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CHAPTER 1: INTRODUCTION 

 

1.1 Background to the Thesis 

A detailed design, manufacture and testing of an extending boom was made within a teaching 

company scheme between Brunel and Niftylift in 1999 [1].  The closed, pentagonal steel tube 

was selected to provide the required strength and stiffness with internal capacity for the 

hydraulic piping and cables.  Rees and Joyce [1, 2] selected a closed, pentagonal steel tube 

section to resist local buckling whilst limiting the end deflection to a value pre-determined 

from the weight of two men and their baggage contained within the cage at the end of a fully 

extended boom.  Typically, from a trailer platform vehicle with stowed height of 2.2 m, the 

extended telescopic beam can reach a vertical height 17.1 m and provide a horizontal 

outreach of 8.7 m when subjected to an end load of 200 kg.  The self-propelled version offers 

slightly improved telescoping length dimensions: vertical lift: 21 m, horizontal reach 12m, 

coupled with the added advantage of a moveable base [2].   

A recent British Standard has recognised that strength, stiffness and stability are issues 

concerning safety in these elevated platforms [3]. An initial analytical model of the deflection 

profile under the extended outreach condition in these vehicles was developed from applying 

a strain energy method (i.e. to a stepped, tubular, cantilever beam [1]). Deflection 

experiments were conducted upon a full-scale, three-boom cantilever in which the end fixings 

attempted to match those arising within the knuckle-end, the pivot pin and ram fixing 

attachment positions for the vehicle.  Additional strains were measured with gauges bonded 

to outer surfaces at positions along each boom where local concentrations arose from cut-outs 

for cabling and in areas of contact between adjacent lengths.  The testing showed that whilst 

the analytical model provided for the global deflections with good accuracy, further work 

would be required to account for the effect of the local deformation behaviour upon the 

design.  Moreover, the self-weight of steel booms added to deflection and load carrying 

capacity to an extent that the performance of alternative, lighter materials was deemed worthy 

of investigation.   

The present proposal is to examine these aspects in more detail especially in context of an 

optimum design.  It is expected that commercial software packages such as ABAQUS/CAE 

will be employed for this purpose.  The reliance placed upon these packages demands that 

they be accompanied by validating analytical solutions where the latter are available. The 
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early work has showed that energy methods including Castigliano’s theorem and the principle 

of virtual work may be used for checking displacements but only at specific points along the 

booms.  More recently a continuous displacement function has been sought from applying 

Macaulay’s method to a simplified two-boom, tubular square-section laboratory cantilever 

under end load [4].  The principle of successive integration from curvature to give slope and 

from slope to give displacement was applied to the scaled-down laboratory model.  Normally, 

Macaulay’s method works only with a uniform cross-section but here an allowance for the 

changing section area is required.  The piecewise scheme developed here was first applied to 

a three section telescoping cantilever beam assembly which admits three different second 

moments of area: those within the two boom regions plus one overlap region, when the 

compatibility between rotations and displacements at their interfaces is ensured. This 

technique was then applied to a two section cantilever assembly, which is the candidate 

assembly examined throughout the course of this thesis. Surface stresses and strains may be 

calculated from classical mechanics, allowing for the changing section and bending moment 

with length. 

 Displacements and longitudinal surface strains were measured at various length positions 

with minimum and maximum overlap.  This provided the displacement and strain profiles 

experimentally so enabling a comparison with the theory.  While the deflected shape is 

continuous, the strain profile is interrupted at the overlap as we might expect from its 

strengthening influence.  The theory reproduces the experimental behaviour well enough for 

it to be used as the validating tool described above. Where the theoretical predictions are 

overlaid to reveal error there may be a need for further refinements to be made as required. 

Buckling is a relatively new problem that has been identified in the two-boom section 

cantilever. There is an urgent need to develop a theory and marry it with experimental 

predictions to account for these phenomena that is common amongst such sections. As 

opposed to the deflection and stress behaviour which are already well documented in student 

projects undertaken at Niftylift [2, 16, 17, 18], buckling poses a difficulty in that, 

considerable resources would need to be devoted in terms of the creation of a test rig and 

suitable apparatus to model real life working conditions. Both global and local buckling 

theories, especially those propagated using the energy methods are of vital importance, and 

these theories must be adapted to the assembly. A means of verifying the same must also be 

devised.  
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1.2 Statement of the Problem 

Given that telescopic sections are finding increasing applications in those instances where 

space is at a premium and reduction in weight and material cost is a necessity, it is vital that a 

design theory and subsequent methodology is generated wherein the behaviour of the 

telescoping assembly is accounted for, in terms of its possible application areas. Despite 

numerous advances over the ages in the field of mechanics, not to mention increasing use of 

telescoping sections all around us from simple household appliances to complex retractable 

stadium roofing, the lack of literature in the public domain with regards to telescoping 

sections is a deterrent to the further use of this simple yet highly effective structure.  

This thesis aims to shed light on the uniqueness of the telescoping assembly and its detailed 

analysis and bring it forth into the public domain as there is an absence of material pertaining 

to telescoping structures in the wider engineering context as compared to the information that 

is available in the private sector domain. 

1.3 Aim and Objectives 

Aim: To provide a design methodology to estimate stiffness related properties in telescopic 

cantilever beams as used for lifting devices.  Stiffness refers to the load - displacement 

behaviour for which the related properties are to include beam geometry, material density and 

strength. Thus, for example, when minimising weight of the telescopic beam structure used as 

a lift and reach device, its stiffness and load carrying capacity are to be preserved. 

Objectives: 

1. To study known deflection, buckling and stress analyses methods and adapt them to 

thin-walled, telescopic tubular sections using analytical and numerical techniques.  

The techniques to be examined include Macaulay’s flexure equation, Mohr’s moment 

area method, energy methods including Castigliano’s theorem, the principal of virtual 

work, the Rayleigh-Ritz method and modelling with finite elements,   

2. To build a specific analytical model most suitable for the prediction of deflections 

stress distribution and buckling load characteristics in this structure,  

3. To validate the model proposed through the conduct of experiments on scaled beam 

structures,  

4. To apply the model to case studies including crane and elevating platform structures,  
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5. To disseminate predicted and experimental results through publication. 

Analyses and selective laboratory experiments are to be conducted to meet the design 

specification.  The theoretical analyses are to envelop both analytical and numerical 

approaches.  The experiments will employ scaled models for laboratory testing to appraise 

each theory.  Applications will then be made to commercial devices that employ the 

telescopic beam structure.  

1.4 Summary Findings 

The Literature review on Classical Mechanics identified the three major areas of investigation 

into the telescoping arrangement as follows. 

i. Design of the telescoping sections for their many applications often requires estimates 

of deflections at various length positions. The development of analytical methods for 

estimating deflection and stress for beams in bending were developed in the 18
th

 

century by Euler and Bernouli and are described in many textbooks [5-8].  The beam 

deflection is found by four common methods: (i) direct integration [5-8], (ii) 

Macaulay’s step function [8, 9], (iii) Mohr’s theorems [13-14] and (iv) strain energy 

[13-14].  Despite uniform section beams being well-served by the classical theory 

they are less often used for deflection analyses of variable section beams including 

tapered, stepped and telescopic designs [9, 10]. Application of classical theory and its 

adaptation to the telescoping arrangement is to be examined.   

ii. The nature in which buckling occurs within the telescoping cantilever assembly is to 

be established, as:  (a) a local buckling produced within the individual rectangular 

hollow sections and (b) a global buckling wherein the structure in its entirety 

undergoes buckling. In the former, transverse shear and torsion in individual 

rectangular hollow section members is given special consideration because of their 

ability to sustain a constant shear flow irrespective of wall thickness (unlike an open 

section). However pure flexure is only possible when shear forces act at the shear 

centre of a member. A combined loading scenario is examined whereupon the 

telescoping arrangement is subjected to bending, torsion and shear. Considering the 

latter, principles of application of energy methods are scrutinised and the means by 

which they can be adapted to the telescoping arrangement are studied in detail. The 
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telescoping assembly in its entirety is examined as a cantilever-column in that one end 

is fixed and the other is free. In order to arrive at the critical buckling load of the 

assembly it was imperative to understand the concepts of bending and potential 

energy systems.    

Based on the findings from the literature, a three-pronged methodology was developed to 

match the proposed theory with the results obtained from experimental work conducted as 

well as from Finite Element Analyses.  

1.5 Structure of the Thesis 

Chapter 2 outlines the literature that was identified to have a vital role in achieving the 

summary findings presented above in §1.4.  

Chapter 3 proposes the Tip Reaction Model as applied to the two section telescopic cantilever 

beam assembly and provides the detailed tip deflection analysis of the same by the four 

common methods namely; Direct Integration, Macaulay’s Step Function, Mohr’s Theorem 

and Strain Energy Principles. Deflection prediction techniques have been adapted to the two 

section telescopic cantilever beam assembly. A C-program developed using a direct 

integration technique, has been generated and is currently in use in industry. 

Chapter 4 provides the buckling methodology wherein, by working from first principles, a 

better understanding of the complexity of the problem was attained. This involved a detailed 

understanding and application of energy methods to the case at hand. What was referred to by 

Timoshenko as the energy method is used as a base and applied to the cantilever column as 

detailed in [15]. This approach in turn is verified by validating the result obtained against the 

criteria for the Euler critical buckling load for a column having one end fixed and the other 

free as its boundary conditions. A general form for predicting the critical buckling load 

exactly is thus derived and is applied to suit each case individually taking into account the 

different cross sectional second moments and lengths. 

 

Chapter 5 examines the phenomenon of shear, torsion and a combination of both in the 

individual rectangular hollow sections that comprise the overall telescoping assembly. The 

concept of constant shear flow in the walls of the sections as well as the importance of the 

shear centre is identified and applied to the structure. Importance is laid on the design 
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optimisation of the hollow rectangular constituent beam sections of the assembly, wherein the 

longer limbs of the cross section, can be adjusted to raise the stress to a predetermined design 

stress value, thereby saving weight, allowing for greater efficiency in load bearing and 

simultaneous buckling at the load limit. 

 

Chapter 6 describes the bending and shear stress analysis of the two section telescoping 

assembly when it is subjected to both in-line and offset loading. Thus combined loading is 

examined whereupon the telescoping arrangement is subjected to bending, torsion and shear. 

Stresses generated are plotted graphically in which the accompanying analyses performed 

here originate from the second of two published papers, emanating from this work [92]. As 

such the results obtained are verified.   

 

Chapter 7 provides in ample detail the FE analysis that was applied to the two section 

telescoping arrangement in order to obtain the tip deflections for different loadings, the 

stresses generated as a result of subjecting the telescoping arrangement to both inline and 

offset loading and finally the determination of the critical buckling load. The results thus 

obtained were used to verify the theoretically determined deflection, stress and buckling 

models. 

 

Chapter 8 details the experimental work that was conducted on a two section telescoping 

cantilever beam and the results obtained for deflection and stress analysis as well as buckling 

load determination. The experimental section examines the variations in deflections and 

stresses for varying governing parameters, especially the effect the change in overlap length 

has on the overall strength of the structure. Also of importance is the stress analysis wherein 

the strain gauges readings are converted to their equivalent principal stress magnitudes and 

compared with their theoretically derived counterparts. The test beam itself was subjected to 

both in-line and offset loading in order to mimic the possible loading configurations of the 

telescopic assembly in its working environment. The test rig developed is the closest 

approximation possible to an encastre fixing. 

Chapter 9 compares and discusses the results obtained from the three-pronged approach as 

applied to the two section telescoping cantilever beam assembly and draws conclusions, 

whilst also making recommendations for future work.  
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Appendix A details the Tip Reaction Model as applied to the two section telescopic cantilever 

beam assembly.  

Appendix B outlines the C program that uses the Macaulay’s theorem derived deflection 

equations to calculate and predict the tip deflections of the two section telescopic cantilever 

beam assembly, for given configurations. A similar program written and developed for the 

three section telescopic cantilever beam assembly is in commercial application. 

Appendix C outlines the in-line loading induced stress analysis of the candidate assembly. 

Appendix D analyses the offset loading induced stress analysis of the two section telescoping 

arrangement. 

Appendix E is the first paper published as a by-product of this thesis. It is entitled ‘The 

Telescopic Cantilever Beam Assembly: Part 1 – Deflection Analysis’. 

Appendix F represents the second paper published, entitled ‘The Telescopic Cantilever Beam 

Assembly: Part 2 – Stress Analysis’. Taken together, parts 1 and 2 provide an analytical 

theory for bending of a discontinuous beam that did not exist heretofore, thereby obviating 

the need for a numerical solution. 

Appendix G outlines in exhaustive detail the FEA methodology and procedure for deflection, 

stress and buckling determination, for the given assembly. 

Appendix H details the strain gauging principles, and application techniques that were used to 

conduct the stress analysis of the telescoping assembly. 
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CHAPTER 2: LITERATURE REVIEW 

2.1 Introduction 

This thesis has its origins in Abraham’s dissertation entitled “Establishing a Methodology for 

the Finite Element Analysis of a Complex Boom Assembly for Estimating Stress Hot Spots 

and Deflections”, [18] which focussed entirely on the Finite Element Analysis (FEA) of the 

HR15N telescopic boom assembly manufactured by Niftylift, a renowned manufacturer of 

access platforms, both trailer-mounted and self-propelled. FEA was performed on the 

aforementioned telescopic boom assembly under the action of concentrated and distributed 

loading in order to observe, identify and interpret the results of combined loading. 

 

At the time of undertaking of the project very little was understood about the degree of 

complexity and the nature of modelling the boom assembly in FEA. The software module 

used was ABAQUS/CAE and although Niftylift being manufacturers were adept at analysing 

the assembly the results generated were not entirely understood. The project started out 

initially as a means of verification of experimental results using FEA of the boom assembly 

but due to the difficulty of full-scale testing, the former was limited and eventually the project 

became entirely software driven.  

 

Although the complexity of the boom assembly analysed in this project and those past [16 - 

18] is much greater than the two section telescoping cantilever assembly great pains has been 

taken in this instance to introduce and apply well-known and age old concepts to a new 

structure and therein lies the novelty or the contribution to knowledge.  

 

The theories reviewed here are by no means novel or unique but have been established 

through the ages. However in dealing with a ‘new’ structure, a starting point was needed and 

the sections that follow aim to follow on from this objective. At the outset, the author wishes 

to express that individual symbols and coordinates for each of the theories examined through 

the course of this chapter, have been adopted from their original sources.  
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2.2 Curvature – Bending Moment Relationship  

The Curvature-Bending Moment Relationship detailed below is the basis and start of many a 

text on Solid Mechanics [5 – 8]. The objective of this section is to allow the reader to see 

behind the thought process and reasoning behind the chapters that follow.  

O

D eflec ted  S hape

A B

R

C

D

ds

Y

X

x dx

O rig ina l S hape

 d


d

A B

 

Figure 2.1: Beam in Bending (Adapted from [20]) 

The beam AB, lying along the x-axis, is loaded with positive bending moment M . The 

bending moment causes the beam to deform into an arc of radius R . According to the sign 

convention, the centre of curvature O will then be above the x-axis. A short element of beam 

CD of length ds  subtends angle d  about O, where dRds . . The change in angle at the 

centre of curvature, O, must equal the change in gradient of the tangent, hence  dd  . 

 

In moving from point C to D in the direction of positive x, and taking into account the sign 

convention: 

 dRdRds ..  , or  
ds

d

R




1
. 

Sagging curvature is taken to be positive and is defined by a radius of curvature R with centre 

at O. Since the deflection of the beam is small compared to the radius of curvature it can be 

approximated that   dxds   and hence   
dx

d

R




1
. 

It can be assumed that for small deflections the slope   tan
dx

dY
 such that: 

x 

y 
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θ 
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But 
R

E

yI

M



                     (2.1)  

where M is the bending moment about the neutral axis 

           R is the radius of curvature of the beam 

           σ is the stress induced as a result of the bending moment M 

           y is the perpendicular distance to the neutral axis  

          Y is the deflection induced   

           E is the Young’s Modulus of Elasticity of the beam material 

           I is the second moment of area about the neutral axis 

 Equation (2.1) yields the relation
EI

M

R


1
. Rearranging the terms yields: 

2

2

dx

Yd
EIM                                  

which requires two successive integrations with constants introduced to match the boundary 

conditions in order to express the deflection Y  in terms of the un-deflected position x.  

 

2.3 Macaulay’s Step Function Method 

With successive integration of the flexure equation (2.2) discontinuities will arise in the 

moment expression when x passes points of concentrated forces, moments and abrupt 

changes in distributed loading. If Equation (2.2) is applied to regions in x where M(x) is 

continuous, the greater becomes the number of differential equations and integration 

constants to be solved. Fortunately the amount of work involved may be lessened when M(x) 

in Equation (2.2) is replaced with a step function M(x-a) as outlined in [20] 

 
2

2

dx

Yd
EIaxM                     (2.3) 
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in which a defines positions at which discontinuities arise. Equation (2.3) permits successive 

integration of a single step function as is applied to the three section telescoping cantilever 

beam as shown in [13]. The following rules are to be kept in mind. 

 

(a) Take the origin for x at the left-hand end. 

(b) Where necessary extend and counterbalance uniformly distributed loading to the 

right-hand end. 

(c) Let concentrated moments lie at the position [x-a]
0
. 

(d) Establish the function M[x-a] in the furthest right portion of the beam. Sagging 

moments are positive.  

(e) Integrate such terms as [x-a] in the form   2
2

ax  . These terms are to be ignored 

when, in substituting values for x the value of the bracket [] becomes negative. 

(f) Apply the known slope and deflection values to find the constants of integration.   

 

2.4 Mohr’s Moment Area Theorems 

The moment area method is convenient in case of beams acted upon by point loads in which 

case the bending moment area consists of triangles and rectangles. In the case of distributed 

load the determination of the position of the M-diagram’s centroid itself involves integration 

and as such it no longer remains simpler than Macaulay’s method. However, this method may 

be used in certain standard cases of distributed load where the position of the centroid of the 

bending moment area is known. This section shows the reader the way in which the author 

understood the moment area theorem. The manner in which it has been applied to the same to 

the two section telescoping cantilever beam assembly is detailed in §3.5.1 and §3.5.2.  

 

Consider a beam AB as shown in Figure 2.2 (a) carrying such a load that it has a bending 

diagram as shown in Figure 2.2 (b). Let the beam bend into AC’D’B as shown in Figure 2.2 

(c). Now consider an element of small length CD of the beam at a distance x from B as shown 

in Figures 2.2 (a) and 2.2 (b).  

 

Let             M = Bending moment between C and D 

                  δx = Length of CD 

                  R = Radius defined by the deflected beam 



12 

 

                  δθ = Angle included between the tangent at C’ and D’ facing the datum or the     

change of slope over the elementary portion δx 

       A = Area of bending moment diagram over the entire span 

                  x’ = Horizontal distance of centre of gravity G of the entire bending moment 

diagram from the datum 

                  θ = The angle in radians, included between the tangents drawn at the extremities 

of the beam 

From the geometry of the deflected beam it can be seen that C’D’=Rδθ or δx = Rδθ 

R

x
                                 (2.4) 

 

Figure 2.2: Beam in Bending (Adapted from [19])  
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But 
R

E

yI

M



 and hence 

EI

M

R


1
. As opposed to Equation (2.1), the negative sign is 

not considered whilst dealing with areas. Substituting this value of R in Equation (2.4) 

reveals: 

EI

M
x                      (2.5) 

The total change of slope from A to B may be found out by integrating Equation (2.5) 

between the limits 0 to l as: 

 

Ll

Mdx
EIEI

xM

00

1
  

But 
L

Mdx
0

= Area of the Bending Moment Diagram 

This leads us to the first of the two Mohr’s theorems as follows: 

EI

A
                     (2.6) 

Drawing tangents at C’ and D’ and then making them met at P and Q on the datum line 

through B as shown in Figure 2.2 (c). From the geometry of the figure it can also be seen that 

the tangents at C’ and D’ also subtend an angle of δθ 

EI

xMdx

EI

Mdxx
xPQ

.'
'                               (2.7) 

The total intercept may be found by integrating Equation (2.7) above between the limits 0 to l 

as: 

'..
1'.

00

 

ll

xdxM
EIEI

xMdx
Y  

But xdxM .. ’= Moment of area of the Bending Moment Diagram over portion δx about the 

datum 
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      xdxM

L

..
0

 ’= Moment of Area of the Bending Moment Diagram over the entire span δx 

about the datum 

                     = A.x’ 

And finally the last of the two Mohr’s theorems can be expressed as: 

EI

Ax
Y

'
                      (2.8) 

A point to remember is that in Equations (2.6) and (2.8) the I value may be constant or may 

be variable. Equations (2.6) and (2.8) are Mohr’s first and second theorems more commonly 

referred to as the moment-area equations. When these equations (2.6) and (2.8) are employed 

to find the slope and deflection at a given point in a beam respectively, their application 

depends upon the manner in which the beam is supported. 

 

2.5 Deflection Theorems in Brief 

Design of cantilever beams for their many applications often requires estimates of deflections 

at various length positions.  The development of analytical methods for estimating deflection 

are described in many textbooks [5-8].  The beam deflection y is found by four common 

methods: (i) direct integration [5-8], (ii) Macaulay’s step function [5-8, 13, 14], (iii) Mohr’s 

theorems [5–8, 19] and (iv) strain energy [6, 13, 14].  Both (i) and (ii) are based on the 

flexure equation derived above 

2

2

dx

Yd
EIM                                                                 (2.2) 

 

The product EI is the flexural rigidity which is constant in a uniform cross-section.  Sagging 

and hogging moments are taken to be positive and negative, respectively. The moment 

function, M(x) in Equation (2.2), is the bending moment expressed in term of the length 

position x. The direct integration method (i) adopts successive integrations of Equation (2.2) 

leading to the slope dY/dx and then the displacement Y.  Method (i) is restricted to relatively 

simple loading, including that considered here, which does not lead to discontinuous M(x) 

expressions.  Macaulay’s step-function technique (ii) is used where moment discontinuities 
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do arise at span positions where additional concentrated load are applied and also, for a 

uniform loading that does not extend to the full length.  Mohr placed a geometrical 

interpretation upon the bending-moment diagram when integrating Equation (2.2) for slope 

and deflection.  When A and B are separate points on the moment diagram (M(x) vs. x), for 

which B is a point of zero slope and the deflection at A is required, then Mohr’s two 

theorems (iii) state: 

Slope at A 
EI

1
 Area of the M-diagram between A and B  

Deflection of A relative to B 
EI

1
First moment of area the M-diagram between B and A about A. 

When strain energy methods (iv) are used to estimate beam deflection the energy stored 

through an internal stress and strain is equated to the work done by external forces and 

moments.  Two useful interpretations of this approach, adopted for FE analyses, lie in the 

theorems of Castigliano and the principle of virtual work, which are dealt with in the sections 

that follow [6]. Despite uniform section beams being well-served by the classical theory it is 

less often used for deflection analyses of variable section beams including tapered, stepped 

and telescopic designs [9, 10].   Here, it is more likely that FE is adopted to ensure that a 

given deflection allowance is not exceeded. The sections that follow detail the methods of 

deflection determination.  

 

2.6 Principle of Superposition 

This principle, as stated in [20], states that the total elastic displacement at a point in a 

structure under a given combination of externally applied loading may be obtained by 

summing the displacements at that point when the loads are applied to their position 

independently in any sequence. This principle is amply detailed and applied to the two 

section telescoping cantilever beam assembly, in §3.5.3. §3.5.1 and §3.5.2. These detail the 

Mohr’s moment area method when applied to the tip loaded and uniformly distributed loaded 

two section telescoping cantilever beam assembly, respectively. The principle of 

superposition is used to obtain the deflection of the structure when subjected to a combination 

of both tip and uniformly distributed loading. In §3.5.3 the principle has been applied to load 

versus displacement but it can also be applied to connect any one of the following: load-

stress, load-strain, stress-displacement and strain-displacement. An important caveat is that 
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each of the afore-mentioned pairs must be linearly related as would be found for a structure 

obeying Hooke’s law within its elastic range. 

 

2.7 Energy Methods 

Chai Yoo’s insightful publication was a most valuable source in the thorough grasping of the 

energy methods detailed in this section [28]. Energy methods provide a convenient means of 

formulating the governing differential equation and necessary natural boundary conditions. 

The solutions that are obtained by solving the governing equations are exact within the 

framework of the theory (for classical beam theory) computing unknown forces and 

displacements in elastic structures. Besides this, the energy principles are fundamental to the 

study of structural stability and structural dynamics. However, one of the greatest advantages 

of the energy methods is its usefulness in obtaining approximate solutions in situations where 

exact solutions are difficult or impossible to obtain [21, 22]. Undoubtedly familiarity with the 

energy principles will be an invaluable asset in the study of structural mechanics. Additional 

references for a more detailed treatment of energy methods may be found in the books of 

Hoff [23], Langhaar [24], Fung and Tong [25], Sokolnikoff [26] and Shames and Dym [27]. 
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2.7.1 Preliminaries  

Consider an infinitesimal rectangular parallelepiped at point in a stressed body and let the 

terms T1, T2 and T3 represent the traction vectors on each face perpendicular to the coordinate 

axes x1, x2 and x3 respectively as shown in Figure 2.3. The components of the stress tensor 

denoted by σij
 
are the projections of tractions Ti on the face whose normal is xj. 

 

 

Figure 2.3: Stress tensors and their components (Adapted from [28]) 

Hence, each traction vector is written as 

 

3332321313

3232221212

3132121111

eeeT

eeeT

eeeT













                      (2.9) 

 

Or in compact form (index notation)   

Ti = σijej                  (2.10) 

 

Figure 2.4 shows the traction vector T acting on an arbitrary plane identified by n (unit 

normal to the plane) along with traction vectors Ti acting on the projected plane indicated by 

ei and the body force per unit volume  f. The force acting on the arbitrary sloping plane ABC 

is nndAT while the force on each projected plane is iidAT as each has a unit normal in the 

negative ie direction. 
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Each projected area can be computed by  

dAi = dAi cos(n, ei) =dAi n ei                           (2.11) 

 

Figure 2.4: Stresses on an infinitesimal tetrahedron (Adapted from [28]) 

so that  

dAn = (dAn)/( n ei) =  (dAn)/( niei)               (2.12) 

 

where 

ni = n ei = cos(n, ei)                                                                                                           (2.13) 

 

Since the tetrahedron is in equilibrium the resultant of all forces acting on it must vanish. 

Hence 

 









 f

h
nTT iin

3
dAn = 0                (2.14) 

 

Resolving Tn into Cartesian components  iin eTT    and taking the limit as 0h , Equation 

(2.14) reduces to  

Tn = Tiei = Tini                            (2.15) 
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Substituting Equation (2.10) into Equation (2.11) yields 

Tiei = Tini =  Tjnj = σjieinj                 (2.16) 

 

from which the stress tensor components are: 

Ti = σjinj                             (2.17) 

 

Consider a volume of material v bounded by a closed surface s. Let the body force per unit 

volume distributed throughout the body v be f and the stress tensors distributed over the 

surface s be T. If the body is in equilibrium then the sum of all forces acting on v must 

vanish; that is 


v

f dv  + 
s

T ds = 0                                                                                                             (2.18) 

 

or in component form 


v

f idv  + 
s

T ids = 0                                                                                                 (2.19) 

 

Equation (2.17) may be rewritten as 


s

iT ds =  
s

jjin ds                                      (2.20) 

 

Assuming that the components σji and their first derivates are continuous the surface integral 

in Equation (2.20) can be transformed into a volume integral using the divergence theorem as 

 
s

jjin ds =  
s

jji, dv                                                                                                         (2.21) 

 

 

From Equations (2.19), (2.20) and (2.21) it follows immediately that 

  
v

jjiif , dv = 0                                                                            (2.22) 

 

Equation (2.22) can only be satisfied if the integrand is equal to zero at every point in the 

body. Hence, 

0,  jjiif                                                                                                (2.23) 
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Equation (2.23) presents three equations of equilibrium written in terms of stresses and body 

forces. 

 

2.7.2 Principle of Virtual Work 

If a structure is in equilibrium and remains in equilibrium while it is subjected to a virtual 

displacement the external virtual work EW done by the external forces acting on the 

structure remains equal to the internal virtual work IW done by the internal stresses [28]. 

 

The external virtual work is  

 
s

iiE uTW  ds+  
v

ii uf  dv                                                                   (2.24) 

 

Using Equation (2.17) and the divergence theorem the first term in Equation (2.24) can be 

transformed into 

 
s

ii uT  ds=  
s

ijij un  ds=  
s

jiij u , dv=   
v

jiijijij uu ,,  dv                                  (2.25) 

 

Substituting Equation (2.25) into Equation (2.24) yields 

     
v

jiijiiijijE uufuW ,,   dv                                          (2.26) 

 

Since the structure is in equilibrium 0,  jjiif  . Hence Equation (2.26) reduces to 

 
v

jiijE uW , dv                                                   (2.27) 

The infinitesimal strain increment tensor is   2/,, ijjiij uue   and ijji uu ,,    is 

symmetrical which leads to
 

ijijjiij eu  ,                  (2.28) 

 

This transforms Equation (2.28) to 

 
v

ijij e dv UWI                    (2.29) 
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Equation (2.29) describes the internal work done by the actual stresses (due to real forces) 

and virtual strains produced during the virtual displacement. The internal work IW  is 

frequently referred to as the strain energy U stored in the elastic body. From Equations 

(2.24), (2.28) and (2.29) one immediately obtains 

 
s

iiE uTW  ds  +  
v

ii uf  dv  =  
v

ijij e  dv UWI               (2.30) 

 

Equation (2.30) is a mathematical statement of the principle of virtual work. The reverse of 

this principle is also true. That is, if IE WW   for virtual displacement then the body is in 

equilibrium as explained in Tauchert [22]. The principle of virtual work is valid regardless of 

the material stress-strain relations as shown in the derivation.  

 

2.7.3 Principle of Complementary Virtual Work 

Figure 2.5 shows the stress-strain diagram of a nonlinearly elastic rod. The strain energy U 

represents the energy stored in a deformed elastic body; however, the physical interpretation 

of the complementary strain energy U
*
 is not clear. 

 

The strain energy U in the rod under uniaxial stress σ11 is defined by 

  














v

e

eU
11

0

1111d dv  
11

0

11

e

v  d 11e                    (2.31) 

 

The strain energy density or the strain energy per unit volume is equal to the area under the 

material’s stress-strain curve as is shown in Figure 2.5. The complementary strain energy U
*
 

in a uniform section rod is defined by 

  














v

eU
11

0

1111

* d



 dv  
11

0

11



ev d 11                                       (2.32) 
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Figure 2.5: Stress-strain curve of a non-linearly elastic rod (Adapted from [28]) 

 

Therefore, the complementary strain energy density corresponds to the area above the stress-

strain curve. For a linearly elastic material the two areas are equal and UU * . In order to 

maintain the generality the structure under consideration is assumed to have arbitrary material 

properties. Consider an imaginary system of surface tractions iT and body forces if that 

produce a state of stress ij inside the structure. If these quantities are in equilibrium they 

must satisfy the equilibrium equations such that from Equation (2.23):  

  0
,

 ijij f  

 

The work done by these virtual forces during the actual displacements iu is referred to as the 

complementary virtual work *

EW  and is expressed as 

 
S

iiE uTW  * dS +  
V

iiuf dV               (2.33) 

 

Proceeding in a manner similar to that used in the derivation of Equation (2.30) with the roles 

of the actual and virtual quantities interchanged one obtains the following 

 
s

iiuT ds +  
v

iiuf dv =  
v

ijije dv              (2.34) 

 

 

 

 

 

 

 

de11 

dσ11 

U
*
/v 

U/v 

σ11 

e11 
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The right hand side of Equation (2.34) is denoted as 

 
v

ijijI eWU  ** dv                                      (2.35) 

 

From Equations (2.33) and (2.35), Equation (2.34) is rewritten symbolically as 

***

IE WUW                               (2.36) 

 

Equation (2.35) is the principle of complementary virtual work. If a structure is in 

equilibrium the complementary virtual work done by the external virtual force system under 

the actual displacement is equal to the complementary virtual work done by the internal 

virtual stresses under the actual strains. 

 

2.7.4 Principle of Minimum Potential Energy 

It is assumed that there exists a strain energy density u=U/v, that is a homogeneous quadratic 

function of strains  
ijeu such that 

ij

ij
e

u




                   (2.37) 

 

It is recalled that the virtual displacement field iu was not related to the stress field ij when 

applying the principle of virtual work. They are now related through a constitutive law 

expressed by Equation (2.37). Substituting Equation (2.37) into the principle of virtual work, 

Equation (2.30), one obtains  

 
s

ii uT  ds  +  
v

ii uf  dv  =   
v

ijij e dv=  

















v

ij

ij

e
e

u
 dv =   


v

u1 dv  

 

v

u1 dv =  U1                  (2.38) 

It is to be noted that the variation and integration operations are interchanged. The loss of 

potential energy of the applied loads V is now defined as a function of displacement field 

iu and the applied loads.  

V  
s

iiuT ds  
v

iiuf dv                (2.39) 

Taking the first variation of Equation (2.39) gives 
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 
 

































s

j

j

i

i u
u

u
TV  1 ds  

































v

j

j

i

i u
u

u
f  dv 

Noting that ijji uu   and 1ij for ji   and 0ij for ji  the equation leads to 

   
s

ji uTV  1 ds  
v

ji uf  dv               (2.40) 

 

From Equations (2.38) and (2.40) it follows immediately 

   01 VU                  (2.41) 

 

The quantity  VU  denoted by   is the total potential energy of the body and is given as 

  














v

e

e
11

0

1111d dv  
s

iiuT ds  
v

iiuf dv            (2.42a) 

Giving   01                   (2.42b) 

 

Equation (2.42b) is known as the principle of minimum potential energy; and it can be stated 

that: 

 

An elastic structure is in equilibrium if no change occurs in the total potential energy 

(stationary value) of the system when its displacement is changed by a small arbitrary 

amount [28]. 

 

In the early days of the original developments of the calculus of variations the developers 

including Bernoulli (1654-1705), Euler (1707-1783) and Lagrange (1736-1813) did not 

consider the stationary value of the total potential energy as indeed a minimum until 

Legendre (1752-1833) postulated the so-called Legendre test seeking a mathematical rigor 

for a minimum [29]. A proof that  actually assumes a minimum value in the case of stable 

equilibrium is illustrated below. 

 

From Equations (2.41) and (2.42) it follows immediately that      011  VU . Hence 

 
 



















v

ij

ij

e
e

u
 01 dv  

s

ii uT ds  
v

ii uf  dv                (2.43) 
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Using the constitutive relations of Equation (2.37) and the strain-displacement relations for 

small displacement theory (Cauchy strain) the first integral of Equation (2.43) is expanded to 

 













v

ij

ij

e
e

u





dv   










v

ijjiij uu ,,
2

1
 dv     










v

ijijjiij uu ,,
2

1

2

1
 dv             (2.44) 

 

Noting that jiij   and interchanging the dummy indices j and i, the right-hand side of 

Equation (2.44) is expanded to 

 













v

ij

ij

e
e

u





dv     










v

ijijjiij uu ,,
2

1

2

1
 dv   

v

jiij u , dv   
v

jiij u
,

 dv 

  
v

jiij u
,

 dv  
v

ijij u , dv  
s

jiij nu ds  
v

ijij u . dv 

where ijij eu    ,   2/,, ijjiij uue   ,   jiji xuu  , and  
ijij xuu  , .

 

Substituting the expanded form above into Equation (2.43) yields 

 
s

jiij nu ds  
v

ijij u , dv  
s

ii uT ds  
v

ii uf  dv = 0 

which can also be expressed as 

   
s

iijij uTn  ds    
v

iijij uf  , dv = 0 

This must be true for all iu . Then the equilibrium conditions follow as 

0,  ijij f           

and 

ijij Tn   which when fully expanded gives; 

3332321313

3232221212

3132121111

nnnT

nnnT

nnnT













 

 

The Euler-Lagrange equations are the equations of equilibrium and the necessary boundary 

conditions are embedded into the Cauchy formula as in Equation (2.17). Hence it has been 

proved that 
  01  is a sufficient condition for equilibrium as explained in Shames and 

Dym [27]. If it can be shown that the total potential energy of an admissible strain field 
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jiij ee   is always greater than that of the equilibrium state, then it suffices that the total 

potential energy  is a local minimum for the equilibrium configuration.  

      

v

ijijijeee eueeu
ijijij

 dv  
s

ii uT ds  
v

ii uf  dv                      (2.45) 

Expanding  
ijij eeu   by a Taylor series  

    .....
2

1 2










 klij

klij

ij

ij

ijijij ee
ee

u
e

e

u
eueeu                                                      (2.46) 

Substituting Equation (2.46) into Equation (2.45) gives 

 














v

ij

ij

eije e
e

u
e

ijij





 dv  

v

ii uf  dv  
s

ii uT ds  


















v

klij

klij

ee
ee

u


2

2

1
dv ......  

 
 



















v

klij

klij

ee
ee

u


2
1

2

1
dv   .....0...... 2    

 
 



















v

klij

klij

ee
ee

u


2
2

2

1
dv               (2.47) 

 

It will be demonstrated that the integrand of Equation (2.47) is  
ijeu   for .0ije  

Examination of Equation (2.46) in association with 0ije reveals that the first term is a 

constant throughout the body and is taken to be zero, so that the strain energy vanishes in the 

unrestrained body. By definition ijeu  in the second term is stress ij . The stress in the 

unrestrained state must be equal to zero. Considering up to second order terms it gives 

 
klij

eklij

ij ee
ee

u
eu

ij



0

2

2

1




















  

 

Hence Equation (2.47) can be written as 

    
V

ijeu  2 dv 

Since u is a positive definite function the second variation of the total potential energy is 

positive. Hence the total potential energy is a minimum for the equilibrium state 0ije when 

compared to all other neighbouring admissible deformation fields. Fung and Tong [25], Love 
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[30], Saada [31], Shames and Dym [27] and Washizu [21] use logic similar to that shown 

above in the proof of the nature of the total potential energy being a minimum. It appears that 

Sokolnikoff [26] did not impose 0ije  to show that  actually assumes a minimum value. 

 

2.7.5 Principle of Minimum Complementary Potential Energy 

Parallel to the concept of the strain energy density introduced in Equation (2.37) it is assumed 

that there exists the complementary energy density function *u defined for elastic bodies as 

function of stress such that 

ij

ij

u
e



 *

                   (2.48) 

Substituting Equation (3.48) into Equation (2.34) gives 

 
s

iiuT ds  
v

iiuf dv  














v ij

ij

u






*

dv              (2.49) 

 

As per Equation (2.35), the right-hand side of Equation (2.49) is *U , the first variation of 

the complementary energy for the structure. A complementary potential energy function is 

defined by 

*V  
v

ii fu dv  
s

iiTu dv 

for which the first variation is given by 

*V  
v

ii fu  dv  
s

ii Tu  dv                          (2.50) 

 

From Equations (2.49) and (2.50) it can be concluded that 

  0***  VU                 (2.51) 

 

Equation (2.51) is the principle of total complementary energy and * is given by 

 
v

ijije* dv  
v

ii fu  dv  
s

ii Tu  dv              (2.52) 

 

It may be shown that the total complementary energy is a minimum for the proper stress field 

following a procedure similar to that used in the principle of minimum total potential energy. 
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2.7.6. Castigliano’s Theorem, Part 1 

The principle of minimum total potential energy can be used to derive the Castigliano 

theorem (which he presented in 1873 in his thesis for the engineer’s degree at Turin 

Polytechnical Institute) which is extremely useful in the analysis of elastic structures. For a 

structure in equilibrium under a set of discrete generalized forces  niQi ,....2,1  the total 

potential energy is given by 

  



n

i

iii QU
1

                 (2.53) 

 

For the condition of equilibrium the first variation of  found by varying i must be equal to 

zero. 

  0
111









































 



i

n

i

i

i

n

i

iii

i

n

i

iii Q
U

Q
U
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Since the variations i are arbitrary the quantities in each parenthesis must vanish; hence,  
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                                    (2.55) 

 

Equation (2.55) is the Castigliano’s theorem, part 1. It states that if the strain energy U stored 

in an elastic structure is expressed as a function of the generalized displacements i  then the 

first partial derivative of U with respect to any one of the generalized displacements i  is 

equal to the corresponding generalized force iQ . As the stiffness influence coefficient ijk  is 

defined as the generalized force required at i for a unit displacement j, while suppressing all 

other generalized displacements, ijk can be expressed as  
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Using Equation (2.55) it can be rewritten as 
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2.7.7 Castigliano’s Theorem, Part 2 

For an elastic (not necessarily linearly elastic) structure that is in equilibrium under a system 

of applied generalized forces iQ  the principle of minimum complementary energy states that 

  0***  VU                 (2.58) 

 

Assuming that the complementary strain energy *U  as shown in Figure 2.5, is expressed as a 

function of iQ  then Equation (2.58) may be rewritten as 
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Since iQ are arbitrary and non zero, Equation (2.59) requires that 
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                                     (2.60) 

 

Equation (2.60) is known as the Engesser theorem derived by Friedrich Engesser in 1889 [25] 

and is valid for any elastic structure. If the structure is linearly elastic the strain energy U  

and the complementary strain energy *U are equal and the Castigliano theorem, part 2 results. 
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                 (2.61) 

 

Equation (2.61) states that if the strain energy U in a linearly elastic structure is expressed as 

a function of the generalized forces iQ  then the partial derivative of U with respect to the 

generalized force iQ is equal to the corresponding displacement i . The flexibility influence 

coefficient of a linearly elastic structure is given by  
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2.8 Buckling – An Introduction  

When a structure subjected usually to compression undergoes visibly large displacements 

transverse to the load then it is said to buckle. Buckling may be demonstrated by pressing the 

opposite edges of a flat sheet of cardboard towards one another. For small loads the process is 

elastic since buckling displacements disappear when the load is removed. Local buckling of 

plates or shells in turn is indicated by the growth of bulges, waves or ripples and is commonly 

encountered in the component plates of thin walled structural members. 

 

Buckling proceeds in a manner which may be either (1) stable, in which case displacements 

increase in a controlled fashion as loads are increased i.e. the structure’s ability to sustain 

loads is maintained or (2) unstable, whereupon deformations increase simultaneously, the 

load carrying capacity nose dives and the structure collapses catastrophically. 

 

Neutral equilibrium is also a theoretical possibility during buckling; this is effectively 

characterised by an increase in deformation with no corresponding or equivalent change in 

load. From a purely linear viewpoint, buckling of struts and bending of beams are similar in 

that they both involve bending moments. Referring to Figure 2.6(a) in bending, these 

moments are substantially independent of the resulting deflections, whereas in Figure 2.6(b) 

for buckling, the moments and deflections are mutually interdependent – this means that the 

moments, deflections and stresses are not proportional to loads. If deflections resulting from 

buckling become too large then the structure fails – this is solely a geometric consideration 

and completely different from any material strength consideration. If a component or part 

thereof is prone to buckling then its design must satisfy both strength and buckling safety 

constraints, which is the why the phenomenon of buckling is examined in detail in this 

literature review and applied specifically to the two section telescoping cantilever section.  

 

Buckling has become more of a problem in recent years since the advent of high strength 

materials requires less material for support – structures and components have become 

generally more slender and buckling-prone. This trend has continued through technological 

history as is demonstrated by the following sample case studies. 
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Figure 2.6: Differences between (a) Bending and (b) Buckling (Adapted from [33]) 

 

2.9 Buckling of thin walled structures 

A thin walled structure is made from a material whose thickness is much less than other 

structural dimensions. Into this category fall plate assemblies, common hot and cold formed 

structural sections, tubes and cylinders and many bridge and aeroplane structures. Cold 

formed sections are increasingly supplanting traditional hot rolled I-beams and channels. 

They are particularly prone to buckling and in general must be designed against several 

different types of buckling. It is not difficult to visualise what can happen if a beam is made 

from such a cold rolled channel section. One flange is in substantial compression and may 

therefore buckle locally at a stress lower in magnitude than the yield stress of the channel 

section material. This in turn reduces the load carrying capacity of the beam as a whole. From 

this it can be inferred that buckling rather than strength consideration dictates the beam’s 

performance. 

The slender elastic pin-ended column is the prototype for most buckling studies. It was first 

examined by Euler in the 18
th

 century. The model assumes perfection in that (1) the column is 

perfectly straight prior to loading and (2) the load, when applied, is perfectly coaxial with the 

column.  
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Figure 2.7: Differentiation between the load and lateral displacements for buckling [33] 

The behaviour of the buckling system is reflected in the shape of its load-displacement curve 

referred to as the equilibrium path, in Figure 2.7. The lateral or ‘out-of-plane’ displacement, δ 

is preferred to the load displacement, λ, in this context since it is more descriptive of 

buckling. 

 

Nothing visibly occurs when the load on a perfect column first increases from zero- the 

column is stable there is no buckling and no out-of-plane displacement. The P-δ equilibrium 

path is thus characterised by a vertical segment-the primary path- which lasts until the 

increasing load reaches the critical Euler load 
2

min

2

L

EI
Pcr


  a constant characteristic of the 

column as derived in Timoshenko’s oft cited master work [32]. 

 

When the load reaches the Euler load, the lateral deflections δ grow instantaneously in either 

equally probable direction. After buckling therefore the equilibrium path bifurcates into two 

symmetric secondary paths illustrated in Figure 2.7. Clearly the critical Euler load limits the 

column’s safe load capacity. 

 

To answer why a compression member buckles if the limiting strength of the material is not 

reached, Chajes [48] gives credit to Salvadori and Heller in their book [49] for clearly 

elucidating the phenomenon of buckling by quoting the following from Structure in 

Architecture; 

 

λ 

λ 
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A slender column shortens when compressed by a weight applied to its top and in doing so 

lowers the weight’s position. The tendency of all weights to lower their position is a basic law 

of nature. It is another basic law of nature that whenever there is a choice between different 

paths, a physical phenomenon will follow the easiest path. Confronted with the choice of 

bending out or shortening the column finds it easier to shorten for relatively small loads and 

to bend out for relatively large loads. In other words when the load reaches its buckling 

value the column finds it easier to lower the load by bending than by shortening. 

