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Abstract 

The commercial need to capture, process and represent the shape and fonn of an 

outline has lead to the development of a number of spline routines. These use a 

mathematical curve fonnat that approximates the contours of a given shape. The 

modelled outline lends itself to be used on, and for, a variety of purposes. These 

include graphic screens, laser printers and numerically controlled machines. The 

latter can be employed for cutting foil, metal. plastic and stone. 

One of the most widely used software design packages has been the lKARUS 

system. This, developed by URW of Hamburg (Gennany), employs a number of 

mathematical descriptions that facilitate the process of both modelling and 

representation of font characters. It uses a variety of curve fonnats, including 

Bezier cubics, general conics and parabolics. 

The work reported in this dissertation focuses on developing improved 

techniques, primarily. for the lKARUS system. This includes two algorithms 

which allow a Bezier cubic description. two for a general conic representation 

and, yet another, two for the parabolic case. In addition, a number of algorithms 

are presented which promote conversions between these mathematical fonns; for 

example, Bezier cubics to a general conic fonn. Furthennore, algorithms are 

developed to assist the process of rasterising both cubic and quadratic arcs. 

page i 



Acknowledgements 

I would like to thank my supervisor, Professor Michael L V Pitteway, for 

providing an exciting research environment throughout my time at BruneI. 

Through him, opportunities have been presented to me that might otherwise have 

been missed. 

My thanks goes to both Professor Pitteway and Professor Wright for providing 

fmancial assistance through the Science and Education Research Council (SERC), 

for the academic year 1988. 

I am indebted to Dr Peter Karow (of URW, Hamburg, Germany) for sponsoring 

most of the work reported in this manuscript. Discussions with him and his staff, 

noticeably with Dr Juergen Willrodt, have assisted in giving me a better 

understanding of the commercial factors relating to the research field. 

My appreciation goes out to the personnel belonging to the Support Team. They 

were always ready to assist (and remove!) any problems that concerned the 

network. Thanks, also, to the various members of staff, working within the 

Computer Science Department, for being supportive and helpful. Special thanks 

to my fellow researchers, who made my stay at BruneI socially acceptable. 

Finally, I am grateful to my family for giving both financial and moral support 

throughout the course of this work. 

Declaration 

No part of the material presented in this thesis has been submitted in support of 

an application for another degree at BruneI or any other institution. 

page ii 



Contents 

page 

1.0 Introduction.............................................................................................. 1 

2.0 Elements of Outline Capture................................................................ 7 

2.1 Introduction.. ............. ........... ............. ........... ........................ ........... 7 

2.2 Introduction to Splines...................................................... ............. 8 

2.2.1 Control of Shape................................................................ 10 

2.2.2 Continuity of Joining Arcs.. ...... ..... ........ ......... ....... ........... 11 

2.2.3 Subdividing Splines........................................................... 12 

2.2.4 Choosing the Spline Degree....... ................ ........ ............... 14 

2.3 Forms of Outline Capture ............................................................... 15 

2.3.1 Capture by Interpolation.................................................... 15 

2.3.2 Capture by Approximation................................................ 17 

2.4 Design Considerations and Developments............. ............. ........... 19 

2.4.1 Fair and Smooth Curves ..................................................... 19 

2.4.2 Production Systems....... ............... ......... .... ......... ........... ..... 20 

2.4.3 Typographic Systems......... ...... ......... .... ..... ...... ............. ..... 21 

2.4.4 Display Factors. ..... ...... ........... .... ..... ........ ..... .... ..... .... .... .... 23 

2.5 Summary......................................................................................... 24 

3.0 Capture by Bezier Splines..................................................................... 25 

3.1 Introduction.. ..... ...... ........... ........... .... ...................... ..... ........ ........... 25 

3.2 Characteristics and Properties.... ...... ..... .... ............. ....... ........ ..... .... 25 

3.2.1 Polygonal Framework.. .... ..... ........ .................. .... ..... .......... 26 

3.2.2 Parametric Representation .................................................. 29 

3.2.3 Blending Functions................................................... ......... 30 

3.2.4 Applications of Cubic Splines........................................... 34 

3.3 Outline of Problem......................................................................... 35 

3.4 Capture by Parametric Form.......................................................... 36 

3.4.1 Parametrisation of Outline ................................................... 36 

3.4.2 Evaluation of Control Points............. ................. ............... 39 

3.4.3 Calculation of Curve Deviation ......................................... 42 

3.4.4 Analysis and Observations ................................................. 44 

page iii 



3.5 Capture by Non-Parametric Fonn .................................................. 54 

3.5.1 Introduction to the Fonn .................................................... 54 

3.5.2 Process of Implicitisation ................................................... 55 

3.5.3 Analysis and Observations................................................. 60 

3.6 Displaying Cubic Arcs.. ........... ............... ........................ ............... 67 

3.6.1 Parametric Algorithm......................................................... 67 

3.6.2 Implicit Algorithm............................................................. 70 

3.6.3 Analysis and Observations............................................ ..... 74 

3.7 Summary......................................................................................... 84 

Appendix A3.1 .......... ...................... ....... ............................................... 85 

