature 

 

The temperature fluctuations over a normal annual cycle on the Great Barrier 

Reef are between 22°C in winter in the south and 29°C in summer in the north 

(Lough, 2007). This variation is very small compared to the mean annual range of 

temperatures that a temperate freshwater fish might encounter, e.g. 5-18°C (Johnson 

et al., 2009).  In lower latitudes (i.e. the north) of the GBR, such as Lizard Island, the 

mean annual temperature is 28.9°C but the annual range is only 4.8°C (Gardiner et 

al., 2010). Based on the 1961-1990 average, there is a predicted increase of 1.1-

1.2°C in SST on the GBR by 2050. Along the coast of Queensland, the number of 

extreme days (air temperature above 33°C) is set to increase from 16 to 59 days 

annually (Lough, 2007).  

Corals in particular are very sensitive to changes in temperature, particularly 

to increases in temperature. Although hard, stony structures, coral is in fact an 

animal and it has a symbiotic relationship with dinoflagellate protists 

(Symbiodinium), also commonly called zooxanthellae (Hoeugh-Guldberg et al., 

2007b). The zooxanthellae provide the coral with sugars, amino acids and lipids 

through photosynthesis. In return they receive a rich supply of inorganic nitrogen 

and phosphorus from the host, in what would otherwise be a low-nutrient 

environment. However, in times of stress, such as when temperatures surpass the 

tolerance zone for corals, the endosymbiotic relationship between the animal and the 

zooxanthellae breaks down, resulting in a loss of the symbionts. Since it is the 

zooxanthellae that is pigmented and gives the corals their colour, the expulsion of the 

symbiont leads to what is known as coral bleaching (Figure 1.2). Without the 

zooxanthellae, the coral will eventually die and the skeletal structure that remains 

will slowly break down. 
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Figure 1.2. Photograph of staghorn coral with has undergone extensive coral bleaching 

due to warming waters on the Great Barrier Reef. 

 

Mass coral bleaching has been reported for the last 70 years. However, as 

waters have warmed over recent decades, corals have been pushed closer to their 

upper thermal limits (Hoegh- Guldberg et al., 2007b). As a result, these mass coral 

bleaching events are occurring ever more frequently and over larger areas, and have 

been reported with only a 1-2°C increase in surface waters (Hoegh-Guldberg, 1999). 

The most widespread coral bleaching event took place in 1997-1998 and was thought 

in large part to be due to warmer waters due to an El Niño event (Nystrom et al., 

2000) and resulted in mortality of 16% of the world’s reefs (Hughes et al., 2003).  If 

the stress event is short-lived, corals have demonstrated the ability to recover their 

symbiotic relationship with the dinoflagellates and regain pigmentation. However, if 

the stress is as chronic as it predicted with climate change, corals are unlikely to 

recover on a mass scale. There has been some speculation as to whether corals can 

adapt by changing the composition of the types, or rather clades, of symbiodinum 

that they hold in their tissues. So far, seven clades of zooxanthellae have been 

recognised and some have greater tolerance to warmer waters. If corals did have the 

ability to take up more resilient clades of symbionts, then it is thought that mass 

coral bleaching events would be reduced. However, corals are long-lived species and 
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therefore it is generally accepted that they will not be able to evolve quick enough to 

the changes in climate and associated warming waters (Hughes et al., 2003). A great 

deal of research to date on climate change and the coral reefs of the world, in 

particular those of the Great Barrier Reef has focussed on the corals and coral 

bleaching. This is not surprising given that it is the coral that is, quite literally, the 

bedrock of these ecosystems. Since the coral is the substrate and structure of the reef, 

decreases in coral cover and complexity affect the whole ecosystem, and the health 

of the reef is often estimated by the percentage of bleached corals. With climate 

change, the occurrence of mass coral bleaching events is predicted to increase as 

waters warm.  

However, increases in temperature are likely to adversely affect many more 

organisms on the reef. The coral reef ecosystem is made of several related biomes, 

for instance mangroves and seagrass beds (Guinotte & Fabry, 2008). These biomes 

are important nursery grounds for many reef fish and so a loss of habitat here as well 

as on the main reef itself will likely impact many reef fish. Given that coral reefs and 

their associated fish have evolved in a very steady environment, it is likely that they 

have smaller thermal ranges than temperate fish. It is also thought that the recent 

warming has already pushed many species closer to their upper thermal limit and so 

even small additional increases in temperature may prove to be stressful for a whole 

range of coral reef fish. 

 

1.2.2. Ocean Acidification 

 

The atmosphere and surface ocean are tightly linked, and therefore increases 

in atmospheric CO2 will also result in increases in oceanic CO2, with concomitant 

declines in ocean pH. Given that a whole unit decrease in pH is equivalent to a 10-

fold increase in acidity (Guinotte & Fabry 2008), this phenomenon is termed ‘Ocean 

Acidification’. Since the beginning of the industrial revolution, increases in 

atmospheric CO2 concentration are occurring at a rate 100 times faster than has been 

seen in the last several million years, and this has been altering ocean chemistry 

(Feely et al., 2004). Over the last 250 years, it is thought that the pH of the surface 

oceans has dropped by 0.1units (Guinotte & Fabry, 2008) and it is predicted to 
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decline up to 0.25units by 2050 and 0.4units by 2100 (IPCC, 2007). Although this 

change might sound insignificant, it is in fact considerable, given that the oceans 

chemistry has been stable for the last 400, 000 years (Hughes et al., 2003). At 

present, anthropogenic production of CO2 is approximately 5.0-7.6Gt C yr
-1

 and the 

oceans absorb about 30% of this CO2 (Feely et al., 2004; Kurihara et al., 2004). This 

makes the oceans one of the most important carbon sinks. Oceanic absorption of CO2 

from fossil fuels may result in larger pH changes over the next several centuries than 

any inferred from the geological record of the past 300million years (Caldeira & 

Wickett, 2003).  By the end of the century, atmospheric CO2 is expected to have 

reduced ocean pH from 8.0 to 7.8 pH units. Past oceanic pH has been reconstructed 

based on the levels of isotopic boron levels in fossilised carbonate shells in marine 

organisms which fluctuate with ocean pH. Over the last 300 million years, the 

oceans pH has never been shown to be less than 0.6 units below today’s levels, 

therefore these relatively small decreases may be extremely significant for many 

marine organisms. There have been some extreme predictions of a pH decline by 1.4 

by 2300 (Orr et al., 2005).  However, it is likely to be less, due to changes in 

temperature, weathering and sedimentation, which may act as buffers (Caldeira & 

Wickett, 2003). It is the capacity of the oceans to buffer changes in ocean chemistry 

thus far that has meant that the threats of ocean acidification were long overlooked.   

Once CO2 is absorbed into the oceans, the carbon becomes involved in a 

series of complex reactions and is controlled by the Biological Pump (Figure 1.3). 

The Biological Pump is the movement of CO2 from the atmosphere to the deep 

ocean floor though a series of biological processes. The metabolism of organic 

(photosynthesis and respiration) and inorganic (precipitation and dissolution of  

calcium carbonate, CaCO3) carbon absorbed by the oceans are the two major 

biological processes controlling the biogeochemical carbon cycle of marine 

ecosystems (Feely et al., 2004). Carbon is drawn into the deep ocean by the passive 

export of organic carbon and carbonates by gravity or the vertical migration of 

zooplankton. Due to the pycnocline (a boundary layer created by differences in 

density between the surface and deep waters), carbon is accumulated in the deep 

ocean and unable to exchange gases into the atmosphere. However, as the ocean 

warms, the stratification between the deep and surface water will increase, which 

will reduce the downward flux of carbon into the deep ocean. At the same time, the 
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atmospheric CO2 absorbed by the ocean is increasing and is trapped in the surface 

waters (Kurihara et al., 2004). The absorption of carbon in ocean surface waters 

could increase the dissolved inorganic carbon concentration by 12%, and 

simultaneously cause the carbonate ion concentration to decrease by 60%. 

 

 

Figure 1.3. Diagram of the Biological Pump depicting transport of carbon from surface 

water to deep waters.  http://www.msrc.sunysb.edu/octet/biological_pump.html 

Under normal pH (around 8. pH units), bicarbonate is the predominant form 

of carbon. However, as the pH of the water decreases, there is a shift towards free 

CO2 being the predominant form of carbon (Knutzen, 1981). Therefore as pH 

declines there is also a decline in the carbonate ion concentration. Carbonate ions are 

extremely important, as they are used to make calcium carbonate (CaCO3), which is 

used for skeletal structures by many marine organisms, such as corals, plankton, 

echinoids and also for otoliths in fish. The carbonate of calcified tissue mainly 

occurs in 2 crystal forms: calcite and aragonite. Under normal conditions calcite and 

aragonite are stable in surface waters, since the carbonate ion is in a supersaturated 

state.  
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Animals using calcium carbonate will be most affected by increases in 

atmospheric CO2 concentration (Caldeira & Wickett, 2003; Shirayama & Thornton, 

2005), as calcification is controlled by the saturation of seawater with aragonite 

(Reynaud et al., 2003). The main aragonite producers are reef-building corals and 

planktonic pteropod and heteropod molluscs (Feely et al., 2004). The effects of 

elevated CO2 and therefore declines in carbonate saturation values will have 

profound impacts on calcification rates for many species of CaCO3 shell-forming 

organisms. The consensus is that the calcification rate will decrease by 11-32% by 

2100 (Gattuso et al., 1998; Leclercq et al., 2002). Recent studies have shown that 

dissolution of carbonate tests (i.e. when the carbonate shells dissolve) of plankton 

occurs at a much shallower depth than first thought, and 60-80% of dissolution 

occurs in the top 1000m. Dissolution of CaCO3 will probably increase as the waters 

become increasingly under-saturated over time (Feely et al., 2004), and marine 

animals that utilise calcium carbonate will become more vulnerable. 

Corals have so far received more attention than other organisms due to their 

high dependence on calcium carbonate and low tolerance to temperature changes.  

Calcification rates of scleratinian corals are predicted to decrease by 50% by 2100 

(Reynaud et al., 2003) as a result of a decrease of aragonite saturation state (Ω) 

(Leclercq et al., 2002).  Corals have also displayed little ability to acclimatize and so 

are at great risk from global increases in pCO2 (Leclercq et al., 2002).  Although pH 

will affect coral reefs, it is thought that coral skeletons are better protected against 

acidification than other carbonate skeletons and shells of animals. Photosynthesis of 

zooxanthellae makes the daytime microenvironment less acidic and the outer layer of 

living polyps protects against leakage of calcium (Glas et al., 2012). Despite this, 

coral reef ecosystems are negatively affected by the increases of both temperature 

and pCO2. However, under all scenarios of climate change, the increased CO2 will 

likely reduce the oceans aragonite saturation value to below 3.0, which is not thought 

to be high enough to prevent a net dissolution, and therefore a breakdown of the reef 

structure (Hoegh-Guldberg et al., 2007a). Corals have received the most attention so 

far, but they will not be the only marine organisms to be affected increased 

atmospheric CO2 (Orr et al., 2005).Ocean acidification is therefore a real threat to 

the structure of the reef and all the organisms that depend upon the reef for shelter or 

food.  
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1.3. Predicted changes to the river environment 

 

Where rivers are concerned, alterations in water temperature, flow rate and 

dissolved oxygen content are all likely as a result of warmer air temperature and 

altered rainfall patterns. The residual inertia in our climate systems means that 

changes will be seen over the next half a century even if emissions of CO2 stopped 

now, and this will surely impact ecosystems and biodiversity (FSBI, 2007). 

Therefore we can expect to see changes in the fish communities of rivers over the 

next 50 years (FSBI, 2007). The question is which species will adapt and what will 

be the implications of these changes to mankind. 

Warmer climates and altered precipitation patterns will change the river 

systems in England. Alterations in river temperature, dissolved oxygen concentration 

and flow rate pose the greatest challenges and threats to the organisms inhabiting the 

river. These three properties are related and so may act synergistically, or changes in 

one may confound changes in another. 

 

1.3.1 Temperature 

 

Water temperature is positively correlated with air temperature and with a 

predicted increase of 2-3.5°C in air temperature in the south-east of Britain (FSBI, 

2007); the River Thames is likely to experience warming this century. Water 

temperature predictions have been produced in the past from a simple linear 

relationship with air temperature (Eaton & Scheller, 1996). However, due to 

evaporative cooling at temperatures higher than 25°C, an S-shaped relationship is 

now employed (Mohseni et al., 2003; Webb & Walsh, 2004). The S-shaped function 

means that when higher than 5°C, water temperature will increase almost linearly 

until 25°C, but past 25°C, water temperatures plateau and are unlikely to continue to 

rise with increasing air temperature.  

Under a high CO2 emissions scenario, there could be a global rise in 

atmospheric temperature of 6°C by 2080 (IPCC, 2007). However, a rise of 4°C by 

2080 could occur in the south-east of Britain (FSBI, 2007), with the temperature of 
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the River Thames predicted to increase by 3.5°C or more (Webb & Walsh, 2004). 

These temperature increases will be seasonal (Mohseni et al., 2003), with a predicted 

rise of 1.6°C in summer and 1.8°C in winter by as early as 2050 in the south-east of 

Britain (Arnell, 1998). Increases as high as 3°C in winter would bring the current 

winter temperature to 8°C and an increase of up to 5°C in summer would give a 

mean temperature of 22.5°C by 2080 (Johnson et al., 2009). All these water 

temperatures are below the 25°C threshold, and so river temperature increases are 

thought to be linearly related to air temperature.  

Additional or confounding factors such as precipitation, groundwater inputs, 

riparian cover and domestic and industrial effluents will also lead to variations in 

river water temperature. Precipitation is predicted to decrease by an average of up to 

15% annually in Britain (FSBI, 2007). Winter precipitation rates will likely be 

higher, but there will be a marked reduction in summer rainfall, and so summer 

flows may decline by as much as 50% in the south-east (Johnson et al., 2009). 

Waters may warm further with the additional risk of droughts. It may prove difficult 

to assess the effects of reduced summer precipitation due to the buffering effect of 

groundwater inputs, which are cooler than direct runoff from rain (Arnell, 1998). 

Therefore, areas just downstream from springs may provide localised areas of cooler 

water, which may be essential in the warmer summer months for fish. Conversely in 

the winter, the groundwater input will be warmer than the average river temperature 

and so provide warm water refuges (Mohseni et al., 2003). However, groundwater is 

also likely to increase in temperature as part of climate change, and so cold-water 

summer refuges may shrink (Mohseni et al., 2003; Shuter & Meisner, 1992). 

Riparian cover provides shading and thus cooling effects on rivers. This would help 

to ensure that rivers do not warm further, particularly with the added risks of 

decreased cloud cover and increases in solar radiation (FSBI, 2007), which in the 

summer may increase by 8-17% in the south-east (Arnell, 1998).  

The climate in Britain is governed by several ocean current and circulation 

patterns. The North Atlantic Oscillation controls the strength and direction of 

westerly winds, strongly influencing weather, particularly in winter (FSBI, 2007). 

The North Atlantic Current, a continuation of the Gulf Stream, brings warmer water 

from the equator to the coast around Britain, creating a warmer weather system than 

there would be otherwise. Although the Gulf Stream is wind driven, the North 
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Atlantic Current is driven by the Thermohaline Circulation (THC), also known as the 

Meridonal Overturning Circulation (MOC). There are fears of drastic cooling in 

Britain and Europe if there were changes in these circulation patterns. However, 

changes to the MOC are considered to be very unlikely (IPCC, 2007). Conversely, 

the Gulf Stream may weaken, but this is still unlikely to cool Britain, as the predicted 

increase in temperature associated with the increase in greenhouse gases far exceeds 

the cooling power of a weaker Gulf Stream (FSBI, 2007; Graham & Harrod, 2009).  

The increase in temperature will dramatically alter the climate in Britain. In 

Britain, spring temperatures are likely to occur earlier in the year, possibly by 1-3 

weeks by 2050 (FSBI, 2007), with large implications for all manner of wildlife, from 

flowering plants, migrating birds and spawning fish. Summers will become hotter 

and drier (FSBI, 2007). The frequency of high temperature extremes will increase 

(EEA, 2012), with heat waves in May and July becoming more frequent and causing 

droughts (FSBI, 2007). Winter weather will be milder and last for a shorter period of 

time, with more rain, fewer very cold winters (EEA, 2012) and reduced snow fall 

(FSBI, 2007). 

 

1.3.2 Dissolved oxygen concentration 

 

Oxygen solubility in water is strongly temperature dependent (FSBI, 2007), 

so as temperature increases with climate change, the solubility and availability of 

oxygen is reduced (Arnell, 1998). The rate of de-oxidation is more sensitive to 

increasing temperature than is the rate of re-oxidation (Arnell, 1998), therefore 

oxygen is lost faster than it is replaced. Dissolved oxygen concentrations are also 

influenced by biogeochemical oxygen demands (BOD) (Arnell, 1998). Effluent 

which contains high BOD is likely to further reduce the dissolved oxygen 

concentration in rivers (Arnell, 1998). With population increases predicted for the 

future, this will place additional stress onto Sewage Treatment Works (STWs) to 

ensure effluent discharged into rivers is of an acceptable standard. This, coupled with 

warmer waters, could potentially reduce the availability of oxygen to levels which 

are detrimental to invertebrate and fish health. 
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The response of fish to reduced oxygen concentrations varies between 

species and also with different life stages (FSBI, 2007). Reductions in oxygen 

solubility will likely have multiple effects, such as on behaviour, reproductive 

success, predation risk and habitat use (FSBI, 2007). Raised temperature not only 

means water holds less oxygen, but it has a two-fold effect by increasing the 

metabolic rate of fish, thereby increasing demand for oxygen in the tissues (Pörtner 

& Knust, 2007). This is known as the Temperature-Oxygen Squeeze (Rombough, 

1997). This mismatch between supply and demand is the first mechanism to affect an 

animal’s tolerance to raised temperature, with implications for their growth and 

reproductive success (Pörtner & Knust, 2007).  

 

1.3.3 River flow 

 

River flow is principally controlled by the amount of water that an area 

receives, i.e. the amount of rain that falls. Currently, there are no long-term trends in 

the amount of annual precipitation that Britain receives (FSBI, 2007), making future 

predictions difficult. Predictions for precipitation vary depending on which model 

and scenario is used, and also human changes in habitat use may affect flows (Sefton 

& Boorman, 1997). Sefton & Boorman (1997) anticipated a 10% increase in annual 

rainfall in the south-east of Britain and up to a 20% increase in the north and west. 

Arnell (1998) predicted a 20% reduction in rainfall in the south-east. A more recent 

study predicts a 15% decline in annual rainfall in Britain (FSBI, 2007). What is 

generally accepted now is that there will be a marked change in seasonality of 

precipitation, with winter rates higher, and a marked reduction in summer rainfall 

(Arnell, 1998; FSBI, 2007; Johnson et al., 2009). Since there will be less cold 

extremes in UK winters, there will be less snowfall and snowmelt, possibly by up to 

as much as an 80% reduction (IPCC, 2007). This, combined with higher rates of 

evapo-transpiration in warmer weather, may lead to declines in flow (Mulholland et 

al., 1997). Summer is likely to fair much worse than winters, with runoff reduced by 

as much as 50% in the south-east due to reduced rainfall, increased evapo-

transpiration and increased storage in soils (Arnell, 1998; Arnell & Reynard, 1996). 

This will result in reduced flow rates of rivers in the south and east of England, 
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which are already flowing through ‘dry’ areas very susceptible to reduced rain 

(Arnell & Reynard, 1996). Even under wetter scenarios, flow rates in rivers are 

likely to decrease (Johnson et al. 2009). The south-east and the River Thames in 

particular will have lower flows than at present in all seasons, except winter when 

there may be an increase (Johnson et al., 2009; Sefton & Boorman, 1997). High flow 

events are also likely to decrease in all seasons, with their summer and autumn 

frequencies declining by as much as 50% (Johnson et al., 2009).  

Lower flow rates will lead to water staying in the river longer, resulting in 

longer residence times (FSBI, 2007; Johnson et al., 2009). Waters will warm more 

due to reduced flushing, exacerbating the problems of warmer air temperatures and 

further reducing oxygen solubility (FSBI, 2007). Pollutants, contaminants and 

nutrients will also build-up (Johnson et al., 2007), and so alterations in primary 

production and BOD will be expected (FSBI, 2007), thereby increasing the risk of 

eutrophication in British rivers. A lower flow rate therefore poses great threats to the 

wildlife inhabiting an already temperature-stressed environment. With less water 

available, habitats will be lost and so competitive interactions between fish may 

increase and lead to possible elimination of weaker species (Mulholland et al., 

1997). 

Alterations in the seasonal flow patterns may interrupt food chains (Nunn et 

al., 2003) and migratory patterns. Due to reduced flows causing multiple effects, it 

has been suggested that flow rates are more important than temperature in 

controlling the fish populations and biomass (Arnell, 1998, Nunn et al., 2003). 

However, the two factors are related to one another because a reduced flow rate will 

lead to higher water temperatures. 

‘Second-order’ effects of climate change, such as changes in agriculture and 

vegetation type, will influence river flows, as they may change soil moisture and 

alter loses through evaporation (Sefton & Boorman, 1997). The underlying geology 

of a river catchment will also influence how climate change alters a flow regime 

(Sefton & Boorman, 1997), and therefore each catchment will be individual and 

responses unique. 
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1.3.4. Big Events 

 

If climate model predictions are correct, Britain should brace itself for not 

only ‘wetter-milder winters’ and ‘ warmer-drier summers’, but also for more severe 

weather changes. It is anticipated that there will be an increase in intensity and 

frequency of extreme weather events (IPCC, 2007) such as flooding, heat waves and 

droughts. Whilst these events already occur in Britain, they may become part of the 

‘normal’ climate. Despite the fact that little is known about how freshwater fish will 

adapt to the general climate predictions of a warming world, even less is known 

about how they will respond to extreme weather events (Lake, 2003).  Likewise, in 

Australia, it is anticipated that there will be an increase in intensity of tropical 

cyclones and extreme warm days, which are likely to be damaging to the corals, 

which in turn affects the rest of the reef ecosystem. Tropical cyclones off the coast of 

Australia appear to have decreased in frequency from the 1970s to present, however 

their intensity and destructive power has increased. Tropical Cyclone Ingrid (2005) 

and Tropical Cyclone Larry (2006) were category 4 and 5, respectively, and caused 

large amounts of damage (Lough, 2007). Due to their close timings, there was less 

time for reefs to recover in between (Hughes et al., 2003). Tropical cyclones are 

predicted to be more intense with time, with greater maximum wind speeds and 

greater rainfall, which coupled with higher sea level could led to greater storm 

surges, affecting both reefs and land (Lough, 2007).  
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1.4. Responses of Fish to Climate Change 

 

1.4.1 Individual level responses 

 

 The impacts of climate change will affect fish at all levels of organisation: 

biochemical, cellular, individual, species, population, community and ecosystem 

(Figure 1.2). The responses will be varied, depending on life stage, species, and 

previous acclimation history. Most studies to date have examined the effects of 

warming at the species and population levels (Shuter & Meisner, 1992; Webb & 

Walsh, 2004); however, there is a distinct lack of information on the molecular and 

physiological responses. Temperature is the key parameter controlling many 

biological and behavioural processes and therefore considered of paramount 

importance in view of climate change (Magnuson & Destasio, 1997). While it is 

thought that warming will not produce water temperatures that will exceed the 

thermal tolerances of most fish (FSBI, 2007), prolonged raised temperature may still 

elicit a stress response. Stress can ultimately result in reduced reproductive output 

and susceptibility to disease (Adams, 1990). Studies have shown that even small 

increases in temperature can have detrimental effects on fish, such as on embryonic 

development (Rombough, 1997). The temperate three-spined stickleback, 

Gasterosteus aculeatus, when exposed to an increase in water temperature of 4°C, 

displayed a 60% reduction in population biomass (Moran et al., 2010). Whilst this 

study was central in demonstrating that even robust, temperate fish can be negatively 

affected by warming, it did not address the mechanisms behind this decline in 

biomass.  

Dhabhar (2002) defines stress as: 

A constellation of events comprised of a stimulus (stressor) that precipitates a 

reaction in the brain (stress perception) which subsequently activates physiologic fight or 

flight systems in the body (stress responses).  

Physiological stress responses are controlled by the Hypothalamus-Pituitary-

Interrenal Axis (HPI). When a fish is exposed to a stress, the hypothalamus in the 

brain produces the hormone, Corticotrophin Releasing Factor (CRF), which travels 

via nerves to the pituitary gland. Special cells of the pituitary gland then synthesize 
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and secrete a second hormone, Adrenocorticotrophic Hormone (ACTH), which 

travels to the interrenal tissue of the kidneys via the systemic blood system (Iwama 

et al., 2004). From this point, there are primary and secondary responses which lead 

to whole organism changes. These could also be termed biochemical, cellular and 

whole organism responses, all involved in allowing the organism to cope with the 

stress and regain homeostasis (Adams, 1990). The first or the Primary Stress 

Responses are concerned with the release of the stress hormones cortisol and 

epinephrine. Special proteins called Heat Shock Proteins (HSPs) are also rapidly 

synthesised at this stage (Iwama et al., 2004). The increased levels of cortisol in the 

blood lead to a Secondary Stress Response, an increase in plasma glucose level, to 

provide additional energy for protection against the stress (Silbergeld, 1974). These 

responses also lead to observable whole-animal changes, such as increased heart 

rate, breathing rate, altered behaviour patterns (Adams, 1990) and metabolic rate 

(Pörtner & Knust, 2007). Stress is adaptive in the short-run, but can be harmful when 

it is long lasting, with chronic stress lasting for weeks to months (Dhabhar, 2002). A 

stress response is an energy-draining process and chronic stress can mean energy is 

diverted away from processes such as growth and reproduction (Rice, 1990; Schrek, 

1990; Thomas, 1990) and can lead to individuals being susceptible to disease (Zarate 

& Bradley, 2003). 

Fish are routinely exposed to biotic (e.g. predation and competition) and 

abiotic (e.g. fluctuations in temperature, flow patterns, dissolved oxygen 

concentration, chemicals) stressors in the aquatic environment. One of the biggest 

threats to aquatic ecosystems today is thermal stress as a result of climate change. 

Most investigations on the effect of temperature stress have focused on acute stress 

at temperatures higher than predicted by climate change models (Brian et al., 2008; 

Currie et al., 2008; Perez-Casanova et al., 2008). Whilst informative of acute stress 

responses, they provide little ecologically significant data on how fish will respond 

to climate change. Fish are more likely to be exposed to chronic, sub-lethal levels of 

thermal stress which may still affect ultimate survival (Lucentini, et al., 2002).  
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Figure.1.2 Diagrammatic representation of a stress response from the individual level 

through to the community level. 
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1.4.2. Species level responses  

 

The effects of climate change have already been observed across the planet, 

with a study by Parmesan and Yohe (2003) demonstrating that 87% of phenological 

changes are occurring in the direction predicted by climate change. For example, in 

the northern hemisphere there has been a general movement of terrestrial animals 

into more northerly latitudes (Crick et al., 1997) and phenological changes such as 

earlier breeding seasons (Crick et al., 1997), earlier migration in birds (Crick, 2004) 

and earlier first appearances in butterflies (Roy & Sparks, 2000). Studies have also 

focused on the effects of climate change on the marine environment. There has been 

a rapid loss of coldwater species in the North Sea, such as the Atlantic cod, with 

warming waters; although fishing pressures on this species in particular is also a 

determining factor (Dulvy et al., 2008). However, research also shows that two-

thirds of fish in the North Sea have shifted either in their depth or latitude with 

warming (Dulvy et al., 2008). This movement into deeper water is at a mean rate of 

3.6m decade
-1

 (Dulvy et al., 2008), which is comparable to upward altitude 

movements of terrestrial animals (Parmesan & Yohe, 2003). Therefore similar 

responses to a warming world are being seen in the oceans as well as on land, 

providing greater confidence that fish in rivers may also be susceptible to climate 

change. However, coral reef fish and British freshwater fish have received little 

attention and so the responses remain largely unknown. Since freshwater fish are 

constrained in their environment, the consequences could be more dramatic 

(Daufresne et al., 2003). Climate change effects in freshwater ecosystems have been 

studied for the last 20 years in North America (Mohseni et al., 2003; Mulholland et 

al., 1997), and whilst some of the responses may be similar to what we may expect 

in Britain, there will probably be large differences due to the effects of the Gulf 

Stream. Recent attempts to understand the implications of climate change in Britain 

(Graham & Harrod, 2009; Johnson et al, 2009) have been instrumental in predicting 

general consequences on resources and providing preliminary predictions for a few 

key species (e.g. salmon, brown trout and roach). By and large though, British 

fisheries have scarcely been studied. Little is known about whether there has yet 

been any response to a warming world and what implications changes in climate will 

hold for rivers and the fish therein. Changes in the river environment, such as river 

flow rates, higher temperatures and reduced oxygen availability may all act as 
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stressors for fish. The effects may directly impact fish at the population level, for 

example high flow rates displacing larvae downstream and even out of the river into 

the estuary. Or the effects may be sub-lethal and more subtle, resulting in a stress 

response which may take quite some time to lead to declines at the population level. 

It is highly important to understand how likely it is that climate change will act as a 

stressor, and what the consequences of any climate induced stress responses will be. 

 

1.4.3 Community Level Responses to Climate Change 

 

Changes to habitats induced by climate change are likely, both for rivers and 

for coral reefs. On coral reefs, in some way or another, all fish are dependent on the 

coral, either as a food source, for protection or for supporting the smaller fish that 

larger fish prey upon. Some fish are obligate coral dwellers, some feed on the live 

coral and others prefer to settle into live coral, e.g. by hiding in amongst the branches 

for protection. Some species of fish are thought to be particularly vulnerable to 

bleaching events, with butterflyfish (Chaetodontidae), cardinalfish (Apogonidae) and 

gobies (Gobiidae) the most vulnerable (Munday et al., 2007). However, declines in 

community structure are evident even for those fish that are not dependent on coral 

in any way and therefore climate change, through bleaching effects, is likely to have 

negative effects on the assemblage of fish found on reefs. This is even before the 

increases in temperature have any effect on the fish directly and therefore fish living 

on coral reefs are thought to be particularly sensitive to climate change. Not only is 

their substrate and habitat going to be reduced, but the fish themselves have evolved 

in a highly thermally stable environment and are also thought to be living near their 

upper limit and therefore may be very sensitive to even small increases in 

temperature. 

Where rivers are concerned, riparian cover and catchment characteristics will 

play a part in regulating the effects of climate change (Webb & Walsh, 2004). 

Shadier parts of rivers may not warm as much as uncovered areas and so could be 

used by fish as cool water refuges in waters that are otherwise too warm. However in 

general, cold water species such as trout, salmon and grayling (Webb & Walsh, 

2004) face a dismal outcome. Habitats that are currently suitable for cold water 
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species may be lost (Mohseni et al., 2003) and distribution ranges may shrink (FSBI, 

2007).  As river temperatures increase, even with some localised cooling from 

riparian cover, essential summer cold water refuges will shrink (Shuter & Meisner, 

1992). Warmer waters may have negative effects on egg incubation and fry size, 

leading to increased overwinter mortality for some species (Webb & Walsh, 2004). 

Therefore it is highly likely that cold water species will experience unfavourable 

conditions with climate change, and reductions in abundance and diversity are 

expected to be seen. Whether any declines due to climate change are already 

occurring in British rivers is currently unknown.  

However, the majority of fish in Britain are thought likely to respond 

positively to warmer waters. Most fish species are well within their thermal limits 

(Arnell, 1998) and so for some species climate change may be beneficial. It may be 

that there will be an expansion in suitable habitat for cool and warm-water fish as 

river temperature increases, particularly in winter months (FSBI, 2007; Mohseni et 

al., 2003). Climate change may allow fish to spawn earlier in the year (Webb & 

Walsh, 2004), thus lengthening their growing season and so reducing overwinter 

mortality in the first year of life (Shuter & Meisner, 1992).   

The literature suggests that the River Thames may still be inhabited by fish 

under various climate change scenarios, but the population composition may change 

(Johnson et al., 2009). Only under extreme scenarios is the River Thames predicted 

to become too stressful for nearly all species (Webb & Walsh, 2004). Research 

conducted in the Rhône River, France, showed that as river temperature increased, 

northern cold-water species, such as chub and barbel, were replaced by more 

southern thermophilic species such as bleak and dace (Daufresne et al., 2003). It may 

be that similar changes have already occurred in the River Thames, but as yet this 

possibility has not been studied (Johnson et al., 2009). It is likely though that climate 

change will favour cyprinid and percid species such as perch, roach, bream and carp, 

while salmonid species will be lost (FSBI, 2007). Survival will depend on species 

ability to adjust to the new temperature and flow regimes, and with time some 

species may be able to adjust genetically to increase their thermal tolerance (Webb & 

Walsh, 2004). 
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1.4.4. Application of Bayesian Networks 

 

In order to predict how well fish in an ecosystem, for example the River 

Thames, will respond to climate change, it is important to understand the complex 

relationship between the physical environment and the fish, but also to include and 

appreciate the interactions between fish species themselves (Milns et al., 2010).  

Understanding the myriad of connections is problematic, to say the least. While 

many studies have focused on trying to identify the principal controlling factors, 

such as temperature or flow rate, the techniques of using traditional statistics may be 

missing key interactions.  

Bayesian Networks (BNs) are a relatively new technique but have proved to 

be highly successful for analysing ecological data sets (Dose & Menzel, 2004; 

Marcot et al., 2001; Milns et al., 2010). They may possibly have a greater power 

than traditional statistical techniques, such as Principal Component Analysis (PCA) 

and Multiple Linear Regression, which cannot easily make use of incomplete data 

sets (Dose & Menzel, 2004). Obtaining complete, long-term data sets is often very 

problematic for ecological systems.  BNs also understand and utilise variables that 

may be auto-correlated, for example water temperature and dissolved oxygen 

concentration, which is usually prohibited in linear regression and PCA (Shaw, 

2003). 

A BN is a model which is created based on the probable links between 

multiple variables, providing a wealth of information about the connections in 

complex data sets.  BNs utilise Ockham’s razor, which is the principle that when 

explaining ‘a thing’, no more assumptions should be made than necessary (Oxford 

English Dictionary). That is to say that the simplest explanation is usually the correct 

explanation. Using all the data available, a BN will rank the probability of each 

variable affecting another, and produces a model which uses the minimum number 

of variables necessary to explain the data (Dose & Menzel, 2004). The data set is 

tested rigorously by mathematical algorithms until a model is learnt that explains the 

data in its simplest terms. The resulting graphical network therefore only relates 

nodes (with each variable represented as a node) that are probabilistically and 

statistically related to each other by a causal dependency. Each node or variable can 

be either discrete (e.g. seasons) or continuous (e.g. biomass and density of fish). 
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Arrows connect each node, with the direction of the arrow indicating the direction of 

causality.  

 

Figure 1.3. Diagrammatic representation of a graphical Bayesian Network 

displaying three nodes (summer river flow rate, river temperature and density of 

juvenile fish) and arrows, which show the direction of relatedness.  

 

For example (Figure 1.3), summer river flow rate can be high or low. A high 

river flow rate can cause the river temperature to be lowered. High summer flow 

rates can also cause a reduction to the density of juvenile fish due to the flushing 

effects of high flows on small fish that are not strong enough to swim against the 

current. Low river temperatures can also result in a reduction in the density of 

juvenile fish by reducing growth rates and therefore making them more susceptible 

to predation and increasing the chances of overwinter mortality. 

Given that these networks provide information on the cause and effect 

relationships in a dataset, they are useful in their application of future predictions 

based on learnt models of past events. These networks have recently been 

successfully applied to various ecological data sets; for example, in effectively 

identifying known relationships between birds and their habitats in the Peak District 

National Park (Milns et al., 2010). In this study, 37 bird species, 6 vegetation groups, 

altitude, slope and path distribution data were applied to a Bayesian Network. The 

resulting network correctly identified the known relationships of habitat types and 

Summer River 
Flow Rate 

River 
Temperature 

Density of 
juvenile fish 
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birds and also the interspecific relationships between birds. Furthermore, the model 

provided novel insights into complex relationships between bird species that were 

not previously known. This study by Milns et al. (2010) showed the potential for 

using BNs to understand and interpret the complex interactions in ecosystems, and 

therefore their potential for understanding interactions between fish species and their 

future changing physical environment.   

Because the networks identify causal relationships, they allow predictive 

analysis of a data set. For example, once a network is learnt for a given data set, it 

can be manipulated to represent the forecasted physical conditions, for example, ‘wet 

and mild’ winters and ‘hot and dry’ summers. The BN should then be able to predict, 

through confidence based on known relationships, likely outcomes on fish biomass 

and density, from whole community to species-specific effects. It can also take into 

account the dependencies and interactions between different species, which may also 

affect their likely responses to climate change.  

 

 

1.5. Confounding factors 

 

Fish are exposed to a wide range of factors that may alter their biomass and 

diversity. Population changes in fish may occur due to factors which are unrelated to 

direct effects of climate change (e.g. temperature, pH and flow rates), but rather due 

to factors such as food availability, re-stocking populations, pollution events, disease 

outbreaks, extreme storm events, fishing pressure and changes in nursery habitat.  

Commercially important coarse fish species, such as roach, bream, rudd and 

dace, are commonly re-stocked in the River Thames (Johnson et al., 2009) to support 

the angling societies which serve nearly four million people in Britain (Davies et al., 

2004). Atlantic salmon has been absent from the River Thames for many years, due 

largely to the heavy pollution since the industrial revolution. But salmon is viewed 

as a ‘prize fish’, both in terms of catch and also for eating, and so anglers are keen to 

see it is re-established in the River Thames (Davies et al., 2004). Despite the River 

Thames being cleaner, several attempts to re-populate the River Thames with 
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Atlantic salmon have failed (Wheeler, 1969) because of migration obstruction from 

the presence of weirs. Chub and roach are also farmed commercially for restocking 

(Davies et al., 2004), since they are important sports fish. This steady restocking 

may mask true patterns in abundance and diversity of fish, making it difficult to see 

which species are coping with the changes to their environment and which ones are 

not.  

Sewage Treatments Works (STW) strip wastewaters of harmful chemicals, so 

that they are at safe levels before water is released into the river system. However, 

mistakes can be made, with devastating effects of the fauna and flora. When carp 

were exposed to raw sewage, all fish died within 6 hours (Kakuta & Murachi, 1997). 

Chemical spills can have equally detrimental effects. In 2007, a bleach spill in a 

Thames STW devastated the local fishery along the River Wandle in the south-west 

of London (ENDS, 2009). This resulted in thousands of fish being killed, with an 

anticipated 10 years recovery period. Even without disasters such as these, decreases 

in quality of released water could have negative impacts on fish populations. Due to 

water being warmer around sewage effluent pipes, fish often congregate in these 

regions (Kakuta & Murachi, 1997). However, fish here may be exposed to higher 

levels of chemicals or raw sewage, which may present a chronic stress for fish. 

Physiological dysfunctions (Kakuta & Murachi, 1997) including reduced 

performance, lowered reproduction and lowered growth rates (Winter et al., 2008), 

may all result from poor water quality.  

In 2009, Bolivia experienced an unusually cold July and August, with 

extreme variations in temperature between day and night. This coincided with a mass 

mortality event in fish, with some 6 million fish deaths, along with thousands of 

alligators, turtles and river dolphins (Petherick, 2010). This mass mortality was 

largely attributed to the effects of extreme temperature shock that may well be linked 

to our changing climate. However, it was also apparent that many fish had white 

spots on the surface of their skin, suggesting that there had been a disease outbreak 

(Petherick, 2010). Whether it was extreme cold that killed the fish or the disease 

outbreak, or whether the extreme cold left the fish vulnerable to infection is not 

clear. This paper highlighted, however, that at any one time there may be multiple 

stressors interacting, making it extremely difficult to pinpoint the actual variable 

affecting fish populations.  
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The Great Barrier Reef is also already subjected to a large amount of both 

natural and man-made disturbances. Globally there has been a decline in coral reefs 

by 30% and this is predicted to increase to 60% by 2030 (Hughes et al., 2003). The 

GBR is subjected to a large amount of coastal clearing which increases the sediment 

load to the reef. This then smothers the coral and eventually kills off patches of reef. 

Algal growth then proliferates and within decades a hard coral reef can be altered 

into an algal reef, as occurred in the Caribbean in the 1980s (Nyström et al., 2000). 

This transition was also due to over-fishing in the area, which removed key species 

of benthic algal feeders and so grazing was not kept in check and algal growth 

increased, which is also an issue off the coast of Australia. There is also a great deal 

of nutrient enrichment into the GBR zone which is carried into the ocean with land 

runoff, particularly in wet months. This eutrophication exacerbates algal growth. 

Despite heavy policing, there is still a large amount of uncontrolled tourism on the 

GBR (Nyström et al., 2000), which can be very damaging to the reef through 

degradation through improper anchoring, inexperienced divers touching the reef and 

engine emissions.  

 Natural disasters such as tropical cyclones, earthquakes, tsunamis and 

volcanic eruptions can be very destructive to the coral matrix itself (Nyström et al., 

2000). Other natural problems include outbreaks of coral predators, such as Crown 

of thorns starfish, Acanthaster planci, and the rock-boring sea urchins, Echinometra 

mathaei and Ophiocoma dentata (Hutchings et al., 2007; Nyström et al., 2000), 

which can damage huge sections of the reef. Crown of thorns starfish populations are 

closely monitored and managed by the GBRMPA to limit outbreaks and the damage 

they cause, as it can take reefs 10-15 years to recover from an outbreak of A.planci 

(Hutchings et al., 2007). If background stress is at a minimum, natural disasters, 

which usually only occur in pulses (i.e. not a chronic stress), aid in reef development. 