 

The bifurcation-type buckling is a purely conceptual one that occurs in a perfectly straight 

(geometry) homogeneous (material) member subjected to a compressive loading of which the 

resultant must pass through the centroidal axis of the member (concentric loading). The 

importance attached to and the considerably copious amounts of research devoted to 

bifurcation-type loading is justified in that the bifurcation-type buckling load or the critical 

buckling load gives the upper bound solution for practical columns that hardly satisfy any one 

of the three aforementioned conditions.    

 

The concept of the stability of various forms of equilibrium of a compressed bar is frequently 

explained by considering the equilibrium of a ball (rigid-body) in various positions as shown 

in Figure 2.8 below [23, 32]. 

 

Although the ball is in equilibrium in each position shown, a cursory glance reveals that there 

are vital differences among the three scenarios. If the ball in Figure 2.8(a) is displaced 

slightly from its original position it will return to its initial state upon removal of the 

displacing or disturbing force. A body behaving thus is said to be in a state of stable 

equilibrium. Any slight or small displacement of the ball from its initial state of equilibrium 

will raise its centre of gravity and a certain amount of work is performed to bring about this 

displacement. On disturbing the ball in Figure 2.8(b) by an infinitesimal displacement results 

in it moving away from its equilibrium position and it does not return to its initial state. The 

equilibrium of the ball in Figure 2.8(b) can be said to be unstable. Any displacement from the 

position of equilibrium will lower the centre of gravity of the ball and consequently will 

result in a decrease in the potential energy of the ball.  It can thus be inferred that in the case 

of stable equilibrium the energy of the system is minimum and in the case of unstable 

equilibrium the energy is at a maximum. In Figure 2.8(c), the ball after being displaced 
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slightly neither returns to its original equilibrium position nor continues in motion upon 

removal of the disturbance. This implies that the ball is in a state of neutral equilibrium. By 

virtue of its neutral equilibrium there is no change in energy during a displacement in the 

conservative force system.  

 

Figure 2.8: Stability of Equilibrium [28] 

 

The response of the column is most similar to that of the ball in Figure 2.8. The straight 

configuration of the column is stable on application of small loads but unstable on application 

of larger loads. The state of neutral equilibrium is considered to occur in the transition from 

stable to unstable equilibrium in the column. This leads us to conclude that the load at which 

the straight configuration of the column ceases to be stable is the load at which neutral 

equilibrium is possible. This load is the critical load. To determine the magnitude of the 

critical load it is imperative to determine the load under which the member can be in 

equilibrium both in the straight and slight bent configuration. The magnitude of this slightly 

bent configuration is undetermined and is the reason why the free body of a column must be 

drawn to account for this slight bend in its configuration. The method whereby this slightly 

bent configuration for evaluating critical loads is accounted for is called the method of neutral 

or neighbouring or adjacent equilibrium. At critical loads the primary equilibrium path 

reaches a bifurcation point and branches into neutral equilibrium paths as has been shown in 

Figure 2.7. This type of behaviour is in essence the bifurcation-type buckling. Bifurcation-

type buckling is in turn predicted by Eigenvalue analysis.  

 

A structural member is called a beam when it is supported at one or both ends and carrying 

transverse loads. The same member is called a column when it is supported at one or both 

ends and carries a compressive axial load. The structural behaviours at both these conditions 

are different and the governing equations and conditions are also different. The behaviour of 

a crane boom when it is horizontal can be best described by a cantilever and by a column 

(a) (b) (c) 
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when the boom is vertical. The members are made up of hollow sections. Literature 

describing the behaviour of such telescoping members is very limited and thus presents an 

opportunity for investigation.   

 

2.10 Rayleigh-Ritz Method 

Now that buckling has been explored in as brief a manner as is possible, the reader is directed 

to the crux of the buckling problem, as applied to the two section telescoping cantilever beam 

assembly. The need to determine the critical buckling load of the telescoping assembly was 

established from the outset, and the energy methods were explored for that purpose in §2.7 

above. The energy methods introduced in §2.7 are a convenient means of computing 

unknown forces and displacements in elastic structures. They can be the basis of deriving the 

governing differential equations and required boundary conditions of the problem. They are 

also the starting point of many modern matrix/finite element methods. The solutions that are 

obtained using these methods are exact within the framework of the theory (for example, 

classical beam theory). Energy methods are also used to derive approximate solutions in 

situations where exact solutions are difficult or nearly impossible to obtain. The most widely 

known and used approximate procedure is the Rayliegh-Ritz method in which the structure’s 

displacement field is approximated by functions that include a finite number of independent 

coefficients (or natural coordinates; one for the Rayleigh method and more than one for the 

Rayleigh-Ritz method). The assumed solution functions must satisfy the kinematic boundary 

conditions (otherwise the convergence is not guaranteed no matter how many functions are 

assumed) but they need not satisfy the static boundary conditions (if they satisfy the static 

boundary condition a fairly good solution accuracy can be expected). The unknown constants 

in the assumed functions are determined by invoking the principle of minimum potential 

energy. Suppose for example the assumed function has n independent constants ai 

(i=1,2,….n). Since the approximate state of deformation of the structure is characterized 

(amplitude as well as shape) by these n constants the degrees of freedom of the structure have 

been reduced from ∞ to n. Invoking the principle of minimum potential energy it follows that 
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Since 1a are arbitrary Equation (2.63) implies that 
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0


ia


   i = 1, 2……,n                           (2.64) 

Equation (2.64) yields a system of n simultaneous equations that can be solved for the 

coefficients 1a for static problems and in the case of Eigenvalue problems the determinant 

(characteristic determinant) for the unknown constants is set equal to zero for the n 

Eigenvalues [28]. 

 

A few general observations with regards to the Rayleigh-Ritz Method are now made. 

Although the accuracy is generally improved by increasing the number of independent 

functions, the computation efforts increase proportionally to the square of the number of 

independent functions. The type of functions to be selected for a particular problem is based 

on an intuitive idea of what the true deformation looks like. Trignometric or polynomial 

functions are frequently used simply because of the ease of analysis involved. By virtue of 

using the principle of minimum potential energy all approximate solutions make the structure 

stiffer than what it is. Consequently the displacements predicted by the Rayliegh-Ritz method 

are always smaller than exact ones and Eigenvalues are greater than those predicted by exact 

solution methods. 

 

Finally, if the approximate displacements are used to evaluate internal forces and stresses the 

latter results should be viewed with caution because the stress components depend on the 

derivatives of displacements. Although displacements themselves may be reasonably accurate 

their derivatives may not be the case. In fact the higher the derivates the accuracy involved is 

further deteriorated. In a similar fashion the accuracy of Eigenvalues associated with higher 

mode Eigen vectors deviates much more rapidly than those associated with lower mode 

Eigen vectors. 
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2.11 The Rayleigh Quotient 

Mikhlin [50] proposes that the approximate solution of the Eigen value problem usually 

reduces to the integration of a differential equation of the form  

0 MwLw                   (2.65) 

 

where w is the displacement that satisfies not only the differential equation (2.65), but also 

certain homogenous boundary conditions (which may preclude the cantilevered end-

condition), L and M are certain differential operators and λ is an unknown numerical 

parameter. For the stability of a column, the governing differential equation is 
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where x is the length co-ordinate and w is the lateral displacement. For Equation (2.66) 
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P                    (2.69) 

 

Equations (2.67) and (2.68) are self-adjoint (symmetric), positive definite operators for the 

usual end supports of columns. If a linear differential operator L has the following property it 

is called self-adjoint or symmetric operator: 

   LvuvLu ,,                   (2.70) 

 

The inner product of two functions g and h over the domain V is defined as  

  hg, inner product of g and h 
V

ghdv                (2.71) 

 

An operator is said to be positive definite if the following inequality is valid for any function 

from its field of definition,   :0qu  

    0,,0, uLuuLu                  (2.72) 
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The reason why one is concerned whether or not a boundary-value problem has the properties 

of being both, a self adjoint (symmetric) and positive definite entity, is that the boundary-

value problems having these properties are said to be properly posed, and there exists a 

unique solution to a properly posed boundary-value problem. An improperly posed boundary-

value problem due to haphazardly or arbitrarily assigned boundary conditions is meaningless. 

 

Multiplying both sides of Equation (2.66) by w and integrating over the domain yields 
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Integrate the left hand side of Equation (2.73) by parts twice as follows: 
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For simply supported, fixed or cantilevered end conditions, the last two quantities are zero. 

Integrating the right-hand side of Equation (2.73) gives 
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The last expression vanishes for fixed and simple supports (not for the cantilevered end). 

Substituting the expanded integrals back into Equation (2.66) gives 

 
























l

l

dx
dx

dw

dx
dx

wd
EI

P

0

2

0

2

2

2

 (C1 method)                                                                                    (2.74) 

 

It is noted that Equation (2.74) works for cantilevered columns despite the fact that one of the 

concomitants is not zero. As mentioned earlier the error involved in the approximate solution 
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propagates much faster in the higher order derivatives. In order to improve the critical value 

computed from the Rayleigh quotient, 
2
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   (C2 method)                                                                                    (2.75) 

 

The Rayleigh Quotient detailed here is in effect the basis of the theory outlined in §4.4, as 

identified by Timoshenko and applied to the cantilever-column, in order to determine its 

buckling load.  

 

2.12 Local Buckling 

Local buckling of plates or shells is indicated by the growth of bulges, waves or ripples and is 

commonly encountered in the component plates of thin structural members. Local buckling 

of an edge supported thin plate does not necessarily lead to total collapse as in the case of 

columns since plates can generally withstand loads greater than the critical. However the P-δ 

curve shown in Figure 2.9 below illustrates plates’ generally reduced stiffness after buckling 

so plates cannot be used in the post buckling region unless the behaviour in that region is 

known with confidence. It should be emphasized that the knee in the P-λ curve is unrelated to  

 

 

 

 

 

 

 

 

 

Figure 2.9: Local buckling of edge supported thin plate with load-load induced 

displacement curve (P-λ) and the lateral displacement curve (P-δ) [33] 

 

λ 

λ 
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any elastic-plastic yield transition; the systems being discussed are totally elastic. The knee is 

an effect of overall geometric instability rather than material instability.  

 

A fundamental difference in the buckling characteristics of framed members and plates is that 

for the former, buckling terminates its ability to resist any further load whereas in the case of 

the latter, this us not necessarily the case. A plate element may carry additional loading 

beyond the critical load and this reserve strength is called the postbuckling strength. The 

relative magnitude of the postbuckling strength to the buckling load depends on various 

parameters such as the dimensional properties, boundary conditions, types of loading and the 

ratio of buckling stress to yield stress. Plate buckling is usually referred to as local buckling 

[28]. Structural shapes composed of plate elements may not necessarily terminate their load-

carrying capacity at the instance of local buckling of individual plate elements. Such an 

additional strength of structural members is attributable not only to the postbuckling strength 

of the plate elements but also to possible stress redistribution in the member after failure of 

individual plate elements [28]. The photograph in Figure 2.10 below shows the local buckling 

of a model box girder constructed from thin plates.      

 

 

 

 

 

Figure 2.10: Local buckling of model box girder [33] 

 

2.13 Torsion in Structures 

Torsion in structures is perhaps one of the least well understood subjects in structural 

mechanics. Purely torsional loading rarely occurs in structures except in the power 

transmitting shafts of automobiles or generators. However torsion does develop in structures 

along with bending from unintended eccentricities as can be found in spandrel beams. 

Generally thin-walled sections do not behave according to the law of the plane sections 

employed by Euler-Bernoulli-Navier [28]. 

 

 A thin-walled section is referred to as rolled shape in which the thickness of an element is 

less than one-tenth of the width. Many stocky rolled shapes do not meet this definition; 
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however the general theory of thin-walled section developed by Vlasov [52], [53] in the 

1930s appears to be applicable without significant consequences [28]. 

 

A thin-walled section becomes “warped” when it is subjected to end couples (torsional 

moment). Hence the cross section does not remain plane after deformation. Exceptions to this 

rule are tubular sections and thin walled open sections in which all elements meet at a point 

such as the cruciform, angle and tee section. Another distinct feature of the response of 

structural members to torsion is that an externally applied twisting moment is resisted 

internally by some combination of uniform or pure St. Venant torsion and non uniform or 

warping torsion depending on the boundary conditions that is whether a member is free to 

warp or whether warping is restrained. Thin walled open sections are very weak against 

torsion and are susceptible to lateral-torsional buckling or flexural-torsional buckling, which 

is affected by the torsional strength of the member even though no intentional torsional 

loading is applied.  

 

Torsional buckling of columns can arise when a section under compression is very weak in 

torsion, and leads to the column rotating about the force axis. More commonly where the 

section does not possess two axes of symmetry as in the case of an angle section, this rotation 

is accompanied by bending and is known as flexural torsional buckling. 

 

 

              

 

Figure 2.11: Examples of (a) Torsional Buckling (b) Flexural-Torsional Buckling (c) 

Lateral Buckling [33] 

Lateral buckling of beams is possible when a beam is stiff in the bending plane but weak in 

the transverse plane and weak in torsion as is the I  beam as shown in Figure 2.11. 

 

If warping does not occur or if warping is not restrained, the applied twisting moment is 

entirely carried by uniform torsion. When a member is free to warp no internal normal 

(a) (b) (c) 
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stresses develop despite the warping deformation. This is tantamount to the fact that a heated 

rod will not develop any internal stresses if it is free to expand at one or both ends despite the 

temperature-induced elongation of the rod. If warping is restrained the member develops 

additional shearing stresses as well as normal stresses. Frequently warping stresses are fairly 

high in magnitude and they are not to be ignored. 

 

2.14 Torsional and Flexural-Torsional Buckling 

The possibility of torsional column failure had never been recognised until open thin-walled 

sections were used in aircraft design in the 1930s. Experience has revealed that columns 

having an open section with only one or no axis of symmetry show a tendency to bend and 

twist simultaneously under axial compression. The ominous nature of this type of failure lies 

in the fact that the actual critical load of such columns may be less than that predicted by the 

generalised Euler formula due to their small torsional rigidities. Bleich [51] gives a thorough 

overview of the early development of the theory on the torsional buckling [28]. 

 

Bleich and Bleich [54], were among the early developers of the theory on torsional buckling 

along with Wagner and Pretschner [55], Ostenfeld [56], Kappus [57], Lundquist and Fligg 

[58], Goodier [59], Hoff [60] and Timoshenko [61]. All of these authors make the 

fundamental assumption that the plane cross sections of the column warp but that their 

geometry does not change during buckling [28]. Thus the theories consider primary failure 

(global buckling) of columns as opposed to local failure characterised by distortion of the 

cross sections. The dividing line between primary and local failure is not always sharp. 

Separate analysis of primary and local buckling based on governing differential equations 

without abandoning the assumption that cross sections of the column will not deform may 

yield only approximate solutions since there could be coupling of primary and local buckling. 

Modern finite element codes with refined modelling capabilities incorporating at least flat 

shell elements may be able to assess this combined buckling action. 
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2.15 Lateral-Torsional Buckling 

A transversely or combined transversely and axially loaded member that is bent with respect 

to its major axis may buckle laterally if its compression flange is not sufficiently supported 

laterally. The reason buckling occurs in a beam at all is that the compression flange or 

extreme edge of the compression flange or the extreme edge of the compression side of a 

narrow rectangular beam becomes unstable. If the flexural rigidity of the beam with respect 

to the plane of bending is many times greater than the rigidity of the lateral bending the beam 

may buckle and collapse long before the bending stresses reach the yield point. As long as the 

applied loads remain below the limit value, the beam remains stable. In other words, the 

beam that is slightly twisted and/or bent laterally returns to its original configuration upon the 

removal of the disturbing force. With increasing load intensity the restoring forces become 

smaller and smaller until a loading is reached at which in addition to the plane bending 

equilibrium configuration an adjacent, deflected and twisted, equilibrium becomes equally 

possible. The original bending configuration is no longer stable and the lowest load at which 

such an alternative equilibrium configuration becomes possible is the critical load of the 

beam. At the critical load the compression flange tends to bend laterally exceeding the 

restoring force provided by remaining portion of the cross section causing the section to 

twist. Lateral buckling is a misnomer, for no lateral deflection is possible without concurrent 

twisting of the section.  

 

Bleich [51] gives credit to Prandtl [64] and Michell [65] for producing the first theoretical 

studies on the lateral buckling of beams with long narrow rectangular sections. Similar credit 

is also extended to Timoshenko [66] for deriving the fundamental differential equation of 

torsion of symmetrical I-beams and investigating the lateral buckling of transversely loaded 

deep I-beams with the derived equation [28]. Since then, many investigators including Vlasov 

[52], Winter [67], Hill [68], Clark and Hill [69] and Galambos [70] have contributed on both 

elastic and inelastic lateral-torsional buckling of various shapes. Some of the early 

developments of the resisting capacities of steel structural members leading to the Load and 

Resistance Factor Design (LRFD) are summarised by Vincent [71]. 

 

 

 

 



44 

 

2.16 Shear in Thin-Walled Closed Tube Sections 

Rees in Mechanics of Optimal Structural Design,  [14] determines from first principles the 

optimum dimensions for a non-uniform, thin-walled, rectangular tube having side lengths b  

and d  with wall-thicknesses bt and dt when a vertical force yF is applied at the shear centre. 

In § 5.2 the optimum dimensions for a uniform thin walled rectangular tube is determined, 

using as a basis the following theory. 

 

Figure 2.12: Net Shear Flow in a closed thin walled tube 

 

The net shear flow in a closed, thin walled tube under a single vertical force Fy applied 

through the shear centre E is written as  

 Eb qqq                    (2.76) 

 

Here bq is the flexural shear flow expression used previously with open sections in [14] as 
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However unlike an open section there are no free surfaces to take as an origin so for a closed 

tube a constant Eq must be added to bq . Thus Eq  is a constant of integration with an important 
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physical interpretation namely that when Eq is added to bq it ensures the rate of twist z is 

zero at E [6]. That is 

 

   0
t

ds
q

t

ds
q Eb                  (2.78) 

 

which allows Eq to be found. If the position of the shear centre E is not obvious it may be 

found by combining Equation (2.77) with the counterbalance required between the torque 

from the net shear flow at  Eb qqq  and the torque with Fy applied through the shear 

centre, each torque being referred to any convenient reference point P. This torque balance is 

written as follows 

 

RdsqRdsqqRdseF EBxy                   (2.79) 

 

where xe is the horizontal distance required between E and P. Within the first integral R is a 

perpendicular distance from P to the net incremental force sq . Alternatively the split in this 

integral recognises Eq as a constant when Rds becomes twice the area enclosed by the 

wall’s mean centre-line. §5.2 demonstrates the use of Equations (2.76), (2.77), (2.78) and 

(2.79). 

 

2.17 Torsion in Thin-Walled Closed Tube Sections 

The Bredt-Batho theory provides the torque AqT 2 in terms of the wall shear flow q and 

the cross-sectional area A, which refers to that area enclosed by the tube wall’s mean centre 

line for those irregular shaped tubes of varying thickness.  The shear flow tq  is always 

constant in a closed tube irrespective of whether   or t varies as the case may be as 

mentioned previously. Hence in a tube with uniform thickness the torque may be expressed 

as  

tAT  2                   (2.80) 

 

where   and t refer to a single point in the wall. An optimum design ensures that the limiting 

shear stress from torsion matches that required to cause shear buckling in the wall [14].   
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2.18 Combined Shear and Torsion in Thin-Walled Closed Sections  

When a transverse shear force does not act through the shear centre of a given cross-section 

its net shear flow is a consequence of combined torsion and shear [73]. In closed sections it is 

more convenient to treat the effects of the St Venant’s torsion and flexural shear together but 

if they were separated the torsional effect or the Bredt-Batho shear flow amounts to taking 

the difference between the net shear flow from here and that of pure flexure from § 5.2.  

 

The shear flow in a closed tube under a single vertical force Fy applied at any position is 

written generally as 0qqq b   where bq is the flexural shear flow [46, 73], 


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q                 (2.81) 

 

Unlike an open section there is no free surface, where 00 q , to take as the origin for s. In 

the case of the closed tube a constant 0q  must be added to bq . The sum 0qqb  ensures static 

equivalence between the net shear flow and the torque that arises when Fy does not pass 

through the shear centre. In the case of an asymmetric tube this equivalence is written as 

  RdsqRdsqpF by 0                 (2.82) 

 

where p is the horizontal (perpendicular) distance between Fy and any convenient reference 

point P and R is the perpendicular distance from P to the incremental force qbδs within the 

tube wall as shown in Figure 2.13. 

 

Figure 2.13: Static Equivalence between torque (Fyp) and shear flow qb [25] 
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The second path integral in Equation (2.82) is twice the area A enclosed by the mid wall. 

Hence the second term in Equation (2.82) becomes the contribution from the St Venant 

torque 2Aqo. It is convenient to consider the shear flows from transverse shear and St Venant 

torsion together rather than to separate them since we neither have pure flexure nor pure 

torsion Fy. This allows qo to be identified with the shear flow at the origin chosen for the mid 

wall path s. In § 2.16 the special case where Fy passes through the shear centre was 

considered in which the net shear flow was written as Eb qqq  where the Equations (2.76), 

(2.77), (2.78) and (2.79) apply. The bq shear flows found from Equation (2.77) remain 

unaltered in regard to the position Fy, but the net shear flow allows for its position i.e. qE is 

added when Fy coincides with the shear centre, qo is added when Fy is applied elsewhere.  

Again it would be convenient to treat the two effects together but if need be they can be 

separated with the torsional effect amounting to subtracting the shear flows given in § 5.2 

from the net shear flows obtained here. In other words 

 

    EEbb qqqqqq  00                           (2.83) 

 

showing that the torsional shear flow arising from a transverse force displaced from the shear 

centre is the difference between the ‘initial’ shear flows for each case.  
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2.19 Applications of the Telescoping Cantilever Beam Assembly 

The aim of the sections that follow is to introduce to the reader the present applications of the 

telescoping beam assembly in the different work environments. 

 

2.19.1 Mobile Elevating Work Platforms 

According to EN 280 [3] – the relevant European design standard – the definition of a mobile 

elevating work platform, or “MEWP”, is “a machine which consists as a minimum of a work 

platform, an extending structure and a chassis. The work platform is a fenced platform or 

cage that can be moved under load to the required position and from which repair or similar 

work can be carried out. The extending structure is connected to the chassis and supports the 

work platform. It allows movement of the platform to its required position. The chassis is the 

base of the MEWP and may be pulled, pushed, self-propelled etc. MEWP’s are known by a 

variety of names including hydraulic work platform, access platform and aerial work 

platform. For the purposes of this thesis the term ‘access platform’ is used.   

 

(a) Related Terminology 

The access platform industry, like any other, has its own terminology. In any 

discussion of access platform design it is necessary to make use of various industry 

specific terms. For this purpose the terminology is outlined below. Figure 2.14 should 

be referred to, for clarification of the various measures. 

 

(i) Platform Floor Height 

The maximum height that the floor of the problem can reach with the 

extending structure fully unfolded. This measure takes on a particular 

significance in the USA where it is the accepted measure of an access 

platform’s height. 

 

(ii) Working Height 

In Europe it is the accepted norm to quote working height of an access 

platform. This is the platform floor height plus an allowance for the vertical 

reach of the operator(s). General practise is to add two metres to account for 

this reach. 
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(iii) Working Outreach 

This is the horizontal distance from the slew centre of the machine to an 

imaginary line 600mm beyond the outside edge of the platform with the 

machine set to its maximum horizontal extension. Again, the extra 600mm is 

to account for the reach of the operator.  

 

(iv) Safe Working Load 

This refers to the maximum load that can be safely carried in the cage. The 

manufacturer specifies the “SWL”. As would be expected the manufacturer is 

obliged to test to 125% of the working load when evaluating a new platform 

design. The accepted SWL for the majority of access platforms is 225kg. This 

allows, according to EN280 standard, for two operators at 80kg each and 65kg 

of tools and equipment. It also satisfies the USA requirement of 500lb cage 

capacity. 

 

(v) Height Stowed 

This is the maximum height of the machine when it is in its fully folded 

position. The stowed height is particularly important when designing a 

machine that is extended for use indoors as well as outdoors, for obvious 

reasons. The usual target for machine designers is to stay below the 2-meter 

limit imposed by the height of a standard doorway. 

 

(vi) Length Stowed 

The corresponding figure for length is of considerable importance for trailer 

machines due to the requirements of road traffic approvals and legislation. It is 

equally relevant when considering how machines are to be delivered, since 

there are limits to the size of shipping containers and so forth. 
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Figure 2.14: Terminology associated with the Mobile Elevating Access Platform (Taken 

from [2]) 
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(b) Access Platform Types 

Access platforms in general can be divided into a number of groups and in the first instance 

the type of extending structure they employ usually classifies machines. Stick booms, 

articulating booms and scissors account for the majority of machines. However the stick and 

articulating boom types are subdivided according to the chassis, which can be trailer 

mounted, vehicle mounted or self-propelled. 

 

Straight or “stick boom” machines (see Figure 2.15) elevate the operators to a given working 

height by means of a single straight boom. A hydraulic cylinder controls the angle of the 

boom. The boom can be of fixed length but more usually has an extending or “telescoping” 

function. Typically this telescoping function will be achieved by means of a multi stage 

cylinder and a series of chains. The stick boom machine is ideal for accessing areas such as 

the underside of bridges but lacks the ability to extend up and over an obstruction.  

 

As the name suggests, scissors lifts (Figure 2.16) make use of a pantograph type linkage to 

achieve a given working height. In contrast to other machine types they provide minimal 

“outreach”- the maximum horizontal distance which can be reached by the operator – but 

platform areas can be large and the smaller types are ideal for use in confined spaces indoors. 

 

An articulating boom machine as shown in Figure (2.17) has a number of booms that are 

linked by “knuckles”. Again hydraulic cylinders control the angles of the booms. One or, in 

some cases, several of the booms may have a telescoping capability. This type of machine is 

less suited to the under bridge type of work mentioned earlier. However independent 

operation of the booms allows the user to manoeuvre the machine up and over an obstacle.  

 

As explained earlier the various machine types can be sub-divided into trailer mounted, self 

propelled and vehicle mounted machines. In trailer mounts as shown in Figure (2.18) the 

chassis or base of the machine forms a road-towable trailer. The trailer is fitted with 

outriggers or stabilisers that are extended once the machine forms a road-towable trailer. The 

trailer with outriggers extended forms a solid base for the machine. Outriggers can be manual 

or hydraulic. A common feature is a retractable axle that allows the machine width to be 

reduced to fit through a standard size doorway. 
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Figure 2.15: Straight or “stick boom” access platform [74] 

 

 

 

Figure 2.16: Scissor Lift [75] 
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Figure 2.17: Articulating Boom Machine (Taken from [2]) 

 

 

Figure 2.18: Trailer Mounted Machine (Taken from [2]) 

 

Self-propelled machines can be driven under their own power whilst on site. Stick booms, 

articulating booms and scissors can all be self-propelled. The drive facility is generally 

available with the booms extended or folded although drive with the booms extended is only 

permitted at a reduced speed. Self propelled machines greatly reduce the amount of time 

needed to set up since there are no stabilisers to contend with. There have been many 

variations on the theme of the self-propelled machine. Rough terrain outdoor machines with 

petrol, diesel or liquid propane gas power sources are available as are dedicated “indoor” all 

electric machines. In addition, machines that make use of multiple power sources are 

available. The ability to switch from one power source to another instantly enables the same 
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machine to work indoors and outdoors. This added flexibility is a major selling point 

especially in the hire industry. 

 

The term vehicle mount is self-explanatory. In general vehicle mounted machines utilise the 

type of articulating boom structure found on a trailer mounted or self propelled machine. 

Indeed in some cases a company offering a vehicle mount will simply adapt the entire 

extending structure from an existing trailer or self propelled machine as shown in Figure 

(2.19). The extending structure is built onto an existing vehicle. Typically the vehicle use 

would be a large box van or flat-bed truck. The extending structure can be directly attached to 

the chassis of the vehicle or alternatively a purpose built base is attached to the chassis and 

the booms are built onto the base. The increased base mass provided by a large flat-bed lorry 

obviously allows extremely large working height and outreach figures to be achieved if 

required.   

 

 

Figure 2.19: Vehicle Mounted Access Platform [76] 

 

2.19.2 Telescopic Retractable Roofing Systems 

L.I.TRA. USA [77] is one of a number of establishments engaged in the design, manufacture, 

installation and maintenance of retractable roofing and sliding roof systems. These offer ideal 

solutions for covering wide spaces such as terraces or patios of restaurants, hotels, private 

houses, resorts or swimming pools as is amply demonstrated in Figures 2.20 and 2.21. The 
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telescopic coverings offer protection from the elements as a result of thermal and acoustic 

isolation.    

       

(a)                                                                            (b) 

Figure 2.20: A retractable roof enclosure (a) before deployment and (b) after 

deployment [77] 

 

     

(a)                                                                            (b) 

Figure 2.21: A retractable commercial garden roof canopy (a) before deployment and 

(b) after deployment [77]  

Figure 2.22 shows a retractable pool enclosure manufactured by the same firm [78]. 

Naturally, covering the swimming pool offers many advantages more important of which is 

the increase in commercial value and prolonged usage period, free from relying upon the 

effects of the elements. In winter, the retractable roofing system protects an enclosed pool 

from dampness, thereby lowering maintenance costs and when enclosed with lateral panels, 

provides thermal isolation and conversely in the summer, it offers protection from the sun 

and shelter from the wind.  

http://www.litrausa.com/
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Figure 2.22: A retractable pool enclosure [77]  

Figure 2.23 shows a retractable awning used in a commercial setting. It has all of the 

advantages as mentioned earlier, for all other retractable type roofing systems. 

 

Figure 2.23: A retractable awning [77]  

L.I.TRA. USA [77] also manufactures retractable roofing systems for professional sports 

stadiums, which can be opened and closed at will, as the need demands. The retractable 

roof system is available in two options from the company. The first installed at the Fenway 

Park Stadium in the USA, as shown in Figure 2.24 consists of two parts (one fixed and the 
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other retractable) which allows for the roof to open at half its full size. The second is a 

system, made of three parts of which one is fixed and the other two are movable as is 

shown installed at the Churchill Downs in Louisville, Kentucky, USA, in Figure 2.25. This 

can be opened at up to two-thirds of its full size. 

 

   

(a)                                                                            (b) 

Figure 2.24: Fenway Park retractable stadium roof system consisting of two parts (a) 

before deployment and (b) after deployment [77] 

   

(a)                                                                            (b) 

Figure 2.25: Churchill Downs Enclosure with a retractable stadium roof system 

consisting of three parts (a) before deployment and (b) half way through full 

deployment [77] 

 

 

 

 

 

http://www.litrausa.com/
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2.19.3 Telescoping Marine Assemblies  

Nautical Structures USA are specialists in maritime structures and a wide range of 

manufacturing for related use. Of the many complex structures that they manufacture, the 

following two structures are of relevance to the topic at hand. The first is the Sliding type 

Overhead Beam Crane which is a compact multi-stage telescoping crane. It is designed to 

work independently as an aft tender garage crane or to work in synchronised matched pairs to 

launch large tenders from a tender garage. The primary material of construction is aluminium 

in order to reduce the potential for corrosion and system weight. The capacities of these 

cranes range from 500-10,000 kg. These compact designs permit the crane structure to nest 

into the vessel’s overhead and live within the confines of the tender garage.  

 

Figure 2.26: The SL-DEX Type hydraulic overhead beam crane manufactured by 

Nautical Structures USA [78]  

The single, double and triple telescoping type of passerelles or gangplanks are unique designs 

that increase the stowed efficiency of the plank as shown in Figures 2.28 (a), (b) and (c) 

respectively. By virtue of their design, these telescoping gangplanks allow the ratio of stowed 

length to deployed length to be increased, thereby also enabling the pocketing hydraulic 

passerelle to stow in shorter spaces within a yacht. The gangplank may be deployed with the 

telescoping sections extended or retracted. The pocketing hydraulic passerelle can thus be 



59 

 

used in a variety of boarding conditions. As per Nautical Structures [78] the telescoping 

gangplanks luffs +/- twenty degrees an slews a total of ninety degrees.   

As a result of the hydraulic self-centring, slew-lock and float functions incorporated as 

standard design features into the telescoping gangplank, the need for electric limit or 

proximity switches is eliminated. This results in long term reliable performance in a wet 

marine environment with reduced maintenance demands. 

   

(a)                                                                            (b) 

 

                                                                        (c) 

Figure 2.27: Applications of the SL-DEX Type hydraulic overhead beam crane [78] 
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(a) 

 

(b) 

 

(c) 

Figure 2.28 (a) Single telescoping gangplank (b) Double telescoping gangplank and (c) 

Triple telescoping gangplank [78]  
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2.19.4 Telescoping Adjustable Columns 

Telescoping adjustable columns are also known as “tele posts”, “sectional columns”, 

“double-sectioned columns”, “jack posts”, or “jacks”. They come in two or more hollow steel 

tube sections that are assembled on site. A smaller diameter tube is fitted into a larger 

diameter tub and the sections are held in place with steel supporting pins which pass through 

the pre-drilled holes of both tubes. Telescoping adjustable columns are regularly used in 

construction to adjust or level a structure before installing a permanent column. They also 

find use as temporary supports during the course of building repair. These columns also have 

a large screw on one end that allows the height of the column to be adjusted in site.  

  

Figure 2.29: Telescoping adjustable column [79] 

 

2.19.5 Telescoping Adjustable Wheelchair Ramps 

The versatile telescoping adjustable wheelchair ramps are the perfect solution for use over 

different rises and obstacles. The ramp shown in Figure 2.30 can be adjusted from a 

minimum of six feet to a maximum of ten feet. Another advantage of these dual track ramps 

is their ability to accommodate any wheelchair width. These ramps come in two tracks for 

each set of wheels on a wheelchair or power chair and have a non-skid traction surface to 

prevent wheels from spinning. Also each track ramp has a handle on it so it can be easily 

transported and when fully closed they have a locking tab to prevent them from accidently 

opening up during storage or transport. Another advantage is the extremely light weight of 

the ramps for their size due to an aluminium body which also means that they will not rust or 

corrode and will hence last the test of time. The 64mm long attaching lip has a rubber pad to 
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prevent slipping of the track ramp and will fit on almost any flat surface including steps, 

porches, side doors on a minivan, sidewalks and more.  

 

Figure 2.30: Telescoping adjustable wheelchair ramps [80] 

 

2.19.6 Telescoping Poles and Adjustable Masts 

Numerous firms are engaged in the manufacture and sale of telescopic poles and adjustable 

masts. Of the many the one of particular importance and relevance, known as the “Wonder 

Pole
®
” [80] is detailed here. According to its manufacturers [80] “it is a composite material 

using a minimum fibre glass content of 70 % which is then circular would with additional 

fibre glass strands, using a method that adds tremendous strength in excess of 520 MPa, 

which in turn also prevents linear splitting commonly associated with other fibre glass poles. 

UV inhibitors are added to prevent degradation of the pole when exposed to the elements. 

Each section of the pole is wrapped with two layers of the highest quality Nexus
®
 veil which 

prevents fibre bloom and preserves the integrity of the outer and inner surface of the pole. 

The Pole has nesting sections that fit inside of each other and draw out to any desired height. 

Each section has exclusive “stop markers” to prevent the pole from too great an extension. 

The sections are secured into place by turning the “Sure Lock” grips that are factory moulded 

onto the pole. The Pole is non conductive and does not have any of the electrical hazards 

commonly associated with metal poles. Any part of the pole can be replaced or added at any 

time. In addition to these factors are the low weight, superior strength, available accessories, 

http://www.discountramps.com/
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styles, models and colours.” The construction of this “Wonder Pole
®
” is shown in Figure 

2.31. 

 

 Figure 2.31: Construction of the “Wonder Pole
®
” [81] 

 

Figure 2.32: A telescoping “Wonder Pole
®
” in use [81] 
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2.19.7 Steel Telescoping Towers 

US Tower Corporation [82] has been engineering and manufacturing tower systems for close 

to twenty years. Their product line has since expanded to include telescoping tubular towers 

with a variety of options such standard, self supporting and rotating.  

      

                    (a)            (b)             (c) 

 

(d) 

Figure 2.33: Examples of trailer mounted US Tower manufactured telescoping towers 

[82] 
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Figure 2.34: A self contained US Tower manufactured Command, Control, 

Communications and Tactical Shelter or C3T Trailer [82]  

Figures 2.33(a)-(d) shows some of the many examples of US Tower manufactured 

telescoping towers which are trailer mounted. According to the manufacturer, US Towers 

[83] they are designed for rapid deployment with minimal setup time with no earth 

penetration required for stabilization and can be easily mounted and retracted on harsh terrain 

and unforgiving weather conditions. Figure 2.33 (d) shows one of these towers in a storage 

position whereupon it can be transported with ease on board both military and suitably 

modified civilian aircraft. Also highlighted in Figure 2.34 is a self-contained command, 

control and communications and tactical shelter also known as a C3T Trailer, which are 

another of their groundbreaking innovations. By combining the strength and versatility of 

their steel telescoping towers with the freedom and portability proffered by a trailer, the 

company has made it possible to access mobile communications capabilities in the most 

extreme conditions.  As per the manufacturers [83] these telescoping towers currently find 

use in conflict zones around the world and also in expeditions across all manner of 

inhospitable climes, to maintain round the clock communications uplinks as well as 

surveillance and monitoring. 
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(a)                                                                   (b) 

    

(c)                                                                  (d) 

Figure 2.35: Examples of vehicle mounted US Tower manufactured telescoping towers 

[82] 

Figure 2.35(a)-(d) exhibits some of the vehicle mounted US Tower manufactured telescoping 

tower systems. Figures 2.35 (a) and (b) show two vehicle mounted systems utilised for onsite 

demonstrations that accentuate the capabilities of different technologies used in surveillance 

systems. With the versatility of a high end surveillance camera mounted on an extendable 

telescoping tower and powered by a self contained solar system, the manufacturers [83] claim 

to be able to manage the most stringent security needs.  Figures 2.35 (c) and (d) show vehicle 

mounted telescopic masts in action. The manufacturers [83] claim that these particular series 

of masts are operational at any intermediate height, can be mounted onto vehicles, shelters 

and trailers, and are automatically operated with spindle drive for full extension or retraction 

within 4-10 minutes.  
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2.19.8 Telescoping Storage Racks 

A SpaceSaver Rack as manufactured by Steel Storage Systems Inc, of Denver, Colorado, 

USA [83] is a series of double sided vertically stacked receptacles in levels up to eighteen 

feet high. The receptacles roll out like drawers so they can be easily accessed for loading or 

retrieving the contents with an overhead crane. The racks can be structured to accommodate 

bars, tubing or other steel tube products up to six metres in length thereby offering practical 

means to store steel products as long except flat on the floor. The basic building block of the 

SpaceSaver Rack is a telescoping tube that creates a storage drawer for steel bars, tubes and 

other shapes. The telescoping design allows the drawer to be cranked out for convenient 

loading or retrieval of material. The primary customers as identified by the company are steel 

distributors, heavy equipment manufacturers and steel fabricators who have large inventories 

of steel products and the necessary overhead crane equipment, who desire effective space 

utilization and accessibility.   

 

Figure 2.36: Aerial view of a large installation of SpaceSaver Racks in a steel service 

center [83] 
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Figure 2.37: SpaceSaver Racks installed outdoors [83] 

 

 

Figure 2.38: ‘8 Tall SpaceSaver Rack’ installed with optional electric lift cage. For 

maximum density ‘8Tall’ models nearly six metres high are available [83] 
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Figure 2.39: ‘5 Tall SpaceSaver Rack’ storing 50-60 cm tubing at Marmon/Keystone. A 

rolling platform ladder is used to access the upper levels [84] 

Figure 2.39 shows how Marmon/Keystone, an international distributor of piping and tubing, 

makes use of the SpaceSaver Racks for storing carbon, stainless and aluminium tubing 

inventory in their Denver, Colorado branch. This instalment shown in Figure 2.39 adds to the 

already commissioned and existing SpaceSaver racks to complete the transition from a 

pigeon hole rack system. The material ranges from 25-200 mm in diameter in lengths from 6-

7 metres. The racks significantly reduced order filling time due to the selectivity provided by 

the telescoping roll-out drawers. They also improved safety by eliminating the procedure of 

manipulating heavy tubes in and out of pigeon holes. The ‘5 Tall SpaceSaver Rack’ model 

maximised the available height in the plant and complimented their existing overhead cranes. 

Marmon/Keystone’s choice of this model having a width of 900 mm and 400 mm high 

drawers, as per the manufacturer’s case study profile [84] allowed “the dual purpose of 

storing bulky loads of tubing and to subdivide the drawers with receptacle dividers to further 

increase storage density for smaller quantity items”. Each of these roll-out drawers has a 

4000 kg capacity and a top level capable of 18000 kgs.     
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CHAPTER 3: DEFLECTION ANALYSIS 

 

3.1 Introduction – Deflection Analyses 

Design of cantilever beams for their many applications often requires estimates of deflections 

at various length positions.  The development of analytical methods for estimating deflection 

and stress for beams in bending were developed in the 18
th

 century by Euler and Bernouli and 

are described in many textbooks [5-8].  The beam deflection y is found by four common 

methods: (i) direct integration [5-8], (ii) Macaulay’s step function [8, 9], (iii) Mohr’s 

theorems [5-8] and (iv) strain energy [13, 14].  Both (i) and (ii) are based on the flexure 

equation: 

2

2

dx

yd
EIM                                                                 (3.1) 

Unless otherwise mentioned, the term y used throughout the course of this chapter indicates 

the overall tip deflection. Deflection theorems have been examined in brief in § 2.3 followed 

by a brief yet substantial examination of the four common methods of deflection analysis. 

This chapter has in its origins the ‘Tip Reaction Model’ proposed in order to perform 

deflection analysis of the three section telescopic cantilever beam assembly, as detailed in 

[13]. The analysis in [13] adopts the use of Macaulay’s step function method to predict the 

deflection at major points within the beam assembly particularly at the points of 

discontinuity. The points of discontinuity are of course those regions wherein the sectional 

properties change with change in the sections themselves, for example when moving along 

the beam assembly from the outer beam AB to beam CD, with the emphasis being on the 

overlap region CB as shown in Figure 3.1 (b), for the case of the two section telescoping 

cantilever beam assembly.  The details of the deflection analysis of the three section 

telescoping cantilever beam assembly were first propagated in an interim internal report [13] 

and then published [91]. (See also Appendix E). It was deemed necessary to understand if 

other established deflection prediction techniques could also be applied to the two section 

telescoping arrangement and  herein lies the basis of the sections § 3.5, § 3.6 and § 3.7 that 

follow. A number of factors were taken into consideration such as the possibility of varying 

individual beam lengths and variations in overlap lengths. To this end a number of ratios 

were used to express the sectional properties of the beams constituting the two section 

assembly. Parameterisation was used to great effect in [14], in order to allow for ease of 

comparison between deflection prediction techniques.   
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3.2 Telescopic Beam Theory 

 

In a telescopic cantilever beam one or more beams are stacked inside an outer beam which is 

fixed at one end to support the entire beam assembly.  The inner pieces move out when the 

application needs the full span. Generally, the assembly will have three types of beams: (a) 

one with end fixed, (b) one with end free and (c) and an overlapping section between (a) and 

(b). It follows that a beam of two lengths, which includes (a), (b) and (c) and corresponds to 

the sections marked 1, 3 and 2, respectively, as shown in Figure 3.1(a), is sufficiently general 

for the present analysis. Thus, Figure 3.1(b) shows, schematically, a telescoping cantilever 

with an overlapping length a1 between beams with lengths L1and L2.  The loading shown is a 

combination of the beams’ self-weights w1 and w2 and a concentrated, applied end-load P. 

 

 

Figure 3.1: Two-section, telescopic cantilever 

 

 

 

a1 

      L1  

       L2 =ϕ L1 

       w2 N/mm 

B C D A 

       w1 N/mm 
          P 

N 

       (b) 

L1 

L2 

   a1 3 

2 

1 

 

      (a) 
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3.3 Tip Reactions 

 

The tip reaction model assumes that in a telescopic cantilever beam the overlapping ends 

have concentrated reactions that transmit the effects of the loads applied to the top surface of 

the cantilever assembly.  Consider the two-section beam assembly shown in Figure 3.1(a).  

The fixed-beam AB has an overlap of length CB with beam CD. Tip reactions exist at the 

contact points C and B between beams AC and BD.  In addition, Figures A.2 and A.3 in 

Appendix A, shows the external loading applied to the assembly which is a combination of 

self-weight and a concentrated end-load.  Thus, each of the two-sections bears the loading 

shown in Figures A.2 and A.3. 

 

That the tip reactions must remain in equilibrium with the applied loading enables these 

reactions to be found as detailed in Appendix § A.2. In Figures A.2 and A.3 each beam 

section is shown separately as a free-body diagram.  Within each diagram the tip reactions are 

the forces applied to the each section from its neighbour Thus, the free-end section CD, 

exerts upon the fixed-end section AB, a downward force at B and an upward force at C (see 

Figure A.2).  The fixed-end section AB, on the other hand exerts equal forces upon the free 

end-section CD, at B and C but in opposition to these (see Figure A.3).  Using the tip 

reactions detailed in Appendix § A.2, a ‘C’ program was generated using the principle 

outlined in §3.4, wherein the deflected shape of each portion of the beam is provided by 

successive integration of Equation (3.1). The analyses were carried out on a telescopic 

cantilever assembly consisting of two hollow sections as detailed in §3.4. 