4.0 Capture by Conic Sections.................................................................... 86 

4.1 Introduction....... ........... ...... ....... ...... ........... ......... .... ............. ........... 86 

4.2 Characteristics and Properties........................................................ 86 

4.2.1 Historical Perspective......................................................... 87 

4.2.2 Family of Conic Curves..................................................... 88 

4.2.3 Classification of Conics ..................................................... 91 

4.2.4 Applications and Techniques.. ........... ............. ......... .......... 97 

4.2.5 Point-to-Conic Deviation...... ........... ......... ............. ...... ...... 99 

4.3 Outline of Problem ......................................................................... 100 

4.4 Algorithms for Capture ................................................................... 101 

4.4.1 Capture Through Knot Tangents ....................................... 101 

4.4.2 Capture with Least Deviation ............................................ 104 

4.4.3 Results and Observations ................................................... 107 

4.5 Rasterising Conic Sections ............................................................. 111 

4.5.1 Development of Algorithm ................................................ 111 

4.5.2 Initial Conditions ................................................................ 114 

4.5.3 Results and Observations ................................................... 115 

4.6 Summary ......................................................................................... 118 

page iv 



5.0 Algorithms for Bezier-Conic Conversions ........................................... 120 

5.1 Introduction ..................................................................................... 120 

5.2 Splines: Cubics versus Conics ........................................................ 120 

5.3 Bezier to Conic Algorithms ............................................................ 125 

5.3.1 Concept of Conversion ...................................................... 126 

5.3.2 Preparation for Conversion ................................................ 127 

5.3.3 Conic Capture Through Tangents ...................................... 131 

5.3.4 Conic Capture with Least Deviation ................................. 134 

5.3.5 Analysis and Perfonnance ................................................. 136 

5.4 Conic to Bezier Conversion ........................................................... 140 

5.4.1 Concept of Conversion ...................................................... 141 

5.4.2 Approximation Through Sharpness ................................... 141 

5.4.3 Conversion Through Curvature ......................................... 143 

5.4.4 Analysis and Perfonnance ................................................. 145 

5.5 Summary ......................................................................................... 149 

6.0 Capture by Parabolic Arcs .................................................................... 150 

6.1 Introduction ..................................................................................... 150 

6.2 Characteristics and Properties ........................................................ 150 

6.2.1 Manual Construction .......................................................... 150 

6.2.2 Applications of Parabolic Fonn ......................................... 152 

6.2.3 Mathematical Fonns ........................................................... 153 

6.2.4 Point-to-Curve Deviation ................................................... 154 

6.3 Outline of Problem ......................................................................... 154 

6.4 Elements of Parabolic Conversion ................................................. 155 

6.4.1 Capture with Least Deviation ............................................ 156 

6.4.2 Capture Through the General Conic ................................. 158 

6.4.3 Analysis and Observations ................................................. 165 

6.5 Summary ......................................................................................... 172 

7.0 Conclusions and Further Work ............................................................ 173 

8.0 References ................................................................................................ 181 

page v 



1.0 Introduction 

The quest for an accurate and aesthetically pleasing representation of outlines of 

shape has traditionally been undertaken by proficient artisans. They produced 

desired results by using a skilled hand, having an eye for fine detail and an 

appreciation of the type and form of the shape itself. This process of drawing 

outlines found popularity in the field of typography, where an exact production 

(and reproduction) of contours of characters is required. The task for the 

typographer was not just to draw a given outline, but also to capture the distinct 

features of a particular font type. As thousands of different font types exist (each 

consisting of over a hundred characters), the manual capture of character outlines 

becomes rather cumbersome and time-consuming. 

With the advent of computers, attempts have been made to automate the design 

process. This has resulted in software packages under the headings of computer­

aided-design (CAD), manufacture (CAM) and geometric-design (CAGD) being 

developed. The modern typographer uses a particular design package to capture 

the font outlines which meet some predefined specifications. The aim of these 

conditions is to constrain the design process to producing an output which 

exhibits the unique features of the given font. 

The goal of a design system, therefore, is to efficiently model and represent a 

desired shape in a digital form. This form facilitates the captured outlines to be 

processed using fast processors, and their output to be displayed on graphic 

devices such as screen displays and laser printers. The benefits of the digital form 

are also extended to cater for numerically controlled machines. These are 

employed to produce outlines (either by drawing, cutting or engraving) on paper, 

metal, plastic, stone or wood. 

In view of the modern commercial demands for a fast and accurate means of 

modelling a given outline, the design system is required to employ an effective 

approach for representing contours of shape. This, in practice, is best achieved 
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through quantifying the given outline in tenns of a mathematical description. The 

attraction of such an approach, when compared to the manual construction, is its 

speed of capture and its resulting portability within, and between, design systems. 

The described outline is also in a fonn which allows it to be rotated, scaled and 

translated through applying a simple and appropriate transfonnation matrix. 

Mathematical descriptions come in various fonns: The simplest uses straight lines 

from point to point around the outline. Each line requiring two integer 

parameters, a new end point relative to the current mesh point. A more 

sophisticated alternative allows for circular arcs, with the radius fonning an 

additional parameter. The extra storage required for each arc should be 

compensated for by requiring fewer segments for the same accuracy in rendering 

a given shape outline. A fourth parameter is needed for a mathematical 

description involving parabolic arcs. The additional point fonns the control 

element of a three-point Bezier curve which defines the starting and finishing 

directions for each arc [BEZI 72, PA VL 82]. To mathematically model outlines 

using the general conic (quadratic) sections, a fifth parameter is necessary; 

namely the sharpness value [PRAT 85]. For a Bezier cubic description [FORR 

71, BEZI 72], six parameters are required, ie two control points and the endpoint 

with respect to the start point. 

The application of a particular mathematical description is nonnally oriented at 

the type of data fit required. Using line segments to model a curve outline, for 

example, would require a considerable number of segments to meet some design 

specification. Even then, it is not certain whether the resulting representation 

would be acceptable for aesthetic reasons. Clearly, in such circumstances a 

capturing process that employs a curve description is more suitable. The question 

then is whether to use a quadratic or a cubic, or even a higher ordered modeller. 

This consideration is usually limited to deciding how two adjacent arcs will join 

together. In other words, what fonn of continuity will reside amongst the 

resulting description? 
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Increasing the order of the mathematical description (moving from a quadratic 

to a cubic fonn, for example) has the effect of offering a higher degree of 

continuity. Employing such continuity in the capturing process results in outlines 

which appear "smoother" at the joints. Although this is as desired, it is gained 

through increasing the amount of computation necessary for a description, 

highlighting the fact that when it comes to choosing a mathematical description, 

the computational efficiency of the capturing process is an important factor. For 

reasons of simplicity, therefore, curve descriptions above cubic order are 

nonnally not used to model outlines of shape. 

This dissertation addresses the demand for mathematical curve descriptions that 

embody both efficiency and accuracy. Efficiency is generally measured in tenns 

of the capturing speed, and the number of arcs used, for a complete description. 

Accuracy is quantified in tenns of a specified tolerance that the modelling 

process needs to work within. Together, these two criteria allow the perfonnance 

of a particular description to be assessed. 

The work reported here concentrates on developing techniques that are applicable 

to the two most widely accepted descriptions, the Bezier cubic and the general 

conic. Both representations have unique features, and embody capturing 

capabilities that are explored and developed. The techniques presented in this 

thesis offer the designer the ability to model a given outline, make conversions 

between the two descriptions, and facilitate a rasterised output on a digital 

display. Although most of these developments are constructed to assist the 

typographic designer using the IKARUS system (see section 2.4.3), the concepts, 

as well as the approaches, can be applied on an equal merit to representing 

outlines of any shape. 