However, the many man-made stresses that now occur on the reef are decreasing the 

resilience of reefs and so recovery times from natural stressors is longer.   

Differences in abundance and diversity of fish may result indirectly from 

climate change or from other external factors. Therefore, relating changes in the fish 

populations to changes in temperature, pH, river flow or oxygen concentrations, is 

even more challenging. Gaining information on many of these confounding factors is 
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highly problematic and so often not included in data sets. These factors, even if not 

included, need to be taken into consideration when assigning responses to causes.  

 

1.6. Summary 

 

Predicting the effect of climate change on fish populations is a complex task; 

especially those that are so heavily impacted by anthropogenic stresses, such as the 

River Thames and the Great Barrier Reef. It is important to understand the 

implications that changes in river and ocean parameters will have on the fish 

populations. Changes such as warming waters, reduced ocean pH, altered flow 

regimes, and an increase in extreme weather events, will likely affect fish from the 

biochemical level through to the community level. The general supposition is that 

there is likely to be a shift in community structure, both in rivers and on coral reefs. 

In British rivers, warm-water species will likely replace cold-water species; 

nevertheless, most native UK species should cope with the predicted changes. On the 

Great Barrier Reef, fish that are already living near their upper thermal limits will 

likely be sensitive to warming waters and will be replaced by more resilient species. 

However, fish will not just be influenced by temperature, but by multiple and 

potentially confounding stressors. It is important to understand the interactions of 

multiple factors, not just temperature, but pH, flow regimes, oxygen levels, habitat 

accessibility and prey availability. Due to the importance of coral reefs, there has 

been a large amount of research which indicates that climate change is already 

occurring on the Great Barrier Reef and will likely cause damage to the reef structure 

through repeated mass coral bleaching events. However, the direct effect of climate 

change on the fish population is largely unknown. What is also not well understood 

is whether there is any evidence yet of climate changes in the River Thames and if so 

whether the fish have responded. Only once it has been established that climate 

change will not pose a significant stress on native freshwater fish can we be 

comfortable in stating that freshwater fisheries in the UK will not be adversely 

affected by the changing climate. Given that climate change is a truly global issue, it 

is important to take a holistic approach and appreciate that there will be many 

ecosystems affected. This thesis will take a comparative approach to evaluate 
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whether relatively small changes, particularly in temperature, will affect the 

physiology of fish, from both temperate freshwater ecosystems (River Thames) and 

tropical marine ecosystems (Great Barrier Reef).  Both of these ecosystems are 

already subjected to a large amount of background stress. By investigating the 

effects of climate change from the biochemical to whole organism stress responses, 

and by using statistical modelling to predict the consequences at the population and 

community level, this thesis aims to provide key information on how we can expect 

these fisheries to cope and therefore provide essential guidance should they need 

protecting.  
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1.7 Aims and Objectives 

 

The aim of the work herein was to test the hypothesis that the small changes 

in the physical environment predicted with climate change will have similar 

significant effects on fish from temperate freshwater habitats and tropical marine 

habitats.  The thesis is split into 4 principle data chapters (chapters 2 to 5) and 

involves complementary studies involving analysing existing data sets using 

statistical modelling techniques and in-vivo studies. 

 

Chapter 2: Effects of chronically raised temperature on five species of coral reef 

fish on the Great Barrier Reef. 

 To test whether small increases in temperature realistic with climate change 

decrease the aerobic scope of five common coral reef fish. 

o In-vivo study: Measuring and comparing the resting (basal) and 

maximal respiration rates of fish acclimated to the 31°C, 32°C and 

33°C compared to a control temperature of 29°C.  

 

Chapter 3: Interacting effects of chronic thermal stress and ocean acidification 

on two species of cardinalfish on the Great Barrier Reef.  

 To examine whether there are interactive effects of temperature and pH on 

the aerobic scope of two cardinalfish, Ostorhinchus cyanosoma and 

O.doederleini.  

o In-vivo study:  Measuring and comparing the resting (basal) and 

maximal respiration rates for fish to determine aerobic scope of fish 

acclimated to different temperature and pH conditions predicted to 

occur as a consequence of climate change by 2100. 

o Conditions used were 29°C (control), 31°C and 32°C, each in 

combination with pH 8.15 (control) and 7.8 (representing ocean 

acidification).  
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Chapter 4: Recent evidence of climate change in the non-tidal River Thames 

 To ascertain whether there is yet any evidence of climate change in the River 

Thames and what effects this has had on the fish population of the non-tidal 

part of the River Thames.  

o Using a 15 year historical data set of river temperature and flow rates, 

to establish if there is any indication that climate change is already 

physically affecting the River Thames.  

o Using a 15 year data set for fish biomass and density, to establish 

whether there have been any changes in fish population structure 

during that time.  

o To evaluate the use of Bayesian Network models in understanding the 

complex interactions in freshwater ecosystems. 

 

 

Chapter 5: Biological indicators of thermal stress in the stickleback, 

Gasterosteus aculeatus.  

 To investigate whether the predicted increases in water temperature as a 

consequence of climate change elicit a stress response in a species of fish 

native to the River Thames. 

o In-vivo study: chronic exposure of the three-spined stickleback to 

water temperatures at current-day summer mean (19ºC), best case 

scenario B1 (21ºC) and worst case scenario A1F1 (25ºC).  

o Evaluation of the stress responses using a range of endpoints: water 

cortisol concentrations, plasma glucose concentrations, leukocyte 

profile, ventilation rates, condition factor, hepatosomatic index and 

growth rates.   
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Chapter 2: Effects of chronic thermal stress on five species 

of coral reef fish living on the Great Barrier Reef. 

 

 Nilsson, G.E., Crawley, N., Lunde, I.G. & Munday, P.L. (2009). Elevated 

temperature reduces the respiratory scope of coral reef fishes. Global Change 

Biology, 15, 1405-1412  

 

2.1 Statement of Contribution to Work 

  

This work was conducted on Lizard Island on the Great Barrier Reef under 

the supervision of Dr Philip Munday (James Cook University) and Professor Göran 

Nilsson (University of Norway). I collected the fish from the reef and conducted the 

respirometry experiments in accordance to methodology previously used by Nilsson 

et al. (2007). I input the data and contributed to statistical analysis and discussions 

on the layout and content of the paper.  

 

2.2 Abstract 
 

The aim of this study was to determine whether small increases in 

temperature realistic of climate change cause a reduction in the aerobic scope of five 

commonly occurring coral reef fish on the Great Barrier Reef. Two species of 

cardinalfish, (Ostorhinchus cyanosoma and O.doederleini) and three species of 

damselfish, (Dascyllus aruanus, Chromis atripectoralis and Acanthochromis 

polyacanthus) were exposed to temperatures 31°C, 32°C and 33°C compared to the 

current summer mean of 29°C. Resting and maximal oxygen consumption was 

obtained using respirometary experiments and aerobic scope subsequently 

calculated. In three of the five species of coral reef fish tested, their aerobic scope 

was significantly reduced by as little as a 2°C rise in water temperature and all five 

species significantly affected by a 4°C rise in temperature. The reduced aerobic 

scope was due to increased resting oxygen consumption and an inability to increase 
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the maximal oxygen uptake. However, there were interfamilial differences, with the 

two species of cardinalfish being more sensitive to increases in temperature than the 

damselfish, demonstrated by cardinalfish experiencing a complete loss in aerobic 

scope with a 4°C rise in temperature. These interfamilial differences in ability to 

cope aerobically with warming waters could lead to a change in the community 

structure on coral reefs and potentially a loss of diversity. 

 

2.2 Introduction 

 

2.2.1. Temperature and Coral Reefs 

 

Coral reefs need particular environmental conditions in order to grow. 

Typically, coral reefs develop in well-lit, nutrient poor waters, in the warm 

equatorial waters between 30°S and 30°N (Hughes et al., 2003). Although coral reefs 

require warm water to grow, their existence may be under threat from the anticipated 

warming associated with climate change. It is expected that the average sea-surface 

temperatures in the vicinity of coral reefs will increase by several degrees Celsius 

over the coming century (Guinotte et al., 2003; Lough, 2007). There is already 

evidence of warming in Australia, for example, in Queensland, nine of the ten 

warmest years since 1850 have occurred between 1997 and 2006 (Lough, 2007), and 

a further 3°C rise is expected on the Great Barrier Reef in the next 50-100 years 

(Lough, 2007). Changes of only a few degrees are expected to be sufficient to result 

in significant impacts to individual performance, community structure and 

geographical distributions of corals and their associated reef fish (Munday et al., 

2008a).    

 Despite the fact that it is expected that reef fish will be directly affected by 

temperature increases, to date research has focussed on the corals themselves, 

particularly concerning outbreaks of coral bleaching with increasing temperature 

(Hoegh-Guldberg, 1999). Climate change, through mass coral bleaching events, will 

indirectly affect coral reef fish. Since nearly all fish on the reef rely on the coral 

matrix for shelter or food, any deterioration to their habitat will likely impact the 

assemblage of coral reef fish present. Much less is known about how increases in 
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sea-surface temperature will directly affect reef fish (Munday et al., 2007). Tropical 

reef fish have evolved in a stable environment and experience very little background 

variation in temperature; therefore only a small change in their stable environment 

could cause a disproportionate response.  

 

2.2.2. Effects of temperature on coral reef fish. 

 

Unlike many temperate freshwater fish, it is thought that most coral reef fish 

are now living close to their short-term lethal thermal limits (Mora & Ospina, 2001). 

However, even if not lethal, increases in temperature could still have an effect on 

individual performance, such as physiological condition, development rate, growth 

rate and reproductive capacity (Wood & McDonald, 1997). All of these factors will 

affect the long-term sustainability of a population of fish (Munday et al., 2008a).  

The two functional physiological components of growth are consumption and 

metabolism, both of which are strongly affected by temperature (Biro et al., 2007). 

Temperature is a major factor governing growth, as it affects the rate of metabolic 

reactions affecting all physiological processes in ectotherms (metabolism, food 

intake and nutrient efficiency) (Burel et al., 1996). The general trend is that at higher 

temperatures, a smaller body size is produced. Temperature does affect growth, with 

higher temperatures resulting in smaller mean length, body depth and mean wet 

weight (Burel et al., 1996; McCormick & Molony, 1995; Pörtner & Knust, 2007). 

The size of the organisms dictates the thermal tolerance; with smaller fish having a 

higher tolerance than juvenile and adult fish (Burel et al., 1996). At larger body 

sizes, the effects of a lack of oxygen due to reduced solubility at higher temperatures 

will be more pronounced. The premature loss of aerobic scope of large eelpout 

individuals compared to smaller individuals indicates that specimens do not grow 

beyond oxygen-dependent size limits set by temperature (Pörtner & Knust, 2007). A 

reduction in abundance results when all size groups of a population are affected 

(Pörtner & Knust, 2007).  

There are, however, some reports that growth rates can be increased with 

fluctuating temperatures. This is known as the Acceleration Effect (Jobling, 1997). 

To an extent, higher temperatures will increase the rate of growth, even though the 
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absolute growth will be smaller. It was shown that at 7 days after hatching, larvae 

that were reared at 25ºC were smaller than those at 28ºC. However, when sizes and 

weights were compared at the same developmental stage (pre-metamorphic stage, 11 

days for larvae at 25ºC, and 9 days at 28ºC), the larvae reared at 25ºC were larger. 

Therefore although it took longer for the larvae to develop and reach metamorphosis, 

the larvae were larger at this ontogenetic stage (Green & Fisher, 2004).  

If temperature exceeds an optimum, then effects will be seen, such as 

negative growth rates and lower survival. This is because with higher temperatures, 

metabolic rate is increased, foraging effort is increased but food conversion 

efficiency is reduced (Biro et al., 2007; Kucharczyk et al., 1997). Due to this 

decreased growth and also increased foraging activity, survival is reduced, and so 

temperature has been suggested to account more for reduced survival than food 

abundance does (Biro et al., 2007). 

At higher temperatures, metabolic processes are increased as more energy is 

needed to maintain body structures (McCormick & Molony, 1995; Shirayama & 

Thornton, 2005). Therefore there is a need for a greater oxygen supply (Taylor et al., 

1997) and so rates of resting oxygen uptake are a reliable measure of aerobic 

metabolism (Taylor et al., 1997). However, in higher temperatures the oxygen 

solubility in water and plasma is reduced. Simultaneously the oxygen affinity of 

haemoglobin is reduced (Taylor et al., 1997) and so it is difficult for the oxygen 

demand for aerobic metabolism to be met. This is known as the Temperature-

Oxygen Squeeze (Rombough, 1997).  

It can take days to weeks before fish attain metabolic rates characteristic of 

new temperature regimes, but acclimation does appear to be feasible. However at 

high temperatures, fish may not be able to acclimate or the build-up of an oxygen-

debt from intense activity may reach critical levels (Taylor et al., 1997). This greater 

oxygen debt at higher temperatures may limit the duration of anaerobic burst 

swimming, which will reduce effective foraging behaviour. Animals with higher 

metabolic rates, such as when temperature stressed, also become more sensitive to 

other environmental perturbations, such as elevated carbon dioxide (CO2) 

(Shirayama & Thornton, 2005). With the projected models of higher CO2 and 

temperature, it is likely that metabolic demands of coral reef fish will be increased, 
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likely to a point when more energy is expended than consumed. When this happens, 

growth rates will be slowed, which can impact other processes, such as reproduction 

and survival.  

 

2.2.3. Aerobic Scope 

 

Aerobic scope or aerobic capacity is a good measure of the maximal 

sustainable aerobic ability of an animal. It is a dimensionless value and is essentially 

the difference between the resting (basal) and the maximal oxygen uptake. The 

greater the aerobic scope, the more an organism is able to cope with their 

environment and have energy left over after essential maintenance for growth and 

reproduction. Therefore, a decreased capacity to perform aerobically (i.e. reduced 

aerobic scope) at higher temperatures is thought to be the key physiological 

mechanism that will determine how species will cope with climate change (Pörtner 

& Knust, 2007). There are at least four factors that govern the maximal rate of 

oxygen consumption: 1) cardiac output (determines the rate of blood flow through 

the gills and out to the body), 2) gill surface area, 3) oxygen carrying capacity of the 

blood (which is dependent on the haemoglobin content), 4) degree of downloading 

of oxygen from blood to tissues (Gardiner et al., 2010).   

 Whilst at higher temperatures there is an increased oxygen demand, there are 

limits to the capacity of the circulatory and ventilatory systems to keep pace. It is this 

limited capacity that will ultimately set the boundaries for whole-organism tolerance 

to temperature increases (Pörtner & Knust, 2007). Small increases in acute 

temperature are unlikely to affect fish, unless they are already at their upper thermal 

limit (Taylor et al., 1997), or if there are additional environmental stresses, such as 

lowered pH.  If the aerobic scope is reduced by chronically elevated temperatures, 

this will affect all aspects of individual performance, and thus ultimately will affect 

the population sustainability.  

Shifts in geographical location have been observed for many terrestrial 

species due to warming (Parmesan & Yohe, 2003). Movement to higher latitudes as 

waters warm have also been documented for several marine fish in many locations. 

For example, in North Carolina there has been an influx of tropical marine species 
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previously never recorded in the area, as waters have warmed (Parker and Dixon, 

1998). In the North Sea, there has been a northward movement of Atlantic cod 

(Gadus morhua) and the common sole (Solea solea) (Perry et al., 2005) with 

warming. These geographical shifts indicate that there are many families of marine 

fish that are sensitive to even small increases in temperature. It is therefore 

hypothesised that reduced aerobic scope is the primary mechanism that controls the 

thermal niche for marine fishes and therefore their geographical range.  

 

2.2.4. Common Coral Reef Fish 

 

Five species of commonly occurring coral reef fish found at Lizard Island 

were used in this study. These species are all abundant on the reef, none are subject 

to special protection, and they are typical of coral reef fish found in coral reefs in the 

Indo-Pacific region. Given their wide geographic range, they are considered to be 

representative of reef fish found on many coral reefs.  Two species of cardinalfish, 

Ostorhinchus cyanosoma and O. doederleini (Figure 2.1 a and b, respectively) and 

three species of damselfish, Chromis atripectoralis, Dascyllus aruanus, and 

Acanthochromis polyacanthus (Figure 2.1 c-e, respectively) were selected. 

It was important to study several different species from different families in 

order to have a greater understanding of both species and familial tolerances to 

temperature. All chosen species are small; the average wet weights of adults were 

3.05±1.4g. These species are all typically coral dwelling and due to their small size 

are able to hide from predators among the branches of coral, such as the staghorn 

coral (Acropora spp) or in caves (Marnane & Bellwood, 2002). As is normal for 

coral reef fish, all of the species except A.polyacanthus have a dispersive larval 

stage. By having such a reproductive strategy, it promotes a better gene flow 

between local populations, which aids in natural selection and preventing a small 

gene pool. A. polyacanthus instead has a resident larval stage, whereby the larvae 

remain in the same local area of the reef from which they originated. This species 

also displays parental care, where the parents actively guard their nests. Whilst this 

increases the chances of offspring survival it comes at an energetic cost to the 

parents. This breeding technique restricts gene flow between neighbouring 



 

54 

 

populations, but may allow each local population to adapt to changes in their thermal 

environment quicker (Munday et al., 2008b), with each local population being suited 

to its particular thermal niche. By including fish with both a dispersive and resident 

larval stage, it may provide information as to how restrictions on gene flow may 

prevent or permit populations from adapting to warming waters. 

Damselfish and cardinalfish are extremely common on coral reefs. However 

they play different roles on the reef and have employed different life strategies. D. 

aruanus are polygamous and form harems consisting of one or two males 

accompanied by several females. In order to keep the harem structure, they are 

protogynous hermaphrodites, with sex-change of females occurring to replace any 

lost males (Fishelson, 1998). D. aruanus displays high site attachment, probably due 

to strong predation pressure; the more isolated and site-attached the harem is, the 

more dominant a role sex change plays in the group (Fishelson, 1998). There is high 

plasticity in the damselfish family compared to other families of coral reef fish, as 

displayed in delays in sex-determination, sex change, varied behaviour patterns and 

colour patterns. This plasticity might allow damselfish to cope better with negative 

environmental parameters. It may also allow them to genetically change quicker and 

be ‘ready to adapt’, which may permit damselfish to adapt quicker to long-term 

changes in their environment (Fishelson, 1998).  

The cardinalfish O.cyanosoma and O.doederleini are important species on 

coral reefs as they act as nutrient recyclers (Marnane & Bellwood, 2002). Being 

nocturnal, they move away from the reef matrix at night and feed on plankton in the 

water column. Both species display high site attachment, and so in the day return to 

the same patches of reef and through excretion, deposit nutrients onto the reef matrix 

which would otherwise not be there. There are generally high abundances and rapid 

turn-over of these cardinalfish on reefs, which suggest that they are important 

components of the coral reef community. Being nocturnal and migrating from the 

reef at night, there is the possibility that cardinalfish are exposed to a slightly 

different thermal regime than that of damselfish, since the reef matrix and the lagoon 

may vary in temperature between day and night. This may therefore have 

implications as to the actual thermal regimes in which they are most active, with 

damselfish naturally being more active in daylight hours when the water is warmer 

and cardinalfish more active at night when water temperatures are cooler. However, 
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relatively little is still known about them, with cardinalfish being one of the least-

studied families of coral reef fish (Marnane & Bellwood, 2002).  

 

 

 

 

 

Figure. 2.1. Photograph of cardinalfish a) Ostorhinchus cyanosoma, b) O. doederleini 

and three damselfish c) Chromis atripectoralis, d) Dascyllys aruanus and e) 

Acanthochromis polyacanthus (Photos from: www.fishbase.com [date accessed: 

January 2012]). 

 

 

http://www.fishbase.com/
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2.2.5. Aims of study 

 

The aim of this study was to test whether the aerobic scope of five common 

coral reef fish was affected by small increases in temperature at Lizard Island on the 

northern Great Barrier Reef, Australia. Two species of cardinalfish, Ostorhinchus 

cyanosoma and O.doederleini, and three species of damselfish, Dascyllus aruanus, 

Chromis atripectoralis and Acanthochromis polyacanthus, were selected for 

experimentation.  

 Resting oxygen consumption (MO2rest) and maximum oxygen consumption 

(MO2max) for each species were calculated in a closed-system respirometer at 

current-day average summer sea-surface temperatures at Lizard Island 

(approximately 29
°
C; Lough, 2007) and at temperatures likely to be experienced at 

this location over the next century (31
°
C, 32

°
C and 33

°
C). Maximum summer sea-

surface temperature in the vicinity of Lizard Island regularly exceeds 30
°
C and 

extremes of up to 32.7
°
C have been recorded (Lough, 2007).  Average sea-surface 

temperatures on the GBR are predicted to increase by up to 3
°
C over the next 50-100 

years (Lough, 2007); therefore, 31-33
°
C encompasses the range of average and 

maximum summer temperatures likely to be regularly experienced by coral reef 

fishes on the northern GBR by 2100. 
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2.3 Methods 

 

2.3.1 Study Site 

 

Experimentation was carried out at Lizard Island Research Station (LIRS) on the 

Northern Great Barrier Reef (14°40’S, 145°28’E) (www.lizardisland.net.au). The 

Island is 270km north of Cairns and 30km from the Australian mainland. It is a high 

granite island that is surrounded by a well-developed fringing reef. The island and 

surrounding reefs are protected by the Great Barrier Reef Marine Part Authority. All 

experimentation was carried out between December 2007 and January 2008 (austral 

summer). 

 

Figure 2.2. Location of Lizard Island on the Great Barrier Reef off the coast of 

Queensland, Australia (www.lizard.island.net.au) 
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Figure 2.3. Labelled map of Lizard Island group. White stars denoting areas in the 

lagoon reef where fish were collected by SCUBA diving. (www.lizard.island.net.au) 

 

2.3.2 Fish Husbandry 

 

Nine adults of Ostorhinchus cyanosoma (2.3±0.6g), O. doederleini (2.1±0.8g), 

Dascyllus aruanus (3.4±1.3g), Chromis atripectoralis (5.3±0.9g) and 

Acanthochromis polyacanthus (2.5±0.7g) (wet weight ranges within parenthesis) 

were caught by SCUBA diving in the lagoon around LIRS at a depth of between 2 

and 5 meters. A sample size of nine was selected since previous similar 

experimentation on these species has been shown to be sufficient for significant 

statistical analysis (Nilsson et al., 2007). Furthermore, sample sizes were constrained 

from being larger due to ethics and permit restrictions.  Juveniles of A.polyacanthus 

were used so that all fish were the same size, as metabolism is known to be size 

dependent and A.polycanthus are a slightly larger size when adult than the other 

species. Fish were caught by methods previously described by Östlund-Nilsson & 

Nilsson. (2004). In brief, the fish shoal together within or over branching corals at a 

depth of 1-5m. Fish were lightly sprayed with clove oil which acts as an anaesthetic 

(50ml of clove oil, 40ml ethanol and 400ml seawater) allowing individuals to be 
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caught in a net and transferred into a plastic bag containing fresh seawater. The fish 

recovered within a minute of being placed in clove-oil free water. Fish were carried 

back to the aquarium in large plastic bags filled with fresh seawater. Fish were then 

immediately transferred into 50L holding tanks in a shaded outdoor aquarium with a 

continuous supply of fresh seawater pumped directly from the reef. Oxygen levels in 

the water varied between 95-100% saturation throughout the experimental period. 

Fish were fed until satiation with frozen blood worms and commercial fish food 

(INVE, Aquaculture Nutrition pellets), but were starved for 24hours prior to 

measuring oxygen consumptions. All tanks were checked hourly during daylight 

hours (6am-7pm) and any mortality recorded. 

 

2.3.3 Experimental Set-up & temperature regimes 

 

 

Figure 2.4. Photograph of the outdoor aquarium at Lizard Island where tanks are 

supplied with fresh seawater pumped directly from the lagoon. 

 

Four 50 litre tanks were supplied with fresh seawater pumped directly from 

the lagoon. The control tank was kept at ambient sea-surface temperate (29°C± 

0.5°C) and the other tanks were subsequently heated with aquarium heaters to 31°C, 
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32°C and 33°C over a period of 1-2 days. Temperatures in each tank were checked 

hourly between the hours of 6am and 7pm, with maximum fluctuations being ± 

0.5°C. Fish were held at experimental temperatures for a period of one week prior to 

respirometry testing. A period longer than one week was not deemed necessary, as it 

has previously been reported for these species that a longer acclimation period has 

no effect on oxygen consumption (Nilsson et al., 2007). 

 

2.3.4 Respirometry for measuring resting oxygen consumption (MO2rest)  

 

At the start of each trial, the fish were carefully transferred from the holding 

tanks into the respirometer, which was set up in an identical tank held at the same 

temperature as the acclimation tank. The respirometer was a custom-made plexi-

glass chamber with an internal diameter of 80mm and held a volume of water of 

500ml. Care was taken not to stress the fish when placing in the respirometer, as this 

will have raised their rate of oxygen consumption. Each fish was allowed to 

acclimate to the respirometer for 30 minutes before a plastic lid was attached (to 

prevent oxygen diffusing into the water in the respirometer) and recording their 

oxygen consumption. An oxygen electrode (OXI 340i, WTW) continuously recorded 

the concentration of oxygen within the chamber and recorded data directly onto a 

computer. Each fish was left resting in the closed chamber for a period of 30 

minutes, as this time was deemed long enough to provide data on oxygen 

consumption.  

MO2rest=Concentration of oxygen consumed/ time 
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Figure 2.5 Diagrammatic representation of the resting respirometer set-up with fish 

enclosed in Perspex cylinder with an oxygen probe inserted at the top. Cylinder was 

placed on its side and the oxygen probe transmitted readings to a connected computer. 

 

2.3.5. Swimming respirometry for measuring maximal O2 uptake (MO2Max) 

 

The respirometer chamber consisted of a Perspex cylinder (80 mm inner 

diameter, 500ml total water volume). The chamber could be opened at the bottom, 

where a petri dish was tightly fitted. The tip of an oxygen electrode (Oxi 340i- 

WTW) was inserted 10 mm above the bottom of the chamber. A removable wire 

mesh (5 mm mesh width) was positioned horizontally in the middle of the chamber. 

Above the mesh, a centrally placed cylinder created a circular swim chamber, and 

the water was set in motion by a 6 cm long stirring magnet in the compartment 

below the mesh (Figure 2.6). The respirometer was placed on the bottom of a 

temperature-controlled aquarium, below which a magnetic stirrer was placed to drive 

the magnet in the respirometer. The water speed was regulated with the magnetic 

stirrer. As soon as the water was set in motion, the fish started swimming against the 

current. The speed was set to a point where it was clear that the fish swam at their 

aerobic maximum speed. This was done by increasing the water speed to a point 

where the fish was barely able to maintain a steady position in the chamber, but still 
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displayed pectoral fin movement, as this is indicative of aerobic respiration 

(Gardiner et al., 2010). Water oxygen concentration was recorded for 10 min, during 

which time a linear fall in water oxygen concentration was seen. During the runs, 

water oxygen concentration was between 90 and 100 % of air saturation. 

MO2max=Concentration of oxygen consumed/ time 

 

2.3.6 Aerobic Scope 

 

Aerobic scope (in %) was calculated for each individual as: 

Aerobic Scope (%) = 100 x (MO2max-MO2rest)/ MO2rest 

 

 

Figure 2.6. Diagrammatic representation of a Swimming Respirometer used for 

measurement of maximal aerobic capacity. 
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2.37. Statistical analysis 

 

Means were calculated for each species in each treatment (±SEM). SPSSv15 

was used for statistical analysis. Statistical significance (p<0.05) was tested with 

ANOVA followed by Tukey’s post-hoc test, where results from experimental 

temperatures (31, 32 and 33
°
C) were compared with control (29

°
C). Where data 

exhibited statistically different variances (as detected by Levene’s test for equal 

variances) a Kruskal-Wallis test with Dunn’s post-hoc test was used.  

 

2.3.8. Ethical approval and funding of study 

 

This study followed the ethical guidelines provided by James Cook 

University, Queensland, Australia (see Appendix 1). The permit granted by the Great 

Barrier Reef Marine Park Authority (see Appendix 2, permit number GO6/ 20234.1) 

allowed the capture of fish. Research was funded by the University of Oslo, the 

Research Council of Norway, the Australian Research Council and James Cook 

University. 
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2.4 Results 

 

Increasing the water temperature had a significant effect on the oxygen 

consumption of all five species of coral reef fish tested. However, there were 

differences in the magnitude of response between the two different families of fish, 

with cardinalfish more severely affected than the damselfish. There were no 

mortalities for the three damselfish species; however, mortalities were seen at the 

highest temperature (33°C) for both species of cardinalfish, with 37% mortality for 

O.doederleini and 44% for O.cyanosoma. Although nine individuals of each species 

were captured on the reef, not all were considered suitable for sampling, either due to 

mortalities or individuals were too weak to sustain swimming in the swim 

respirometer. Therefore sampling sizes ranged between 6 and 9 for the damselfish 

and 4 and 9 for the cardinalfish. 

 

2.4.1. Cardinalfishes (Apogonidaes) 

 

For O.cyanosoma, temperature increases of only 2°C resulted in a significant 

increase in resting oxygen consumption (from 238±14[SEM] mgO2kg
-1

h
-1

 at 29°C to 

393±23[SEM] mgO2kg
-1

h
-1

 at 31°C), which increased until 32°C, when a plateau 

was seen (Figure 2.7).  Increasing the temperature by 4°C resulted in a doubling of 

resting oxygen consumption. On the contrary, maximal oxygen consumption was 

unaffected by temperature increases until 33°C, whereby a significant decline in 

MO2max was evident (1022±54[SEM] mgO2kg
-1

h
-1

 at 29°C to 633±23[SEM] 

mgO2kg
-1

h
-1

 at 33°C. The combination of an elevated MO2rest and either a constant or 

a decline in MO2max resulted in a significant decline in aerobic scope with increasing 

temperature (Figure 2.12a). The scope for oxygen uptake declined from 313± 84% at 

29°C, to 165± 57%, 120± 37% and 22± 44% at 31°C, 32°C and 33°C, respectively. 

Therefore at the highest temperature there was almost a complete loss of aerobic 

capacity.  



 

65 

 

 

 

Figure 2.7. Mean (±SEM) Resting (MO2rest) and maximal (MO2max) oxygen 

consumption at each temperature for O.cyanosoma (MO2rest: One Way ANOVA, 

F(3,21)=10.93, p<0.001) (MO2max: One-way ANOVA, F(3,24)=6.081, p<0.01).**P<0.01, 

***P<0.001. Sample sizes, n= 9 (29°C), 8 (31& 32°C), 5 (33°C).  

 

For O.doederleini, again the MO2rest increased with temperature from 

292±16mgO2kg
-1

h
-1

 at 29°C to 521±017mgO2kg
-1

h
-1

 at 33°C. However, conversely 

to O.cyanosoma, there was no significant decline in MO2max for O.doederleini 

(Figure 2.8). Despite the fact that there was no change in maximal oxygen 

consumption, there was still a significant decline in aerobic scope for each 

temperature increase when compared to the control at 29°C (Figure 2.12b). Aerobic 

scope at 29°C was 206±21% but fell to 131±65%, 95±34% and 34±45% at 31°C, 

32°C and 33°C, respectively. Therefore, as was seen in O.cyanosoma, there was 

almost a complete loss of aerobic scope at the highest temperature of 33°C.  
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Figure 2.8. Mean (±SEM) Resting (MO2rest) and maximal (MO2max) oxygen 

consumption at each temperature for O.doederleini (MO2rest: Kruskal-Wallis 

H(3)=8.96, p<0.05), (MO2max: no significant differences). **P<0.01. Sample sizes, n= 6 

(29°C), 9 (31°C), 8 (32°C), 4 (33°C). 

 

 

2.4.2. Damselfishes (Pomacentridaes) 

 

All damselfish displayed similar responses to increases temperatures as those 

observed with the cardinalfish, albeit to a lesser degree. For Dascyllus aruanus, there 

was a significant rise in resting oxygen consumption as the temperature reached 

31°C and 33°C; however there was no significant decline in maximal oxygen 

consumption with increased temperature (Figure 2.9). Whilst there was a pattern of 

decline in aerobic scope, with a fall from 142±57% at 29°C to 81±65% at 33°C, it 

was not a significant result (Figure 2.12 c; ANOVA, P=0.13).  

Chromis atripectoralis displayed no significant changes to either MO2rest or 

MO2max with increased temperature (Figure 2.10). However, there was a significant 

decline in aerobic scope at the highest temperature, with a reduction from 300±128% 

at 29°C to 178±55% at 33°C (Figure 2.12d). No measurements were taken at 31°C, 
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as MO2rest and MO2max were tested at 32°C and 33°C first and since no significant 

changes were detected, it was deemed unnecessary to test at 31°C.  

 

 

Figure 2.9 Mean (±SEM) Resting (MO2rest) and maximal (MO2max) oxygen 

consumption at each temperature for Dascyllus aruanus (MO2rest: Kruskal-Wallis, 

H(3)=13.8,p<0.01), (MO2max: no significance differences). **P<0.01. Sample sizes, n= 

8 (29°C), 8 (31°C), 8 (32°C), 7 (33°C). 

 

 

Figure 2.10 Mean (±SEM) Resting (MO2rest) and maximal (MO2max) oxygen 

consumption at each temperature for Chromis atripectoralis (No significant 

differences for MO2rest or MO2max). Sample sizes, n= 8 (29°C), 8 (32°C), 6 (33°C). 
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For Acanthochromis polyacanthus there was no significant effect of 

temperature on the maximal oxygen consumption. However, there was an increase in 

resting oxygen consumption for each raised temperature compared to the control of 

29°C (Figure 2.11). MO2rest increased from 460±25 [SEM] mgO2kg
-1

h
-1

 at 29°C to 

729±44mgO2kg
-1

h
-1

 at 33°C. This raised resting oxygen consumption resulted in a 

decreased scope for oxygen uptake at each temperature compared to the control 

(142±42%), however the decline was as great at 31°C as it was at 33°C (81±9%). 

Therefore, a 2°C rise in temperature above current day summer mean resulted in the 

same decline in aerobic scope as a 4°C rise in temperature (Figure 2.12e).  

 

 

Figure 2.11 Mean (±SEM) Resting (MO2rest) and maximal (MO2max) oxygen 

consumption at each temperature for Acanthochromis polyacanthus (MO2rest: 

Kruskal-Wallis, H (3)= 8.5, p<0.01, MO2max: No Significance). **P<0.01, 

***P<0.001. Sample sizes, n= 8 (29°C), 9 (31°C), 8 (32°C), 8 (33°C). 
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Figure 2.12 Mean percentage of 

aerobic scope (±SEM) for a) 

O.cyanosoma (F[3, 20]=26.055,p<0.001), b) 

O.doederleini (F[3,21]=10.946, p<0.001), 

c) D.aruanus (No significant differences), 

d) C. atripectoralis 

(F[2,19]=3.97p<0.05)and e) A. 

polyacanthus (F[3,24]=5.42, p<0.01). 

*P<0.05, **P<0.01, ***P<0.001. Sample 

size, n= 6-9, expect for O.Doederleini & 

O.cyanosoma at 33°C were n= 4 and 5, 

respectively. 
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2.4.3. Q10 values 

 

Q10, the temperature coefficient, is a measure of the rate of change in a 

biological system over an increase in temperature of 10°C. Q10 is calculated using 

the Van’t Hoff equation: 

Q10= (R2/R1) 10/ (T2-T1) 

Where T2 is the higher temperature and T1 is the lower temperature. Where 

R2 is the rate of oxygen consumption at T2 and R1 is the rate of oxygen consumption 

at T1.  

If a reaction is independent of temperature, it will have a Q10 value of 1. 

However, if temperature does have an effect, such as most biological reactions, Q10 

usually has a value between 2-3. The Q10 values for resting oxygen consumption 

ranged between 1.9 (C.atripectoralis) and 5.7 (O.cyanosoma) (Table 2.1), indicating 

temperature had a greater effect on the basal rate of oxygen consumption in 

O.cyanosoma. The mean Q10 for cardinalfish was 5.1, and for the three damselfish it 

was 3.3, suggesting that cardinalfish are more sensitive to increased temperature.  

For maximal oxygen consumption, the Q10 values were lowest in 

O.cyanosoma, with the mean Q10 for cardinalfish being 1.9, compared to 2.5 for the 

three damselfish. In the case of MO2max, low Q10 values indicate that the rate has 

lowered with temperature, therefore the rate of maximal oxygen consumption when 

swimming at elevated temperatures affected O.cyanosoma more than it did any other 

species tested.  

Table 2.1 Q10 values of all five species for resting oxygen consumption (MO2rest) and 

maximal oxygen consumption (MO2max). 

 

 MO2rest MO2max 

O. cyanosoma 5.7 1.5 

O. doederleini 4.2 2.3 

D. aruanus 4.1 3.0 

C. atripectoralis 1.9 2.4 

A. polyacanthus 4.0 2.1 
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2.5 Discussion  

The general trend in all five species was that an increase in ambient water 

temperature induced a decrease in aerobic scope. This was due to two factors. 

Firstly, all species were unable to increase their MO2max as water temperature 

increased. In fact, MO2max of O.cyanosoma declined with increased temperature. 

Secondly, increasing temperature resulted in a rise in MO2rest in all species, thus 

leading to reduced scope for oxygen uptake at higher temperatures. In three out of 

the five species of coral reef fish tested, aerobic scope was significantly decreased by 

only a 2°C increase in temperature to 31°C.   

Q10 values have been used for nearly a century (firstly on goldfish by Ege and 

Krogh in 1914) to describe the relationship between metabolism and temperature 

(Steffenson, 2002). Ege & Krogh reported that the metabolic rate increased 

exponentially as water temperature increased, unless the fish has employed a 

physiological mechanism to counter the effects of temperature. Given that high 

metabolic rates lead to lower aerobic scope and therefore less energy available for 

growth, fish that are chronically exposed to higher water regimes are thought to 

physiologically adapt to prevent increases in metabolic rate, and therefore Q10.Q10 

values for biochemical reactions typically fall between 2 and 3 (Chaui-Berlinck et 

al., 2002). However in this study, values of 4.2 for O.doederleini and 5.7 for 

O.cyanosoma were reported. Cardinalfishes, in particular O. cyanosoma were more 

severely affected than the three species of damselfishes studied. These values are 

much higher than the average of 2 to 3, suggesting that these species are under some 

degree of thermal stress. If they are outside of their thermal comfort zone, they will 

have to expend more energy in order to satisfy basal metabolic needs. Whilst these 

values are higher than typically reported, Q10 values, values as high as 8 have been 

recorded for fish that are exposed to temperatures outside their thermal zone of 

tolerance (Johnston et al., 1991). Metabolic cold adaptation is the hypothesis that 

polar fish which evolved in a stable temperature environment display a resting 

metabolic rate that is higher than predicted from the overall rate and temperature 

relationship established for temperate and tropical species (Clarke & Johnston, 

1999). However, although it was once widely accepted, several more recent studies 

have provided evidence that this theory is flawed and metabolic cold adaptation is 

now largely disputed (Clarke & Johnston, 1999: Steffenson, 2002). Coral reef fish, 
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like polar fish, have evolved in a stable environment, and are therefore mostly 

stenothermic, with narrow temperature tolerances (Van Dijk et al., 1999). This, 

coupled with them being ectothermic, results in these species being sensitive to 

temperature increases, which is shown in the results from this study, with high Q10 

values recorded, especially for the cardinalfishes.  

Fish that are able to maintain their aerobic scope at higher temperatures are 

thought to have a higher thermal tolerance, and therefore are predicted to cope better 

with global warming (Gardiner et al., 2010). The two species of cardinalfish were 

much more sensitive to temperature increases, as they were unable to maintain their 

aerobic scope. A 2°C increase in temperature to 31°C, which is already experienced 

in the lagoon on extreme warm days, resulted in the fish losing half of their aerobic 

scope. An additional rise in water temperature to 33°C resulted in a loss of virtually 

all capacity for oxygen uptake, leading to exhaustion and in some cases death. The 

mortalities seen in the acclimation period at 33°C in the cardinalfishes were probably 

because they could no longer supply their tissues with enough oxygen for basal 

metabolism. It is likely that anaerobic metabolism took over, which cannot be 

sustained for long periods. Therefore, the fish either died due to insufficient energy 

supply or through lactic acidosis as a result of sustained anaerobic metabolism 

(Evans, 1987). A water temperature of 31°C is already experienced on warm 

summer days on the Great Barrier Reef, however only for short periods of time and 

only in the shallow water in the middle of the day. However, it is anticipated that 

31°C is set to become the mean summer temperature in 50-100 years from now. The 

fact that aerobic scope was significantly affected at 31°C suggests that these species 

of cardinalfish are likely to experience difficulty in the summer months. The reduced 

aerobic scope may impact the ability to forage for food, to grow and also to 

reproduce. These factors are all likely to be hindered further as waters continue to 

warm and therefore the long-term viability of the populations of cardinalfish on the 

Great Barrier Reef is unsure. The almost complete collapse of aerobic scope at 33°C 

as a consequence of climate change could prove too much for this species. 