 

3.4 Macaulay’s Method for Deflection Analysis 

 

The deflected shape of each portion of the beam is provided by successive integration of 

Equation (3.1).  The first integration gives the slope dy/dx and the second integration provides 

the deflection expression y = y(x).  Constants of integration are introduced to ensure 

compatibility within the overlapping lengths as a similar integration process is applied to 

each separately and in sequence. The integration shows that the deflected shape of AC (not 

including the overlap BC) may be expressed as a polynomial: 

 

1011

2

12

3

13

4

141 txtxtxtxty                                   (3.2) 
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in which the coefficients t10 . . t14 are required to match the boundary conditions.  Here, as 

both the slope and deflection are zero at the fixing, where x = 0, then t10 and t11 are both zero.  

The remaining coefficients are seen to depend upon the length, the loading, and the flexural 

rigidity EI.  A further polynomial describes the deflection for the portion of this beam which 

extends into the overlap CB 

2021

2

22

3

23

4

242 txtxtxtxty                              (3.3) 

 

Equation (3.3) must match the slope and deflection imposed by the adjacent beam before it 

(AC).  This requirement also applies to a further polynomial that describes the deflection in 

the same overlap CB from within the second beam 

3031

2

32

3

33

4

343 txtxtxtxty                   (3.4) 

 

The tip reactions identified in § A.2 facilitate the load transfer between the two beams. The 

appended sections A.3, A.4, A.5 and A.6 show how such compatibility is ensured between 

the t-coefficients in Equations (3.2) – (3.4) for these two portions of the length ACB. The 

complete analysis requires additional equation sets given in Appendix A for the remaining 

beam sections, which  leads to the respective Equation sets (A.1)-(A.5) which contribute to 

the eventual determination of the overall tip deflection, represented by Equation (A.6). The 

sample set of Equations (3.2)-(3.4) given here are sufficient to show how they are 

programmed to admit a specific geometry and material. The program is then applied to 

predict the end-deflection of a model telescopic cantilever. 

 

Referring to [93], we now make use of two standard sections with the specifications listed in 

Table 3.1 below in order to plot the Equation set (A.6) from A.6 against varying values of the 

parameter α. 
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Table 3.1: Nominal dimensions and sectional properties of rectangular hollow sections –

Extract from ISO/FDIS 2633-2:2011 (E), [93]  

Section 
Size  

H mm  Bmm 

Thickness  

(T mm) 

Weight 

per unit 

length 

(N/mm) 

Second 

Moments of 

Area (mm
4
) 

Section 1 

(Fixed- 

End) 

 

60 

 

40 

 

5 

 

0.0685  

38.1x10
4 

Section 3 

(Free-End) 

 

50 

 

30 5 

 

0.0528 18.7x10
4
 

 

Assuming lengths of the fixed and free sections to be 1200 mm and 1000 mm respectively, 

and utilising the details provided from Table 3.1, it can be determined that the values of ϕ, β 

and γ are 0.833, 0.49 and 0.642 respectively. The values of tip deflection were plotted (as 

shown in Figure 3.2) using the parameters required in Table 3.2 which were in turn entered 

using the ‘C’ program.  

 

3.4.1 The ‘C’ Program 

 

The ‘C’ program detailed in Appendix B, for the two section telescopic cantilever beam 

assembly, marries each polynomial description of deflection within the two beam sections. 

Table 3.2 shows the steps leading to the overall tip deflection.  The program is able to 

calculate tip deflection under various applied loadings with different combinations of 

overlaps. To do this it requires the geometric parameters of the telescopic beam assembly 

entered interactively to find specific solutions defined by the five sets of equations given in 

Appendix A. Specifically it applies the acquired parameters to Equation set (A.1) to obtain 

the tip reactions.  The shape of AC is provided by Equation set (A.2) from which it calculates 

boundary conditions to define the shape of overlap CB between beams AB and CD. This 

recursive process continues until the deflected shape of every portion is defined as was 

demonstrated for the three section cantilever in [13] and [91].  Finally, the shape of BD is 

used to estimate the value for the tip deflection.  
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Table 3.2: Flow Chart of the ‘C’ program to calculate tip deflection 

 

 Define parameters like self weight, overlap length and second 

Moment of Area of the two sections. Declare variables RB, RC, I1, I2, 

L1, L2, α1, w1, w2, P, etc. Import the ‘include’ files. 

Calculate the reactions RB, RC, using Equation set (A.1) in A.2.  

Consider AC in AB. Establish equation of the shapes and calculate 

the magnitudes of g1 and d1 from Equation set (A.2) in A.3. Calculate 

g1 and d1 using Equation set (A.2) in A.3.  

Consider CB in AB. Establish equation of the shapes using g1 and d1 

which results in Equation set (A.3) in A.4.   

Consider CB in CD. Establish equation of the shapes using g1 and d1 

which results in Equation set (A.4) in A.5. Calculate g2 and d2 using 

Equation set (A.4) in A.5.  

Consider BD in CD. Establish equation of the shapes using g2 and d2 

which results in Equation set (A.5) in A.6. Calculate Tip Deflection 

using Equation set (A.6) in A.6.  
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Figure 3.2: End Deflection Plot obtained from Macaulay’s Theorem vs. Parameter α, for the two section telescopic cantilever beam 

assembly having individual part dimensions outlined in Table 3.1, and fixed and free-end lengths of 1200mm and 1000mm respectively. 

y/y0 represents the ratio of the tip deflection for a given value of wL/P, which in turn varies from 0.01 to 10, in multiples of 10, to the tip 

deflection of a single fixed end section cantilever having length L and uniform second moment of area I, such that 0y equals (PL
3
/3EI). 

(Key:              wL/P=10;                 wL/P=1;                wL/P=0.1;                 wL/P=0.01)   
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The graph in Figure 3.2 forms the basis for the deflection plots that have been plotted in 

Figures 3.7, 3.10 and 3.12. Each of the methods used to plot deflection for the two section 

telescoping assembly make use of normalised parameters in order to obtain well defined plots 

over a range of varying tip loads whilst varying the overlap ratios from a minimum of 0.1 to a 

maximum of 1, in increments of 0.1. Non dimensionalization is in essence the partial or full 

removal of units from an equation involving physical quantities by a suitable substitution of 

variables. In the deflection analyses carried out in this chapter, non dimensionalization is 

used to further simplify and parameterise the complex equations that are obtained and to 

allow for comparison between the deflection methods utilised. To illustrate this point better, 

refer to Figure 3.2, where the normalised parameters used are 
0y

y
and

P

wL
. The quantity 

P

wL
represents the ratio of the product of the self weight over the single fixed end section 

cantilever and the length over which it acts to the tip load acting on the same single fixed end 

cantilever section.  

0y

y
 represents the ratio of the tip deflection for a given value of 

P

wL
which in turn varies 

from 0.01 to 10, in multiples of 10, to the tip deflection of a single fixed end section 

cantilever having length L and uniform second moment of area I. In other words 0y equals 

EI

PL

3

3

.  
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 3.5 Mohr’s Moment Area Method  

 

 

 

Figure 3.3: Two section telescopic cantilever 

 

The thickness of the thin-walled sections that constitute the two section telescopic cantilever 

shown in Figure 3.3 is assumed to be constant along the beam. Of course, for the free-end 

section to slide within the fixed-end section the former will have dimensions smaller than that 

of the latter so individual dimensions of breadth, height and thickness are to be taken into 

account.  

 

The Mohr’s moment area method outlined here as well as the deflection analyses that follow, 

are applied to the telescopic beam assembly that consists of two sections each of differing 

length. For the purpose of this deflection analysis the sections are numbered from the fixed-

end towards the free-end as shown in Figure 3.3. As can be seen from Figure 3.3 and Figure 

3.4 the overlap is considered to be a separate section in order to account for changes in 

second moment of area and the change in self weight. 

 

L1=L 

L2=ϕL 

   αL 
3 

2 

1 
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Table 3.3: Individual Rectangular Section Properties 

Section Length(mm) 
Self Weight 

(N/mm) 

Second Moments of 

Area (mm
4
) 

Section 1 

 (Fixed End) 
L1=L w1= w I1=I 

Section 2 

(Overlap) 
αL  w2=(1+γ)w I2=(1+β)I 

Section 3 

 (Free End) 

 

L2=ϕL1= ϕL 

 

w3=γw I3= βI 

 

  

The lengths of the sections have been broken down individually in order to facilitate ease of 

calculations. The lengths, second moments of area and self weights are all expressed in terms 

of ratio and each of these in turn relate to the fixed-end section. The ratios α ,β and γ are 

assumed to be less than 1 which means that the fixed-end section has the larger dimensions of 

length, second moment of area and self weight respectively. 

 

 
Figure 3.4: Cross sectional view of the two section telescopic cantilever 

 

 

The moment area method developed by Mohr is a powerful tool for finding the deflections of 

structures primarily subjected to bending. Its ease of finding deflections of determinate 

structures makes it ideal for solving indeterminate structures using compatibility of 

      L1=L  

       α L 

      L2=ϕL  

1 2 3 

β I, γ w (1+β) I, (1+γ) w      I, w 

      L(1-α)      L(ϕ-α)  
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displacement. For example in a propped cantilever the method is adapted to provide the 

displacement at the prop. 

 

3.5.1 Mohr’s Moment Area Method applied to the two section tip loaded cantilever  

 
Figure 3.5: Mohr’s Moment Area Method applied to the two section tip loaded 

cantilever beam 

  

 

(a)  Derivation of Slope for the two section tip loaded cantilever beam 

Figure 3.5 shows the two section telescoping arrangement subject to a tip load having 

magnitude P. Taking into consideration the different variables detailed in Table 3.3 and 

shown in Figure 3.5, the slope of the telescopic assembly is derived as follows. 

Eθ = Area of the 
I

M
diagram from A-D 

      L (1-α)        α L       L (ϕ-α) 
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Substituting 1,0   in Equation (3.5) we get the slope of an equivalent single 

section cantilever having length 2L and uniform second moment of area I as 

 
EI

LP

2

2
2

  

 

Again substituting 1 in Equation (3.5) we get the slope of an equivalent single 

section cantilever having length L and uniform second moment of area I)1(  as 

IE
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
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
  

 

(b)  Derivation of Deflection for the two section tip loaded cantilever beam 

Having derived the slope of the two section telescopic cantilever beam assembly as 

shown in Equation (3.5), the deflection of the telescopic assembly is derived using the 

relation shown below. 

Ey = Moment of Area of the 
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M
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Substituting 1,0   in Equation (3.6) we get the standard deflection expression 

for an equivalent single section cantilever having length 2L and uniform second moment 

of area I as 
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Substituting 1 in Equation (3.6) we get the deflection for an equivalent single 

section cantilever having length L and uniform second moment of area I)1(  as 
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3.5.2 Mohr’s Moment Area Method applied to the two section cantilever subjected to    

uniformly distributed loading  

 
Figure 3.6: Mohr’s Moment Area Method applied to the two section cantilever beam 

subjected to uniformly distributed loading 

 

 

 

(a)   Derivation of Slope for the two section cantilever beam subjected to uniformly 

distributed loading 

 

          Figure 3.6 shows the two section telescoping arrangement subject to a uniformly 

distributed load or under the action of the individual self weights of the constituent 

beam sections. Taking into consideration the different variables detailed in Table 3.3, 

the slope of the telescopic assembly under the action of its self weight is derived, by 

summing the areas of the three individual 
I

M
 diagrams as shown in Figure 3.6. 
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Substituting 1,0   in Equation (3.7) we get the slope of an equivalent single 

section cantilever having length 2L and uniform second moment of area I as 
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Substituting 1 in Equation (3.7) we get the slope of an equivalent single section 

cantilever having length L and uniform second moment of area I)1(  as 
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(b)  Derivation of Deflection for the two section cantilever beam subjected to 

uniformly   distributed loading 

 

Having derived the slope of the two section telescopic cantilever beam assembly as 

shown in Equation (3.7), the deflection of the telescopic assembly is derived by 

summing the moments of the three individual areas of the 
I

M
from A to D, about the 

point D as shown in Figure 3.6 as outlined below. 
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Substituting 1,0   in Equation (3.8) we get the deflection for an 

equivalent single section cantilever having length 2L and uniform second moment of 

area I as 
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Substituting 1  in Equation (3.8) we get the deflection for an equivalent single 

section cantilever having length L and uniform second moment of area I)1(   as 
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3.5.3 Derivation of Deflection for the two section cantilever beam subjected to uniformly 

distributed and tip loading 

 

Knowing the deflections of the two-section cantilever under the action of a tip load and under 

the action of a distributed load (in effect the self-weight) as can be seen from Equations (3.6) 

and (3.8), it is imperative to find the combined total deflection of the two-section cantilever 

under their combined action. This is found by utilising the principle of superposition. 

Superposition is used to solve for beam and structure deflections of combined loads when the 

effects are linear, in other words each load does not affect the results or actions of other loads 

and the effect of each load does not alter the geometry of the structural system significantly. 
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Applying the principle of superposition we get the total deflection for the combined loading 

as the summation of equations (3.6) and (3.8) 
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Substituting 1,0    in Equation (3.9) we get the deflection for an equivalent 

single-section cantilever having length 2L and uniform second moment of area I under the 

action of a combined distributed loading and tip load as 

 
EI

Lw

EI

LP
y

8

)2(

3

2 43

  

 

Substituting 1  in Equation (3.9) we get the deflection for an equivalent single section 

cantilever having length L and uniform second moment of area I)1(  as 
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Equation (3.9) can be re written as 
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The term 
EI

PL

3

3

represents the end-deflection of a cantilever of length L and flexural rigidity 

EI, subjected to a tip load P Newton. This term is represented by the variable 

0y where
EI

PL
y

3

3

0  . Equation (3.10) now becomes 
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                                  (3.11) 

 

The curves in Figure 3.7 represent the plots of the non dimensional parameter 
0y

y
 against the 

overlap ratio parameter α, for 
P

wL
ratios 0.01, 0.1, 1 and 10. The non dimensional ratio 

0y

y
is 

obtained from Equation (3.11) by substituting the values of ϕ, β and γ as 0.833, 0.49 and 

0.642 respectively. Table 3.3 outlines how the ratios ϕ, β and γ can be derived using the 

specifications listed in Table 3.1. Whilst keeping the aforementioned ratios a constant, the 

overlap ratio parameter α is varied in increments of 0.1, from 0 to 1. 
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Figure 3.7: End Deflection Plot of Equation (3.11) obtained from Mohr’s Moment Area Theorem vs. Parameter α, for the two section 

telescopic cantilever beam assembly having individual part dimensions outlined in Table 3.1, and fixed and free-end lengths of 1200mm 

and 1000mm respectively. y/y0 represents the ratio of the tip deflection for a given value of wL/P which in turn varies from 0.01 to 10, in 

multiples of 10, to the tip deflection of a single fixed end section cantilever having length L and uniform second moment of area I, such 

that 0y equals (PL
3
/3EI). 

(Key:               wL/P=10;                 wL/P=1;                wL/P=0.1;                 wL/P=0.01)  
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3.6 Castigliano’s Theorem 

 

Castigliano’s method is used for determining the displacements of a linear elastic system 

based on the partial derivatives of strain energy. The first of Castigliano’s theorem 

determines the forces in a elastic structure whereas the second theorem determines the 

displacements in a form that is applied here. As is detailed in § 2.7.7, if the structure is 

linearly elastic, then the partial derivative of the strain energy of that system with respect to 

the applied force system is equal to the corresponding displacements produced. 

 

              
 

Figure 3.8: Cross sectional view of the two section telescopic cantilever 

 

Referring to Figures 3.8 and 3.9, Castigliano’s theorem, part 2, can be applied to each of the 

three sections that make up the composite telescopic cantilever beam assembly in order to 

give the total displacement y as follows 
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Figure 3.9 makes reference to the symbol 'z , where 
L

z
z ' , this in turn is the basis for the 

Equation (3.12). The subscripts 1, 2 and 3 represent the free end, overlap area and the fixed 

end respectively. Prior to evaluating the integral in Equation (3.12) the bending moments M1, 

M2 and M3 at each of the three sections starting with the free end to the fixed end are 

      L1=L  

       α L 

      L2=ϕL  

1 2 3 

β I, γ w (1+β) I, (1+γ) w      I, w 

      L(1-α)      L(ϕ-α)  
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evaluated and their respective derivatives with respect to the tip load P are found as shown in 

Equation sets (3.13)-(3.15) and then substituted in Equation (3.12) as outlined below.   

 

 
 Figure 3.9: Castigliano’s Theorem applied to the two section cantilever beam 

 

The following moment equations are as mentioned above expressed in terms of 'z  

where
L

z
z ' .    
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Derivative of M1 with respect to P is '1 Lz
P

M





                                  

 

      L (1-α)        α L       L (ϕ-α) 

      L1 = L 

      L2 =ϕ L 

(1+γ) w, (1+β) I     w, I   γ w, β I B C D 

P 

A 

    w, I  (1+γ) w, (1+β) I   γ w, β I 

      L1 =1 

        α       (ϕ-α) 

      L2 =ϕ 

      (1-α) 

F
V 

A B C D 

   z'=z/L 

(3.13) 



91 
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Substituting Equation sets (3.13), (3.14), (3.15) and 'dzLdz    in the Equation (3.12) for 
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Let  X then integrating the terms gives 
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Applying the limits now yields 
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The final equation can be written as 
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               (3.16) 

where  X  

 

Substituting 1,0    in Equation (3.16) we get the deflection for an equivalent 

single section cantilever having length 2L and uniform second moment of area I under the 

action of a combined distributed loading and tip load as 
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Equation (3.16) can be re written as 
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The term 
EI

PL

3

3

is represented by the variable 0y such that
EI

PL
y

3

3

0   for similar reasons as 

mentioned in §3.5.3. Equation (3.17) is written in its entirety as 

             

 

 

 

 

(3.18) 

 

 

 

 

 

 

 

 

 

 

The curves in Figure 3.10 represent the plots of the non dimensional parameter 
0y

y
 against 

the overlap ratio parameter α, for 
P

wL
ratios 0.01, 0.1, 1 and 10, calculated using 

Castigliano’s theorem, Part 2. As was the case for Macaulay’s theorem the values of the 

constant parameters ϕ, β and γ are taken as 0.833, 0.49 and 0.642, respectively and substituted 

into Equation (3.18), while varying the overlap ratio α from 0 to 1 in increments of 0.1.  
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Figure 3.10: Deflection Plot of Equation (3.18) obtained from Castigliano’s Theorem vs. Parameter α, for the two section telescopic 

cantilever beam assembly having individual part dimensions outlined in Table 3.1, and fixed and free-end lengths of 1200mm and 

1000mm respectively. y/y0 represents the ratio of the tip deflection for a given value of wL/P, which in turn varies from 0.01 to 10, in 

multiples of 10, to the tip deflection of a single fixed end section cantilever having length L and uniform second moment of area I, such 

that 0y equals (PL
3
/3EI). 

(Key:              wL/P=10;                 wL/P=1;                wL/P=0.1;                 wL/P=0.01)  
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3.7 Virtual Work Principle 

 

The principle of virtual work states that for any compatible virtual displacement field 

imposed on the body in its state of equilibrium the total internal virtual work is equal to the 

total external virtual work [6]. The displacement field imposed on the body is called virtual 

because they need not be obtained by a displacement that actually occurs in the system. The 

total virtual work is in effect the work done by the virtual displacement field which can be 

arbitrary provided they are consistent with the constraints of the system.  

 

In the case of the two section telescopic cantilever the total virtual work done is expressed in 

terms of the parameter F
V
 which is a virtual force as shown in Figure 3.11 below. This 

parameter along with the virtual moment M
V
 allows for the subsequent determination of the 

actual overall displacement of the two section cantilever assembly under the combined action 

of a tip load and self weight.  

 
Figure 3.11: Principle of Virtual Work applied to the two section cantilever beam 

      L (1-α)        α L       L (ϕ-α) 

      L1 = L 

      L2 =ϕ L 

 (1+γ) w, (1+β) I     w, I   γ w, β I B C D 

P 

A 

    w, I  (1+γ) w, (1+β) I   γ w, β I 

         1 

          α        (ϕ-α) 

          ϕ 

       (1-α) 

F
V 

A B C D 

   z’=z/L 



98 

 

As detailed in § 2.7.2, when considering the cantilever beam assembly to be in equilibrium 

and on subjecting it to a virtual displacement field, the internal virtual work induced or the 

strain  energy stored within the assembly must equal the external virtual work. Referring to 

Figure 3.11, the principle of virtual work can be applied to each of the three sections that 

make up the composite telescopic cantilever beam assembly in order to give the total virtual 

work expressed in terms of the product of the virtual force parameter F
V
 and the displacement 

y  as 
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Figure 3.11 makes reference to the symbol 'z , where
L

z
z ' , this in turn is the basis for the 

Equation (3.19). The subscripts 1, 2 and 3 represent the free-end, overlap area and the fixed-

end respectively. As was the case in Castigliano’s theorem, prior to evaluating the integral in 

Equation (3.19) the bending moments at each of the three sections starting with the free-end 

to the fixed-end are evaluated and their respective derivatives with respect to the tip load P 

are found as shown in Equation sets (3.20)-(3.23) and then substituted in Equation (3.19) as 

outlined below. Also the virtual moments are evaluated and found to be equal to the product 

of the virtual force parameter F
V
 and the distance z from the free end.  
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Bending Moment for the section   ')1( z  

  

 

     














































































2
2

2
2

2

2

22

2
2

2

'
2

'
2

'

22

22
.








z
wL

z
wL

PLz

L

z
L

w

L

zL
w

L

z
LP

Lz
wz

wPzM

                      

     









22
2

2 ''
2

'  zz
wL

PLzM                                                                 (3.21) 



99 

 

Bending Moment for the section    1'z  
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 Substituting Equation sets (3.20)-(3.23) and 'dzLdz    in the Equation (3.19) for 
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Let  X then integrating the terms gives 
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Applying the limits now yields 
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The final equation can be written as 
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where  X  

 

Substituting 1,0    in Equation (3.24) we get the deflection for an equivalent 

single section cantilever having length 2L and uniform second moment of area I under the 

action of a combined distributed loading and tip load as 
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Equation (3.24) can be re written as 
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Again the term 
EI

PL
y

3

3

0   for reasons as mentioned in §3.5.3. Equation (3.25) is written in its 

entirety as 

 
 
 
 
 
 
 

        

(3.26) 

 

 

 

 

 

Once again the curves in Figure 3.12 represent the plots of the non dimensional parameter 

0y

y
 against the overlap ratio parameter α, for 

P

wL
ratios 0.01, 0.1, 1 and 10, calculated using 

the Virtual Work Method. As before, the values of the constant parameters ϕ, β and γ are 

taken as 0.833, 0.49 and 0.642, respectively and substituted into Equation (3.18), while 

varying the overlap ratio α from 0 to 1 in increments of 0.1.  
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Figure 3.12: Deflection Plot of Equation (3.26) obtained from Virtual Work Theorem vs. Parameter α, for the two section telescopic 

cantilever beam assembly having individual part dimensions outlined in Table 3.1, and fixed and free-end lengths of 1200mm and 

1000mm respectively. y/y0 represents the ratio of the tip deflection for a given value of wL/P, which in turn varies from 0.01 to 10, in 

multiples of 10, to the tip deflection of a single fixed end section cantilever having length L and uniform second moment of area I, such 

that 0y equals (PL
3
/3EI). 

(Key:              wL/P=10;                 wL/P=1;                wL/P=0.1;                 wL/P=0.01)  
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 Figure 3.13: Theoretical End Deflection Plots vs. Parameter α, for the two section telescopic cantilever beam assembly having 

individual part dimensions outlined in Table 3.1, and fixed and free-end lengths of 1200mm and 1000mm respectively. . y/y0 represents 

the ratio of the tip deflection for a given value of wL/P, which in turn varies from 0.01 to 10, in multiples of 10, to the tip deflection of a 

single fixed end section cantilever having length L and uniform second moment of area I, such that 0y equals (PL
3
/3EI). 

(wL/P=10:     Macaulay’s Theorem;             Mohr’s Method;    Castigliano’s Theorem and Virtual Work Method 

wL/P=1:    Macaulay’s Theorem;           Mohr’s Method;  Castigliano’s Theorem and Virtual Work Method 

wL/P=0.1:     Macaulay’s Theorem;           Mohr’s Method;  Castigliano’s Theorem and Virtual Work Method 

wL/P=0.01: Macaulay’s Theorem;           Mohr’s Method; Castigliano’s Theorem and Virtual Work Method) 
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Figure 3.13 (a): Theoretical End Deflection Plots vs. Parameter α, for the two section telescopic cantilever beam assembly having 

individual part dimensions outlined in Table 3.1, and fixed and free-end lengths of 1200mm and 1000mm respectively for a wL/P ratio of 

10. y/y0 represents the ratio of the tip deflection for a wL/P ratio of 10, to the tip deflection of a single fixed end section cantilever having 

length L and uniform second moment of area I, such that 0y equals (PL
3
/3EI). 

(Key: wL/P=10:             Macaulay’s Theorem;             Mohr’s Method;             Castigliano’s Theorem and Virtual Work Method) 
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Figure 3.13 (b): Theoretical End Deflection Plots vs. Parameter α, for the two section telescopic cantilever beam assembly having 

individual part dimensions outlined in Table 3.1, and fixed and free-end lengths of 1200mm and 1000mm respectively for a wL/P ratio of 

1. y/y0 represents the ratio of the tip deflection for a wL/P ratio of 1, to the tip deflection of a single fixed end section cantilever having 

length L and uniform second moment of area I, such that 0y equals (PL
3
/3EI). 

(Key: wL/P=1:             Macaulay’s Theorem;             Mohr’s Method;             Castigliano’s Theorem and Virtual Work Method) 
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Figure 3.13 (c): Theoretical End Deflection Plots vs. Parameter α, for the two section telescopic cantilever beam assembly having 

individual part dimensions outlined in Table 3.1, and fixed and free-end lengths of 1200mm and 1000mm respectively for a wL/P ratio of 

0.1. y/y0 represents the ratio of the tip deflection for a wL/P ratio of 0.1, to the tip deflection of a single fixed end section cantilever having 

length L and uniform second moment of area I, such that 0y equals (PL
3
/3EI). 

(Key: wL/P=0.1:             Macaulay’s Theorem;             Mohr’s Method;             Castigliano’s Theorem and Virtual Work Method) 



109 

 

 

Figure 3.13 (d): Theoretical End Deflection Plots vs. Parameter α, for the two section telescopic cantilever beam assembly having 

individual part dimensions outlined in Table 3.1, and fixed and free-end lengths of 1200mm and 1000mm respectively for a wL/P ratio of 

0.01. y/y0 represents the ratio of the tip deflection for a wL/P ratio of 0.01, to the tip deflection of a single fixed end section cantilever 

having length L and uniform second moment of area I, such that 0y equals (PL
3
/3EI). 

(Key: wL/P=0.01:             Macaulay’s Theorem;             Mohr’s Method;             Castigliano’s Theorem and Virtual Work Method) 
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3.8 Summary 

The two section telescopic cantilever beam assembly has been subjected to deflection 

analyses using the four common deflection prediction techniques which have each been 

tailored to suit the unique nature of the structure. This has been done using a combination of 

ratios as outlined in Table 3.1. The curves displayed in Figures 3.2, 3.7, 3.10 and 3.12 

represent the deflection curves, produced as a result of subjecting the two section telescopic 

cantilever beam assembly, to a combination of both tip loading and the action of its own 

weight, using Macaulay’s theorem, Mohr’s Moment Area Method, Castigliano’s Theorem 

and the Virtual Work Principle, respectively.  It can be seen that the curves generated using 

Castigliano’s Theorem and the Virtual Work Principle are exactly the same. It must be 

remembered that the four deflection prediction techniques have been applied to the candidate 

telescopic assembly having dimensions specified in Table 3.1, for fixed and free-end lengths 

of 1200 mm and 1000 mm respectively. The reason for this was simply to see how and what 

effect varying lengths of the individual sections would have on the overall deflection curves 

thus generated by the analyses. The deflection curves produced for the candidate assembly, 

using the four methods, are compared in Figure 3.13. The following are some of the 

observations that can be made from Figure 3.13: 

 

1. The curves generated using Castigliano’s theorem and the Virtual Work method are 

one and the same.  

2. For lower 
P

wL
ratios, the curves generated by Mohr’s, Castigliano’s and the Virtual 

Work methods, are inseparable as can be evidenced from Figures 3.13 (b) – (d), with 

the exception of the curves obtained from the Macaulay’s theorem analyses. However 

for a 
P

wL
ratio of 10, the deflection curves are spread apart, revealing a clear 

difference as shown in Figure 3.13 (a). The Macaulay’s theorem generated curve has 

a greater magnitude as compared to the other deflection prediction curves, followed 

by Mohr’s theorem and finally both, Castigliano’s and the Virtual Work method. 

3. The deflection curve generated from Macaulay’s theorem, starts not at α=0, unlike the 

other curves, but at α=0.1. This is a consequence of the numerical implementation 
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scheme adopted i.e. the tip reaction model which was adapted into an equivalent ‘C’ 

program. 

4. Irrespective of which method was used to plot a given curve, for any 
P

wL
 ratio, all the 

curves meet at the same point, which coincides to the condition α=1.  

5. The difference between Macaulay’s theorem and the three other methods could be 

explained as being due to the reliance of the former on the tip reactions calculated for 

the varying overlap lengths, of which the latter three in turn are independent. Of 

greater interest arguably, is the difference between the deflection curves obtained 

from Mohr’s method and those generated from both Castigliano’s and the Virtual 

Work Method. The deflection magnitudes derived using Castigliano’s method and the 

Virtual Work method are the same. This is because the equations used to generate the 

respective curves are the same as is evident from Equations (3.18) and (3.26). 

Comparing either of these equations mentioned with Equation (3.11) derived using 

Mohr’s method reveals a significant difference in the second term which accounts for 

the uniformly distributed loading or self weight of the two section telescoping 

assembly. This difference in the case of the Mohr’s method analysis is in part due to 

the changing moments of areas that are taken into consideration when computing the 

deflection as elaborated in  §3.5.2 and shown diagrammatically in Figure 3.6.  

 

The curves generated in Figures 3.13 and separately in Figures 3.13(a)-(d) are explained in 

more detail in §9.1.1. The final objective of this chapter was to derive from first principles, 

deflection equations that would predict the in-line deflection induced in the two section 

telescopic cantilever beam assembly effectively, for any applied load. Not only do these 

equations predict the deflections, they also take into account all the possible variable factors 

of the structure. Also desired was a means of displaying the deflection curves, such that a 

particular configuration of the two section telescoping assembly can be selected, to serve a 

given function, provided the required data is available. Last but certainly not least, the 

equations used to generate the defection curves, are applied to the actual test rig, whose 

dimensions are outlined in Table 8.1, and then compared, with the experimental and FEA 

extracted data, for the same.  
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CHAPTER 4: BUCKLING ANALYSIS 

4.1 Introduction 

In the two section telescoping cantilever buckling occurs in two parts (a) local buckling 

produced within the individual rectangular hollow sections and (b) global buckling wherein 

the structure in its entirety undergoes buckling. To establish a sense of order in this thesis, 

global buckling phenomena of the telescoping assembly is first scrutinised here, followed by 

local buckling in the individual rectangular hollow sections in the following chapter. The 

critical buckling load is a function of the section dimensions, namely: (a) the effective length 

of the column structure; whether it is the length of the individual sections, or, that of the 

assembly and (b) the boundary conditions. In both cases the member(s) are examined as 

cantilever-columns, in that one end is fixed and the other is free. This is due to the fact that 

the applications of the telescoping assembly relate to this boundary condition. Another point 

of importance is the overlap where the free end or male section fits snugly within the fixed 

end or female member. This overlap region is of great importance, as the theory developed in 

this chapter, has to account for this discontinuity. It was determined that to account for this 

overlap region, it should be treated as a separate section to the free-end and fixed-end 

sections. In order to do so, it is vital to take into consideration the ‘beefing up’ or bolstering 

of the second area moments in this region as being a summation of the moments of the 

female and male members of the telescoping assembly. In order to arrive at the critical 

buckling load for the assembly it was imperative to understand the concepts of bending strain 

energy and total potential energy systems. It was deemed appropriate to start at the simplest 

approximation to a single rectangular hollow section by firstly considering tapering sections.  

 

By working from first principles a better understanding of the complexity of the problem was 

attained. This involved a detailed understanding and application of energy methods to the 

case at hand. The principles used are outlined in § 2.7. In particular, the Rayleigh quotient 

derived in § 2.11, and referred to by Timoshenko as the energy method [15], was used as a 

basis and applied in the analysis of the cantilever column in § 4.4 and in subsequent critical 

buckling load determinations for the sections thereafter. This approach in turn was verified by 

validating the result obtained against the criteria for the Euler critical buckling load for a 

column having one end fixed and the other free as the boundary conditions. A general form 

for predicting the critical buckling load exactly is thus derived and is applied to suit each case 

individually taking into account the different cross sectional second moments and lengths. 
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4.2 Determining the section parameters of the tapered column  

 
Figure 4.1: Geometry of the tapered circular cantilever column 

 

Referring to Figure 4.1, the diameter ‘dz’ at the arbitrarily chosen depth of ‘z’ from the free 

end can be expressed as follows using the principles of similar right angled triangles 
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Knowing the expression for diameter at the depth ‘z’ from Equation (4.1) and once again 

referring to Figure 4.1, the second moment area at a length of z, along the length of the 

tapered circular cantilever column can be expressed as follows 
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Figure 4.2: Geometry of the tapered circular cantilever column 
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Substituting Equation (4.1) in Equation (4.3) we get 
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Equation (4.4) can also be written as  
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Equation (4.5) has a maximum value which is determined later within in this section. 

Comparing Equation (4.3) and Equation (4.5) we see that o =
3

32

od

PL


. Let z’=

L

z
, then 

differentiating Equation (4.5) with respect to z’ gives 
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Equating the differentiated quantity to zero gives 
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Equation (4.6) gives two quantities that can be equated to zero: 
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Figure 4.3 graphically expresses the relationship between 
o

e

d

d
 and 'z , in Equation (4.7). The 

curve represents the relationship between 
o

e

d

d
 and 'z , when oe dd  , for values of 

o

e

d

d
 

varying from 0.1 to 0.6 in increments of 0.1.  

 
 

Figure 4.3: Plot of 
o

e

d

d
against 'z from Equation (4.7), for the tapered circular cantilever 

column 

 

The maximum bending stress in the tapered circular column can be found by substituting 

Equation (4.7) in Equation (4.5) as follows 
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Figure (4.4) represents the relationship between 
o


against 'z , with the curve plotting the 

relationship for the condition oe dd   for values of 
o

e

d

d
 varying from 0.1 to 0.6 in increments 

of 0.1.  

 

 

Figure 4.4: Plot of 
o


against 'z from Equation (4.8), for the tapered circular cantilever 

column 

(σ
/σ

o
) 
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Figure 4.5: Plot of 
o


(obtained from Equation (4.5)) against 'z , where 'z varies from 0 to 1, in increments of 0.1, for the tapered circular 

cantilever column. The curves in turn represent the values of 
o

e

d

d
varying from 0.1 to 0.9, once again in increments of 0.1.  
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4.3 Section Properties of Tapered Beams 

It is assumed that the sections at the two ends of a beam are the same in the shape and different 

in size. The size of the section changes linearly with respect to the beam centre of geometry 

line. Figure 4.6 shows four tapering types for a linearly tapered beam: (a) the width (horizontal 

dimension) changes only; (b) the height (vertical dimension) changes only changes only; (c) 

both dimensions change at the same rate; (d) the two dimensions change at different rates. The 

different tapering types can be categorised based on the characteristics of the algebra of the 

changing section properties.  

 

(a)                          (b) 

 

   (c)          (d) 

Figure 4.6: Section Properties of Tapered Beams (a) Section changing breadth; (b) 

Section changing depth; (c) Section changing bi-dimensionally at the same rate; (4) 

Section changing bi-dimensionally at different rates (Adapted from [93]) 

 

It should be noted that the tapering type does not necessarily correspond to the tapering 

category, since a tapering type may result in different property changes for different section 

bo 

he 

be 

ho 

bo 

he 

be 

ho 

b 

he 

b 

ho 

z 

x h 

bo 

h 

be 

y 



120 

 

shapes. The sections are assumed to be axisymmetric. The shape functions are derived in two 

dimensions. It can also easily be expanded into three dimensions. 

 

4.3.1 Section changing breadth 

 

Figure 4.7: Geometry of the tapered rectangular cantilever column whose cross section 

changes in breadth 

 

Referring to Figure 4.7, the breadth/width (horizontal dimension) ‘bz’, at an arbitrarily chosen 

depth of ‘z’ from the free end can be expressed as follows using the principle of similar right 

angled triangles 
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Knowing the expression for the breadth/width (horizontal dimension) at an arbitrarily chosen 

depth of ‘z’ from the free end as obtained from Equation (4.9) and once again referring to 
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Figure 4.8, the second moment area at a length of z, along the length of the tapered rectangular 

cantilever column from the free end can be expressed as follows 

 

 




























































































 111111

12
1

1212

333

e

o
e

e

oe
eoe

z
z

b

b

L

z
I

b

b

L

zhb
bb

L

z
b

hhb
I    (4.10) 

4.3.2 Section changing depth 

 

Figure 4.8: Geometry of the tapered rectangular cantilever column whose cross section 

changes in depth 

Referring to Figure 4.8, the height/depth (vertical dimension) ‘hz’ an arbitrarily chosen depth of 

‘z’ from the free end can be expressed as follows using the principle of similar right angled 

triangles 
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Knowing the expression for the height/depth (vertical dimension) at an arbitrarily chosen depth 

of ‘z’ from the free end as obtained from Equation (4.11) and once again referring to Figure 
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4.8, the second moment area at a length of z, along the length of the tapered rectangular 

cantilever column from the free end can be expressed as follows 
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4.3.3 Section changing bi-dimensionally at the same and at different rates 

From Equations (4.9) and (4.11) the variation in width and depth can be shown to be  
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Referring to § 4.3.1 and 4.3.2 as well as Figures 4.6(c) and 4.6(d) it is not difficult to ascertain 

that the second moment area can be expressed as 
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4.4 The Cantilever Column 

 

The following section makes use of what was referred to by Timoshenko as the energy method, 

which provides a shortcut to obtaining approximate values for the critical load [15]. It avoids 

solving differential equations and becomes very useful when applied to systems with non 

uniform stiffness, a case where the solution to the usual Eigen-boundary-value problem is 

extremely difficult and in some cases impossible. 

 

Consider the cantilever shown in Figure 4.9 below under a constant directional thrust P applied 

quasistatically. As the load is increased from zero, the work done by the force P is stored into 

the system as stretching strain energy. On allowing a small bending formation Y(z), that does 

not alter the aforementioned stretching strain energy, the change in the total potential energy 

ΔUT is given by 

 

PBT UUU                      (4.14) 

 

where BU is the bending strain energy and PU is the change in the potential of the external 

force or the work done by the load P on the cantilever column.   
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According to Timoshenko’s argument, the configuration is in stable equilibrium 

when 0 TU . In addition it is required to assume a form for the admissible bending 

deformation, Y(z). Let 
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Figure 4.9: Geometry of the cantilever column (Adapted from [15]) 

where the right hand side term 









L

z

2
cos1


 satisfies the kinematic boundary conditions at x=0.  

 

Solving Equations (4.15) and (4.16), for the bending strain energy and the work done on the 

column by the load, respectively, we get 
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Equating Equations (4.18) and (4.19) we obtain the expression for critical buckling load as 
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which is the exact solution because the deformation function happens to be the exact Eigen 

function. 
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4.5 Determination of the Buckling Load for an Axially Symmetric Truncated Cone 

 

 

Figure 4.10: (a) A fixed-free column subjected to a tip load (b) Cross sections of an axially 

symmetric truncated cone (Adapted from [94]) 

 

The analyses that follow make use of the derivations outlined in the previous section. The 

variables used have been altered. Referring to Figure 4.10(a), a fixed-free column is subjected 

to a tip load having cross section as shown in Figure 4.10(b). BU is the bending strain energy 

and PU is the change in the potential of the external force or the work done by the load P on 

the tapered cantilever column.  

 

Once again the change in the total potential energy ΔUT is given by 

 

PBT UUU    

 

Taking 0 TU as per the argument made in § 4.4 we get  

 

PB UU                       (4.20) 

 

z 

x 

P 

Pcr 

L Y (z) 

λ 

do 

y 

x 

z 

(a) (b) 

δ 

de 



126 

 

where BU is the bending strain energy and this time PU is the work done by the load P on 

the truncated cone. It is important to note that the displacement function )(zY used here is an 

approximation and does not represent the exact displacement configuration. Hence the solution 

obtained as a result is approximate.  
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The vertical movement of the load P during buckling is found from [32]. 
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Once again as in § 4.4 we make use of an assumed deflected shape that accounts for first mode 

buckling and satisfies the boundary conditions for a fixed-free column, such that 
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where Y=0 at z=0 and y=δ at z= L.  

 

Predicting the load which will cause the column to buckle is done either by numerical or finite 

element techniques. An exact method is to solve the differential equation 
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in Equation (4.21) and using Equation (4.22) yields 
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The critical buckling condition occurs when Equation (4.20) is satisfied and this yields the 

general formula for the critical buckling load as 
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Using Equation (4.2) and substituting in Equation (4.27) gives 
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To evaluate the integral in Equation (4.29) above it is assumed that 
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Substituting these parameters gives 
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In Equation (4.30) above it can be seen that the term 
2

2
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EI e
represents the Euler Critical 

Buckling Load for a fixed-free column and so is represented as EuP . The quantity
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obtained is a non dimensional parameter that allows for ease of plotting in terms of the variable 

quantity 










e

o

d

d
. 

 

      ''cos1'11

1

0

4
dzzz

P

P

Eu

cr

    

 

Now integrating we get the solution as 

 

       
4

422222243244

5

54106104812512020



 


Eu

cr

P

P
      (4.31) 

where 





















 1

e

o

d

d
 . 

If d0=dz=de then the ratio 1










e

o

d

d
, which corresponds to a uniform non-tapering section then 

Equation (4.31) would give 
2

2

4L

EI
PP e

Eucr


  where 

2

2

4L

EI e
is the Critical Euler Buckling load 

for a column with one end fixed and one end free. 

 

Figure 4.11 represents the plot of 
Eu

cr

P

P
derived in Equation (4.31), for an axially symmetric 

truncated cone against the non dimensional parameter 










e

o

d

d
 which varies from 1 to 5 in 

increments of 0.25. The objective of plotting such a curve is to present a means to ascertain the 

critical buckling load of an axially symmetric, truncated cone by making use of its dimensions 

do and de as well as the magnitude of the load applied P at its end. The dimensions do and de 

indicate the diameters of the base and end of the truncated cone respectively, as shown in 

Figure 4.10 (b). The curve reveals that the greater the value of do as compared to de, the greater 
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is the critical buckling load that the structure can withstand. Note that EuP  is the critical 

buckling load for a uniform section of diameter de having one end fixed and the other end free.   
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Figure 4.11: Plot of Equation (4.31) vs. 










e

o

d

d
, for the axially symmetric, truncated cone  
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4.6 Determination of the Buckling Load for the Pyramid 

       

      4.6.1 Buckling Load for the Rectangular Pyramid whose sections’ breadth changes  

 

Figure 4.12: (a) A fixed-free column subjected to a tip load (b) Cross sections of columns 

for a rectangular pyramid whose sections’ breadth changes  

 

Referring to Figure 4.12(a), a fixed-free column is subjected to a tip load having cross section 

changing as shown in Figure 4.12(b).  

 

Knowing that the critical buckling condition occurs when Equation (4.20) is satisfied, this 

yields the general formula for the critical buckling load as 

 

dz
L

z
I

L

E
P

L

zcr  









0

2

3

2

2
cos

2


                              (4.32) 

Using Equation (4.10) and substituting in Equation (4.32) gives 

dz
L

z

b

b

L

zhb

L

E
P

L

e

oe

cr  



























































0

2

3

3

2

2
cos111

122


                                                 


















































































   dz

L

z

b

b

L

z
dz

L

zhb

L

E
L L

e

oe

0 0

22

3

3

2

2
cos11.