In the light of some commercial requirements, capturing techniques are also 

developed for the parabolic case. Although this is a curve description which 

belongs to the conic family (as well as the fact that an exact Bezier cubic 

representation for it exists), some design systems (including IKARUS) have been 

attracted to it because it requires one less parameter than a general conic for a 
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solution. This does not, however, make the task of capturing any easier, and leads 

to a capturing process which takes longer to yield a solution than does the 

general conic (see chapter six). 

Apart from chapter two, which gives an introduction to some of the concepts and 

techniques that has stimulated the development of mathematical descriptions for 

modelling outlines of shape, Fig 1.1 gives a graphical illustration of the work 

reported in each chapter of this dissertation. This can be summarised as follows: 

Chapter three looks at the Bezier cubic curve. It presents some of the 

characteristics and features which have made this description popular with 

designers. Two approaches for capturing a given set of data points, of the type 

described in section 3.3, are then developed. The first technique uses the 

parametric form to represent the given data. This leads to an iterative approach 

which is costly in terms of time. An implicit form for the Bezier cubic is then 

developed, and an instability in the representation is highlighted. The process of 

displaying the described outline onto a screen of some resolution is then 

considered. Two algorithms for this purpose are developed. The first translates 

the curved outline into line segments, using a novel way of evaluating how many 

lines to employ. The second approach tracks the curved outline, using the nearest 

integer mesh point at each stage. Although returning a superior digitised output 

than the first approach, it is shown that in certain cases the algorithm fails to 

track the desired curve outline. Reasons for this occurrence and its possible 

solutions are given in section 3.6.3. 

Chapter four concentrates on developing techniques for the curves 

belonging to the conic family. After a detailed introduction to the family, two 

algorithms for modelling a given set of data points, of the form outlined in 

section 4.3, are presented. The first technique has the feature of returning an 

outline which maintains tangent continuity (see section 2.2.2 for its definition) 

between joining arcs. The second approach works within a more relaxed 

environment to yield a conic description which adjusts the control point so that 

the resulting point-to-curve deviation is a minimum. The performance of both 
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algorithms is then assessed through their modelling of a given character outline. 

For the purpose of digitising the quadratic outlines, an algorithm is presented 

which follows the given curve and returns the closest integer pen position at each 

stage. The approach is made robust to cater for all conic arcs lying within a 

quadrant. 

® 

® 
Parabolic General Conic Bezier Cubic 

Fig 1.1 Gives an illustration of the various algorithms presented in 

this dissertation, in terms of their respective chapters. 

Chapter five describes algorithms for conversion between the Bezier 

cubic and the general conic. After a detailed comparison of the two 

representations, two approaches for translating cubic curves into quadratic arcs 

are presented. Both employ an integral approach for gaining a solution. The first 

method returns a gradient continuous conversion, whilst the second method gives 

a conic approximation that deviates the least from the supplied Bezier cubic 
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curve. Their conversion capabilities are assessed in section 5.3.5. Two algorithms 

are then given which translate a conic arc into a corresponding Bezier cubic 

form. The first approach is based on the sharpness value, whilst the alternative 

method gains a conversion through matching curvature at the end Goining) 

points. Performance of both algorithms is analysed in section 5.4.3. 

Chapter six evaluates the modelling capabilities of the parabolic curve. 

Some of its attractions are highlighted through a graphical illustration that shows 

how a manual construction for the curve can be realised. Two algorithms for 

capturing the given set of data points, of the type discussed in section 6.3, are 

presented. The first approach attempts to gain a "direct" description. This leads 

to a recursive method being applied for a solution. The second approach uses the 

capturing techniques of the general conic description as its basis. This is shown, 

in section 6.4.3, to return a better rate of capture than the first approach a result 

that is somewhat surprising as the parabolic arc uses one less parameter for its 

description than the general conic. 

The seventh chapter gives an outline of the various algorithms presented in this 

thesis. Although the performance of each algorithm is assessed within its relevant 

chapter, the discussion focuses on highlighting some of the important results 

attained, and how these may effect their employment in a particular design 

system. In addition, possible areas of further research are emphasised. 
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2.0 Elements of Outline Capture 

2.1 Introduction 

The problem of finding a mathematical curve description, which models a desired 

shape, occurs in various situations and, its application can be found in a number 

of fields including design and manufacture, graphics, image processing, pattern 

recognition and typography. One of the earliest uses of mathematical modelling, 

for the purposes of manufacture, occurred in representing the surfaces of a car 

body. This was done by specifying the surfaces as a set of discrete points that 

met some design and aesthetic conditions. Other applications have included the 

representation of experimental data, either for display purposes or for automatic 

pattern recognition. In addition, the mathematical description of the contour of 

an object may give indications about the class to which the object belongs. This 

is a frequent requirement in the field of pattern recognition. In the field of 

typography, the representation of font outlines needs to be both accurate and 

aesthetically acceptable. Although different fields and applications use 

mathematical modelling of outlines for different purposes, the solution to finding 

an acceptable representation in each case does depend on having an effective 

method for capturing and characterising the given curves and surfaces. 

This chapter looks at the fundamental concepts and techniques that have 

stimulated some of the work in the area of mathematical description of outlines. 

It introduces the spline, its historical importance and its modern practical 

relevance. The two forms (through interpolation and approximation) of modelling 

a set of data points are discussed. The chapter also looks at design systems, and 

introduces two internationally accepted packages; namely, the IKARUS and 

METAFONT systems. Finally, some of the characteristics and difficulties of 

displaying outlines on screen displays are highlighted. In short, this chapter gives 

a general introduction to capture methods and techniques, some of which are 

discussed further in the subsequent chapters. 
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2.2 Introduction to Splines 

Probably the most important aspect of mathematical modelling, most defInitely 

the main component in capturing techniques, is the spline. With the application 

of splines, outline and contours of objects can be mathematically modelled 

without too much difficulty. So, what exactly is a spline and how does it assist 

the designer in capturing outlines? 

The tenn spline originated well before the days of computer graphics and the 

commercial use of numerical machines, when an outline was constructed by 

means of some weights and a flexible material. The weights (also called ducks) 

were located to shape the flexible material (such as wood) to yield a desired 

outline [BEZI 72, ROGE 76]. The process is illustrated in Fig 2.1, where a thin 

elastic material, called the spline, is bent around some weights. The weights were 

designed to hold the spline in position, while allowing the spline to tum and bend 

as necessary. 

spline 

/ 

~ 
weight 

Fig 2.1 Illustrates the construction of a curved outline 

by using a spline and some weights. 