The damselfish tested were less sensitive to increases in temperature, 

however the aerobic scope of two of the species still declined significantly, from 142 

% at 29 °C to 81 % at 31 °C in A. polyacanthus, and from 300 % at 29 °C to 178 % 

at 33°C in C. atripectoralis. In a previous study by Munday et al. (2008b), both 
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juvenile and adult A.polycanthus had reduced growth and condition factor when held 

at temperatures just a few degrees above the average summer temperatures (in this 

case the mean summer temperature was 28°C and elevated experimental temperature 

was 31°C).The significantly reduced aerobic scope for A.polyacanthus with just a 

2°C increase in this study therefore agrees with the study of Munday and colleagues, 

namely that this species may also be negatively affected by the climate change 

conditions anticipated in the next 50-100 years. D.aruanus was the only species 

tested to not have significant declines in aerobic scope, despite resting oxygen 

consumption increasing significantly with temperature. Therefore, D.aruanus 

appears to be the most thermally tolerant species of those tested, and so is likely to 

cope best with warming waters.  

The result from this study, which compares the responses of the five species, 

suggests that there will be some species, or indeed some families, that have greater 

thermal tolerances than others. Therefore, as sea-surface temperature warms with 

climate change, it is possible that some families will cope better than others and that 

those that are highly sensitive may disappear from many coral reefs. In control 

conditions (29°C; the temperature currently experienced in the lagoon the fish were 

caught in), the cardinalfish had a much lower MO2rest than the damselfish 

(265±31[SD] compared to 434±44[SD], respectively). This suggests that the 

damselfish naturally have a higher metabolic rate than cardinalfish, which is to be 

expected given that damselfish are considered to be one of the most active families 

of fish on the reef. Cardinalfishes have been well documented to be one of the least 

active fish on coral reefs (Gardiner et al., 2010). However, this could also be due to 

most censuses being carried out in daylight hours, when cardinalfishes would be 

resting since they are nocturnal. However, it may well be true the cardinalfishes are 

indeed less active than damselfish and therefore are not suited to the high metabolic 

demands that will occur with warmer waters. Therefore small increases in 

temperature which raise the basal metabolic rate will significantly affect these fish. 

Damselfish are much more active and therefore they may be aerobically fitter and 

potentially better suited to coping with increased energy demands, such as those 

induced by higher temperatures (Gardiner et al., 2010). Given that cardinalfish are 

nocturnal and these experiments were carried out in daylight hours, there is the 

potential that the cardinalfish were metabolically disadvantaged by the experimental 
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design. Being nocturnal, it is probable that the metabolic rate of cardinalfish is lower 

in the day when they are resting than at night when they are more active. This may 

be a contributing factor as to why cardinalfish appear to be more susceptible to 

warming waters given that they were forced to swim at a time when they would 

normally be resting. However, given that cardinalfish are more active at night when 

water temperatures are cooler, it is possible that this is to avoid the warmest waters 

as they are more sensitive to higher temperatures. Therefore, regardless of whether 

the experiments were conducted in the day or in the night, it may well be the case 

that cardinalfish are indeed more sensitive to elevated temperatures. It would be 

worthwhile repeating the study and conducting the experiments at night-time. This 

would allow it to be determined whether there is a difference in the respiration rates 

between night and day, in order to state with confidence that the reduced aerobic 

scope was as a result of elevated temperature and not from the experiment set-up.  

Due to the apparent differences in thermal tolerance between species and 

indeed families of fish, it is predicted that there will be changes in the community 

structure of coral reef fish. In low latitude reefs, such as Lizard Island, some 

families, such as cardinalfish, are already evidently living near their upper thermal 

limit and therefore as waters continue to warm, individual performance will decline, 

leading to a decline in their numbers. More tolerant species such as Dascyllus 

aruanus and Chromis atripectoralis are likely to persist and occupy the new living 

spaces on coral reefs.  The well known effects of warmer waters on species 

distribution and abundance include range shifts, population collapses, local 

extinctions and phase shifts (Gardiner et al., 2010). There is already evidence from 

temperate and polar regions that warming water is responsible for population 

collapses. For example, in the Northern Wadden Sea, a 5°C increase in the mean 

summer temperature led to a population crash of the eelpout (Zoarces viviparus). 

This collapse was thought to be due to a significant decline in aerobic scope and 

oxygen limitation (Portner & Knust, 2007). On low latitude reefs there may well be a 

contraction or even population collapses of cardinalfish with climate change. 

However, on higher latitudinal reefs (i.e. southern Great Barrier Reef), cardinalfish 

may well increase in numbers as the water temperature is cooler further from the 

equator, which could result in a net range shift of the thermally sensitive species.  
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The loss of some families from low-latitude reefs such as Lizard Island could 

have important consequences for the ecosystem if the family lost plays a significant 

role on the reef or in the food web (Bellwood et al., 2003). It is generally considered 

that highly diverse communities of reef fish will provide protection and resilience 

against environmental change. However, Bellwood et al. (2003) concluded that a 

single species, let alone an entire family, can dramatically alter the structure and 

functioning on reef communities. For example, the Bumphead parrotfish, 

Bolbometopon muricatum, plays a large role in bioerosion as it actually digests the 

reef matrix (in some cases at rates higher than calcification) and redistributes 

structural carbonate as sediments (forming the sandy beaches of many tropical 

islands). A sudden surge in B.muricatum numbers on the reef would lead to a loss of 

coral structure and an absence of them would stop the accretion of reefs and 

formation of sandy deposits which form of the basis of sea-grass beds and other 

significant ecosystems. Therefore, it is important to consider both the species and 

their functional roles when determining whether a loss of a species will be important 

(Bellwood et al., 2003). A loss of the cardinalfish O.cyanosoma and O.doederleini 

could have significant effects of the reefs. As nocturnal planktivores, they consume 

prey both from on the reef and from the open water. Having high site-attachment, 

they return each morning to the same patches of coral, and there their faecal matter 

and waste leads to deposits of nutrients in their local vicinity. Since the majority of 

their food comes from outside the reef, they replenish the nutrients on the reef and 

have been quoted as being nutrient recyclers (Marnane & Bellwood, 2002). 

Therefore a loss of these species may result in a net loss of nutrient availability on 

the reef for other organisms.  

 Just because a species has higher thermal tolerances does not secure the 

sustainability of the population in the face of climate change. Of the pomacentrids 

tested, Dascyllus aruanus and Chromis atripectoralis had the greatest thermal 

tolerance and therefore in this case are considered to be most likely to cope well with 

climate change and hence may dominant reefs. However, these species are both very 

closely associated with live coral for their habitat, and their populations have been 

known to decline rapidly following mass coral-bleaching events (Pratchett et al., 

2008). Whilst a 2°C increase in water temperature did not directly affect these 

species by reducing their aerobic scope, a 2°C increase in temperature has been 
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documented to cause mass coral bleaching. Therefore, declines in these more 

thermally tolerant species may be seen well before temperature directly affects them, 

due to a loss of live coral. 

However, these predictions for changes in fish community structure do not 

take into account the possibility of acclimation and adaptation to new thermal 

regimes. Fish have displayed the ability to adapt and cope with short-term 

environmental changes (Munday et al. 2007), provided they are of low amplitude 

and periodicity (Taylor et al., 1997). It is also important to consider that local 

adaptation may play a role in responses to temperature increases. A study by 

Gardiner and colleagues (2010) found that individuals of the same species, in 

particular D.aruanus, from separate locations performed differently, with those from 

higher latitudes (i.e. One Tree Reef, which has a greater annual temperature range) 

coping better with increasing temperature than those from low latitude reefs (i.e. 

Lizard Island, which has a smaller annual temperature range). Although the aerobic 

scope of D.aruanus was not significantly affected in the present study, there was a 

significant increase in resting oxygen consumption. This suggests that acclimation to 

higher temperatures to maintain basal needs were not achievable in the timeframe 

given. Conversely, the MO2rest was the same for D.aruanus at One Tree Reef and 

Lizard Island. However, the conspecifics on the higher latitudes reefs (i.e. One Tree 

Reef on the southern Great Barrier Reef) had much higher MO2max at all 

temperatures. This suggests that the fish have physiologically adapted so that the 

basal metabolic demands could be met without additional requirements of oxygen 

and also that their maximal capacity of oxygen uptake had increased. Therefore the 

conspecifics which live in a cooler, more thermally dynamic system have a greater 

ability to increase their maximal oxygen consumption compared to those living 

closer to their thermal limits. The ability to adapt to different thermal regimes is 

essential in order to be able to cope with changes in temperature that are predicted 

with climate change. 

There are two mechanisms by which fish can adapt to new thermal regimes; 

firstly by phenotypic temperature acclimation and secondly by genetic temperature 

adaptation through natural selection. Phenotypic acclimation, also known as 

phenotypic plasticity, is the change in the properties of an individual in response to a 

change in the environment (i.e. changes seen in the lifetime of an individual). 
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Genetic adaption is the natural selection of the progeny of individuals better suited to 

their environment and generally relates to a population of organisms.  

In terms of phenotypic acclimation, fish, both as larvae and as adults, have 

displayed the ability to increase their gill surface area and increase the haemoglobin 

content in the blood to enhance oxygen uptake (Sollid et al., 2005), or even the shape 

of the mouth depending on the food available, as in the Antarctic notothenild 

(Eastman & Devries, 1997). Given that tropical marine organisms that are 

ectothermic have evolved under a steady environment, they will likely have less 

ability to acclimate. Despite little research being carried out to date on tropical 

marine organisms and acclimation, it appears that phenotypic plasticity is indeed 

limited in terms of adjusting the metabolic needs to prevent a reduction in aerobic 

scope (Donelson et al., 2011; Tullis & Baillie, 2005). A recent study by Donelson 

and colleagues (2011) tested the ability of Acanthochromis polyacanthus to 

acclimate to waters warmed 1.5°C and 3.0°C above current day summer 

temperatures. Whilst at +3°C A.polyacanthus was able to reduce its resting 

respiration rate (and therefore prevent a decline in aerobic scope), it came at a cost, 

with lowered condition factor and low growth rates. The lack of plasticity in tropical 

species may be related to the many costs associated with phenotypic plasticity 

(DeWitt et al., 1998). In the wider scheme, phenotypic plasticity may actually be a 

hindrance to longer term genetic adaptation, by reducing the number of phenotypes 

available for natural selection. It can also be costly to maintain the new phenotype, 

particularly in an ever-changing environment (DeWitt et al., 1998). Given that 

temperature is predicted to continue to increase over the coming century, fish would 

have to make continuous changes to phenotypes to prevent declines in aerobic scope. 

One week is thought to be a long enough period of time for fish to acclimate to new 

thermal conditions (Nilsson et al., 2007) and a shorter acclimation period of only 1-2 

days has been reported to be necessary when warming the water (Barrionuevo & 

Fernandes, 1998).  Therefore, if the fish tested in the study were able to acclimate to 

the raised temperatures, there should not have been significant differences in the 

resting respiration rates. In a study carried out on the tropical whitespotted bamboo 

shark (Chiloscyllium plagiosum), metabolic acclimation to higher temperature was 

not possible even after several months (Tullis & Baillie, 2005). Based on the 

literature and from the results of this study, it appears unlikely that coral reef fish 
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will be able to display phenotypic acclimation to climate change in their lifetime 

without encountering significant physiological costs.  

However, adaptation over several generations through natural selection may 

provide more resilience against climate change and the associated warming waters. 

Genetic adaptation in localised areas may prove beneficial, to allow a specific 

population to cope with the environmental conditions that they are usually exposed 

to. However, if there is no genetic connectivity between populations, the 

effectiveness of adaptation and natural selection is reduced. In order for natural 

selection to work, there needs to be genetic diversity. On coral reefs this is possible, 

due to the fact that most coral reef fish have a dispersive larval stage and so there is 

connectivity between local populations, as larvae from one reef are transported by 

currents to adjacent reefs. The combination of equatorial populations already living 

at water temperatures that are likely to become average conditions on high-latitude 

reefs over the next 100 years, combined with high levels of gene flow among 

populations, provides hope that populations currently living at higher latitudes might 

adapt to increased water temperature (Munday et al. 2008b). This connectivity might 

also be sufficient to permit range shifts of species into new, more suitable 

environments. For example, if the temperature at low latitude reefs, like Lizard 

Island, becomes too high for species such as cardinalfish, they may though larval 

dispersal and connectivity migrate over generations to higher latitude reefs further 

south on the Great Barrier Reef that are cooler. Whilst this strategy may work for 

species with dispersive larval phases, it is unlikely to help species such as 

Acanthochromis polyacanthus, which do not have a dispersive larval stage. 

Compared to the other two species of damselfish species, A.polyacanthus was more 

sensitive to increases in temperature. Therefore, although this species may be better 

suited to the current thermal environment at Lizard Island, further warming may 

prove to be stressful for this species. The limited connectivity between adjacent 

reefs, and therefore reduced gene flow between populations, means that the potential 

to receive favourable genotypes from other populations as local environmental 

conditions change is reduced. Given the results from this study of a reduction in 

aerobic scope of a 43% arising from just a 2°C rise in temperature (29 to 31°C), this 

small change might be sufficient enough to cause significant declines in the 

populations of this species on the Great Barrier Reef. Even for species with 
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dispersive larval stages, it is unlikely that adaptations in aerobic capacity will be able 

to keep pace with increasing temperature in equatorial regions or low latitudinal 

reefs such as Lizard Island. Therefore, whilst there may be range shifts in some 

species to higher altitude reefs, there may also be a loss of some species from low 

latitudinal reefs in fish species already living near their upper thermal limit (Gardiner 

et al., 2010).  The effect of temperature on aerobic scope provides a mechanistic 

explanation that can be used to predict how communities of marine fishes are likely 

to respond to rapid increases in ocean temperature. Whilst the values for aerobic 

scope may not represent the true oxygen consumption in nature, it does allow for 

comparisons between species to help predict which species or indeed families of fish 

are the most susceptible to population declines and are likely to exhibit pronounced 

range shifts as ocean temperatures increase.  

If fish are able to adjust to the new temperature regimes, it may come at a 

cost, due to necessary adjustments of physiological processes. These trade-offs will 

have consequences for the biogeography, growth, life-styles, development, fecundity 

and recruitment of fish (Pörtner & Knust, 2007). Recent research has demonstrated 

that although warming waters may be detrimental to some coral reef species, there is 

hope for adaptation occurring over very short time periods of just two generations 

(Donelson et al., 2012). A.polyacanthus, when exposed to warmer waters, had the 

typical responses as shown in this study with decreased aerobic scope but also with 

lowered fecundity. However, although fecundity was reduced in the parental 

generation, the viable offspring were more thermally tolerant and displayed complete 

compensation, with zero reduction in aerobic scope in elevated waters (Donelson et 

al., 2012).  Therefore, whilst warmer waters may negatively affect one generation of 

fish, these recent findings provide some hope that, as long reproduction is still 

possible the next generation of coral reef fish may be better suited to the warmer 

world into which they are born. 
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2.6 Conclusions 

 

 The results from this study demonstrate that increases in water temperature, 

predicted to occur this century with climate change, will likely have negative effects 

on at least two families of coral reef fish. Increasing the water temperature had a 

significant effect on the oxygen consumption of all five species of coral reef fish 

tested. However, there were differences in the magnitude of response between the 

two different families of fish, with cardinalfish (Ostorhinchus cyanosoma and 

O.doederleini) more severely affected than the damselfish (Dasyllus aruanus, 

Chromis atripectoralis and Acanthochromis polyacanthus). A 4°C warming in 

waters lead to a significant decline in aerobic scope in four of the five species, and a 

complete loss in aerobic scope in both species of cardinalfish. This reduced aerobic 

scope was due to an increase in resting oxygen consumption at elevated water (31°C, 

32°C, and 33°C compared to the control 29°C) and an inability to increase the 

maximal oxygen consumption. Indeed, there was a significant decline in maximal 

oxygen consumption for O. cyanosoma. This suggests that cardinalfish may already 

be living at, or very close to, their thermal maximum at Lizard Island. These results 

also indicate that there may be interfamilial differences in the responses of fish to 

climate change, which may result in changes to the community structure of the reef.  
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Chapter 3: Interacting effects of chronic thermal stress and 

ocean acidification on two species of cardinal fish living on 

the Great Barrier Reef.  

 

Munday, P.L., Crawley, N.E., Nilsson, G.E. (2009). Interacting effects of elevated 

temperature and ocean acidification on the aerobic performance of coral reef fishes. 

Marine Ecology Progress Series, 388, 235-242.  

 

3.1 Statement of Contribution to work 

 

This work was conducted on Lizard Island on the Great Barrier Reef under 

the supervision of Dr Philip Munday (James Cook University) and Professor Göran 

Nilsson (University of Norway). I collected the fish from the reef and conducted the 

respirometry experiments in accordance to methodology previously used by Nilsson 

et al. (2007). Experimental set-up to incorporate lowered pH was designed in 

collaboration with Dr Munday.  I input the data and conducted the preliminary 

statistical analysis. The first draft of the paper was written by me; however, the paper 

was subsequently relinquished to Dr Munday for final review and publication.  

 

3.2 Abstract 
 

The anthropogenic inputs of CO2 into the atmosphere will not only result in 

warming waters, but also a lowering of pH, an effect known as Ocean Acidification. 

Whilst it is known that ocean acidification will have negative effects on calcifying 

organisms, such as corals, very little is known about the effects on the fish associated 

with the coral. This study compared the resting (MO2rest), maximal (MO2max) and 

aerobic scope of two species of cardinalfish at elevated temperature (31°C and 32°C 

compared to a control of 29°C) and reduced pH 7.8 (compared to a control of pH 

8.15). The two species of cardinalfish, Ostorhinchus doederleini and O.cyanosoma, 

were shown to be sensitive to increases in temperature in chapter two.  The results 

from this study demonstrated that even at control temperatures (29°C), a lowered pH 

of 0.3 units caused the same percentage loss in aerobic scope as did a 3°C warming. 
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Increases in temperature coupled with reduced pH further reduced the aerobic scope 

of cardinalfish. These results provide evidence that ocean acidification will directly 

affect coral reef fish, whereas until now it was considered that reef fish would be 

primarily impacted indirectly, through a loss of coral cover due to mass coral 

bleaching events.  

 

3.3. Introduction 
 

Understanding the responses of marine fish to changes in temperature and pH 

is vital in order to predict how sensitive individuals and populations are to climate 

change. Atmospheric levels of CO2 have risen by 31% (since pre-industrial times) 

and it is this gas that is thought to be the biggest contributor to global warming. On a 

business-as-usual scenario, atmospheric CO2 levels are expected to rise from the 

current level of 380ppm (Feely et al., 2004) to over 800ppm by the end of the 

century (IPCC, 2007). More seriously, without a significant reduction in fossil fuel 

emissions, the increase in atmospheric CO2 could be as high as 2000ppm within the 

century (Shirayama & Thornton, 2005). This is anticipated to result in a global mean 

ocean temperature increase of 1.5-4.5ºC by 2100 (Rombough, 1997). Due to 

atmospheric CO2 readily dissolving into the oceans, this rise could also result in a 

concomitant drop in the ocean pH by 0.4 units by 2100 (IPCC, 2007) or to pH 7.3 in 

the next 300 years (Caldeira & Wickett, 2003).  Decreases in pH are already 

detectable (Pörtner et al., 2005) and it is expected that there will be effects on marine 

organisms in the surface waters (Pörtner et al., 2005). However the actual effects and 

implications remain largely unknown.  

 

3.3.1. Temperature and aerobic scope 

 

Research on temperature effects to date has focused on the ability of corals to 

acclimate to warmer waters, but there has been little attention on how fish will cope. 

Although the expected increases in water temperature are likely to be greater in 

temperate than tropical regions, it is thought that tropical species will respond more 

strongly. Coral reef fish have evolved in a thermally stable environment and 
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therefore are considered to have narrower thermal tolerances and to live nearer their 

upper thermal limit (Hoegh-Guldberg et al., 2007a; Tewksbury et al., 2008), as was 

seen in Chapter 2. It is known that extremes in temperature can induce anaerobic 

metabolism, and raised temperature will accelerate the basal metabolic rate (Pörtner 

et al., 2005). Increased temperatures can also exacerbate oxygen limitation, as 

demand for oxygen increases with higher metabolic rates, but oxygen solubility is 

lower in higher temperatures, making it harder to be absorbed by marine organisms 

(Pörtner & Knust, 2007).   

Aerobic capacity or aerobic scope is a good measure of the maximal 

sustainable aerobic ability of an animal and it is thought to be the key physiological 

mechanism that will determine how marine species will cope with climate change 

(Pörtner & Knust, 2007). Whilst it has previously been stated that small increases in 

temperature are unlikely to affect the aerobic scope of fish (Taylor et al., 1997), the 

results in chapter two of this thesis present contradictory evidence. The aerobic 

scope of four commonly occurring coral reef fish (Ostorhinchus doederleini, 

O.cyanosoma, Acanthochromis polyacanthus and Chromis atripectoralis) declined 

with increases in water temperature of between 2-4°C. These results suggest that at 

least four species from two families of coral reefs are already living near their 

thermal maximum. However, aerobic scope is expected to be affected by more than 

just temperature increases; for example, from acid stress resulting from ocean 

acidification. In particular, the two species of cardinalfish tested which were most 

sensitive to temperature could be increasingly threatened by confounding factors 

such as low pH.  

 

3.3.2. Ocean Acidification 

 

It is known that as additional CO2 dissolves into the ocean, the pH is 

lowered, a process known as Ocean Acidification. Decreased pH is thought to 

confound the effects of higher temperatures on the aerobic capacity of marine 

organisms (Pörtner & Farrell, 2008). Therefore understanding the ways climate 

change may impact marine organisms depends upon understanding the way in which 

temperature and pH interact to affect the performance of individuals.   
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Ocean pH is predicted to decline with climate change as the oceans absorb 

more and more CO2. Declines in pH of as much as 0.4 units are predicted by 2100 

under an A1 SRES scenario (IPCC, 2007). This would make the oceans more acidic 

than they have been at any point in the last 400, 000 years (Feely et al., 2004).  This 

decrease in pH will likely affect all organisms that use calcium carbonate (CaCO3) 

for their skeleton, such as corals.  Many other invertebrates utilising CaCO3 will be 

affected in much the same ways as coral, and studies carried out on plankton, sea 

urchins (Kurrihara et al., 2004) and gastropods (Shiryama & Thornton, 2005) have 

shown similar responses. Studies on gastropods and echinoids showed that small 

increases in atmospheric CO2 could have negative consequences on growth rates 

(Shirayama & Thornton, 2005). In gastropods, both shell height and body mass 

decreased as a result of increased CO2, indicating that it affects the physiology of 

organisms (Shirayama & Thornton, 2005). Reduction in pH can reduce or increase 

the toxicity and availability for uptake of many substances, such as metal ions, which 

can be toxic to marine organisms.  

 

3.3.3. Low pH and fish 

 

Low pH can affect many biological processes, such as enzyme function, the 

ability of haemoglobin to carry oxygen and transport of body electrolytes. 

Freshwater fish can withstand greater fluctuations in pH than marine fish, due to the 

dynamic system in which they live. It is thought that most freshwater fish can 

tolerate extremes of 5-9 pH units (Fromm, 1980), however marine fish live in a more 

stable environment and so their lower tolerance limit is a pH of 7.0 (Michaelidis et 

al., 2005). Fish in acidified waters may experience impaired ionic regulation, since 

they are not as able as crustaceans at regulating their internal pH (Allan & Maguire, 

1992), with increased permeability to H
+
 and Na

+
 across the gills (Fromm, 1980). 

Low pH can also affect reproduction, with females producing less viable eggs or 

even ceasing spawning all together, although this happens only at extremely low pH.  

As with thermal stress, high pCO2 can cause a decrease in cardiac output in 

fish, which reduces the oxygen delivery to the muscles (Pörtner et al., 2005). 

Without sufficient oxygen supply to the muscles and tissues, energy will be derived 
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from unsustainable anaerobic metabolism, and ultimately growth and reproduction 

will be slowed. Acutely elevated CO2 may result in increased ventilation by fish and 

other water breathers, to counteract the accumulated CO2 in the tissues from 

anaerobic metabolism resulting in hypercapnia (decreased pH of the blood due to 

high CO2 levels) (Evans, 1987). However, this is only viable as a short-term response 

and has limited effects. On longer timescales, it is known that invertebrates have the 

ability to display metabolic depression in similar ways to hibernating animals 

(Pörtner et al., 2000). Metabolic depression is an adaptive biological process to 

preserve energy by lowering body temperature, reducing breathing rate and/or a 

lowered metabolic rate. By decreasing their energy turnover, it allows them to 

survive longer in stressful environments. However, metabolic depression has not 

been shown for fish, and there is some thought that metabolism may even be 

stimulated by hypercapnia (Pörtner et al., 2005). 

 Aerobic scope is a good indicator of the health of an organism as it provides 

an indication as to the amount of excess energy an individual has for growth and 

reproduction. It is hypothesised that CO2 affects several mechanisms, such as 

metabolism, that are also affected by thermal stress (Pörtner et al., 2005). For these 

reasons, if given the choice, fish will actively avoid water with low pH or high CO2, 

a behaviour termed ‘avoidance homeostasis’ (Fromm, 1980). However, with climate 

change and ocean acidification, this may not be possible, as it will affect large areas 

not just isolated patches of water. 

In most studies where pH has been manipulated, it has been though the 

introduction of acid (e.g. hydrocholoric acid, HCl) not of CO2. This produces 

significantly different results than when pH is lowered by bubbling CO2 into the 

water. Furthermore, due to their wider tolerances, the effects of pH have been 

studied largely on freshwater fish rather than marine fish, particularly tropical marine 

species. Therefore, there is inadequate knowledge of pH tolerance and responses to 

acidification by marine organisms and coral reef fish (Caldeira & Wickett, 2003; 

Knutzen, 1981). 
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3.3.4. pH and gill structure 

 

The gill epithelium serves many purposes; aside from being the site of 

gaseous exchange, it is also the site for ionic-regulation, nitrogenous waste excretion 

and acid-base regulation. Through the reversible hydration/ dehydration reaction of 

CO2 with an acid (hydrogen ions, H
+
) or base (bicarbonate, HC03

-
), the fish gill is 

able to maintain the acid-base balance:  

CO2 + H2O  H
+
 + HCO3

- 
    (Perry & Gilmour, 2006) 

In times of elevated CO2, there is an increase in the hydrogen ions which 

lowers the pH, both of the water and also of the plasma of fish. In order to 

compensate for this acidosis (lowered plasma pH by the increase of H
+
 ions), a series 

of enzymatic changes takes place to increase the plasma and cellular bicarbonate 

levels. This in turn results in an increase in CO2, which can then be passively 

removed via the gills (Fromm, 1980; Michaelidis et al., 2007; Perry & Gilmour, 

2006). This regulation of H
+
 and HC03

-
 is believed to be closely linked to Na

+
 and 

Cl
-
 ions, respectively, and therefore disruption of internal pH is often coupled with 

imbalances in ion regulation (Evans, 1987; Fromm, 1980; Perry & Gilmour, 2006). 

There are two mechanisms by which the acid-base balance is controlled. Firstly, 

there is respiratory compensation, whereby hyperventilation removes the excess 

production of CO2; however in fish this process is thought to be limited (Perry & 

Gilmour, 2006). The second and more prominent mechanism is metabolic 

compensation across the gills. Although it is accepted that metabolic compensation 

across the gills and adjustments in bicarbonate levels in plasma are responsible for 

maintaining internal pH balance, the actual mechanism involved in this process are 

not clearly understood (Perry & Gilmour, 2006).  

It has long been documented that aquatic acidification can have detrimental 

effects on the structure and physiology of the gill, which then affect the acid-base 

balance mechanisms. These include separation of the epithelial layers of the 

secondary lamellae on the gill filaments (Figure 3.1), swelling of the secondary 

lamellae (Evans, 1987), or an increase in the number and morphology of chloride 

cells (Evans, 1987; Hirata et al., 2003). These structural changes may be as a result 

of general stress rather than pH alone, or due to the failure of gill cellular 
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osmoregulation (Evans, 1987). These structural alterations can lead to acute 

acidification of the plasma and ultimately death (Hirata et al., 2003).  

It has long been documented that water with low pH causes excess mucus 

production on the gills which coagulates and also causes the gill membranes 

themselves to stick together. This mucus film hinders the diffusion of oxygen across 

the gills into the blood, and has been termed ‘coagulation film anoxia’ (Westfall, 

1945). Therefore, even if there is sufficient oxygen present in the surrounding water, 

the fish may still experience hypoxic conditions, as it is unable to transport the 

oxygen across the gills and into the blood. This mucus secretion, not only on the gills 

but also on the surface of the body, may be adaptive by reducing the epithelial ionic 

permeability, but the role it plays is unclear. 

 

 

Figure 3.1. Structure of a healthy gill. 

 

3.3.5. Synergistic relationship between temperature and pH 

 

Despite the known synergistic relationship between increased temperature 

and decreased pH (Kirrihara et al., 2004; Reynaud et al., 2003; Shirayama & 
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Thornton, 2005), it has little been studied. There are no data yet on how climate 

change projections will affect tropical marine fish species, as most studies have 

focused on freshwater or temperate marine fish (McCormick & Molony, 1995). 

Increases in temperature are thought to induce a poleward or high-latitude shift in 

distribution of ectothermic animals such as fish, but there has been little focus on the 

effects of CO2 and pH on fish (Pörtner & Knust, 2007), and there are no data yet as 

to the interacting effects of temperature and pH on marine fish. The relationship 

between temperature and pH clearly needs addressing, particularly in terms of 

climate change. It is apparent that when elevated CO2 and temperature are combined, 

the effects on marine biota are likely to be far more pronounced (Shirayama & 

Thornton, 2005).  

 

3.3.6. Ostorchinchus cyanosoma & O. doederleini. 

 

Cardinalfish (Family: Apogonidae) are an extremely diverse and common 

family of coral reef fish. Regardless of this, there is still relatively little information 

available about their ecology and biology (Gardiner & Jones, 2005). Chapter two of 

this thesis (Nilsson et al., 2009) demonstrated that there were strong inter-familial 

differences in how fish coped with increasing water temperature. It was shown that 

the cardinalfish, Ostorchinchus cyanosoma & O.doederleini, were more sensitive to 

temperature increases than the three damselfish species tested (Dascyllus aruanus, 

Chromis atripectoralis and Acanthochromis polyacanthus) and therefore that there 

might be changes in reef fish community structure with warming waters. 

Additionally, it has also been reported that cardinalfish actively select live coral 

cover for protection and this is predicted to decline with climate change. Given that 

cardinalfish appear to be sensitive to temperature, it was considered interesting to 

investigate whether their aerobic scope is further reduced by ocean acidification. 

Cardinalfish are small in size and during the day spend a lot of time in large groups 

amongst the matrix of the coral. Being nocturnal, they will leave the shelter of the 

reef matrix at night and feed on plankton in open water. Due to a cessation of 

photosynthesises at night (which utilises CO2 and produces O2) and a continuation of 

respiration (which utilises O2 and produces CO2) by reef organisms, a drop in 

oxygen levels and pH at night is often experienced within the reef matrix (Nilsson et 
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al., 2007). Species which shelter in the reef at night are therefore exposed to lowered 

pH on a nightly basis, whereas cardinalfish which migrate, albeit only short distances 

from the reef matrix, avoid the lower pH. Therefore, it is hypothesised that these two 

species of fish, which are extremely sensitive to temperature increases, will not be 

able to tolerate even moderate declines in ocean pH. 

 

3.3.7. Aims of Study 

 

The aim of this study was to examine the interactive effects of temperature 

and pH on the aerobic scope (capacity for oxygen uptake) on two cardinalfish, 

Ostorhinchus cyanosoma (Figure 2.3 a.) and O.doederleini (Figure 2.3 b.). These 

two species have previously been shown (see results in Chapter 2) to be severely 

affected by increased temperature (Nilsson et al., 2009). This study compared the 

resting and maximal metabolic rates of the two species of cardinalfish examined in 

chapter two at present day pH (pH 8.15) to those acclimated to a lowered pH (pH 

7.8) at temperatures predicted to occur as a consequence of climate change by 2100.  
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3.4. Methodology 

 

3.4.1. Experimental Design 

 

All experiments were carried out between December 2007 and January 2008 

at Lizard Island Research Station (LIRS; www.lizardisland.net.au) on the Northern 

Great Barrier Reef (14°40'S 145°28'E), Australia (Figure 2.2 and 2.3). For the 

control pH dataset (average pH 8.15, range 8.02-8.21), results from chapter two for 

the two species of cardinalfish, Ostorhinchus cyanosoma and O. doederleini were 

used. This was to prevent additional removal of fish from the coral reef, as it was 

deemed crucial to minimise disruption to this fragile ecosystem. A sample size of 

nine individuals per species for each water temperature treatment was selected to be 

in agreement with methodology form chapter two. Nine individuals were previously 

deemed suitable, since previous similar experimentation on these species has been 

shown to be sufficient for significant statistical analysis (Nilsson et al., 2007). 

Furthermore, sample sizes were constrained from being larger due to ethics and 

permit restrictions.   

For the comparison to lowered pH, adults of comparable size of O. 

cyanosoma (2.3±0.5g), O. doederleini (2.18±0.77g) were collected for 

experimentation. Fish were caught by SCUBA diving in the lagoon near LIRS using 

a hand net after lightly anaesthetizing them with clove oil, as previously described 

(Östlund-Nilsson & Nilsson, 2004). Fish were kept in a temperature-controlled 

indoor aquarium, which was continuously supplied with water pumped in directly 

from the ocean. A 12 hour light: 12 hour dark cycle was controlled using fluorescent 

lighting to mimic the natural light conditions. The water oxygen level varied 

between 95 and 100 % of air saturation.  

Experimentation was first carried out on O.doederleini and then 

O.cyanosoma, following the same procedure as follows. Nine individuals were 

placed in each one of four 50L tanks (water temperature of 29°C). Control 

individuals were kept at the ocean temperature, with a mean of 29°C ±0.5°C. Other 

fish were kept in identical aquaria where the water temperature was increased with 

aquarium heaters to 31, 32 or 33°C (max daily variation was ± 0.5°C) over a period 



 

91 

 

of 1-2 days. The tanks were supplied with seawater adjusted to pH 7.8 (range 7.75-

7.85) to simulate future ocean acidification. pH was adjusted by the standard method 

of bubbling additional CO2 into a reservoir tank (Leclercq et al. 2002, Michaelidis et 

al. 2005), which then supplied equilibrated seawater to each of the test aquaria. pH 

in the 60 L reservoir tank was regulated with an automated pH-controller (Tunze 

Aquarientechnik, Germany) connected to an electronic solenoid valve. A laboratory-

grade glass pH probe continuously monitored pH in the reservoir. The solenoid 

injected bubbles of CO2 into a diffuser (Red Sea Reactor 500) at the bottom of the 

reservoir tank whenever the pH rose above 7.8. The diffuser rapidly dissolved CO2 

into the seawater and also served as a vigorous stirrer. The equivalent atmospheric 

concentration of CO2 for the pH treatment was estimated by sealing replicate tanks 

in which the pH of the water had been adjusted and then measuring the increase in 

pCO2 in a narrow space above the water surface with an infrared CO2 probe 

(Vaisala, Finland). The estimated concentration of CO2 in the pH treatment was 

between 1000-1050ppm. This value matches closely with other studies that have 

estimated CO2 concentrations of approximately 1000ppm for a 0.4 unit decline in pH 

using similar methodology (Havenhand et al. 2008). 

Fish were acclimated for one week prior to respirometry testing. They were 

fed daily to satiation with frozen blood worms and fish pellets, but starved for 24 h 

before determination of resting rate of O2 consumption. All experiments were carried 

out between 08.00 and 18.00 h. Each fish was only used for one treatment and 

released back to the reef after experimentation. 
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Figure 3.2. Diagrammatic representation of the experimental layout for the low pH 

treatment. A tank for each temperature regime (control: 29, and then individually 

heated to 31, 32 and 33C°) was supplied with seawater from header tank lowered to pH 

7.8 by addition of CO2 to simulate ocean acidification. 

 

 

3.4.2 Respirometry for measuring resting rate of O2 consumption (MO2Rest) 

 

The method used has been previously described in chapter 2. Fish were 

placed individually in a respirometer and allowed to acclimate for 1 hour with water 

flowing through the respirometer (Figure 2.5). After an acclimation period and the 

fish were calm, the chamber was closed (a 750ml plexi glass cylinder with 80mm 

inner diameter) and the oxygen levels continuously recorded with an oxygen 

electrode (OXI 340i from WTW, Germany) for 30-40 minutes. The respirometer was 

submerged in the same temperature-pH conditions as the fish were acclimated to. All 

recordings were carried out at oxygen levels between 70 – 100 % of air saturation. 

The fish settled within minutes; trials with longer acclimation periods (24 hours) did 

not further reduce the rate of O2 uptake.  



 

93 

 

3.4.3. Swim respirometry for measuring maximal O2 uptake (MO2Max) 

 

The method used has been previously described in chapter 2. The 

respirometer chamber consisted of a Perspex cylinder (80 mm inner diameter, 500ml 

total water volume) (Figure 2.6). The chamber could be opened at the bottom, where 

a petri dish was tightly fitted. The tip of an oxygen electrode (Oxi 340i- WTW) was 

inserted 10 mm above the bottom of the chamber. A removable wire mesh (5 mm 

mesh width) was positioned horizontally in the middle of the chamber. Above the 

mesh a centrally placed cylinder created a circular swim chamber, and the water was 

set in motion by a 6 cm long stirring magnet in the compartment below the mesh. 

The respirometer was placed on the bottom of a temperature-pH controlled 

aquarium, below which a magnetic stirrer was placed to drive the magnet in the 

respirometer. The water speed was regulated with the magnetic stirrer. As soon as 

the water was set in motion, the fish started swimming against the current. The speed 

was set to a point where it was clear that the fish swam at or just above the aerobic 

maximum speed. This was done by increasing the water speed to a point where the 

fish was barely able to maintain a steady position in the chamber but pectoral fin 

movements were still evident. Water oxygen concentration was recorded for 10 min, 

during which time a linear fall in water oxygen concentration was seen. During the 

runs, water oxygen concentration was between 90 and 100 % of air saturation. 

 

3.4.4. Aerobic Scope 

 

Scope for oxygen uptake is given in % and was calculated as: 

Aerobic Scope= 100 x (MO2Max - MO2Rest) /MO2Rest 

Resting and swimming oxygen consumption of 6-8 fish was tested at each 

combination of temperature (29, 31 and 32°C) and ocean acidification (control 

seawater [pH 8.15] and pH 7.8).  Respirometry was not possible at 33°C due to high 

mortality rates in the ocean-acidification treatments.  
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3.4.5. Gill samples 

 

During the acclimation period, it appeared that fish held in the highest 

temperature and low pH treatment had developed swollen gills. The opercula 

covering the gills was raised exposing the gill filaments, however, this was not seen 

in those at control temperatures. Whilst not a planned section of the methodology, 

out of interest, gill samples were subsequently taken from individuals that had died 

in the acclimation period. A gill filament sample was removed from individuals of 

Ostorhinchus cyanosoma within 4 hours of death. Samples were obtained from 

individuals held at 32°C (pH 7.8) and 33°C (pH 7.8) and compared to a sample taken 

from a control (29°C and pH 8.15). Firstly, the operculum was removed with 

scissors to expose the gills. Gill edges were taken by forceps which were held 

parallel to the edge of the gill filament and scissors used to excise a cross section of 

the gill, to contain the gill arch, rakers and gill filaments. The sample was then 

placed on a microscope slide and a cover slip carefully placed on top. Given that 

only one sample was taken as a preliminary investigation, no fixative was used. The 

gill specimen was then placed under an Olympus light dissection light microscope 

which had a high resolution digital camera and monitor attached.  

This was pilot research that was conducted primarily out of interest and 

therefore the results are not quantitative (no repeat samples or scale available), and 

consequently should be taken only as preliminary results. The results from light 

microscopy were not included in the final publication.  

 

3.4.6. Statistical analysis 

 

All values are means ± SEM. SPSS v15 was used for statistical analysis. 

Statistical significance (P<0.05) was tested with a Two-Way ANOVA. When 

statistically different variances were seen in the data, Tukey’s Post-Hoc test was 

applied to compare temperature and pH to the controls, as it is more powerful than 

Newman-Keuls Multiple Comparisons Test. Tukey’s also reduces the chances of 

making a Type 1 Error (incorrectly rejecting a true null hypothesis). Where data 

exhibited statistically different variances (as detected by Levene’s test for equal 
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variances), the values were square root transformed prior to analysis to obtain 

normal distribution. This was the case for resting oxygen consumption for 

Ostorhinchus cyanosoma.  

 

3.4.7. Ethical Approval 

 

This study followed the ethical guidelines provided by James Cook 

University, Queensland, Australia (see Appendix 1). The permit granted by the Great 

Barrier Reef Marine Park Authority (see Appendix 2, permit number GO6/ 20234.1) 

allowed the capture of fish. 
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3.5. Results 

 

3.5.1. Mortalities 

 

For both species of cardinalfish, temperature and pH affected the 

consumption of oxygen and the aerobic scope. Although the experimental design 

included fish at 33°C at both pH 8.15 and 7.8, it was not possible to conduct 

respirometry at 33°C due to high mortality rates. There was over a third mortality 

rate at 33°C, regardless of pH for both species and 100% mortality in O. doederleini 

at a lowered pH 7.8 (Table 3.1). All the O.doederleini held at 33°C and pH 7.8 died 

in the first 48hours, as did three of the O.cyanosoma. This is in contrast to those held 

at control pH, where mortalities were seen up to day five of the acclimation period. 

Therefore, when pH was lowered, particularly in conjunction with raised water 

temperatures, mortalities were seen much earlier into the experimentation. 

Table 3.1. Number and percent (in parenthesis) of individuals of O. doederleini and O. 

cyanosoma from Lizard Island that died when kept at 8 combinations of water 

temperature (29, 31, 32, 33°C) and pH (8.15 and 7.8) for one week. 