2
cos

122


                                 (4.33) 

z 

x 

P 

Pcr 

L Y (z) 

λ 

(a) 

δ 

h 

bo 

h 

be 

z 

y 

x 

(b) 
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Integrating the Equation (4.33) yields 

 







































































 1

2
1

2

1
1

4 22

2

e

o

e

oe

cr
b

b

b

b

L

EI
P




                              (4.34) 

 

In Equation (4.34) above it can be seen that the term 
2

2

4L

EI e
represents the Euler Critical 

Buckling Load for a fixed-free column and so is represented as EuP . The quantity
Eu

cr

P

P
 thus 

obtained is a non dimensional parameter that allows for ease of plotting in terms of the variable 

quantity 










e

o

b

b
. If b0=bz=be then the ratio 1











e

o

b

b
,which corresponds to a uniform non-tapering 

section then Equation (4.34) would give 
2

2

4L

EI
PP e

Eucr


  where 

2

2

4L

EI e
is the Critical Euler 

Buckling load for a column with one end fixed and one end free. Figure 4.13 graphically 

represents the plot of 
Eu

cr

P

P
derived in Equation (4.34), for the square pyramid whose breadth 

changes while its depth remains constant, against the non dimensional parameter 










e

o

b

b
 which 

varies from 1 to 10 in increments of 1. The objective of plotting such a curve is to enable a 

designer a way to determine the critical buckling load of this structure by making use of its 

dimensions bo and be as well as the magnitude of the load applied P at its end. The dimensions 

bo and be indicate the breadth dimensions of the base and end of the pyramid, as shown in 

Figure 4.12 (b).  
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Figure 4.13: Plot of Equation (4.35) vs 










e

o

b

b
 , for the truncated, rectangular pyramid, whose breadth changes
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4.6.2 Buckling Load for the Rectangular Pyramid whose sections’ depth changes  

 

Figure 4.14: (a) A fixed-free column subjected to a tip load (b) Cross sections of columns 

for a rectangular pyramid whose section changes depth 

 

Referring to Figure 4.14(a), a fixed-free column is subjected to a tip load having cross section 

changing as shown in Figure 4.14(b). The general formula for the critical buckling load is 

expressed as 

dz
L

z
I

L

E
P

L

zcr  









0

2

3

2

2
cos

2


                              (4.35) 

 

Using Equation (4.12) and substituting in Equation (4.35) gives 

dz
L

z

h

h

L

zhb

L

E
P

L

e

oez
cr  

















































0

2

3
3

3

2

2
cos111

122


                                                (4.36) 

dz
L

z

h

h

L

z

L

EI
P

L

e

oe
cr  

















































0

2

3

3

2

2
cos111

2


                                                           (4.37) 

To evaluate the integral in Equation (4.37) above it is assumed once again that 
L

z
z ' and 























 1

e

o

h

h
 . Substituting these parameters yields 

b 

he 

b 

ho 

(b) 

y 
z z 

x 

P 

Pcr 

L Y (z) 

λ 

(a) 

δ 

x 
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   '
2

'
cos'11

2

1

0

23

3

2

dz
z

zL
L

EI
P e

cr  













 

     ''cos
2

1

2

1
'11

2

1

0

3

2

2

dzzz
L

EI
P e

cr  







 


 

      ''cos1'11
4

1

0

3

2

2

dzzz
L

EI
P e

cr   


                                             (4.38) 

In Equation (4.38) above it can be seen that the term 
2

2

4L

EI e
represents the Euler Critical 

Buckling Load for a fixed-free column and so is represented as EuP . The quantity
Eu

cr

P

P
 thus 

obtained is a non dimensional parameter that allows for ease of plotting. 

       ''cos1'11

1

0

3
dzzz

P

P

Eu

cr

                                                                                                     (4.39) 

Solving this integral we get 

 

     
4

422222243

4

446644812



 


Eu

cr

P

P
                                                   (4.40) 

where






















 1

e

o

h

h
 . 

If h0=hz=he then the ratio 1










e

o

h

h
which corresponds to a uniform non-tapering section then 

Equation (4.38) would give 
2

2

4L

EI
PP e

Eucr


  where 

2

2

4L

EI e
is the Critical Euler Buckling 

load for a column with one end fixed and one end free. Figure 4.15 graphically represents the 

plot of 
Eu

cr

P

P
derived in Equation (4.40), for the square pyramid whose depth changes with 

constant breadth, against the non dimensional parameter 










e

o

h

h
 which varies from 1 to 5 in 

increments of 0.25. The objective of plotting such a curve is to determine the critical buckling 

load of this structure by making use of its dimensions ho and he as well as the magnitude of the 

load applied P at its end. The dimensions ho and he indicate the depth dimensions of the base 

and end of the pyramid, as shown in Figure 4.14 (b).  
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Figure 4.15: Plot of Equation (4.41) vs 










e

o

h

h
, for the truncated rectangular pyramid, whose depth changes  
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Comparing Figures 4.13 and 4.15 reveals the simple fact, that a square pyramid whose section 

changes in depth, will have a greater critical buckling load or be able to withstand a greater 

load just before it buckles, as compared to that pyramid whose section changes in breadth. 

Figure 4.15 shows that for a square pyramid changing in depth the greater the value of ho as 

compared to he, the greater is the critical buckling load, whereas Figure 4.13 shows that even a 

substantial increase in bo as compared to be does not result in as a great a magnitude of critical 

buckling load.  

   

4.6.3 Buckling Load for the Rectangular Pyramids whose sections change bi-

dimensionally at the same and different rates 

 

The general formula for the critical buckling load is expressed as 

 

dz
L

z
I

L

E
P

L

zcr  









0

2

3

2

2
cos

2


                                         (4.41) 

 

Using Equation (4.13) and substituting in Equation (4.42) gives 

 

dz
L

z

h

h

L
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b

b

L
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e
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
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


















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2

3
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            (4.42) 
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            (4.43) 

 

To evaluate the integral in Equation (4.43) above it is assumed once again that 
L

z
z '  















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
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h
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 . Substituting the above parameters yields 
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              (4.44) 

In Equation (4.45) above it can be seen that the term 
2

2

4L

EI e
represents the Euler Critical 

Buckling Load for a fixed-free column and so is represented as EuP . Equation (4.44) can now 

be written as 
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Integrating by parts yields 

 

        

      
4

422222243

4

2222242243

20

4466448125

20

410620481215120204















Eu

cr

P

P

          (4.45) 
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If both b0=bz=be and h0=hz=he then the ratios 1


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which corresponds to a uniform 

non-tapering section then Equation (4.45) would give 
2

2

4L

EI
PP e

Eucr


  where 

2

2

4L

EI e
is the 

Critical Euler Buckling load for a column with one end fixed and one end free. Figure 4.16 

shows the plot of 
Eu

cr

P

P
derived in Equation (4.45), for the square pyramid whose section 

changes bi-dimensionally, either at the same or different rates, against the non dimensional 

parameters   and  . In Figure 4.16, both the parameters vary at the same rate, by an 

increment of 0.25, between 0 and 4. The objective of plotting such a curve is to determine the 



139 

 

critical buckling load of such a structure by making use of the parameters   and   as well as 

the magnitude of the load applied at its apex, P.  

Knowing that 


















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


 1

e

o

b

b
 and























 1

e

o

h

h
 , Table 4.1 shows that for a square pyramid, 

whose ψ changes at a much greater rate than that of η, the critical buckling load such a 

structure can withstand is much greater than if a given square pyramid’s η was greater than its 

ψ. Put simply that square pyramid whose depth varies at a greater rate as compared to its 

breadth, is capable of bearing a greater critical buckling load, than that pyramid whose breadth 

variation is greater than its depth variation. 
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Figure 4.16: Plot of Equation (4.46) vs. , , for the truncated rectangular pyramid, whose section changes bi-dimensionally at the same 

rate   
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Table 4.1: Comparison of Critical buckling loads for a rectangular pyramid, whose 

section changes bi-dimensionally at different rates 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Section changing bi-dimensionally such 

that variation of ψ > η 

Section changing bi-dimensionally such 

that variation of η > ψ 
η ψ Pcr/PEu η ψ Pcr/PEu 

0 1 5.14 1 0 1.70 

0.25 1.5 10.87 1.5 0.25 2.26 

0.5 2 19.99 2 0.5 3.64 

0.75 2.5 33.32 2.5 0.75 5.51 

1 3 51.65 3 1 7.96 

1.25 3.5 75.81 3.5 1.25 11.06 

1.5 4 106.59 4 1.5 14.89 

1.75 4.5 144.81 4.5 1.75 19.53 

2 5 191.27 5 2 25.06 

2.25 5.5 246.78 5.5 2.25 31.56 

2.5 6 312.14 6 2.5 39.12 

2.75 6.5 388.17 6.5 2.75 47.80 

3 7 475.68 7 3 57.68 

3.25 7.5 575.46 7.5 3.25 68.86 

3.5 8 688.33 8 3.5 81.40 

3.75 8.5 815.10 8.5 3.75 95.39 

4 9 956.57 9 4 110.90 
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4.7 Buckling Load for the single Thin walled Rectangular Section 

 

Figure 4.17: Geometry of a thin walled rectangular section  

 

A fixed-free column is subjected to a tip load having cross section as shown in Figure 4.17. 

The thickness of the thin-walled sections is assumed to be constant along the beam. The second 

moment of area of the rectangular tubular section shown in Figure 4.17 is expressed as 

 

26

23

zzz
Z

htbth
I                                                                  (4.46) 

The first parameter in Equation (4.46) refers to the moment area of the vertical components and 

the second is of the horizontal components. The general formula for the critical buckling load 

is expressed as 
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Substituting Equation (4.47) in the Equation (4.48) gives the expression 
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which is the Critical Euler Buckling load for a column with one end fixed and one end free. 

4.8 Buckling Load for the Single Stepped Strut 

 

 

Figure 4.18: Single stepped strut 

 

The single stepped composite strut shown in Figure 4.18 is the first step towards the ultimate 

goal of identifying the critical buckling load for the two section thin walled telescopic 

cantilever. For the determination of the buckling load of the single stepped cantilever shown, 

the problem in question needs to address the varying lengths of the sections that together make 

the composite assembly. To this end, the derivation of the equation for determining the 

buckling load (Equation (4.27)) must be adapted to account for the (a) overall length of the 

composite assembly, (b) individual lengths of the fixed and free end sections and finally, (c) 

the differing second moments of area. For ease of further calculations and also to obtain non-

dimensional parameters, ratios are used to relate the defining parameters of the load-applied or 

L1=L 

L2=ϕL 

1 

2 
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free-end section to the fixed-end section, as demonstrated in Table 4.1 and Figure 4.18. The 

fixed-end and free-end sections are denoted by 1 and 2 respectively in Figure 4.18. 

 

Table 4.2: Individual rectangular section properties 

Section Length(mm) 
Second Moments of 

Area (mm
4
) 

Section 1 

 (Fixed End) 
L1=L I1=I=

12

3

11hb
 

Section 2 

 (Free End) 

 

L2=ϕL1= ϕL 

 

I2=β I1= 

 β I= 









12

3

11hb
  

 

For the purpose of this buckling analysis the sections are numbered from the fixed end towards 

the free end as shown in Figure 4.18, and in the section that follows.   

The lengths of the sections have been considered individually in order to facilitate ease of 

calculations. The lengths and second moments of area are all expressed in terms of ratios and 

each of these in turn relate to the fixed-end section. The ratios α and β are assumed to be less 

than 1 which means that the fixed end section has the larger dimensions of length, second 

moment of area and self weight respectively. 

Consider the single stepped composite strut as being simplified as shown in Figure 4.19 below 

under a constant directional thrust P applied quasi statically. As the load is increased from zero, 

the work done by the force P is stored into the system as stretching strain energy. On allowing 

a small bending formation w(x), that does not alter the afore mentioned stretching strain 

energy, the change in the total potential energy ΔUT is given by 

 

PBT UUU   

Taking 0 TU as per the argument made in §4.4 we get  

 

PB UU                       (4.48) 
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where BU is the bending strain energy and this time PU is the work done by the load P on 

the single stepped composite strut.   

 

  


L
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B dz
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                                (4.49) 
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Once again as in §4.4 we make use of an assumed deflected shape that accounts for first mode 

buckling and satisfies the boundary conditions for a fixed-free column. It must be remembered 

that the overall length of the composite section is   1L . Accounting for this gives 
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zY                                                (4.51) 

 

where Y=0 at z=0 and Y=δ at z= L(1+ϕ).  

 

Figure 4.19: Geometry of the cantilever column 
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This means that the assumed deflection shape 
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
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
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12
cos1

L

z
 satisfies the kinematic 

boundary conditions at both z=0 and z= L (1+ϕ). Predicting the load which will cause the 

column to buckle is traditionally done by numerical or finite element technique. An exact 

method is to solve the differential equation 

 
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2

2

 zM
dz

zYd
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with appropriate boundary conditions for the ends. Now substituting  
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in Equation (4.49) and using Equation (4.50) yields 
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The critical buckling condition occurs when Equation (4.48) is satisfied and this yields the 

general formula for the critical buckling load as 
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Figure 4.20: Cross sectional view of the single stepped composite strut 
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Applying the general buckling formula expressed in Equation (4.55) to the two section 

telescopic cantilever yields 

 

         
dz

L

z
I

L

E
dz

L

z
I

L

E
P

L

L

L

cr 

























)1(

2

23

2

0

2

13

2

12
cos

1212
cos

12


















            (4.56) 

 

where the first and second components correspond to the sections marked 1 and 2  in Figure 

4.20 respectively. 
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In Equation (4.58) the term 
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is the critical Euler buckling load which yields 
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Referring to [97], we now make use of two standard sections with the specifications listed in 

Table 4.3 below in order to plot the Equation (4.59) against varying values of the parameter ϕ.  

 

Table 4.3: Nominal dimensions and sectional properties of solid rectangular sections [95] 

Section 
Size  

H mm  B mm 

Second 

Moments of 

Area (mm
4
) 

Section 1 

(Fixed End) 

 

60 

 

40 

 

72x10
4 

Section 2 

(Free End) 

 

50 

 

30 31.25x10
4
 

 

Assuming the lengths of sections 1 and 2 to be 1200 mm and 1000 mm, respectively and 

comparing Tables 4.2 and 4.3 it can be determined that the value of β is 0.434. Using this 

value, the graph in Figure 4.22 is plotted with varying values of the overlap ratio ϕ, for the non 

dimensionalised parameter 
Eu

cr

P

P
 derived in Equation (4.59).  

 

Substituting 1 and III  21  in Equation (4.60) above we get the Critical Euler 

Buckling Load for an equivalent single section cantilever having length 2L and uniform second 

moment of areaI 

    2
2

2

2

2

2

2416114
1

L

EI

L

EI

L

EI
PP

P

P e
Eucr

Eu

cr 



  

 

The curve in Figure 4.21 clearly indicates that for a single stepped strut, the critical buckling 

load that the strut can withstand is not affected to a great extent, by variations in the parameter 

ϕ. This can be attributed to the fact that the strut, unlike the two section telescopic cantilever 

beam assembly, is not a thin-walled structure and as a result the I values of both sections 1 and 

2 are almost the same.   
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Figure 4.21: Plot of Equation (4.59) vs. , for the single stepped strut, having dimensions outlined in Table 4.3 and fixed and free-end 

lengths of 1200 and 100mm respectively   
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 4.9 Buckling Load for the Thin walled Two Section Telescoping Cantilever Beam 

Assembly 

 

 

Figure 4.22: Two section telescopic cantilever 

 

The thickness of the thin-walled sections that constitute the two section telescopic cantilever 

shown in Figure 4.22 is yet again assumed to be constant along the beam. The second 

moment of area of the rectangular tubular sections that constitute the telescopic assembly as 

shown in Figure 4.22 and Figure 4.23 is expressed as 

26

23

zzz
z

htbth
I                                                               (4.60) 

Of course for the free-end section to slide within the fixed-end section, the former will have 

dimensions smaller than that of the latter so individual dimensions of breadth, height and 

thickness are to be taken into account.  

 

The first term in Equation (4.60) refers to the second moment area of the vertical components 

and the second represents the horizontal components. For ease of further calculations and also 

to obtain non-dimensional parameters ratios are used to relate the defining characters of the 

free section to the fixed end section. This is demonstrated in Table 4.4 and in Figure 4.23. 
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Table 4.4: Individual rectangular section properties 

Section Length(mm) 
Self Weight 

(N/mm) 

Second Moments of 

Area (mm
4
) 

Section 1 

 (Fixed End) 
L1=L W1 =w I1=I 

Section 2 

(Overlap) 
αL  W2=(1+γ)w I2=(1+β)I 

Section 3 

 (Free End) 

 

L2=ϕL1=ϕL 

 

W3=γw I3=βI 

 

For the purpose of this buckling analysis the sections are numbered from the fixed end 

towards the free end as shown in Figure 4.24. As can be seen from Figure 4.22 and Figure 

4.23 the overlap is considered to be a separate section in order to account for changes in 

second moment of area and the change in self weight.  

The lengths of the sections have been broken down individually in order to facilitate ease of 

calculations. The lengths, second moments of area and self weights are all expressed in terms 

of ratio and each of these in turn relate to the fixed-end section. The fixed-end, overlap and 

free-end sections are denoted by 1, 2 and 3, respectively in Figures 4.22 and 4.33 

respectively.  

The ratios α ,β and γ are assumed to be less than 1 which means that the fixed end section has 

the larger dimensions of length, second moment of area and self weight respectively. Now the 

general formula for the critical buckling load is expressed as 
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Figure 4.23: Cross sectional view of the two section telescopic cantilever 

Applying the derived buckling formula expressed in Equation (4.61) to the two section 

telescopic cantilever whose cross section is shown in Figure 4.23 yields 
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where the first and second and third components correspond to the sections marked 1, 2 and 3  

in Figure 4.23 respectively. 
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Referring to [93], we now make use of two standard sections with the specifications listed in 

Table 4.5 below in order to plot the Equation (4.64) against varying values of the parameter 

α. 

 

Table 4.5: Nominal dimensions and sectional properties of rectangular hollow sections –

Extract from ISO/FDIS 2633-2:2011 (E) [93]. 

Section 
Size  

H mm B mm 

Thickness  

(T mm) 

Weight 

per unit 

length 

(N/mm) 

Second 

Moments of 

Area (mm
4
) 

Section 1 

(Fixed 

End) 

 

60 

 

40 

 

5 

 

0.0685 

 

38.1x10
4 

Section 3 

(Free End) 

 

50 

 

30 5 

 

0.0528 18.7x10
4
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Comparing Tables 4.4 and 4.5 and assuming lengths of the fixed and free sections to be 

1200mm and 1000mm respectively, it can be determined that the values of ϕ, β and γ are 

0.833, 0.49 and 0.642 respectively. Using these values the graph in Figure 4.24 is plotted.  

 

Substituting 1,0   and III  21  in the equation (4.64) above we get the Critical 

Euler Buckling Load for an equivalent single section cantilever having length 2L and uniform 

second moment of areaI 
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The curve in Figure 4.24 plots the non dimensional parameter 
Eu

cr

P

P
against the overlap ratio α, 

where α varies from 0 to 1, in increments of 0.1. The condition when the ratio α=0 arises, 

when there is no free-end section or no telescoping arrangement, while the condition when 

the ratio α=1, occurs when the free-end section is fully inserted or sheathed within the fixed-

end section and it is between these two maxima that the curve in Figure 4.24 is plotted. 

Naturally the higher value of critical buckling load will correspond to the latter rather than 

the former. In Equation (4.64) the parameters ϕ, β and α can be varied depending upon the 

dimensions of the telescoping arrangement. For a designer, this equation could be useful in 

ascertaining the critical buckling load that a particular telescoping arrangement can 

withstand. 
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Figure 4.24: Plot of Equation (4.64) vs.  ,where  varies from 0 to 1, in increments of 0.1, for the two section telescopic cantilever beam 

assembly, having dimensions outlined in Table 4.5, and fixed and free-end lengths of 1200 mm and 1000 mm respectively. 
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Figure 4.25: Plot of Equation (4.64) vs. ϕ, where ϕ varies from 0 to 1, in increments of 0.1, for overlap ratios α varying from 0 to 0.6, 

determined for the two section telescopic cantilever beam assembly, having dimensions outlined in Table 4.5, and fixed and free-end 

lengths of 1200 mm and 1000 mm respectively. 
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Figure 4.26: Plot of Equation (4.64) vs. ϕ, where ϕ varies from 0 to 1, in increments of 0.1, for overlap ratios α varying from 0.7 to 1, 

determined for the two section telescopic cantilever beam assembly, having dimensions outlined in Table 4.5, and fixed and free-end 

lengths of 1200mm and 1000mm respectively. 
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4.10 Summary 

The end objective of this chapter was to derive from first principles, an equation to 

determine the critical buckling load of the two section telescopic cantilever beam 

assembly. The equation thus derived had to take into consideration, all manner of 

variables associated with the structure and also prove adaptable to any number of 

telescoping sections. Another desired objective was to generate curves that would 

simply allow a designer to select a particular configuration of the two section 

telescoping arrangement, for a particular function with relative ease, provided suitable 

data is at hand. The equation derived is compared with the values extracted using 

FEA software as detailed in § 9.1.3. The following points are made in summary: 

1. For an axially truncated and symmetric cone, it has been shown that larger the 

value of its base diameter do as compared to its apex diameter de, the greater is 

the critical buckling load that it can withstand.  

 

2. A rectangular pyramid whose section changes in its depth, will have a greater 

critical buckling load as compared to that pyramid whose section changes in 

breadth. Figure 4.15 shows that for a square pyramid changing in depth the 

greater the value of ho as compared to he, the greater is the critical buckling 

load, whereas Figure 4.13 shows that even a substantial increase in bo as 

compared to be does not result in as a great a magnitude of critical buckling 

load. A square pyramid, whose depth varies at a greater rate as compared to its 

breadth, is capable of bearing a greater critical buckling load, than that 

pyramid whose breadth variation is greater than its depth variation, as is 

evidenced in Table 4.1. 

  

3. Equation (4.64) effectively determines the critical buckling load that a 

particular arrangement of the two section telescopic cantilever beam 

arrangement, can withstand. Varying the different parameters in Equation 

(4.64) allows for a great deal of flexibility in the selection of a particular 

telescopic arrangement for a given application. The equation also allows for 

any number of lengths of telescoping sections to be taken into account, and 

does not allow itself to be restricted to just the two sections. So long as the 
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ratios can account for a number of telescoping sections, it is entirely possible 

to derive an expression to determine the critical buckling load. Once again as 

in Chapter 3, the candidate assembly to which Equation (4.64) was applied, 

has dimensions outlined in Table 4.5, with fixed and free-end lengths of 1200 

mm and 1000 mm, respectively.  

4. Figure 4.25 presents the plot of the non dimensionalised parameter 
Eu

cr

P

P
, 

against the overlap ratio α, which in turn varies from 0 to 1, in steps of 0.1. 

The curve shown was plotted assuming fixed and free section lengths of 1200 

mm and 1000 mm respectively, an arrangement, for which the value of  is 

0.833. It can be deduced from the curve that for an overlap ratio α equal to 1, 

the given arrangement will have the greatest critical buckling load magnitude. 

The condition wherein the overlap ratio α equals 1, corresponds to that 

arrangement of the assembly whereby the free-end section is entirely sheathed 

within the fixed-end section. This curve assumes importance in light of the 

fact that it can be tailored to directly suit the application for which a given 

configuration of the telescoping arrangement is required.  

5. In Figures 4.26 and 4.27, for values of the overlap ratio parameter α varying 

from 0 to 1, in increments of 0.1, the maximum critical buckling load, or the 

magnitude at which a structure just begins to undergo buckling, is observed to 

be maximum, for a length variation ratio of  equals 0. This naturally indicates 

that there is no free-end section to slide within the fixed-end section. However 

an ideal configuration of the telescoping assembly can be selected using the 

curves plotted in Figures 4.26 and 4.27, for a desired combination of ratios α 

and . Figures 4.26 and 4.27 are in essence used to demonstrate the effect 

differing lengths of the fixed and free sections that constitute the two section 

telescoping cantilever beam assembly will have upon the critical buckling load 

of said structure. Once again, it must be remembered that the three sets of 

curves in Figures 4.25 -4.27 correspond to that telescopic arrangement having 

dimensions outlined in Table 4.5 and fixed and free-end assumed lengths of 

1200 mm and 1000 mm respectively.  
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CHAPTER 5: SHEAR AND TORSION ANALYSES 

5.1 Introduction 

Equilibrium and stability conditions of one dimensional elements such as the tapered 

sections of varying cross sections, the composite single stepped strut and the two 

section telescoping cantilever assembly have been examined and dissected in the 

previous chapter. The analysis of these members is relatively simple as bending, the 

essential characteristic of buckling, can be assumed to take place in one plane only. 

The buckling of a plate on examination involves bending in two planes and this 

increases the nature of the complexity. From a mathematical point of view, the main 

difference between one dimensional elements and plates is that quantities such as 

deflections and bending moments which are functions of a single independent 

variable in the former become functions of two independent variables in plates. As a 

result the behaviour of plates is governed by partial differential equations which 

increase the complexity of analysis. 

 

Another significant difference in the buckling characteristics of plates as compared to 

one dimensional elements is that buckling terminates the latter’s ability to resist any 

further load, and this critical load is the failure or ultimate load. The same however, 

does not apply in the case of plates. A plate element may carry additional loading 

beyond the critical load. This ability to carry additional load above and beyond the 

critical load is the post-buckling strength. The magnitude of the post-buckling relative 

to the buckling load depends on a variety of parameters such as the dimensional 

properties, boundary conditions, type of loading and the ratio of buckling stress to 

yield stress. Plate buckling is usually referred to local buckling. Structural shapes 

composed of plate elements may not necessarily terminate their load-carrying 

capacity at the instance of local buckling of individual plate elements. This additional 

strength of structural members is attributable not only to the post-buckling strength of 

the plate elements but also to possible stress redistribution in the member after failure 

of individual plate elements. 

 

This chapter has as its basis the theories put forward by Rees in Mechanics of Optimal 

Structural Design, [14] and detailed in § 2.16, § 2.17 and § 2.18 for shear, torsion and 
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combined shear and torsion in thin walled closed tube sections respectively. The 

purpose of this chapter is to analyse the concept of shear flow, the effect of torsion 

and a combination of both, followed by their contribution to the local buckling of 

closed rectangular hollow sections of uniform thickness.   

 

5.2 Shear in Uniform Thin-Walled Closed Rectangular Sections 

Let a vertical force Fy be applied along the vertical centre-line through the shear 

centre E of a rectangular tube having side lengths b  and d  with wall thickness t as is 

shown in Figure 5.1 below. The second moment of this area about the x axis is given 

as 
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Figure 5.1: Uniform, rectangular tube 

In thin-walled closed tubes the net shear flow Eb qqq  , where the basic shear flow 

bq  refers to any convenient origin and Eq is the shear flow existing at that origin. The 

bq shear flow distribution within each side follows from Equation (2.76). For side AB 

with origin s at A 
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Equation (5.2) gives 0 BA qq for s=0 and d respectively. The maximum in the 

parabolic distribution occurs for 2ds   

x

y

I

tdF
q

8

2

                                (5.3) 

In Equation (5.3) the negative sign implies that q-flow opposes the s-direction as is 

illustrated in Figure 5.2(a). For the side BC with origin s at B 
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Equation (5.4) matches 0Bq for s=0. Figure 5.2 (a) shows a maximum in the linear 

distribution for bs   

x

y

C
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tdbF
q

2
                     (5.5) 

 

Figure 5.2: Flexural shear flows Bq must be added to netq with Fy be applied at the 

shear centre E 

For side CD with origin for s at C 
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Equation (5.6) matches 0Cq  for s=0 and gives CD qq  for s=d. The maximum 

within the parabolic shear flow distribution for CD occurs at 2ds  as is shown in 

Figure 5.2(a). 
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Equation (5.8) gives 0Bq  for s=b and matches Dq  for s=0 with Dq being the 

maximum in the linear distribution as shown in Figure 5.2(a). Since Fy acts at the shear 

centre (the centroid) Eq can be found from the Equation (2.78)  

0







   t

ds
q

t

ds
q

t

ds
q

t

ds
q

t

ds
q E

S S

DA

S

CDBC

S

AB               (5.9) 

 

Substituting the bq distributions from Equations (5.2)-(5.8) into Equation (5.9)  
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Equation (5.10) describes the constant shear flow in the walls of the tube that is to be 

added to the bq distribution in Figure 5.2(a). This results in the net shear flow shown in 

Figure 5.2(b). In particular adding Eq from Equation (5.10) to Equation (5.7) leads to 

the equal maximum net shear flows at the centres of sides AB and CD 
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Similarly adding Equation (5.10) to Equation (5.5) gives the maximum shear flow at C 

in side BC (and at D in side DA) 
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BC q
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q                   (5.12) 

 

Net shear flows of similar magnitude to Equation (5.12) apply to points A and B with 

a sign change. Substituting for Ix from Equation (5.1) into Equation (5.11) the greatest 

shear stress which lies at the mid-side CD is given by 
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in which the geometrical coefficient Q may again reappear within the objective 

function. Equation (5.12) gives the lesser maximum stress at C in the side BC 
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If it is required to minimise weight, the weight of the section is expressed as 
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b
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Setting   yCD  
max

in Equation (5.13) allows the product td to be eliminated between 

Equations (5.13) and (5.15). This leads to the required objective function 
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in which the shape factor f follows from Equations (5.13) and (5.16)  
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Each shear stress may be limited to y under which the limb of dimension ‘a’ can be 

arranged to buckle simultaneously, as per the general relation expressed in [14], when  

2
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When sides CD and AB are allowed to buckle at a limiting plastic shear stress y  then 
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 when Equation (5.18) can be expressed as follows 
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The optimum dimensions follow on from Equation (5.19) as 
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In case of thin walled sections where the thicknesses vary all sides can be arranged to 

buckle from equalising their critical shear stresses. This however cannot be done in 

the case of a rectangular tube of uniform thickness. Here only the longer sides buckle 

under their optimum dimensions given in Equations (5.20) and (5.21).  

 

5.3 Torsion in Uniform Thin-Walled Closed Rectangular Sections 

Buckling will occur at a lower shear stress in the longer walls if this stress is to be the 

limiting plastic buckling stress y then the optimisation equation becomes 

2

2
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The buckling of the rectangular wall depends upon its depth d, length L and thickness 

t and the manner of its side supports. These and plasticity effects are subsumed within 

the buckling stress formula expressed in Equation (5.22), above [14]. 
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Figure 5.3: Rectangular tube with uniform thin-walled thickness   

The optimum dimensions follow from Equation (5.22) as 
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The weight is expressed as  
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Given that the shear flow q is constant in a closed tube 

tttq bd                             (5.26) 

 

It follows from Equations (5.22) and (5.25) that shear buckling within the section’s 

perpendicular sides will occur simultaneously when  
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A rearrangement of Equation (5.27) gives the condition as 
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Substituting Equation (5.28) into Equation (5.25) the weight becomes 

d 

b t 
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Substituting the optimum dimensions from Equations (5.23) and (5.24) into Equation 

(5.29) and dividing by L
3
 gives the optimum weight function  

3

2

3

2

1

6

1

3

2

2

1

6

1

3
1

4


























































































L

T

E
b

d

K

K

KL

W

yT

d

b

dopt



             

3

2

3

2

1

6

1
3

2

2

1

6

1

3

1

4






















































































L

T

E

d

b

K

K

KL

W

yT

d

b

dopt 


                                          (5.30) 

in which the least weight is found from minimising the shape function. That is 
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Equations (5.30) and (5.31) lead to the stationary values 
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Given the 
d

b
ratio in Equation (5.32) the optimum dimensions in Equations (5.23) and 

(5.24) reduce to  
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Hence to minimise the weight the corresponding 
d

b
ratio from Equation (5.32) and 

then the optimum dimensions from Equations (5.34) and (5.35) are used. The 

procedure is assisted when one leading dimension say d is known along with the 

length L. Taking d=dopt we can read Kd from [14] at the given 
L

d
ratio and then iterate 

from an assumed
d

b
 value until both Equations (5.24) and (5.32) are satisfied. 

 

5.4 Combined Shear and Torsion in Uniform Thin-Walled Rectangular Tube 

In Mechanics of Optimal Structural Design [14], Rees determines from first principles 

the optimum dimensions for a non-uniform, thin-walled, rectangular tube having side 

lengths b  and d  with wall-thicknesses bt and dt when a vertical force yF is applied to 

the left vertical side of a rectangular tube. Here the optimum dimensions for a uniform 

thin walled rectangular tube under the same conditions are determined. The analysis 

that follows in this section has as its basis the theory proposed within the said text and 

detailed in § 2.18.   

 

Figure 5.4: Uniform rectangular tube showing net shear flow 
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Let a vertical force Fy be applied to the left vertical side CD of the rectangular tube 

having side lengths b  and d  with wall thickness t as is shown in Figure 5.4 above. 

The qb shear flows (see Figure 5.1) were established previously when Fy acted at the 

shear centre. These are from Equations (5.2) – (5.8): 
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where the origin for s lies at the respective corners A,B,C and D. 

 

It follows from Equations (5.37) and (5.38) that maxima in the linear and parabolic 

distributions lie along the sides BC and CD (see Figure 5.2). They are for s=b and 

s=d/2 respectively 
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where the second moment of area about the x-axis is 
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The net shear flow in each side as shown in Figure 5.4(b) is found by adding q0 to qb. 

Here qo is found by applying Equation (2.82) in which moments are taken about 
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Substituting into Equation (5.43) the two shear flows which contribute to this moment 

equation from Equations (5.37) and (5.38)    
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Equation (5.44) leads to 
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which may be checked by taking its moments about another corner. Hence Figure 5.4 

shows that the net shear flow has its greatest value (qmax) at the centre of side CD. 

This is found by adding q0 from Equation (5.45) to Equation (5.38):  
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Substituting Ix from Equation (5.42) and with tqmaxmax   the maximum shear stress 

in CD becomes 
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Limiting  
maxCD to y under which buckling of side CD is to occur provides the 

design criterion 
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from which the optimised dimensions follow 
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The optimum (minimum) weight is expressed as  
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and substituting for the product td from Equations (5.49) and (5.50) leads to the 

objective function 
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In Equation (5.52) the shape factor f depends upon Q given in Equation (5.47) as 

follows  
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5.5 Summary 

The concept of shear flow, torsion and the combination of the two in rectangular 

hollow sections of uniform thickness has been examined. In summary; 

1. The net shear flow in a closed, uniform thin-walled closed rectangular section 

induced by a single, vertical force Fy applied through its shear centre can be 

expressed as a summation of the flexural shear flow Bq and a constant Eq , such 

that EB qqq  . The shear centre in turn, is that point where a shear force can act 

without producing any twist in the section. The constant quantity Eq  is a constant 

of integration with an important physical interpretation, in that when it is added to 

Bq it ensures that the rate of twist is zero. The net shear flow distribution in the 

rectangular section is shown in Figure 5.2 (b). The greatest shear stress magnitudes 

along the vertical and horizontal walls have been derived in Equations (5.13) and 

(5.14). §5.2 also details the optimum dimensions of that rectangular section, for 

which buckling can be arranged to occur in its longer sides first. 

2. Torsion in uniform thin walled closed tube sections has been examined and an 

optimum design has been arrived at, to ensure that the limiting shear stress from 

torsion matches that required to cause shear buckling in the wall. The optimum 

dimensions generated for the rectangular section originate from Equation (5.22), 

and the dimensions are so related that shear buckling takes place within the 

section’s perpendicular sides simultaneously. Using these optimum dimensions, 

the weight of the chosen rectangular section can be minimised, as outlined in §5.3. 

3. The effects of combined shear and torsion in uniform thin-walled rectangular tubes  

has been analysed and a modified net shear flow has been derived for each side of 

the rectangular hollow section. The derivation for the modified net shear flow takes 

into account the flexural shear flow Bq and a constant oq . The sum of these two 

quantities ensures static equivalence between the net shear flow and the torque that 

arises when Fy does not pass through the shear centre. In the case where the vertical 

force Fy does pass through the shear centre, oq serves as a means of establishing the 

modified net shear flow, as shown in Figure 5.4 (b). 
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 CHAPTER 6: STRESS ANALYSIS  

6.1 Introduction 

 

Continuous structures balance the application of external loads with an internal 

resistance within their material which is commonly called stress.  For a beam in 

particular, resisting moments arise from its internal stress to oppose the bending 

moments that the transverse loading produces. For example, consider the simply-

supported beam with self- weight w/unit length subjected to four concentrated loads 

P1 ... P4 shown in Figure 6.1. 

 

 
 

Figure 6.1: Moment of resistance within section at x-position 

 

To understand how the material in the beam resists the external loads it is seen that 

the beam sags beneath the applied loads.  Sagging creates a compressive stress within 

longitudinal fibres lying in the upper half of the section and tensile stress within fibres 

in the bottom half.  A neutral (unstressed) plane MN divides each half as shown in 

Figure 6.1.  The equivalent compressive force acting on the upper area MEFN is 

given by ‘C’. Similarly the equivalent tensile force acting on the lower area MHGN is 

given by ‘T’. The external loads applied and the effective shear force S acting on the 

plane EFGH are assumed to be concentrated on the vertical plane of symmetry, as 

shown. The forces that act over length AX of the beam are therefore: (a) a vertical 

reaction AR  at A, (b) external concentrated loads P1 and P2, (d) uniformly distributed 

load w acting over the length x, (c) shear force S offered by section EFGH, (d) a 

compressive resistance C  and (e) a tensile resistance T .   The magnitudes of the 

P1 P2 P3 P4 

P1 P2 

w 

w 
RA 

d 

C 

T 

a b 

x 

a b 
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forces C  and T are equal and, since they act in opposing directions, separated by a 

distance d, they form the section’s moment of resistance: 

 

 RM = Cd = Td                  (6.1)  

 

Taking moments about O gives the bending moment due to the external forces 

2
)()(

2

21

wx
baxPaxPxRM AR                     (6.2) 

In continuous beams we may equate Equations (6.1) and (6.2) when applying the 

principle that the moment at a given section due to externally applied loads equals the 

moment of resistance at that section.  However, the same principle cannot be applied 

to telescopic beams within the discontinuous region between overlapping sections, 

especially where there is a sizeable gap between them. To overcome this, the authors 

proposed their Tip Reaction Model [91], the principle of which is summarised in §3.3. 

The stress analysis performed in [13, 92], upon the three section telescoping 

cantilever beam assembly forms the basis of the analysis that is detailed, within this 

chapter.   

 

Consequently, the internal shear force and moment within each length may be 

calculated from the reactions instead of the moment of resistance used normally for a 

continuous beam.  The shear force and bending moment variations along each length 

are converted to their respective stresses in the following section.  The stress 

magnitudes are compared with those obtained from a finite element analysis.  The 

analyses were carried out on a telescopic cantilever assembly consisting of two 

hollow sections, the details of which are outlined in Appendices C.1 and D.1, for both 

inline and offset loading scenarios, respectively.   
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6.2 Bending Stress 

 
 

Figure 6.2: Telescopic beam assembly with two sections 

 

The longitudinal bending stress in a beam is calculated from the bending moment M 

by a standard expression [6]: 

 y
I

M
                      (6.3) 

where I is second moment of area of the beam section and y is the distance from the 

neutral axis at which this stress applies.  Consider the beam assembly shown in Figure 

6.2 and assume that it is fixed at end A and carries a tip load at D1.  Due to self-weight 

and the tip loading applied there will be tensile stresses in all two beam sections 

above the horizontal of symmetry (neutral plane) and compressive stresses below the 

plane of symmetry.  For the each section depth 1d and 2d , the beam is represented by 

the vertical plane of symmetry upon which the maximum bending stress occurs at 

their top surfaces.  These are found from Equation (6.3) as: 

 

1

1
1

2I

dM 
  and 

2

2
2

2I

dM 
                                  (6.4a-b) 

 

The d- and I-values are referred to a chosen geometry given in Appendices C.1 and in 

D.1. The bending moment M in Equations 6.4a-b varies within the length in a manner 

provided by an M-diagram constructed from the applied loading and the tip reactions 

B2 B1 
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as shown in Figure C.2 and Figure D.2. Two loading scenarios are examined in 

Appendices C and D respectively. Appendix C deals with an inline load applied to the 

telescopic assembly, whilst Appendix D examines an offset load applied to the 

telescopic assembly. The two load scenarios are examined in order to form a base for 

which the comparison of experimental, analytical and output from the software is 

achieved. In appended sections C.4 and D.4 the bending stresses across the entire 

geometry length of the telescoping assembly are attained numerically and plotted 

separately in Figures C.4 and D.4, for inline and offset loading of 30.55 N, 

respectively. This load magnitude corresponds to a 
P

wL
 ratio of 1. In case of the 

inline loading, a tip load of 30.55 N is applied at D1 as shown in Figure 6.2, whilst 

when subjecting the candidate assembly to offset loading, the same tip magnitude is 

applied, but at an offset distance of 600 mm from the same point D1. 

 

In similar fashion, Figures 6.5 and 6.7 presented here, within the main body of the 

text, graphically represent both inline and offset loading, respectively, for different 

P

wL
ratios of 2, 4, 6 and 8. 
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6.3 Shear Stress 

Referring to § 5.2.1 it can be seen that the shear stress distribution and shear flow in 

the cross section of the rectangular tube of uniform thickness is as depicted in Figure 

6.3. In Figure 6.3 (b) the flexural shear flow must be added to the net shear when a 

vertical force Fy is applied at the shear centre. 

 

Figure 6.3 (a) Cross section of the uniform rectangular tube (b) Net shear stress 

distribution in the cross section of the uniform rectangular tube 

 

From the detailed analysis performed in § 5.2.1 the following equations are utilised to 

determine the maximum magnitudes of shear stress along the vertical and horizontal 

walls for both the beam sections. 
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From Equations (6.5) and (6.6) it can be seen that the shear stress formulae can be 

tailored to suit each of the two beam sections that make up the composite telescoping 

assembly simply by substituting the required value of breadth ‘b’, depth ‘d’ and 

thickness ‘t’ as is shown numerically for inline and offset loading in Appendices C.4 

and D.4, respectively.  

 

Once again in appended sections C.4 and D.4 the shear stresses across the entire 

geometry length of the telescoping assembly are attained numerically and plotted 

separately in Figures C.5 and D.5, for inline and offset loading of 30.55 N, 

respectively. This load is applied in the same manner for inline and offset loading as 

specified above in §6.2. 

 

Figure C.5 plots both, inline loading induced, maximum shear stress distribution for 

the assembly on faces CD and BC of the cross section shown in Figure 6.3(a), which 

are plotted along the lines marked ‘A3B3C3D3’ and ‘A2B2C2D2’ along the entire length 

of the assembly. Figure D.5 plots both, offset loading induced, maximum shear stress 

distribution for the assembly on faces CD and BC of the cross section shown in 

Figure 6.3(a), which are plotted along the lines marked  ‘A3B3C3D3’ and ‘A2B2C2D2’ 

along the entire length of the assembly. The values plotted in Figures C.5 and D.5, 

were calculated at regular intervals of 500 mm along the length of the assembly. It 

must be noted that these calculated values, correspond to those points where the shear 

stress distribution attains its maximum for the cross section at points C and at the 

midpoint of wall CD, respectively. 

 

In similar fashion, Figures 6.5, 6.6, 6.8 and 6.9 are presented here in the main body of 

work, but for 
P

wL
ratios of 2, 4, 6 and 8. Figures 6.5 and 6.6, plot the maximum shear 

stress distribution at face CD along the assembly length at ‘A3B3C3D3’ and the 

maximum shear stress distribution at face BC along the assembly length at 

‘A2B2C2D2’ for inline loading corresponding to the 
P

wL
ratios of 2, 4, 6 and 8, 

respectively. Figures 6.8 and 6.9 on the other hand, plot the maximum shear stress 

distribution at face CD along the assembly length at ‘A3B3C3D3’ and the maximum 



179 

 

shear stress distribution at face BC along the assembly length at ‘A2B2C2D2’  for 

offset loading corresponding to the 
P

wL
 ratios of 2, 4, 6 and 8, respectively. 

  

Equations (6.3) - (6.6) may be applied to both telescopic and continuous beams when 

M and Fy are known. In what follows M and S are converted to their respective stress 

distributions from within the diagrams that show the variations in M and S over the 

length as in Figure C.2 and D.2.  The method of constructing Fy- and M-diagrams for 

continuous cantilever beams, carrying combined concentrated and distributed loading, 

can be found in many texts [5-8, 14].  The F- and M-diagrams for a telescopic beam 

may be constructed separately once the tip reactions for each of Figures C.1a-c and 

1a-c are known and then superimposed to find their net values within the overlaps. 
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Figure 6.4: Inline loading induced bending stress (MPa) vs distance from the fixed end for 400 mm overlap along A1C1B1D1 as marked 

in Figure 6.2, for the two section telescopic cantilever beam assembly having individual part dimensions outlined in C.1 

(Key:              wL/P=2;                 wL/P=4;                wL/P=6;              wL/P=8)   



181 

 

 
 

Figure 6.5: Inline loading induced shear stress (MPa) vs distance from the fixed end for 400 mm overlap along A3C3B3D3 as marked in 

Figure 6.2, for the two section telescopic cantilever beam assembly having individual part dimensions outlined in Appendix C.1 

(Key:              wL/P=2;                 wL/P=4;                wL/P=6;              wL/P=8)   
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Figure 6.6: Inline loading induced Shear Stress (MPa) vs Distance from the Fixed End for 400mm overlap along A2C2B2D2 as marked in 

Figure 6.2, for the two section telescopic cantilever beam assembly having individual part dimensions outlined in Appendix C.1 

(Key:              wL/P=2;                 wL/P=4;                wL/P=6;              wL/P=8)   
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Figure 6.7: Offset loading induced bending stress (MPa) vs distance from the fixed end for 400 mm overlap along A1C1B1D1 as marked 

in Figure 6.2, for the two section telescopic cantilever beam assembly having individual part dimensions outlined in Appendix D.1 

(Key:              wL/P=2;                 wL/P=4;                wL/P=6;              wL/P=8)   
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Figure 6.8: Offset loading induced shear stress (MPa) vs distance from the fixed end for 400 mm overlap along A3C3B3D3 as marked in 

Figure 6.2, for the two section telescopic cantilever beam assembly having individual part dimensions outlined in Appendix D.1 

(Key:              wL/P=2;                 wL/P=4;                wL/P=6;              wL/P=8)   
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Figure 6.9: Offset loading induced shear stress (MPa) vs distance from the fixed end for 400 mm overlap along A2C2B2D2 as marked in 

Figure 6.2, for the two section telescopic cantilever beam assembly having individual part dimensions outlined in Appendix D.1 

(Key:              wL/P=2;                 wL/P=4;                wL/P=6;              wL/P=8)   
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6.4 Summary 

Appendices C and D detail the bending and shear stress analysis of the two section telescopic 

cantilever beam assembly, for inline and offset loading, respectively. The tip load applied in 

both cases has a magnitude of 30.55 N. This loading corresponds to a 
P

wL
ratio of 1. 

Corresponding to this ratio, bending moment and shear force distributions were created for 

both, inline and offset loading scenarios, as shown in Figures C.2 and D.2 respectively. For 

the offset loading induced stress analysis of the telescopic assembly, a separate torque 

diagram was also produced, in addition to the bending moment and shear force diagram. This 

was done to highlight the fact that the torque applied has a constant magnitude and that it 

induces a constant twisting moment upon the assembly.  