Traditionally, the splines were used in the design and construction of contours 

for large objects such as ship hulls and aircraft fuselages. This manual process 

of drafting outlines was often perfonned in grand attics or lofts (hence the tenn 

lofting frequently associated with splines) [LIMI 44, eRAS 78]. As these splines 

(sometimes called the physical or natural splines) are recognised and have been 
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accepted as reliable means of representing contours of objects, attempts have 

been made to develop mathematically analogous splines. 

The physical spline has an interesting and desirable property of exhibiting 

minimum total internal strain (bending) energy. This means that along the entire 

length of the spline, the integral of the square of the curvature has a minimum 

value amongst all the possible curves passing through the weights. Various 

authors have discussed this aspect, including: [BEZI 72, FAUX 79, ROGE 76, 

YAMA 88]. 

The mathematical spline therefore requires to encompass the physical spline's 

property of yielding minimum bending energy so that it returns the "smoothest" 

curve which passes through the weights. It turns out that the mathematical spline 

which best resembles the properties of the physical spline is a series of cubic 

curves joined together in a piecewise manner at the weights (more commonly 

known as the 'knot' points). It is found that these curves are continuous in 

position, slope and curvature (see section 2.2.2) at the knot points. 

Although the mathematical spline, when compared to its physical counterpart, 

gives adequate approximations in most cases, it needs to include a procedure for 

representing difficult cases such as large or inftnite slopes [BEZI 72]. If the 

slopes are large, a situation which is quite common in practice, two solutions 

could be employed: The ftrst, consists of introducing local axes for each arc in 

the spline. This is normally done in a manner that leaves the new coordinate 

system having the x axis along and the y axis perpendicular to the chord of the 

arc. An illustration of this approach is given by Faux and Pratt [Faux 79]. The 

second method is to use a parametric spline, where an additional parameter is 

used to yield the points on the arc. This method has the advantage of being axis­

independent Parametric curves are covered in chapter three. 
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2.2.1 Control of Shape 

The physical spline, as explained in section 2.2, is constrained to go through the 

fixed weight positions. Changing the position of one of the weights results in a 

corresponding change in the shape of the physical spline. This way, the weights 

are exerting some form of control over the shape, be it more of a global control 

than a local control. 

The shape of the mathematical spline, in comparison, is determined by the 

positions of the knot points. The location of these points sets the shape of the 

spline. Although, this approach works well in most cases, there are occasions 

where a loop appears in the spline even though there is no such occurrence in the 

original data points [FAUX 79, Y AMA 88]. 

Schweikert proposed a method to improve the control features of the 

mathematical spline [SCHW 66]. He introduced a new parameter that 

corresponded to tension (hence the term 'spline in tension'). The method was 

based on the concept of "pulling out" unwanted loops and inflection points by 

increasing tension (see Brodlie [BROD 80] for an illustration). This then resulted 

in mathematical splines being more in-line with the given outline. The 

computational aspects of these type of curves has been looked at by Cline [CLIN 

74]. A generalised approach is given by Pilcher [pILC 74]. Nielson [NIEL 74] 

and Barsky [BARS 84] present a polynomial related solution to the spline in 

tension concept 

Bezier introduced the concept of defining a given (curve) outline within a single 

polygon [BEZI 72]. The modelled outline can be taken as being the defining 

polygon whose comers have been smoothed out. Bezier's polygonal definition 

assisted the designer in determining and controlling the overall outline of the 

shape. Much of Bezier's work was put to practical use in Renault's car body 

design system called UNISURF [BEZI 71, BEZI 74, BEZI 86]. 
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Splines defmed in tenns of the Bezier polygonal set-up, provided a much more 

flexible way of controlling and changing the outline shape. The shape could be 

represented by a single spline or by a number of splines, connected together in 

a piecewise manner (see section 2.2.2). The designer has the option of making 

changes that only effects a localised section. By using a trial-and-error approach, 

a mathematical model of the given outline could then be converged to (see 

section 2.2.3). 

2.2.2 Continuity of Joining Arcs 

The outlines of some objects are nonnally too complex to merit a single spline 

representation. These outlines are then modelled by a series of arcs (splines) 

patched together, in a piecewise manner, to resemble the given object shapes. 

Each arc is defmed within two knot points, one at each end. 

The way two arcs join together depends, primarily, on the type and order of the 

spline being used. If, for example, cubic splines were employed, then there is the 

possibility of making the two arcs continuous in position, slope and curvature (as 

is the case for the mathematical spline in section 2.2). Fig 2.2 illustrates the three 

possibilities. By position, the arcs are guaranteed to touch. The arcs are said to 

possess tangential continuity if their slopes are the same at the joining knot. For 

the arcs to exhibit curvature continuity, the first arc needs to have the same 

curvature as the second arc at the joining knot. 

Rogers and Adams [ROGE 76] state that: "In general the mathematical spline is 

a piecewise polynomial of degree K with continuity of derivatives of order K-l 

at the common joints between segments. Thus the cubic spline has second-order 

continuity at the joints." 

This implies that higher ordered splines return better continuity at the joining 

knots, resulting in a more aesthetically pleasing outlines. These splines, however, 

are found not to be commercially viable as they are computationally expensive 

and tend to introduce unwanted oscillations and wiggles between knot points 
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[ROGE 76, BART 87]. In addition, recent developments have meant that 

quadratic splines can (in addition to cubic splines) be fashioned to yield second­

order (curvature) continuity [PRAT 85]; this will be discussed further in chapters 

four and five. 

Position Continuity 

(Zero-order) 

Gradient Continuity 

(First-order) 

Curvature Continuity 

(Second-order) 

Fig 2.2 Shows three ways of connecting two arcs. 

2.2.3 Subdividing Splines 

In the process of interactive design, a frequent requirement is to edit and modify 

parts of an outline such that the overall drawing does not change significantly. 

If the outline shape is described by a spline, then it is necessary to make small 

adjustments to this in order to gain a desired representation. The definition of 

splines according to Bezier tend to be ideally suited for this purpose: An outline 

described by a Bezier spline, of a specified degree, can in fact be represented 

exactly by a series of splines having the same degree (see Farin [FARI 90], for 
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example). This process is called subdivision, and is performed by splitting the 

original outline at a desired point and then representing the outline by two , 

smaller, Bezier splines of similar degree: Fig 2.3 depicts a situation where the 

defining (Bezier curve) polygon is subdivided into two polygons (polygon A and 

B). This subdivision process does not change the shape outline. The important 

point here is that the designer is free to change the shape of polygon A without 

necessary effecting the shape described by polygon B. The problem of shape 

control is, therefore, being localised. (The process of subdivision is further 

discussed and applied in section 3.6.1). 