 

Temperature(°C)  Species and seawater pH 

  O. doederleini O. cyanosoma 

  8.15 7.8 8.15 7.8 

29  0 0 0 1 (11.1) 

31  0 0 0 0 

32  0 4 (33.3) 0 1 (11.1) 

33  3 (37.5) 13 (100) 4 (44.4) 3 (33.3) 

 

Even in control pH water, there were high mortality rates at the highest 

temperature of 33°C (3 out of 8 for O. doederleini and 4 of 9 for O. cyanosoma). 

This suggests that 33°C is near the upper thermal limit for both species at Lizard 

Island. Of those fish that did survive at 33°C, results from the swim test were 

unreliable as most were unable to sustain swimming for any length of time before 

complete exhaustion. Therefore the results only included data from three of the test 

temperatures, 29°C, 31°C and 32°C and both control (pH 8.15) and low pH (7.8).  
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3.5.2. Resting Oxygen Consumption 

 

 

 

Fig 3.3. Mean resting MO2 (±SEM) at 6 combinations of water temperature (29, 31, 

32°C) and seawater pH (control 8.15, 7.8) for a) Ostorhinchus doederleini (n=6-9) and 

b) O. cyanosoma (n=8-9). There were significant effects of temperature (p<0.001) and 

pH (p<0.05) but no significant interaction between Temp x pH for O.doederleini. There 

were significant effects of temperature (P<0.001), pH (p<0.01) and Temp x pH (p<0.05) 

for O. cyanosoma.    
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Resting oxygen consumption (MO2rest) for both species increased as 

temperature was raised and also as the pH was lowered. In acidified water, both 

species displayed an asymptotic relationship as water temperature was increased, 

that is to say there was a significant increase in MO2rest from 29°C to 31°C, but no 

further increase in MO2rest as the temperature continued to rise to 32°C (Figure 3.3). 

In the control individuals that were not exposed to CO2 acidification, this asymptotic 

relationship did not occur and resting MO2rest continued to increase with each 

temperature increment.  

In O.doederleini at 29°C, the MO2rest was the same regardless of pH 

treatment. However, as the temperature was increased to 31°C, those held in 

acidified water had a significant increase in MO2rest which did not further increase 

with temperature (Figure 3.3a). This suggests that at lower temperatures, O. 

doederleini is unaffected by low pH but as temperature increases, low pH becomes 

stressful. Yet MO2rest was as high in fish only stressed by high temperatures of 32°C 

as in those stressed by both high temperature and low pH.  

O.cyanosoma displayed a different response. Those held in acidified water at 

29°C had a significantly higher MO2rest than those held in control pH (8.15). 

However, this was not seen at 31°C or 32°C. O.cyanosoma therefore showed a 

significant interaction between temperature and pH in resting oxygen consumption 

(Figure 3.3b; Table 3.2). 

There were no significant differences for maximal/ swimming oxygen 

consumption MO2max for O. doederleini (Table 3.2). The only significant effect seen 

was a decrease in MO2max in O.cyanosoma for those individuals that were held at 

32°C and pH 7.8 when compared to those held at 32°C in control pH water (Figure 

3.4b). However, the effect of pH was not significant at 29°C or 31°C, suggesting that 

maximal uptake of oxygen consumption is not affected by temperature or pH. 
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3.5.3. Maximal Oxygen Consumption 

 

 

 

Fig 3.4. Maximum swimming MO2 (±SEM) at 6 combinations of water temperature 

(29, 31, 32°C) and seawater pH (control 8.15, 7.8) for a) Ostorhinchus doederleini (n=6-

9, except pH 7.8 & 32°C where n=3) and b) O. cyanosoma. (n=8-9) There were no 

significant effects of temperature, or Temp x pH (p=0.056) for O.doederleini. There 

were no significant effects of temperature or Temp x pH, but significant effect of pH 

(p<0.001), for O. cyanosoma.  
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3.5.4. Aerobic Scope 

 

 

 

 

Figure 3.5. Mean aerobic scope (±SEM) at 6 combinations of water temperature (29, 

31, 32°C) and seawater pH (control 8.15, 7.8) for a) Ostorhinchus doederleini (n=6-9, 

except pH 7.8 & 32°C where n=3) and b) O. cyanosoma (n=8-9). There were significant 

effects of temperature (p<0.05) and pH (p<0.005), but no significant interaction 

between Temp x pH, for O.doederleini. There were significant effects of temperature 

(P<0.05), but no significant effect of pH or Temp x pH, for O. cyanosoma. 
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Aerobic scope declined with both increasing temperature and decreasing pH. 

However, there was no significant interaction between temperature and pH (Table 

3.2). This reduction in aerobic scope was due to the increase in resting oxygen 

consumption (Figure 3.3) and the fact that maximal oxygen consumption was not 

increased (Figure 3.4). 

When temperature values were considered alone, there was a significant 

reduction in aerobic scope when the temperature was increased from 29°C to 32°C. 

The aerobic scope of O. doederleini declined by 36% and for O. cyanosoma it 

declined by 32% (O. doederleini: 483[±42] to 307[±56] mg O2 kg
-1

h
-1

, 

O.cyanosoma: 609[±46] to 410 [±49] mg O2 kg
-1

h
-1

).  

A similar decline was also true when pH was considered alone. For 

O.doederleini kept in acidified water (pH 7.8), they had a 33% lower aerobic scope 

than those kept in control water (pH 8.15) (control water: 497[±35], acidified water: 

330 [±40] mg O2 kg
-1

 h
-1

). A 47% reduction in aerobic scope was seen for 

O.cyanosoma when pH was considered alone (control water: 661[±39], acidified 

water 348[±38] mgO2 kg
-1

 h
-1

). 

These results show that lowering the pH by just 0.3 units has similar effects 

on aerobic scope as increasing the temperature by 3°C on these two species of coral 

reef fish. Despite these significant effects when temperature and pH are considered 

separately, there was no significant interaction between temperature and pH in O. 

doederleini (Table 3.2). Within temperature treatments, there was no significant 

effect of pH. However, those fish held at control pH and 29°C did have a 

significantly higher aerobic scope than those at pH 7.8 and 33°C. Therefore, the 

aerobic scope of those held in conditions predicted to occur with climate change had 

a significantly lower aerobic scope, due to raised resting oxygen consumption.  

O. cyanosoma appears to be the more sensitive species, with higher scope in 

control pH at 29°C and 32°C, but with the greatest reductions in scope as pH was 

lowered.  O. cyanosoma had a slightly higher aerobic scope in the control 

experiments. However, both species had the same minimum values when at lowered 

pH and the highest temperature (O. doederleini: 195 [±91] mg O2kg
-1

h
-1

, O. 

cyanosoma: 226 [±68] mg O2 kg
-1

h
-1

).  
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Table 3.2. Results of an ANOVA for resting oxygen consumption (MO2Rest), 

maximum swimming oxygen consumption (MO2Max) and Aerobic Scope (MO2Max - 

MO2Rest) of individuals of O. doederleini and O. cyanosoma from Lizard Island at 6 

combinations of water temperature (29°C, 31°C and 32°C) and pH (8.15 and 7.8). * 

denotes significant results, NS indicates results were not significant.  

 

  O. doederleini   O. cyanosoma 

  df MS F p   df MS F p 

 MO2Rest 

Temp  2 91689 8.89 <0.001 * 
 

2 135.3 28.67 <0.001* 

pH 1 45752 4.43 0.042  * 
 

1 35.41 7.5 0.008* 

Temp x pH 2 18838 1.83 NS 
 

2 19.26 4.08 0.02* 

Error 35 10317 
   

43 4.72 
 

  

Swimming MO2 

Temp  2 35634 1.08 NS 
 

2 4786 0.13 NS 

pH 1 74527 2.26 NS 
 

1 750201 20.86 <0.001 * 

Temp x pH 2 104294 3.16 NS 
 

2 89444 2.49 NS 

Error 33 32968 
   

43 35970 
 

  

Aerobic Scope 

Temp  2 82801 3.35 0.047 * 
 

2 160580 4.39 0.018 * 

pH 1 239081 9.68 0.003 * 
 

2 46822 1.28 NS 

Temp x pH 2 36335 1.47 NS 
 

2 46822 1.28 NS 

Error 33 24707       43 36501     
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3.5.5. Gill Structure 

 

  a) 

 

 

 

 

 

 

 

b) 

 

 

 

 

 

 

c) 

 

 

 

 

 

Figure 3.6.  Photographs of gill samples as viewed using a light microscope connected 

to a high resolution camera. Samples taken from individuals of O. cyanosoma within 

four hours of death. Samples from individuals held at a) control ( 29°C, pH8.15), b) 

32°C and pH 7.8, c) 33°C and pH 7.8. A) gill filaments (primary lamellae), B) gill arch, 

C) gill rakers. Scale approximate only. 
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Given that acid stress is known to cause deterioration in the structure of the 

gills, samples of gill tissue were taken from O. cyanosoma and observed under a 

light microscope. In the fish held at the highest temperature of 33°C and pH 7.8, 

there was clear degradation of the gill filaments and potentially reduced blood supply 

(Figure 3.6c) when compared to the control fish held at 29°C and pH 8.15 (Figure 

3.6a). Although the gills from a fish held at pH 7.8 and 32°C still had a good 

structure of the lamellae of the gill, the oxygen carrying capacity of the blood may 

have be hindered as  demonstrated by the paler colour (Figure 3.6b). It was not until 

the temperature is increased further, to 33°C, that the actual structure of the gills was 

compromised. Over 30% of the individuals held in these experimental conditions 

died within a week, and of those that survived, it was not possible to carry out 

experiments as they were unable to do achieve maximal swim rates due to complete 

exhaustion very early on. Clearly, the physiology of these individuals was 

compromised at high temperatures and low pH and the gill images presented here 

support that. 
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3.6. Discussion 

 

Aerobic Scope, and therefore the capacity for aerobic function, affects all 

aspects of individual performance. This study has demonstrated that increased 

temperature and lowered pH, both anticipated to occur with climate change, reduced 

the aerobic scope of two commonly occurring coral reef fish, Ostorhinchus 

cyanosoma and O. doederleini.   

As has been previously described in chapter 2, temperatures realistic with 

those expected with climate change caused a significant reduction in aerobic scope in 

all fish tested, particularly in cardinalfish. Additional to this finding,  it was found 

that CO2-acidified water caused similar reductions in aerobic scope. Even without 

warming, a lowered pH of 0.3 units (equivalent to an increase of~ 1000ppmv 

atmospheric CO2, as is anticipated to occur in the coming century) caused the same 

percentage loss in aerobic scope as did a 3°C warming. Increases in atmospheric 

CO2 over the coming century will cause reductions in ocean pH and increases in 

ocean temperature similar to those tested here. These results suggest that with 

climate change, and the associated warming of seawater and reduction in pH, some 

marine fish will have reduced capacity to manage aerobically. Thus, individuals will 

be forced to rely more heavily on anaerobic respiration, which is not sustainable in 

the long-term. These reductions in aerobic scope were due to increased resting 

oxygen consumption coupled with either no increase or a decrease in maximal 

oxygen consumption. That is to say, individuals need to respire more at rest in order 

to satisfy basal metabolic demands, but are unable to increase the upper limits of 

respiration regardless of the body’s need for additional oxygen, e.g. such as is 

needed in burst swimming. This inability to increase maximal oxygen consumption, 

or indeed a reduction in maximal oxygen consumption, means that fish are likely to 

reach the point of exhaustion earlier, which has implications on foraging behaviour 

and predator avoidance.  

The reductions in aerobic scope shown in this study are important, given that 

aerobic scope is thought to be the key physiological parameter determining how 

marine fish will cope with climate change. It is changes in aerobic scope that will 

determine alterations in species distribution limits and range shifts (Pörtner & Knust 
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2007). These results suggest that not only will warming waters affect the aerobic 

scope, but reductions in ocean pH could play an equally important role, or even 

further worsen the effects of temperature. Therefore, the atmospheric levels of CO2 

predicted to occur by the end of this century could significantly impact the ability of 

some marine fish by reducing their capacity for aerobic activity.  

It has been reported that the method by which pH is lowered (by addition of 

an acid, e.g. HCL, or by bubbling CO2) can have different effects on the physiology 

of fish (Fromm, 1980). Whilst it is evident that reduced pH affected the aerobic 

scope of both species, it is not clear from this study whether this was due to the 

lowered pH or from the CO2 that was bubbled into the system itself. CO2 diffuses 

readily across the gill membrane and therefore quickly reduces the pH of the blood 

and tissues (Ishimatsu et al., 2005; Pörtner et al., 2005), a process known as 

hypercapnia. When the blood and tissues becomes more acidic due to lowered pH or 

CO2 (acidosis), the fish will try to compensate for this and re-establish their acid-

base balance by accumulating bicarbonate ions and active ion transport (Claiborne et 

al., 2002). However, this will come at a physiological cost, particularly if it is 

prolonged. Furthermore, the accumulated CO2 may actually reduce the ability of the 

blood to transport oxygen, which may be particularly detrimental to species or life 

stages with high metabolic demands (Pörtner et al., 2005), for example larvae and 

juveniles. However, this may also apply to times of high metabolic cost, such as at 

higher temperatures or burst swimming, as in this experiment. If the swimming was 

too strenuous and aerobic capacity was not possible, then there is the chance that fish 

will switch to anaerobic metabolism. This could have led to further decreases in 

blood pH, due to the lactic acid accumulation which occurs in anaerobic respiration 

(Fromm, 1980). All swimming was believed to be aerobic as the speed was set such 

that it did not exceed the maximum the fish could swim against, whilst there were 

still pectoral movements evident, which indicated aerobic respiration (Gardiner et 

al., 2010). Regardless of the speed of swimming, when temperatures reach the 

thermal maximum for a species, it is known to induce anaerobic metabolism in the 

mitochondria (Pörtner et al., 2000). Consequently, there is always a possibility that 

those fish, particularly those fish under the highest temperature and lowest pH, may 

have switched to anaerobic respiration earlier in the swim test. Whatever the reason 

for reduced aerobic scope observed here, this experiment has demonstrated that 
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prolonged CO2-induced acidification of the ocean could affect the aerobic capacity 

of some marine fish, and therefore could affect the viability and sustainability of 

local populations of fish. 

The reduced aerobic scope displayed by both species in acidified water was 

due to the fact that resting oxygen consumption increased (Figure 3.3), whilst 

maximal oxygen consumption either remained stable or decreased (Figure 3.4). 

However there was a larger percentage decline in O. cyanosoma than in 

O.doederleini.  

Hypercapnia in invertebrates often results in metabolic depression, although 

this has not been shown in fish. Conversely, in fish, hypercapnia usually has no 

effect on resting oxygen consumption (Ishimatsu et al. 2005; Pörtner et al., 2005). 

This suggests that, provided no exercise is required, fish are able to cope with 

lowered pH. However, in this study both species displayed small increases in resting 

oxygen consumption with lowered pH.  Given that the fish were acclimated to 

lowered pH for a week, this suggests that the fish were not able to physiologically 

adapt and therefore there was some energetic cost involved in the acid-base 

compensation for these two species.  

Conversely to resting oxygen consumption, maximum oxygen consumption 

during the swim test was unaffected for O. doederleini and declined for 

O.cyanosoma in CO2-acidified water. This decline in MO2max for O.cyanosoma 

concurs with previous findings for other fish that have been exposed to acidified 

seawater, as summarised by Ishimatsu et al. (2005). However, in that study by 

Ishimatsu et al the levels of CO2 used were far greater than anticipated with climate 

change and therefore greater than the levels used in the current study. Given that 

O.cyanosoma displayed similar responses to a smaller decrease in pH, this suggests 

that O.cyanosoma is particularly sensitive to hypercapnic conditions. The 

combination of increased resting and decreased maximal oxygen consumption 

explains why O.cyanosoma had the greater decline in aerobic scope (47%) compared 

to O.doederleini (33%) in acidified water. 

It is thought that fishes are relatively tolerant to a wide range of pH. This 

stems from research that has been conducted on both temperate and tropical 

freshwater fish (Ishimatsu et al., 2005; Pörtner et al., 2005). These species live in an 



 

108 

 

environment where pH fluctuates daily and therefore the species are adapted to cope 

with large natural variations in acidification (Freda & McDonald, 1988; Ishimatsu et 

al., 2005). For example, the rainbow trout, Oncorhynchus mykiss, lives in both 

freshwater and seawater and can tolerate pH values from 6 to 9 without any 

physiological effects (Randall & Brauner, 1991). There are even specialist fish, such 

as the Osorezan dace, that have adapted to live in lake waters with the pH as low as 

3.5units (Hirata et al., 2003). In contrast, coral reef fish have evolved in a relatively 

stable pH environment and so are probably more sensitive to ocean acidification, 

even if it is relatively small.   

Most other studies on the effects of hypercapnia on marine fish have used pH 

levels far lower than anticipated to occur with ocean acidification. However, a study 

on the gilthead seabream (Sparus aurata) used declines in pH of 0.75units (8.05 to 

7.3) through the addition of CO2 (Michaelidis et al., 2007). The results from this 

study showed that there was a change in enzyme activity with hypercapnia 

representative of a shift from aerobic to anaerobic activity. Anaerobic respiration, if 

sustained, results in further decreases in blood pH due to lactic acid build-up 

produced as a bi-product of anaerobic metabolism. Due to the inefficiency of 

anaerobic metabolism, the authors suggest that a long-term switch in metabolic 

pathways from aerobic to anaerobic will result in changes in physiological processes 

such as growth and reproduction, therefore affecting individual performance and 

ultimately population dynamics. Despite the fact that the reduction in pH was twice 

that used in the present study, it nevertheless demonstrated that moderate levels of 

hypercapnia can still affect the physiology of marine fish. A decrease in pH to 7.3 is 

still within the predictions of climate change for the next 300 years, therefore this 

study still provides ecologically significant data, albeit at the extremes of what is 

anticipated. The changes in metabolic pathways seen in the study by Michaelidis et 

al. (2007) might explain the reductions seen in aerobic scope in O.cyanosoma and 

O.doederleini in this study, if aerobic capacity was hindered severely enough to 

cause a switch to anaerobic metabolism.  

Despite coral reefs having far less fluctuations in pH than freshwater and 

temperate ecosystems, there is still some diel variation. Over the course of this study 

the pH of the seawater in the lagoon around Lizard Island ranged from 8.08 to 8.21, 

with pH values highest in the early morning and usually lowest at night time. 
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Therefore it is possible that organisms that shelter within the reef matrix at night for 

protection from predators may be exposed to elevated CO2 and reduced pH, 

potentially as low as 8.0 to 7.8. However, these low values are never long-lasting, 

due to regular tidal flushing in the shallow lagoon and photosynthesis by reef algae 

and corals in the day-light. The two species of cardinal fish tested here are nocturnal 

planktivores and so do not usually shelter in the reef matrix at night; therefore it is 

not likely that they are exposed to the low pH values used in this study. Even if they 

do sometimes seek shelter at night, they would normally only be exposed for a short-

time (hours), rather than a week as tested here, which may explain why they were 

adversely affected by chronically low pH.  

Although only preliminary evidence, Figures 3.7a-c show that there was a 

degradation of the gill structure with increasing stress of elevated temperature and 

lowered pH. In the sample at the highest temperature (33°C) and low pH (7.8), there 

was evidence of the separation of the secondary lamellae on the gill filament. This is 

a typical response to pH stress. However, this separation was not evident at low pH 

and a temperature of 32°C, suggesting that low pH only causes significant stress at 

higher temperatures, symptomatic of an additive relationship between temperature 

and pH. It is also worth noting that the gill lamellae are paler in colour in more 

stressful environments, even at 32°C. This could be indicative of lower haemoglobin 

content, as pH stress is known to cause a breakdown of haemoglobin (Chezhian et 

al., 2011). Due to the importance of the gills in the acid-base balance and oxygen 

transport, significant alterations to the structure and functioning of the gills are very 

likely to have implications for the aerobic capacity of individuals.  

At the highest temperature of 33°C, all individuals of O.doederleini died 

when the pH was lowered. However, even at control pH, there was high mortality at 

33°C, with 37% of O.doederleini dying. The current summer mean seawater 

temperature in the lagoon at Lizard Island is 29°C, but maximal temperatures already 

exceed 30°C and a high temperature of 32.7°C has previously been recorded in the 

lagoon (Lough, 2007). Given that sea-surface temperatures are predicted to increase 

by 1 to 3°C over the coming century as a consequence of climate change, 

temperatures of 33°C in the lagoon will be experienced with greater frequency. 

Acute mortality to these extreme temperatures is not likely to be the primary threat to 

the majority of coral reef species. It is more probable that these increases in 
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temperature will reduce the capacity for aerobic function, which will then affect all 

aspects of individual performance, namely feeding, growth and reproduction. It is a 

reduction in these aspects that will ultimately threaten population sustainability, at 

temperatures lower than the lethal limits.  

In chapter two, it was shown that O.cyanosoma and O.doederleini were more 

sensitive to temperature increases than the 3 species of damselfish tested (Nilsson et 

al., 2009). It is therefore possible that these two species are more sensitive to 

environmental perturbations, e.g. lowered pH, than other species and not 

representative of coral reef fish in general. Fish that shelter within the reef matrix at 

night e.g. damselfish (Pomacentridae) and surgeonfish (Acanthuridae), may be more 

tolerant to low pH. However, currently they are only exposed for a period of a few 

hours each night and therefore it is not known how they would respond to continued 

chronic low pH. Whilst further testing would be needed on many other species to 

compare the responses, this study has highlighted that not all species may be able to 

cope with even relatively small amounts of ocean acidification, particularly in 

conjunction with warming waters.  

For species such as those tested here that are sensitive to hypercapnia and 

temperature, changes in their geographic distribution may be seen. O.doederleini & 

O.cyanosoma are not usually found at very low latitude coral reefs (i.e. near the 

equator) and Lizard Island is close to their latitudinal extent and geographical range 

(Gardiner et al., 2010). It is likely that ocean acidification will therefore further limit 

the low latitude locations where this species can persist. Latitudinal shifts in species 

distributions will likely be common for many species, both marine and terrestrial. 

There is already evidence for many species displaying latitudinal shifts (Parmesan & 

Yohe, 2003). Thus far, there are limited data available to assess whether this will 

occur for these species. If there is a loss of species such as cardinalfish from low 

latitude reefs, due to their role as nutrient recyclers (Marnane & Bellwood, 2002) 

there could be a decline in the nutrients available for other organisms. This could 

therefore have knock-on effects for many other reef fish and invertebrates, leading to 

a decline in diversity. 
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3.7. Conclusions 

 

To date, the focus of most research on the effects of ocean acidification in 

tropical waters has focussed on coral reefs and other calcifying organisms (Caldeira 

& Wickett, 2003; Michaelidis et al., 2005; Shirayama & Thornton, 2002). Tropical 

fish are not considered to be of great concern where low pH is concerned. However 

this study has demonstrated that at least two species of tropical coral reef fish, 

Ostorhinchus cyanosoma and O. doederleini, are negatively affected by low pH by 

reducing their capacity for aerobic activity. The reduced aerobic scope displayed by 

both species in acidified water was due to the fact that resting oxygen consumption 

increased, whilst maximal oxygen consumption either remained stable or decreased. 

A lowered pH of 0.3 units (equivalent to an increase of~ 1000ppmv atmospheric 

CO2, as is anticipated to occur in the coming century) caused the same percentage 

loss in aerobic scope as did a 3°C warming. In both studies described in chapter two 

and three, O.cyanosoma was more sensitive than O. doederleini. The results from 

this study support other recent findings that ocean acidification coupled with 

warming waters poses a significant physiological challenge to marine organisms 

(Pörtner et al., 2005; Pörtner & Farrell 2008). Given that aerobic capacity underpins 

the sustainability of populations and their distribution ranges, these results indicate 

that ocean acidification and warming waters may pose a significant stress to some 

tropical marine fish. As with temperature increases, it is not yet known whether there 

is the capacity for fish to acclimate to permanent acidification over generations, 

however this is thought to be limited (Gardiner & Jones, 2005). The results from this 

study, and that of chapter two, make it apparent that climate change could have 

negative impacts on these species both indirectly (though loss of habitat) or directly 

(through reduced aerobic scope). Therefore, it is likely that over the coming century 

there will be a loss of some species, such as cardinalfish, in tropical coral reefs. 

Whilst other fish species may cope with changes, it is probable that the coral reefs of 

tomorrow will be less diverse and potentially less productive environments.  
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Chapter 4. Recent Evidence of Climate Change in the Non-

Tidal River Thames and the responses of Fish 

 

4.1 Abstract 

 

Climate change is predicted to have its greatest effects in the northerly 

latitudes, such as Britain. There is evidence that many terrestrial organisms are 

responding to a warming climate, however, very little is known about how 

freshwater fish may respond. This study has provided evidence that there is already 

gradual warming in Thames region and an increase in precipitation in winter months, 

based on a 150 year data set. Over the more recent past, there have been a number of 

extreme weather events, such as record high summer temperatures and high flood 

events. The fish inhabiting the non-tidal River Thames have displayed different 

responses to the changes in their physical environment. All cyprinid species, such as 

roach, dace and bream displayed a similar pattern in density and biomass over a 15 

year time period. However, this pattern was not followed by non-cyprinid species, 

such as perch, pike and the European Eel. This study also investigated the potential 

for Bayesian Networks to be applied to complex ecological datasets relating to 

aquatic habitats. The Bayesian Networks were able to correctly identify key 

relationships in the data and also indicated that cyprinid species may benefit from the 

warm-and-dry summers that are predicted to become typical with climate change. 

Therefore Bayesian Networks may be a useful tool in predicting the impacts of 

climate change on freshwater ecosystems. The results from this study suggest that 

there may be interfamilial differences in the responses of freshwater fish to climate 

change, with some families coping better than others, which may ultimately lead to a 

decline in species diversity.  

 

4.2 Introduction 

 

Understanding the ways in which climate change may affect fish populations 

is extremely important and yet very complex. Despite the widespread evidence of 

climate change in many regions across the globe, it is still prudent to evaluate an area 
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under investigation in order to ascertain whether climate change is already occurring 

there. Before one can predict the effects at the population level, it is first wise to 

evaluate whether the fish populations have responded to any changes in the climate. 

Based on that knowledge, one can begin to predict the ways that future warming and 

other associated changes in climate may impact an ecosystem. In terms of the river 

environment in Britain, this might be indications of warming waters with time, or 

altered flow patterns. It has been documented that the northerly latitudes such as 

England, and in particular the south-east of England, are set to experience the most 

climate change (FSBI, 2007). The specific prediction for the River Thames region is 

that it could experience a rise in air temperature of more than 3.5°C by 2080 (Webb 

& Walsh, 2004). Central England has been reported to have already warmed by 

0.5°C in the 1990’s compared to the 1961-1990 average, with the 1990s being a 

period of warming (Graham & Harrod, 2009). Since the 1990’s it has also been 

reported that there has been an increased prevalence of warm-and-wet summers 

(Nunn et al., 2010), although general climate models predict summers will become 

warmer and drier (FSBI, 2007). Other indicators of climate change other than 

general warming are: wetter-and-milder winters, earlier onset of spring and overall 

reduction in flow rates. 

Scientists have long understood that temperature has a major influence on the 

ecology and physiology of fish. However, more recently there have been debates 

over whether it is flow or temperature that plays a greater role in fish recruitment in 

rivers (Nunn et al., 2007b). Flow rate is important for several reasons. Firstly, high 

flow rates, such as flood events, can remove larvae and weak swimming juveniles 

from the river system. Low flow rates increase the residence times (Rt) of rivers, 

leading to an accumulation of nutrients and contaminants in the water, thus reducing 

water quality (Johnson et al., 2009). Slow flowing rivers are also likely to warm 

quicker due to reduced flushing, further increasing the temperature, which may be 

particularly significant in summer months. Additional factors such as the 

concentration of available oxygen in the water are also likely to have confounding 

effects, with warmer waters having a lower saturation of oxygen (Pörtner & Knust, 

2007; Rombough, 1997). This, coupled with the higher metabolic demands at higher 

temperatures, can lead to the Temperature-Oxygen Squeeze, exacerbating the effects 

of warmer waters (Pörtner & Knust, 2007). 
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Graham & Harrod (2009) carried out a comprehensive literature search into 

the effects of climate change on freshwater fish populations in Britain and reported 

that very little is known. However, a study in the Rhone River, France, indicated a 

gradual displacement from 1979 to1999 of northern species by southern, 

thermophilic species such as chub and barbel (Daufresne et al., 2003).  The River 

Thames no longer supports any cold water species, such as the Atlantic salmon or 

the brown trout (Webb & Walsh, 2004), and is now dominated by cool and warm 

water species such as the pike, perch, roach, bleak and bream. Warmer waters may 

prove to be beneficial for some warm-water species such as bleak and bream, with 

the onset of spring arriving earlier providing a longer summer for greater growth and 

a shorter period of winter food restrictions (Shuter & Meisner, 1992). However, 

there have been suggestions that climate change may make the River Thames 

stressful for all species currently inhabiting the river (Webb & Walsh, 2004). This 

hypothesis is supported by the results included in Chapter 5 of this thesis, whereby 

chronically elevated temperatures proved stressful for even a hardy species, the 

three-spined stickleback, Gasterosteus aculeatus.  

 

4.2.2 Species Level Responses to Climate Change 

 

The ability to adapt to the predicted changes will vary depending on species; 

there will be some winners but also some losers (FSBI, 2007). This section will 

detail how climate change may potentially affect some key freshwater fish species in 

Britain.  

 

4.2.2.1 Brown Trout (Salmo trutta) 

 

Currently, the distribution of brown trout is limited by temperature in Britain 

and will only decrease with climate change, as trout are cold water species. Even 

under scenarios of low warming, trout stocks will decline due to significant 

decreases in habitat availability and also summer temperatures being too high for 

growth and development (Webb & Walsh, 2004). Trout no longer naturally occur in 
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the River Thames (Webb & Walsh, 2004), but are present in small numbers due to 

restocking efforts for commercial angling (Johnson et al., 2009). Brown trout has a 

high economic value in the UK, and therefore decreases in their populations could 

prove to have significant local economic impacts (Arnell, 1998). 

Brown trout are typically found in clean, well-oxygenated waters (Wheeler, 

1969). Spawning takes place over the winter months between October and December 

(Davies et al., 2004), when the water temperature is between 5-10°C. Winter river 

temperatures in the UK are unlikely to rise above 8°C (Johnson et al., 2009). 

However, the warmer waters are predicted to adversely affect spawning and embryo 

development (Webb & Walsh, 2004). The warmer winter temperatures could 

potentially increase growth in the winter months, but higher summer temperatures 

and the increased risk of drought will probably prevent increases in overall growth 

(Weatherley et al., 1991) and lower survival. Brown trout are long lived species, 

living up to 13 years in Britain, which will reproduce many times in a life time 

(Davies et al., 2004), but it is thought that cold water species such as trout and the 

Atlantic salmon will face difficulties in a warming world. 

 

4.2.2.2. Atlantic salmon (Salmo salar) 

 

The iconic Atlantic salmon, the benchmark fish of healthy rivers and 

considered the ‘King of Fishes’ by anglers, faces certain pressure with climate 

change. The Atlantic salmon has already been subjected to many anthropogenic 

stresses, such as pollution caused from urbanisation and the construction of weirs 

which block their migratory paths (Davies et al., 2004). Climate change will only 

likely exacerbate rather than alleviate these pressures, with predictions for salmon 

looking very dim. Although salmon is not currently limited by temperature in the 

UK, warmer waters will decrease populations by affecting spawning and egg 

incubation (Webb & Walsh, 2004). There has already been a contraction in the 

southern populations of salmon, suggesting they are not adapting quickly enough to 

changes (FSBI, 2007). The River Thames, for example, is thermally suitable for 

Atlantic salmon, but they are currently not present there (Johnson et al., 2009; Webb 
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& Walsh, 2004).  However, this could also be as a result of urbanisation and weir 

construction, rather than warming waters. 

Salmon are diadromous fish which migrate from marine habitats to spawn in 

the freshwaters of rivers, often the river in which they themselves hatched (Davies et 

al., 2004). Having to inhabit within their life time marine, estuarine and freshwater 

environments, all of which will respond differently to climate change, means that 

salmon face many complex changes in their environment (FSBI, 2007). They require 

fast flowing rivers for their migration and depend on seasonal cues to initiate 

migration (FSBI, 2007). Shifts in seasons may cause migrations to commence when 

other physical parameters are not suitable, and reduced rainfall in summer could lead 

to earlier or later migratory runs (FSBI, 2007). This may alter the length of time they 

have for growth, which could prevent smoltification the following spring (transition 

period from freshwater to marine habitats) (FSBI, 2007). Spawning occurs between 

October and January (Davies, et al., 2004), and the juveniles stay in British rivers 

until aged about 3 years before migrating to the sea (Davies et al., 2004).  After 

spawning, most salmon die and so generally they only reproduce once (Davies et al., 

2004). Therefore it is important there is successful survival and development of eggs 

that are spawned. 

Salmon require clean, well oxygenated, shallow, fast-flowing waters. They 

cannot tolerate water temperatures above 22-23°C without an acclimation period 

(Davies et al., 2004). Salmon are also very sensitive not only to temperature and 

flow rates, but also to low oxygen levels and pollution (Davies et al., 2004; FSBI, 

2007). With water temperature set to rise, and flow rates and oxygen concentration 

set to decline, the Atlantic salmon faces a very dim future, particularly in the South 

of Britain.  

 

4.2.2.3 Roach (Rutilus rutilus) 

 

           Roach is a eurythermal cyprinid species that have a very adaptable nature. 

They are generalist feeders, able to digest animal, plant and detritus (FSBI, 2007), 

allowing them to cope with changes in food availability. R.rutilus is an effective 

zooplanktivore and feeding efficiency increases with temperature, with maximum 
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efficiency at 17-19°C (Graham & Harrod, 2009). Currently roach are not limited by 

temperature, but by 2080 under high emissions scenarios, half the rivers in Britain 

could become unsuitable for roach (Webb & Walsh, 2004). However, roach are 

susceptible to over-winter size-selective mortality, and so as waters warm in winter, 

fewer mortalities could occur (FSBI, 2007). Roach are spring spawners, usually 

spawning in April and May when the water reaches 14°C (Davies et al., 2004) or 

15°C (Graham & Harrod, 2009). If water temperature rises only a few degrees, it is 

likely that roach will spawn earlier in the year. However, more dramatic increases in 

temperature (8-10°C increases) may result in poor spawning success (Graham & 

Harrod, 2009), but these temperature increases are unlikely. With suitable 

environmental conditions, a large female roach can produce up to 200,000 sticky 

eggs which cling to vegetation (Davies et al., 2004). Climate change may induce 

earlier spawning in the year and so lengthen the growing season (FSBI, 2007), 

allowing a greater size to be reached by the first winter and so also reducing 

overwinter mortality. Juvenile optimum temperature is around 27°C, a temperature 

rarely reached in many European rivers (Graham & Harrod, 2009). Therefore, 

warmer waters may be beneficial to juvenile growth and so roach are predicted to 

cope well with the anticipated changes. They are also able to withstand low 

concentrations of dissolved oxygen and are fairly drought resistant (FSBI, 2007). 

Being non-territorial, roach will migrate to more suitable environments on a daily 

and seasonal basis (Davies et al., 2004). This, combined with their generalist nature, 

should allow them to adapt and thrive. 

 

4.2.2.4 Perch (Perca fluviatilis) 

 

Perch can live in a variety of habitats, from still to fast flowing rivers (Davies 

et al., 2004) and this species is generally considered to be a good example of a cool 

water fish (FSBI, 2007). Perch are not currently limited by temperature in Britain. 

However, by 2080 under high emissions scenarios, some rivers may become 

unsuitable (Webb & Walsh, 2004) particularly in winter months when females are 

developing eggs (FSBI, 2007). Whilst warmer winter temperatures may reduce 

overwinter mortality in the first year of life, it may cause gonad malfunctions in 

females if temperatures are too high. Oogenesis (creation of ova) commences in 
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August and vitellogenesis (yolk deposition) continues until females are ready to 

spawn. Spawning occurs from April to early June, when waters reach 10°C (Davies 

et al., 2004; FSBI, 2007), with the development time of eggs being determined by 

water temperature (FSBI, 2007). Once eggs are hatched, the optimum temperature 

for growth is about 23°C (FSBI, 2007), and so warmer waters may help to increase 

scope for growth. Therefore fecundity should be increased with the larger body sizes, 

which could lead to increased survival and distribution of perch with climate change 

(FSBI, 2007).  Roach is a strong competitor to perch, and given that roach are 

predicted to do well with climate change, there could be negative connotations for 

perch. The competitive interaction between the two species is temperature dependent 

and roach have been shown to depress perch populations in lakes and in laboratory 

studies at temperatures higher than 18°C (FSBI, 2007).  Although the physical 

properties of the water may suggest a possible increase in population size in some 

instances for perch, the biotic factors such as competition with other fish species may 

also affect the ability of perch to cope. 

 

4.2.2.5 Pike (Esox lucius) 

 

Pike are solitary fish, and being non-territorial they will freely move to 

different locations to feed on a variety of organisms. When young, pike feed mostly 

on invertebrates, but will become carnivorous with development, feeding on other 

fish and vertebrates (Davies et al., 2004). Feeding ceases during the months of 

spawning, which usually occurs in spring, from February to May (Wheeler, 1969). If 

environmental conditions are optimum, development may be fast and spawning can 

occur after 1 year, but usually sexual maturation takes 2 to 3 years (Davies et al., 

2004).  

Pike may be able to cope well with climate change, since the species is able 

to survive in a variety of river flow conditions, and also is able to tolerate some 

pollution and low dissolved oxygen concentrations (Davies et al., 2004). Even under 

scenarios of high CO2 emissions, habitat is still predicted to be suitable for pike 

(Webb & Walsh, 2004), but water temperatures higher than 29°C could prove fatal 

(Davies et al., 2004). It is unlikely that river temperature in Britain will rise as high 
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as 29°C, even under high CO2 emission scenarios, and so fatalities of pike caused by 

thermal stress are unlikely.  

 

4.2.2.6. Chub (Leuciscus cephalus) 

 

Mature chub are often solitary and inhabit deeper waters of middle to 

lowland reaches, where there is moderately fast flowing water (Davies et al., 2004). 

Chub will feed on a variety of food, including small fish, frogs and even crayfish 

when chub are fully grown. Berries and fruit that fall into the river will also be 

consumed by chub, and insect larvae are the food preference for juveniles (Davies et 

al., 2004). Young chub will often be in competition with young salmon and trout for 

food (Wheeler, 1969), but since these species are unlikely to cope well with climate 

change, this should reduce competition pressures for developing chub. 

Males reach sexual maturity first, at about 3 to 4 years, and females at 4 to 5 

years of age. Once sexually mature, spawning takes place in clean running water in 

May to June when the water temperature reaches 15°C (Davies et al., 2004; 

Wheeler, 1969). If there is a late spring, chub have been shown to delay spawning 

until the environmental conditions are right (Wheeler, 1969). However, with climate 

change, it is more likely that spring will be advanced and so chub will be able to 

spawn earlier in the year and hence have a longer growing season.  

 

4.2.2.7 Bleak (Alburnus alburnus) 

 

Bleak can be found in the middle to lower reaches of rivers (Davies et al., 

2004) in clean slow running waters (Wheeler, 1969). Bleak are a relatively short-

lived species, taking around 2 years to reach maturity, and living a total of 3 to 4 

years, rarely more than 5 to 6 years (Davies et al., 2004). When active, bleak will 

feed mostly on planktonic animals, and usually this occurs in large shoals (Davies et 

al., 2004). Once sexual maturity is reached, spawning on gravel substrate takes place 

from April to June, when the water temperature has reached at least 15°C (Davies et 
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al., 2004; Wheeler, 1969), and the female (of 15cm or more in length) can produce 

as many as 5,000 eggs (Davies et al., 2004).  

Currently, bleak are not found in the north or west of Britain, because the 

water temperatures in May and June tend to be too low to permit successful 

spawning. Therefore, it is predicted that with climate change and the associated 

warmer waters, there could be a range increase for bleak (Webb & Walsh, 2004). 

However, this depends on whether or not bleak can access new rivers systems or 

whether human intervention will be needed in order for this to occur.  

 

4.2.2.. Three-spined stickleback (Gasterosteus aculeatus) 

 

The three-spined stickleback is ubiquitous in European and UK waters, 

inhabiting marine, estuarine and freshwater ecosystems (Östlund-Nilsson et al., 

2007). They are instantly recognisable by the presence of their three dorsal spines 

and by the male’s red belly in courting.  They are a relatively small fish, ranging 

from less than a gram (Sebire et al., 2007) to a mass of 3.4g (Maunder et al., 2007). 

They are a temperate species, usually inhabiting waters between 4 to 20°C, but 

having a higher upper tolerance temperature of 28°C (Moran et al., 2010). They feed 

on worms, crustaceans, larvae and aquatic insects; they have also been known to 

consume their own eggs. They have been extensively studied and there is a large 

literature on their biology, reproduction and life history (Östlund-Nilsson et al., 

2007). G. aculeatus is generally not considered to be particularly sensitive to 

environmental perturbations, (Östlund-Nilsson et al., 2007). Given their wide 

temperature tolerances, varied diet and widespread distributions, it is thought that 

G.aculeatus will not be severely affected by climate change. 