 

The intention of the analysis performed in Appendices C and D, was to extract both bending 

and shear stresses induced by both types of loading and to present them in graphical form, to 

act as a benchmark for what has been done in this chapter. Using 
P

wL
ratios of 2, 4, 6 and 8, 

equivalent tip loads were applied to the structure and the bending and shear stresses were 

plotted, in this chapter as can be seen from Figures 6.4 – 6.9. While bending stress within the 

assembly attains its maximum magnitude along the line marked A1B1C1D1, as shown in 

Figure 6.2, the shear stress distribution within the hollow rectangular section, attains its 

maxima, at points C and D on the horizontal walls, and at the mid-plane of side CD along the 

perpendicular walls, as is depicted in Figure 6.3 (b).  It is at these points, at 50 mm length 

intervals, that the bending and shear stresses were calculated and plotted. Further conclusions 

are drawn from the stress analysis undertaken in this chapter, in §9.1.2. To conclude: 

 

1. For 
P

wL
ratios of 2, 4, 6 and 8, the corresponding inline loading induced bending 

stress distribution is plotted in Figure 6.4, against the distance from the fixed end, for 

a 400 mm overlap. For the same ratios, the related inline loading induced shear 

stresses are calculated and plotted at the locations, as mentioned above, where they 

attain their maximum magnitude, in Figures 6.5 and 6.6. 
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2. For 
P

wL
ratios of 2, 4, 6 and 8, the corresponding offset loading induced bending 

stress distribution is plotted in Figure 6.7, against the distance from the fixed end, for 

a 400 mm overlap. For the same ratios, the equivalent offset loading induced shear 

stresses are calculated and plotted at the locations, as mentioned above, where they 

attain their maximum magnitude, in Figures 6.8 and 6.9. 

 

3. The greatest theoretically derived bending stress magnitude of 16 MPa and 18 MPa 

induced by inline and offset loading in the two section telescoping assembly, 

respectively is in turn evident from Figures 6.4 and 6.7 for 
P

wL
ratio of 2. These 

values show that the structure remains elastic given a yield stress for a medium carbon 

steel of say, 400 MPa. Similarly the greatest theoretically derived shear stress 

magnitudes for both inline and offset loading, determined along the horizontal and 

vertical walls of the assembly fall well within the yield stress magnitude. Nowhere 

does the shear stress magnitude become zero despite it having a relatively low 

magnitude compared to the accompanying bending stress.   
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CHAPTER 7: FINITE ELEMENT ANALYSIS 

7.1 Introduction 

This chapter covers the extensive Finite Element Analysis that has been covered over the 

course of undertaking this thesis. The primary aim of this chapter involving the use of the 

Finite Element Analysis software package ABAQUS/CAE is to act as a means of verification 

and validation of theoretical results produced in addition to the experimental work performed, 

which is detailed in the following chapter. Figure 7.1 details the methodology that was 

followed to achieve the afore-mentioned objective. The three outcomes desired from the FEA 

are: (a) Overall Deflection of the two section telescopic assembly for both inline and offset 

loading (b) Bending and Shear Stress determination at regular intervals along the length of 

the assembly and (c) Determination of the Critical Buckling Load for the telescopic beam 

assembly whose individual part dimensions are detailed in Table 7.1.  

 

Figure 7.1 shows how the overall structure was divided into two beams and wear pads, each 

of which was sketched and extruded. Each of the individual part instances thus generated 

were in turn individually assigned section and material properties followed by their assembly, 

to give the overall telescopic beam assembly. Individual steps were defined in order to 

determine the various parameters. The telescopic beam assembly now has ties defined 

between each of the different entities that constitute the overall assembly following which the 

required load and boundary conditions are applied to the model so as to simulate as closely as 

is possible the real working environment of the physical assembly.  Meshing the entire 

assembly allows for the determination of the overall deflection and the bending and shear 

stresses at specified intervals for comparisons with theoretical and experimental results. Once 

meshing has been completed the telescopic beam assembly is subjected to the first of a series 

of analysis runs were conducted in order to determine three specific outcomes as mentioned 

earlier. Tables 7.1, 7.2 and 7.3 highlight the different FEA approaches that were adopted for 

tip deflection analysis, stress analysis and critical buckling load determination, respectively. 

Appendix G elaborates in exhaustive detail how ABAQUS was used to generate the 

outcomes as outlined in Tables 7.2, 7.3 and 7.4, for the two section telescopic cantilever 

beam assembly, whose individual parts dimensions are outlined in Table 7.1. 

 

Appendices E and F provide details of the FEA that were carried on a three section telescopic 

cantilever beam assembly in order to obtain overall deflection and stress values respectively 
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[91, 92]. The same approach was used except that the assembly in this thesis deals with a two 

beam rather than a three beam telescopic cantilever beam assembly. In addition to these, the 

critical buckling load of the telescopic beam assembly was also determined. 

 

 

Table 7.1: Dimensional properties of the simulated two section telescopic cantilever  

beam assembly 

 

Section Material 

Size 

H mm 

Bmm 

Thickness 

(T mm) 

Length 

(L mm) 

Unit 

Weight 

(N/mm
3
) 

Young’s 

Modulus 

(N/mm
2
) 

Poisson’s 

Ratio 

BEAM 

1 

(Fixed 

End) 

Steel 
 

60 

 

40 

 

1.55 
1300 

 

7.85x10
-9 

 

210000
 

0.3 

BEAM 

2 (Free 

End) 

Steel 

 

50 

 

30 1.55 1300 7.85x10
-9

 210000 0.3 

Wear 

Pads x 

7 

Tufnell 2 30 2 100 1.08x10
-9

 34000 0.4 
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Figure 7.1: ABAQUS/CAE Pictorial Methodology 
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Table 7.2: ABAQUS/CAE Procedure for Tip Deflection Analysis 

 

 

 

 

                                                                            

                                                                             

                                                                                                              

                                                                              

                                                                                 

                                                                                  

                                                                                  

 

                                                                                   

                                                                                                                                                                                 

                                                                                      

                                                                                          

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Create the 3D Models of the 

two sections in ABAQUS 

Create shell areas from shell 

volumes created 

Create the telescopic beam 

assembly 

Develop the contacts (Ties 

and Interactions) 

Assign Material Properties 

Sketch a 40x60mm rectangle with 1.55mm thickness and extrude 1300mm 

Sketch a 30x50mm rectangle with 1.55mm thickness and extrude 1300mm 

Create wear pads of rectangular section 30x2mm and extrude 100mm 

 

Create Materials with properties Young’s Modulus, Poisson’s ratio and 

density defined. Assign the created material to the parts created earlier. 

 

 

The two beam sections can best be described as shells. ABAQUS has a 

special way of creating shell elements. This requires editing the geometry. 

 

 

Instances of the beam sections and wear pads are assembled together to 

form the assembly, such that the overlap measures 400mm. This ensures 

that the geometry created is preserved for alternate meshing and analysis. 

 

 
Two types of contacts are established here. They are 

(i)  Ties or welds between the wear pads and beam and 

(ii) Interactions or frictional contacts where the beam can slide on top of 

the wear pad. 

 

 Apply loads and boundary 

conditions 

Two loads are defined here. They are (i) gravity load and (ii) tip load. The 

fixed end of the outer beam is constrained in all six degrees of freedom as 

the boundary condition. 

 

 
Create the Mixed Element 

Mesh 

The wear pads are meshed using solid elements. The beam sections are 

meshed using shell elements. 

 

 Submit for linear static 

analysis 

A linear static analysis is adequate for determining the tip deflection. 

 

 

View the results and obtain 

the tip deflection 

The results are viewed for any obvious indications suggesting otherwise 

unacceptable results. If the results are valid and acceptable extract the 

value for Tip Deflection.  

 

 
Repeat the above steps with 

different Tip Loads 

This is carried out to obtain tip deflection for different loads. 
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Table 7.3: ABAQUS/CAE Procedure for Bending and Shear Stress Analysis 

 

 

 

 

                                                                            

                                                                             

                                                                                                              

                                                                              

                                                                                 

                                                                                  

                                                                                  

 

                                                                                   

                                                                                                                                                                                 

                                                                                      

                                                                                          

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Create the 3D Models of the 

two sections in ABAQUS 

Create shell areas from shell 

volumes created 

Create the telescopic beam 

assembly 

Develop the contacts (Ties 

and Interactions) 

Assign Material Properties 

Sketch a 40x60mm rectangle with 1.55mm thickness and extrude 1300mm 

Sketch a 30x50mm rectangle with 1.55mm thickness and extrude 1300mm 

Create wear pads of rectangular section 30x2mm and extrude 100mm 

 

 
Create Materials with properties Young’s Modulus, Poisson’s ratio and 

density defined. Assign the created material to the parts created earlier. 

 

 The two beam sections can best be described as shells. ABAQUS has a 

special way of creating shell elements. This requires editing the geometry. 

 

 Instances of the beam sections and wear pads are assembled together to 

form the assembly, such that the overlap measures 400mm. This ensures 

that the geometry created is preserved for alternate meshing and analysis. 

 

 
Two types of contacts are established here. They are 

(i)  Ties or welds between the wear pads and beam and 

(ii) Interactions or frictional contacts where the beam can slide on top of 

the wear pad. 

 

 Apply loads and boundary 

conditions 

Two loads are defined here. They are (i) gravity load and (ii) tip load. The 

fixed end of the outer beam is constrained in all six degrees of freedom as 

the boundary condition. 

 

 
Create the Mixed Element 

Mesh 

The wear pads are meshed using solid elements. The beam sections are 

meshed using shell elements. 

 

 Submit for linear static 

analysis 

A linear static analysis is adequate for determining the tip deflection. 

 

 

View the results and obtain 

the bending and shear stress 

values 

The results are viewed for any obvious indications suggesting otherwise 

unacceptable results. The bending and shear values are read directly at the 

nodes at pre-determined distances from the fixed-end to be compared with 

theoretical predictions.  

 

 Repeat the above steps to 

obtain stress values for 

different Tip Loads 

This is carried out to obtain stress values for (i) Loading due to 

concentrated end force acting along the neutral axis of the assembly (ii) 

loading due to a concentrated end force acting through a torque arm, at a 

distance from the neutral axis of the assembly 
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Table 7.4: ABAQUS/CAE Procedure for determining Critical Buckling Load 

 

 

 

 

 

                                                                            

                                                                             

                                                                                                              

                                                                              

                                                                                 

                                                                                  

                                                                                  

 

                                                                                   

                                                                                                                                                                                 

                                                                                      

                                                                                          

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Create the 3D Models of the 

two sections in ABAQUS 

Create shell areas from shell 

volumes created 

Create the telescopic beam 

assembly 

Develop the contacts (Ties 

and Interactions) 

Assign Material Properties 

Sketch a 40x60mm rectangle with 1.55mm thickness and extrude 1300mm 

Sketch a 30x50mm rectangle with 1.55mm thickness and extrude 1300mm 
Create wear pads of rectangular section 30x2mm and extrude 100mm 

 

 Create Materials with properties Young’s Modulus, Poisson’s ratio and 

density defined. Assign the created material to the parts created earlier. 

 

 
The two beam sections can best be described as shells. ABAQUS has a 

special way of creating shell elements. This requires editing the geometry. 

 

 
Instances of the beam sections are assembled together to form the 

assembly, such that the assembly measures 400mm. This ensures that the 

geometry created is preserved for alternate meshing and analysis. 

 

 

Only one type of contact is established here namely Ties or welds between 

the overlapping beam sections.  

 

Apply loads and boundary 

conditions 
Two loads are defined here. They are (i) ‘Dead’ load and (ii) ‘Live’ load. 

The fixed end of the outer beam is constrained in all six degrees of 

freedom as the boundary condition. 

 

 
Create the Mixed Element 

Mesh 

The beam sections are meshed using shell elements. 

 

 Submit for linear 

perturbation, buckling 

analysis 

A linear perturbation buckling analysis is adequate for determining the 

buckling Eigen values. 

 

 
View the results and obtain 

the buckling Eigen values 

Using the relation: (Dead Load + Live Load x Eigen Value) the buckling 

load is calculated and this value is then compared with the theoretical 

predictions  

 
Repeat the above steps to 

obtain stress values for 

different overlap lengths 

This is carried out to obtain Eigen values for different overlap lengths so as 

to compare the results with the theoretical predictions. 

 

Create the Analysis Steps 

Two steps are developed namely (i) the general analysis or initial analysis 

step which is the default step created and propagated in ABAQUS/CAE, in 

this case applied for nonlinear geometry and (ii) the linear perturbation 

buckling analysis step where the Lanczos Eigen solver is used to solve for 

the Eigen values and the number of Eigen values that are required are 

entered.   
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7.2 Deflection Analysis using ABAQUS 

 

Tip deflections for varying inline tip loads are extracted from the FEA software and graphs of 

the non dimensionalised parameter 
0y

y
against the overlap ratios ‘α’ varying from 0.2 to 0.8, 

in increments of 0.2 are plotted for differing 
P

wL
ratios of 10, 1, 0.1 and 0.01, and shown in 

Figure 7.2. The methodology and reasoning behind this graphical representation are 

explained in detail in § 3.4.1. Following the procedure for tip deflection determination as 

explained in detail in Table 7.2, the end deflections for increasing load magnitudes are 

computed for the varying 
P

wL
ratios, for differing overlap ratios ‘α’. This involves repeated 

simulations using ABAQUS, and extracting the tip deflection of the assembly, for all values 

of the overlap ratio parameter α, for the different tip loadings corresponding to their 

equivalent 
P

wL
ratios. The procedure detailed in Table 7.2, is repeated till this objective is 

achieved. The results are extracted using the techniques outlined in G.9.1. In similar fashion, 

deflection curves were generated to match the experimentally and theoretically derived plots, 

as is shown in comprehensive detail in Figure 9.1. 
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Figure 7.2: FEA generated deflection curves vs. overlap ratio α, where  varies from 0.2 to 0.8, in increments of 0.2, for the two section 

telescopic cantilever beam assembly having individual part dimensions outlined in Table 7.1.  

(Key:              wL/P=10;                 wL/P=1;                wL/P=0.1;                 wL/P=0.01)
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7.3 Stress Analysis using ABAQUS 

 

The bending stress values along the top line of symmetry of the assembly and the 

corresponding shear stress values along the top face and side walls are obtained at regular 

intervals of 50 mm from the fixed end. The results are displayed for both loading 

scenarios namely the inline and offset loading cases. The two load scenarios are 

examined in order to form a base for which the comparison of experimental, analytical 

and output from the software is achieved. The bending stresses across the entire geometry 

length of the telescoping assembly are attained at intervals of 50 mm and represented 

graphically in Figures 7.3 and 7.6 for both inline and offset loading, respectively, for 

different 
P

wL
ratios of 2, 4, 6 and 8. The extracted shear stress values are in turn plotted in 

Figures 7.4, 7.5, 7.7 and 7.8, for 
P

wL
ratios of 2, 4, 6 and 8. Figure 7.4 plots the maximum 

value of shear stress induced by inline loading at the side walls of the telescoping 

assembly along the line marked as ‘A3B3C3D3’. Figure 7.5 plots the maximum value of 

shear stress induced by inline loading along the top face of the telescoping assembly 

along the line marked‘A2B2C2D2’. Figures 7.7 and 7.8 were similarly plotted but for 

offset loading. The stress analysis results are obtained using the strategy outlined in Table 

7.3 whilst the extraction of stress values is accomplished using the techniques detailed in 

Appendix G.9.2. 
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Figure 7.3: Inline loading induced bending stress (MPa) vs distance from the fixed end along A1C1B1D1, as marked in Figure 6.2, for the 

two section telescopic cantilever beam assembly having individual part dimensions outlined in Table 7.1, and an overlap of 400 mm 

(Key:              wL/P=2;                 wL/P=4;                wL/P=6;                 wL/P=8)   
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Figure 7.4: Inline loading induced shear stress (MPa) vs distance from the fixed end along A3C3B3D3, as marked in Figure 6.2, for the 

two section telescopic cantilever beam assembly having individual part dimensions outlined in Table 7.1, and an overlap of 400 mm 

(Key:              wL/P=2;                 wL/P=4;                wL/P=6;                 wL/P=8)   
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Figure 7.5: Inline loading induced shear stress (MPa) vs distance from the fixed end along A2C2B2D2, as marked in Figure 6.2, for the 

two section telescopic cantilever beam assembly having individual part dimensions outlined in Table 7.1, and an overlap of 400 mm 

(Key:              wL/P=2;                 wL/P=4;                wL/P=6;                 wL/P=8)   
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Figure 7.6: Offset loading induced bending stress (MPa) vs distance from the fixed end along A1C1B1D1, as marked in Figure 6.2, for the 

two section telescopic cantilever beam assembly having individual part dimensions outlined in Table 7.1, and an overlap of 400 mm 

(Key:              wL/P=2;                 wL/P=4;                wL/P=6;                 wL/P=8)   
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Figure 7.7: Offset loading induced shear stress (MPa) vs distance from the fixed end along A3C3B3D3, as marked in Figure 6.2, for the 

two section telescopic cantilever beam assembly having individual part dimensions outlined in Table 7.1, and an overlap of 400 mm 

(Key:              wL/P=2;                 wL/P=4;                wL/P=6;                 wL/P=8)   
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Figure 7.8: Offset loading induced shear stress (MPa) vs distance from the fixed end along A2C2B2D2, as marked in Figure 6.2, for the 

two section telescopic cantilever beam assembly having individual part dimensions outlined in Table 7.1, and an overlap of 400 mm 

(Key:              wL/P=2;                 wL/P=4;                wL/P=6;                 wL/P=8)   
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7.4 Buckling Analysis using ABAQUS 

 

Critical Buckling loads for the two section telescoping cantilever beam assembly are 

determined using the strategy explained in detail in Table 7.4. The values were determined 

for overlap ratios from 0.2 to 0.8 in increasing intervals of 0.2 and extracted as explained in 

G.9.3 and plotted as shown in Figure 7.9. The graph in Figure 7.9 plots the non 

dimensionalised parameter 
Eu

cr

P

P
against the increasing overlap ratio ‘α’. crP is the critical 

buckling load whilst EuP represents the Euler buckling load of the two section telescoping 

assembly as explained in § 4.9.  



204 

 

 

Figure 7.9: FEA extracted values of
Eu

cr

P

P
vs. Overlap ratio α, where  varies from 0.2 to 0.8, in increments of 0.2, for the two section 

telescopic cantilever beam assembly, having dimensions outlined in Table 7.1.
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7.5 Summary 

 

The two section telescopic cantilever beam assembly, having dimensions specified in Table 

7.1 has been subjected to a rigorous and comprehensive series of analyses, using the FEA 

software package ABAQUS. The three outcomes desired from the FEA were identified in § 

7.1 and successfully attained. The results of the FEA performed are in turn compared and 

contrasted with the numerical and experimentally derived results in Chapter 9. The results of 

the analyses performed are summarised briefly as follows: 

 

1. The deflections induced for inline loads equivalent to their respective 
P

wL
ratios, 

denoted by y and directly extracted from ABAQUS simulations, were divided by the 

tip deflection of a single fixed end section cantilever having length L and uniform 

second moment of area I, denoted by 0y  such that 0y equals 
EI

PL

3

3

, to give the 

normalised parameter 
0y

y
. It is this parameter in turn that is plotted against the 

overlap ratio α, varying from 0.2 to 0.8, in increments of 0.2 , for 
P

wL
ratios of 10, 1, 

0.1 and 0.01, to give the resultant deflection predictions shown in Figure 7.2. These 

curves serve as a benchmark for the final objective of comparing the experimentally 

and theoretically extracted deflection plots as is amply detailed in §9.1.1. 

 

2. Inline and Offset loading induced bending and shear stress distributions are plotted 

against the distance measured along the assembly, at 50 mm intervals, from the fixed 

end. These curves were in turn plotted for 
P

wL
ratios of 2, 4, 6 and 8. These curves are 

finally compared and contrasted against the theoretical predictions for the same as 

outlined in § 9.1.2 and graphically presented in Figures (9.3) – (9.8). 

 

3. The critical buckling loads of the two section telescopic cantilever beam assembly 

having dimensions outlined in Table 7.1, denoted by crP  and extrapolated from 

ABAQUS as detailed in G.9.3,  are divided by the Euler Critical Buckling load 

corresponding to a column having one end fixed and the other free, denoted 
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by EuP such that EuP equals 
2

2

4L

EI
, to give the normalised parameter 

Eu

cr

P

P
. This 

parameter in turn is once again plotted against the overlap ratio α, varying from 0.2 to 

0.8, in increments of 0.2. The curve thus generated is compared against the 

theoretically generated curve as shown in Figure 9.41 and detailed in §9.1.3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



207 

 

CHAPTER 8: EXPERIMENTAL ANALYSIS 

 

8.1 Introduction 

This chapter contains the results and analyses carried out on a two section telescopic 

assembly consisting of two thin walled rectangular steel sections having Tufnell wear pads at 

locations specified subject to a combination of bending, shear and torsion. The test rig has 

dimensions as specified in Table 8.1. In earlier chapters the two section telescoping cantilever 

beam assembly was analysed theoretically as well as modelled using Finite Element Analysis 

and the results extracted. This chapter aims to take the analysis that has been performed a 

step further and not only validate the theory and the software but in its own right highlight, if 

any, discrepancies that may arise in practice. The importance of experimentation in this thesis 

cannot be highlighted enough; it could be argued that it forms the bedrock of this body of 

work. 

The aim of the experimental tests carried out can be outlined as follows: (i) determination of 

tip deflections induced by loading the assembly; and finally (ii) stress and strain analysis in 

the beam cross sections at two different locations along the telescopic beam assembly, which 

in turn leads onto; (iii) calculation of principal stresses at the four locations.  

8.2 The Test Specimen  

 

Figure 8.1: The Experimental Test Rig 

The telescopic beam assembly model (test specimen) was assembled using two mild steel 

sections as shown in Figure 8.1 and the properties of which are outlined in the Table 8.1 

below. 

BEAM 1 
BEAM 2 
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Table 8.1: Sectional Properties of the individual beams of the test specimen 

Section 
Size 

H mm   B mm 

Thickness 

(T mm) 

Length 

(L mm) 

Calculated 

Weight 

per unit 

length 

(N/mm) 

Calculated 

Second 

Moments of 

Area (mm
4
) 

BEAM 1 

(Fixed 

End) 

 

60 

 

40 

 

1.55 
1300 

 

0.0235 

 

16.7x10
4 

BEAM 2 

(Free 

End) 

 

50 

 

30 1.55 1300 

 

0.0187 9.042x10
4
 

Wear 

Pads x 7 
2 30 2 100 - - 

 

The load was applied onto the test specimen by means of a loading arm shown in Figure 8.2, 

through which loads could be applied to simulate pure bending (inline loading) or a twisting 

moment (offset loading). 

 

Figure 8.2: Loading arm through which loads are applied 

Figure 8.3 (a) and (b) shows the load configurations for inline loading and offset loading.  

Point on loading arm 

where inline loading is 

applied 

Point on loading arm 

where offset loading is 

applied 

Load Arm 
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                                             (a)                                              (b) 

Figure 8.3: Loading arm configuration for (a) Inline Loading (b) Offset Loading 

 

 

Figure 8.4: Tufnell wear pads attached to beam 2. These four wear pads are located on 

the four walls of beam 2, at the end opposite to that where loads are applied 
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Figure 8.5: Unattached wear pads, inserted into the gap at the three positions A, B and 

C, at the start of the overlap between beam 1 and beam 2  

The wear pads are placed in seven locations in the experimental test rig. Figure 8.4 shows the 

Tufnell wear pads that are attached to beam 2 or the free-end section of the assembly, whilst 

Figure 8.5 shows the locations where the unattached wear pads are inserted into the gap 

between the beam sections 1 and 2, when the latter is sheathed or inserted into the fomer. 

There are four attached wear pads and three unattached wear pads within the assembly. The 

four attached wear pads are situated at all four walls of beam 2, at the end opposite to where 

the loading is applied, such that they are always enclosed within the overlap region. The three 

unattched wear pads on the other hand are inserted into the gaps, created between both the 

vertical walls of Beam’s 1 and 2, at positions A and B respectively and into the gap created 

between the horizontal walls of Beam’s 1 and 2, at position C. This placement is possible 

only when beam 2 is sheathed within beam 1. 

Position B Position A 

Position C 
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Figure 8.6: Position where the strain gauges were bonded onto the telescopic assembly. 

Positions W and X are 300 mm from the fixed end of beam 1, whilst positions Y and Z 

are 200 mm from the inner end of beam 2 

 

Table 8.2: Position of gauges along the telescopic beam assembly 

Position of strain 

gauge along the 

telescopic beam 

assembly 

Section to which 

the strain gauge 

is bonded 

Distance of the gauge 

(mm) 

Position W Beam 1 

300 mm from fixed end 

along the top surface of 

the assembly 

Position X Beam 1 

300 mm from fixed end 

along the side surface of 

the assembly 

Position Y Beam 2 

200 mm from end encased  

inside the overlap along 

the top surface of the 

assembly 

Position Z Beam 2 

200 mm from end encased 

inside the overlap along 

the side surface of the 

assembly 

 

The strain gauge rosettes attached at positions W and X, as shown in Figure 8.7 (a) and (b) 

are bonded to beam 1, whilst the rosettes attached at positions Y and Z as shown in Figure 

8.7(c) and (d), are bonded to beam 2. 

Position W 

Position X 

Position Y 

Position Z 
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The rosettes bonded at positions W and X are at the top and the side of beam 1 along the 

neutral axes, respectively. The rosettes bonded at positions Y and Z, are at the top and the 

side of beam 2 along the neutral axes, respectively. The gauges bonded at positions Y and Z 

are placed so that they are always sheathed within beam 1 in the overlap region where beam 2 

slides within beam 1.  

Measurements of strains of the beam sections in the tested segments at positions W, X, Y and 

Z were carried out using the strain gauging methods that are highlighted in detail in Appendix 

H. Measurements of strains were carried out using the Scorpio data acquisition system which 

in turn was integrated with a desktop PC. 

       

                                   (a)                                                                       (b) 

       

                                   (c)                                                                       (d) 

Figure 8.7: Strain gauge rosettes bonded at (a) position W (b) position X (c) position Y 

and (d) position Z, as shown in Figure 8.6. 

The overlap region is of particular significance in that the combination of the two sections 

(one sheathed within the other) bolsters the magnitude of its second moments of area. Also of 
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importance are the dimensions of the wear pads. Depending on the dimensions of the wear 

pad, a significant reduction in bending and shear stresses is registered as compared to away 

from the overlap as seen in Figure 6.4. Also of note is the fact that due to the increased 

moments of area within the overlap, buckling always takes place in front of the overlap in 

that section of smaller dimensions. Naturally this can be attributed to the susceptibility of that 

section to buckle first due to it having the lesser value of I or second moment of area.   

 

Figure 8.8: Front view of the telescopic assembly. The arrow indicates the position 

where dial gauge readings of deflection for different load magnitudes were taken. 

Position where deflection 

readings are taken 
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The objectives of the stress and stain analysis is to record the strain state at the four positions 

on the telescoping assembly subjected to combined bending and torsion. Using the strain data 

collected the principal strains and their directions can be calculated. With the principal strains 

in turn the principal stresses can be obtained using the stress-strain transformation equations 

as outlined in Appendix H. It is also possible to predict the stress state of the shaft using 

theoretical techniques considering such factors as bending, shear stress due to torsion and the 

effects of shear force. This experiment will be a measure of how well the theory models 

reality. Apart from measurements of strains, the measurements of tip deflections was carried 

out at the point shown in Figure 8.8 for increasing loads using dial gauges of accuracy 

0.01mm.  

8.3 The Experimental Mounting Stand 

 

Figure 8.9: Frontal view of the experimental mounting jig clamped to support column.  

The experimental jig used to mount the telescopic beam assembly in order to simulate an 

encastre fixing or a rigidly fixed end is shown in Figure 8.9. The jig is attached to columns in 

the laboratory environment and is mounted onto the same using a spigot which is screwed 
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onto a threaded rod which in turn is screwed into the fixed beam. The spigot as well as the 

threaded rod and the location where it screws into beam 1 are shown in Figure 8.10.  

 

Figure 8.10: Details of the mounting mechanism  

          

                                   (a)                                                                       (b) 

Figure 8.11: (a) Front view of the mounting jig (b) Rear view of the mounting jig 

Figures 8.11 (a) and (b) show the different views of the mounting rig and Figure 8.12 shows 

the left hand view of the mounting jig. Figure 8.12 also shows the method by which the jig is 

clamped to the column. Once the threaded rod-insert slides into the hole in the support 

column, the spigot centres the insert, which in turn is what the front view of the rig slides 

onto, through the through-hole shown in both Figures 8.11(a) and (b). 

 

Spigot 

Threaded 

Rod Insert 

Location in Beam 1 where 

the threaded rod screws 

into, to mount onto 

column 
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Figure 8.12: Left hand view of the mounting jig showing the method by which the same 

is clamped to the support column. 

The assembly drawing entitled ‘Mounting Fixture’ on the page that follows shows the 

detailed measurements of the mounting jig and the individual components that comprise the 

same. 
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8.4 Experimental Tip Deflection Analysis 

Figure 8.13 represents the experimentally derived deflection curves obtained by plotting the 

end load applied to the corresponding tip deflection, whilst varying the overlap lengths. 

These curves were plotted for the experimental test rig, the dimensions of which are 

elaborated in Table 8.1. These curves were plotted first by initially loading the assembly in 

the inline loading configuration as shown in Figure 8.3 (a) with a nominal load of 10 N and 

setting the dial gauge to zero before commencing the deflection testing. This was done in 

order to reduce any errors that may creep in and remove any slack within the assembly. Tip 

deflections were measured for increasing magnitudes of end load, in the inline loading 

configuration as shown in Figure 8.3 (a). Figure 8.14, in turn represents the modified 

deflection curves plotted, in similar fashion to those in Figures 3.2, 3.7, 3.10 and 3.12 

respectively. Knowing the tip deflection induced in the assembly by a particular end load 

experimentally (denoted here as ‘y’), and the tip deflection of a single fixed end section 

cantilever having length L and uniform second moment of area I (here denoted by the term 

‘ 0y ’ such that 0y equals 
EI

PL

3

3

) we obtain the normalised ordinate parameter 
0y

y
. This 

ordinate parameter is in turn plotted for values of 
P

wL
 which can be calculated given the 

dimensions of the experimental rig as outlined in Table 8.1, against the overlap ratio 

parameter ‘α’. The intention of plotting this curve was to act as a means of comparison 

against the theoretical predictions and the FEA generated curves.  
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Figure 8.13: Load applied in Newtons vs tip deflection in mm for the experimental test rig having dimensions outlined in Table 8.1 

(Key:              Overlap length 400 mm;                 Overlap length 500 mm;                Overlap length 600 mm;              Overlap length 700 mm)   
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Figure 8.14: Extrapolated deflection curves vs. overlap ratio α for the experimental test rig having dimensions outlined in Table 8.1 

(Key:              Applied Load 30 N;                 Applied Load 40 N;                Applied Load 50 N;              Applied Load 80 N)   
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8.5 Experimental Stress Analysis 

The results of the experimental analysis performed on the experimental test rig having 

dimensions as detailed in Table 8.1 are presented below in Figures 8.13 – 8.44. Using the 

Scorpio Data Acquisition system, the principal strains are measured using the strain gauges 

bonded as outlined in the strain gauging techniques mentioned in H.5, H.6 and H.7. The 

gauges are shown in Figures 8.7 (a) – (d) and are bonded at each of the locations shown in 

Figure 8.6 and Table 8.2. The strains recorded are converted to their corresponding principal 

strain entities using the equations (H.4a) and (H.4b). Using the principal strain values 

calculated from equations (H.4a) and (H.4b), the equivalent principal stresses are obtained 

using the stress transformation equations, (H.6a) and (H.6b). Equation (H.4c) gives the 

principal strain directions. The values of principal stresses are plotted against the load 

applied, in either the inline or offset loading configurations, as shown in Figures 8.3 (a) – (b), 

for varying overlap lengths.  

 

Figures 8.15 – 8.18 show the inline loading induced principal stresses at each of the four 

locations shown in Figure 8.6 for an overlap length of 400 mm. Figures 8.19 – 8.22 shows the 

offset loading induced principal stresses at each of the four locations, once again for an 

overlap length of 400 mm. Figures 8.23 – 8.26 show inline loading induces principal stresses 

for an overlap length of 500 mm whilst Figures 8.27 – 8.30 show the principal stresses 

induced through offset loading for the same overlap length. Inline and offset loading induced 

principal stresses are shown for an overlap length of 600 mm in Figures 8.31 – 8.34 and 

Figures 8.35 – 8.38, respectively. Finally the principal stresses plotted for inline  and offset 

loading configurations, as induced within the assembly having an overlap length of 700 mm 

are presented in Figures 8.39 – 8.42 and Figures 8.43 – 8.46, in that order. These plots are 

compared with both theoretical and FEA obtained predictions of principal stresses, and 

shown in § 9.1.3. 
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Figure 8.15: Principal stresses (σ1, σ2 (MPa)) at position W vs Inline load applied (kg) 

with 400 mm overlap 

(Key:                       Experimental σ1 (MPa);               Experimental σ2 (MPa)) 

 

 

Figure 8.16: Principal stresses (σ1, σ2 (MPa)) at position X vs Inline load applied (kg) 

with 400 mm overlap 
(Key:                       Experimental σ1 (MPa);               Experimental σ2 (MPa)) 
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Figure 8.17: Principal stresses (σ1, σ2 (MPa)) at position Y vs Inline load applied 

(kg)with 400 mm overlap 

(Key:                       Experimental σ1 (MPa);               Experimental σ2 (MPa)) 

 

 

Figure 8.18: Principal stresses (σ1, σ2 (MPa)) at position Z vs Inline load applied 

(kg)with 400 mm overlap 

(Key:                       Experimental σ1 (MPa);               Experimental σ2 (MPa)) 
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Figure 8.19: Principal stresses (σ1, σ2 (MPa)) at position W vs Offset load applied (kg) 

with 400 mm overlap 

(Key:                       Experimental σ1 (MPa);               Experimental σ2 (MPa)) 

 

 
Figure 8.20: Principal stresses (σ1, σ2 (MPa)) at position X vs Offset load applied (kg)  

with 400 mm overlap 

(Key:                       Experimental σ1 (MPa);               Experimental σ2 (MPa)) 
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Figure 8.21 Principal stresses (σ1, σ2 (MPa)) at position Y vs Offset load applied (kg)  

with 400 mm overlap 

(Key:                       Experimental σ1 (MPa);               Experimental σ2 (MPa)) 

 

 
Figure 8.22 Principal stresses (σ1, σ2 (MPa)) at position Z vs Offset load applied (kg)  

with 400 mm overlap 

(Key:                       Experimental σ1 (MPa);               Experimental σ2 (MPa)) 
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Figure 8.23 Principal stresses (σ1, σ2 (MPa)) at position W vs Inline load applied (kg)  

with 500 mm overlap 

(Key:                       Experimental σ1 (MPa);               Experimental σ2 (MPa)) 

 

 
Figure 8.24: Principal stresses (σ1, σ2 (MPa)) at position X vs Inline load applied (kg) 

with 500 mm overlap 

(Key:                       Experimental σ1 (MPa);               Experimental σ2 (MPa)) 
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Figure 8.25: Principal stresses (σ1, σ2 (MPa)) at position Y vs Inline load applied (kg) 

with 500 mm overlap 

(Key:                       Experimental σ1 (MPa);               Experimental σ2 (MPa)) 

 

 

 
Figure 8.26: Principal stresses (σ1, σ2 (MPa)) at position Z vs Inline load applied 

(kg)with 500 mm overlap 

(Key:                       Experimental σ1 (MPa);               Experimental σ2 (MPa)) 
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Figure 8.27: Principal stresses (σ1, σ2 (MPa)) at position W vs Offset load applied (kg) 

with 500 mm overlap 

(Key:                       Experimental σ1 (MPa);               Experimental σ2 (MPa)) 

 

 

 
Figure 8.28: Principal stresses (σ1, σ2 (MPa)) at position X vs Offset load applied (kg) 

with 500 mm overlap 

(Key:                       Experimental σ1 (MPa);               Experimental σ2 (MPa)) 
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Figure 8.29: Principal stresses (σ1, σ2 (MPa)) at position Y vs Offset load applied (kg) 

with 500 mm overlap 

(Key:                       Experimental σ1 (MPa);               Experimental σ2 (MPa)) 

 

 

Figure 8.30: Principal stresses (σ1, σ2 (MPa)) at position Z vs Offset load applied (kg) 

with 500 mm overlap 

(Key:                       Experimental σ1 (MPa);               Experimental σ2 (MPa)) 
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Figure 8.31: Principal stresses (σ1, σ2 (MPa)) at position W vs Inline load applied (kg) 

with 600 mm overlap 

(Key:                       Experimental σ1 (MPa);               Experimental σ2 (MPa)) 

 

 

 

Figure 8.32: Principal stresses (σ1, σ2 (MPa)) at position X vs Inline load applied (kg)  

with 600 mm overlap 

(Key:                       Experimental σ1 (MPa);               Experimental σ2 (MPa)) 
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Figure 8.33: Principal stresses (σ1, σ2 (MPa)) at position Y vs Inline load applied (kg) 

with 600 mm overlap 

(Key:                       Experimental σ1 (MPa);               Experimental σ2 (MPa)) 

 

 
Figure 8.34: Principal stresses (σ1, σ2 (MPa)) at position Z vs Inline load applied (kg) 

with 600 mm overlap 

(Key:                       Experimental σ1 (MPa);               Experimental σ2 (MPa)) 
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Figure 8.35: Principal stresses (σ1, σ2 (MPa)) at position W vs Offset load applied (kg) 

with 600 mm overlap 

(Key:                       Experimental σ1 (MPa);               Experimental σ2 (MPa)) 

 

 

Figure 8.36: Principal stresses (σ1, σ2 (MPa)) at position X vs Offset load applied (kg) 

with 600 mm overlap 

(Key:                       Experimental σ1 (MPa);               Experimental σ2 (MPa)) 
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Figure 8.37: Principal stresses (σ1, σ2 (MPa)) at position Y vs Offset load applied (kg) 

with 600 mm overlap 

(Key:                       Experimental σ1 (MPa);               Experimental σ2 (MPa)) 

 

 

Figure 8.38: Principal stresses (σ1, σ2 (MPa)) at position Z vs Offset load applied (kg) 

with 600 mm overlap 

(Key:                       Experimental σ1 (MPa);               Experimental σ2 (MPa)) 
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Figure 8.39: Principal stresses (σ1, σ2 (MPa)) at position W vs Inline load applied (kg) 

with 700 mm overlap 

(Key:                       Experimental σ1 (MPa);               Experimental σ2 (MPa)) 

 

 

Figure 8.40: Principal stresses (σ1, σ2 (MPa)) at position X vs Inline load applied (kg) 

with 700 mm overlap 

(Key:                       Experimental σ1 (MPa);               Experimental σ2 (MPa)) 
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Figure 8.41: Principal Stresses (σ1, σ2 (MPa)) at Position Y vs Inline Load Applied (Kg) 

with 700 mm overlap 

(Key:                       Experimental σ1 (MPa);               Experimental σ2 (MPa)) 

 

 

Figure 8.42: Principal stresses (σ1, σ2 (MPa)) at position Z vs Inline load applied (kg) 

with 700 mm overlap 

(Key:                       Experimental σ1 (MPa);               Experimental σ2 (MPa)) 
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Figure 8.43: Principal stresses (σ1, σ2 (MPa)) at position W vs Offset load applied (kg) 

with 700 mm overlap 

(Key:                       Experimental σ1 (MPa);               Experimental σ2 (MPa)) 

 

 

Figure 8.44: Principal stresses (σ1, σ2 (MPa)) at position X vs Offset load applied (kg) 

with 700 mm overlap 

(Key:                       Experimental σ1 (MPa);               Experimental σ2 (MPa)) 
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Figure 8.45: Principal stresses (σ1, σ2 (MPa)) at position Y vs Offset load applied (kg) 

with 700 mm overlap 

(Key:                       Experimental σ1 (MPa);               Experimental σ2 (MPa)) 

 

 

Figure 8.46: Principal stresses (σ1, σ2 (MPa)) at position Z vs Offset load applied (kg) 

with 700 mm overlap 

(Key:                       Experimental σ1 (MPa);               Experimental σ2 (MPa)) 
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8.6 Summary 

The experimental analyses and results conducted on the experimental test rig having 

dimensions detailed in Table 8.1 are documented in this chapter. The desired outcomes of this 

experimental section were attained and are briefly summarised. 

1. Tip deflections for varying load magnitudes were physically measured and plotted as 

shown in Figure 8.13, for differing overlap lengths. From experimentally determined 

tip deflections, the dimensionless parameter 
0y

y
is extrapolated, and plotted against 

the equivalent overlap ratio parameter α, in turn obtained by dividing the overlap 

length by the length of the fixed-end section of the telescoping assembly. These 

curves are plotted 8.14.    

2. Strain gauges were bonded at four locations along the telescopic assembly and the 

principal strains induced were recorded for increasing magnitudes of inline and offset 

loading, for varying overlap lengths of 400 mm, 500 mm, 600 mm and 700 mm. 

These strains were converted using relevant stress-strain transformation equations 

outlined in Appendix H, to their equivalent principal stresses and plotted against the 

load applied.  
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CHAPTER 9: DISCUSSION AND CONCLUSIONS 

9.1 Results 

This chapter aims to document the results of the theoretical, experimental and Finite Element 

Analysis conducted thus far, upon the two section telescopic cantilever beam assembly and 

comparisons between them.  The underlying principle of bending cantilever beams has been 

revisited in which the moment of resistance is identified as the mechanism for transferring the 

effects of external loads within continuous beams. Since this cannot be used as the 

mechanism for discontinuous telescopic beams an alternative ‘Tip Reaction Model’ is 

proposed in which the external loading is reacted at the tips of the overlaps.  

The two section telescoping cantilever beam assembly has been investigated and analysed in 

detail over the course of this body of work. Using the four common methods of tip deflection 

prediction as detailed in Chapter 3, unique expressions for end-load versus deflection for the 

two section telescoping cantilever beam assembly are derived. Each of these expressions, 

although unique, compares remarkably well, not only with each other, but with both 

experimental and Finite Element Analysis results, in the form of deflection curves plotted 

against increasing magnitudes of tip load, for different 
P

wL
 ratios. All of these results are 

presented in § 9.1.1. 

§ 4.9 details the expression that expresses the critical buckling load, that the two section 

telescoping cantilever beam assembly can withstand. This expression was derived from 

energy methods and has been tailored to suit a number of variables within the structure such 

as differing sectional lengths, overlap lengths and sectional properties. In addition to the 

theoretical derivation of this formula, the determination of critical buckling load for the same 

structure using Finite Element Analysis has been achieved and then compared and used to 

validate the theory mentioned earlier.  

§ 6.2 and § 6.3 detail the bending and shear stress formulation for the two section telescopic 

cantilever beam assembly for both inline and offset loading scenarios. Theoretical bending 

and shear stress values were determined along the relevant cross sections of the assembly and 

plotted for different values 
P

wL
ratios. Finite Element Analysis software was also used to 

generate both bending and shear stress values along the cross section of the assembly, for 
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comparison with the afore mentioned theoretical values. Chapter 8 details the stress analysis 

that was performed on the two section telescoping cantilever beam assembly and graphs of 

principal stresses at predetermined locations along the structure are shown in Figures 8.15-

8.46. The graphs plot the principal stresses at given positions against increasing magnitudes 

of either inline or offset applied loadings for different overlap lengths.   

9.1.1 Deflection Results  

Figure 3.2 shows the deflection plot obtained from Macaulay’s theorem, plotted against 

increasing overlap ratios for different 
P

wL
ratios. Tip deflections for differing overlap lengths 

and increasing tip loads are generated using a ‘C’ program as developed and shown in its 

entirety in Appendix B. Entering the variables as outlined in Table 3.2 the required tip 

deflections are obtained. The ordinate magnitude is obtained by dividing the ratio of tip 

deflection obtained from the ‘C’ program, for a given value of 
P

wL
which in turn varies from 

0.01 to 10, in multiples of 10, to the tip deflection of a single fixed end section cantilever 

having length L and uniform second moment of area I. In other words 0y equals
EI

PL

3

3

. The 

quantity 
P

wL
represents the ratio of the product of the self weight over the single fixed end 

section cantilever and the length over which it acts to the tip load acting on the same single 

fixed end cantilever section. The abscissa magnitude, as mentioned earlier, represents the 

increasing values of the overlap ratios, increasing in steps of 0.1, from 0.1 to 1. Similar 

deflection curves are plotted for the expressions derived using Mohr’s Moment Area 

Theorem, Castigliano’s Theorem and the Virtual Work Method as shown in Figures 3.7, 3.10 

and 3.12, respectively. The only exception to the curves generated by the latter three methods 

and those generated in the case of Macaulay’s theorem are the abscissa magnitudes varying 

from 0.1 to 1 in steps of 0.1. The reason for this is the fact that the ‘C’ program is unable to 

compute values for the tip reactions as detailed in Appendix A.2 for an overlap ratio of 0. On 

comparing the deflection curves generated for lower 
P

wL
 ratios of 0.01, 0.1 and 1 in Figures 

3.2, 3.7, 3.10 and 3.12 it is evident that not much scope is available for comparison purely 

because the curves overlay upon each other. However of interest here is the fact that for a 
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P

wL
 ratio of 10 the curves are more apart and separate from each other as is clearly evident in 

Figure 3.13. The difference between Macaulay’s theorem and the three other methods could 

be explained as being due to the reliance on the former on the tip reactions calculated for the 

varying overlap lengths, which the latter three in turn are independent of. Of greater interest 

arguably, is the difference between the deflection curves obtained from Mohr’s method and 

those generated from both Castigliano’s and the Virtual Work Method. The deflection 

magnitudes derived using Castigliano’s method and the Virtual Work method are the same. 