Original polygon 

-----

polygon A 

Fig 2.3 Highlights the fact that the subdivision process for 

a Bezier cubic results in two polygons of cubic order. 

The process of spline subdivision is not just limited to the above mentioned 

application, but has been employed for a variety of tasks: The evaluation of 

intersection point(s), for example, of a high degree Bezier spline with a line or 

curve section is a common problem that occurs in computer graphics, especially 

in the area of hidden-line removal. An algorithm based on the subdivision 

technique could be employed for this purpose. A number of other applications, 

and approaches, can be found in [COHE 80] . 
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2.2.4 Choosing the Spline Degree 

Although it is common to work with a spline of a desired degree for interactive 

design purposes, it often happens that a design system requires a spline of a 

degree higher than the outline has been described with. This means that if the 

design system needs quartic splines, for example, then if the spline input is in the 

form of a (Bezier) cubic, a method for upgrading the degree of the input spline 

is required. This process is called degree elevation, and has been looked at by 

various authors including Boehm et al [BOER 84], Farin [FARI 90], Forrest 

[FORR 72, FORR 90] and Yamaguchi [Y AMA 88]. Fig 2.4 gives an illustration 

of the process for Bezier splines, and highlights how repeated degree elevations 

results in convergence of higher ordered polygons towards the modelled outline. 

Original Polygon 

Fig 2.4 Gives an illustration of how the degree of the 

describing Bezier spline can be increased. 

Degree elevation can be viewed as a process that introduces redundancy; an 

outline is modelled by more information than is actually necessary. The inverse 

of this process, called degree reduction, attempts to reduce (normally by one) the 

degree of a given spline. Although this is possible, any reduction in the degree 
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of a spline can only result in a set-up which approximates the original outline. 

This fact is highlighted by Watkins and Worsey [WATK 88] who present an 

algorithm that attempts to generate (n-1)th degree approximation to an nth degree 

Bezier spline. (Chapter five presents techniques for translating Bezier cubic 

splines to a general quadratic fonn and, also, for converting general quadratic 

descriptions to a Bezier cubic fonn). 

2.3 Forms of Outline Capture 

The physical spline, as described in section 2.2, uses the technique of 

interpolation to model the given set of data points (ie weights). The mathematical 

spline can be employed to represent an outline either by means of interpolation 

or by a process known as approximation. In the fonner case, the spline is 

constrained to pass through all the given set of data points, whilst in the latter 

case, the spline is allowed to represent each data point within a (pre-defmed) 

least-squares distance criteria. 

2.3.1 Capture by Interpolation 

When considering how to model an outline mathematically by means of 

interpolation, the assumption is always made that the data points describing the 

outline are sufficiently accurate and have a smooth distribution that warrants the 

process of interpolation rather than approximation. Given a set of data points, it 

is not a difficult task for a proficient designer to draw an aesthetically pleasing 

outline that passes through all the data points. Interpolation attempts to develop 

mathematical tools that correlate well with the designer's experience and intuition 

so that the resulting representation is as acceptable as that drawn by hand. 

This process of constructing a mathematical description that passes through a 

given set of data points is in fact not a new problem. J Lagrange (1736-1813) 

and C Hennite (1822-1901) pioneered and developed much of the mathematical 

tools that are employed in modern design systems to interpolate data. 
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Lagrange's approach was to use the x and y coordinates of each of the given set 

of data points to construct a polynomial. This polynomial then interpolated the 

data so that it returned the correct y value for the respected x data point A full 

description and methodology of Lagrange's approach can be found in most 

mathematical and geometrical design literature including Faux and Pratt who give 

a full account with examples [Faux 79]; Yamaguchi gives a more mathematical 

description, including the effect of having the data points equidistant [Y AMA 

88]. 

Although Lagrange's method is intuitively and computationally simple to 

implement, it does have one major drawback. It tends to oscillate. Even for quite 

reasonable data points, this method generates wild wiggles that are not inherent 

in the data. This predicament is not due to numerical effects, but is inherent in 

the construction process for the interpolating polynomial, a problem that is 

discussed by Farin [FARI 90]. 

Mathematical interpolation is not just restricted to interpolating a given set of 

data points; it can include other information such as derivative data. This leads 

to an interpolation scheme that is considered to be more useful than Lagrange's 

method, namely Hermite interpolation. Although high-ordered derivatives can be 

employed, its construction is normally limited to the cubic case where data points 

are specified in terms of position and their first derivatives (tangents). The 

implementation of such a system is discussed by both Farin [F ARI 90] and 

Yamaguchi [Y AMA 88]. An interesting property of this method is that the shape 

of the interpolating cubic Hermite curve depends not only on the position and 

direction of the tangent vectors at these points, but also on the magnitudes of the 

tangent vectors. 

One consequence of using Hermite interpolation is that it is not invariant under 

affine domain transformations. This will mean that the shape of an interpolating 

curve will change after it is transformed. In order to maintain the same curve as 

before the transformation, the defining tangent vectors (that is, their lengths) will 
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need to be adjusted [F ARI 90]. This situation is rather unpleasant and thus makes 

this approach less attractive. 

Lagrange and Hermite polynomials provide much of the basis of recent 

interpolating techniques. The use of tangential information is attractive as this can 

be used to develop piecewise interpolating splines with some degree of 

continuity. Ferguson, in the early sixties, introduced the idea of using cubic 

interpolating splines to model mathematically a given set of data points [FERG 

64]. He employed these concepts in constructing a model for representing 

surfaces, a programme known as FMILL [FARI 90, FAUX 79, Y AMA 88]. 

Methods that embody the use of piecewise interpolating splines of degree three 

(cubic) or lower have been proposed by various authors: Akima [AKIM 70] 

presents a technique for interpolating a given outline (in a piecewise manner) so 

that unwanted wiggles and loops are eliminated. He compares his technique with 

other methods, and extends his approach to cater for multi-valued functions. The 

use of Bezier splines has been considered by Piegl [PIEG 87], who utilises the 

rational Bezier form (see chapter three) to interpolate a given outline in a 

localised way. Harada and Nakamae also employ Bezier cubic splines in a 

localise sense [HARA 82]. They propose a method that produces an aesthetically 

pleasing representation. Pavlidis [PA VL 82] outlines the use of B-splines for this 

purpose. He illustrates, with an example, the effectiveness of utilising uniform B­

splines for interpolating data. (B-splines form a topic of their own, and their 

introduction and development can be found in the literature: [BARS 83, BOOR 

78, COX 72, GORD 74, LEE 85, RIES 73, SCHU 81]). 