 

4.4.2.9. European Eel (Anguilla Anguilla)  

 

European eels are instantly recognisable with long, cylindrical bodies which 

are covered in small scales embedded into slimy skin. They lack pelvic fins, and 

their dorsal and anal fins are fused together. Eels can grow to large sizes (55cm for 
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females and 40cm for males) weighing up to 5kg (Davies et al., 2004). They are 

found throughout Britain, and will inhabit rivers, lakes, estuaries and coastal areas 

throughout their life. European eels reproduce only once in their life. Adults migrate 

a large distance to breed, travelling to the Sargasso Sea to spawn in deep waters in 

the early spring. It is thought that the eggs are then slowly swept back to the coast of 

Britain by the warm waters of the Gulf Stream, a process thought to take at least a 

year (Davies et al., 2004). By the end of this journey, the eggs have hatched and 

enter British rivers as juvenile eels, known as glass eels. In spring glass eels migrate 

up the rivers, and spend the rest of their lives (up to 40 years) in the rivers. The cycle 

ends when the adult eels return to the Sargasso Sea to breed.  

The European eel is fairly tolerant to a range of temperatures, pH and 

dissolved oxygen concentrations (Davies et al., 2004) and therefore may not be 

overly sensitive to climate change. Eels are also the only fish that are able to fish 

species that can move overland, and have frequently been observed moving overland 

in wet terrain at night. Therefore, eels have an advantage over other fish species if 

one river becomes too warm for them, as eels have the potential to migrate into a 

different river system. Whereas all other species of fish are constrained to the river in 

which they were born, unless moved by man. The migration of glass eels up the river 

is however temperature dependent, and will only occur when the water temperature 

reaches at least 6°C (Davies et al., 2004). With gradual warming and an earlier onset 

of spring, this may mean the glass eels enter into the river system earlier in the year. 

  Since the 1970’s there has been a large decline in the number of glass eels 

reported in European waters, by as much as 99% (Vogel, 2010). As yet there is no 

evidence that this has affected the adult population and there is an Eel Management 

Plan in place presently to help increase recruitment. Given that eels, like the Atlantic 

salmon, inhabit marine, estuarine and freshwater habitats in their lifetime, predicting 

their outcome with climate change is complex and problematic (FSBI, 2007). Given 

their recent declines, the European Eel may face difficulties with our changing 

climate.  
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Figure 4.1. Species distribution maps in Britain. A) brown trout, B) Atlantic salmon, C) 

roach, D) perch, e) pike, F) chub, G) bleak, H) three-spined stickleback I) European 

Eel (taken from Davies et al., 2004). Dots represent records for each species in a 1km 

stretch of river based on surveys since 1972.  
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4.2.3. Understanding connections between the physical environment and species 

abundance 

 

Whether changes in species abundance or community structure have already 

been seen in the non-tidal River Thames as a consequence of climate change is not 

known. If the fish population follows changes as seen elsewhere, it can be 

anticipated that climate change will benefit some species and disadvantage others. In 

order to predict how well the fish in UK rivers, in particular the River Thames, will 

respond to climate change, it is vital to first understand the complex relationship 

between the physical environment and the fish, but also to include and understand 

the interactions between fish species themselves (Milns et al., 2010).   

Multiple linear regressions and Principal Component Analysis are the 

techniques commonly employed in understanding such complex datasets. The main 

limitations to these models is their inability to make use of incomplete data sets, bias 

created out of using short-time scales, and the high importance on start and end dates 

of any time series (Dose & Menzel, 2004). Obtaining complete, long-term data sets 

is often very problematic for ecological systems, due to factors such as changes in 

sampling methodology, effects of weather on permissibility of sampling and lost 

datasets as a result of changing organisations. Another big limitation of multiple 

linear regressions is the assumption that all explanatory factors must be mutually 

orthogonal, whereas most environmental variables show a degree of collinearity, 

such as warmer waters and lowered dissolved oxygen concentration, higher river 

flow and lowered temperature. This collinearity can make the results of multiple 

regressions misleading (Shaw, 2003).  

However, a novel technique called Bayesian Networks can make use of 

incomplete data sets (Dose & Menzel, 2004). It is based on the principle of 

probabilities and the resulting graphical networks statistically represent the key links 

between multiple variables, providing a wealth of information about the connections 

in complex data sets. Using Ockham’s razor, Bayesian Networks rank the 

probabilities and produce a model which uses the minimum number of variables 

necessary to explain the data (Dose & Menzel, 2004). The Bayesian Network models 

represent causal chains, i.e. the links in the model may be cause-effect relationships 

showing only relates nodes (with each variable represented as a node) that a 
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probabilistically and statistically related to each other by a causal dependency. 

Arrows connect each node, with the direction of the arrow indicating the direction of 

causality. Given that these networks provide information on the cause and effect 

relationships in a dataset, they are useful in their application of future predictions 

based on learnt models of past events.  Therefore, by supplying evidence of past 

events and running a learned model, a Bayesian Network will be produced to display 

the most probable future outcomes.  

These networks have recently been successfully applied to various ecological 

data sets, successfully identifying known relationships between birds and their 

habitats in the peak district as described in chapter 1 (Milns et al., 2010 ) and fish 

and the habitat and biotic conditions in the Columbia River Basin in the United 

States (Marcot et al., 2001). The study by Marcot et al. (2001) provided strong 

evidence that networks can be enhanced by taking into account expert knowledge on 

a system, strengthening the links between variables and the confidence in the 

produced network. Other multivariate analyses are not capable of computing such 

information. These studies demonstrate the potential for Bayesian Networks in 

understanding and interpreting the complex interactions in other ecosystems, such as 

between fish species and their changing physical environment in British Rivers.  

Where rivers are concerned, alterations in water temperature, flow rate and 

dissolved oxygen content are all likely to change as a result of warmer air 

temperature and altered rainfall patterns. These three properties may react additively, 

synergistically or confound the effects of another variable (Brasheres, 2010). Whilst 

temperature is regarded as determining growth and recruitment success, it has been 

documented that river flow rate is the principle controlling factor influencing 

biomass and density of fish species, since it affects fish both directly (discharge 

reduced mortality) and indirectly (increased energy expenditure, reduced growth 

through lowered temperatures) (Nunn et al., 2003). However, the importance of flow 

may be reduced in highly regulated rivers such as the River Thames. Therefore, it is 

predicted that the Bayesian Network will identify temperature as being of greater 

importance, given that the River Thames is a highly regulated river. Consequently, 

as seen in the River Trent, temperature should be the principle controlling factor 

followed by flow rates (Nunn et al., 2007b). It is also anticipated that the Bayesian 

Network will show a relationship between roach (Rutilus rutilus) and perch (Perca 
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fluviatilis), as there are known and well documented interactions and competition 

between these two species, with roach being the stronger competitor at higher 

temperatures (FSBI, 2007).  

Once the relationships between the physical parameters and the fish 

population are understood, the Bayesian Network can then be manipulated to predict 

the future assemblage of fish. For example, by applying general warming to the 

model or weather patterns such as ‘wet-and-mild’ winters and ‘hot-and-dry’ 

summers. Not only will Britain likely see increases in temperature and overall 

reduced flow rates, but it is predicted that extreme weather events, such as droughts, 

floods and heat waves, will increase in frequency and intensity (IPCC, 2007). Whilst 

little is known about how freshwater fish in the UK will respond to the general 

predictions of climate change, even less is known about how these ‘big events’ will 

affect the fish populations (Lake, 2003). However, even in the last 15 years, fish will 

have been exposed to some of these extreme events, with record-breaking weather 

events occurring during those years. From 1995 to 2006, 11 of the 12 years were the 

warmest since records began in 1850 (IPCC, 2007). In the European heat waves in 

the summers of 2003 and 2006, water temperatures reached 25.5°C and 27.1°C, 

respectively, at Oxford, with a record high air temperature of 38.5°C on the 10
th
 

August, 2003 in Kent. A dry winter of 2005/2006 followed by extreme high 

temperatures in the summer of 2006 led to the most severe drought in the UK for 

100 years (EA). This was followed by summer flooding in 2007, with June 2007 

having the highest precipitation on record for this month for Britain (until 2012). 

North Yorkshire received 289.9mm of rainfall in June 2007, which is nearly 500% 

higher than the 1961-1990 average for June (Met Office). Contrary to public 

perceptions of climate change and global warming, our changing climate has also 

brought the UK extreme cold winters; the winter of 2009/10 had a mean temperature 

of 1.6°C, 2°C below the 1971-2000 average, and this was accompanied by over 

20cm of snowfall in southern England (Met Office). Whilst these may be extreme 

events now, they may well become ‘normal’ weather conditions in the future, and 

hence understanding how these events impacted fish populations can hold the key to 

predicting the success of future fish populations in response to anticipated climate 

change. 
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4.2.4 Aims & Objectives 

 

There are three main aims of this study.  

 

1) To ascertain whether there is yet any evidence of climate change in the River 

Thames. 

 

o Using a long-term (150 years) data set on air temperature and rainfall 

in the Thames region to determine whether there have been any 

general trends in climate. 

 

o Using a 15 year historical data set on river temperature and flow rates 

to establish if there is any indication that climate change is affecting 

the River Thames.  

 

2) To establish whether any changes in climate conditions in the last 15 years 

has had an effect on the fish population of the non-tidal River Thames.  

 

 

3) To determine whether Bayesian Networks can be successful applied to 

understanding the relationships between physical parameters and the 

freshwater fish population of the non-tidal River Thames.  
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4.3 Methodology 

 

4.3.1. Study site  

 

The non-tidal River Thames is 180km long, originating at Thames Head in 

Gloucestershire and terminating at Teddington weir, after which the river is 

influenced by tidal currents. The non-tidal River Thames is divided into three main 

sections (containing 44 contiguous reaches separated by locks and weirs) by the 

Environment Agency (EA) (Figure 4.2) and each section is sampled by a separate 

fisheries team, each using the same equipment and methods.  The Upper (A) section 

runs from the source at Thames Head to Eynsham, the Middle (B) from Eynsham to 

Hurley and the Lower (C) from Hurley to Teddington.  

 

Figure 4.2. Map of the non-tidal River Thames showing the start of the three main 

sections as monitored by the Environment Agency. A (Upper, starting at Thames 

Head), B (Middle, starting at Eynsham) C (Lower, starting at Hurley) and End 

(Teddington Weir). (Modified from www.environment-agency.co.uk. [Date accessed 

06/02.2013]). 

 

 

 

 

http://www.environment-agency.co.uk/
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4.3.2 Fisheries Data 

 

All fish data were collected and supplied by the EA. Annual surveys were 

carried out using a purpose built boom boat for multispecies electric fishing. The 

following description of the methodology was provided by the EA: 

Electric fishing was conducted using a purpose built ‘boom boat’ with two 

two-meter diameter fixed anodes with concentric rings of stainless steel ‘droppers’ 

(Figure 4.3). A single timed run was performed at each site in a downstream 

direction using Pulsed Directed Current (PDC) via an Electracatch control box, with 

a frequency of 50Hz generating between 10 and 15amps. Stunned fish were 

identified to species level and body length (as fork length, FL) was measured to the 

nearest mm. Fish were then released back into the river. 

 

Figure. 4.3. Photograph of electrofishing on purpose built ‘boom boat’ by a fisheries 

team of the Environment Agency. 

 

 

Sampling was carried out in daylight hours between July to early September 

from 1994 to 2009.  Catch per Unit Effort (CPUE) values for biomass (g/min
-1

) and 

density (n/min
-1

) of each species were then calculated. The sampling technique is 
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biased in that it only records larger species of fish, and therefore this study does not 

investigate the impacts climate change or any other factor on the first year of life of 

any species and year class strength. In total, 26 species of fish were recorded in the 

EA reports, however only 11 species were included in this study: Roach (Rutilus 

rutilus), Perch (Perca fluviatilis), Pike (Esox  lucius), Barbel (Barbus barbus), 

Gudgeon (Gobio gobio), Bleak (Alburnus alburnus), Tench (Tinca tinca), Common 

Bream (Abramis brama), Chub (Leuciscus cephalus), Dace  (Leuciscus leuciscus) 

and the European Eel (Anguilla Anguilla). Based on the data obtained, these 11 

species account for over 99% of the density of fish and 93% of the river’s biomass. 

Therefore, it is considered that these species are representative of the fish community 

assemblage of the non-tidal River Thames. The remaining 15 species are present in 

such small numbers or were recorded only once in the 15 years, hence they could not 

provide significant information in how climate change may have affected them. 

Biomass and density of each species were averaged for all sites in the three reaches, 

providing a mean density and biomass for each species each year.  

 

4.3.3. Physical data 

 

Flow rate (m
3
/s) and temperature (°C) data were obtained from the EA and 

the Centre of Ecology and Hydrology (NERC). Dissolved oxygen concentration 

(mg/l) and chlorophyll concentration (mg/l) data were assimilated from the 

Hannington and Windsor gauging stations on the non-tidal River Thames, which are 

operated by the EA. Table 4.1 provides a breakdown of sites along the non-tidal 

Thames where data were recorded by the EA. For Bayesian Network analysis, 

physical parameters were divided into seasons: winter (December, January, and 

February), spring (March, April, May), summer (June, July, August) and autumn 

(September, October, November). 
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Table 4.1 Summary of data sources of the three reaches of the River Thames.  

 

 Fisheries Data 

(Density 

[n/min]and 

Biomass[g/min]) 

Flow 

Rate 

(m/s) 

Temperature 

(°C) 

Dissolved 

Oxygen 

Concentration 

(mg/l) 

Chlorophyll 

Concentration 

(mg/l) 

Upper 

(A) 

Northmoor, 

Eynsham, Kings 

(2001-2009) 

Eynsham 

1999-

2009 

Hannington 

2002-2009 

Hannington 

(2001-2009, 

except 2007) 

Hannington 

(2001-2009, 

except 2007) 

Middle 

(B) 

Sandford- 

Benson 

1994-2009 

Days 

1994-

2008 

Sandford-

Days 

1994-2009 

Abingdon and 

Caversham 

(2001-2009) 

Abingdon and 

Caversham 

(2001-2009) 

Lower 

(C) 

Ham Loop, 

Penton Hook, 

Shepperton 

Weir. 

1995-2009 

Walton 

(1994-

2009) 

Caversham, 

Windsor & 

Teddington 

(2001-2009). 

Penton Hook 

(1998-2009) 

Windsor 

(2001-2009), 

Teddington 

(2003-2009). 

Windsor 

(2001-2009), 

Teddington 

(2003-2009). 
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4.3.4. Bayesian Network Methodology 

 

In order to determine the key parameters affecting fish biomass and density, a 

Feature Selection was applied to the data (Saeys et al., 2007). A feature selection is 

the term commonly used in data mining, such as Bayesian Networks, to describe a 

technique whereby the dataset is reduced to a manageable size for processing and 

analysis. It is particularly important in datasets such as this where there are many 

features (i.e. temperature, dissolved oxygen concentration, flow rate, species biomass 

and density, chlorophyll concentration) but comparatively few samples (i.e. a short 

time series from 1994-2009). A feature selection is important as datasets usually 

contain more information than is necessary to build the model, and noise in the 

dataset makes it harder to discover meaningful patterns in the data. Using all the data 

available, the feature selection will rank the probability of each variable affecting 

another, and produces a model which uses the minimum number of variables 

necessary to explain the data, using the principle of Ockhams Razor (Dose & 

Menzel, 2004).  In order to test whether the feature selection has identified the key 

variables and whether it is able to correctly predict a new network, a Wrapper-Based 

Approach was employed (Saeys et al., 2007). A wrapper based approach means that 

new networks are constantly created using different combinations of variables, and 

these new networks are compared to the original dataset, the ‘hold-out set’, and 

given a score as to their predictive accuracy.  A Naive Bayes Classifier was used as 

the model in this wrapper feature selection with repeated cross-validation to the 

hold-out set. This technique finds the key variables in a dataset that are most robust 

to sampling variation and disregards the variables that are not needed, therefore 

reducing noise in the data (Langley & Sage, 1994). 

Once the key features were identified, a Greedy search was applied to 

learning the Bayesian Network classifier to establish which learnt network is the best 

fit. The Bayes Information Criteria scoring metric was used to rank the accuracy of 

the learnt models, simultaneously preventing over-fitting the data by penalising any 

networks that are overly connected. In this way, only links between variables that 

have high confidence are preserved. The networks were further tested using a ‘Leave 

One Out Cross Validation’ approach in order to test the predictive power of the 

network. This approach performs the Bayesian analysis on one subset of the network 
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and validates the results against the other subsets (i.e. by comparing how changing 

one aspect of the network impacts other subsets of the network), and this process is 

performed multiple times on different subsets of the network to ensure high accuracy 

in the final learnt network. Bayesian Network analysis was carried out using WEKA 

software, software which is freely available in Java. 
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4.4 Results 

 

4.4.1 Temperature 

 

Complete long-term data sets of water temperature for the non-tidal River 

Thames are not available. However, the Met Office has been recording air 

temperature in the Thames region (at Oxford) since 1853.  

 

Figure 4.4. Mean annual air temperature at Oxford (data from the Met Office). There 

was a significant positive linear correlation between year and air temperature. 

Pearson's correlation coefficient: r (157) =0.516; p<0.01, r
2
= 0.266 (two-tailed). 

 

Since 1853, there has been a steady increase in the mean annual air 

temperature, from 9.5°C in the 1850’s to 11.2°C in the 2000’s. Figure 4.4 also shows 

that there was a steep rise in temperature from the 1990’s onwards, agreeing with 

previous literature that the 1990’s was a period of warming (Graham & Harrod, 
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2009). This 1.7°C increase in air temperature over the last 150 years is a significant 

rise and demonstrates that warming is occuring at a fast rate.  

Due to the close relationship between air temperature and water temperature, 

it is possible to infer the impacts of this increase in air temperature to the river 

environment (Mohseni et al., 2003). Figure 4.5 shows that there is very strong 

correlation between the two based on temperatures between 1990 and 2009. 

Therefore, one can assume that if air temperatures have risen by nearly 2°C in 150 

years, then so has water temperature. However, the two temperatures will not be 

exactly the same, with water temperatures in the River Thames being consistenly 

3°C warmer than the air. 

 

 

Figure 4.5 The strong positive correlation between monthly air temperature and water 

temperature between 1990 and 2009 on the River Thames (Sandford-Days mean). 

Pearson’s correlation coefficient:  r = 0.9778, p = 0.001, r
2
= 0.9562 (2-tailed). 
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Figure.4.6. Cumulative number of degree days above 12°C from 1998 to 2009 at Penton 

Hook on the lower reaches of the River Thames. 

 

The cumulative number of degree days above 12°C (taken from daily water 

recordings) has been shown to be a reliable indicator of recruitment (Nunn et al., 

2010), with good recruitment in years with an above average number of cumulative 

degree days. The mean cumulative number of degree days above 12°C at Penton 

Hook over a 12 year period (1998-2009) is 185days.  Figure 4.6 shows that 2000 and 

2001 had low numbers of days above 12°C, with 23 and 14 days, respectively, less 

than the mean number of days above 12°C, and therefore may have resulted in low 

recruitment in cyprinids. Conversely, 2006 and 2007 both had 13 days more than the 

mean number of days above 12°C, thereby suggesting that these years may have 

resulted in higher recruitment in cyprinids. 
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4.4.2. Flow 

 

Climate change models predict that there will be a decrease in rainfall in all 

seasons except winter, and that there will be a 20% reduction in annual rainfall by 

2050 in the south-east of England (Arnell, 1998). Therefore another indication of 

whether or not climate change is already occurring might be a reduction in mean 

annual rainfall.   

 

 

Figure 4.7 Mean annual rainfall at Oxford from 1853-2006 (data from Met Office). 

 

 Over the last 150 years there has been no significant change in the annual 

amount of rainfall received at Oxford. Rainfall is an important feature to rivers, since 

in general it governs the flow rate of a river (Nunn et al., 2007b). However, in the 

case of the River Thames, the rainfall has only a small correlation with flow rate, due 

to the fact that flow is highly regulated (Figure 4.8).  
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Figure 4.8. Demonstration of a small positive correlation between rainfall at Oxford 

and the corresponding flow rates at Farmoor in the upper reaches of the non-tidal 

River Thames from 1994-2010. Pearson’s correlation coefficient: r=0.283, p=0.01, r
2
= 

0.0799 (two-tailed). 

 

The mean winter and summer flow rates in the non-tidal River Thames are 

63.6 and 13.9m
3
/s, respectively. Whilst there is no clear long-term trend in flow rates 

in the non-tidal River Thames, there is a large degree of inter-annual variability in 

flow rates (Figure 4.9). In particular, there were very dry winters from 2005-2006, as 

depicted by low winter flow rates (24 and 40.6m
3
/s, respectively), and also very wet 

summers in 2007 and 2008 (48.4 and 31m
3
/s, respectively). In July 2007 there was 

widespread flooding, with the Thames region severely affected, with a mean flow 

rate of 73.9m
3
/s, 5-fold higher than the average summer flow rate. 
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Figure 4.9. Mean monthly flow rates from all sites combined in the non-tidal River 

Thames from 1994 to 2010. 

 

The changes to rainfall and hence flow rates (as shown in figure 4.8) are 

predicted to be different for different seasons. It is anticipated that there will be a 

reduction in rainfall in spring, summer and autumn, but an increase in winter. Using 

the monthly rainfall data from the Met Office from 1853-2009, regression analysis 

was applied to each month over all years to determine whether there have been 

changes to each month with time. Table 4.2 demonstrates that the only month which 

has had a significant change in rainfall is December, with an increase (+) in rainfall. 

There were no significant changes in rainfall for any other months; however, the 

general pattern appears to be an increase in winter and spring months (November- 

May) and a decline in summer and autumn months (June- October). These trends 

may become significant with time.  
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Table 4.2. Monthly trends in rainfall at Oxford from 1853-2009. Regression analysis 

was applied to the data for each month, with significances (P<0.05) denoted by *. 

 

MONTH  R2 (RAINFALL)  

January  0.0045 (+)  

February  0.0004 (+)  

March  0.0075 (+)  

April  0.0016 (+)  

May  0.0059 (+)  

June  0.014 (-)  

July  0.0241(-)  

August  0.0015 (-)  

September  0.0036 (-)  

October  0.0079 (-)  

November  0.0242 (+)  

December  0.0262 (+) *  
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4.4.3. Responses of Fish to Physical Parameters 

 

Data on fish density and biomass in the River Thames are only available 

from 1994 onwards when the Environment Agency replaced the National Rivers 

Authority. Whilst the archive data from the NRA would have been transferred, albeit 

in paper form, acquiring complete and reliable data was not possible despite many 

attempts. However, Williams (1967) recorded the densities of four commonly 

occurring fish in the non-tidal River Thames at Reading in 1959, which can be used 

as a comparison to data collected in recent years at the same site. These data are 

displayed in Table 4.3, and show that the densities seen in 1959 are not dissimilar to 

those seen today and also that there is a high degree of inter-annual variation in 

species densities. This is particularly evident for roach, where in 2003 the density 

was 0.7n/min
-1

 and in 2004 there was a 10-fold increase in numbers to 8.02n/min
-1

. 

Given that the sampling technique catches +1year fish, it suggests that 2003 had 

favourable conditions, resulting in high densities of roach at Reading in 2004.  

 

Table 4.3 Comparison of the adult population densities of four species of freshwater 

fish (roach, bleak, dace and perch) in the River Thames at Reading in 1959 (Williams, 

1967) and between 2003 to 2008. 

 Roach Dace Perch Bleak 

Total 

Density 

(n/min-1) 

1959 0.58 0.1 0.1 1.59 2.37 

2003 0.75 0.02 0.33 0.37 1.47 

2004 8.02 0.24 0.6 0.91 9.77 

2005 6.93 0.14 0.09 0.09 7.25 

2006 2.3 0 0 0.07 2.37 

2007 5.02 0.07 0.3 1.37 6.76 

2008 1.32 0.01 0.17 1.12 2.62 

 

The fish population in the River Thames is dominated by cyprinid species 

such as roach, dace, chub, bleak, common bream, gudgeon, tench and barbel.  These 

species are known to have their population structure dominated by strong year 



 

141 

 

classes, which are governed by times of favourable environmental conditions. Figure 

4.10 shows that there is a strong agreement between biomass and density and so in 

years where there are high numbers of cyprinids, there is also high biomass.  

Figure 4.11 (A-C) compares the mean density of roach, chub and bleak over 

15 years, and demonstrated that all three species show the same pattern. There was a 

high density of all three species (and all other cyprinids) in 1996 and 1997, followed 

by a decade of decline, followed by the start of a recovery in 2007. Electro-fishing 

techniques employed are size selective and so do not include the number of 

juveniles. Therefore the high densities in 1996 may reflect high recruitment in 1995 

or earlier. The non-cyprinid species (pike, perch and the European eel) do not follow 

this same pattern of decline and recovery (Figure 4.12 A-C). Instead, each species 

has its own trend over time. Pike displays a stable density except for 2000, when 

there were very high densities. These high densities were seen in at least 5 separate 

sites and so are not thought to be due to sampling error, but rather a true 

representation of the pike density that year. Perch show a fluctuating pattern in 

density, with a downward trend with time. The European eel, which is thought to be 

absent from most European rivers (Feunteun, 2002), is clearly present in the non-

tidal River Thames, with higher densities from 2000 to 2005.  
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Figure 4.10. Mean density (n/min
-1

) and biomass (g/min
-1

) of all cyprinids (roach, 

bream, chub, bleak, gudgeon, tench, dace and barbel) in the non-tidal River Thames 

from 1994 to 2009. 
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Figure 4.11. Mean densities of cyprinid species in the three reaches of the non-tidal 

River Thames from 1994 to 2008: A) Roach, B) Chub and C) Bleak. No data were 

available for 1995. Data reported as means ± SEMs. 
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Figure 4.12. Mean densities of non-cyprinid species in the three reaches of the non-tidal 

River Thames from 1994 to 2008: D) Pike, E) Perch and F) European Eel. No data 

were available for perch and pike in 1995. Data reported as means ± SEMs. 
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Figure. 4.13 Shannon-Weiner diversity index, H’ (solid line) and species richness, S 

(dotted line) for all fish recorded from all sites in the non-tidal River Thames from 

1994 to 2009. 

 

Species richness, S, refers to the number of species in a given area, or in this 

case the number of species recorded in EA surveys in any particular year. The 

Shannon-Weiner (H’) index is a measure of the diversity of an ecosystem, it takes 

into account both richness and evenness. Typically values range from 0-4, with 0 

indicating that all the species in a sample are the same and 4 indicating a highly 

diverse ecosystem. Figure 4.13 shows that the H’ values for the non-tidal River 

Thames are characteristically low, with a mean of 1.01, indicating that the River 

Thames fish population is dominated by a small number of species. The H’ values in 

Figure 4.13 included not only the 11 selected species (see section 4.2.2), but also any 

species that were recorded each year, even if in low numbers and therefore were 

excluded from the main analysis. In 1996 there was a peak in the H’ to 1.57, 

suggesting that there was an increase in species diversity that year, but it was not 

sustained beyond 1996. This peak in H’ coincides with the peak in cyprinid numbers 

(as seen in figure 4.11), suggesting that the conditions that were favourable for other 
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species, namely the cyprinid species Rudd (Scardinius erythrophthalmus) and Silver 

Bream (Blicca bjoerkna).  

 

4.4.4 Causes of high cyprinid numbers in 1996-1997 

 

 Figure 4.10 shows that there was a peak in densities of the warm water 

cyprinids (chub, bleak and roach) in either 1996 or 1997, after which there was a 

rapid decline. Since the sampling technique only catches adult fish, it is important to 

consider the weather patterns from 1995, as it is the conditions in 1995 and 1996 

which would have had the greatest impact on adult numbers caught in the subsequent 

years. 

 

1995 can be generalised as a warm and dry year (there was a wet start to the 

year, with high flow rates, followed by a summer with temperatures higher than 

average) (Figure 4.14, A&B). However, 1995 experienced a dry summer with lower 

than average flow rates (Figure 4.14.C), which extended into the winter months and 

into 1996, which again had lower flows for the rest of the year (Figure 4.15). 1996 

can be generalised as a cool and dry year (Figure 4.15A&B). There was markedly 

less rainfall in 1996, with flow rates only 58% of the 15 year mean (Figure 4.15B). 

The densities of all cyprinids were much lower in 1998, which could possibly be due 

to the extremely cold January in 1997 (Figure 4.16), with temperatures as low as       

-0.2°C. Given that this very cold spell followed on from a year with below average 

temperatures, these conditions could have meant high over-winter mortality due to 

reduced growth in the previous year.  
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Figures 4.14. A) Mean summer temperatures (June-August) of 1995 compared to the 

1990-2009 average (±SEM bars). B) Mean winter flow rate (Jan-Mar) for 1995 

compared to the 1994-2009 average (±SEM bars). C) Mean summer flow rate (June-

August) for 1995 compared to the 1994-2009 average (±SEM bars). 
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Figure 4.15. A) Mean annual temperature for 1996 compared to the 1990-2009 average 

(±SEM bars). B) Mean annual flow rate for 1996 compared to the 1994-2009 average 

(±SEM bars). 

 

 

Figure 4.16. Mean water temperature for 1997 compared to the 1990-2009 average 

(±SEM bars). 
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4.4.5. Application of PCA and Bayesian Networks 

 

 A Principal Component Analysis (PCA) can be conducted on large datasets 

with multiple variables as a tool of data reduction to identify the key parameters or 

factors that are responsible for the majority of variation. A PCA was applied to the 

fisheries data from the non-tidal River Thames to determine the main factors 

controlling the density of fish. For this, physical data were grouped into seasons 

(winter: December to February, spring: March to May, summer: June to August, 

autumn: September to November).  

Figure 4.17 is the Scree Plot obtained in SPSS (v15) for a PCA. Based on 

eigenvalues above 1, the scree plot identifies that there are 5 principle factors (Figure 

4.17). These five factors account for over 96% of the variation in the data, and all 

variation is accounted for by 6 factors (Table 4.4). 

Figure 4.17.  Scree Plot obtained in SPSS for a PCA based on 17 factors affecting 

density of fish in the Non-Tidal River Thames (seasonal temperature, flow, dissolved 

oxygen concentration, chlorophyll concentration). Based on Eigenvalues above 1, five 

principle components were identified (1-spring temperature, 2-autumn flow, 3-summer 

temperature, 4-autumn temperature, 5- spring flow). 
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Table 4.4. A Total Variance Explained table produced by SPSS for Principle 

Component Analysis. 100% of variance in the dataset is controlled by 6 components (1-

spring temperature, 2-autumn flow, 3-summer temperature, 4-autumn temperature, 5- 

spring flow, 6- winter flow). 

  

 The Kaiser-Meyer-Olkin Measure of Sampling Accuracy should be applied 

to each test in PCA in order to determine the appropriateness of factor analysis (i.e. 

whether the dataset lends itself to PCA). Values are always between 0-1, and it is 

considered that a KMO value of 0.6 is the minimum value at which the data are 

acceptable for PCA. Table 4.5 shows the output from SPSS for the KMO and 

Bartlett’s test and given that the KMO value is 0.3, it is deemed that further 

statistical analysis in PCA is not appropriate. Therefore based on the dataset we have 

for the non-tidal River Thames, due to the large amount of missing data and noise 

within the dataset, a PCA cannot be accurately carried out with any confidence. 

Table. 4.5 Output from SPSS for a Kaiser-Meyer-Olkin and Bartlett’s Test of 

Sphericity. Rejection of PCA is recommended due to the KMO value being less than 

0.6. 

 

Kaiser-Meyer-Olkin Measure of Sampling 
Adequacy. .309 

Bartlett's Test of 
Sphericity 

Approx. Chi-
Square 

75.922 

df 36 

Sig. .000 
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Similar to Principal Component Analysis, Bayesian Networks can apply a 

Feature Selection to identify the main controlling variables and discount variables 

which have little significance, in order to simplify a model. A Feature Selection is 

necessary when carrying out data mining analysis such as Bayesian Networks, as 

often data sets contain information that is not central to building a model. The 

Feature Selection therefore helps to identify the principal factors that are involved in 

the model, which can then be applied into building a Bayesian Network. However, 

unlike PCA, Feature Selections are able to make use of incomplete datasets and 

therefore are more accurate at identifying key factors within a dataset. The PCA 

identified 6 factors that accounted for all the variability in the data, whereas the 

Feature Selection identified 7 (split between 3 main principle factors). Further to 

this, it provided much more in-depth information about which fish species were 

affected by which parameters, giving much more ecologically significant results. 

Table.4.6 Results from a Naive Bayes feature selection showing the three highest 

ranking variables affecting the density of fish species in the non-tidal River Thames. 

 

Principle 

Features 

1 2 3 

Physical 

Parameters 

Spring 

Temp 

Summer 

Temp 

Autumn 

Temp 

Autumn 

flow 

Winter 

flow 

Spring 

flow 

Summer 

flow 

Species Roach Roach Roach Pike Bream Pike Pike 

Perch Pike Pike Bleak Tench Barbel Bream 

Pike Barbel Bleak Barbel Eel Eel Tench 

Barbel Eel Eel Eel    

Gudgeon       

  

The Naive Bayes Feature Selection (Table 4.6) revealed that spring 

temperature is the primary controlling factor influencing the density of five fish 

species in the River Thames. Indeed, temperature in all seasons except winter was 

most important, followed by flow, in all seasons, particularly in autumn. It also 

identified that dissolved oxygen and chlorophyll concentrations were not important 

factors in predicting fish density, therefore they were omitted from the subsequent 

analysis.  
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The Feature Selection also revealed that the relative importance of each of 

these factors was species-specific, with roach most affected by temperatures and 

bream most affected by flow. Therefore, whilst overall, temperature may appear to 

be the most important factor, the impacts of the physical environment appear to 

affect different species in different ways, and so there is perhaps no one physical 

parameter that is of primary importance.  

For some species, such as perch and gudgeon, the only factor that seems to be 

important is spring temperature. The ways in which high or low, or early or late, 

spring temperatures affect perch and gudgeon can be explored in models produced 

by Bayesian Networks. Each variable is represented as a circular node in the model, 

and the relationships between nodes are shown by arrows, with the direction of the 

arrow indicating the direction of causality. Therefore, within the model, the circular 

nodes represent variables that are probabilistically and statistically related by a 

causal dependency. Within the model, each circular node is accompanied by a table 

showing a figure [-inf...] and a percentage. The number in the bracket represents the 

mean value for that node, i.e. for warm water cyprinid [-inf-2.5725] explains the 

mean density of warm water cyprinids was 2.57n/min
-1

, and the mean flow rate was 

86.475m
3
/s in winter (1994-2009). The top line of the table represents values below 

the average, and the bottom line of the table representing higher than average values.  

By applying the conditions seen in 1995 into the Bayesian Network, it 

correctly predicted that the following year there was a high density of warm water 

cyprinids (i.e. roach, chub and bleak) as displayed by a high percentage (87.5%) in 

the [2.89-inf]. Starting at step 1 (Figure 4.18), the model was adjusted to show 100% 

in [-inf-2.5725] for density of WarmWater Cyprinids. By placing the 100% in this 

top bracket sets the model to accept that in that year there was a lower than average 

density of warm water cyprinid species. The next step (2) is to manipulate the model 

to replicate the high winter flow rates that were experienced in Jan-Mar of 1995 

(100% in [86.475-inf]), followed by a higher than average summer temperature (3) 

(100% in [18.872667-inf]. These manipulations of the network resulted in higher 

densities of warm water cyprinids the following year (T+1), with 87.5% probability 

of an above mean density (4).  
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What is also interesting to note is that perch is directly affected by the density 

of warm water cyprinids and the summer temperatures, and again the network 

correctly identified that the conditions seen in 1995 resulted in higher densities in 

1996 (71% above the mean value for perch densities) (5), as also seen in Figure 

4.12E. 
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Figure 4.18. A screen capture from part of a created learnt Bayesian Network, whereby the parameters summer temperature and winter flow have 

been manipulated to represent the conditions experienced in 1995 to predict their effects on the density of warm water cyprinid fish. Each variable is 

represented by a node and the arrows connecting nodes represent the direction of causality and dependency. Other variables included in this dataset 

(e.g. spring temperature and flow etc) were not manipulated and therefore not included in screen capture. 
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4.5 Discussion 

 

There is evidence for gradual warming in the Thames region, which over the 

last 150 years has seen a rise of 1.7°C in annual mean air temperature. If this rate 

continues, this could result in a mean annual temperature of 14°C by 2050, which is 

in line with current predictions (IPCC, 2007). Given that the mean global 

temperature has remained stable for over 10,000years (IPCC, 2007), this recent rise 

in temperature of over a degree is considerable.  

Whilst this increase in temperature strongly suggests that fish in the River 

Thames have already been affected by climate change, there is no evidence that 

rainfall or flow rates have changed significantly over the last 150years, except in the 

month of December. There is still a lot of disagreement in the literature regarding 

what may happen to flow rates in the future, and this depends largely on what model 

is used to make the predictions. For the UK, Sefton & Boorman (1997) quote an 

overall increase in rainfall, whereas Arnell & Reynard (1996) predict no annual 

change in runoff; even though frequency of rainfall is reduced, they predicted an 

increase in intensity of rainfall events.  Mulholland et al. (1997) quote that in Britain 

we can expect to experience a summer wet season and a winter dry season. However, 

in warm summer months, evapotranspiration may prevent the rainfall events 

increasing runoff. More recently, using improved modelling techniques, the 

predictions are for a reduced flow in all seasons and scenarios (Johnson et al., 2009). 

The results from this study suggest that there is, in fact, higher rainfall in the winter 

months and a reduction in summer months. This study has also highlighted that the 

flow rates in the River Thames vary considerably from year-on-year, which agrees 

with the results of a study by Johnson et al. (2009). Furthermore, there is not a strong 

correlation between rainfall and flow rates in the River Thames, unlike most rivers, 

due to the fact that the River Thames is highly regulated. This agrees with previous 

research on the River Trent, which is also highly regulated (Nunn et al., 2010).  

Therefore it is not likely that the long-term projections of changes in rainfall will 

have dramatic effects on the already variable nature of the flow rates of the River 

Thames. 
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The fish population has survived through decades of high flow variability. 

This may be an indication that any change in flow rates will not have a significant 

impact on the fish population of the River Thames. Elsewhere, declining river flows 

have been a major cause of loss of species in rivers (Xenopoulos et al., 2005). The 

Naïve Bayes Feature Selection showed that mean flow rates are of lesser importance 

than water temperatures in influencing fish populations in the River Thames. Since 

short flood events are thought to be less important in determining recruitment than 

the mean flow rates over a given period (Nunn et al., 2010), it is likely that 

temperature will be the primary physical parameter controlling fish populations in 

the River Thames in the future. Whilst it appears that temperature is the primary 

controlling factor, it is prudent to be mindful of other variables that may not have 

been included in the dataset that may affect fish biomass and density, such as food 

availability, extreme weather events, invasive species, pollution spills and disease 

outbreaks. However, the Naïve Bayes Feature Selection highlighted that although 

temperature may be more important in general, different species may be affected by 

temperature in different seasons. The situation is therefore far more complex than 

merely stating that temperature or flow is the primary controlling factor, as has been 

done to date. 

The biomass and density of the fish species investigated in this study showed 

some interesting trends. All the 8 species from the cyprinid family showed a high 

density in either 1996 or 1997, followed by a decade of decline to a low in 2006, and 

then they began to increase in 2007. Furthermore, this pattern was not reflected in 

any of the non-cyprinid species studied. The density of pike has stayed relatively 

stable, except for a high density in 2000. Perch density fluctuated year-on-year, with 

a steady overall decline. Whilst the European Eel, thought to be largely absent from 

European rivers now, showed its highest densities in the years when cyprinid 

densities were low.  

Since the 1970’s there has been a 99% reduction in the number of glass eels 

reaching the UK and the European eel is now a managed species (there is an Eel 

Management Plan in place) in an attempt to improve recruitment (Vogel, 2010). The 

reason for the large decline in the Eel population across Europe is not fully 

understood. However, it appears that there is a population of eels in the River 

Thames, although they are perhaps not present in the same numbers as prior to the 
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1980s. Furthermore, it appears that in years when weather conditions are not 

favourable for all the other species of the River Thames, the eel seems to thrive.  

Cyprinid populations are known to be dominated by strong cohorts from 

years where conditions are favourable in the first year of life. Therefore the high 

density in 1996 may represent a particularly strong cohort, but it took a further 10 

years for another strong cohort to dominate the population. Since the sampling 

technique only captures adults, it can be assumed that the strong cohort of 1996 was 

caused by environmental conditions that were favourable in 1995 or earlier. 

Favourable conditions for cyprinids are when the water temperatures are higher than 

average, i.e. years where the cumulative number of days above 12°C is above 

average (Nunn et al., 2010) or when there is a warm-dry summer (Grenouillet et al.. 

2001). This warm-dry summer was seen in 1995 (Figure 4.14), indicating that as 

climate change progresses and temperatures increase and summer rainfall decreases, 

there may well be an increase in the number of strong year classes of cyprinid 

species. Therefore, it is likely that climate change will benefit cyprinid species, 

particularly the warm water species such as roach, chub and bleak.  

There is strong confidence that there was in fact a peak in biomass and 

density of the cyprinid species in 1996 and 1997, given that this same peak was seen 

across all the cyprinid species. However, given the limited data on variables other 

than temperature, flow and dissolved oxygen concentration, the reason for this 

apparent peak cannot be deduced. What cannot also be said with great confidence is 

whether the values for biomass and density in 1996/97 were in fact the peak, or that 

they were the norm, followed by a decade of decline. This is therefore a limitation to 

this study, in that a data-set of 15 years is not long enough to establish long-term 

trends. Similar studies on land have access to much longer data-sets, for example the 

National Butterfly Monitoring Scheme has been recording the appearance of 

butterflies across Britain since 1976  (Roy & Sparks, 2000). Even in these 

substantially longer data sets it has still been questioned whether they are of a 

significant amount of time to determine long-term trends and the effects of climate 

on them. The importance of continuing sampling and recording in rivers is therefore 

of paramount importance if we are to continue to investigate how fish respond to 

continuing changes in climate. 
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The Bayesian Network also correctly identified that perch densities were 

affected by the summer temperature and also by the density of warm water species. 