This is because the equations used to generate the respective curves are the same as is evident 

from Equations (3.18) and (3.26). Comparing either of these equations mentioned with 

Equation (3.11) derived using Mohr’s method reveals a significant difference in the second 

term which accounts for the uniformly distributed loading or self weight of the two section 

telescoping assembly. This difference in the case of the Mohr’s method analysis is in part due 

to the changing moments of areas that are taken into consideration when computing the 

deflection as elaborated in  §3.5.2 and shown diagrammatically in Figure 3.6. An important 

point to be made here is that the deflection curves plotted in Chapter 3 were plotted for a 

candidate assembly having dimensions as specified in Table 3.1, with the fixed and free 

section lengths assumed to be 1200 mm and 1000 mm respectively.  

Figure 7.2 represents the deflection curves generated using Finite Element Analysis. The 

ordinate and abscissa magnitudes are plotted as mentioned above. It must be highlighted that 

the use of non dimensionalised ratios is conducive to plotting presentable values and also 

allows for effective comparisons. The deflection curves generated from the software use as 

the candidate assembly the same dimensions as that of the experimental test rig, the 

dimensions of which are detailed in Table 8.1, for 
P

wL
ratios of 10, 1, 0.01 and 0.1. The 

curves thus generated and displayed in Figure 7.2, serve merely as a benchmark, for further 

comparison against the experimentally obtained deflection curves shown in Figure 8.13. 

Figure 8.13 represents the experimentally derived deflection curves obtained by plotting the 

end load applied to the corresponding tip deflection produced for increasing overlap lengths 

as indicated by the key. Again these curves were obtained for the experimental test rig the 

dimensions of which are elaborated in Table 8.1. These curves were plotted first by initially 

loading the assembly in the inline loading configuration as shown in Figure 8.3 (a) with a 
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pre-load of 10 N and setting the dial gauge to zero before commencing the deflection testing. 

This was done in order to reduce any errors that may creep in and remove any slack within 

the assembly. Figure 8.14 in turn represents the deflection curves of 
0y

y
plotted against the 

overlap ratio α for applied loads of 30, 40, 50 and 80 N. The ratio 
0y

y
was extrapolated using 

the data recorded in Figure 8.13.  

When similar loading and experimental test rig set up conditions and are applied to generate 

deflection curves, using the four deflection prediction equations, they compare most 

favourably with the deflection curves generated from experimental results, such that there is 

no means of differentiation between the curves themselves for the different load magnitudes. 

Again this is due to the fact that the curves overlap upon each other as can be evidenced in 

Figure 9.1.  

Another point to be considered, with regards to the experimental results is explained using 

Figure 9.2. The caption for Figure 8.13 details the key for each curve that has been obtained 

experimentally. Each of the curves meets the abscissa at certain points, each of which is a 

specific and unique value of tip deflection. These values correspond to the deflection of the 

assembly for a particular overlap length, under the action of its own weight. Also to be noted 

in Figure 9.3 is that all the curves irrespective of overlap lengths meet at a fixed ordinate 

having a magnitude of 20 N. This ordinate magnitude can be taken to be the self weight of 

the assembly, irrespective and independent of the overlap length or the overall length of the 

assembly.   
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Figure 9.1: Comparison of Deflection Curves vs. Parameter α, for the two section telescopic cantilever beam assembly having individual 

part dimensions outlined in Table 8.1 

(Applied Load 30 N: Macaulay; Mohr;  Castigliano and Virtual Work;  FEA;          Experimental 

Applied Load 40 N: Macaulay; Mohr;  Castigliano and Virtual Work;  FEA;           Experimental 

Applied Load 50 N: Macaulay; Mohr; Castigliano and Virtual Work;  FEA;          Experimental 

Applied Load 80 N:  Macaulay; Mohr; Castigliano and Virtual Work;  FEA;             Experimental) 
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Figure 9.1 (a): Comparison of Deflection Curves vs. Parameter α, for the two section telescopic cantilever beam assembly having 

individual part dimensions outlined in Table 8.1, for an applied load of 80 N. 

(Applied Load 80 N:  Experimental;                Macaulay;                 Mohr;               Castigliano and Virtual Work;             FEA)           
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Figure 9.1 (b): Comparison of Deflection Curves vs. Parameter α, for the two section telescopic cantilever beam assembly having 

individual part dimensions outlined in Table 8.1, for an applied load of 50 N. 

(Applied Load 50 N:  Experimental;                Macaulay;                 Mohr;               Castigliano and Virtual Work;             FEA) 
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Figure 9.1 (c): Comparison of Deflection Curves vs. Parameter α, for the two section telescopic cantilever beam assembly having 

individual part dimensions outlined in Table 8.1, for an applied load of 40 N. 

(Applied Load 40 N:   Experimental;                Macaulay;                 Mohr;               Castigliano and Virtual Work;             FEA) 
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Figure 9.1 (d): Comparison of Deflection Curves vs. Parameter α, for the two section telescopic cantilever beam assembly having 

individual part dimensions outlined in Table 8.1, for an applied load of 30 N. 

(Applied Load 30 N:   Experimental;                Macaulay;                 Mohr;               Castigliano and Virtual Work;             FEA) 
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Figure 9.2: Experimental Deflection linear Plots showing Load Applied in Newton vs Tip Deflection in mm, extended such that they 

meet the ordinate at 20 N  

(Key:              Overlap length 400 mm;                 Overlap length 500 mm;                Overlap length 600 mm;              Overlap length 700 mm)  

[Refer to Figure 8.11] 
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9.1.2 Stress Analysis Results 

The results of stress analysis from theoretical predictions are presented in Figures 6.4 – 6.9. 

Figures 6.4 represents the inline loading induced bending stress along the top surface of the 

beam assembly. Figure 6.5 details the inline loading induced shear stress along the side wall 

of the beam assembly whilst Figure 6.6 plots the inline loading induced shear stress along the 

top, left hand corner line of the beam assembly. Similarly Figures 6.7 – 6.9 represent the 

offline loading induced bending and shear stress values. The graphs are plotted for the 

assembly having the same dimensions as that of the experimental test rig and outlined in 

Table 8.1, as well as in Appendices D and E, for an overlap of 400 mm.  The results of stress 

analysis from FEA predictions are presented in Figures 7.3 – 7.8. The order of these graphs is 

similar to that of those plots derived from theoretical predictions, as has been detailed above. 

Once again the curves have been plotted for the two section telescoping assembly having the 

same dimensions as that of the experimental test rig and outlined in Table 8.1, for an overlap 

of 400mm.  

 

Comparisons of both the theoretically and FEA generated bending and shear stress curves, in 

general, was once again difficult as they overlaid upon one other to the point, where there was 

no means to differentiate between the generated sets of curves at all, in some instances. 

Figure 9.3 plots the theoretically and FEA extracted inline loading induced bending stress in 

MPa, along the top surface of the beam assembly against the distance from the fixed end in 

mm. Figure 9.4 displays the theoretically and FEA derived inline loading induced shear stress 

along the middle of the side wall of the beam assembly whilst Figure 9.5 depicts the inline 

loading induced shear stress along the top, left hand corner line of the beam assembly. In 

similar fashion, Figures 9.6 – 9.8 represent the offset loading induced bending and shear 

stress values. These comparison graphs were plotted, once again for the test rig having 

dimensions as specified in Table 8.1.  

 

In case of the bending stress curves derived for both inline and offset loading scenarios, stress 

values were obtained at 50 mm intervals along the top of the beam sections as is detailed in 

Appendices C and D, respectively. FEA values were similarly obtained in a manner as 

outlined in Appendix G.  The unreinforced beam lengths AB and CD are shown for which the 

stress axis refers to the maximum bending stress at their mid, outer surfaces. In [92] stress 

dips from FEA at lengths of 600 mm and 1500 mm were explained by the presence of wear 
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pads. Similarly in the candidate assembly dimensions of which are outlined in Appendices D 

and E, wear pads were used in the simulation in FEA, as is outlined in Appendix I. In the 

candidate assembly, from Figures 6.4 and 6.7, it can be seen that at a length of 900 mm there 

is a stress dip due in part to the set of wear pads at said length. They decrease the stress 

concentration in the overlap area between sections. Before and beyond each overlap the 

bending stress in each is seen to diminish from its greatest value at the fixed-end to zero at the 

free-end. Figures 6.4 and 6.7 show that there are two further ‘free-ends’ within this telescopic 

assembly where the bending stresses are also zero. The greatest theoretically derived bending 

stress magnitude of 16MPa and 18MPa induced by inline and offset loading in the two 

section telescoping assembly, respectively is in turn evident from Figures 6.4 and 6.7 for 

P

wL
ratio of 2. Similarly, the greatest FEA extracted values of bending stresses induced by 

inline and offset loading, is roughly 17 MPa and 17.5 MPa, respectively. A significant 

difference between the curves generated by FE and theory for inline loading bending stresses 

can be seen in Figure 9.3 for Beam ACB.  This in part, is due to the boundary conditions used 

while modelling the FE model in ABAQUS/CAE. The fixed end beam is constrained in six 

degrees of freedom, and this in turn contributes to a reduction  in stress values noted up to 50 

mm along its length after which there is a sharp spike in the stress values registered. This may 

be due to the boundary condition making its effect felt along the assembly, albeit over a small 

length. 

 

In case of the shear stress curves derived for both inline and offset loading scenarios, stress 

values were obtained at 50 mm intervals along the top and sides of the beam sections as is 

detailed in Appendices C and D, respectively. FEA values were similarly obtained in a 

manner as outlined in Appendix G. Shear stress values were derived and obtained from both 

the mid wall position of the top, horizontal and nearest corner to it, on the side, vertical walls 

respectively as is made clear in Figures 6.5 and 6.6 for inline loading and Figures 6.8 and 6.9 

for offset loading. In comparison FEA generated curves were also produced in similar fashion 

and are comprehensively detailed in Figures 7.4 and 7.5 for inline loading and Figures 7.7 

and 7.8 for offset loading respectively. The reversal in the tip reaction between beams AB and 

CD is responsible for the alternation in signs of the shear stress as is shown in Figures 6.5, 

6.6, 6.8, 6.9, 7.4, 7.5, 7.7 and 7.8. Nowhere does the shear stress magnitude become zero 

despite it having a relatively low magnitude compared to the accompanying bending stress. 



251 

 

 

 

Figure 9.3: Inline loading induced bending stress (MPa) vs distance from the fixed end along A1C1B1D1, as marked in Figure 6.2, for the 

two section telescopic cantilever beam assembly having individual part dimensions outlined in Table 7.1, and an overlap of 400 mm 

(Key to FEA Predictions:                wL/P=2;                 wL/P=4;                wL/P=6;              wL/P=8)   

(Key to Theoretical Predictions: wL/P=2;  wL/P=4;  wL/P=6; wL/P=8) 
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Figure 9.4: Inline loading induced shear stress (MPa) vs distance from the fixed end along A3C3B3D3, as marked in Figure 6.2, for the 

two section telescopic cantilever beam assembly having individual part dimensions outlined in Table 7.1, and an overlap of 400 mm 

(Key to FEA Predictions:                wL/P=2;                 wL/P=4;                wL/P=6;              wL/P=8)   

(Key to Theoretical Predictions: wL/P=2;  wL/P=4;  wL/P=6; wL/P=8) 
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Figure 9.5: Inline loading induced shear stress (MPa) vs distance from the fixed end along A2C2B2D2, as marked in Figure 6.2, for the 

two section telescopic cantilever beam assembly having individual part dimensions outlined in Table 7.1, and an overlap of 400 mm 

(Key to FEA Predictions:                wL/P=2;                 wL/P=4;                wL/P=6;              wL/P=8)   

(Key to Theoretical Predictions: wL/P=2;  wL/P=4;  wL/P=6; wL/P=8) 
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Figure 9.6: Offset loading induced bending stress (MPa) vs distance from the fixed end along A1C1B1D1, as marked in Figure 6.2, for the 

two section telescopic cantilever beam assembly having individual part dimensions outlined in Table 7.1, and an overlap of 400 mm 

(Key to FEA Predictions:                wL/P=2;                 wL/P=4;                wL/P=6;              wL/P=8)   

(Key to Theoretical Predictions: wL/P=2;  wL/P=4;  wL/P=6; wL/P=8) 
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Figure 9.7: Offset loading induced shear stress (MPa) vs distance from the fixed end along A3C3B3D3, as marked in Figure 6.2, for the 

two section telescopic cantilever beam assembly having individual part dimensions outlined in Table 7.1, and an overlap of 400 mm 

(Key to FEA Predictions:                wL/P=2;                 wL/P=4;                wL/P=6;              wL/P=8)   

(Key to Theoretical Predictions: wL/P=2;  wL/P=4;  wL/P=6; wL/P=8) 
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Figure 9.8: Offset loading induced Shear Stress (MPa) vs Distance from the Fixed End along A2C2B2D2, as marked in Figure 6.2, for the 

two section telescopic cantilever beam assembly having individual part dimensions outlined in Table 7.1, and an overlap of 400mm 

(Key to FEA Predictions:                wL/P=2;                 wL/P=4;                wL/P=6;              wL/P=8)   

(Key to Theoretical Predictions: wL/P=2;  wL/P=4;  wL/P=6; wL/P=8) 
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Experimentally determined values of stress are obtained using strain gauging techniques and 

data acquisition techniques outlined at Appendix G, at points as shown in Figure 8.6. Using 

data acquisition techniques the principal strain values are determined at said points and 

converted to their equivalent principal stresses using equations derived in Appendix G, the 

results of which are plotted in Figures 8.15 – 8.46. Theoretically determined principal stresses 

are then used as a comparison tool against the experimentally determined values of principal 

stress and these are compared against each other in Figures 9.9 – 9.40. The principal stress 

values obtained both theoretically and experimentally compare favourably with each other for 

both inline and offset loading scenarios.  

 

The broad question of why indulge in experimentation in the age of highly advanced and ever 

increasing computer and numerical modelling is addressed and five primary motives are put 

forward: (i) to gain a better understanding of stress and stress induced behaviour within the 

telescopic structure; (ii) to discover new phenomena for the overlap region; (iii) to obtain 

improved input data for further computer  modelling; (iv) to determine the correlation factors 

between analysis and test embracing material effects; and finally (v) to fine tune and build 

further confidence in general computer software.  
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Figure 9.9: Comparison of principal stresses (σ1, σ2 (MPa)) at position W vs Inline load 

applied (kg) with 400 mm overlap 

(Key:              Theoretical σ1 (MPa);                        Experimental σ1 (MPa);               Experimental   σ2 

(MPa);                  Theoretical σ2 (MPa)) 

 

 
Figure 9.10: Comparison of principal stresses (σ1, σ2 (MPa)) at position X vs Inline load 

applied (kg) with 400mm overlap 

(Key:              Theoretical σ1 (MPa);                        Experimental σ1 (MPa);               Experimental   σ2 

(MPa);                  Theoretical σ2 (MPa)) 
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Figure 9.11: Comparison of principal stresses (σ1, σ2 (MPa)) at position Y vs Inline load 

applied (kg) with 400 mm overlap 

(Key:              Theoretical σ1 (MPa);                        Experimental σ1 (MPa);               Experimental   σ2 

(MPa);                  Theoretical σ2 (MPa)) 

 

 
Figure 9.12: Comparison of principal stresses (σ1, σ2 (MPa)) at position Z vs Inline load 

applied (kg) with 400 mm overlap 

(Key:              Theoretical σ1 (MPa);                        Experimental σ1 (MPa);               Experimental   σ2 

(MPa);                  Theoretical σ2 (MPa)) 
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Figure 9.13: Comparison of principal stresses (σ1, σ2 (MPa)) at position W vs Offset load 

applied (kg) with 400 mm overlap 

(Key:              Theoretical σ1 (MPa);                        Experimental σ1 (MPa);               Experimental   σ2 

(MPa);                  Theoretical σ2 (MPa)) 

 

 
Figure 9.14 Comparison of principal stresses (σ1, σ2 (MPa)) at position X vs Offset load 

applied (kg) with 400 mm overlap 

(Key:              Theoretical σ1 (MPa);                        Experimental σ1 (MPa);               Experimental   σ2 

(MPa);                  Theoretical σ2 (MPa)) 
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Figure 9.15 Comparison of principal stresses (σ1, σ2 (MPa)) at position Y vs Offset load 

applied (kg) with 400 mm overlap 

(Key:              Theoretical σ1 (MPa);                        Experimental σ1 (MPa);               Experimental   σ2 

(MPa);                  Theoretical σ2 (MPa)) 

 

 
 

Figure 9.16: Comparison of principal stresses (σ1, σ2 (MPa)) at position Z vs Offset load 

applied (kg) with 400 mm overlap 

(Key:              Theoretical σ1 (MPa);                        Experimental σ1 (MPa);               Experimental   σ2 

(MPa);                  Theoretical σ2 (MPa)) 
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Figure 9.17: Comparison of principal stresses (σ1, σ2 (MPa)) at position W vs Inline load 

applied (kg) with 500 mm overlap 

(Key:              Theoretical σ1 (MPa);                        Experimental σ1 (MPa);               Experimental   σ2 

(MPa);                  Theoretical σ2 (MPa)) 

 

 

Figure 9.18: Comparison of principal stresses (σ1, σ2 (MPa)) at position X vs Inline load 

applied (kg) with 500 mm overlap 

(Key:              Theoretical σ1 (MPa);                        Experimental σ1 (MPa);               Experimental   σ2 

(MPa);                  Theoretical σ2 (MPa)) 
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Figure 9.19: Comparison of principal stresses (σ1, σ2 (MPa)) at position Y vs Inline load 

applied (kg) with 500 mm overlap 

(Key:              Theoretical σ1 (MPa);                        Experimental σ1 (MPa);               Experimental   σ2 

(MPa);                  Theoretical σ2 (MPa)) 

 

 
Figure 9.20: Comparison of principal stresses (σ1, σ2 (MPa)) at position Z vs Inline load 

applied (kg) with 500 mm overlap 

(Key:              Theoretical σ1 (MPa);                        Experimental σ1 (MPa);               Experimental   σ2 

(MPa);                  Theoretical σ2 (MPa)) 
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Figure 9.21: Comparison of Principal Stresses (σ1, σ2 (MPa)) at Position W vs Offset Load 

Applied (Kg) with 500 mm overlap 

(Key:              Theoretical σ1 (MPa);                        Experimental σ1 (MPa);               Experimental   σ2 

(MPa);                  Theoretical σ2 (MPa)) 

 

 
Figure 9.22: Comparison of principal stresses (σ1, σ2 (MPa)) at position X vs Offset load 

applied (kg) with 500 mm overlap 

(Key:              Theoretical σ1 (MPa);                        Experimental σ1 (MPa);               Experimental   σ2 

(MPa);                  Theoretical σ2 (MPa)) 
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Figure 9.23: Comparison of principal stresses (σ1, σ2 (MPa)) at position Y vs Offset load 

applied (kg) with 500 mm overlap 

(Key:              Theoretical σ1 (MPa);                        Experimental σ1 (MPa);               Experimental   σ2 

(MPa);                  Theoretical σ2 (MPa)) 

 

 
Figure 9.24: Comparison of principal stresses (σ1, σ2 (MPa)) at position Z vs Offset load 

applied (kg) with 500 mm overlap 

(Key:              Theoretical σ1 (MPa);                        Experimental σ1 (MPa);               Experimental   σ2 

(MPa);                  Theoretical σ2 (MPa)) 
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Figure 9.25: Comparison of principal stresses (σ1, σ2 (MPa)) at position W vs Inline load 

applied (kg) with 600 mm overlap 

(Key:              Theoretical σ1 (MPa);                        Experimental σ1 (MPa);               Experimental   σ2 

(MPa);                  Theoretical σ2 (MPa)) 

 

 
Figure 9.26: Comparison of principal stresses (σ1, σ2 (MPa)) at position X vs Inline load 

applied (kg) with 600 mm overlap 

(Key:              Theoretical σ1 (MPa);                        Experimental σ1 (MPa);               Experimental   σ2 

(MPa);                  Theoretical σ2 (MPa)) 
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Figure 9.27: Comparison of principal stresses (σ1, σ2 (MPa)) at position Y vs Inline load 

applied (kg) with 600 mm overlap 

(Key:              Theoretical σ1 (MPa);                        Experimental σ1 (MPa);               Experimental   σ2 

(MPa);                  Theoretical σ2 (MPa)) 

 

 
Figure 9.28: Comparison of principal stresses (σ1, σ2 (MPa)) at position Z vs Inline load 

applied (kg) with 600 mm overlap 

(Key:              Theoretical σ1 (MPa);                        Experimental σ1 (MPa);               Experimental   σ2 

(MPa);                  Theoretical σ2 (MPa)) 
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Figure 9.29: Comparison of principal stresses (σ1, σ2 (MPa)) at position W vs Offset load 

applied (kg) with 600 mm overlap 

(Key:              Theoretical σ1 (MPa);                        Experimental σ1 (MPa);               Experimental   σ2 

(MPa);                  Theoretical σ2 (MPa)) 

 

 

Figure 9.30: Comparison of principal stresses (σ1, σ2 (MPa)) at position X vs Offset load 

applied (kg) with 600 mm overlap 

(Key:              Theoretical σ1 (MPa);                        Experimental σ1 (MPa);               Experimental   σ2 

(MPa);                  Theoretical σ2 (MPa)) 
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Figure 9.31: Comparison of principal stresses (σ1, σ2 (MPa)) at position Y vs Offset load 

applied (kg) with 600 mm overlap 

(Key:              Theoretical σ1 (MPa);                        Experimental σ1 (MPa);               Experimental   σ2 

(MPa);                  Theoretical σ2 (MPa)) 

 

 

Figure 9.32: Comparison of principal stresses (σ1, σ2 (MPa)) at position Z vs Offset load 

applied (kg) with 600 mm overlap 

(Key:              Theoretical σ1 (MPa);                        Experimental σ1 (MPa);               Experimental   σ2 

(MPa);                  Theoretical σ2 (MPa)) 
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Figure 9.33: Comparison of principal stresses (σ1, σ2 (MPa)) at position W vs Inline load 

applied (kg) with 700 mm overlap 

(Key:              Theoretical σ1 (MPa);                        Experimental σ1 (MPa);               Experimental   σ2 

(MPa);                  Theoretical σ2 (MPa)) 

 

 

Figure 9.34: Comparison of principal stresses (σ1, σ2 (MPa)) at position X vs Inline load 

applied (kg) with 700 mm overlap 

(Key:              Theoretical σ1 (MPa);                        Experimental σ1 (MPa);               Experimental   σ2 

(MPa);                  Theoretical σ2 (MPa)) 
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Figure 9.35: Comparison of principal stresses (σ1, σ2 (MPa)) at position Y vs Inline load 

applied (kg) with 700 mm overlap 

(Key:              Theoretical σ1 (MPa);                        Experimental σ1 (MPa);               Experimental   σ2 

(MPa);                  Theoretical σ2 (MPa)) 

 

 

Figure 9.36: Comparison of principal stresses (σ1, σ2 (MPa)) at position Z vs Inline load 

applied (kg) with 700 mm overlap 

(Key:              Theoretical σ1 (MPa);                        Experimental σ1 (MPa);               Experimental   σ2 

(MPa);                  Theoretical σ2 (MPa)) 
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Figure 9.37: Comparison of principal stresses (σ1, σ2 (MPa)) at position W vs Offset load 

applied (kg) with 700 mm overlap 

(Key:              Theoretical σ1 (MPa);                        Experimental σ1 (MPa);               Experimental   σ2 

(MPa);                  Theoretical σ2 (MPa)) 

 

 

Figure 9.38: Comparison of principal stresses (σ1, σ2 (MPa)) at position X vs Offset load 

applied (kg) with 700 mm overlap 

(Key:              Theoretical σ1 (MPa);                        Experimental σ1 (MPa);               Experimental   σ2 

(MPa);                  Theoretical σ2 (MPa)) 
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Figure 9.39: Comparison of principal stresses (σ1, σ2 (MPa)) at position Y vs Offset load 

applied (kg) with 700 mm overlap 

(Key:              Theoretical σ1 (MPa);                        Experimental σ1 (MPa);               Experimental   σ2 

(MPa);                  Theoretical σ2 (MPa)) 

 

 

Figure 9.40 Comparison of principal stresses (σ1, σ2 (MPa)) at position Z vs Offset load 

applied (kg)with 700 mm overlap 

(Key:              Theoretical σ1 (MPa);                        Experimental σ1 (MPa);               Experimental   σ2 

(MPa);                  Theoretical σ2 (MPa)) 
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9.1.3 Buckling Results  

Of all the curves related to buckling of sections dealt with in comprehensive detail in Chapter 

4, of prime importance to this body of work are those curves generated for the two section 

telescopic cantilever beam assembly. The curves in question are represented in Figures 4.24, 

4.25 and 4.26. On examination, Equation (4.64) reveals that, the higher the value of the 

overlap ratio parameter α, the closer the structure tends to be a single section strut, in that the 

free end is subsumed within the fixed end, and naturally due to the subsequent increase in the 

second moment area magnitude, the greater will be the critical buckling load for said 

structure.  

Figure 4.24 presents the plot of the non dimensionalised parameter 
Eu

cr

P

P
, against the overlap 

ratio α, which in turn varies from 0 to 1, in steps of 0.1. The curve shown was plotted 

assuming fixed and free section lengths of 1200 mm and 1000 mm respectively, an 

arrangement, for which the value of  is 0.833. It can be deduced from the curve that for an 

overlap ratio α equal to 1, the given arrangement will have the greatest critical buckling load 

magnitude. The condition wherein the overlap ratio α equals 1, corresponds to that 

arrangement of the assembly, whereby the free-end section is entirely sheathed within the 

fixed-end section. This curve assumes importance in light of the fact that it can be tailored to 

directly suit the application for which a given configuration of the telescoping arrangement is 

required.  

In Figures 4.25 and 4.26, for values of the overlap ratio parameter α varying from 0 to 1, in 

increments of 0.1, the maximum critical buckling load, or the magnitude at which a structure 

just begins to undergo buckling, is observed to be maximum, for a length variation ratio of 

 equals 0. This indicates that there is no free-end section to slide within the fixed-end 

section. However an ideal configuration of the telescoping assembly can be selected using the 

curves plotted in Figures 4.25 and 4.26, for a desired combination of ratios α and . Figures 

4.25 and 4.26 are in essence used to demonstrate the effect differing lengths of the fixed and 

free sections that constitute the two section telescoping cantilever beam assembly will have 

upon the critical buckling load of said structure. Once again, it must be remembered that the 

three sets of curves in Figures 4.24 -4.26 correspond to that telescopic arrangement having 
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dimensions outlined in Table 4.5 and fixed and free-end assumed lengths of 1200 mm and 

1000 mm respectively.  

The experimental test rig was simulated using FEA and subjected to theoretical analysis using 

Equation (4.64) to generate the curves shown in Figure 9.41. Both the curves compare most 

favourably and thus the theory generated has been validated, but these plots await 

experimental verification.   
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Figure 9.41: Comparison between buckling curves generated from theoretical predictions and FEA, for the telescopic assembly whose 

individual part dimensions are outlined in Table 7.1 
(Key:              FEA Predictions;                Theoretical Predictions)  
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9.2 Contributions to Knowledge 

Despite the increasing use of telescoping sections all around us from simple household 

appliances to complex retractable stadium roofing, as detailed in §2.19, there is an alarming 

lack of literature in the public domain, as compared to the data available in the private 

domain. This is a deterrent to the further use of this simple yet highly effective structure. This 

thesis has attempted to bridge this gap, in its consistent application to designing with 

telescoping beams and struts. 

In Chapter 3, the four most common deflection prediction theorems are applied to the 

telescoping cantilever beam assembly and in each instance a unique deflection equation was 

derived. These equations not only predict the deflection that is induced within the assembly 

for an inline applied loading effectively, but also take into account the variables within the 

arrangement, such as the length of the overlap, difference in sectional lengths, changing 

second moments of area and finally varying self weights of the individual constituent 

sections.  A user looking to attain a particular configuration of a telescoping assembly 

(providing dimensional data is available) for a task at hand would be able to plot the 

deflections anticipated, using a C program, based on the calculations detailed in Appendix A, 

which performs the deflection calculations. This program was adapted to predict deflections 

in a three section telescopic cantilever beam assembly [91] and is now in commercial 

application. Chapter 3 also alludes to the Tip Reaction Model, first proposed in [91] and 

applied in this instance to the two section cantilever beam assembly. 

Chapter 4 derives from the energy principles, the critical buckling load for the two section 

telescoping cantilever beam assembly. Not only does this equation predict the critical 

buckling load, that a particular configuration of the telescopic cantilever beam assembly can 

withstand, but it also accounts for variables within the assembly, as stated above. The 

variables used in the derivation of both the tip deflections and in the determination of critical 

buckling load, are the same, hence lending to the continuity in the analyses of the two section 

telescoping arrangement. Non dimensionalisation is used throughout the analysis conducted, 

to simplify the complex equations that were generated as well as to allow for relative ease in 

determining solutions, for a particular buckling problem. The equations thus derived using 

these techniques also lend themselves to design curves and further comparisons with results 

obtained from other avenues. The equation used to determine the critical buckling load is not 

limited to just the two section telescoping arrangement. Provided ratios can be derived to 
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account for more telescoping sections within the assembly, it is entirely possible to determine 

the critical buckling load for an assembly having more than two telescoping sections.  What 

was referred to by Timoshenko as the energy method is used as a base and applied to the 

cantilever column as detailed in [15]. This approach in turn is verified by validating the result 

obtained against the criteria for the Euler Critical Buckling load for a column having one end 

fixed and the other free as the boundary conditions. A general form for predicting the critical 

buckling load exactly is thus derived and is applied to suit each case individually taking into 

account the different cross sectional second moments of area and lengths. 

 

Chapter 5 examines the phenomena of local buckling as applied to the individual rectangular 

hollow section members that comprise the overall telescoping assembly. It has been shown 

that the best saving in material can be attained when the force is applied directly at the shear 

centre of the chosen rectangular hollow section. The analysis of shear loading in the 

constituent, hollow rectangular sections of the telescopic assembly, is complicated by the 

distribution in shear stress that a section suffers under a transverse force. In that case where 

both torsion and flexural shear stress are considered, the combination contributes to a raising 

of the beam’s weight, thereby offsetting the greatest weight saving that can be attained, when 

the force is applied directly at the shear centre. However in the case of the latter, it is not 

necessary to separate the two effects when determining the position and magnitude of the 

maximum shear stress upon which the optimum design is based. When considering either the 

former or the latter, it is possible to optimise the rectangular sections’ dimensions, to provide 

minimum weight, as is shown in this chapter. This has been achieved by limiting the greatest 

shear stress to a pre determined design stress value, at which buckling will also take place, so 

as to ensure that the most highly stressed material, is used to its full load-bearing capability. 

This chapter details optimum design criteria wherein the longer limbs of the rectangular cross 

section beam, can be adjusted to raise the stress to a similar design stress value, as mentioned, 

thereby saving weight, allowing for greater efficiency in load bearing and simultaneous 

buckling at the load limit. 

 

Chapter 6 describes the bending and shear stress analysis of the two section telescoping 

assembly when it is subjected to both inline and offset loading. The stress analysis performed 
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on the two section telescoping assembly, in this chapter, has in its basis the work [92], 

undertaken with respect to the three section telescopic cantilever beam assembly.  

 

Chapter 7 provides a numerical analyses of the two section telescopic assembly using FEA 

software package, ABAQUS. The analysis performed here validated the deflection, stress and 

buckling analyses performed on the same. 

 

Chapter 8 details the experimental work that was conducted on a two section telescoping 

cantilever beam and the results obtained for deflection and stress analysis. The assumptions 

made in the deflection theory, were validated in experimental work. Despite exhaustive 

documentation of the experimental stress analysis of the telescoping arrangement, a more 

effective understanding of the stress distributions within the overlap region, is highly desired. 

This is because the overlap region has been identified as being of great importance to the 

overall structural strength. The test rig in itself was subjected to both inline and offset loading 

in order to mimic the possible loading configurations of the telescopic assembly in its 

working environment. The mounting fixture used to simulate the fixed end, is perhaps the 

closest approximation available, besides physically encasing the fixed-end beam within an 

enclosure. The nature of the beam sections and the flexibility provided allowed the free-end 

section to be slid in and out of the fixed-end section at will, thereby allowing one to vary the 

overlap length, as desired. A wide variety of testing was thus accomplished as a result, along 

with the flexibility afforded by repeatability.  

Chapter 9 compares and discusses the results obtained from all the analyses that have been 

performed on the two section telescopic cantilever beam arrangement. The deflection 

resulting from end loading produced experimentally, theoretically and through FEA have 

compared well. The bending and shear stress analysis undertaken both theoretically and 

through FE has been compared and the theory propagated has been validated. Comparison of 

the theoretical and experimentally measured principal stresses has been achieved. In terms of 

buckling, the results obtained from FE matches the theory propagated in Chapter 4, and hence 

the theory has been partially validated.  

Two papers have been published [91, 92], the first of which proposes the Tip Reaction Model 

to provide the deflection of a telescopic cantilever beam.  The model uses the reactions at the 

tips of the overlapping portions as the mechanism of transfer of the external loads between 
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sections. A generalised, three-section, telescopic beam is analysed in which the direct 

integration method is applied repeatedly to provide deflection.  The theory is developed then 

adapted to a convenient ‘C’ program listed here. The program is applied to provide 

deflections under end-loading in a model beam consisting of three hollow, thin-walled 

sections.  The accuracy in the model’s end-deflection is checked from a further finite element 

analysis of the beam.  The fact that the two deflections compare validates the tip reaction 

model of end-deflection arising from self-weight and external loading in a telescopic 

cantilever. A linear structural response between load and deflection appears consistently from 

both predictions. This paper is appended to the thesis, as Appendix E. 

 

In the second paper, appended to this thesis, Appendix F, the bending and shear stresses for 

the three-section cantilever, are obtained both analytically and numerically.  A check upon 

stress levels is provided from a parallel study upon an equivalent, two-stepped, continuous 

beam.  Graphical presentations of the beam stresses, found from applying the two methods to 

each structure, are self-validating.  That is, the continuous beam theory provides a check 

upon numerical stress levels from FEA and, in turn, FEA provides a check upon the 

analytical stresses calculated from tip reactions within a telescopic beam.  The fact that 

comparable stress levels were found confirms that the analytical technique proposed is 

perfectly adequate for a telescoping beam, just as the classical theory is adequate for 

continuous beams.  Taken together, the two papers provide an analytical theory for bending 

of a discontinuous beam that did not exist heretofore, thereby obviating the need for a 

numerical solution.   
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9.3 Limitations 

 

1. Although the buckling analysis has been verified from the FEA models, the buckling 

theory has to be fully validated by conducting buckling on telescopic antenna 

sections.  To fulfil this comparison satisfactorily it will be necessary to adapt the 

existing test rig to model the boundary conditions, such that one end of the telescopic 

antenna is fixed whilst the load applied end is to be unconstrained, or free to move. 

The test rig available has end conditions wherein the load applied end is equivalent to 

a pinned end. A displacement function would need to be conceived to account for this 

condition. 

 

2. Experimentally conducted stress analyses of the test rig have been documented in 

detail in this thesis. Theoretically and experimentally extrapolated values of principal 

stresses have been plotted and compared against each other. However, these stress 

values have been collected at four strategic locations. Ideally, gauges would be placed 

all along the length of the assembly to further validate the models derived.  The access 

particularly to the overlap region is physically constrained.  The overlap region is 

probably a critical area of the assembly and the effect on the overall strength of the 

assembly has yet to be assessed.  With respect to this overlap region a variable of the 

assembly that has not been investigated is the effect of wear pads. The stress analysis 

conducted used Tufnell sections, but experimentation with other composites need to 

be examined.    

 

 

 

 



282 

 

9.4 Recommendations for Future Work 

 

1. A test rig that accommodates a number of gauges at regular intervals along the length 

of the assembly, especially within the overlap would greatly enhance the 

understanding of the actual mechanics of the telescoping arrangement. 

2. A long slender telescoping strut, susceptible to buckling is essential to validate the 

theory that has been developed. A test rig that can accommodate this specimen and 

also model the boundary conditions wherein one end is fixed and the load applied end 

is free is preferential to validate the analytical model. 

3.  Adapting and applying the methodology undertaken in thesis to a three section 

telescoping cantilever beam assembly and validating with equivalent FEA models and 

experimental set ups would demonstrate and expand the use of the Tip Reaction 

Model. 

4. Ascertaining the critical effect of wear pads present within the assembly and the 

effects the associated variables can have on the structural behaviour of the assembly.  

5. The effect of using beams consisting of non homogeneous anisotropic materials (i.e. 

composites), upon the characteristics of the assembly needs to be examined. This 

would be of great relevance as the engineering sector implements the use of 

composite material widely in structural application. 
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APPENDIX A – THE TWO SECTION TELESCOPIC CANTILEVER BEAM 

ASSEMBLY 

 

A.1 Deflection in the two section telescoping assembly 

 

Deflection of the assembly is considered as the combination of deflection in the three beams 

AB, CD and EF in a three-section, telescopic cantilever beam. The deflected shapes of the 

different beams however are assumed to be the same in the overlapped regions. Beam AB has 

two deflected portions AC’ and C’B’. Similarly Beam CD has two deflected portions C’B’ 

and B’D’. The equations of the deflected shapes of the beams can be derived by integrating 

the flexure equation twice. There are four different lengths having different bending moments 

in this assembly. They are identified within Fig. A1 as follows 

 

i. AC in beam AB 

ii. CB in beam AB 

iii. CB in beam CD 

iv. BD in beam CD 
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Figure A.1: Deflected shapes of the two-section telescoping cantilever beam assembly 
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Equations describing the bent shape equations of the four segments are derived by integrating 

M
dx

yd
EI 

2

2

 twice, where M is the sagging bending moment. The integration starts with 

AC with integration constants found from the known boundary condition at A. Using the 

equation so derived the slope and deflection at C are calculated. These then become the 

boundary conditions for the overlap CB in beam AB. This process of matching the individual 

equations to the boundary conditions calculated from the adjoining section is continued to 

establish the full beam’s deflection curve AC’B’D’ in Figure A.1.  

 

A.2 Tip Reactions 

 

The tip reactions identified here facilitate the load transfer between the two beams. To show 

this, consider the beam assembly shown in Figure A.2. Since a part of beam CD lies inside 

beam AB it will produce an upward reaction at C in beam AB and a downward reaction at B 

in beam AB. The applied forces and moments acting upon the fixed-end beam AB are as 

shown in Figure A.2. 

 

Figure A.2: Fixed-end beam loading 

 

These include: the tip forces RB and RC, the self-weight loading w1 and the fixing moment M. 

Similarly, when beam CD is considered, at C there will be a downward reaction and at B 

there will be an upward reaction, due to its contacts with beam AB. Thus the forces upon CD 

will be those shown in Figure A.3. 

a1 

      l1  

B C A 

       w1  

 

RC RB 

M

A 



295 

 

 

Figure A.3: Free-end beam loading 

 

Consider the beam section CD as shown in Figure A.3. Taking moments about C gives 
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                                                                 Equation Set (A.1) 

Thus, in the proposed ‘Tip Reaction Model’ the internal reactions are used to transmit the 

forces. The effects of the external loads applied to the telescopic cantilever beam can then be 

calculated using tip reactions instead of the bending moment or, moment of resistance, used 

in the continuous beam. This technique allows the equilibrium and compatibility 

requirements for each beam to be considered separately as the free-body diagrams given in 

Figure A.2 and A.3.  In this way the normal tip reactions at the beginning and end of the 
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overlap are established.  Once the reactions are known, the deflection of each beam can be 

calculated as shown in Appendices § A.3, A.4 and A.5. 