2.3.2 Capture by Approximation 

When the given set of data points contain uncertainties, such as noise, we require 

a process that will return a "smooth" and "fair" representation of these points. By 

interpolating, the only certainty is that the resulting outline will pass through all 

the data points, leaving the desired shape unchecked. What is really required is 

a mathematical function that will pass close to the given data points, but not 
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necessary through them. This should then ensure that the overall outline (as 

described by the data points) is mostly preserved. 

The process of approximation provides a means of rmding a mathematical 

description that captures data points within some distance criteria. The use of a 

distance criterion gives the designer the flexibility of defining a modelling 

representation that meets some design specifications. The distance (curve to a 

given data point) is commonly measured along a coordinate or along a normal 

to the capturing curve. Chasen [CHAS 78] gives an introduction to the concept 

of mathematical approximation. He highlights some practical applications for 

such methods, and discusses the use of polynomials (linear, quadratic and higher 

ordered) for the purposes of least-squares data fitting. 

The distance value can be used in a variety of ways to gain a "best-fitting" 

approximation to a given set of data points: It may be employed in an application 

that requires all the data points to be within a set tolerance. ~s approach is used 

by the IKARUS system (introduced in section 2.4.3). Alternatively, an acceptable 

approximation may be where the average of all the squared distance values is 

below some desired level. Pavlidis [PA VL 82] discusses these approximation 

procedures in relation to splines with fixed and variable knots. He uses the B­

spline formation to further illustrate the concepts. 

Splines used for the purposes of constructing an outline in a piecewise manner 

tend to employ both interpolating and approximating techniques. Each spline is 

constrained to interpolate the start and end points (of a given data set) and to 

approximate the remaining points based on some distance and continuity 

conditions. The designer's main concern is that the resulting spline representation 

"looks right"; whether it passes through all of them or just a few of them might 

be immaterial. 
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2.4 Design Considerations and Developments 

This section develops further some of the concepts relating to splines. It gives the 

process of mathematical modelling of outlines in terms of the commercial needs 

and requirements. Through this a number of design considerations and factors are 

highlighted. 

2.4.1 Fair and Smooth Curves 

One of the primary tasks of a capturing system is to generate outlines that can 

be described as being "fair" and "smooth", and thus the modelled outline can be 

judged as "looking right". The problem is that, in industry, each designer tends 

to have his own method of defining and describing the terms fair and smooth. 

Forrest [FORR 68] elaborates on the various definitions: To some a fair curve or 

surface is one which does not contain any bumps or humps. Others judge the 

fairness of a curve by analysing the radius of curvature [F ARI 89]. Draftsmen 

employed in the shipbuilding trade take a curve representation to be acceptable 

as long as it satisfies continuity requirements of the first and second derivative, 

with no inflection points that are not inherent in the given data. 

Sometimes, as a result of digitising errors, the modelled outline is judged not to 

be fair or smooth: Data points describing an outline are commonly obtained by 

means of a digitising device (a tablet being the simplest), and an acceptable 

model is desired. In some cases, however, the digitised data points are found not 

be accurate, and thus this leads to unsatisfactory representations. The use of 

curvature plots first to remove the unhelpful data point and then to insert a new 

point has been discussed by Farin and Sapidis [FARI 89]. 

In the field of typography, the designer is interested in modelling outlines of font 

characters in a way that also captures the unique features of the font type. This 

means that the capturing system needs to preserve the aesthetic outlook of each 

outline (ie character). The lKARUS system produces mathematical descriptions 

of characters that are taken to be both fair and acceptable. It uses the criteria of 

approximating a given contour within a specified tolerance and that joining 
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curves have first order (tangent) continuity. This suggests that satisfactory 

character outlines can be gained without the use of curvature continuity. (Further 

discussion is left to the capturing algorithms presented in the subsequent 

chapters). 

2.4.2 Production Systems 

The employment of mathematical techniques, with computers, in designing 

commercial products has eliminated much of the difficulties encountered in the 

process of production: At each stage of product development, a large amount of 

data needs to be passed from the first to the next stage. Traditionally this was 

done manually. A person had to read the data and make calculations and 

decisions accordingly. This approach often led to mistakes being made, and the 

unsatisfactory outcome of a product that was either too big or found to be smaller 

than required. 

With the development of computers and numerically controlled machines, 

mathematical methods were incorporated to assist not just the designer, but the 

whole process of production. Bezier [BEZI 90] outlines some of the thoughts and 

requirements of the personnel involved in making a product His reflections are 

based on the prototype that was developed in the sixties to aid Renault's car 

manufacturing process. An in-depth account of the development and usage of 

these control machines can be found in Bezier's original (English) publication 

[BEZI 72]. He also supplies the necessary mathematics that may be used to 

describe contours of shape. Yamaguchi [Y AMA 88] gives an historical account 

of the introduction of mathematics in representing outlines. In addition, he 

describes the development and application of various numerical control machines. 

Faux and Pratt [FAUX 79] give a comprehensive illustration of the usage of 

mathematics for the purposes of design and manufacture. They provide much of 

the geometric concepts that are necessary to build a mathematical or numerical 

model of a given object. 
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2.4.3 Typographic Systems 

The numerical control of application machines, such as for milling and cutting, 

is just one situation where a mathematical model of a component or an object is 

effectively used. The model can be used to drive outputs on typesetting machines 

and to create images on film and/or paper. Furthennore, a mathematically 

modelled image can be displayed on a modem display screen. 

One popular application of mathematical modelling occurs in the field of 

typography, where outlines of font characters need to be accurately represented. 

Characters, and thus font types, have an important role to perfonn: They are not 

just required in the commercial sector for design purposes, but are necessary in 

all aspects of life to fonnulate a channel of communication. The type and style 

of a font is nonnally chosen to suit a particular application and/or a selected 

group of people [GLEN 84]. 

The traditional approach to capturing outlines of characters (drawn by proficient 

artisans) was to represent its shape on a metallic block. Each contour, of a 

character, was carved onto the block with great care and accuracy. The modelled 

characters were then employed to produce prints as and when necessary. 

Liebennan [LIEB 67] gives a comprehensive historical background to the 

development of both font type and its technology. 

Modem design systems attempt both to automate and to make the process of 

capturing outlines of font more versatile. The use of mathematics in capturing 

systems has meant that changing the size, position, shape, style or sense of 

orientation etc, of a modelled character, can easily be accomplished. Much of the 

work that traditionally took days to complete can now be perfonned in minutes 

or even seconds. 