In the case of this study, as seen in Figures 4.11 and 4.12E, perch numbers were 

highest in 1996, when the numbers of warm water cyprinids were also high as a 

response to higher water temperatures. However, as roach numbers continued to 

increase into 1997, the numbers of perch rapidly declined, therefore agreeing with 

literature that roach is the stronger competitor and can depress the population of 

perch.  

The literature emphasizes the crucial role of summer conditions, as these 

dictate the amount of growth that is likely and therefore how much overwinter 

mortality there may be. Whilst this is true, it is also prudent to take into account the 

winter conditions. A long hot summer followed by adverse winter conditions may 

still result in high overwinter mortality (Grenouillet et al., 2001), as was perhaps 

seen as a consequence of the particularly cold winter of 1997. This indicates that the 

extreme weather conditions, whether it is a particularly hot summer or indeed an 

unusually cold winter, may indeed have a greater impact than a general trend and the 

importance of the weather during the winter months should not be overlooked. 

In all species there was a low in density in 2003, coinciding with the 

widespread heat wave across Europe in the summer of 2003. Whilst the cumulative 

number of days above 12°C was not particularly high (Figure 4.6), the days that 

were hot well surpassed mean summer temperatures. In that year the River Thames 

experienced high temperatures coupled with drought (seen in the low flows in figure 

4.9). Surveys of fish density and biomass are carried out in the summer months. It is 

possible that fish had moved from the main river channel to cool water refugia 

(either deeper waters or under shady areas at the sides of the river) and so were not 

sampled by the electro-fishing technique, which only samples the middle of the river. 

Another possibility is that these unfavourable conditions did result in fish deaths in 

the summer months and so fewer were caught in sampling. Whilst warm-dry 

summers are usually good for recruitment, it may have been too severe and not only 

lowered recruitment but was also negative for the adult population of fish. Very high 

temperatures have been shown to reduce fish community biomass (Yvon-Durocher 

et al., 2010). While most British fish are well within their thermal tolerance limits 

(Arnell, 1998), the heat wave of 2003, when water temperatures reached 25.5°C, 
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produced water temperature near the upper physiological tolerance limits of many 

fish (e.g. pike [25°C], roach [27°C], tench [26°C] and perch [28°C]) (Webb & 

Walsh, 2004). 

In the Rhone river, it was found that over a period of 20 years, chub and 

barbel (warm water species) replaced bleak and dace (cool water species) (Daufresne 

et al., 2003) (NB. bleak is considered a warm water species in Britain [Webb & 

Walsh, 2004]). The same pattern was not seen in the River Thames, with all species 

of cyprinids following the same pattern. This suggests that in the River Thames at 

least, there is not the inter-specific competition, where as one species is 

disadvantaged, another benefits. What negatively affects one species of cyprinid 

appears to negatively affect them all. And since this study suggests that the wet 

winters followed by a warm-dry summer (as predicted to occur with climate change) 

are beneficial for cyprinids, the River Thames may see an increase in all cyprinid 

species, therefore increasing total fish biomass. Since cyprinids are the main coarse 

fish species targeted by recreational anglers, climate change could prove to be 

beneficial, not just from an ecological standpoint but also economically, given the 

large income that anglers bring to the economy in the River Thames region. 

The results from this data set only begin to elucidate how climatic conditions 

might affect the fish population of the River Thames. We still know relatively little 

about how conditions in relatively large rivers such as the River Thames affect the 

biomass and community structure of fish populations (Hughes, 1998). It has been 

stated that the general trend of higher recruitment in warmer, drier years no longer 

seems to apply, due to a southward shift in the Gulf Stream since the 1990s (Nunn et 

al., 2010). However, in this study, Nunn’s recent findings did not hold true for the 

River Thames. Rather the established trend was evident suggesting that indeed 

warm-dry summers are important for recruitment. There has been a large variation in 

the density of all fish species in the River Thames over the last 15 years, but whether 

this is as a result of responses to climatic conditions or just normal fluctuations is not 

clear. Previous research has shown that many other important and dominant species 

in other rivers also display substantial variation with time (Araujo et al., 2000). 

Moreover, confidence in the accuracy and reliability of the dataset is questionable. In 

some species there is a 10-fold variation in density from year-to-year, and whilst this 

might be true, it cannot be ruled out that this is not an accurate representation. As 
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already stated, the fishing methodology is biased in that it only targets larger fish 

and, furthermore, only those swimming in the middle of the river. Therefore, fish 

that are either too small, located in weeds and plants at the sides of the river or 

indeed too deep will not be represented in the data set. To add to this, fish are mobile 

and not stationary at one reach from year-to-year, which may affect biomass and 

density values for each reach of the river.  

Understanding the ways in which physical parameters affect the fish population is a 

complex task indeed, further clouded by the fact that in the River Thames, in 

particular, there is heavy re-stocking of most coarse fish species (Johnson et al., 

2009). On top of a plethora of other variables that may affect the fish population, the 

interactions between the species themselves may also be extremely important. 

Therefore to fully grasp the array of interactions taking place, it is sensible to turn to 

modelling techniques such as Bayesian Networks that can mathematically quantify 

multiple variables and their interactions. In this way, the impacts of climate change 

can be more fully understood and therefore predicted.  The Bayesian Networks 

produced in this study demonstrated that they can be successfully applied to fish 

populations and physical parameters, albeit only in initial trials. Therefore they may 

prove to be a powerful predictive tool for establishing how climate change may alter 

the community structure of fish in the non-tidal River Thames and beyond.  
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4.6 Conclusion 

 

Whilst climate change is predicted to have its greatest effects in the northerly 

latitudes, such as Britain, very little is known about how British freshwater fish may 

respond to any changes. This study has provided evidence that there is already 

gradual warming in Thames region with a 1.7°C increase in mean annual air 

temperature. There has also been a statistical increase in mean precipitation in 

December over the last 150 years.  However, due to the River Thames being highly 

regulated, there is not a strong correlation between precipitation and river flow rates. 

The results from a 15 year dataset conclude that the flow rates in the River Thames 

are highly variable over time and show no clear trends or patterns that might be 

expected with climate change.  Therefore, it is unlikely that the long-term projections 

of changes in rainfall will have dramatic effects on the already variable nature of the 

flow rates of the River Thames. 

Over the more recent past, there have been a number of extreme weather 

events, such as record high summer temperatures (2003) and high flood events 

(summer 2007). The fish inhabiting the non-tidal River Thames have displayed 

different responses to the changes in their physical environment. All cyprinid 

species, such as roach, dace and bream displayed a similar pattern in density and 

biomass over a 15 year time period. All the 8 species from the cyprinid family 

showed a high density in either 1996 or 1997, followed by a decade of decline to a 

low in 2006, and then they began to increase in 2007. However, this pattern was not 

followed by non-cyprinid species, such as perch, pike and the European Eel. The 

density of pike has stayed relatively stable, except for a high density in 2000. Perch 

density fluctuated year-on-year, with a steady overall decline. Whilst the European 

Eel, thought to be largely absent from European rivers now, showed its highest 

densities in the years when cyprinid densities were low. These results demonstrate, 

that there will likely be interfamilial differences in the responses to climate change, 

and that conditions that are favourable for one cyprinid species, may well be suitable 

for all cyprinid species.  
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 This study also investigated the potential for Bayesian Networks to be 

applied to complex ecological datasets relating to aquatic habitats. The Bayesian 

Networks were able to correctly identify key relationships in the data, both between 

fish species and their environment and also key interactions between different 

species. Therefore, Bayesian Networks may be a useful tool in predicting the impacts 

of climate change on freshwater ecosystems. The networks also indicated that 

cyprinid species may benefit from the warm-and-dry summers that are predicted to 

become typical with climate change. Since it appears that all cyprinid species have 

similar trends in biomass, these results provide hope that cyprinid species, at least, 

may cope with the predicted changes.  
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Chapter 5.  Assessing the effects of chronic thermal stress 

on the stickleback Gasterosteus aculeatus.  

 

5.1 Abstract 

 

The effects of warming waters as a result of climate change on the 

freshwater fish population of Britain remains largely unknown. Models predict that 

air temperature could rise between 2 and 6°C by the end of the century. However, 

the responses of freshwater fish in Britain to these increases and the mechanisms 

behind responses are little understood.  This study provides evidence that small 

chronic increases in temperature of only 2-6°C can elicit a stress response at the 

biochemical, cellular and whole organism level in a species of fish native to Britain. 

This study examined the effects of chronically elevated water temperature (realistic 

of anticipated climate change) on the stress response system of the three-spined 

stickleback, Gasterosteus aculeatus, using a Biological Indicator Approach.  A small 

increase of 2°C (above current summer mean water temperature) resulted in a stress 

response at the cellular (higher neutrophil: lymphocyte ratio) and whole organism 

level (lowered condition factor and growth rates). A 6°C rise in temperature resulted 

in a stress response at the biochemical level (higher cortisol and glucose 

concentrations), as well as the cellular and whole organism level. These stress 

responses will ultimately lead to impacts at the population and community level. G. 

aculeatus is considered to be temperature tolerant and resilient species, and therefore 

these results indicate that climate change may indeed prove to be stressful for these 

and less hardy species.  

 

5.2. Introduction 
 

Very little is known about whether increases in temperature predicted by 

climate change models may prove to be stressful for British freshwater fish. Most 

studies to date have examined the effects of warming at the species and population 

level (Shuter & Meisner, 1992; Webb & Walsh, 2004). However there is a distinct 



 

164 

 

lack of information of the molecular and physiological mechanisms that may be 

affected by climate change. Of the few studies carried out at the individual level, the 

stress has either been acute or higher than anticipated with climate change (Brian et 

al., 2008; Currie et al., 2008; Perez-Casanova et al., 2008), thereby offering limited 

ecologically significant information.  The Inter-governmental Panel for Climate 

Change (IPCC) published a Special Report on Emissions Scenarios (SRES) which 

provides estimates for temperature in the coming century (IPCC, 2007). The highest 

projections are for a 6.4°C increase in temperature above the current mean (Table 

5.1). Since the Thames is dominated by cyprinid and percid species, increases of up 

to 6.4°C may well not reach the lethal limits for most species. However, even if 

lethal limits are not reached, that is not to say that chronically elevated temperature 

may not act as a stressor, and have adverse effects. 

 

Table 5.1 Projected global average surface air temperature increases by the end of the 

21st century (as compared to the 1980-1999 average) (taken from IPCC, 2007)  

 

 

The mean summer temperature (June-Aug) for the non-tidal section of the 

River Thames is 18.9°C (1990-2009 average, data collected from EA). The mean 

summer temperature over this time period has ranged from an average of 16.9°C in 

1993 to a high of 20.6°C in the summer of 2003. SRES B1 is based on a greenhouse 

gas concentration of CO2 of 600ppm by the end of the century (currently it is at 

379ppm [IPCC, 2007]). This is the lowest emissions scenario with a convergent 
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world based on a service and information economy, whereby carbon dioxide 

emissions will increase slightly in the next few decades. This is by far the most 

optimistic scenario; however it will possibly result in global temperatures increasing 

by up to 3°C and by a mean of 1.8°C by 2100 (Table 5.1). Working on a basis of a 

2°C increase above the current day summer mean on 19°C brings predicted summer 

water temperatures to 21°C. SRES A1F1 scenario is based on a fossil fuel intensive 

economy, with greenhouse gas emissions at 1550ppm by 2100. Therefore this 

scenario predicts a nearly four-fold increase in emissions and could lead to global 

temperatures increasing by 6.4°C. Using a 6°C increase, this would bring the average 

summer temperature to 25°C.  

Air temperature and water temperature follow an S- shaped function. A linear 

relationship exists between air and water between 5°C and 25°C. Above 25°C 

evaporating cooling means water temperature increases at a slower rate than air 

temperature (Mohseni, et al., 2003). However, the mean range of water temperatures 

likely to be experienced with climate change does not go beyond this 25°C, and so it 

can be assumed that the increase will be linear. That is to say, a 1°C increase in air 

temperature will lead to roughly a 1°C increase in water temperature.  
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Figure 5.1. Water temperature at Penton Hook on the River Thames showing a 4°C 

rise in temperature over an 8-day period (June- July) in 2006 (Data obtained from the 

Environment Agency). 

 

Although the temperature regimes of 19°C, 21°C and 25°C are based on what 

is expected to become typical for summer temperatures based on best and worst case 

scenarios, these temperatures already occur in the River Thames. These high 

temperatures may not persist for a sustained period of time, which is what is 

predicted with climate change. Nevertheless, fish in the River Thames can be 

exposed to temperatures as high as 23°C and also experience rapid increases in 

temperatures. Figure 5.1 shows that over a relatively short time scale (8 days), the 

water temperature at Penton Hook in the non-tidal River Thames increased from 

19.3°C to 23.1°C.  Therefore, regardless of climate change predictions, these 

extreme high temperatures that already occur could pose a stress to the fish of the 

non-tidal River Thames. 
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Few studies have yet investigated whether these smaller increases in 

temperature will have any significant effects on fish. A study by Moran et al. (2010) 

tried to replicate the potential climate change scenarios by exposing the three-spined 

stickleback (Gasterosteus aculeatus) to a 4°C temperature increase above ambient 

temperature. This study showed that even a robust species like the three-spined 

stickleback was greatly affected by this increase in temperature, with a 60% 

reduction in biomass. Whether this reduction in stickleback biomass was a result of 

increased temperature, decreased dissolved oxygen concentration, or a combination 

of both, was not clear. However, the study did highlight how even small increases in 

temperature, well within the realms of climate change, may cause significant sub-

lethal effects on British fish.  

The three-spined stickleback (Figure 5.2) has been used extensively in 

research over the years, firstly as a model species for studies on evolution and 

speciation and more recently as a sentinel for assessing the effects of endocrine 

disrupting chemicals. It also lends itself to studies on climate change; being small, 

robust and ubiquitous in European waters, including the River Thames. It is 

generally not considered to be overly sensitive to environmental perturbations, thus 

allowing measurement of a range of sub-lethal endpoints. It is also one of the few 

fish species whose whole genome has been sequenced, allowing endpoints at the 

genetic level to be assessed. The biology of G. aculeatus is well understood and has 

been shown to be suitable for laboratory studies. Other commonly occurring species 

in the River Thames, such as the Roach (Rutilus rutilus) and Dace (Leuciscus 

leuciscus), have been shown to become agitated and stressed by laboratory 

experimental conditions, such as the presence of humans feeding the fish and 

cleaning tanks (Brunel University experience). G.aculeatus quickly adapts to new 

situations and after a few days of confinement can become accustomed to the 

presence of people.  
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Figure 5.2. Image of a three-spined stickleback, Gasterosteus aculeatus. (Picture 

obtained from http://fishbase.us/photos/PicturesSummary [date accessed: 31
st
 Jan 

2013]). 

 

It is important to understand the ways in which chronically elevated 

temperatures may elicit a stress response, in this instance, in the three-spined 

stickleback, G.aculeatus. Stress can lead to reduced growth, reduced reproduction 

and increased susceptibility to disease (Adams, 1990). Therefore even though an 

increase in temperature may not surpass the zone of tolerance for most fish, it can 

still be detrimental to the health of the individual, leading ultimately to changes at 

the population level. In order to investigate the impact of sub-lethal stress, a 

Biological Indicator Approach (Adams, 1990) was adopted, whereby a variety of 

stress indices were used: biochemical (cortisol and glucose concentrations), cellular 

(white blood cell counts) and whole organism responses (hepatosomatic index, 

condition factor, ventilation rate and growth rate). The Biological Indicator 

Approach uses indicators of stress at each level of biological organisation to assess 

the overall health of the organism. No single indicator can provide a complete insight 

into the extent of stress, but the probability of detecting stress is increased if several 

indicators from primary cellular responses to whole organism responses are used in 

conjunction with one another (Adams, 1990). The results from these biological 

endpoints will indicate the overall health status of the individuals at each temperature 

regime and allow predictions of the effects of the stress-induced changes. 
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5.2.2 Biochemical Responses 

5.2.2.1 Cortisol  

 

The hormone, cortisol, has been used in many studies as an indicator of 

stress. Cortisol is produced by the interrenal tissue in the head kidney in response to 

Adrenocorticotrophic Hormone (ACTH), and is one of the first responses an 

organism will have to stress. Cortisol has several purposes. Firstly, it helps shunt 

energy away from non-essential activities, i.e. digestion, excretion and growth. 

Secondly, the presence of an elevated cortisol concentration in the blood initiates 

glycogenolysis and gluconeogenesis to release stored glucose in liver and muscle, 

thereby providing more energy to resist the stressor and regain homeostasis 

(Martinez- Porchas et al., 2009).  Whilst in the short-term cortisol has a positive 

effect, prolonged cortisol production can have serious implications for the health of 

the fish. Since it diverts energy away from non-essential activities, it can result in 

reduced growth rates, lowered reproductive ability and a suppressed immune 

response (Thomas, 1990).  

Measuring the levels of circulating cortisol is one of the earliest indicators of 

stress (Thomas 1990) and the traditional method for obtaining the cortisol 

concentration is through sampling the plasma. Plasma cortisol concentrations have 

been shown to be reliable and highly temperature sensitive (Perez- Casanova et al., 

2008). However, elevated cortisol concentration is a generalised stress response, and 

so it is also occurs in times of experimental and handling stress (Adams, 1990). 

Obtaining the cortisol concentration in plasma requires netting the fish, exposure to 

air and blood collection; all of which would result in a stress response, not just of the 

fish being sampled, but also any other fish in the tank (Scott et al., 2008). Therefore 

acquiring reliable measures of plasma concentrations in fish is problematic. For 

small species, and therefore small blood volumes, this means only one measurement 

can be made at the end of the experiment, upon termination of the individual. Recent 

studies have shown that fish release steroids into the water via their gills (Ruane & 

Komen, 2003; Scott & Ellis, 2007), allowing for cortisol concentrations to be 

determined from water samples.  These water concentrations are not only directly 
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proportional to that of the plasma concentrations, but they are also detectable by 

analysis by using radioimmunoassays (RIA) (Ellis et al., 2007) and enzyme-linked 

immunosorbant assays (ELISA’s) (Fanouraki et al., 2008).  Measuring cortisol 

concentrations in the water rather than the blood has many advantages. It permits the 

same individuals or populations of fish to be monitored over time, thus allowing an 

assessment of the effects of chronic stress (Scott & Ellis, 2007). Although cortisol is 

thought to be a better indicator of acute stress, chronic stress can also result in 

prolonged elevation of the plasma cortisol concentration. Given that it is a non-

invasive technique, water cortisol concentrations do not reflect any cortisol released 

due to handling stress, hence better representing the magnitude of stress caused by 

temperature alone (Sebire et al., 2007).  

The movement of cortisol from blood to water is thought to be via passive 

leakage, and studies have validated the premise that the concentration of free steroid 

present in the water is closely correlated to the concentration of physiologically 

active steroid in the plasma (Scott & Ellis, 2007). However, the release rate will 

never be exactly the same as the plasma concentrations, as it can vary depending on 

factors such as gill surface area, changes to gill permeability, steroid lipophilicity, 

and conversion of free steroids from one steroid to another (Scott et al., 2008). The 

body mass of the fish, the volume of water and the flow rate may also affect release 

rate (Scott & Ellis, 2007), therefore it is essential to have the same mass of fish in 

each tank and also the same flow rates. There can also be differences in steroid 

release rates depending on the maturation of the individual, with mature three-spined 

sticklebacks releasing higher amounts of cortisol than immature individuals (Sebire 

et al., 2007). However, this species did not show a difference in cortisol 

concentrations between the sexes (Sebire et al., 2007). For that reason, it may not be 

crucial to know the sex of the individuals, but the life stage may be important.  

In assessment of chronic stress using cortisol, it is important to sample the 

water at the same time of day each time, since cortisol concentration follows an 

endogenous diurnal rhythm, being higher at night than the day (Lorenzi et al., 2008). 

The pattern of cortisol release in the day depends on the species and has been shown 

in several studies to peak after the morning feed (Lorenzi et al., 2008).   
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Despite these variations in cortisol release rates between species, life stages 

and daily cycle, cortisol concentration is still considered to be a key biological 

indicator (Martinez-Porchas et al. 2009). Water cortisol concentrations have been 

calculated for many fish species and validated against plasma cortisol 

concentrations, including the three-spined stickleback (Sebire et al., 2007), Atlantic 

salmon and rainbow trout (Ellis et al., 2007), ensuring that this non-invasive 

technique for assessment of cortisol status is a reliable indicator of stress. 

 

5.2.2.2 Glucose 

 

Glucose is a simple monosaccharide and is the most important carbohydrate 

in the body, as it is the primary source of energy. Glucose levels are tightly 

controlled, since large deviations from the basal rate can result in conditions such as 

hyperglycemia (persistently high levels) or hypoglycaemia (persistently low levels). 

Normal human glucose levels range between 3.6-5.8 mmol/L (or 64.8-104.4mg/dL). 

A study by Martinez-Porchas et al. (2009) compared literature on the basal and post-

stress glucose concentrations of 14 species of fish. It reported basal concentrations of 

between 0.17mmol/l in Atlantic Cod (Gadus morhua) and 6.1mmol/L in the 

Sunshine Bass (Morone chrysops x saxatis).The highest post-stress glucose level 

recorded for these species was for sunshine bass at 10.5mmol/L, a 1.7-fold increase 

above the basal level. The largest fold-increase was for the Emerald Rockcod 

(Trematomus bernachhii), being a 5-fold increase (1.5mmol/L pre-stress to 

7.5mmol/L post-stress).  The amount of glucose circulating in the blood is elevated 

in times of cortisol production due to glycogenesis and glycogenolysis by the liver 

and muscle (Martinez-Porchas et al., 2009). This additional glucose in the blood 

ensures that the fish has adequate circulating energy substrate to restore and maintain 

internal homeostasis (Martinez- Porchas et al., 2009; Perez-Casanova et al., 2008). 

The use of blood glucose concentrations as a biological indicator has received 

contradictory reviews. Glucose levels have been shown to provide variable results 

for studies on Atlantic Cod (Gadus morhua) (Perez- Casanova et al., 2008), and it 

has been suggested that glucose concentration responds more to acute than chronic 

stress (Adams, 1990). However in some studies with chronically stressed fish, there 

were higher levels of basal plasma glucose (Barton et al., 1987). Experimental 
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stresses such as over-crowding and handling stress (Adams, 1990) can also increase 

glucose concentrations. However, blood glucose has been reported to be a sensitive, 

reliable indicator of environmental stress (Silbergeld, 1974) and it is still one of the 

most commonly measured changes when investigating stress responses in fish 

(Iwama et al., 1998) and generally shows little variation in the basal levels 

(Silbergeld, 1974). Although not suitable as an isolated indicator, as is true for most 

indices of stress, when used in conjunction with other biological indicators, it may 

provide further insights into the early responses to stress and support data from other 

biological indicators employed (Martinez-Porchas et al., 2009).  

 

5.2.3 Cellular Stress Responses: White Blood Cell Counts 

 

Fish have well developed immune systems, an important characteristic given 

that fish are continuously exposed to pathogens in the aquatic environment (Schrek, 

1990).  The white blood cells, or leukocytes, provide the first line of attack and 

defence. The proportions of each white blood cell subtype are affected by stress. Fish 

blood contains 5 types of white blood cells: neutrophils, lymphocytes, eosinophils, 

monocytes and basophils, with the first two comprising over 80% of white blood 

cells (Figure 5.3). Neutrophils are primary phagocytic white blood cells and 

proliferate in times of infection, inflammation and stress. Lymphocytes, of which 

there are several sub-types (T-cells and B-cells), are involved in several immune 

functions, such as immunoglobin function (Davis et al., 2008).  
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Figure 5.3. Generalised model of white blood cell types and proportions. (Image 

obtained from http://whiteblood-cells.net/types-of-white-blood-cells/ [date accessed 31
st
 

Jan 2012]).  

 

Stress is known to affect the immune system and in some cases can be 

immunoenhancing in the short run. However, chronic stress, through prolonged 

elevated cortisol levels, can be immunosuppressive (Dhabher 2002) by altering the 

composition and proportions of leukocytes (Anderson, 1990; Dhabhar, 2002). 

Assessment of the immune system can be used as a powerful stress indicator 

(Schrek, 1990), particularly using the Neutrophil: Lymphocyte ratio (N: L ratio).  

In times of stress and production of cortisol, the number of neutrophils 

circulating in the blood increases, a response known as Neutrophilia. This is due to 

an influx of neutrophils from the bone marrow into the blood. At the same time, 

there is a decrease in the number of lymphocytes in the blood, a response known as 

Lymphopenia. This is not due to destruction of lymphocyctes, but rather to 

redistribution or ‘trafficking’ of lymphocytes from the blood into other components 

such as the skin, lymph nodes and bone marrow (Davis et al., 2008; Dhabhar, 2002). 

This is thought to occur so that there is an increase in the number of lymphocytes in 

the organs that are likely to be susceptible to an infection. The blood N: L ratio can 

therefore provide a good indication of the levels of stress of an individual compared 

to another individual, with a higher N: L ratio indicating higher stress. Whilst these 

N: L ratios are becoming increasingly recognised as powerful indictors of stress, care 

must be taken in interpretation of this indicator. Unless they are used in conjunction 

http://whiteblood-cells.net/types-of-white-blood-cells/
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with a disease test, the immune-competence or how well an individual may be able 

to fight an infection cannot be confidently predicted (Davis et al., 2008).  

The leukocyte profile (the N: L ratio) is a longer lasting indicator of stress 

than that of cortisol, with the response lasting hours to days rather than minutes to 

hours. If the cortisol concentration is chronically elevated, it can lead to long-term 

elevation of the N: L ratio, such as is seen in humans suffering from Cushing’s 

disease (Davis et al., 2008). 

It is thought that higher environmental temperatures enhance specific 

immune responses, whereas lower temperatures are thought to be 

immunosuppressive (Le Morvan-Rocher et al., 1995). If climate change-induced 

warming of water itself acts as a stressor, one can assume that higher temperatures 

will result in a higher N: L ratio.  A study by McFarlane & Curtis (1989) showed 

that when chickens were exposed to chronically elevated temperature, the cortisol 

levels returned to basal rates after 7 days (suggesting acclimation) but the leukocyte 

response was more enduring. This study demonstrates that leukocyte profiles are 

potentially a more reliable indicator of chronic stress than the cortisol concentration, 

and that higher temperature can be immunosuppressive rather than immuno-

enhancing.  

Leukocyte profiles can therefore provide a wealth of information as to 

whether fish will find warmer waters, representative of climate change, a stressor 

itself or a benefit to aid the immune system. Moreover, leukocyte profiles have also 

been shown to be reliable indicators of future performance and viability, as 

summarised by Davis et al.  (2008), therefore providing potentially telling 

information as to the likely success of certain species currently found in Britain as 

water temperature rises. 

 

5.2.4. Whole Organism Responses 

5.2.4.1 Ventilation Rate 

 

As waters warm, the metabolic rate of a fish increases and so oxygen 

requirements are greater. In order to meet the higher oxygen demands, respiration 
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rates also increases. Warmer water also holds less oxygen, and this under-saturation 

coupled with increased demand leads to the ‘Temperature Oxygen Squeeze’ (Pörtner 

& Knust, 2007). Therefore higher temperatures can act as a stressor by limiting the 

amount of available oxygen.  Ventilation rate can be used as a very sensitive 

indicator of stress in fish; however, it cannot be used to accurately quantify the 

degree of stress (Martinez-Porchas et al., 2009).  In chapter two it was demonstrated 

that even small increases in temperature decreased the aerobic capacity of five 

species of coral reef fish, although there was variation in the degree of change 

between families. That study also showed that fish were unable to increase their 

maximal oxygen uptake, and so all decreases in aerobic scope were caused by 

increases in their resting oxygen consumption. It has been shown that even small 

chronic increases in resting respiration rate can have large effects on growth (Rice, 

1990), due to ‘oxygen dependent size limits’ (Pörtner & Knust, 2007). Oxygen 

limitation models predict that temperature-dependent aerobic limits are experienced 

earlier by larger fish than by smaller fish, and therefore oxygen availability 

determines the size to which fish will grow (Pörtner & Knust, 2007). Consequently, 

reductions in aerobic capacity could result in smaller individuals, which may 

translate into future years of reduced fecundity (Pörtner & Knust, 2007). Although 

freshwater fish in the River Thames are currently not living close to their lethal 

thermal limits, as some coral reef fish are, rises in temperature could have significant 

effects on their aerobic capacity, which will then have implications for the long-term 

survival of the population. Non-invasive techniques, such as quantification of gill 

movements of fish at rest, can provide useful information as to whether a fish is 

experiencing stress which may ultimately affect its growth and development. Whilst 

not as accurate and quantifiable as measuring the amount of oxygen consumed in a 

given time using a respirometer (as was used in the studies reported in chapter two 

and three), counting gill movements does not require any interaction with the 

individuals and is therefore less stressful. Hence, counting gill movements is a more 

suitable technique for this study, given that several other end points will also be 

measured that would be affected by the stress involved in holding fish in a 

respiromter.  
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5.2.4.2 Hepatosomatic Index and Condition Factor 

 

Both hepatosomatic index and condition factor relate to an individual’s 

potential for growth by indirectly assessing the energy status of a fish.  The 

production of cortisol is known to cause mobilisation of glucose stored in the liver, 

to provide energy to resist the stressor. Therefore, in times of chronic stress, the size 

of the liver can decrease.  Liver size is affected by many factors such as: season, life 

stage, nutrition and non-allometric growth (Owen et al., 2010).  The glycogen stores 

in the liver can also become depleted with high metabolic rates (Barton et al., 1987). 

Since fish are pokilothermic, warmer waters, such as may be associated with climate 

change, will cause fish to have a higher metabolic rate. It is widely recorded that 

water temperature and food availability are the two most important factors 

determining growth rate in fish (Pottinger et al., 2011). If food availability is high 

enough to compensate for the increased metabolic rate, then glycogen stores in the 

liver may not be compromised. However, if temperatures are high and food 

availability is low, then the hepatosomatic index may decline, suggesting a stress 

response.  

There have been many reports that cortisol is linked to reduced growth and 

lowered condition factor in fish (Barton et al., 1987; Davis et al., 2008, Robertson et 

al., 1963).  It is thought that cortisol production as a result of a stress response causes 

metabolism to shift to protein catabolism and thereby reduces the growth of the 

individual (Barton et al., 1987). Condition factor and hepatosomatic index can 

provide a complimentary set of data indicating whether or not a stress that might be 

expressed at the biochemical level is severe enough to cause effects at the whole 

organism level and reduce growth. These indicators are extremely important, since 

the growth of an individual is closely linked to its ability to survive the first year of 

life and also the potential to reproduce. 

By acquiring simple measurements of length and body mass, Condition 

Factor (Fulton’s K) can be calculated. 

K = (mass/fork length)
 3
 x100    (Ricker, 1975) 

Condition factor, due mostly to the simplicity of determining it, is one of the 

most widely used indicators of general health in fish. A decline in condition factor is 
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generally ascribed to a decline in environmental conditions and stress, such as high 

stocking densities (Ellis et al., 2002).  

The Hepatosomatic Index (HSI) is based on the principle of the liver weight 

(a glycogen store) as a percentage of the whole body weight:  

HSI= (liver weight/ body weight) x100 

This ratio gives information regarding the amount of energy that is available 

to an individual, with lower glycogen stores in stressed individuals. Since these 

energy stores deplete over a period of time, decreases in HSI can indicate that a 

chronic stress is present. The HSI can vary naturally with season and developmental 

stage and so care must be taken when comparing ratios from different studies or 

within a study over a prolonged period of time (Chellappa et al., 1995).  

Furthermore, gender is also known to affect the HSI, with female medaka having 

higher HSI values than males at all ages (Teh & Hinton, 1998). Therefore it is 

important to know the sex of the individuals in order to make accurate comparisons. 

 

5.2.5. Aims of study 

 

This in-vivo study aims to expose a commonly occurring UK freshwater fish, 

the three-spined stickleback Gasterosteus aculeatus, to realistic temperature 

increases predicted to occur by the end of the century as a consequence of climate 

change. Based on the IPCC predictions, fish will be exposed and acclimated to the 

temperature regimes of 19°C, 21°C and 25°C for a period of 3 weeks, to investigate 

whether there are any stress responses to a prolonged elevated temperature. A suite 

of biological indicators, from biochemical to whole animal, will be measured to 

examine which physiological stress responses are activated and the degree of stress 

each temperature increment causes. These stress responses may well be subtle, but 

they may still provide a wealth of ecologically significant information on the impacts 

of thermal stress on fish in a warming climate. 
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5.3 Preliminary Investigation 1. Accurate control and monitoring 

of experimental water temperature 

 

5.3.1. Introduction 

 

Given the numerous studies on the effects of climate change, many 

experiments now require manipulation of temperature in laboratory testing. 

However, keeping temperature constant over a period of time may not be easy, and is 

open to scrutiny, as many studies involve recording temperature only once a day, and 

hence may fail to record any fluctuations over a 24hour period. Since manipulating 

the temperature forms the basis of these experiments, it is essential that 

methodologies are developed to ensure minimal fluctuations and accurate recording.  

This preliminary study was conducted prior to final confirmation of the 

methodology to be employed, and so the following temperature regimes were 

trialled: 20°C, 22°C and 24°C. These are all within the range to be used in my 

planned in-vivo study investigating the effects of chronic thermal stress on the three-

spined stickleback.  

It is usual for studies to record the temperature during the day. However, in 

order to be able to state that fish have been exposed to a constant temperature, 

temperatures need to be measured over a 24-hour period, to determine whether or not 

there are daily fluctuations. Fluctuations in water temperature within the 

experimental room will also need to be investigated and controlled, as distance from 

the header tanks may affect warming or cooling in pipes and hence influence the 

ability to control water temperatures in the fish tanks. Two new pieces of equipment 

were also tested in this trial. The first was a submersible temperature logger, Tinitag 

(Tinitag TG-4100, Gemini Data Loggers), which was be programmed to measure 

and record temperature every minute over a 3 week period to a reported accuracy of 

0.01°C.The second piece of equipment was the Rena Smart Heater, which is a 

submersible heating element with thermostat that allows temperature to be controlled 

to the 0.5°C level. The efficiency of this heating element was compared to that of the 

normal tank heaters currently used at Brunel University (Visi-Therm Heaters). 
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5.3.2. Aims 

 

The main aims of this preliminary study were to determine the best method of 

maintaining a constant water temperature within a range of no more than ±0.5°C. 

This would ensure that there was no overlap in regimes (for either 20, 22, and 24°C 

or 19, 21 and 25°C regimes). Secondly, this study aimed to determine how best to 

accurately monitor and record water temperature over the course of the study. To 

achieve this, the following steps were carried out:  

1. To investigate whether there are diurnal patterns in temperature of the water 

supplied from the header tank. 

2. To check the accuracy of the Tinitags 

3. To investigate whether there is any effect on water temperature of distance 

from the header tank. 

4. To determine whether individual heaters in tanks and appropriate insulation 

provide greater temperature stability. 

5. To investigate whether dissolved oxygen concentration (DOC) decreases 

with increasing temperature 

 

5.3.3. Methodology  

 

Experimentation was carried out between May-June 2010. Daytime air 

temperature recordings within the laboratory ranged from 21°C to a maximum of 

28°C. 3 x 20L tanks were supplied with water from the same header tank. The flow 

rate for each tank was set to 20L/h; therefore the entire water in the tank was 

replaced every hour. Oxygen was supplied to each tank via an air stone. 
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5.3.4. Results 

 

5.3.4.1 Daily fluctuations in water temperature supplied by the header tank 

 

It is standard procedure in many such temperature manipulation studies that 

temperature is recorded daily but usually only in daylight hours (Nilsson et al., 

2009). However, these recordings will be in day time and therefore will not detect 

what fluctuations, if any, occur throughout a 24hour period. Tinitags can provide 

recordings of temperature continuously over an entire experimental period.  

 

Figure 5.4. Hourly mean temperatures (±SD) taken from Tinitag recordings set to 

record every minute over 5 days. Tank heated solely by header tank set to 18°C. 
 

Figure 5.4 shows that there is a small diel variation in water temperature supplied 

by the header tank. Whether this is as a result of header tank temperature fluctuating 

or whether it is room temperature creating a fluctuation in individual tank 

temperature is not clear. The mean temperature over this 5 day period was 19.9°C. 

Whilst this is extremely close to that desired 20°C, there were fluctuations over this 

time period that follow a daily pattern, with lower temperatures in the day. 

18.5 

19 

19.5 

20 

20.5 

21 

0
0
:0

0
 

0
1
:0

0
 

0
2
:0

0
 

0
3
:0

0
 

0
4
:0

0
 

0
5
:0

0
 

0
6
:0

0
 

0
7
:0

0
 

0
8
:0

0
 

0
9
:0

0
 

1
0
:0

0
 

1
1
:0

0
 

1
2
:0

0
 

1
3
:0

0
 

1
4
:0

0
 

1
5
:0

0
 

1
6
:0

0
 

1
7
:0

0
 

1
8
:0

0
 

1
9
:0

0
 

2
0
:0

0
 

2
1
:0

0
 

2
2
:0

0
 

2
3
:0

0
 

M
ea

n
 H

o
u

rl
y
 T

em
p

er
a
tu

re
 



 

181 

 

Consequently, only recording the temperature in the day can give a false 

understanding of the true temperatures that fish are exposed to over an experimental 

period. 

 

5.3.4.2 Accuracy of the Tinitags 

 

Three tanks were set up, all being supplied by the header tank alone, which 

was set to 18°C and which subsequently achieved a mean water temperature of 20°C 

in the fish tanks (due to the heating effect of the room). Six Tinitags were 

programmed with the date and time and programmed to start recording at exactly the 

same time. Two Tinitags were placed at the bottom of each of the tanks. Tinitags are 

reportedly accurate to the 0.01°C level. The standard deviations for tanks 1-3 were 

0.04, 0.08 and 0.07°C, respectively; therefore a mean accuracy of 0.06°C was 

achieved. This is less accurate than the manufacturer’s guidelines; however this is 

still sufficiently accurate to provide confidence in the data on the water temperatures 

in the tanks. 

 

5.3.4.3 Affect of distance from header tank on individual tank temperatures 

 

One end of the room is close to the door, which is periodically opened 

throughout the day for fish feeding and access to other experiments being carried out 

in the room. This, and the fact that heat may be lost in the pipes on its way to the 

furthest tank, warranted an investigation to see if the tank furthest away from the 

header tank has the poorest control of water temperature. Tank 1 represents the tank 

closest to the header tank and tank 3 represents the tank furthest from the header tank 

(and therefore closest to the door). 
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Figure 5.5. The effect of distance from the header tank on mean water temperatures in 

the fish tanks.  All tanks received water from header tank set to 18°C: 1 being closest to 

the header tank and 3 being furthest away from header tank and closest to the door. 

Tank means (±SD): 1 = 19.8°C ±0.4, 2 = 19.97°C ±0.4, 3= 20.09°C ± 0.41. One-way 

ANOVA f[2, 32.4], p<0.05. Tukey’s post hoc test showed the water temperature in tank 

1 to be different from that in tanks 2 & 3, but tank 2 was not significantly different to 

tank 3.  

 

The difference between the mean water temperature of tank 1 and 3 was 

0.29°C. The air temperature in the room was warmer than that of the water in the 

header tanks, and therefore additional contact in pipes could have warmed the water 

entering tanks 2 and 3 more than those positioned closer to the header tank (i.e. tank 

1). However, the main study will be carried out in the winter months in a 

temperature controlled room, and so air temperature will not be above experimental 

temperatures and will be kept relatively constant. This should prevent air 

temperature having a negative impact on water temperatures in the tanks. 
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5.3.4.4. Effects of insulation and individual heaters in tanks  

 

Fish tanks were insulated by polystyrene tiles that were fixed by tape to 3 

sides of each tank. A plastic sheet, cut to the size of the tank, was placed on top of 

the tank to prevent heat leaving through the surface of the water. The front of the 

tank was left clear for inspection of fish. Fish tanks were supplied with water from 

the header tanks and comparisons made to determine whether insulating the fish 

tanks reduced the fluctuations in the water temperature over a 27 day period. 

 

 

 

Figure 5.6. Effectiveness of polystyrene insulation on fish tank temperature 

fluctuations. Mean temperatures (±SD) for each tank over a period of 27 days, 

recorded by Tinitags. 20°C [header tank set to 18°C]: non-insulated (mean 

19.83°C±0.42), insulated (mean 19.76°C ±0.39); 22°C [header tank set to 20°C]: non-

insulated (mean 22.07°C ±0.35), Insulated (mean 22.78 °C ± 0.31). 

 

 

Insulating the tank in the 20°C and 22°C trial did reduce the standard 

deviation slightly. In the case of the 22°C trial, the mean water temperature in the 

fish tanks was higher than the desired 22°C when insulated, but this can be overcome 
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by reducing the temperature of the water in the header tank. What is important here 

is that the fluctuation in temperature (i.e. the standard deviation) is reduced. Whilst 

the decrease in fluctuation is not significant, the polystyrene tiles provide a second 

function by preventing fish in one tank from seeing the fish in another tank, which 

may be stressful. Therefore, polystyrene tiles around the outside of the tank will be 

included.  