 

A.3 Derivation of the deflection curve for the section AC in beam AB 

 

Figure A.4: A section in AC 

Consider section AC shown in Figure A.4. The bending moment at the section at a distance x 
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Thus, if the deflection equation for the section AC in the beam AB is given by  
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A.4 Derivation of the deflection curve for the section CB in beam AB 

 

Figure A.5: A section in CB 

Consider the section CB shown in Figure A.5. The methodology is similar to the one adopted 

for the portion AC but the boundary conditions applied correspond to point C ( 1g and 1d ) 

calculated earlier in A.3. 
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When 111 )( kalx   1dy   
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A.5 Derivation of the deflection curve for the section CB in beam CD 
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Figure A.6: Deflection of beams AB and CD  
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Again, the methodology is similar to the one adopted earlier and the boundary conditions 

applied correspond to point C ( 1g and 1d ) calculated earlier in §A.4. When, instead of beam 

AB, the beam CD is considered, the bending moment is from Figure A.6(b):  
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A.6 Derivation of the Deflection Curve for the Section BD in Beam CD 
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Figure A.7: Deflection of Beam CD  
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From Figure A.7(b) bending moment  
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Thus if the equation of the section BE in the beam CD  
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APPENDIX B 
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APPENDIX B – THE C PROGRAM 
 

#include <stdio.h> 

#include <math.h> 

#include <string.h> 

#include <stdlib.h> 

 

float w1, w2, P, alpha1; 

float l1,l2, Rb, Rc; 

float I1, I2,r1,r2,r3; 

floatt14n,t14,t13n,t13,t12n,t12,t11n,t11,t10n,t10,t20n,t20,t21n,t21,t22n,t22,t2

3n,t23,t24n,t24; 

float t30,t31,t32,t33,t34,t40,t41,t42,t43,t44,g1,d1,k1,m1,g2,d2; 

float k1,d1,d2,d3,g1,g2,g3; 

float C1,C2,C3,C4,C5,C6,C7,C8; 

floatt34,t33,t32,t31,t30,t44,t43,t42,t41,t40,t50,t51,t52,t53,t54,t60,t61,t62,t6

3,t64,t70,t71,t72,t73,t74; 

float tmp1,tmp2,d1n,d2n,d3n,d4n; 

float nd1; 

 

int main()  

{ 

    printf("             CALCULATION OF REACTIONS\n"); 

    printf("             ------------------------\n"); 

    printf("\n"); 

    printf("\n"); 

    printf("Enter the Self Weight in N/mm for Section 1:  \n"); 

    scanf( "%f", &w1 ); 

    printf("\n"); 

    printf("Enter the Self Weight in N/mm for Section 2:  \n"); 

    scanf( "%f", &w2 ); 

    printf("\n"); 

    printf("Enter the Tip Load:  \n"); 

    scanf( "%f", &P ); 

    printf("\n"); 

    printf("Enter the overlap between beams 1 and 2 as a decimal fraction of 

the length of beam 2:  \n"); 

    scanf( "%f", &alpha1 ); 

    printf("\n"); 

    printf("Enter the length of beam 1:  \n"); 

    scanf( "%f", &l1 ); 

    printf("\n"); 

    printf("Enter the length of beam 2:  \n"); 

    scanf( "%f", &l2 ); 

    printf("\n"); 

    Rb=(P+((w2*l2)/2))/alpha1; 

    Rc=((P*(1-alpha1))+((w2*l2*(1-2*alpha1))/2))/alpha1; 

    printf("Reaction at B = %f\n", Rb); 

    printf("\n"); 

    printf("Reaction at C = %f\n", Rc); 

    printf("\n"); 

  printf( "CALCULATION OF REACTIONS IS COMPLETE. Press any character to 

continue\n"); 

    printf("\n"); 

    printf("\n"); 

    getchar(); 
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printf("             OBTAINING SECOND MOMENTS OF AREA\n"); 

    printf("             --------------------------------\n"); 

    printf("\n"); 

    printf("\n"); 

    printf("Enter the Second Moment of Area of Section 1:  \n"); 

    scanf( "%f", &I1); 

    printf("\n"); 

    printf("Enter the Second Moment of Area of Section 2:  \n"); 

    scanf( "%f", &I2); 

    printf("\n"); 

    printf( "CALCULATION OF SECOND MOMENTs OF AREA IS COMPLETE. Press any 

character to continue\n"); 

    printf("\n"); 

    printf("\n"); 

    getchar(); 

 

    printf("1.CALCULATION OF THE COEFFICIENTS OF THE 4TH ORDER EQUATION FOR AC 

IN BEAM AB\n"); 

    printf("-------------------------------------------------------------------

----------\n"); 

    printf("\n"); 

    printf("\n"); 

     

    t10=0; 

    t11=0; 

    k1=l1-alpha1*l2; 

    r1= 200000*I1; 

    t12n=((Rb*l1/2)-(Rc*((l1-(alpha1*l2))/2))+((w1*pow(l1,2))/4)); 

    t12=(t12n)/r1; 

    t13n=(-Rb/6+Rc/6-(w1*l1)/6); 

    t13=(t13n)/r1; 

    t14=(w1/24)/r1; 

    g1= 4*t14*pow(k1,3)+ 3*t13*pow(k1,2) + 2*t12*k1; 

    d1= t14*pow(k1,4)+t13*pow(k1,3)+t12*pow(k1,2); 

     

    printf("The equation of AC in the beam AB is y= 

t14x^4+t13x^3+t12x^2+t11x+t10 :  \n"); 

    printf( "t14 = %f\n", t14); 

    printf( "t13 = %f\n", t13); 

    printf( "t12 = %f\n", t12); 

    printf( "t11 = %f\n", t11); 

    printf( "t10 = %f\n", t10); 

    printf("Slope at C is    %f\n",g1); 

    printf("Deflection at C in Beam AB through AC is    %f\n",d1); 

    printf("\n"); 

    printf("\n"); 

    getchar(); 
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printf("2. CALCULATION OF THE COEFFICIENTS OF THE 4TH ORDER EQUATION FOR 

CB IN BEAM AB\n"); 

    printf("-------------------------------------------------------------------

-----------\n"); 

    printf("\n"); 

    printf("\n"); 

     

    C3=g1-(Rb*(l1*k1 - (pow(k1,2)/2)) + ((w1/2)*(((pow(l1,2)*k1) - 

(l1*pow(k1,2)) + (pow(k1,3)/3)))))/(r1); 

    C4=d1-(C3*k1)-(Rb*(((l1*pow(k1,2))/2) - (pow(k1,3)/6)) + 

(w1/2)*(((pow(l1,2)*(pow(k1,2)))/2) - ((l1*pow(k1,3))/3) + 

(pow(k1,4)/12)))/(r1); 

     

    printf("C3 is    %f\n",C3); 

    printf("C4 is    %f\n",C4); 

    t20=C4; 

    t21=C3; 

    t22=(((Rb*l1)/2)+((w1*pow(l1,2))/4))/r1; 

    t23=(-Rb/6-((w1*l1)/6))/r1; 

    t24=(w1/24)/r1;  

     

printf("The equation of CB in the beam AB is y= 

t24x^4+t23x^3+t22x^2+t21x+t20 :  \n"); 

    printf( "t24 = %f\n", t24); 

    printf( "t23 = %f\n", t23); 

    printf( "t22 = %f\n", t22); 

    printf( "t21 = %f\n", t21); 

    printf( "t20 = %f\n", t20); 

    nd1=t24*pow(k1,4)+t23*pow(k1,3)+t22*pow(k1,2)+t21*(k1)+t20; 

    printf("Deflection at C in Beam AB through CB is    %f\n",nd1); 

    printf("\n"); 

    printf("\n"); 

    d2=t24*pow(l1,4)+t23*pow(l1,3)+t22*pow(l1,2)+t21*(l1)+t20; 

    printf("Deflection at B in Beam AB is    %f\n",d2); 

    printf("\n"); 

    printf("\n"); 

    getchar(); 

     

printf("3. CALCULATION OF THE COEFFICIENTS OF THE 4TH ORDER EQUATION FOR 

CB IN BEAM CD\n"); 

    printf("-------------------------------------------------------------------

-----------\n"); 

    printf("\n"); 

    printf("\n"); 

    r2=200000*I2; 

    C5=g1-((Rc*(-pow(k1,2))/2) + (w2/6)*(pow(k1,3)))/(r2); 

    C6=d1-(C5*k1)-((Rc*(-(pow(k1,3)/3)))+((w2/8)*pow(k1,4)))/(r2); 

    t30=C6; 

    t31=C5; 

    t32=(((-Rc*k1)/2)+((w2*pow(k1,2))/4))/(r2); 

    t33=(Rc/6-((w2*k1)/6))/(r2); 

    t34=(w2/24)/(r2); 

     

    printf("The equation of CB in the beam CD is y= 

t34x^4+t33x^3+t32x^2+t31x+t30 :  \n"); 

    printf( "t34 = %f\n", t34); 

    printf( "t33 = %f\n", t33); 

    printf( "t32 = %f\n", t32); 

    printf( "t31 = %f\n", t31); 
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    printf( "t30 = %f\n", t30); 

    printf("\n"); 

    printf("\n"); 

    nd1=t34*pow(k1,4)+t33*pow(k1,3)+t32*pow(k1,2)+t31*k1+t30; 

     

    printf("Deflection at C in the Beam CD through CB is    %f\n",nd1); 

    printf("\n"); 

    printf("\n"); 

    d2=t34*pow(l1,4)+t33*pow(l1,3)+t32*pow(l1,2)+t31*l1+t30; 

    g2=4*t34*pow(l1,3)+3*t33*pow(l1,2)+2*t32*l1+t31; 

    printf("Slope at B is    %f\n",g2); 

    printf("Deflection at B in the Beam CD through CB is    %f\n",d2); 

    getchar(); 

 

    printf("4. CALCULATION OF THE COEFFICIENTS OF THE 4TH ORDER EQUATION FOR BE 

IN BEAM CD\n"); 

    printf("--------------------------------------------------------------------

----------\n"); 

    printf("\n"); 

    printf("\n"); 

    C7=g2-(Rc*((pow(l1,2)/2)-(k1*l1))+((w2/2)*((pow(k1,2)*l1)-

(k1*pow(l1,2))+pow(l1,3)/3))+((Rb*pow(l1,2))/2))/(r2); 

    C8=d2-(C7*l1)-(Rc*(((pow(l1,3))/6)-

((k1*(pow(l1,2)))/2))+(w2/2)*(((pow(k1,2)*pow(l1,2))/2)-

((k1*pow(l1,3))/3)+((pow(l1,4)/12)))+ Rb*((pow(l1,3)/3)))/(r2); 

    t40=C8; 

    t41=C7; 

    t42=((-Rc*k1)/2 + (w2*pow(k1,2))/4 + (Rb*l1)/2)/(r2); 

    t43=(Rc/6 - (w2*k1)/6 - (Rb/6))/(r2); 

    t44=(w2/24)/r2; 

     

    printf("The equation of BE in the beam CD is y= 

t44x^4+t43x^3+t42x^2+t41x+t40 :  \n"); 

    printf( "t44 = %f\n", t44); 

    printf( "t43 = %f\n", t43); 

    printf( "t42 = %f\n", t42); 

    printf( "t41 = %f\n", t41); 

    printf( "t40 = %f\n", t40); 

    printf("\n"); 

    printf("\n"); 

    

d3=t44*pow((k1+l2),4)+t43*pow((k1+l2),3)+t42*pow((k1+l2),2)+t41*(k1+l2

)+t40; 

    g3=4*t44*pow((k1+l2),3)+3*t43*pow((k1+l2),2)+ 2*t42*(k1+l2)+ t41; 

    printf("Slope at D is    %f\n",g3); 

    printf("The overall tip deflection at D is    %f\n",d3);    

    getchar(); 

    return 0; 

} 
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APPENDIX C – PART 1 – INLINE LOADING ANALYSIS OF INDUCED STRESS IN 

THE TWO SECTION TELESCOPIC ASSEMBLY  

 

C.1 Calculation of tip reactions 

 

        

        

Figure C.1: Tip Reaction Model – Beam assembly and reactions on individual beams 

 

The experimental telescopic cantilever beam assembly consists of two hollow rectangular 

steel sections, each 1.55 mm thick, with outer dimensions: 60mm x 40mm x 1300mm and 

50mm x 30mmx 1300mm. In the first scenario a load of 30.55 N is applied at the end of the 

beam assembly. Beams CD and AB have an overlap of 400 mm. The second moment of area 

about the neutral axis for the cross-section of beams AB and CD are 167400 mm
4
 and 

90416.67 mm
4
 respectively. Their linear densities (distributed self-weights) are 0.0235 N/mm 
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and 0.0187 N/mm respectively. Referring to Figure C.1 (a), the tip load is P = 30.55 N and 

the distributed self-weights are once again 0235.01 w  N/mm and 0187.02 w  N/mm.  

Consider Figure C.1 and the Equation Set (A.1) derived in [13] for the following calculations 

and taking moments about C gives 
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Thus when l1 = 1300mm, l2=1300mm and α1 = 0.3076 the reactions are  

 83.138BR N 

97.83CR N 

Reaction R at A  

41.8513000187.013000235.055.30 AR N 

Moment at A 

12474865013000235.0130015500187.0220055.30 M N mm 

C.2 Shear force and bending moment diagram for beam ACB 

 

RB=138.83N w1=0.0235N/mm 

RC=83.97N w2=0.0187N/mm 

      

Length AC 

 

Referring to Figure D.1 (b): 

 

Shear force is x 0235.041.85  where x  is the distance from A. 
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Referring to Figure D.1 (b): 

Shear force is 97.830235.041.85  x  where x  is the distance from A. 
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C.3 Shear force and bending moment diagram for beam CBD 
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Referring to Figure C.1 (c): 
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Referring to Figure C.1 (c): 

Shear force is 83.138)900(0187.097.83  x  where x  is the distance from A. 
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Figure C.2: Shear force and bending moment diagrams for the individual sections 
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C.4 Calculation of bending and shear stresses for beam ACB 

 

The bending stress will be maximum along the vertical plane of symmetry at the top of the 

beam assembly marked as shown in Figure C.3. The net shear stress distribution will vary 

across the cross section as detailed in § 5.2.1 and depicted in Figure 5.4 (b).  

 
Figure C.3: A Telescopic beam assembly with two sections and the vertical and 

horizontal planes of symmetry shown 

 

Length AC 

 

Consider, firstly, the uniform section within the length portion AC as shown in Figure C.3. 

The bending moment at the section at a distance x from A 
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Taking sagging moments as positive, the maximum bending stress from Equation (6.3) as 

 2max /
167400

30
mmN

M

I

yM
Max





  

 

The shear force in AC is given by 

xNS  0235.041.85  

 

 

A1 

B1 

C1 

D1 

D2 

B2 

C2 

A2 

 N mm 

 MPa 

 N 



315 

 

 

The maximum shear stress magnitude in sides CD and AB follows from Equation (6.5) as 

follows 
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and the maximum shear stress magnitude in sides BC and DA follows from Equation (6.6) as 

follows 
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where b=40 mm, d=60 mm and t=1.55 mm for the section length AC within beam ACB with 

Fy=30.55 N. 

 

Length CB 

 

Considering the uniform section within the length portion CB as shown in Figure C.3 the 

bending moment at the section at a distance x from A 
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Taking sagging moments as positive, the maximum bending stress follows from Equation 

(6.3)  
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and the maximum shear stress magnitude in sides BC and DA follows from Equation (6.6) as 
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where b=40 mm, d=60 mm and t=1.55 mm for the section length CB within beam ACB with 

Fy=30.55 N. 

 

C.5 Calculation of Bending and Shear Stresses for Beam CBD 

 

Length CB 

 

Taking into consideration the uniform section within the length portion CB as shown in 

Figure C.3 the bending moment at the section at a distance x from A 
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Taking sagging moments as positive, the maximum bending stress from Equation (6.3) as 
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and the maximum shear stress magnitude in sides BC and DA follows from Equation (6.6) as 

follows 
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where b=30 mm, d=50 mm and t=1.55 mm for the section length CB within beam ACB with 

Fy=30.55 N. 

 

Length BD 

 

Considering the uniform section within the length portion BD as shown in Figure C.3 the 

bending moment at the section at a distance x from A 
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Taking sagging moments as positive, the maximum bending stress follows from Equation 

(6.3)  
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and the maximum shear stress magnitude in sides BC and DA follows from Equation (6.6) as 
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where b=30 mm, d=50 mm and t=1.55 mm for the section length BD within beam ACB with 

Fy=30.55 N. 

 

The bending and shear stresses induced by inline loading for a tip load of 30.55 N or wL/P 

ratio of 1 are shown for both beams ACB and CBD in Figures C.4 and C.5 that follow.
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Figure C.4: Telescopic beam bending stresses induced by inline loading, from tip reaction analysis.  
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Figure C.5: Telescopic beam shear stresses induced by inline loading, from tip reaction analysis 

(  Key:                                            Side BC/DA;                               Side CD/AB; refer to Figure 6.3 (b))   
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APPENDIX D - PART 2 – OFFSET LOADING ANALYSIS OF INDUCED STRESSIN 

THE TWO SECTION TELESCOPIC ASSEMBLY 

 

D.1 Calculation of Tip Reactions 

 

                       

                          

Figure D.1: Tip Reaction Model – Beam Assembly and Reactions on Individual Beams 

 

The experimental telescopic cantilever beam assembly consists of two hollow rectangular 

steel sections, each 1.55 mm thick, with outer dimensions: 60 mm x 40 mm x 1300 mm and 

50 mm x 30 mm x 1300 mm. As in Appendix D – Part 1, a load of 30.55 N is applied at the 
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end of the beam assembly, but offset from the neutral axis of the assembly by 600 mm. In 

other words the load of 30.55 N is applied as a torque through a load arm of 600 mm length. 

Beams CD and AB have an overlap of 400 mm. The second moment of area about the neutral 

axis for the cross-section of beams AB and CD are 167400 mm
4
 and 90416.67 mm

4
 

respectively. Their linear densities (distributed self-weights) are 0.0235 N/mm and 0.0187 

N/mm respectively. 

 

Referring to Figure D.1 (a), the tip load is P = 30.55 N which in turn acts through a distance 

of 600mm and the distributed self-weights are once again 0235.01 w  N/mm and 

0187.02 w  N/mm.  Consider Figure D.1 and the Equation Set (A.1) derived in A.2 for the 

following calculations and taking moments about C gives 
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D.2 Shear Force, Bending Moment and Torque Diagram for Beam ACB 
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Referring to Figure D.1 (b): 
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D.3 Shear Force, Bending Moment and Torque Diagram for Beam CBD 

 

Length CB 

 

Referring to Figure D.1 (c): 
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Figure D.2: Shear force, bending moment and torque diagrams for the individual 

sections  
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D.4 Calculation of Bending and Shear Stresses for Beam ACB 

 

The bending stress will be maximum along the vertical plane of symmetry at the top of the 

beam assembly marked as shown in Figure D.3. The net shear stress distribution will vary 

across the cross section as detailed in § 5.2.1 and depicted in Figure 5.4 (b).  

 
Figure D.3: A telescopic beam assembly with two sections and the vertical and 

horizontal planes of symmetry shown 

 

Length AC 

 

Consider, firstly, the uniform section within the length portion AC as shown in Figure D.3. 

The bending moment at the section at a distance x from A 
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The maximum shear stress magnitude in sides CD and AB follows from Equation (6.5) as 

follows 

   2

max
/

314

213

mmN

d

b
td

d

b
Fy

CD





















  

 

and the maximum shear stress magnitude in sides BC and DA follows from Equation (6.6) as 

follows 
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where b=40 mm, d=60 mm and t=1.55 mm for the section length AC within beam ACB with 

Fy=30.55 N. 

 

Length CB 

 

Considering the uniform section within the length portion CB as shown in Figure D.3 the 

bending moment at the section at a distance x from A 
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and the maximum shear stress magnitude in sides BC and DA follows from Equation (6.6) as 
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where b=40 mm, d=60 mm and t=1.55 mm for the section length CB within beam ACB with 

Fy=30.55 N. 

 

D.5 Calculation of Bending and Shear Stresses for Beam CBD 

 

Length CB 

 

Taking into consideration the uniform section within the length portion CB as shown in 

Figure D.3 the bending moment at the section at a distance x from A 
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Taking sagging moments as positive, the maximum bending stress follows from Equation 
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and the maximum shear stress magnitude in sides BC and DA follows from Equation (6.6) as 
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where b=30 mm, d=50 mm and t=1.55 mm for the section length CB within beam CBD with 

Fy=30.55 N. 

 

Length BD 

 

Considering the uniform section within the length portion BD as shown in Figure D.3 the 

bending moment at the section at a distance x from A 
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Taking sagging moments as positive, the maximum bending stress follows from Equation 

(6.3)  
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and the maximum shear stress magnitude in sides BC and DA follows from Equation (6.6) as 
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where b=30 mm, d=50 mm and t=1.55 mm for the section length BD within beam CBD with 

Fy=30.55 N. 

 

The bending and shear stresses induced by offset loading for a tip load of 30.55 N or wL/P 

ratio of 1 are shown for both beams ACB and CBD in Figures D.4 and D.5 that follow.
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Figure D.4: Telescopic beam bending stresses induced by offset loading, from tip reaction analysis 
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Figure D.5: Telescopic beam shear stresses, induced by offset loading from tip reaction analysis 

(  Key:                                            Side BC/DA;                               Side CD/AB; refer to Figure 6.3 (b))   
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APPENDIX F  
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APPENDIX G 
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APPENDIX G –FINITE ELEMENT ANALYSIS PROCEDURE 

 

G.1 Part Module  

The Part module is used to create, edit, and manage the parts in the current model. 

ABAQUS/CAE stores each part in the form of an ordered list of features. The parameters that 

define each feature such as extruded depth, diameter, sweep path, etc; combine to define the 

geometry of the part. 

The functions of the Part module are listed as follows [127]:  

1. Create deformable, discrete rigid or analytical rigid parts. The part tools also allows 

the editing and manipulation of the existing parts defined in the current model. 

2. Create those features such as solids, shells, wires, cuts, and rounds that define the 

geometry of the part. 

3. Use the Feature Manipulation toolset to edit, delete, suppress, resume, and regenerate 

a part's features. 

4. Assign the reference point to a rigid part. 

5. Use the Sketcher to create, edit, and manage the two-dimensional sketches that form 

the profile of a part's features. These profiles can be extruded, revolved, or swept to 

create part geometry; or they can be used directly to form a planar or axisymmetric 

part. 

6. Use the Set toolset, the Partition toolset, and the Datum toolset. These toolsets operate 

on the part in the current viewport and allow the creation of sets, partitions, and datum 

geometry, respectively. 

 

 

 

 

 



337 

 

 

Figure G.1: Sketcher Window in ABAQUS/CAE 

 

 

Figure G.2: Extrusion of the Part Instance sketched in Figure I.1, the arrow indicates the 

depth to which the part is extruded 

Sketcher tools 
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Figures G.1 and G.2 detail the creation of the first or fixed beam instance of the telescopic 

beam assembly followed by its extrusion, respectively. The two beam instances are created 

as shell sections having thicknesses of 1.55mm each. This procedure is repeated for the 

second beam instance as detailed in Figures G.3 (a)-(b). Figures G.3 (c) and (d) illustrate the 

creation and extrusion of the wear pad instance. The dimensions of the sketched and extruded 

parts are detailed in Table 7.1. 

 

     

                                       (a)                                                                   (b) 

   

  (c)                                                                   (d) 

Figure G.3 (a) Dimensioned Sketch of the second or free end beam instance, (b) Extrusion 

of the second beam instance (as sketched in G.3 (a)), (c) Dimensioned Sketch of the wear 

pad instance, (d) Extrusion of the wear pad instance (as sketched in G.3 (c)) 
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G.2 Material and Element Properties Definition 

 

In this step the material and element properties are defined and assigned to the parts 

individually. The two materials that are defined are steel and Tufnell; which in turn are used 

to represent metal structures and wear pads respectively. These materials are specified by 

their Density, Elastic Moduli and respective values of Poisson’s ratio, which have been 

specified in Table 7.1. 

 

When a part with shell regions or an axisymmetric part with wire regions is encountered, 

ABAQUS assigns a direction for the normals of the regions. It is possible to reverse the 

directions of the normals for these regions. In addition, it is also possible to reverse the 

directions for the normals of imported parts or selected elements of an orphan mesh. In the 

figure shown on the next page, the normal is assigned to the given shell component in the 

Property Module by selecting the following options: ‘Assign>Normal’. As shown in the 

Figure G.4 the thickness is added onto the inner surface of the shell, brown being the positive 

direction along which the thickness is added while purple represents the negative or direction 

in which the thickness is not added.  

 

 

Figure G.4: Assigning normals to the shell elements (Purple is the negative direction 

while Brown is the positive direction) 

 



340 

 

Also, more importantly in this module, the materials and element section used are defined 

and assigned to the parts individually. Changing the Module to Property, as shown in the 

Figures G.5 and G.6, the relevant manager tabs will be pop up on the left hand tool bar. 

‘Material Manager>Create’, allows the input of the required material properties.  

   

Figure G.5: Property module tools 

Materials used in this study are Steel and Tufnell to represent the structure and wear pads 

respectively. Material properties consist of Modulus of elasticity and Poisson’s ratio, which 

are inputted by selecting the following options within the Property module: ‘Material 

Manager > Create > Mechanical > Elasticity > Elastic’ and applying relevant figures in the 

boxes as it is shown in Figures G.6, G.7 and G.8  [128].  

 

Figure G.6: Steps to create and define material properties  

Property module 

tools 
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Figure G.7: Tabs to be filled in order to create material section having properties of Steel 

 

      
Figure G.8: Tabs to be filled in order to create material section having properties of Tufnel 

 

With respect to element assignments, solid-homogeneous element is chosen for all wear 

pads; while shell-homogeneous element is allocated to the shell sections in the assembly. The 

details of the material and element sections are elaborated in the Table G.2. 
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 Table G.2: Materials and Elements defined in the analysis 

 S.No    Name   Material             Element Specification 

   1.    Tufnell    Tufnell      Solid-Homogeneous         NA 

   2.       Shell 1.55mm     Steel      Shell-Homogeneous 1.55mm thick 

 

Both the shell and solid sections are defined by selecting the ‘Section Manager’ tab and 

setting the required sections as is shown in Figures G.8 and G.9. 

 

  

Figure G.9: Creating a homogeneous, shell section of thickness 1.55 mm, having 

properties of steel 

 

Finally elements are assigned to each part individually through ‘Section Assignment 

Manager>Create’, and selecting the target part and assigning the relevant section to the part 

in the blank box as shown in Figures G.10 and G.11 for the solid Tufnell and shell steel 

sections respectively. 



343 

 

 

Figure G.10: Creating a homogeneous, solid section having properties of Tufnell 

 

 

 Figure G.11: Assigning the homogeneous, solid Tufnell section to the part highlighted  
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Figure G.12: Assigning the homogeneous, shell steel section to the part highlighted 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



345 

 

G.3 Assembling the Two Section Telescopic Cantilever Beam Assembly 

 

When a part is created, it exists in its own coordinate system, independent of other parts in 

the model. In contrast, the Assembly module is used to create instances of the beam 

instances and the wear pad and to position the instances relative to each other in a global 

coordinate system, thus creating the assembly. The wear pad instance that has been created 

is repeatedly instanced seven times in order to position the individual instances in seven 

different predetermined locations within the assembly. The overall assembly, in turn 

replicates the experimental test rig. The part instances are positioned by sequentially 

applying position constraints that align selected faces, edges or vertices or by applying 

simple translations and rotations. 

 

 

Figure G.13: Assembly module tools 

 

An instance maintains its association with the original part. If the geometry of a part changes 

ABAQUS/CAE automatically updates all instances of the part to reflect these changes. It is 

not possible to edit the geometry of a part instance directly. A model can contain many parts 

and a part can be instanced many times in the assembly (as is the case with the wear pad as 

mentioned earlier) however a model contains only one assembly. Loads, boundary 

conditions, predefined fields and meshes are all applied to the assembly. Even if the model 

Assembly module 

tools 
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consists of only a single part, it is imperative to create an assembly that consists of just a 

single instance of that part. 

 

A part instance can be thought of as a representation of the original part. It is possible to 

create either independent or dependent part instances. An independent instance is effectively 

a copy of the part. A dependent instance is only a pointer to a part, partition or virtual 

topology; and as a result, it is not possible to mesh a dependent instance. However, the 

original part from which the instance was derived can be meshed in which case 

ABAQUS/CAE applies the same mesh to each dependent instance of the part [129].  

 

 

Figure G.14: Creation of part instances and their assembly to constitute the overall two 

section telescopic cantilever assembly 
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G.4 The Step Module  

 

An ABAQUS/CAE model uses the following two types of steps: 

 

The Initial Step  

 

ABAQUS/CAE creates a special initial step at the beginning of the model's step sequence. 

ABAQUS/CAE creates only one initial step for the model, and it cannot be renamed, edited, 

replaced, copied, or deleted. 

 

The initial step allows the definition of boundary conditions, predefined fields, and 

interactions that are applicable at the very beginning of the analysis. For example, if a 

boundary condition or interaction is applied throughout the analysis, it is usually convenient 

to apply such conditions in the initial step. Likewise, when the first analysis step is a linear 

perturbation step, conditions applied in the initial step form part of the base state for the 

perturbation. 

 

Analysis Steps 

 

The initial step is followed by one or more analysis steps. Each analysis step is associated 

with a specific procedure that defines the type of analysis to be performed during the step, 

such as a static stress analysis or a transient heat transfer analysis. It is possible to change the 

analysis procedure from step to step in any meaningful way, so as to have greater flexibility in 

performing analyses. Since the state of the model (stresses, strains, temperatures, etc.) is 

updated throughout all general analysis steps, the effects of previous history are always 

included in the response for each new analysis step. 

 

There is no limit to the number of analysis steps that can be defined, but there are restrictions 

on the step sequence. The Step module is used to perform the following tasks: (1) Create 

analysis steps, (2) Specify output requests (3) Specify adaptive meshing (4) Specify analysis 

controls [130]. 
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G.4.1 Creation of analysis steps 

 

Within a model it is possible to define a sequence of one or more analysis steps. The step 

sequence provides a convenient way to capture changes in the loading and boundary 

conditions of the model, changes in the way parts of the model interact with each other, the 

removal or addition of parts, and any other changes that may occur in the model during the 

course of the analysis. In addition, steps allow for any change to the analysis procedure, the 

data output, and various controls. Steps can also be used to define linear perturbation analyses 

about nonlinear base states [130]. 

 

Linear Perturbation Procedures in ABAQUS/CAE 

 

An analysis step during which the response can be either linear or nonlinear is called a general 

analysis step. An analysis step during which the response can be linear only is called a linear 

perturbation analysis step. General analysis steps can be included in an ABAQUS/Standard or 

ABAQUS/Explicit analysis; linear perturbation analysis steps are available only in 

ABAQUS/Standard. 

 

A clear distinction is made in ABAQUS/Standard between general analysis and linear 

perturbation analysis procedures. Loading conditions are defined differently for the two cases, 

time measures are different, and the results should be interpreted differently. These 

distinctions are defined in this section. 

 

ABAQUS/Standard treats a linear perturbation analysis as a linear perturbation about a 

preloaded, predeformed state. ABAQUS/Foundation, a subset of ABAQUS/Standard, is 

limited entirely to linear perturbation analysis but does not allow preloading or predeformed 

states [130]. 

 

Linear Perturbation Analysis Steps 

 

Linear perturbation analysis steps are available only in ABAQUS/Standard 

(ABAQUS/Foundation is essentially the linear perturbation functionality in 

ABAQUS/Standard). The response in a linear analysis step is the linear perturbation response 
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about the base state. The base state is the current state of the model at the end of the last 

general analysis step prior to the linear perturbation step. If the first step of an analysis is a 

perturbation step, the base state is determined from the initial conditions. In 

ABAQUS/Foundation the base state is always determined from the initial state of the model 

[130]. 

 

Linear perturbation analyses can be performed from time to time during a fully nonlinear 

analysis by including the linear perturbation steps between the general response steps. The 

linear perturbation response has no effect as the general analysis is continued. The step time 

of linear perturbation steps, which is taken arbitrarily to be a very small number, is never 

accumulated into the total time. A simple example of this method is the determination of the 

natural frequencies of a violin string under increasing tension. The tension of the string is 

increased in several geometrically nonlinear analysis steps. After each of these steps, the 

frequencies can be extracted in a linear perturbation analysis step [130]. 

 

If geometric nonlinearity is included in the general analysis upon which a linear perturbation 

study is based, stress stiffening or softening effects and load stiffness effects (from pressure 

and other follower forces) are included in the linear perturbation analysis. Load stiffness 

contributions are also generated for centrifugal and Coriolis loading. In direct steady-state 

dynamic analysis Coriolis loading generates an imaginary anti symmetric matrix. This 

contribution is accounted for currently in solid and truss elements only and is activated by 

using the unsymmetric matrix storage and solution scheme in the step [130]. 

Eigenvalue buckling analysis:  

1. is generally used to estimate the critical (bifurcation) load of “stiff” structures; 

2. is a linear perturbation procedure; 

3. can be the first step in an analysis of an unloaded structure, or it can be performed 

after the structure has been preloaded—if the structure has been preloaded, the 

buckling load from the preloaded state is calculated; 

4. can be used in the investigation of the imperfection sensitivity of a structure; 

5. works only with symmetric matrices (hence, unsymmetric stiffness contributions such 

as the load stiffness associated with follower loads are symmetrized); and 

6. cannot be used in a model containing substructures. 
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Figure G.15: Step module tools 

 

 

Figure G.16: Creation of buckling step as outlined in [130] and § G.4.1 

 

 

 

 

 

 

Step module tools 



351 

 

G.5 Interaction Definitions 

 

Relation between the piece parts should be established through interactions. Interaction 

module provides relevant options to identify the piece parts’ interfaces. Tie constraint is 

defined between connected/welded surfaces; whereas the type of interaction defined 

throughout the analysis is surface-to-surface. This approach optimizes the stress accuracy for 

a given surface pairing. The improved stress accuracy with respect to the surface-to-surface 

approach is realised if and only if neither surface of tie pairing is node based.  

 

The surface-to-surface option generally involves more master nodes per constraint than the 

node-to-surface approach, which in turn results in an additional increase in the solver 

bandwidth in the ABAQUS/Standard software, thereby increasing the solver cost. The 

following factors, especially in combination, can lead to the surface-to-surface approach 

being costly [131]: 

  

1. A large fraction of tied nodes (degrees of freedom) in the model 

2. The master surface being more refined than the slave surface 

3. Multiple layers of tied shells, such that the master surface of one tie constraint acts as 

the slave surface of another constraint. 

 

 

Figure G.17: Interaction module tools 

Interaction module tools 
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In order to set up a Tie constraint between two surfaces, the type of interaction should be 

defined as being either surface-to-surface or node-to-surface by choosing the master surface 

as being either Surface or Node region. On choosing the surface option the selected surface 

becomes the master region and in a similar fashion the slave surface is also defined.  In a tie 

interaction between shell elements ABAQUS allows the user to choose either the inner or 

outer surfaces with the help of a colour code, with brown representing the outer surface and 

purple representing the inner surface.  

 

One of the problems that may arise at the time of defining interactions is that of the over 

constraint. An over constraint can be defined as the application of multiple consistent or 

inconsistent kinematics constraints. Many models have models have nodal degrees of 

freedom that are over constrained. Such over constraints may lead to inaccurate or non-

convergent solution generation. 

 

Common examples of situations that may lead to over constraints include [132]: 

 

1. Contact slave nodes that are involved in boundary conditions or multi-point 

constraints 

2. Edges of surfaces involved in a surface-based tie constraint that are included in 

contact slave surfaces or have symmetry boundary conditions  

3. Boundary conditions applied to nodes already involved in coupling or rigid body 

constraints. 

 

One of the most important steps within the interaction module, is the selection of the Master 

and Slave surfaces. Attention is required in selecting slave surfaces as one slave surface 

cannot have two master surfaces. If such a constraint is present in the model the simulation 

will exit with over constraint errors. However the converse of this is true i.e. a master surface 

can have more than one slave surfaces. This conflict usually happens in the selection of slave 

surfaces which are sharing at least one edge. That edge provides common nodes between two 

slave surfaces which causes the error at the time of running the simulation. 

 

In addition to the Tie constraints, a coupling constraint is also created.  A Coupling constraint 

is used to constrain the motion of a surface to the motion of a reference node. This constraint 
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is created at the free end or the loading end in order to apply loading as is shown in the next 

section.  

  

 

Figure G.18: Definition of constraints (tie contacts) between surfaces  

         

  

Figure G.19: Definition of coupling constraint   

 

The established contacts can be viewed and edited from ‘Interaction Manager’ tab by 

selecting the relevant interaction and pressing edit as it is shown in Figure G.20. Also the step 
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in which each interaction was created whether it be in the initial step or otherwise is also 

displayed in the ‘Edit Interaction Manager’.  

 

 

Figure G.20: Existing tie definitions that can be controlled and edited from the 

constraint manager tab   

 

At the end of this process all the interactions between considered parts will be defined and the 

assembly is ready to be meshed and loaded. Those parts that are not vital to the analysis 

results are ignored i.e. are not defined with interactions. These parts will no doubt be 

excluded from the simulation altogether at the time of solving. 
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G.6 Loading Conditions 

 

Loads and constraints are applied as per the actual assembly scenario as in the experimental test 

rig. The effect of self-weight is first applied by entering the gravity specifications. External loads 

are applied by defining them as concentrated loads, which in turn are applied at the coupling 

constraint as specified in Figure G.19. Torque is also applied at this constraint point, as a 

twisting moment. In order to determine the critical buckling load, a separate analysis is 

conducted and the steps for applying the required load conditions are specified in Figures G.25 

and G.26.  

 

 

Figure G.21: Loading and boundary condition tool sets 

 

First of all the effect of self weight is applied by inputting the gravity. By selecting the 

‘Create Load’ tab from left hand menu and selecting the gravity from the provided list the 

next window opens to allow for the input of the relevant amount. The magnitude of gravity is 

entered into the dialog box and the selection is accepted as shown in Figure G.22. 

 

As has been mentioned earlier in this chapter the three outcomes desired from the FEA are: 

(a) Overall Deflection of the telescopic assembly for increased loading (b) Bending and Shear 

Stresses at regular intervals of 50mm along the top face and side wall respectively and (c) 

Determination of the Critical Buckling Load for the telescopic beam assembly.  

Loading and boundary 

condition tool sets 
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Figure G.22: Application of self weight or gravity on the assembly 

 

To this effect in order to achieve the first outcome loading is applied in the form of 

concentrated force acting at the constraint point shown in Figure G.19. Bending and shear 

stress values are extracted at regular intervals along the length of the assembly for two types 

of loading scenarios namely (i) a concentrated end force acting the constraint point (shown in 

Figure G.19) and (ii) a concentrated end force acting on a torque arm attached to the free end 

of the telescopic assembly which constitutes both a concentrated end load and a twisting 

moment. The former and the latter are shown in Figure G.23 and G.24 respectively. 

 

Figure G.23: Application of the concentrated end force at the free end of the assembly 
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Figure G.24: Application of the twisting moment at the free end of the assembly 

 

To determine the critical buckling load of the assembly for different overlap lengths requires 

a separate analysis to be run for which the values of both dead and live loads are to be entered 

[107]. The buckling analysis in turn generates the buckling Eigen values which in turn are 

substituted in the relation shown in Table 7.3,  to obtain the critical buckling load. Figures 

G.25 and G.26 show how the magnitudes of the ‘dead’ and ‘live’ loads, inputted as 5000 N 

and 500 N respectively.  

 

Figure G.25: Application of Dead load on the assembly 
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Figure G.26: Application of Live load on the assembly 

 

For linear buckling analysis - in the elastic state of the structure – static/general and buckling are 

the two steps defined in order to determine the critical buckling load of the assembly [107]. The 

initial Static/General step is used to primarily show the first deformations on the model for 

buckling, whilst the Buckling step will calculate the Eigen-values from which the Buckling Load 

Factor can be calculated.  

 

Linear-buckling analysis is often associated with the Eigen-value buckling or the Euler 

buckling analysis because it predicts the theoretical buckling strength. The Eigen-values are 

values of load at which the buckling takes place, while the Eigenvectors are the 

corresponding buckling shapes associated with the Eigen-values. The Eigen-value buckling 

analysis shows that the buckling takes place when the resultant structure stiffness drops to 

zero [107]. 

At linear-buckling and modal analysis, FEA provides a large number of buckling modes, but 

from this analysis, the only buckling mode of practical importance is the first one with a 

positive Eigen-value, from which the buckling load is determined. The buckling mode shows 

what shape the structure assumes when it is subject to buckling, in that particular mode. 
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G.7 Boundary Conditions 

 

Boundary conditions are conditions that must be placed on a model in other to represent 

everything about the system that will not be modelled. The boundary conditions are used to 

constrain the motion of the model at the time of running the simulation. Boundary conditions are 

conditions around the boundary of the geometry that are known. The locations where the 

constraints are applied, as well as the degrees of freedom that are restricted, are shown in the 

Figure G.27 below. Select ‘Create Boundary Condition>Symmetry/Antisymmetry/Encastre 

>Continue ….’  , as shown in Figure G.27, and select the region where the constraint should be 

applied (surface, edge, node etc) and confirm accordingly. The resultant window provides the 

options to set the type of constraints. 

 

 

Figure G.27: Position where the telescopic assembly is constrained as indicated by the 

arrow, in all degrees of freedom to simulate an encastre type fixing. 
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G.8 Meshing Definitions 

The Mesh module allows for the generation of meshes on parts and assemblies created within 

ABAQUS/CAE. Various levels of automation and control are available so that it is possible 

to create a mesh that meets the needs of the analysis. As with creating parts and assemblies, 

the process of assigning mesh attributes to the model—such as seeds, mesh techniques, and 

element types—is feature based. As a result it is possible to modify the parameters that define 

a part or an assembly, and the mesh attributes that are specified within the Mesh module can 

be regenerated automatically. Parts are selected individually and meshed according to their 

size and amount of fine details they contain. Therefore the mesh size is specified exclusively 

for each part. To ease the process the parts can be appear in the screen individually by 

switching of the other parts. The mesh size should be defined fine enough to cover the parts 

feature, however very fine mesh size can result in complicated and time consuming analysis 

process. Therefore finding the optimum mesh size could reduce the process time and 

maintain the accuracy.  

In ABAQUS, the following element shapes are defined in the Mesh module. Depending on 

whether the region to be meshed was either 2D or 3D, the element shapes were assigned 

accordingly by default in the Mesh module. As mentioned earlier the element shapes that 

were used in this analysis were the following linear elements namely: quadrilateral, 

triangular, tetrahedral and wedge shaped elements.  

For Shell parts, a mixture of linear quadrilateral elements of type S4R and linear triangular 

elements of type S3 were used to create the resultant mesh. The S4R element shape is defined 

as a 4-node doubly curved thin or thick shell, reduced integration, hourglass control, finite 

membrane strains [133]. 

For Solid parts, a mixture of linear wedge elements of type C3D6 and linear tetrahedral 

elements of type C3D4 were used on individual parts. For those solid parts that have hole 

features or are of a circular or cylindrical disposition, C3D6 type elements were used. The 

C3D6 element shape is defined as a 6-node linear triangular prism [133]. Those solid parts 

that have no such features and have no circular cross section are assigned the C3D4 element 

shape. The C3D4 element shape is defined as a 4-node linear tetrahedron [133]. 
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As far as was possible elements of a linear geometric order were chosen at the time of 

analysis, as opposed to ideally using elements of a quadratic geometric order. This was 

because the use of quadratic elements severely affected the analysis run time resulting in the 

ABAQUS program to hang thereby not providing the required results.  

The procedure for the creation of an acceptable mesh is as follows [133]: 

 

1. Assign Mesh Attributes and Set Mesh Controls 

 

The Mesh module provides a variety of tools that allow you to specify different mesh 

characteristics, such as mesh density, element shape, and element type. 

 

2. Generate the Mesh 

 

The Mesh module uses a variety of techniques to generate meshes. The different mesh 

techniques provide you with different levels of control over the mesh. 

 

3. Refine the Mesh 

 

The Mesh module provides a variety of tools that allows the refining of the mesh: 

 

a. The seeding tools allow you to adjust the mesh density in selected regions. 

b. The Partition toolset allows you to partition complex models into simpler sub regions. 

c. The Virtual Topology toolset allows you to simplify your model by combining small 

faces and edges with adjacent faces and edges. 

d. The Edit Mesh toolset allows you to make minor adjustments to your mesh. 

 

4. Optimize the Mesh 

 

It is possible to assign re-meshing rules to regions of the model. Re-meshing rules enable 

successive refinement of the mesh where each refinement is based on the results of an 

analysis. 
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5. Verify the Mesh 

 

The verification tool provides information concerning the quality of the elements used in a 

mesh. 

 

G.8.1 Structured Meshing 

 

The structured meshing technique generates structured meshes using simple predefined mesh 

topologies. ABAQUS/CAE transforms the mesh of a regularly shaped region, such as a 

square or a cube, onto the geometry of the region you want to mesh. For example, Figure 

G.28 illustrates how simple mesh patterns for triangles, squares, and pentagons are applied to 

more complex shapes. 

 

 

Figure G.28: Two-dimensional structured mesh patterns [133] 

The structured meshing technique can be applied to simple two-dimensional regions (planar 

or curved) or to simple three-dimensional regions that have been assigned the Hex or Hex-

dominated element shape option. 
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G.8.2 Swept Meshing 

 

ABAQUS/CAE uses swept meshing to mesh complex solid and surface regions. As per the 

The Mesh Module within the ABAQUS Documentation, the swept meshing technique 

involves two phases [133]: 

 

1. ABAQUS/CAE creates a mesh on one side of the region, known as the source side. 

2. ABAQUS/CAE copies the nodes of that mesh, one element layer at a time, until the 

final side, known as the target side, is reached. ABAQUS/CAE copies the nodes along 

an edge, and this edge is called the sweep path. The sweep path can be any type of 

edge—a straight edge, a circular edge, or a spline. If the sweep path is a straight edge 

or a spline, the resulting mesh is called an extruded swept mesh. If the sweep path is a 

circular edge, the resulting mesh is called a revolved swept mesh. 

 

For example Figure G.29 shows an extruded swept mesh. To mesh this model, 

ABAQUS/CAE first creates a two-dimensional mesh on the source side of the model. Next, 

each of the nodes in the two-dimensional mesh is copied along a straight edge to every layer 

until the target side is reached. 

 

Figure G.29: The swept meshing technique for an extruded solid [133] 

 

To determine if a region is swept meshable, ABAQUS/CAE tests if the region can be 

replicated by sweeping a source side along a sweep path to a target side. In general, 

ABAQUS/CAE selects the most complex side (for example, the side that has an isolated edge 
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or vertex) to be the source side. In some cases it is possible to use the mesh controls to select 

the sweep path. If some regions of a model are too complex to be swept meshed, 

ABAQUS/CAE asks if these regions should be removed from the selection before it 

generates a swept mesh on the remaining regions. The free meshing technique can be used to 

mesh the complex regions, or the regions can be partitioned into simplified geometry that can 

be structured or swept meshed. 

 

When you assign mesh controls to a region, ABAQUS/CAE indicates the direction of the 

sweep path and allows you to control the direction. If the region can be swept in more than 

one direction, ABAQUS/CAE may generate a very different two-dimensional mesh on the 

faces that it can select as the source side. As a result, the direction of the sweep path can 

influence the uniformity of the resulting three-dimensional swept mesh, as shown in Figure 

G.30. 

 

Figure G.30: The sweep direction can influence the uniformity of the swept mesh [133] 

 

G.8.3 Free Meshing 

 

Unlike structured meshing, free meshing uses no pre established mesh patterns. When 

meshing a region using the structured meshing technique, it is possible to predict the pattern 

of the mesh based on the region topology. In contrast, it is impossible to predict a free mesh 

pattern before creating the mesh. 

 

Because it is unstructured, free meshing allows more flexibility than structured meshing. The 

topology of regions allows for meshing with the free mesh technique can be very complex. 
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This technique can be used to mesh a region with the Tri, Quad, or Quad-dominated element 

shape options for two-dimensional regions or the Tet element shape option for three-

dimensional regions. 

 

The final meshed assembly is meshed using an amalgamation of the meshing techniques 

outlined in the [133] and is shown in Figure G.33. 

 

To ease the process of meshing of the individual parts, those parts that are not required within 

the current view can be individually switched on or off. Select ‘View>Assembly Display 

option’ from main menu. By selecting the instance tab from the pop up window the required 

parts can be selected properly. The steps are shown in Figure G.31. 

 

Select ‘Seed Part Instance’ from the left hand tool bar and select the target part and confirm 

it. The ‘Global Seeds’ window will be opened which provides the option to select the mesh 

size, displayed in Figure G.32.  

 

 

Figure G.31: Controlling the screen view by switching of the irrelevant parts which 

provides more control in selecting parts in meshing process 
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Figure G.32: Adjustment of mesh size 

 

The other settings in this window remained untouched in this example. The mesh size will be 

confirmed and will be assigned to the part by pressing ‘Assign Mesh Control’. The meshing 

process will be finished by selecting ‘Mesh Part Instance’ and selecting the part to be 

meshed. All the engaged parts have to be meshed in the same manner. The unmeshed parts 

will not involved in the analysis hence the parts which need to be temporarily isolated can be 

remained unmeshed.  
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Figure G.33: Meshed telescopic beam assembly 
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G.9 Generation and Interpretation of results 

Once all of the tasks involved in creating a model (such as specifying the geometry of the 

model, assigning section properties, and defining contact), the Job module is entered into to 

analyse the model. The Job module allows for the creation of a job, to submit it to ABAQUS 

for analysis, and to monitor its progress. It is also possible to create multiple models and jobs 

and run and monitor these jobs simultaneously. In addition, the option of creating only the 

analysis input file for a model is available which allows the viewing and editing of the input 

file before submitting it for analysis.  

Figure G.34: Submitting a job for analysis  
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G.9.1 Tip Deflection Results Extraction 

 

Once the job has been processed and is completed as indicated in the job manager window as 

shown in Figure G.34, clicking on the ‘Results’ button runs the ‘Visualization Module’ and 

the assembly will be shown in its meshed format. Selecting ‘Results>Field Output’, the 

desired quantity to be extracted, whether it be stress or displacement is selected from the 

main tab window, followed by the component of either, in the appropriate coordinate axes as 

is required. In Figure G.35, the displacement tab is selected along with the component of 

displacement required. 

 

 

Figure G.35: Selecting the displacement tab and its component in the negative y-

direction 

 

The overall tip deflection induced by any given load upon the assembly can be deduced from 

the contour plot legend as shown in the top left hand corner in Figure G.36. In order to extract 

the deflections at individual nodes in the assembly, node numbers or node symbols are 

generated on the cantilever. This is done by selecting the ‘Options>Common’ tab and within 

the Common Plot Options dialog box selecting the node labels tab. Once this tab has been 

selected and accepted by clicking ‘OK’ and the node numbers will appear as shown in the 

Figure G.38.  
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Figure G.36: The displacement at each of the nodes as is plotted along the assembly 
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(a)                                                        (b) 

Figure G.37: Node Label Display Options 

 

 
Figure G.38: Node Labels displayed on Part 

 

 

In order to generate reports to determine the deflections at particular sections or points in the 

cantilever assembly, select ‘Report>Field Output’ from the Main Menu bar and in the 

‘Report Field Output’ dialog box select the options that are needed. In order to obtain results 

at particular nodes select the ‘Unique Nodal’ option within ‘Position’, in the ‘Variable’ 

section of the ‘Report Field Output’ dialog box.  It is also possible to give a unique name to 

the report file be generated as well as to arrange output according to the node label, element 

label and so on within the ‘Setup’ section of the ‘Report Field Output’ dialog box. The report 
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generation procedure outlined above is illustrated in Figure G.39, and the generated field 

report in turn is shown in Figure G.40.  