Several design systems have emerged within the last two decades. They offer 

some fonn of flexibility to the designer so that he is able to create, modify and 

change a desired shape without too much difficulty. Ruggles [RUGG 83] 
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provides a brief description of some design systems which have been developed 

specifically for the field of typography. He highlights the fact that although most 

design systems use a spline routine (to capture outlines of characters), the manner 

and method this is employed varies from system to system. To illustrate the 

point, two well known design systems (namely IKARUS and METAFONT) are 

described here: 

The IKARUS system was developed by URW (GeImany) in the early seventies. 

It was pioneered by Peter Karow, and follows the principle of first capturing the 

given outline in a "non-mathematical" fOIm. This is done by quantifying the data 

points (describing the outline) as being either a corner, curve, start or a tangent 

point Once this is accomplished, a second capturing stage is then activated where 

the outline is defined in teImS of a mathematical description. The IKARUS 

system gives a simple but effective approach for modelling outlines of any shape. 

A full description of the IKARUS system can be found in Peter Karow's book 

[KARO 87]. 

The 1ffiT AFONT system in contrast is much more of a mathematical 

programming language. It was pioneered by Donald Knuth in the late seventies 

[KNUT 79, KNUT 82, KNUT 85]. The outcome of its working is very much 

similar to that of 'join-the-dots' in pictures. A pen is programmed to draw an 

outline from one position to the next The outline can be drawn in various sizes, 

and can also take the fOIm of a line or curve. An output of a modelled outline 

is then produced by executing the program instructions. 

Both design systems provide a means of mathematically modelling in a fOIm 

desired by the designer. The fact that the MET AFONT is a programming 

language leads itself to some drawbacks, the main one of which is that the 

system is declarative rather than interactive, requiring the designer firstly to 

create the program that includes a mathematical description and then to execute 

it, a process that can be fairly time-consuming. 
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2.4.4 Display Factors 

Having mathematically modelled a character outline, the next stage is, nonnally, 

to display the outline on some graphics display tenninal. The problem is that 

these display tenninals have a finite resolution,. resulting in a distorted (jagged) 

outlines. Various authors have done some research on assessing the factors that 

effect the quality of characters (text) on display screens, including: Kindersley 

and Wiseman [KIND 79] who give a comparison of modem techniques with 

established (printing) methods; Pringle, Robinson and Wiseman [pRIN 79] 

discuss the merits of text representation on raster-scan displays (such as 

televisions); Bigelow [BIGE 85] looks at the traditional factors governing the 

design of font characters. He suggests that because of the limitations of 

technology to improve screen resolution, it may be better to design new fonts to 

meet the digital environment. Pitteway and Banissi [pITT 87] suggest the use of 

soft-edging (greyscaling) to improve text representation. 

Display screens, in fact, offer the most coarse resolution when compared to 

typesetting devices such as laser printers and flat bed drawing machines. The 

maximum resolution of display screens is around 100 lines per inch. Laser 

printers have resolutions that can range from 300 to 800 lines per inch. Flat bed 

drawing machines offer resolutions of 1000 to anything up to 5000 lines per inch 

[KARO 87]. Although modelled outlines displayed on screen tenninals will 

appear less acceptable than those drawn on a high resolution device, they (screen 

displays) provide a suitable means for both interactive work and preparation stage 

for the high resolution devices. 

Outputting modelled outlines on a low resolution device will, undoubtedly, lead 

to distortions of the type mentioned above. What makes the output look even 

worse is that the modelled character loses its proportionality. This may result in 

the three stem widths of the character 'm', for example, all being different 

Distortions of this nature can make a character shape and type unrecognisable. 

To overcome some of these problems, special instruction (hints) are embodied as 

part of a character's outline description. They are then used by output devices to 
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ensure that the basic features of font characters are preseIVed. Karow [KARO 91] 

gives an account and some requirements of providing hints to improve the output 

quality of character outlines. He compares the type of hints being used by various 

established commercial packages, and elaborates on the type and fonn of each 

hint. 

2.5 Summary 

This chapter gives some of the aspects and concepts concerning the mathematical 

capture of shape outlines. It introduces the spline, probably the most important 

component in modelling contours. The use of piecewise splines to represent 

complex shapes, and control factors such as shape and continuity are also 

discussed. The features of spline subdivision, degree elevation and reduction are 

also highlighted. 

The two approaches for capturing an outline, given as a set of data points, are 

presented. Both of these can be employed in an interactive system to achieve 

desired results. When the given data points are in-tune with the desired shape, the 

interpolation approach is usually employed. For data that contains noise factors, 

the approximation method of least-squares is nonnally preferred. 

Finally, this chapter outlines some factors that are nonnally considered when 

attempting to model shape contours. The tenns fair and smooth, when applied to 

shape appearance, are introduced. The application of mathematics to numerical 

machines and typographic systems are also discussed. Some of the considerations 

and difficulties relating to displaying mathematically described outlines on output 

devices (of, particularly, low resolution) are presented. 
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3.0 Capture by Bezier Splines 

3.1 Introduction 

One of the most popular and widely used technique for capturing contours of a 

given shape was invented by P Bezier. He managed to develop an approach that 

was powerful enough to represent any outline, yet simple enough for designers 

who thought in terms of drawings rather than equations. His contribution was 

warmly accepted and incorporated in the design stages of modelling motor 

vehicle bodies [HOCH 90]. 

This chapter firstly introduces the Bezier spline, its desirable properties and its 

mathematical forms. Through this, the parametric form is analysed, its benefits 

and possible drawbacks are highlighted. Two approaches are then presented for 

capturing a given set of data points in terms of Bezier cubic splines. The first 

method is in line with traditional approaches where a parametric form is used. A 

mathematical modelling algorithm is developed and its performance assessed. The 

second method focuses on a non-parametric approach. This consists of converting 

the parametric form to a non-parametric representation. The effectiveness of this 

method is then evaluated and an ill-condition illustrated. Finally, the techniques 

for rasterising (the process of choosing the "best" pixels on a digital display, for 

example) the Bezier cubic outlines are looked at. A new approach for tracking 

the contours of an outline is developed, and examples are given of its successes 

and failures. 