Two different brands of heating elements were trialled. The Reno Heater is a 

thermostatically-controlled heating element that claims to control temperature to 

within 0.5°C. The Visi-Therm heaters were also trialled because these are the 

standard heating element used at Brunel University.  

 

Figure 5.7 Comparison of header tank, Reno and Visi-therm heaters on tank 

temperature. Mean temperatures and SD for each tank over a period of 27days, 

recorded by Tinitags. Header tank water set to 24°C: Header tank only (mean 24.29 °C 

+/-0.26), Reno Heater (mean 24.48 °C +/- 0.13), Visi-Therm Heater (mean 24.93°C +/- 

0.09). 

 

A Visi-Therm heater was better than a Reno Heater at reducing the 

fluctuations in temperature, and both greatly improved temperature stability when 

compared to water from the header tank that received no further temperature control. 

Whether relying solely on header tank temperatures, or using individual heaters or 
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insulation, there was no overlap in temperature regimes, providing strong confidence 

that fish will be able to be kept at distinctly different temperature conditions 

throughout the experiment. However, by using individual heaters and insulating the 

tanks, fluctuations in temperature in each tank can be further minimised. 

 

5.3.4.5. Effect of increasing water temperature on the dissolved oxygen concentration 

  

The dissolved oxygen concentration (mg/L) was recorded hourly 

between 9am-5pm for each temperature regime for 3 days. Tanks were not 

supplied with an air stone for this trial. 

 

 

Figure 5.8. The effect of water temperature on the dissolved oxygen concentration 

(mg/L) in tanks containing water held at 20°C, 22°C and 24°C over a 3-day period. 

Higher temperatures result in lower oxygen availability (One-way ANOVA, p<0.01 

level) 
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It is usual for oxygen concentration in water to either be measured in mg/L 

(Brian et al., 2009; Crampton et al., 2003; Moran et al., 2010) or as a percentage of 

oxygen saturation in air (DO saturation %) (Nilsson et al., 2004 & 2009; Pörtner et 

al., 2001). If water had a DO saturation of 100%, this is the maximal amount of 

oxygen that can be dissolved in water at a given water temperature, pressure and 

salinity (Crampton et al., 2003). Based on this study, the mean DO saturation % for 

each temperature regime was 95.8 ±0.72% (20°C), 95.4± 0.47% (22°C) and 95.2 

±0.68% (24°C). At higher temperatures, the percentage of oxygen saturation can still 

be fairly high (as in this experiment); however, the actual amount of oxygen present 

in water, i.e. the concentration in mg/L can be lower (as shown in Figure 5.8). 

Therefore, it is often more useful to measure the amount of oxygen present in water 

in mg/L (Crampton et al., 2003). The amount of available oxygen in the water did 

significantly decline with increasing water temperature. This result was expected, 

since it is known that warmer water holds less oxygen. However, even at 24°C, the 

dissolved oxygen concentration was still above the concentration considered low for 

most fish species, and therefore should not be a limiting factor.  

It has been considered that the partial pressure of oxygen (PO2) in water also 

has an effect on the amount of oxygen that is available (Verberk et al., 2011). Partial 

pressure refers to pressure exerted by an individual gas, such as oxygen, in a mixture 

of gases and is affected by the pressure and the temperature. Verbeck et al. (2011) 

state that it is not a case that either PO2 or mg/L is more important than the other, but 

that both play a role, along with the rate of diffusion of the gas, in the bioavailability 

of oxygen in water. It may be that if the oxygen concentrations in Figure 5.8 were 

converted to PO2, the apparent difference in oxygen levels might be slightly less 

significant. However, not all of the information is available (since pressure of the 

water or air was not accurately measured) to confidently convert the concentration of 

O2 to PO2.  

It is generally considered that an oxygen concentration in water above 7mg/L 

is more than sufficient for healthy fish development (Crampton et al., 2003). In fact, 

hypoxic conditions as low as 2.8mg/L have been shown to have no effect on fish, 

such as the fathead minnows (Brian et al., 2009). G.aculeatus is a hardy species and 

can cope with dissolved oxygen concentrations as low as 2.0mg/L (Moran et al., 
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2010), and therefore it is extremely unlikely that a concentration of 8mg/L will be 

stressful for G. aculeatus.  

Despite this, it is important to keep all variables other than temperature 

constant, and so tanks will be supplied with an oxygen stone whose supply will be 

adjusted accordingly to ensure that DO concentrations do not fall below 7mg/L in 

the tanks. Dissolved oxygen concentrations will be kept below 9.0mg/L, however, as 

above this level water can become so saturated in oxygen. Water that is 

supersaturated in oxygen can cause ‘Gas Bubble Disease’ in fish (air pockets 

forming under the skin of fish, particularly the face, tail and eyes) (Bouck, 1980), 

which can be lethal in extreme cases.  

 

5.3.5. Conclusions and suggested experimental set-up 

 

A final trial was carried out using a smaller tank size (10L) immediately prior 

to conducting the experiment, due to a limited number of available 20L tanks. 2x 

10L tanks were set up with insulation as described above and the header tank was set 

to 18°C. The mean water temperature achieved was 19.77°C ±0.07 (SD) compared 

to 19.76°C ±0.39 (SD) previously in 20L tanks. Therefore, the smaller volume tank 

had reduced fluctuation in temperature and was deemed to be suitable for the 

experiment.  

Based upon the results of these trials, the following steps were used to ensure 

accurate control and monitoring of water temperature:  

 Control 

o Volume of tanks: 10L 

o Individual Visi-Therm heaters were placed in all tanks to raise water 

temperatures to the desired values. 

o One layer of polystyrene tiles was added to the sides and backs of 

each tank and a plastic lid placed onto each tank. 

o Dissolved oxygen concentrations were kept constant and uniform 

across tanks by use of an air stone in each tank. 
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o A temperature controlled room was used to ensure that air 

temperature does not fluctuate and affect the water temperatures in 

the fish tanks. 

 

 Monitoring 

o TinyTags were placed in each tank to record water temperature every 

30 minutes over the entire experimental period, in order to provide an 

accurate account of the water temperatures in tanks. Data was 

downloaded at the end of each week of experiment for constant 

monitoring. 

o Temperature readings were complemented with twice daily 

temperature and dissolved oxygen concentration readings. 

o A thermometer strip was placed at the front of each tank to allow 

quick assessment of the water temperature. 
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5.4. Preliminary Investigation 2. Cortisol Validation Study 

 

5.4.1 Introduction 

  

Cortisol is passively released via the gills into the water at concentrations that 

have been shown to be detectable by techniques such as Enzyme-Linked 

Immunosorbent Assay (ELISA) and Radioimmuno Assays (RIA’s). The underlying 

principle of this approach is that the release rate of cortisol into the water is directly 

related to that in the plasma. Measuring cortisol in the water rather than plasma has 

many advantages. The main benefit is that it is non-invasive and so the concentration 

measured reflects stress caused by the thermal conditions and not due to handling 

stress, as is the case when obtaining plasma samples. Also, it allows repeated cortisol 

measurements over a period of time. This allows investigations into the effect of 

chronic stress on cortisol concentrations, whereas plasma concentrations can only 

give you a value for that moment in time. The principle of measuring cortisol in the 

water rather than plasma is that the concentrations should be roughly equivalent. 

However, the release rate into water will never be exactly the same as the plasma 

concentrations.  Factors such as gill surface area, gill permeability, steroid 

lipophilicity and conversion of free steroids from one steroid to another (Scott et al., 

2008) can all alter the concentrations of cortisol detected in water samples as 

opposed to being detected in the plasma. 

 Prior to carrying out a study on the effects of temperature increases on 

cortisol concentrations, a preliminary investigation was carried out to establish 

whether cortisol can be detected and measured in water samples. Similar validation 

studies have previously been carried out by Scott et al. (2008) for the three-spined 

stickleback, but it is prudent to re-apply these validation steps for each experiment.   
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5.4.2. Aims 

1. To establish the volume of water needed for extraction. 

2. To establish extraction efficiency using solid phase extraction (SPE) 

cartridges (Sep-Pak ® Plus C18, Waters Ltd, UK).  

3. To quantify background cortisol concentrations in header tank water. 

4. To ascertain a suitable reconstitution solvent (ELISA buffer or ethanol). 

5. To compare basal and stressed cortisol rates. 

6. To establish whether water samples will need to be diluted prior to ELISA. 

 

5.4.3.1 Volume of water needed for extraction 

 

Within the literature, either 1litre (Ellis et al., 2007) or 500ml (Ruane & 

Koman, 2003) of water is typically collected for extraction prior to an ELISA or 

RIA. Here, the concentrations of cortisol in both a 1L and 500ml sample of water 

from the same tank were compared to determine whether cortisol was detectable at 

the same concentration in both. The smaller the volume of water that needs to be 

collected the more advantageous, due to the time taken in extraction.  

1L and 500ml of water was collected from the outflow pipe of a tank 

containing unstressed fish (n=10). 5ml and 2.5ml of methanol were added, 

respectively, and samples placed in a fridge for an hour to prevent biological 

degradation.  

Cortisol was detectable in both the 1L sample (0.17ng) and in 500mL sample 

(0.08ng). Given that the concentration in both samples was the same (0.08ng/500ml 

is equivalent to 0.16ng/L), 500ml is deemed an adequate volume of water to collect 

and process.  

   

5.4.3.2 Extraction efficiency of C18 cartridges 

 

Samples of water were spiked with a low and high concentration of cortisol 

that could be expected in unstressed and stressed fish, to test the extraction efficiency 

of the cartridges. Non-reproducing Gasterosteus aculeatus have a basal cortisol 
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release rate of approximately 0.2ng/g/h, and with most release rates falling between 

0.2 and 1.0ng/g/h (Sebire et al., 2007). It has also been reported that acutely stressed 

individuals (handling and confinement stress) of the same species having cortisol 

release rates of 3.5ng/g/h (Scott & Ellis. 2007).  

With a mean fish mass per tank of 18g, tank capacity of 10L and a flow rate 

of 10L/h (therefore 1L and hour), this equates to: 

LOW SPIKE= 0.2 x 18 /10= 0.36ng of cortisol in 1 litre of water 

HIGH SPIKE= 3.5 x 18/10= 6.3ng of cortisol in 1 litre of water 

 

A 30ng/ml stock solution of cortisol in methanol was made. For the Low 

Spike, 10µl (0.3ng/L) was added to 1litre of header tank water, and 200µl (6ng/L) 

was added to 1Litre of header tank water for the High Spike, representing the 

expected basal and stressed cortisol release rates. A total of 8 samples for each spike 

were tested. 

The concentration of cortisol detected in the high spike was 4.9±1.39 (SD) 

ng/l (1:20 dilution) and the concentration for the low spike was 0.25±0.007 (SD) ng/l 

(1:10 dilution). Therefore, based on the high spike concentration and low spike 

concentration, the extraction efficiency of the C18 cartridges was 77% and 70%, 

respectively. However, the readings for the high spike fell closer to the IC50 (50% 

B/Bo) and therefore an extraction efficiency of 77% will be used in future 

calculations.   

 

5.4.3.3 Background concentrations of cortisol in header tank water 

 

Eight x 1L samples of water were collected directly from the header tank 

(which supplies the fish tanks with water) was extracted and analysed by ELISA. A 

1L purite water sample was also analysed by the same process. The results showed 

that the concentration of cortisol in the purite water sample was too low to detect. 

However, there was a detectable amount of cortisol in the header tank water, at a 

concentration of 0.29±0.14 (SD) ng/L. Therefore all tanks will be receiving a low 
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concentration of cortisol and this amount must be deducted from the final cortisol 

concentration recorded from the outflow pipes of the tanks containing fish.  

 

5.4.3.4 Reconstitution using solvent 

 

The high spike which was reconstituted in ethanol had an extraction 

efficiency of 36%, compared to 77% when reconstituted in ELISA buffer when 

using C18 cartridges (Sep- Pak). Given the higher extraction efficiency with buffer, it 

was therefore used thereafter in preference to ethanol, since solvents like ethanol can 

interfere with the ELISA technique and potentially affect readings. In accordance 

with the ELISA Kit manufacturer’s guidelines (Cayman Chemical), the buffer 

provided should be used to reconstitute cortisol from plasma, urine and fecal 

samples. The justification for trialling ethanol was that cortisol has a logP (octanol-

water) of 1.43. The logP value acts as an indicator of the compound’s lipophilicity 

and solubility, and a value of 1.43 for cortisol could indicate that it is somewhat 

hydrophobic and so needs to be dissolved in an organic solvent. However, given that 

cortisol was successfully reconstituted in buffer and subsequently detected by 

ELISA, and that this procedure follows the manufacturers guidelines, all samples 

were reconstituted in ELISA buffer prior to analysis. 

 

5.4.3.5 Basal and stressed cortisol release rates 

 

The basal or unstressed cortisol concentrations were determined from a 

500ml water sample from a tank of fish which were undisturbed. Two water samples 

from stressed fish were obtained by placing 3 fish into each of two 500ml beakers of 

water for 3 minutes. The process of netting and confinement in a small volume of 

water was considered to be adequately stressful for the purpose of this study. 

The cortisol release rates were calculated as follows: 

Release rate (ng/g/h) = (C x F) / M          (Ellis et al., 2007) 
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Where C= Concentration of cortisol (ng/l), F= Flow rate (L/h) and M= total mass of 

fish in tank. The resting, or unstressed, cortisol concentration (0.17ng/ml) therefore 

equates to a release of 0.12ng/g/h (corrected for 77% extraction efficiency and based 

on a flow rate of 8.85L/h and mass in tank of 17.1g). This release rate is similar to 

that recorded by Sebire et al. (2007) of 0.2ng/g/h for unstressed fish.  

The concentration of cortisol in the water of fish stressed for 3 minutes was 

0.3ng/ml and 0.56ng/ml (corrected for 77% extraction efficiency). This equates to 

release rates 3.22 ng/g/h and 3.8ng/g/h (based on 500ml water sample, with a total 

mass of 3.37g [n=3] and 5.86g [n=3]). These acutely stressed fish therefore released 

cortisol at a rate comparable to that reported by Scott and Ellis (2007) of 3.5ng/g/h.  

In previous validation studies for the three-spined stickleback, it has been found that 

there is strong positive curvilinear correlation between water and plasma 

concentrations of cortisol (rs=0.82, n=24, p<0.001) (Sebire et al., 2007). These 

authors also reported that a cortisol release rate of 3ng/g/h approximately equates to 

plasma concentrations of 75ng/ml. 

Table. 5.2. Comparison of water cortisol concentrations and release rates for 

unstressed and stressed fish. 

 

Samples Actual Concentration 

(ng/l) 

Release Rate 

(ng/g/h) 

Basal (Unstressed) 0.17 0.12 

3 minutes stressed (3.37g) 0.3 3.22 

3 minutes stressed (5.86g) 0.56 3.8 

 

Basal rates of cortisol release from sticklebacks used in this study are slightly 

lower than the range that is cited in the literature for G.aculeatus of 0.2-0.3ng/g/h 

(Sebire et al., 2007). Some mature sticklebacks have been recorded to release higher 

concentrations of cortisol at around 0.7ng/g/h, but no differences have been seen 

between the sexes (Sebire et al., 2007). The fish in the tanks were mixed sex but 

were not yet reproducing, and there was no evidence of nest building. Therefore it 

can be assumed that sexual maturity had not yet been reached, further supporting the 

fact that the basal rates obtained from the water samples were realistic, if on the low 



 

194 

 

side of that cited in literature. In acutely stressed fish, a 25-fold increase in cortisol 

levels in the water has been reported (Ellis et al., 2007). In this study, there was a 27-

fold and a 32-fold increase between the basal concentration and the concentrations in 

the water samples from stressed fish. However, it must be noted that different fish 

were used for each sample and so the differences in release rate are a guideline only. 

It should also be noted that although these rates are similar to those cited by Ellis et 

al. (2007), it is anticipated that the release rates from the main experiment will be 

less as the stress will be chronic and not acute.  

 

5.4.3.6 Final dilutions of water samples 

 

The detection range of the cortisol ELISA was between 0.016 and 1.6ng/ml. 

Therefore, it was necessary in some cases to dilute samples so that the concentrations 

fell within the detection range. Where the expected concentration already falls in this 

range, no dilution is necessary. However, ideally any readings should fall between 

20-80% on the standard curve, with no more than a 20% disparity between the 

replicates, to provide accurate concentrations. 

The ELISA could detect the concentration of cortisol in the water from either 

diluted samples (1:6, 1:10) or non-diluted samples. However, in some cases a 1:20 

dilution was too low to provide reliable readings. Therefore, each water sample was 

assayed both with no dilution and a 1:6 dilution. 

 

5.4.4 Summary 

 

 500ml of water will be collected from the fish tanks for extraction, which 

should be enough to detect both basal and stressed release rates of cortisol. 

 All water samples will be assayed at no dilution and a 1:6 dilution.  

 Blank water samples will be taken on each sampling day and recorded blank 

concentrations will be subtracted from final cortisol concentrations for each 

fish tank.  
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5.5. Preliminary Investigation 3.  Flow Cytometry for Leukocyte 

Profiles 

 

5.5.1. Introduction to Flow Cytometry 

 

Flow cytometry for cell counting is becoming increasingly popular. The 

traditional method of using microscopes to count cells is both extremely labour 

intensive and subjective. A flow cytometer can accurately count up to 50,000 cells in 

3 minutes, allowing quick processing of a large number of samples, which is 

essential when dealing with fresh blood.  

Flow cytometry works on the principles of Forward and Side Scatter using a 

laser beam. The Side Scatter provides information about the granularity of the cells, 

with higher side scatter (SSC
high

) indicating greater granularity of the cell. The 

Forward Scatter informs you of the relative size of the cells, with a higher forward 

scatter (FSC
high

) indicating a larger cell. Therefore based on what is known in the 

literature regarding the sizes and granularity of blood components, it is possible to 

determine from FSC/SSC profiles different blood constituents. ‘Gates’ are set up in 

defined regions to represent each cell type, e.g. a gate for lymphocytes with the 

software stating the percentage of cells represented in each gate. By processing 

blood from fish in each temperature regime, it can be investigated whether there is 

an increase or decrease in the percentage of cells in any particular gate. This will be 

used as the basis for the N: L ratio, since neutrophils are Granular (FSC/ SSC
high

) 

and lymphocytes are smaller and non-granular (FSC/SSC
low

) (Scharsack et al., 

2004).  

In order to determine the parameters of the gates, a set of preliminary trials 

was carried out to determine the best methodology of processing blood and also 

where gate parameters should be placed.  
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5.5.2. Preparation of Blood 

5.5.2.1 Whole Blood 

 

Blood was collected from a three-spined stickleback after a lethal overdose in 

buffered MS222. 900µl of HBSS (Hanks Balanced Salt Solution) was added to the 

whole blood to prevent degeneration of cells.  A stock solution of 3,3’-

dihexyloxacarbocyanine iodide (DiOC6) dye (Sigma) was prepared in ethanol at 

500µg/ml and a 10x diluted stock solution in HBSS was prepared just prior to 

staining. 50µl of the dye solution was added to each blood sample10 minutes prior to 

flow cytometry, as the dye can only be exposed to light for a short period due to its 

photodynamic toxicity. DiOC6 is a fluorescent dye which binds to membranes, 

mitochondria and endoplasmic reticulum. It has been shown in studies to be an 

effective dye for blood cells when using flow cytometry (Inoue et al., 2002). A 

minimum of 20,000 cells were acquired in a linear mode by the flow cytometer. 

 

 

Figure 5.9. Display of a FS/SS profile from a flow cytometer for a whole blood sample. 

Standard  ‘Gates’ J,D,H and O refer to different components of blood with [J] and [D] 

representing erythrocytes, [H] leucocytes and [O] presumed clumped cells.  
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Table 5.3. Statistical analysis of the results produced by the flow cytometer for each 

FSC/SSC profile. The percentage of cells detected in each gate is provided (% gated). 

 

When using whole blood samples, it is not possible to determine the different 

subsets of leukocytes. Gate O indicated that cells in this gate are very large (Figure 

5.9). It is assumed that cells in this gate are multiple cells that have clumped 

together, and so data from this gate will be removed in the final analysis. Gates D 

and J accounted for a total of 95.72% of the cells (Table 5.3), which is assumed to 

largely represent the erythrocytes along with white blood cells. Erythrocytes usually 

account for anywhere up to 50 % of all cells in the blood. Within gates D & J there 

may well have also been non-granulocytes (lymphocytes) that could not be 

distinguished from other cell types also present. Given that erythrocytes account for 

such a large percentage of blood cells and that gating prevents distinction of 

leukocyte sub-populations, the next step was to remove erythrocytes from whole 

blood and isolate the white blood cells. 

 

5.5.2.2 Isolation of White blood cells 

 

Blood was collected from the caudal peduncle using a heparised capillary 

tube and decanted into an epindorf tube (0.5µl). Blood samples were centrifuged for 

4 minutes at 12,200rpm (8050x g). The top layer of plasma was pipetted off and 

200µl of HBSS added. This was carefully overlaid onto 200µl of Leukocyte 
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Separation Medium (LSM) in a separate microcentrifuge tube. Without disturbing 

the mixture, it was centrifuged for 30minutes at 750x g. This caused the erythrocytes 

and basophils to form a pellet at the bottom of the tube, leaving the neutrophils, 

lymphocytes, thrombocytes and monocytes at the saline- LSM interface (known as a 

buffy coat). 100µl of the buffy coat was collected by Pasteur pipette and 

reconstituted in 850µl of HBSS. 50µl of prepared DiOC6 dye stock solution was 

added 10minutes prior to flow cytometry. 

 

5.5.3.3. Gate Setting 

 

 Figure 5.10 shows a diagrammatic representation of where it was expected 

that each cell constituent would fall and therefore where gates can be placed 

(Scharsack et al., 2004). 

 

 

 

 

 

 

 

 

 

 

Figure 5.10. Diagrammatic representation of a typical flow cytometry result of fish 

blood when red blood cells have been removed. It shows the positions of the 

agranulocytes (comprised of M= monocytes, M.lym=medium lymphocytes and S.lym= 

small lymphocytes) and granulocytes (B= basophils, E= esinophils and N= neutrophils). 
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Once red blood cells have been removed, it was possible to see that the 

remaining cells broadly divided into two groups, agranulocytes (lymphocytes and 

monocytes) and granulocytes (Esoinophils, neutrophils and basophils). However, 

basophils were removed in the LSM separation procedure. Two gates were used, one 

representing the agranulocytes (FSC/SSC
low

) and the other representing the 

granulocytes (FSC/SSC
high

). Given that the percentage contribution of monocytes to 

agranulocytes is small, as is the contribution of esoinophils to granulocytes, the 

percentages in each gate were used to represent the ratio of neutrophils to 

lymphocytes (i.e. the N: L ratio). 

 

 

Figure 5.11. Profile of flow cytometry of isolated white blood cells from an unstressed 

fish. Gate A refers to agranulocytes and gate B to granulocytes. 
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Table 5.4. Statistical analysis from a flow cytometer for the blood sample used in the 

figure above showing 18.03% of cells were in gate A (agranulocytes) and 63% of cells 

in gate B (granulocytes). 

 

 

Once the erythrocytes have been removed, it was clearer to see an even 

spread of cells (Figure 5.11) with 18% in gate A and 63% in gate B (Table 5.4). 

When these gating parameters for gate A and B were subsequently trialled on the 

blood from three additional unstressed fish a mean percentage of 21 ±  3% cells fell 

in gate A (representing agraunlocytes) and 62± 2%  in gate B (representing 

graunulocytes). Therefore these gate parameters will be used on isolated white blood 

cells (as described in 5.8.2.2) to determine the granulocyte: agranulocyte ratio 

(effectively the N: L ratio). 

 

 

 

 

 

 

 

 



 

201 

 

5.6. Methodology 

 

5.6.1 Fish Collection and Husbandry 

 

Fish were obtained from CEFAS laboratories (Weymouth, UK), where they 

were bred to be free from parasites and disease. Fish were held in large stock tanks 

in ambient temperatures (mean 14°C ± 2°C) for 4 weeks (prior to being moved into 

experimental tanks). Fish were in mixed sex groups (sex unknown) but were 

prevented from breeding by using a winter photoperiod of 8L: 16D (light 8am-4pm, 

with a 15minute dawn and dusk phase) and by the absence of any nesting material in 

the tanks. The use of a winter photoperiod to prevent breeding has been well 

documented (Maunder et al., 2007; Sebire et al., 2007). Fish were fed 4 times daily 

on frozen blood worm. G.aculeatus has a relatively high thermal tolerance for a 

British fish (critical temperature 28°C) and therefore the temperatures used in this 

study (19°C, 21°C and 25°C) will not pose a lethal threat to the fish (Moran et al., 

2010) 

 

5.6.2 Potential experimental stresses and mechanisms to minimize stress 

 

1) Tank Confinement: Fish moved into experimental tanks and left to acclimate 

for 3 weeks to their tanks and co-habitants prior to sampling. This time 

period, based on previous observation of stickleback behaviour, is thought to 

be sufficient time for the fish to settle into a new environment. 

2) Competition for food: Fish fed 4 times daily until satiation and therefore food 

is not thought to be a limiting factor.  

3) Competition for mates/territorial aggression: Fish were prevented from 

entering breeding behaviour by a winter photoperiod and lack of nesting 

material. Therefore, fish should not initiate breeding or be competing for 

mates.  

4) Social Hierarchy: Sex of fish not known at beginning of experiment, 

therefore assumed that the groups are of mixed sex. Hierarchies usually 

established in times of courtship and mating and therefore not considered to 
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be significant in this study, as breeding should be prevented by use of a 

winter photoperiod. 

5) Predators: No predators present 

6) Handling: Handling kept to an absolute minimum. Fish handled at the very 

beginning of the experiment, in order to be weighed. All endpoints were non-

invasive.  

7) Disturbance from daily temperature and DO readings: Readings of tank 

temperature and DO were made twice daily, usually to coincide with feeding, 

in order to minimise entry into the room. Noise was kept to a minimum at all 

times. 

 

5.6.3 Temperature Control and Regulation 

 

The experiment was carried out between January and April 2011 in a 

temperature-controlled room with air temperature set to 21°C. Using the current-day 

summer mean river temperature and the IPCC predictions B1 and A1F1 for 

temperature increases, the following temperature regimes were selected:  

 19°C (±0.5°C) (representing typical current summertime water temperatures)  

 21°C (±0.5°C) (representing current average plus B1 of +2°C) 

 25°C (±0.5°C) (representing A1F1 of +6°C) 

 

Ninety fish in total were used in the study. Sample size was estimated using 

power analysis calculations based on the size of the effect expected, the variability in 

sampling and a desired statistical significance (p<0.05). Information gained from 

pilot studies and literature where used to inform the size of the effect expected and 

variability in samples from studies in similar species. It was established that 30 fish 

would be needed per temperature treatment in order for statistical significance to be 

seen. Ten fish were wet weighed (mean weight 1.8g) and placed in each of the 9 

x10L tanks (3 at each temperature regime) (18
th
 January 2011). Fish were left to 

acclimate to their tanks for 3 weeks at ambient water temperature (16°C). After this, 

the header tank water was heated to 17°C, which subsequently heated the tanks to 

19°C. Fish were maintained at the control water temperature of 19°C for a period of 
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4 weeks, as this length of time has been cited as a suitable acclimation period for 

chronic studies (Martinez-Porchas et al., 2009).  Temperatures were subsequently 

gradually increased in tanks by individual VisiTherm Heaters over a period of 23 

days (for those tanks at 25°C) and 18 days (for those tanks at 21°C), until target 

temperatures were reached. This strategy was employed to avoid an acute shock due 

to any rapid temperature increases. Visi-therm heaters were placed in the control 

tanks (tanks that remained at 19°C) but not turned as a stable 19°C was achieved by 

header tank alone, but the presence of the heaters ensured uniformity in tanks. Flow 

rate was set to 10L/h, allowing complete renewal of water every hour. Water in each 

tank was aerated with an air stone so that the oxygen concentration was maintained 

between 8.0-9.0mg/l. Temperature was controlled and monitored as discussed in 

section 5.3.5. 
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Figure 5.12. Diagrammatic representation of the experimental set-up. There were three 

tanks for each water temperature: 19°C ±0.5°C; 21°C ±0.5°C; 25°C ±0.5°C. The 

header tank feeding all tanks was set to 17°C. Tanks at 21°C and 25°C were also 

heated with individual Visi-Therm heaters with water temperature recorded 

continuously by Tinitags. Tanks were insulated with polystyrene tiles on sides and 

back, and a plastic lid placed on top of each. 
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Figure 5.13. Photograph of the actual experimental set-up, showing the position of the 

header tank in relation to the 9 individual fish tanks.   
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Figure 5.14. Photograph of the inside of a tank, showing the Visi-therm heater, 

thermometer, Tinitag and 10 three-spined sticklebacks. 
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5.6.4 Sampling Methodology 

 

5.6.4.1 Ventilation Rate 

 

Breathing rate was estimated by counting the opercula movements covering 

the gills, with each opercula movement representing a breath. For each observation, 

the time taken for 30 opercula movements was determined. With fish remaining in 

their experimental tanks, they were acclimated to the presence of an observer for 10 

minutes prior to the official observation period. Ten minutes was deemed to be 

sufficient time for fish to become acclimated to my presence. This was determined in 

a pilot study where frozen blood worm was added to the front of the tank and I timed 

how long it took for fish to feed in my presence. Within 9 minutes, all fish in the 

tank were feeding and had resumed ‘normal’ behaviour. Whilst efforts were made to 

ensure each fish in the tank was observed, by taking note of particular markings or 

defining features of individuals, it cannot be guaranteed that all individuals were 

observed. In order to increase the chances of random sampling, thirty observations 

were made for each tank both prior to the temperature increase and at the end of the 

experiment. Thus a total of 90 observations for each temperature treatment were 

recorded at the start and the end. Fish were observed each time between 8-9am, prior 

to their morning feed, as there can be increased breathing post-feeding, due to 

digestion (Bry, 1982). Ventilation Rate was calculated as: 

Ventilation Rate = (30 gill movements/ time taken) x 60 

 

5.6.4.2 Termination of Experiment 

 

Fish were sacrificed by lethal overdose in MS222 and destruction of the 

brain. Each fish was weighed (nearest 0.01g) and its length measured (nearest 

0.1mm) using vernier callipers. The caudal peduncle was severed and blood 

collected using a heparised capillary tube. Blood was decanted into microcentrifuge 

tubes kept on ice. Whole blood was centrifuged for 4minutes at 1400rpm (126 g). 

Plasma was collected and stored at -20°C for determination of glucose concentration. 

The remaining blood cells were processed for blood cell counts by flow cytometry, 
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as described in section 5.5.2.2. The body cavity was opened and the liver removed 

and weighed, for calculation of the Hepatosomatic Index.  

 

 

5.6.4.3 Hepatosomatic Index and Condition Factor 

 

 The length of each fish was measured with venier callipers to the nearest 

0.1mm, and wet weighed to the nearest 0.01g. The liver was excised from each fish 

and weighed to the nearest 0.01g.  Fulton’s condition factor (K) and Hepatosomatic 

Index (HSI) were calculated as described in 5.2.4.2.   

 

5.6.4.4 Water Cortisol Concentration 

 

500mL of water was collected from the outflow pipes between 8-9am on 

sampling days. This time was prior to the morning feed, to prevent post-feeding 

cortisol spikes (Sebire et al., 2007). Samples were collected: once at 19°C before 

rising temperatures, +1hr after experimental temperatures were achieved, +1 day, +2 

days, +5 days, then once every week for the duration of exposure.  2.5ml of 

methanol was added to the sample and each was then placed in a freezer for 45mins 

to prevent biological degradation.  The water sample was pumped through a Solid 

Phase Extraction (SPE) cartridge (C18, Cayman Chemicals). Cortisol is then eluted 

from the SPE Cartridge with 5ml of methanol, which was then evaporated under a 

steady stream of nitrogen. The remaining residue was then re-constituted in ELISA 

buffer and stored frozen at -20°C until subsequent analysis using an ELISA. Water 

cortisol concentrations are calculated as described in 5.4.3.5.  

 

5.6.4.5 Blood Glucose Concentration 

 

Blood samples were collected from each individual by severing the caudal 

peduncle. Blood samples were centrifuged at 14 000g for 10 minutes at 4°C. The 

plasma was pipette off without disturbing the white buffy layer. Due to the small 

volumes of plasma collected, samples were pooled, with plasma from three 
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individuals resulting in one sample. Therefore plasma was not utilised for glucose 

analysis for the remaining individual in each tank due to insufficient volume for 

analysis. This provided three samples per tank and therefore nine samples per 

temperature treatment.  Plasma samples were then stored in the freezer at -80°C until 

later analysis. 15µl of plasma per sample was used for analysis, which allowed for 

three repeat readings (at 5µl each). Analysis was carried out using a Glucose Assay 

Kit (Cayman Chemicals).  

 

5.6.4.6. Neutrophil: Lymphocyte Ratio 

 

Isolated white blood cells were prepared as described in section 5.5.2.2 and 

analysed using a flow cytometer; 20,000 cells were analysed. Two previously set 

gates (A & B) calculated the relative percentages of agranulocytes and granulocytes 

(N: L ratio). 

 

5.6.4.7. Statistical Analysis 

 

 Statistical analysis was conducted using SPSS v15.  For non-normally 

distributed data (as for ventilation rates), non-parametric testing was conducted using 

Mann-Whitney U-test and Kruskal-Wallis. Intra-thermal regime tank differences 

were analysed by conducting a one-way ANOVA for each biological endpoint to 

determine whether there were differences between tanks for each temperature 

treatment. Inter-thermal regime differences were subsequently analysed by one-way 

ANOVA followed by a Tukey’s post-hoc test to determine the significance of 

differences between temperature regimes. For hepatosomatic index and condition 

factor, a two-way ANOVA was used to factor in gender as well as temperature 

effects. For hepatosomatic index and condition factor, an LSD pair-wise comparison 

was used to compare the means within factors instead of Bonferroni as there were 

less than four levels in the factors (three for temperature and 2 for gender), and this 

type of post-hoc test is better at reducing chances of making a Type 1 Error in these 

cases. The Sum of Squares Type 111 approach was used as it is an un-weighted 
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means method which was needed in order to deal with the unequal sample sizes, as 

there were different numbers of male and female fish in each temperature regime.   
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5.7. Results 

 

5.7.1 Temperature 

 

 After an initial three week settling in period, tanks were slowly raised from 

ambient temperature of 16°C to the control temperature of 19°C over a period of two 

weeks (day 1 to 13). All tanks were then maintained at a temperature of 19°C for a 

period of four weeks (day 13 to 40). The temperatures were then raised by individual 

Visi-therm heaters (except in the three control tanks that remained at 19°C).  

Temperatures were increased in three tanks to 21°C over a period of 18 days and 

another three tanks to 25°C over a period of 23 days (day 41 to 64). This slow 

increase in temperature was used to prevent acute thermal stresses to the fish and 

allow them to gradually acclimate to their new thermal environment.  

 

Figure 5.15. Mean water temperature for each experimental regime (n=3) over the 

entire experimental period. Raising water temperature from acclimation of fish to 

tanks at 19°C occurred between days 13 and 40, raising temperature occurred between 

days 41 and 64, and exposure to the desired raised temperatures occurred between 

days 65 and 85. 
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The temperatures over the 3 weeks (day 65 to 85) for each regime were 

18.7°C±0.23 (target 19°C), 21.1°C± 0.26 (target 21°C) and 24.7°C± 0.3 (target 

25°C).  There was no overlap in temperature regimes and the fluctuations were 

smaller than reported in similar studies. 

 

5.7.2 Dissolved Oxygen Concentration 

 

 Dissolved oxygen concentrations were recorded twice daily throughout the 

experimental period.  

 

Figure 5.16. Concentrations of dissolved oxygen in the fish tanks for each temperature 

regime, both prior to increasing the temperature (i.e. all tanks at 19°C) and after 

raising temperatures to 21°C (n= 3 tanks) and 25°C (n=3 tanks). There was no 

significant difference in DO prior to raising the temperature. There were significant 

decreases in DO after water temperature had been raised for both 21°C and 25°C (one-

way ANOVA, F [2,11], p<0.05). 

 

At the start of the experiment, when all tanks were set to 19°C, there were no 

differences among the tanks. Once temperatures had been raised in 6 of the tanks, the 

oxygen concentration fell as the water temperature increased. Therefore, the three 
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tanks at 25°C had a lower dissolved oxygen concentration than the tanks at 21°C and 

19°C. This is to be expected given that warmer water holds less oxygen. However, in 

all tanks the mean dissolved oxygen concentrations were higher than 7mg/l, and 

hence were the above the concentrations known to be stressful for G.aculeatus 

(Pottinger et al., 2011). 

 

5.7.3 Gender allocation 

 

Fish were assigned randomly to tanks without prior knowledge of gender. 

Although fin clips were taken from each fish for genetic sex determination, it was 

possible to determine the sex by the appearance of their gonads. Some of the males 

were also easily identified by the development of an orange/red throat, which they 

acquire in times of sexual maturity and reproduction (Aoki, 2010).  

 

Table 5.5. Numbers of male and female fish in each temperature regime (3 tanks per 

regime). 

 

 Female Male Ratio 

(F:M) 

19°C 10 19 0.5 

21°C 8 22 0.36 

25°C 18 12 1.5 

 

Despite the random nature in which fish were allocated to tanks, there were a 

higher proportion of females in the tanks at 25°C than at the lower temperatures, 

where males dominated.  
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5.7.4 Molecular Stress Response 

 

5.7.4.1 Cortisol Concentrations 

 

 Cortisol release rates were determined for each group of fish prior to raising 

water temperatures, and then at intervals over the experimental period. However, 

results for the third week were not valid due to error in the ELISA analysis. The 

mean cortisol release rate at each sampling time for each temperature regime was 

calculated and plotted. 

 

 

Figure 5.17. Mean (±SEM) cortisol release rates for each temperature regime over a 

two week period. 

 

Figure 5.17 shows that basal cortisol release rates for all three temperature 

regimes prior to the experimental period ranged between 0.10 and 0.23ng/g/h. These 

results agree with the findings from the validation study (where the basal cortisol 

release rate was 0.12ng/g/h) and also with literature, which states that basal rates for 

the G.aculeatus are approximately 0.2ng/g/h (Sebire et al., 2007). The highest 
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cortisol release rates occurred in the highest temperature regime of 25°C, with 

0.37ng/g/h after 1 week at this temperature. Cortisol concentrations at the water 

temperature of 19°C fluctuated the least, with a maximal cortisol release rate of 

0.175ng/g/h. The concentrations of cortisol appeared to fluctuate over the course of 

the study for each temperature regime (Figure 5.17). Whilst no intra-thermal regime 

differences were detected (i.e. within each temperature regime), there were inter-

thermal regime differences (i.e. between temperature regimes). The mean 

concentrations of cortisol were statistically higher in the tanks held at warmer water 

temperatures of 25°C (Figure 5.18). Water samples from fish held at 21°C did not 

have significantly elevated cortisol concentrations (p=0.072). However, with a larger 

sample size, the apparent increase may have become significant.  
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Figure 5.18. Mean (±SEM) cortisol release rates for each temperature regime over the 

two week experimental period. There was a significant increase in water cortisol 

concentration with temperature (Log10 transformed for normality, one-way ANOVA, 

F [2, 6.30] p<0.05). Tukey’s post-hoc test showed that water cortisol concentrations for 

fish held at 25°C were significantly higher (p<0.05) than those at 19°C.  

 

Mean cortisol release rates fell in the range previously recorded in a similar 

study (Sebire et al., 2007), however the mean release rate was much lower than the 

values reported for this species when acutely stressed (3.5ng/g/h) (Scott & Ellis, 

2007). Given that temperature was slowly increased and the fish were not handled in 

anyway, it would have been very surprising if the release rates in this experiment 

were as high as Scott & Ellis reported. Therefore, the results for cortisol suggest that 

a higher temperature of 25°C was indeed stressful but the stress was chronic rather 

than acute.  

 

5.7.4.2 Glucose Concentrations 

 

Pooled plasma samples were analysed for glucose concentration at the end of 

the experiment. Plasma samples were pooled for reasons described in 5.6.4.5. 
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Figure 5.19. Mean glucose concentrations from pooled plasma samples of fish held in 

each temperature regime for 3 weeks (±SEM bars) (n=9 per temperature regime). 

There was a significant increase in plasma glucose concentrations with temperature 

(one-way ANOVA, F [2, 7.47] p<0.005). Tukey’s post-hoc test showed that glucose 

concentrations of fish held at 25°C were significantly higher (p<0.05) than those held at 

19°C or 21°C (21°C not different from 19°C). 

 

No statistical differences were detected in plasma glucose concentrations 

between tanks within the 19°C and 21°C temperature regimes. However fish held in 

the middle tank at 25°C had significantly higher plasma glucose concentrations than 

those in the other two tanks held at 25°C (p<0.05). Whilst there was no difference in 

the mean glucose concentrations between fish held at 19°C and 21°C (4.40mmol/L 

and 3.90mmol/L, respectively), there was a significant (1.6-fold) increase in blood 

glucose concentration in fish held at 25°C (6.32mmol/L). These values for plasma 

glucose concentrations are within the range occurring in other species of fish 

exposed to a stress (Martinez-Porchas et al., 2009). 
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5.7.5 Cellular Stress Response: The N : L Ratio 

 

 Based on gate settings determined in preliminary flow cytometry trials (see 

section 5.5.2.3), the relative percentages of lymphocytes and neutrophils were 

estimated. Cells captured in Gate A represented agranulocytes (lymphocytes) and 

those in Gate B represented granulocytes (neutrophils). Although this method did not 

actually visualise the individual cells for identification, it allows a measure of the 

relative proportions of cells with similar properties to be recorded for each 

temperature regime. 