 

 

            

Figure G.39: Report Generation Procedure for deflection magnitude extraction at 

individual nodes  

 

 
Figure G.40: Report arranged according to Node Labels   
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Knowing the node numbers and their distance from the fixed end, it is possible to determine 

the vertical deflection values at said nodes either by means of Report Generation Procedure 

outlined in Figure G.40 as shown above or by using the Probe function available in 

ABAQUS as shown in the Figure G.41 below. 

 

 

Figure G.41: Obtaining deflection values directly using the Probe function available in 

ABAQUS 
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G.9.2 Stress Analysis Results Extraction 

 

Once again in order to extract the desired stress values from the assembly the ‘Results>Field 

Output’ tab is selected and the desired stress component is selected as shown in Figure G.42. 

Figure G.43 displays the stress distribution induced by loading the cantilever. As has been 

outlined in the deflection extraction section in § G.9.1, the stress results can be extracted by 

either using report generation techniques specific to each node as outlined in Figures G.44 

and G.45 or by using the Probe function available in ABAQUS as demonstrated in Figure 

G.46. It must be noted that to extract stress magnitudes using the former method, displaying 

node labels along the cantilever assembly as shown in Figures G.37 and G.38 is vital.     

 

 

Figure G.42: Selecting the desired stress component tab 
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Figure G.43: The stress distribution is shown after the analysis is completed 
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Figure G.44: Report Generation Procedure for stress determination at individual nodes  

 

 

 
Figure G.45: Report arranged according to Node Labels   
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Figure G.46: Obtaining Stress values directly using the Probe function available in 

ABAQUS 
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G.9.3 Buckling Analysis Results Extraction 

 

Following completion of the FEA procedure to determine the critical buckling load of the 

telescoping assembly for varying overlap lengths as detailed in Table 7.3, the results are 

plotted as shown in Figure 7.10. To avoid duplication, only the determination of the critical 

buckling load for the telescoping assembly for an overlap ratio of 0.2 is extracted here using 

the Eigen values generated as is shown in Figure G.47.  

 

From Figure G.47, the first Eigen value of 15.648 is extracted and substituted in the formulae 

for generating the Critical buckling load [107] as follows: 

 

Critical Buckling Load = Dead Load + Live Load x Eigen Value 

 

As per Figures G.25 and G.26, the dead and live loads are entered as 5000 N and 500 N 

respectively, and the buckling load is computed as 12,824 N.  

 

 

 

Figure G.47: Determination of critical buckling load for the telescopic arrangement, for 

an overlap ratio of 0.2. The single Eigen value generated is highlighted and substituted 

in the equation above to determine the critical buckling load.
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APPENDIX H
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APPENDIX H – STRAIN GAUGING PRINCIPLES AND PROCEDURES 

Strain is a fundamental engineering phenomenon. It exists in all matter at all times, due either 

to external load or to the weight of the matter itself. Strains vary in magnitude from automatic 

dimensions to distances easily discernible by the naked eye, depending upon the materials 

and loads involved. Scientists and engineers have worked for centuries in the attempt to 

measure strain accurately, but only the last few decades have seen outstanding advancement 

in the art of strain measurement.  

The term strain and linear deformation are synonymous and, as used in engineering, refer to 

change in any linear dimension of a body, usually due to application of external forces. The 

strain in a piece of rubber when loaded is ordinarily apparent to the eye but strain in a steel 

structure or a rigid body may not be. Average unit strain is the total deformation of the body 

in a given direction divided by the original length in that direction and as such because of its 

dimensionless character has much greater significance than total strain. Strain gauges are 

used to determine unit strain.  

Keeping in mind the relationship between stress and strain, it becomes apparent that we can 

determine the average intensity of stress in a body under some given external load by 

measuring strains and multiplying by the modulus of elasticity. This is one method in which 

stress can be determined, since stress is not a fundamental physical quantity like strain but 

only a derived quantity. It is no wonder then that a great deal of effort has been expended 

towards prefacing a universal strain gauge. In attempting to develop such a strain gauge an 

ideal might be set up as a goal. This ideal strain gauge would be 

1.   Extremely small in size 

2.   Of significance mass 

3.   Easy to attaché to the member being analyzed 

4.   Highly sensitive to the strain 

5. Unaffected by the temperature, vibration, humility, or other ambient conditions such   

as to be encountered in testing machine parts under service load 

6.   Capable of indicating both static and dynamic strains 

7.   Capable of remote indication and recording  

8.   Characterized by the gauge length 
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External force applied to an elastic material generates stress, which subsequently generates 

deformation of the material. the length L of the material extends to L+ΔL if applied force is a 

tensile force. The ratio of ΔL to L, that is ΔL/L, is called strain. (Precisely, this is called 

normal strain or longitudinal strain.) On the other hand, if compressive force is applied, the 

length L is reduced to L- ΔL. Strain this time is (- ΔL)/L. Strain is usually represented as ε. 

Supposing the cross sectional area of the material to be A and the applied force to be P, stress 

σ will be P/A, since a stress is a force working on a definite cross sectional area. In a simple 

uniaxial stress field as illustrated below, strain ε is proportional to stress σ, thus an equation σ 

= E × ε is satisfied, provided that the stress σ does not exceed the elastic limit of the material. 

E in the equation is the elastic modulus (Young's modulus) of the material. 

 

 

 

 ε = ΔL/L 

 ε : Strain 

 L : Original length 

: Change due to force P 

 

Figure H.1: Simple illustration for the strain measurement. 

Because longitudinal strain is a ratio between lengths of two wires, it is a quantity having no 

dimension. Usually it is represented in a unit of 1x10
-6

, since the ratio of deformation is often 

very small. Strain may be compressive or tensile and is typically measured by strain gauges. 

It was Lord Kelvin who first reported in 1856 that metallic conductors subjected to 

mechanical strain exhibit a change in their electrical resistance. This phenomenon was first 

put to practical use in the 1930s. Fundamentally, all strain gauges are designed to convert 

mechanical motion into an electronic signal. A change in capacitance, inductance, or 

resistance is proportional to the strain experienced by the sensor. If a wire is held under 

tension, it gets slightly longer and its cross-sectional area is reduced. This changes its 

resistance (R) in proportion to the strain sensitivity (S) of the wire's resistance. In a strain 

gauge S is the gauge factor defined as 


R

R
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H.1 The Strain Gauge 

The electrical resistance of a length of wire varies in direct proportion to the change in any 

strain applied to it. That’s the principle upon which the strain gauge works. The most 

accurate way to measure this change in resistance is by using the Wheatstone bridge. This is a 

balanced electrical circuit which displays any resistance change on an indicator or feeds it 

into a process.  

 

The main component of a strain gauge is a strain sensitive alloy. The most common is 

constantan at a thickness of 0.0001 inch, which is used in the foil grid. Constantan also has 

the best combination of properties necessary for many strain gauge applications. The grid 

consists of a photo-etched pattern mounted on a very thin backing made from a plastic such 

as polyimide, epoxy or glass-fiber reinforced epoxy-phenolic approximately 0.001 inch thick. 

This backing allows the strain gauge to be handled during installation. It also provides a 

ready-to-bond surface for cementing the gauge to the specimen, and electrical insulation 

between the metal foil and the test piece.  

 

Depending on the particular application, there’s a wide range of foils and backings to choose 

from. There are also many factors to consider when selecting a gauge. These include 

temperature range, test frequency, elongation, environment and nominal resistance, and so 

on. Depending on the purpose and accuracy strain gauges can be classified as follows 

1. General Purpose Gauges 

This type of gauges are used in general applications such as measuring strain in a simple 

cantilever, pressure vessel etc. depending on the orientation of grid pattern it can be classified 

as follows. 
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(a) Uniaxial gauge (Figure H.2)  

Gauge with a single grid for measuring strain in the grid direction. A typical uniaxial strain 

gage pattern designed to measure strains in the direction of the gridlines. Gauge lengths for 

Micro-Measurements strain gauges range from 0.008 in to 4.000 in (0.20 mm to 101.6 mm).  

 

 

Figure H.2: Uniaxial strain gauge [112] 

(b)  Biaxial Rosettes (Figure H.3) 

Gauge with two perpendicular grids used to determine principal strains when their directions 

are known. 

 

Figure H.3: Biaxial rosette [112] 

The biaxial ("Tee") rosette pattern has two measuring grids perpendicular to one another. 

Planar rosettes, like the one shown here, are constructed with all grids on the same plane. 

Stacked rosettes are also available with separate grids "stacked" on top of one another. At the 

gauge position two independent measurements are made in perpendicular directions these 

normally being aligned with strain directions. 

(c) Three-Element Rosettes (Figure H.4) 

Gauge with three independent grids in three different directions are used for ascertaining the 

principal strains and their directions. The typical "rectangular" rosette pattern shown here has 

http://www.vishay.com/brands/measurements_group/strain_gages/mmua.htm
http://www.vishay.com/brands/measurements_group/strain_gages/mmbar.htm
http://www.vishay.com/brands/measurements_group/strain_gages/mmter.htm
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its three independent grids oriented at 0, 45, and 90 degrees. "Delta" patterns, with grids at 0, 

60, and 120 degrees, are also available. Planar rosettes, like the one shown here, are 

constructed with all grids on the same plane. Stacked rosettes are also available with separate 

grids "stacked" on top of one another. With three independent strain measurements at the 

gauge installation, the principal strains and their directions can be calculated. 

 

Figure H.4: Three element rosette [112] 

(d) Shear Patterns (Figure H.5) 

Gauges having two chevron grids are used in half-bridge circuits for direct indication of shear 

strain arising under torsion and shear loadings. 

 

Figure H.5: Shear patterns [112] 

Shear gauges have two grids in a chevron pattern that sense normal strains in perpendicular 

directions 045 to the torque axis. The grids often have a common connection for use in half-

bridge circuits which yield the shear strain (difference in normal strains) directly when shear 

pattern gauges are used. 

2. Transducer-Class Gauges 

Transducer-Class strain gauges are a select group of gauge patterns designed specifically for 

transducer applications. The main objective is optimum gauge performance at lower cost in 

high-volume production quantities. 

http://www.vishay.com/brands/measurements_group/strain_gages/mmsp.htm
http://www.vishay.com/brands/measurements_group/strain_gages/tclass/gages/tcindex.htm
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Exclusive features of Transducer-Class gauges include:  

1. Optimum backing thickness tolerance - This is particularly important to minimize 

creep variations between gage installations. 

2. Uniform backing trim dimensions - Matrix dimensions listed have a tolerance of 

±0.005 in (±0.13 mm) on any edge (measured from grid centrelines). 

3. Multiple creep compensation choices for most gauge patterns - A close inspection of 

the gage pattern will reveal a small letter on the gauge matrix next to the grid. 

4. Special pattern refinement for improved gauge-to-gauge reproducibility the creep 

variation due to operating temperature changes is reduced. 

3. Special-Purpose Sensors 

This includes variety of products designed to meet special needs and perform special 

functions in experimental stress analysis. These include:  

 

1. Bondable Temperature Sensors - With nickel-foil grids, these sensors are used for 

general-purpose temperature measurements over the range of -320 to +500° F (-195 to 

+260° C).  

2. Crack Detection Gauges - Convenient, economical method of detecting cracks or 

crack growth. 

3. Crack Propagation Gauges - Multiple conducting grids on a single backing accurately 

indicate the rate of crack propagation. 

4. Weldable Gauges - Strain gauges and temperature sensors bonded to a metal carrier 

for spot welding to a test structure when adhesive cannot be used or minimum 

installation time is required. 

5. Shear Modulus Gauges - Special gauges for accurately determining the shear modulus 

of composite materials within standard obsolesce and compact test specimens. 

6. Embedment Strain Gauges - Special strain sensors for embedding in concrete. 
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H.2 Strain Transformation and Rosette Gauge Theory  

It is often desired to measure the full state of strain on the surface of a part, that is to measure 

not only the two extensional strains, x  and y , but also the shear strain, γxy, with respect to 

co-ordinate x,y. It is clear that a single gauge is capable only of measuring the extensional 

strain in the direction that the gage is oriented. Assuming that the x and y axes are specified, it 

would be possible to mount two gauges in the x and y directions, respectively to measure the 

associated extensional strains in these directions. However, there is no direct way to measure 

the shear strain, γxy. Nor is it possible to measure the principal strains since the principal 

directions are not generally known.  

 

The solution to this problem lies in recognizing that the 2D state of strain at a point (on a 

surface) is defined by three independent quantities which can be taken as either:  (a) x  , y , 

and γxy, or (b) 21 , , and θ, case (a) refers to strain components with respect to an arbitrary x-

y axis system, and case (b) refers to the two principal strains and their perpendicular 

directions. Either case defines the state of 2D strain on the surface and can be used to 

compute strains with respect to any other co-ordinate system. This situation implies that it 

should be possible to determine these 3 independent quantities if it is possible to make three 

independent measurements of strain at a point on the surface. The most obvious approach is 

to place three strain gauges together in a “rosette” with each gage oriented in a different 

direction and with all of them located as close together as possible to approximate to 

measurements at a point. As will be shown below, if the three strains and the gauge directions 

are known, it is possible to solve for the principal strains and their directions or equivalently, 

the state of strain with respect to an arbitrary x-y coordinate system. The relations needed are 

the strain transformation equations for which Mohr’s Circle construction provides a good 

visualization of this process. 

2D Strain Transformation and Mohr’s Circle 

The two dimensional strain transformation equations are very similar to stress transformation 

equations and are represented below. 

 cossinsincos 22
' xyyxx

                   

 cossincossin 22
' xyyxy

                                   (H.1) 

, 

, 
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    22 sincoscossin2''
 xyxy

xy
 

These transformation equations involve squares and products of sine and cosine functions and 

these can be replaced with double-angle results to yield the double-angle form of the 

transformation equations: 

    


 2sin
2

2cos
2

1

2

1
'

xy

yxyxx
  

    


 2sin
2

2cos
2

1

2

1
'

xy

yxyxy
                                  (H.2) 

   2cos2sin'' xyyx
xy

  

Given the ready availability of powerful calculators and spreadsheets, evaluation of these 

transformation equations is a relatively simple matter today and involves little more than a 

few seconds to enter the formula in a calculator or a spreadsheet. This was not always so 

simple a task and the Mohr’s Circle graphical representation as in Figure H.6, was developed 

long ago to aid in this process. Today, Mohr’s Circle is not needed for graphical calculation, 

but it does provide a good visualization of the transformation equations and the geometry can 

be used to infer the actual form for the equations needed for execution in a calculator or 

computer.  

 

Figure H.6: Basic Mohr’s circle geometry 
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The double-angle form of the transformation relations involve simple sine and cosine terms 

along with a constant that should suggest equations of a circle with centre away from the 

coordinate origin. The trick here is to identify the appropriate new x and y values to plot to 

construct a circle. This is perhaps easier to do by explaining the Mohr’s Circle than it is to 

actually deduce the form directly. Figure H.6 above shows Mohr’s Circle for a state of strain 

defined by xy axis. Assume for the moment that the coordinates of the opposite ends (X,Y) of 

the indicated diameter of the circle define the strain state, x  , y , and γxy, in the xy axis 

system. Note that both the x and y  extensional strains are plotted on the abscissa (x axis) 

while one-half the shear strain, γxy/2, is plotted along the ordinate. The positive direction for 

γxy, is taken to be downward.  

 

One can construct the circle by first plotting the (εx, γxy/2) pair as point X on the diameter. 

Next, the pair (εx, -γxy/2) are plotted as the opposite end Y of the diameter, and the circle can 

be constructed with X-Y as the diameter. This is the basic Mohr’s circle and it always has its 

centre on the abscissa at a point given by the value   2/yx   . The circle diameter is easily 

computed as:   22

yxxyD   . 

 

So far, there is no clear connection to the double-angle transformation equations above, but 

this will become evident in a moment. To calculate a new state of strain, εx’, εy’  and γxy
’
 in an 

x’,y’ co-ordinates rotated θ counterclockwise from the x,y axis system, one must construct a 

new diameter for Mohr’s Circle rotated 2θ counterclockwise from the initial X-Y diameter as 

shown below in Figure H.7. The coordinates of the new diameter endpoints, X’-Y’, represent 

the new strain state as computed from the double-angle strain transformation equations. This 

should be clear by inspection of the Mohr’s Circle and by evaluation of the circle geometry as 

shown. Note that rotation in Mohr’s Circle is always twice the geometric rotation so that the 

state of strain defined by opposite ends of a diameter of the circle (e.g., 180° apart) 

corresponds to strains that are at 180°/2=90° in geometric axes. 
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Figure H.7: Strain transformation of   

It should be pointed out also that this particular form for Mohr’s Circle uses an inverted 

ordinate (y axis) and positive θ is counterclockwise. Another popular form for Mohr’s Circle 

uses an upward positive ordinate axis and positive clockwise θ. It is strikingly apparent from 

Figure H.7 that there is a state of strain that does not involve any shear strain and this 

corresponds to the circle diameter lying along the abscissa and defined by the two points, 1  

and 2  which are the extremities of the diameter as shown. These are called the principal 

strains and they are associated with an x’y’ axis system rotated, φ, counterclockwise from the 

xy axis (2φ in Mohr’s Circle). This defines not only the principal strain magnitudes but also 

their directions (a,b) torsion and shear, © plane strain and (d) equi-biaxial tension. Figure H.8 

shows other useful Mohr’s Circle configurations. 

Strain Gauge Rosettes 

Strain gauge rosettes consist of two or more co-located strain gauges oriented at a fixed angle 

with respect to each other. Strict co-location of the gauges requires mounting each individual 

gauge on top of the others in what is called a stacked rosette, but this leads to a complicated 

and often inaccurate type of gauge. The more common approach is to place the gauges in a 

tightly packed pattern as close as possible to the rosette center. Rosettes typically involve 2, 3 

or 4 strain gauges with relative orientations of 30°, 45°, 60° or 90°. Figure H.9 shows several 

examples. At least 3 independent strain readings are needed to define the 2D state of strain if 

no other information is available so the 3-gauge rosettes are the most popular (the 90° 2-

gauge rosette can be used to measure principal strains when the principal direction is known 
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γxy/2 
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and the gage can be oriented accordingly). The rectangular rosette and the delta rosette are 

the most commonly used 3-gauge rosettes because of their simple geometry. 

 

Figure H.8: Some useful Mohr’s circle configurations. 

         

 

       

 

Figure H.9: Typical strain gauge rosettes (a) Rectangular rosette (b) Delta rosette  

 (c) Delta rosette (d) Stacked delta rosette [112] 

 

 

(a) (b) 

(c) (d) 
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Normal Strain n and Shear Strain s  at a plane inclined at   
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Figure H.10: Normal and Shear Strains 

Consider Figure H.10. The objective is to determine the direct strain n and shear strain s  

for directions normal and tangential to a plane inclined at   due to xyyx  ,,
 
The figure 

shows an unstrained rectangular element ABCD and its strained condition A’B’C’D’.  

Normal strain n  is obtained by considering the length change along AC. Shear Strain  s  is 

obtained by considering the rotation of BE. It can be assumed that A’C’D’ is formed by 

AD having an extension x  to become A’D’ and DC having an extension y to become 

D’C’.  

 

The shear strain s  is the rotation angle between the normal to A’C’ at E’ and B’E’. The 

shear strain .xy is the rotation angle between the normal to A’D’ at D’ and D’C’. Now the 

following equations can be written 

)1()1('' xAD
AD

x
ADxADDA 


   

)1()1('' yCD
CD

y
CDyCDDC 


   

In a similar fashion it can said that 

)1('' nACCA   

Now using cosine rule in A’C’D’ gives 


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)
2

cos(''''2)''()''()''( 222

xyDCDADCDACA 

  

xyyxyxn CDADCDADAC  sin)1()1(2)1()1()1( 222222   

Neglecting higher powers of yxn and  ,  and using 222 CDADAC   and xyxy  sin  

this can be reduced to 

xyyxn CDADCDADAC   2)21()21()21( 222  

xyyxn CDADCDADAC   2)(2)(2)(2 222  

Dividing both sides by 2 2AC  and introducing sin  and cos  gives 

 cossinsincos 22

xyyxn   

Rectangular Rosette Gauge Equations 

Given the measurement of 3 independent strains from the 3 gauges in a rectangular rosette it 

is possible to calculate the principal strains and their orientation with respect to the rosette 

gauge. It is also readily possible to calculate the state of strain at the gauge location with 

respect to any particular xy axis system using either the rosette readings or the principal 

strains and their axis orientation. To illustrate this, consider a situation in which the rosette is 

oriented with gauges labeled A, B and C at 45° apart as shown in Figure H.11. 

 

Figure H.11: Rectangular rosette strain orientation 

Assume also that the principal strains at the rosette are oriented at an angle, φ, to the rosette’s  

gauge A. For this case, it is easy to use the strain transformation equations to calculate the 

strain in each rosette gage in terms of the principal strains and the angle, φ, (simply assume 
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1 x  , 2 y and γxy=0 and compute εx’=εA, εB and εC for angles of rotation  ,  +45º, and 

 +90º to yield three equations: 




 2cos
22

2121 



A                                             (H.3a) 

 02121 452cos
22







 


 B                                            (H.3b) 

 02121 902cos
22







 


C                                            (H.3c) 

In a plane strain situation the full state of strain on the surface of a part can either be defined 

with three measurements, to including two normal strains, x  and y , and one the shear 

strain, γxy, with respect to co-ordinates x-y; or two the principal strains 1  and 2 . Gauges 

however are capable only of measuring the extensional strain in the direction that the gauge is 

oriented. Therefore a rosette with three gauges is needed for the measurements. In Equations 

(H.3 (a-c)), these are 3 simultaneous equations relating  ,,,, 21toCBA . It is a 

relatively simple matter to invert these and solve for  ,, 21  in terms of CBA  ,,  

yielding: 

22

1 )()[(
2

1

2
CBBA

CA 


 


              (H.4a) 

22

2 )()[(
2

1

2
CBBA

CA 


 


                                                                   (H.4b) 

CA

CAB











2
2tan                                                                                                     (H.4c) 

The equations obtained above can be used to compute the principal strains and the principal 

axis orientation directly from the rectangular rosette gauge readings. Note that there are many 

different possible gauge numbering arrangements besides the particular A, B, C layout here, 

and they can lead to forms for the final results shown above but with A, B and C 

interchanged. It should be noted that the above results can also be developed directly from the 

Mohr’s Circle representation with about the same amount of effort and perhaps a bit more 

visualization of the results alternatively. It is somewhat simpler to arrange the rosette such 
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that gauge A is along the x axis and gauge C is along the y axis. Here x, y are not principal 

directions when from Equation H.3 it follows that: 

        xxyyxyxA   00 02sin
2

1
02cos

2

1
 

         
xyyxxyyxyxB 

2

1

2

1
452sin

2

1
452cos

2

1 00   

        yxyyxyxC   00 902sin
2

1
902cos

2

1
 

These equations can readily be solved for the strain in the x-y co-ordinates: 

Ax  
                  

(H.5a) 

Cy  
                         

(H.5b) 

CABxy   2
                        

(H.5c) 

This defines the strain state at the rosette with respect to co-ordinates x-y. It is a simple 

matter to now construct a Mohr’s Circle and from this to compute the principal strains and 

their orientation with respect to the x-y axis (and therefore the rosette). Figure H.12 

summarizes the results and reveals clearly that the maximum shear strain is given by twice 

the radius of the Mohr’s Circle, and in this case it can be computed in terms of principal 

strains as:   2/21max    . 
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Figure H.12: Mohr’s circle for rectangular rosette 

Alternatively the principal strain equations may be applied to Equations (H.5a-c) to give  

22
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









2
2tan  

Principal Stresses 

It should be pointed out that the above results involve strain only and do not describe the state 

of stress at the rosette. In order to determine the stress state, it is necessary to use the stress 

strain relations to express the stress components in terms of the strain components. For 

linearly elastic (Hookean) behavior, it follows that the principal stresses can be computed 

from the principal strains (shear strain is zero for principal directions). Principal stresses are 

obtained using the following equations: 

EE

21
1


                                                                                                                     (H.6a) 

EE

12
2


                    (H.6b) 
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From Equations (H.6a, b): 

][
)1(

2121 


 



E

                 

][
)1(

1222 


 



E

    

            

H.3 Instrumentation and Data Acquisition System  

The basic principles for accurate measurement were established many years ago. Modern 

technology offers better techniques, better resolution, the potential for higher accuracies, but 

primary much higher speeds for data acquisition and analysis. Almost all strain measurement 

systems can be broken down into components as shown in below figure. 

 

Figure H.13: Schematic strain measurement system  

The correct choice and the proper installation are very important and it is assumed here that 

the gauges perform correctly. A gauge can therefore consider as a passive resistor which 

requires a power source. Changes in resistance caused by mechanical strain are measured in a 

bridge circuit which produces an out of balance voltage. This voltage needs to be amplified 

and after processing displayed or stored or both, after processing it to represent the required 

units. This manipulation may be by means of controls in hardware e.g. gauge factor control. 

Wheatstone bridge 
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Supply 
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In a computer based system, all the manipulation may occur in the software (digital) either in 

the test programming, or in the data reduction and analysis, before or after storage.  

For straight forward measurements of static strains from a small number of strain gauges, the 

commercially available self contained strain indicators are robust, reliable, accurate and 

almost foolproof. Similarly, for dynamic measurements from a few channels the choice of 

suitable strain gauge amplifiers and recorders is quite straightforward. For large test 

programmes, either static or elaborate dynamic systems can be built up from commercially 

available instrumentation and peripherals or purchased as a build system.  

Wheatstone bridge circuit and strain gauges  

The strain gauge is connected into a Wheatstone bridge circuit with a combination of four 

active gauges (full bridge), two gauges (half bridge), or, less commonly, a single gauge 

(quarter bridge). In the half and quarter circuits, the bridge is completed with precision 

resistors. The complete Wheatstone bridge is excited with a stabilized DC supply and with 

additional conditioning electronics, can be zeroed at the null point of measurement. As strain 

is applied to the bonded strain gauge, a resistive change takes place and unbalances the 

Wheatstone bridge. 

This results in a signal output, related to the strain value. As the signal value is small,  

(typically a few millivolts) the signal conditioning electronics provides amplification to 

increase the signal level to 5 to 10 volts, a suitable level for application to external data 

collection systems such as recorders or PC Data Acquisition and Analysis Systems. 

Typical strain gauge resistances range from 30 Ohms to 3 k Ohms (unstressed). This 

resistance may change only a fraction of a percent for the full force range of the gauge, given 

the limitations imposed by the elastic limits of the gauge material and of the test specimen. 

Forces great enough to induce greater resistance changes would permanently  

deform the test specimen and/or the gauge conductors themselves, thus ruining the gauge as a 

measurement device. Hence, in order to use the strain gauge as a practical instrument, we 

must measure extremely small changes in resistance with high accuracy. Such demanding 

precision calls for a bridge measurement circuit. Using a Wheatstone bridge with a null-

balance detector and a human operator to maintain a state of balance, a strain gauge bridge 

circuit measures strain by the degree of imbalance. A precision voltmeter in the centre of the 

bridge provideS an accurate measurement of that imbalance. 
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Quarter bridge strain gauge circuit 

Typically, the rheostat arm of the bridge (R2 in the Figure H.14) is set at a value equal to the 

strain gauge resistance with no force applied. The two ratio arms of the bridge (R1 and R3) 

are set equal to each other. Thus, with no force applied to the strain gauge, the bridge will be 

symmetrically balanced and the voltmeter will indicate zero 

volts, representing zero force on the strain gauge. 

 

Figure H.14: Quarter bridge strain gauge circuit [126] 

As the strain gauge is either compressed or tensed, its resistance will decrease or increase, 

respectively, thus unbalancing the bridge and producing an output at the voltmeter. This 

arrangement, with a single element of the bridge changing resistance in response to the 

measured variable (mechanical force), is known as a quarter-bridge circuit. As the distance 

between the strain gauge and the three other resistances in the bridge circuit may be 

substantial, wire resistance has a significant impact on the operation of the circuit. To 

illustrate the effects of wire resistance, the same schematic diagram is shown in Figure H.15 

but with the addition of two resistor symbols in series with the strain gauge to represent the 

wires. 

 

 

Figure H.15: Quarter bridge strain gauge circuit with addition of two resistors [126] 
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The strain gauge's resistance (Rgauge) is not the only resistance being measured: the wire 

resistances Rwire1 and Rwire2, being in series with Rgauge, also contribute to the resistance of the 

lower half of the rheostat arm of the bridge, and consequently contribute to the voltmeter's 

indication. This, of course, will be falsely interpreted by the meter as physical strain on the 

gauge. While this effect cannot be completely eliminated in this configuration, it can be 

minimized with the addition of a third wire, connecting the right side of the voltmeter directly 

to the upper wire of the strain gauge: 

 

Figure H.16: Three-wire, quarter-bridge strain gauge circuit [126] 

Because the third wire carries practically no current (due to the voltmeter's extremely high 

internal resistance), its resistance will not drop any substantial amount of voltage 

correspondingly. Notice how the resistance of the top wire (Rwire1) has been by-passed now 

that the voltmeter connects directly to the top terminal of the strain gauge, leaving only the 

lower wire's resistance (Rwire2) to contribute any stray resistance in series with the gauge.  

There is a way, however, to reduce wire resistance error far beyond the method just 

described, and also help mitigate another kind of measurement error due to temperature. An 

unfortunate characteristic of strain gauges is that of resistance change with changes in 

temperature. This is a property common to all conductors, some more than others. Thus, the 

quarter-bridge circuit shown (either with two or with three wires connecting the gauge to the 

bridge) works as a thermometer just as well as it does a strain indicator.  
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 Factors which affect the choice of an instrumentation system  

Selecting a precise acquisition system depend on several factors. Each factor capable of much 

finer subdivision an infinite number of possible system types can be imagined.  Below test 

conditions stretch the selecting appropriate gauge for the right application.  

(a)  Test conditions 

Figure H.17: Fishbone diagram showing factors which affect the selection of an 

instrumentation system [112] 
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(b) Typical systems 

A static test usually consists of loading a component or structure in increment with the strains 

being recorded for each increment. The choice of instrumentation depend on the number of 

channels, the available time or manpower, the time over which each load increment can be 

held constant for the all the channels to be scanned, and the amount of real time processing 

required. Testing may be carried out under laboratory, workshop or site conditions. 

(1)    The simplest equipment would be a manually operated portable strain indicator as 

shown in Figure H.18. The equipment is portable and robust and ideal for on-site 

work. There are channel selectors which can be connected to the indicator so that, 

typically, one operator can log up to 10 readings per minute on hand written sheets.  

 

Figure H.18: Strain indicator [112] 

(2)   More elaborate instrumentation systems have much higher scanning speeds and 

sophisticated computer control of test, real-time processing and storage. The system 

utilizes a laptop which is only dedicated to the system whilst actually scanning and 

recording test data. The scanning speed of this system is 25 channels per second 

with a maximum of 1000 channels. Post processing and test programming can be 

done with the laptop off site under office or laboratory conditions.  

(3)       A Data Logger is a device used mainly in measurement application. Data logging is 

the measurement of any physical or electrical parameters over a period of time. The 

data can be in the form of voltage, strain, temperature, current, etc. It acts as an 

interface between the strain gauge and the LABVIEW software. LabVIEW is a data 

acquisition software package mainly used with hardware acquisition boards 

LabVIEW has many features like processing of measured data or simulated signals 

and used for data acquisition. LABVIEW (short for Laboratory Virtual 
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Instrumentation Engineering Workbench) is a graphical programming environment 

used to develop sophisticated measurement, test and control systems using block 

diagrams that resemble a flowchart. Using Lab VIEW the strain parameters can be 

measured. The wires of strain gauge are connected to the data logger and 

measurements will be collected via the LABVIEW given that the LABVIEW is 

connected to the data logger. 

 

A typical data logger uses a combination of analog and digital filtering to make an 

accurate representation of in-band signals while giving out-of-band signals. The filters 

differ between signals based on the frequency range, or bandwidth, of the signal.  

Larger centralized computers can be used for post processing either using data recorded on 

site, or with direct inputs from a remote data acquisition system using a data link, such as a 

MODEM operating on GPO telephone lines. 

 

Figure H.19: National Instruments Data acquisition system [112] 
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H.4 Strain Gauge Selection 

 

           

Figure H.20: Characteristic of a strain gauge [112] 

1. Consider the Gauge Pattern  

a) Uni-axial strain gauge should be considered if: A single strain is to be measured and the 

direction is known or low cost is a priority. 

 

Figure H.21: Uni-axial strain gauge [112] 

b) Bi-axial (0°, 90° T-Rosette) should be considered if: Principal strains ( 2,1 ) are to be 

measured and direction is known (also applicable to torques). 

 

Figure H.22: Bi-axial strain gauge [112] 

c) Tri-axial/ Three-Element (0°-45°-90° rectangular rosette, 0°-120°-240° delta rosette) 

should be considered if: Principal strains ( 2,1 ) are to be measured and direction is unknown. 
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Figure H.23: 0°-45°-90° Rectangular rosette & 0°-120°-240° Delta Rosette [112] 

d) Stacked rosette gauge configuration should be considered if: There isn’t much space 

available for mounting or if localized strain is to be measured where large strain gradient 

exists. 

 

Figure H.24: Stacked Strain Gauge Configuration [112] 

e) Planar gauge configuration should be considered if: Heat effects are likely to be an issue, 

where accuracy and stability is critical. 

 

Figure H.25: Planar gauge configuration [112] 

2. Gauge Length 

Shorter gauges are used (l ≤ 3mm) when 

1. There isn’t much space available for mounting. 

2. Localized strain is to be measured (ex. near a fillet, hole, notch etc.). 

3. A large strain gradient exists. 
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4. Accuracy of the measurement is less critical. 

Longer gauges are used (l ≥ 6mm) when 

1. Easier installation is a priority. 

2. Heat effects are likely to be an issue. 

3. Accuracy and stability are critical. 

4. The surface is non-homogeneous. 

5. Low cost is a priority (5-12 mm lengths are usually the cheapest). 

3. Wire Material 

There are a number of different metal alloys that are used in strain gauges. Each one has its 

own unique properties that make it more suitable for particular applications. 

a) Nickel/Copper Alloy (Gauge Factor 2.1) 

1. Most common material in gauges, and therefore low cost. 

2. Better suited to static strains rather than dynamic. 

3. Gauge factor remains nearly constant even through large deformations. 

4. Exhibits self-temperature compensation. 

5. Temp range -30°C to 193°C (though can experience a lot of drift above 65°C). 

b) Nickel/Chromium/Iron/Aluminum (Gauge Factor 2.0) 

1. Best suited to low temperature environments (as low as -265°C). 

2. More stable over extended periods of strain. 

3. Very difficult to solder. 

c) Iso-Elastic: Iron/Nickel/Chromium/Manganese Alloy (Gauge Factor 3.6) 

1. High sensitivity. 

2. High resistance. 

3. Well suited for dynamic strain readings (has a good fatigue life). 

4. Does not exhibit temperature compensation. 

5. Non-linear response beyond -5000με. 

d) Platinum Based Alloys, alloyed with Tungsten or Iridium (Gauge Factor - 4.0 to 5.1) 

1. High sensitivity. 

2. Well suited to high temperature environments (in excess of 230°C ). 
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e) Semi-Conductor Gauges (Gauge Factor 70 to 135). 

1. Very high sensitivity (-50 times that of wire). 

2. High resistance. 

3. Typically more expensive than wire. 

4. Can be made smaller than wire/foil gauges for lower cost. 

5. More likely to drift with temperature changes. 

6. Resistance doesn’t change linearly with strain (making data analysis more 

difficult). 

7. Typically have lower strain limits than a comparable wire gauge. 

4. Backing Material 

a) Polyimide 

1. Most common backing material and therefore low cost. 

2. Better suited to static strains rather than dynamic. 

3. Capable of large elongations and is very flexible. 

4. Not suitable in extreme temperature conditions. 

b) Epoxy 

1. Minimizes errors caused by the backing. 

2. Brittle and require special skill to install. 

3. Maximum elongation is limited. 

c) Glass Fibre Enforced Epoxy 

1. Performs well over widest temperature range (up to 400°C). 

2. Well suited to dynamic strains and fatigue loading. 

3. Maximum elongation is limited. 

d) Strippable Backing 

1. Backing is removed during installation and the adhesive serves as an insulator 

between the gage and the mounting surface. 

2. Best for use in extremely high temperature applications. 

3. Installation requires special skill. 
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5. Consider Adhesives 

a) Cyanoacrylate Cement 

1. Very common / Industry standard. 

2. Fast bonding -10min. 

3. Gentle clamping required for 1-2 minutes. 

4. Does not last for extended periods of time (months). 

b) Epoxy 

1. Exhibits high bonding strength. 

2. Should be used when high strains (e.g. to failure) are to be measured. 

3. Required a clamping pressure (-5 to 20psi) during cure. 

4. Has a long cure time, can be decreased by applying heat (-120°C). 
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H.5 Surface Preparation Steps  

For a strain gauge to read properly and reliably it must be installed correctly. This means first 

preparing the surface to which you will be bonding the gauge later. The procedures for 

preparing the surface are simple and easy to follow, yet will result in consistent, strong, and 

stable bonds. The procedures outlined below are generalized for all metals. The sequence of 

steps that follows is illustrated in Figures H.26-48 [112].   

1. Surface clean-Degreasing 

Use a solvent (such as acetone or alcohol) to remove any grease or oils from the surface to 

which the stain gauge will be bonded. This is to prevent any contaminants from being driven 

into the surface while performing subsequent steps. Clean an area significantly larger than the 

gauge (4 to 6 inches on all sides) to prevent any contaminants from the surrounding area from 

being introduced into the gauge area. 

 

Figure H.26: Use a liberal amount of degreaser.  

 

Figure H.27: Wipe the specimen surface thoroughly with a gauze sponge.  

 

 

http://www.vishay.com/brands/measurements_group/guide/a110/acc/spm.htm#gauze
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Figure H.28: To avoid recontamination, discard soiled sponges and continue until the 

sponge comes up clean.  

2. Abrade surface 

Remove any oxidation, paint or coating from the surface finishing the abrading with a 400 

grit silicone-carbide paper to ensure a proper texture for adhesion. A cross-hatched abrasion 

pattern is preferable. Be careful not to over-abrade the surface resulting in change of either 

dimensions or mechanical properties. 

  

Figure H.29: Flood the gagging area with conditioner. 

Wet lap with the 320-grit silicon carbide paper . Do not allow conditioner to dry on the 

surface. 

 

Figure H.30: A dozen strokes are usually adequate.  

http://www.vishay.com/brands/measurements_group/guide/a110/acc/sam.htm#scp
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Figure H.31: Wipe dry with a gauze sponge . Use only once through the gauging area. 

With a refolded or fresh sponge, wipe away from the gauging area.  

 

Figure H.32: Remove any excess chemicals from the work surface.  

3. Mark layout lines-Burnishing 

Use a clean rule and a hard pencil or pen to mark the desired position of the gage. 

Perpendicular lines crossing at the center of the gage area is standard, so that they can be 

lined up with reference marks on the gage. 

 

Figure H.33: With a clean straight edge, and a 4H pencil firmly burnish a layout line. 

Hold the pencil perpendicular to the surface. 

4. Cleaning 

Scrub the area with a solvent or marketed acid conditioner with a cotton-tipped applicator 

until the tip no longer comes up discolored. Do not allow the conditioner to dry on the 

surface, use a gauze sponge to wipe it off in a single slow stroke, then again with a clean 

sponge in the opposite direction. This prevents dragging any of the contaminates back into 

the gage area. 

http://www.vishay.com/brands/measurements_group/guide/a110/acc/spm.htm#gauze
http://www.vishay.com/brands/measurements_group/guide/a110/acc/ht.htm#scale
http://www.vishay.com/brands/measurements_group/guide/a110/acc/ht.htm#4hdp
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Figure H.34: Use a liberal amount of acid conditioner to remove all graphite from the 

burnished layout line by scrubbing along the line with a cotton-tipped applicator.  

 

Figure H.35: Keep scrubbing, but check the applicator tip for soiled appearance. 

Continue until the tip comes up clean. 

 

Figure H.36: Now, flood and re-clean the entire gagging area. 

 

Figure H.37: Replace the applicators when they become soiled. As before, continue 

scrubbing until the tip comes up clean. 

http://www.vishay.com/brands/measurements_group/guide/a110/acc/spm.htm#swab
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Figure H.38: Refold, and dry the remaining area. 

H.6 Bonding Procedure 

1.  Using tweezers to remove the gage from the transparent envelope, place the gauge 

(bonding side down) on a chemically clean glass plate or gauge box surface. If a solder 

terminal will be used, position it on the plate adjacent to the gauge as shown. Place a gage 

installation tape over the gauge and terminal. Take care to center the gauge on the tape. 

Carefully lift the tape at a shallow angle (about 45 degrees to specimen surface), bringing 

the gage up with the tape as illustrated above. 

 

 

Figure H.39: Removing the gauge from transparent envelope. 

 

2.  Position the gauge/tape assembly so that the triangle alignment marks on the gauge are 

over the layout lines on the specimen. If the assembly appears to be misaligned, lift one 

end of the tape at a shallow angle until the assembly is free of the specimen. Realign 

properly, and firmly anchor at least one end of the tape to the specimen.  
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Figure H.40: Positioning the gauge on the layout line. 

 

3.  Lift the gauge end of the tape assembly at a shallow angle to the specimen surface (about 

45 degrees) until the gage and terminal are free of the specimen surface. Continue lifting 

the tape until it is free from the specimen approximately 1/2 in [10 mm] beyond the 

terminal. Tuck the loose end of the tape under and press to the specimen surface so that 

the gauge and terminal lie flat, with the bonding surface exposed.  

 

 

Figure H.41: Lift the tape to allow applying catalyst. 

4. A cyano acrylate can now be applied to the bonding surface of the gage and terminal. Very 

little of this catalyst is needed, and it should be applied in a thin, uniform coat. Wipe the 

brush approximately 10 strokes against the inside of the neck of the bottle to wring out 

most of the catalyst. Move the brush to the adjacent tape area prior to lifting from the 

surface. Allow the catalyst to dry at least one minute under normal ambient conditions of 

+75°F [+24°C] and 30% to 65% relative humidity before proceeding.  
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Figure H.42: Applying cyano acrylate. 

5.  Lift the tucked-under tape end of the assembly, and, holding in the same position, apply 

one or two drops of adhesive at the fold formed by the junction of the tape and specimen 

surface. This adhesive application should be approximately 1/2 in [13 mm] outside the 

actual gauge installation area. This will insure that local polymerization that takes place 

when the adhesive comes in contact with the specimen surface will not cause unevenness 

in the gauge glue line. 

 

 

Figure H.43: Applying adhesive. 

6.  Immediately rotate the tape to approximately a 30-degree angle so that the gage is bridged 

over the installation area. While holding the tape slightly taut, slowly and firmly make a 

single wiping stroke over the gage/tape assembly with a piece of gauze bringing the gauge 

back down over the alignment marks on the specimen. Use a firm pressure with your 

fingers when wiping over the gage. A very thin, uniform layer of adhesive is desired for 

optimum bond performance. 
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Figure H.44: Applying gauge on the test specimen. 

7.  Immediately upon completion of wipe-out of the adhesive, firm thumb pressure must be 

applied to the gage and terminal area. This pressure should be held for at least one minute. 

In low-humidity conditions (below 30%), or if the ambient temperature is below +70°F 

[+20°C], this pressure application time may have to be extended to several minutes.  

 

 

Figure H.45: Applying uniform pressure. 

8.  The gage and terminal strip are now solidly bonded in place. It is not necessary to remove 

the tape immediately after gage installation. The tape will offer mechanical protection for 

the grid surface and may be left in place until it is removed for gage wiring. To remove the 

tape, pull it back directly over itself, peeling it slowly and steadily off the surface. This 

technique will prevent possible lifting of the foil on open-faced gauges or other damage to 

the installation. 
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Figure H.46: Remove the tape. 

 

H.7 Lead Wire Attachment 

When attaching lead wire, the most important factor is to prevent overheating of the gauge. 

This can melt the gauge and render it useless. 

1. Mask the strain gauge with drafting tape leaving only the solder tabs exposed. 

2. Clean the tip of the soldering iron on the wet sponge pad. 

3. Tin the soldering tip with some rosin core solder. 

4. Lay the end of the solder across the solder pad and apply the iron tip onto the solder. 

Apply firm pressure for no more than one second and remove both the solder and the 

iron simultaneously. 

5. You should now have a bright even mound of solder on the pad. Repeat the above 

procedure until you have a nice even mound of solder on each solder pad and each 

strain relief terminal. 

6. Strip and tin the wires. Bend the ends of the wire such that there will be a small bend 

between the strain relief and the gauge when the wire is soldered to the gauge. 

7. Tape the wire assembly in place using the provided drafting tape. Make sure the wires 

are in the exact place they will be once they are installed. If you are installing a rosette 

or multiple gauges, labeling the wires at this point will allow you to identify them 

once they are soldered into place. 

8. Press the soldering iron onto the wire over a pad while feeding a small amount of 

solder between the iron and the wire. The wire should slide into the melting solder. 

Allow the connection to cool thoroughly before handling. 

9. Repeat for each solder tab and the strain relief terminals. 

 



417 

 

       10.Remove any leftover flux from the solder with a gauze sponge soaked in rosin 

solvent. Use a dabbing action to prevent damage to the gauge. 

       11.Check the connections and their resistances. If there are any unexpected resistances or 

the wires are not solidly attached, re-solder the connections. 

 

 

 

 

 

 

 