 

Figure 5.20. Relative percentages of agranulocytes and granulocytes in fish held at 

different water temperatures. The data for agranulocytes were log10 transformed for 

normality. A one-way ANOVA (df=2, F=5.7) demonstrated a significant difference 

between temperatures (p<0.01). Tukey’s post-hoc test showed a significant difference 

(p<0.05) between 21°C and 25°C compared to 19°C, but no difference between 21°C 

and 25°C. There were no significant differences in the proportion of granulocytes 

between treatments. 

 

Figure 5.20 shows that as the water temperature increased from 19°C to 21°C 

there was a significant decrease in the percentage of agranular cells. As the 

temperature increased further, the number of agraunlar cells (representing the 
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lymphocyte population) did not decline further. Conversely the percentage of 

granular cells representing neutrophils was not affected by water temperature.  

 

Figure 5.21. The N: L ratio based on the percentage of agraunulocytes and 

granulocytes determined by flow cytometry (mean ±SEM bars). The data were log10 

transformed for normality. A one-way ANOVA indicated a significant difference at the 

p<0.05 level (df=2, F=5.1). Tukey’s post-hoc test (p<0.05 level) showed the data for 

21°C and 25°C to be significantly different from that of 19°C. There was no significant 

difference between the 21°C and 25°C treatments. 

 

The N: L ratio is the ratio of neutrophils (granulocytes) to lymphocytes 

(agranulocytes). No statistical differences were detected in the N: L ratio between 

tanks within each temperature regime. However, due to the significant decrease in 

lymphocytes, there was a significant increase in the N: L ratio between 19°C and 

21°C (Figure 5.21). Similarly to the data shown in figure 5.19, there was no 

difference between 21°C and 25°C. Therefore a small chronically elevated 

temperature increase of 2°C caused a significant response at the cellular level.  
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5.7.6 Whole Organism Response 

5.7.6.1 Ventilation Rate 

 

Ventilation rates, based on the time it took to observe 30 opercula 

movements, were calculated for fish at the start of the experiment (when all tanks 

were at 19°C) and after 3 weeks at the experimental temperatures. 30 observations 

were carried out per tank providing a total of 90 observations per temperature regime 

at the beginning and 90 observations at the end of the experiment were recorded. 

Due to the nature of this methodology and the inherent risk of human error, the data 

were not normally distributed, neither when each tank considered was alone or when 

the three tanks for each temperature regime were combined. Statistical differences 

between tanks in each temperature range (p<0.05) were found at both the start and 

end of the experiment, therefore non-parametric testing was conducted. A Kruskal-

Wallis test showed that there were differences in the ventilation rate at the start of 

the experiment between thermal regimes (H (2) = 9.03, p<0.05), the mean rank 

values of 116.14 (19°C), 140.22 (21°C) and 150.14 (25°C).  Consequently, despite 

all tanks being held at 19°C at the start of the experiment, the fish in the 3 tanks 

designated to increase to 25°C had a higher respiration rate. All of these rates are 

thought to be resting, since fish were given a 10 minute period to adjust to the 

presence of an observer (see section 5.6.4.1).  There were also significant differences 

in the mean ventilation rate at each temperature regime at the end of the 3 week 

period (H (2) = 103, p<0.01) with mean rank values of 67.3 (19°C), 161.23 (21°C) 

and 177.34 (25°C).  A Mann-Whitney U-test was applied to each temperature regime 

to test for differences between the start and the end ventilation rate. For the fish that 

remained at 19°C throughout the experiment, there was no significant change in 

ventilation rate between the start and end of the experiment (p>0.05). However, in 

the tanks where the temperature was increased to 21°C there was a significant rise in 

ventilation rate (U=2315, p<0.01) and for 25°C there was also a significant rise in 

the mean ventilation rate (U=2467, p<0.01). 
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Figure 5.22.Ventilation rates of fish maintained in each temperature regime (90 

observations per temperature regime) at the beginning and end of the experimental 

period (mean ±SEM). There was a significant difference in ventilation rates prior to 

raising temperature (Kruskal- Wallis, H (2), 9.03 p<0.05) and at the end of the 3 weeks 

(H(2)= 103, p<0.01). There were significant differences between the acclimation rate 

and the end rate for both the 21°C and 25°C temperature regimes (Mann- Whitney 

test, p<0.01).  

 

5.7.6.2 Hepatosomatic Index  

 

For Hepatosomatic Index (HSI) and Condition Factor, a 2 x 3 Factorial 

ANOVA was used in order to incorporate the effects of gender. This was only 

possible for these endpoints, as gender was known only at the end of 

experimentation. No statistical differences were detected for HSI and condition 
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factor between tanks within each temperature regime.  There were no significant 

effects of temperature, gender, or any significant interaction between the two, for 

HSI (p>0.05). 

 

 

Figure 5.23. The HSI of both male and female sticklebacks held at 19°C, 21°C and 

25°C for 3 weeks (mean± SEM). There were no significant differences between gender, 

temperature or gender x temperature (two-way ANOVA, p>0.05).  

 

In times of sexual development, females produce vitellogenin. This egg yolk 

precursor protein is produced in the liver. Given that higher temperatures can initiate 

breeding, it was thought that differences in the hepatosomatic index were more likely 

to exist in females than in males. However, this was not the case, and no significant 

differences were seen in either sex as the temperatures increased (Figure 5.23). 

However, males did display greater variability in the HSI than females, particularly 

at lower temperatures. 
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5.7.6.3 Condition Factor & Growth Rates 

 

The condition factor (K) was significantly negatively affected by warming 

the water. There was a significant main effect of temperature on condition factor (F 

(2, 0.4) =5.1, p<0.01), and a significant main effect of gender on condition factor (F 

(1, 0.31)=3.95, p=0.05). A Fisher’s Least Significant Difference (LSD) pair-wise 

post-hoc test showed that there was a significant decrease in condition factor 

between the control temperature (19°C) and the highest temperature (25°C) and also 

between 21°C and 25°C. There was no significant interaction between temperature 

and gender (F (2, 0.001) = 0.304, p>0.05).  

Whilst an increase of 2°C, from 19°C to 21°C, did not have an effect, there 

was a considerable decline in condition factor when the water temperature was 

increased to 25°C. Condition factor is an indicator of the growth potential of an 

individual and so Figure 5.23 indicates that at higher temperatures, the growth of 

G.aculeatus may be reduced.  
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Figure 5.24. The Condition Factor (mean±SEM) of both male and female sticklebacks 

held at 19°C, 21°C and 25°C for 3 weeks. A two-way ANOVA showed that both 

temperature (F ([2, 0.4]=5.1, p<0.01) and gender (F[1, 0.31]= 3.95, p=0.05) are 

significant main factors. LSD post-hoc test showed that the condition factor at 25°C 

was significantly different from those at 21°C and 19°C (p<0.05). There was no 

significant interaction between temperature and gender. 
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Figure 5.25. The mean (±SEM) beginning and end wet weights of fish held at each 

temperature regime. A one-way ANOVA showed a significant increase in wet weights 

of fish held at 19°C (F[1,16.59], p<0.05) and 21°C (F[1, 18.17], p<0.05). There was no 

change in wet weight for fish held at 25°C. 

 

The initial weights were determined on 18
th
 January, 2011, and the end 

weights on 11
th
 April, 2011. No statistical differences were detected in weights of 

fish between tanks within each temperature regime, either at the start or the end of 

the experiment. Therefore over this 3 month period there was a significant increase 

in the average weight of fish held at both 19°C and 21°C, this being greatest at the 

lower temperature. Conversely, there was no significant increase in weight of those 

fish held at 25°C, despite them being fed ad libitum.  This further supports the data 

shown in figure 5.24, where condition factor (i.e. the potential for growth) had 

declined in those fish held at the highest water temperature.  
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Table.5.6 Summary of biological endpoints investigated and their significance. 

 

Organisation 

level 

End point Significant Effect seen first at 

21°C or 25°C  

Biochemical Cortisol Significant 25°C 

Glucose Significant 25°C 

Cellular N:L Ratio  Significant (due to 

significant reduction 

in agranulocytes) 

21°C  

Whole Organism Ventilation Rate Significant 21°C  

Hepatosomatic 

Index 

Not Significant N/A 

Condition Factor Significant  25°C 

Start and end 

weights 

Significant 25°C 
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5.8. Discussion 

 

 This study is the first known where small increases in water temperature, of 

only 2°C, elicit a stress response from the biochemical through to the whole 

organism. Even without the threat of climate change, the water temperatures 

investigated currently occur in very hot summers and so fish may already be 

experiencing them. However, these high temperatures may at the moment only be 

experienced for a short period of time. With climate change, it is anticipated that 

they will become the average temperatures in summer, and so if prolonged, the 

implications of this chronic stress are far greater.  

It was vital in this study to ensure that the water temperatures in each of the 

three regimes (19°C, 21°C and 25°C) remained distinctly separate and that there 

were minimal fluctuations. Whilst in the wild there are circadian variations in water 

temperature, this study investigated the effects of chronically raised temperature and 

due to the small differences in experimental thermal regimes, it was important to 

ensure no overlap between thermal regimes, and therefore to keep fluctuations at a 

minimum. Using individual thermostatic heaters, insulating the tanks and close 

monitoring of temperatures allowed water temperature fluctuations to be keep to a 

minimum, with never more than 0.3°C fluctuation from the desired temperature. 

Whilst water temperature was successfully controlled, the dissolved oxygen 

concentration was harder to maintain and there were some differences between 

tanks, with slightly lower oxygen concentrations in the warmer tanks. Since warmer 

water can hold less oxygen, oxygen supply was increased in the warmer tanks; 

however this did not have a significant effect. Even when all the tanks were at the 

same temperature at the start of the experiment, the oxygen concentrations varied. 

Attempts to quantify the amount of oxygen supply by counting the number of air 

bubbles being released from the air stone into each tank were not successful. That 

being said, the concentration of dissolved oxygen in all tanks was sufficiently high to 

not pose a stress to G.aculeatus (Pottinger et al., 2011). Therefore, despite variability 

in oxygen concentrations, it should not have had an effect on stress levels of the fish. 

Temperature Dependent Sex Determination (TSD) is a phenomenon long 

known to exist in reptiles, and more recently in some species of fish. In fish that are 
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gonochoristic (i.e. they have separate sexes), sex is usually determined by genotype, 

i.e. chromosomes (Genetic Sex Determination, GSD). However, environmental 

parameters, such as temperature, can also affect sex ratios in some species of fish. 

Given that there were a significantly higher proportion of females in the warmest 

tanks, it raises the question as to whether the temperature played a role in skewing 

the sex ratios. Whilst it has been suggested that TSD occurs in 59 species of fish, this 

is only proven in laboratory studies and not in the wild (Ospina- Alverez & Piferrer, 

2008). Furthermore, of all these species, only one true response has been 

convincingly shown, and that is that higher temperatures produce more males (Goto- 

Kazeto et al., 2006; Ospina- Alverez & Piferrer, 2008). In these species where TSD 

has been proved, a 4°C rise in temperature will produce a sex ratio of males to 

females of 3:1. Genetically female Medaka has been shown to change to phenotypic 

males at high water temperatures, as a result of elevated cortisol levels (Hayashi et 

al., 2010). However, the opposite was seen with the sticklebacks in this study, with 

higher water temperatures being linked to a higher proportion of females. Therefore 

it is unlikely that temperature did in fact alter the sex ratio. Further supporting 

evidence that this skewed sex ratio was nothing more than chance is that there is 

only a very small critical period when temperature can alter the sex. This critical 

period, or the Temperature-Sensitive Period (TSP) usually occurs in the larval stages 

(Conova & Kynard, 1981; Goto- Kazeto et al., 2006; Ospina- Alverez & Piferrer, 

2008). The sticklebacks used in this study were 6 months old at the time of 

increasing water temperature, and so the TSP had passed. Therefore, it is concluded 

that the differences in the sex ratios were a result of chance and not water 

temperature.  

 Measures were taken to remove or minimise any additional potential stresses. 

The study was designed to prevent fish from reproducing, as this in itself in an 

energy demanding process that may have masked the effects of temperature on some 

endpoints.  The study was scheduled to be carried out in the winter months of 

January and February. However, due to unforeseen delays the experiment did not 

finish until the beginning of April. Breeding in G.aculeatus in the wild begins in 

mid-April and continues until mid-July (Baggerman, 1985). It is thought that 

lengthening photoperiod has a stronger control on reproduction than temperature.  

However, despite advice that a winter photoperiod would be enough to prevent 
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reproduction (personal communication with Drs T. Pottinger and I. Katsiadaki), the 

sticklebacks in all tanks did appear to enter sexual maturity. In most tanks, it was 

possible to identify several sexually maturing males, as indicated by the presence of 

a developing red throat (never more than orange in this study). Also nest building 

was evident in all tanks, with the dominant male using food debris and faecal matter 

to build a nest and using spiggin to glue it together. This nest building behaviour is 

the point at which a male is considered to be sexually mature (Baggerman, 1985). 

The males showed territorial behaviour by chasing off any fish, presumably other 

males that came close to the nest. Females are considered sexually mature when they 

approach nests to lay eggs (Baggerman, 1985). The aggressive behaviour by nesting 

males could have contributed to stress levels in other fish in the tanks. Whilst I 

attempted to avoid this situation by using a winter photoperiod and regular cleaning 

of tanks, the innate reproductive cycle came into play with the onset of spring. Since 

sticklebacks are relatively short lived (16-18months [Davies et al., 2004]), they may 

only have one year in which to reproduce, and thus their innate system may prevent 

them from missing any opportunity, even if environmental conditions may not be 

optimal. 

 There was evidence of a stress response at the biochemical, cellular and 

whole organism level in response to elevated water temperature. At the biochemical 

level, concentrations of the stress hormone, cortisol, were elevated in fish that were 

exposed to higher temperatures, suggesting that warmer water was stressful for the 

fish. Despite the apparent variable nature of cortisol concentrations (Figure 5.16), 

temperature had a significant effect on the release rates of the stress hormone. The 

cortisol concentrations in the water were variable over time, with the deviation being 

greater as temperature increased (SEM values for 19°C: ±0.02, 21°C=± 0.03 and 

25°C= ±0.05). Although water samples were taken at the same time of day and prior 

to feeding, these fluctuations over time reflect the variable nature of cortisol 

production (Lorenzi et al., 2008) and are one of the limitations of using cortisol as a 

stress indicator. However, despite the increased variation with temperature, higher 

cortisol concentrations in the water were seen at higher temperatures (Figure 5.17), 

indicating that the fish held at 25°C were significantly more stressed than those at 

19°C. These higher levels of cortisol were present even after 2 weeks after the 

temperature was increased, suggesting that acclimation to this higher temperature 
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was not possible. In contrast, at 21°C the cortisol levels were elevated 1 week after 

the temperature increase but had returned to the basal levels after 2 weeks, 

suggesting that the fish had acclimated.  Water cortisol levels were only significantly 

elevated 1 week after the temperature was increased for those held at 21°C; therefore 

it may be possible that the cortisol was elevated not due to temperature, but instead 

due to another stressor that was present at this time. Temperature and dissolved 

oxygen concentration records do not appear to have shown any significant 

discrepancies at this time, and so it is unlikely that this elevated cortisol 

concentration was due to the experimental set-up. One explanation may be that there 

was competition or aggression between the fish in these tanks and that this led to a 

stress response. The results presented in figure 5.16 suggest that a 2°C increase in 

temperature above the current day summer mean does not elicit a significant cortisol 

stress response over the experimental period. Given that water temperatures of 21°C 

are already currently experienced in the River Thames, this lack of cortisol elevation 

is encouraging, as it indicates that native species may not find these warm 

temperatures stressful. However, a greater temperature increase of 6°C to 25°C did 

elicit a stress response at the biochemical level and this was sustained for 2 weeks. 

There was a 3.4-fold increase in the cortisol concentration in the water of those fish 

held at this higher temperature. The pattern seen at 25°C (Figure 5.17) to some 

extent reflects the GAR Model proposed by Martinez-Porchas et al. (2009), whereby 

between 6-48 hours after the initial stress there is an increase in the blood cortisol 

levels. This is known as the “General Alarm Reaction” (GAR). If, as in chronic 

stress situations, these conditions continue, the blood cortisol concentration will 

return to near normal levels but will peak again if the adverse conditions persist 

further. This second peak in ‘GAR’ symptoms usually occurs due to energy 

depletion caused by continued stress.  
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Figure. 5.26. The GAR Model: Biochemical responses for fish exposed to a chronic 

stress, showing the biochemical processes to restore homeostasis and depletion of 

energy over time (Martinez- Porchas et al., 2009). 

 

The peak in water cortisol concentrations after 1week from those fish held at 

21°C may actually be representative of the second GAR symptoms caused by 

depletion of resources and not by interactions between fish in the tanks. However, 

this is thought unlikely, since there was no significant peak in cortisol concentration 

between 1 hour and 24 hours after the initial temperature increase to 21°C. However, 

this GAR model is more clearly seen in those held at 25°C, where there was an 

initial peak after 1hour and then again at 1week after the temperature was elevated. 

Therefore, it may not be that cortisol levels are fluctuating sporadically over this 

time period, but rather that levels are following the classic patterns of a chronic 

stress response. Chronic stress and therefore chronically elevated levels of cortisol in 

the blood are known to have ‘knock-on’ effects on many other processes.  

The first effect of elevated cortisol levels is the release of glucose stored in 

the liver to provide energy to regain homeostasis. This was evident, as there was a 

significant increase in the plasma glucose concentrations of fish held at 25°C. A 2°C 

rise in temperature above the basal water temperature (19°C) did not result in an 

increase in plasma glucose concentrations. Since the cortisol concentration was not 

significantly elevated at 21°C, it is logical that the glucose concentration was also 
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not elevated. Glucose is released from the liver into the blood in response to the 

production of cortisol in times of stress. This glucose provides the organism with an 

energy substrate with which to fight the stress and regain homeostasis. There have 

been some conflicting studies regarding the suitability of glucose concentration as an 

indicator of stress. For example, Pottinger et al., (2002) found that chronically 

stressed sticklebacks had a reduced concentration of whole body glucose. In contrast, 

other studies have found that there was an increase in plasma glucose concentration 

by two to three-fold in fish fed cortisol (Barton et al., 1987) or exposed to a synthetic 

corticosteroid in the water (Kugathas & Sumpter, 2011), although it has been 

reported to be as high as 30-fold (Martinez-Porchas et al., 2009). The difference can 

probably be explained by the fact that in the study by Pottinger et al. (2002), whole 

body glucose concentrations were recorded, whereas other studies have used only 

plasma concentrations. In times of stress, glucose is mobilised from the liver and 

muscle and released into the blood (Martinez- Porchas et al., 2009) and also ‘used’ 

to satisfy the increased metabolic demand. Therefore whilst there may be an overall 

reduction, there will be an increase in the plasma reflecting the influx from liver to 

blood.  

The results from the biochemical endpoints, cortisol and glucose, provide 

evidence that a chronic increase in water temperature of 6°C above the current 

summer mean water temperature is stressful to the three-spined stickleback. The 

results from the cellular endpoints, the N: L ratio, also demonstrate a typical stress 

response at 25°C, but also at 21°C. Based on the proportions of granular and 

agranular cells as determined by the flow cytometer, it appears that the circulating 

number of lymphocytes in the blood declined with increasing water temperature. 

This lymphopenia or ‘trafficking’ of lymphocytes out of the blood and into other 

body components in times of stress is well documented (Davis et al., 2008; Dhabhar, 

2002). It has also been reported that in times of stress, the number of neutrophils in 

the blood increases; however this was not evident in this study. The relative 

proportions of leukocytes (largely, lymphocytes and neutrophils) provide 

information on the state of the immune system (Dhabhar, 2002). The neutrophil to 

lymphocyte ratio (N: L) is a reliable indicator of high cortisol levels and therefore a 

good indicator of stress. (Davis et al., 2008). In this study, the N: L ratio 

significantly increased with only a 2°C rise in water temperature, even though 
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increases in cortisol concentrations were only significant at 25°C. This indicates that 

with high water temperatures already occurring in the summer months for short 

periods, a stress response at the cellular level could occur. It is unclear why the N: L 

ratio should have increased when there was no evidence of a significant biochemical 

stress response at 21°C. The N: L ratio does not explicitly provide information on the 

ability of an individual to fight infection or disease without challenging the fish to an 

infection. However, it is still extremely important, as it provides an indication as to 

an individual’s susceptibility to infection compared to another, and can be used as a 

predictor of an individual’s immune-competence (Davis et al., 2008). Based on this, 

it is concluded that both a 2°C and a 6°C rise in water temperature above current 

mean summer temperatures are enough to decrease the number of circulating 

lymphocytes in the blood, potentially weakening the immune system and rendering 

the fish susceptible to disease.  

Cabagma et al. (2005) found that there was a high N: L ratio in reproducing 

fish, providing evidence that reproduction in itself can be a ‘stressful’ process, 

presumably due to the energy demands of developing gonads and courtship. Since 

the fish in this study did enter sexual maturity, there is the possibility that the N: L 

ratios were affected not only by temperature but also by reproduction. However, 

sexually mature males were evident in all tanks, even those at 19°C, which had the 

lowest N: L ratio. Therefore it can be concluded that the higher N: L ratios at higher 

temperatures were a result of stress from the water temperature and not reproduction.   

The negative effects of higher temperatures were also seen at the whole 

organism level. There were significant differences in the ventilation rates between 

the different temperature regimes. When all the tanks were set to 19°C, the fish in 

the three tanks designated to increase to 25°C had a higher respiration rate even at 

the beginning of the experiment. There are several possible explanations for this. 

Firstly, the tanks which were set to be raised to 25°C were closest to the door. 

Therefore, they may have been affected by more interruptions when the door of the 

room was opened, or that they were nearer the source of noise (coming from the 

corridor) that may have caused them some stress. However, prior to raising water 

temperatures, the cortisol release rate was actually lowest in the tanks which were to 

be raised to 25°C, suggesting that these fish were not experiencing stress. Another 

possibility is that oxygen availability in these tanks was lower and so the fish had to 
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respire quicker. Figure 5.16 shows that oxygen availability prior to raising the 

temperature was significantly lower in the 21°C and 25°C designated tanks, but all 

tanks had dissolved oxygen levels well above those known to be stressful. However, 

although the three tanks that were to be raised to 21°C had a lower dissolved oxygen 

concentration, the ventilation rate of these fish was no different to those in tanks 

maintained at 19°C. This suggests that more than dissolved oxygen was a factor for 

the high ventilation rates in the 25°C tanks. A contributing explanation may lie with 

gender differences. The 25°C tanks had a higher proportion of females in them than 

did the other 6 tanks (which were male dominated) (Table 5.6). It could be that 

females have a naturally higher respiration rate, or that the social hierarchies in these 

tanks posed a stress without additional stresses of temperature. It has been reported 

that social subordinates have a higher basal metabolic rate (Sloman et al., 2000), 

which could be an explanation here. Before the temperatures were raised to 25°C, 

there was some evidence that males were reaching sexual maturity, as mentioned 

above. Territorial behavioural was displayed by some males in all tanks, but it could 

be that the females were more stressed by this behaviour than other males, therefore 

having higher ventilation rates. Alternatively, the females themselves could have 

been entering sexual maturity, which is an energy demanding process, and hence had 

higher respiration rates. Given that cortisol concentrations were not higher at the 

start in these tanks, it is most likely that the higher respiration rates are due to 

females having higher resting metabolic needs. 

Some caution should be taken when interpreting the results from the 

ventilation rates, due to the variable nature as demonstrated by the significant 

differences between tanks within each thermal regime. However, when the means of 

each temperature range where considered, as expected, there was no significant 

change in the ventilation rate of the fish that remained at 19°C. On the contrary, in 

both sets of tanks where the temperature was increased, there was a significant 

increase in respiration rate. There was a decrease in dissolved oxygen concentration 

in tanks at 25°C, but this was only a small decrease, and oxygen levels were still 

well within the safe limits for sticklebacks, and so it is unlikely that they had an 

effect. At higher temperatures, fish have a faster metabolism and so need to breathe 

faster. This study measured the resting rate of respiration, not the maximal. In 

chapter two, it was demonstrated that in coral reef fish which are living near their 
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thermal maximum, fish were not able to increase their maximal uptake of oxygen 

(Nilsson et al., 2009), but whether the same is true for G.aculeatus is not known. In 

these tropical species, the aerobic scope, and therefore the ability of a fish to have 

sufficient energy for growth, was dramatically reduced with increasing water 

temperature, due to the increases in resting respiration rate. That is to say, as 

temperature was increased by 2°C, the fish had to respire much faster in order to 

maintain normal physiological demands, therefore expending more energy on 

respiration and leaving less for growth. G.aculeatus also displayed this higher resting 

respiration rate at higher temperatures, and therefore expended more energy on 

survival and less on growth. Therefore, although this increase in respiration rate may 

be due to a higher metabolism, if sustained it could result in decreased growth or in a 

reduced reproductive output.  

Condition factor and the HSI declined with increasing temperature; however 

this was only significant for condition factor.  Even with a relatively small increase 

in temperature of just a 2°C to 21°C (which is currently seen in the warmest days in 

the River Thames), there was a significant decline in condition factor. Additional 

increases in temperature did not significantly reduce the condition factor any further. 

Not only were reductions in condition factor seen, but the actual growth of fish held 

at the highest water temperature ceased. Usually, higher water temperatures are 

associated with high assimilation efficiency and therefore higher scope for growth, 

providing sufficient food is available. However, assimilation efficiency is not always 

higher in warmer waters (Chinnery & Williams, 2003).  Assimilation efficiency was 

not measured in this experiment, but the sticklebacks were fed 4 times daily until 

satiation. Whilst it is a possibility that food was limiting, as it was not actually 

measured and quantified, it is unlikely insufficient food was placed in each tank or 

that assimilation efficiency was dramatically reduced so as to prevent growth. 

Therefore it is concluded that fish held at the highest temperature had higher basal 

metabolic demands and sufficiently stressed to prevent energy being available for 

growth.   
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5.9 Conclusions 

This study has provided evidence from the biochemical to the whole 

organism level that a small chronically raised temperature of 2°C is enough to elicit 

a stress response in G.aculeatus. For almost all endpoints there were no significant 

differences between tanks within each thermal regime. Having three tanks at each 

temperature regime offers some repeatability in the study, adding strength to these 

findings and confidence that small increases in temperature were indeed stressful for 

this species. Whilst a temperature of 21°C is already experienced in the River 

Thames, it does not last for periods as long as three weeks, and so fish may not 

suffer the effects of chronic stress. However, with climate change, it is likely that 

21°C will become the normal summer mean temperature and not an extreme. A 6°C 

rise in water temperature to 25°C further increased the stress response, with marked 

reductions in growth and the efficiency of the immune system. Whilst it is unlikely 

that 25°C will become the mean summer water temperature, even in a worst-case 

scenario, there may well be summers when these temperatures are experienced, 

perhaps even for a chronic period.  

The three-spined stickleback is a hardy species, and is not particularly 

sensitive to temperature in comparison to many other UK fish. If the stickleback is 

negatively affected by these temperatures, there is concern that more sensitive 

species, such as the perch, dace or chub to name a few, will be more severely 

affected.  The results of this study suggest that the water temperatures predicted to 

occur as a consequence of climate change will pose a significant stress to fish in the 

River Thames, potentially increasing their susceptibility to disease, reducing growth 

and reproductive output, and therefore having consequences at the population level.   
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Chapter 6. Summary and Conclusions 

 

Climate change is a truly global concern, and will likely impact all 

ecosystems, whether terrestrial, freshwater, marine, temperate or tropical. 

Understanding how species will respond to changes is of paramount importance if 

they are to be adequately protected. The work presented herein assessed whether 

small increases in temperature are likely to become stressful for a range of fish, from 

both marine fish on the Great Barrier Reef to freshwater fish in the River Thames. 

This thesis has also examined whether or not there is evidence of climate change in 

the Thames region and whether the fish inhabiting the River Thames have responded 

to any changes. 

Climate change is expected to be greater in the higher latitudes, and hence 

mainly affect countries such as Britain, but the Great Barrier Reef is considered to be 

particularly sensitive to changes in climate. Some families of fish, such as 

cardinalfish, on the Great Barrier Reef are already living near their upper thermal 

limits and are particularly sensitive to small increases in temperature. In four of the 

five species of coral reef fish tested, their aerobic scope was significantly reduced by 

as little as 2°C rise in water temperature (31, 32 and 33°C, compared to the current 

summer mean of 29°C). The reduced aerobic scope was due to increased resting 

oxygen consumption and an inability to increase the maximal oxygen uptake. 

However, there were interfamilial differences, with the two species of cardinalfish, 

Ostorhinchus cyanosoma and O.doederleini being more sensitive to increases in 

temperature than the three species of damselfish tested (Dasyllus aruanus, Chromis 

atripectoralis and Acanthochromis polyacanthus). The differences in ability to cope 

aerobically with warming waters will likely lead to a change in the community 

structure on coral reefs.  

The anthropogenic inputs of CO2 into the atmosphere are absorbed by the 

oceans, leading to a lowering of pH, an effect known as Ocean Acidification. Even at 

control temperatures (29°C), a lowered pH of 0.3 units caused the same percentage 

loss in aerobic scope as did a 3°C warming. When coupled with warming water, low 

pH poses a significant physiological challenge to some coral reef fish. These results 
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provide evidence that climate change will directly affect coral reef fish, whereas 

until now it was considered that reef fish would be primarily impacted indirectly, 

through a loss of coral cover due to mass coral bleaching events. It is likely that over 

the coming century there will be a loss of some species, such as cardinalfish, in 

tropical coral reefs resulting in potentially less diverse and productive environments.  

Concerning Britain, analysis of a 150 year dataset provided evidence for 

gradual warming in the Thames region and increased rainfall in winter months, 

suggesting that the fish in the River Thames are already experiencing climate 

change. Analysis of a 15 year dataset on fish populations in the River Thames 

showed that fish have been exposed to some extreme weather events, events that are 

likely to become more frequent and intense. Cyprinid species all displayed a similar 

pattern in density and biomass over this time period. This pattern was different to 

those of all the non-cyprinid fish population, suggesting that families of fish may 

respond differently to changes in the climate. A Naive Bayes Feature Selection 

identified that water temperature has a greater affect on the fish population of the 

River Thames than flow rates. Bayesian Networks were able to correctly identify key 

relationships in the network, both between fish and the physical environment and 

also the interactions between different species of fish. Bayesian Networks also 

indicated that cyprinid species may benefit from the warm-and-dry summers that are 

predicted to become typical with climate change.  

This study also examined the effects of chronically elevated water 

temperature, realistic of that expected as a consequence of climate change, on the 

stress response system of the three-spined stickleback, Gasterosteus aculeatus, 

which is native to Britain. Temperature regimes were selected based on the current 

day summer mean of 19°C as a control and a best case scenario (B1, +2°C) and a 

worst case scenario (A1F1, +6°C)  temperature prediction by the end of 2080 (IPCC, 

2007).  For a period of 3 weeks, fish were held in tank water of either 19°C, 21°C or 

25°C.  Even a small increase of 2°C (above current summer mean) resulted in a 

stress response at the cellular and whole organism level. A 6°C rise in temperature 

resulted in a stress response at the biochemical level (higher cortisol and glucose 

concentrations), cellular level (higher neutrophil: lymphocyte ratio) and whole 

organism level (higher ventilation rate and lowered condition factor and growth). 

Therefore, even a chronic increase of just 2°C above the current day summer mean 
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temperature, which can occur already in very warm summers, is enough to elicit a 

stress response. Further warming to 25°C, which although unlikely to become the 

‘normal’ summer mean, may well be experienced in warmer years, could have a 

negative effect from the biochemical to the whole organism level, with reductions in 

condition factor and growth rates. G. aculeatus is considered to be temperature 

tolerant and a hardy species. Therefore, these results indicate that climate change 

may indeed prove to be stressful, even for resilient species, with dire consequences 

for more temperature-sensitive species.  

This research has confirmed that there is evidence of climate change in the 

Thames region and therefore that fish in the River Thames will already have been 

exposed to warming. Despite the many differences in environmental conditions, 

habitat types and fish community structures between the River Thames and the Great 

Barrier Reef, this thesis has demonstrated that fish from both ecosystems are 

sensitive to increases in temperature. A chronic increase of just 2°C above the 

current summer mean was enough to prove stressful for all species of fish tested. 

Given the inertia in the climate system, we will undoubtedly see rises in air and 

therefore water temperature in the coming century. For important ecosystems such as 

the Great Barrier Reef and the River Thames, whilst fish communities may still exist 

in 100 years from now, the assemblages of fish may be very different and potentially 

much less diverse. Given the results from these in-vivo studies and the Bayesian 

networks, it is clear that the threat of climate change is real and its impacts on fish, 

regardless of whether freshwater, marine, temperate or tropical, needs serious 

consideration.  

 This thesis has attempted to highlight some of the key impacts that climate 

change will likely have on fish. However, in this large field there is undoubtedly 

much more research to be covered. Following on from this study there are a number 

of pathways that could be followed. Firstly, whilst the respirometry techniques used 

in chapters two and three provided strong evidence that warming waters reduced the 

aerobic scope of coral reef fish, the impacts of experimental stress were not taken 

into consideration. Despite the fact that this technique has been widely used and 

accepted (Östlund-Nilsson & Nilsson, 2004; Nilsson et al., 2007; Urbina et al., 

2012) and that fish were left to acclimate to the respirometry chamber for 30 minutes 

before recording oxygen consumption, it cannot be denied that the fish were in an 
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unnatural environment and therefore the results are not necessarily a true picture of 

their natural ability to adapt (Martins et al., 2011). Ideally, the respiromtery 

experiments should be repeated in conjunction with a stress response technique to 

quantify the amount of stress each fish is subjected to, as this may impact their 

ability to cope with confinement (Martins et al., 2011). Using the technique 

employed in chapter five of measuring the concentration of cortisol in the water, in 

this case in the water held in the respirometer, would clarify whether fish are indeed 

stressed, and if so, to what extent. This is important in order to estimate how far the 

readings may differ from their natural respiration rates.  

Secondly, it would be of great interest to examine whether there have yet 

been any changes in the fish population structure at Lizard Island, specifically 

whether there has been a decline in thermally sensitive species such as the 

cardinalfish. There has already been warming off the coast of Queensland and so 

waters in the lagoon over the last century will have increased. It might be the case 

that presently, the waters are still within the thermal ranges for coral reef fish and so 

no changes in fish community structure have occurred. However, it may also be the 

case that fish species, or indeed, families have already been lost from the reefs. 

There needs to be a benchmark set of what the coral reef fish assemblage is at 

specific sites on the Great Barrier Reef, in order for future studies to assess the extent 

of any change. What we consider now as being the benchmark, may already be 

significantly different from the fish communities on the reefs of yesteryear.  

The use of Bayesian Networks in modelling ecological datasets is indeed a 

useful tool; however, the work from chapter 3 could be progressed to develop the 

networks to allow more detailed predictive information about the likely effects of 

small increases in temperature on the fish population in the non-tidal River Thames. 

The networks used in this thesis are still in their early days of development and it 

would warrant an entire thesis to properly develop and understand their usefulness in 

these types of datasets. Additionally, the networks produced did not take into 

consideration the effects of extreme, one-off events, and the impacts of these should 

not be underestimated. Building on this study, it would be useful to develop the 

model further to predict what the implications of wet-and-mild winters and hot-and-

dry summers are on the entire fish population of the non-tidal River Thames. Once 

these general trends have been modelled, Bayesian Networks could then be used to 
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predict what impacts ‘big events’ will have on the fish population (e.g. extreme high 

summer temperatures, droughts and flood events). Only once both general trends and 

extreme events are accounted for can one begin to predict the responses of fish 

populations to climate change.   

The final data chapter on the three-spined stickleback could be repeated using 

the same endpoints, both using the temperatures used in this thesis and also at 

smaller increments, such as 1°C above the current summer mean. If the results 

presented herein are consistently reproducible, it would be of interest to know if even 

smaller increases in temperature also elicit a stress response. It would also be 

interesting to investigate whether stress responses are detected at the genome level, 

such as through changes in the expression for Heat Shock Proteins (HSPs). HSPs are 

a family of highly conserved proteins that are rapidly encoded for in times of thermal 

stress. HSPs help cells regain homeostasis in times of stress by binding to denatured 

proteins and acting as ‘molecular chaperones’ aiding protein synthesis (Basu et al., 

2002). The changes in gene expression for HSPs occur at levels far below lethal 

thresholds (Karouna-Renier & Zehr, 1999) allowing HSPs to be good indicators of 

not just acute but also chronic stress, such as can be anticipated with climate change.  

 This study could also be developed to determine whether the stress 

responses detected would, in fact, lead to declines at the population level due to 

reductions in fecundity and susceptibility to disease. Therefore, one might want to 

expand upon this research and allow the fish to reproduce to enable egg counts to be 

carried out and also to expose the fish to a pathogen and test the immune-

competence of the fish. By allowing the fish to reproduce would also permit further 

studies on genetic adaptation, to determine whether or not offspring from fish held at 

higher temperatures are able to tolerate higher temperatures themselves. Although it 

has been widely accepted that climate change is occurring at a rate faster than 

evolution, recent research by Donelson et al. (2012) has demonstrated that at least 

one species of fish on the Great Barrier Reef is able to produce offspring that are 

more thermally suited to a warmer environment. This gives some hope that future 

generations of fish will be able to cope with our changing climate. Whether this is 

true of freshwater fish in Britain, is currently not known and merits investigation. 
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Given that most freshwater fish in the non-tidal River Thames live well 

within their thermal range, it could be thought that increases in temperature prove to 

be beneficial for most species. If the predictions of climate change hold true, and 

Britain experiences more frequent warm-dry summers, we may well see an increase 

in the cyprinid population, such as roach and bleak. However, this may be 

accompanied by a decline in the population of non-cyprinid species, such as perch. It 

appears that the perch population in the non-tidal River Thames is already declining. 

Increasing competition from a growing roach population may result in further 

declines and a potentially unsustainable number of perch. Therefore, 100 years from 

now, the non-tidal River Thames may still support a healthy number of fish; 

nevertheless, it is likely that it will less diverse. However, I believe that the warming 

waters have the potential to be stressful for even the coarse fish population, given the 

results from the study on the three-spined stickleback. If, in the coming years, there 

are particularly warm summers, fish populations both on the Great Barrier Reef and 

River Thames may be negatively impacted. This could lead to reduced reproductive 

output which if occurs over several consecutive years, could result in localised 

population crashes.  

Predictions are also that spring will arrive 1-3weeks (FSBI, 2007) earlier 

which could result in fish spawning earlier. Whilst this may seem beneficial, since it 

would give fry a longer summer in which to grow before winter, thus reducing over-

winter mortality rates, this can only happen if the appropriate food sources are 

available. Therefore, there is a risk that there will be a mis-match between prey 

abundance and predator requirements. Many larvae are known to display diapauses, 

whereby adverse environmental conditions prevent development and instead the 

animal enters a state of dormancy. Given that environmental conditions induce and 

conclude these periods of diapause, a changing climate and extreme events, could 

cause many invertebrate larvae to develop at the wrong time. It has been reported 

that photoperiod is the main driver that induces the summer diapause in the copepod, 

Acartia bifilosa (Chimnery & Williams, 2003). Whilst it has also been reported that 

photoperiod is the main driver in sexual development for the three-spined 

stickleback (Baggerman, 1985), this did not hold true in this thesis. G. aculeatus 

entered sexual maturity at the onset of spring, regardless of temperature and 

photoperiod. Their innate reproductive cycle caused them to initiate breeding, 
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despite environmental conditions being unfavourable. Therefore, this suggests that 

that there may be discrepancies between the responses of invertebrates and fish to 

environmental cues. This could have profound effects on the chances of survival of 

fish, particularly in the first year of life.  

Invertebrates are particularly sensitive to their physical environment; 

therefore changes in the climate are likely to have just as great an effect, if not more 

so, on a plethora of organisms. A decline in the food source therefore may have more 

of a profound effect on fish populations than changes in the temperature, pH or flow 

rates. This study did not take into account the food supply and the effects that 

climate change would have on them, and how this would impact fish populations. 

This is a major limitation to the study and one that should be addressed in future 

studies.  

Another potential problem with climate change is the introduction of new, 

non-native species. For example zander, Stizostedian lucioperca, a warm water 

species, originally from mainland Europe which was illegally introduced into British 

rivers in the 1980’s. The presence of zander has been reported in the River Trent and 

Warwickshire Avon, and they are known to be able to depress juvenile populations 

of fish in rivers (Nunn et al., 2007a). Zander recordings were also made by the 

Environment Agency for the lower reaches of the non-tidal River Thames in years 

2007-2009. Although at present they are not a great risk, given that zander are a 

warm water species, it is likely to do well as waters warm and could therefore pose a 

threat to our native species through increased predation and competition. This is just 

one species of introduced fish that could be a potential threat to an already stressed 

ecosystem, but there are likely to be more. Thereby further complicating the ability 

to predict what the fish populations of the future will look like. 

 There is clearly much more work to be done on the subject of this thesis, all 

beyond the scope of this PhD. However, this should not detract from the findings 

presented herein, but instead it would support the conclusion that fish, whether 

freshwater, marine, temperate or tropical will undoubtedly be affected by climate 

change and that much more research is needed in order to adequately protect these 

important and precious ecosystems. 
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