3.2 Characteristics and Properties 

This section outlines some of the features and properties that the formulation 

developed by Bezier offers. It therefore looks at some of the reasons that has 

attracted designers to employ Bezier splines to model outlines. 
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3.2.1 Polygonal Framework 

The development of Bezier CUNes eased some of the difficulties which designers 

had encountered using either methods pioneered by Coons or Ferguson (see 

[COON 67] and [FERG 64] respectively). The main inconvenience imposed by 

these methods was in controlling the shape of a modelled surface, for example. 

In this case, large amount of input data such as tangent and twist vectors was 

required. Designers found it difficult to predict the effect of these parameters on 

the shape of a surface and, thus, evaluating suitable values for them was, in some 

cases, extremely hard. Yamaguchi [Y AMA 88] gives a detailed discussion of the 

methods developed by Coons and Ferguson, and mentions some of their 

undesirable features as far as modelling shape outlines are concerned, whether in 

2-D or in 3-D. 

Bezier's description of shape CUNes and surfaces requires only the use of 

positional vectors. The defining polygon, in the case of a curve description, gives 

a coarse approximation regarding the form and outline of a given shape. The 

closeness of the defining polygon to the modelled shape, in practice, depends on 

the order (and thus the degree) of the Bezier spline being used. The polygon of 

any ordered spline tends to give some indication about the modelled shape, but 

the relationship between the polygon and the given outline becomes weaker as 

the order of the Bezier spline is increased [FAUX 79]. Yamaguchi [Y AMA 88] 

illustrates with some eye-catching examples using high-ordered Bezier splines to 

construct some unusual shapes. In all cases, it is extremely difficult to predict 

from the polygonal set-up the resulting outline of shape. 

The defining polygon, as mentioned in section 2.2.3, also provides a window for 

editing and modifying the shape. This is particularly useful when a given shape 

is modelled by a series of Bezier splines patched together. The shape modelled 

by one or more of these defining polygons can be changed without (necessarily) 

effecting the shape represented by adjacent polygons. This then localises the 

problem of capturing a given shape within a desired specification. 
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Bezier splines as described by a polygon do not, in general, pass through all the 

defining (n+1) positional vectors. As shown in Fig 3.1, they interpolate the two 

endpoint vertices Po and PlI (hence after called the knot points), and "approximate" 

the remaining vertices (PI to PlI- I), henceafter referred to as control points). The 

defining polygon is characterised such that the tangents at the knot points only 

depend on the adjacent control points. This results in the tangent at the starting 

knot being governed by PcPo, and that, at the finishing knot by PlI-PlI- I. Higher 

derivatives at the knot points employ additional control points: The second 

derivative at start knot Po, for example, is obtained by a combination of Po, PI 

and P 2' In general, therefore, the rth derivative at a knot point is determined by 

its r neighbouring control points. This characteristic of Bezier splines is used in 

applications to achieve a high-ordered continuity between joining arcs. Gorawara 

illustrates this point by joining two cubic arcs characterised by Bezier polygons 

[GORO 86]. He provides much of the mathematics required for this purpose . 

................................ 

'. 
'. 

'. '. 

PlI 

Fig 3.1 Highlights the relationship between the Bezier polygon 

(shown dashed, and without the line connecting the two knots, 

to aid clarity) and its resulting curve segment. 

Once a Bezier polygon is established, the resulting curve is conditioned to lie 

within it. This is an important property that all Bezier curves exhibit. The curve 

is said to lie within the convex hull of the polygon (see [F ARI 90, NEWM 79]). 

This has practical applications in evaluating, for example, whether two, or more, 

paths (projected by Bezier curves) overlap: Sederberg and Nishita [SEDE 90] use 

the convex hull property to perform "Bezier clipping". They locate points of 
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intersection by firstly identifying and then clipping away regions which do not 

include the solution. 

Bezier originally characterised the polygon in tenns of its sides [BEZI 72]: Given 

a set of defining vertices, as in Fig 3.1, a polygon was constructed by joining 

together the tangent vectors going from one vertex to the next This meant that 

a chain of relative vectors was being employed to gain a Bezier description. 

Forrest developed a fonnulation which used the vertices (control and knot points) 

of the defining polygon rather than its sides [FORR 72, FORR 90]. As he 

mentions, using absolute (positional) vectors makes the fonnulation more 

compact and elegant, and has a greater intuitive appeal. Furthennore, he makes 

the point that the effects of rounding errors (particularly when perfonning 

transfonnations such as rotation) are less noticeable in a system which employs 

absolute vectors rather than relative vectors. 

Parabolic 

Cubic 

Quartic 
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Fig 3.2 Shows how by increasing the number of polygon sides 

(shown dashed) also raises the degree of the Bezier spline. 

The number of sides, and therefore control points, a Bezier polygon exhibits is 

directly related to the degree of the spline being used. As depicted by Fig 3.2, a 

quadratic (more precisely, parabolic) spline (in addition to the two knot points) 
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has one control, a cubic spline two control points and a quartic spline three 

control points. Thus in general a defining polygon is characterised to have one 

more point (knot plus control) then the desired degree of the spline. 

3.2.2 Parametric Representation 

Before examining the shape control parameters of Bezier curves, it is worth 

mentioning the role of parametric descriptions: Ferguson, in the early sixties, 

introduced the idea of employing parametric (cubic) curves and surfaces in the 

design of fuselages (contour of aircrafts) [FERG 63]. He included an additional 

parameter, sometimes called the parametric variable, to overcome some of the 

problems faced by a non-parametric mathematical form. He chose to employ, for 

each cubic curve segment, an equation of the form: 

where: P(t) is the positional curve vector, 

ao to a3 are vector coefficients, and 

t is the parametric variable. 

... (3.1) 

The points on a curve, expressed in terms of equation (3.1), were then readily 

available by stepping through the parametric variable t. 

The attractive features of the parametric form has since meant that a number of 

mathematical techniques (including Bezier - see next section) employ this 

representation. Forrest devotes a whole chapter (chapter five in [FORR 68]) to 

discussing the advantages of using the parametric form. He mentions the 

appealing characteristic of this form in having a workable representation for 

curve outlines that possess infinite slopes. Faux and Pratt [FAUX 79], and 

Yamaguchi [Y AMA 88], list this and other reasons for the popularity of the 

parametric form in describing outlines of shape. 

Although the parametric form does have its benefits, it also has its limitations 

and drawbacks: When splines, whether cubic or otherwise, are used to model an 

3.0 Capture by Bezier Splines page 29 



outline given as a set of data points, a relationship between the given data points 

and the parametric variable needs to be established in order to assess the 

goodness-of-fit [pA VL 83]. As it will shown in section 3.4, this process tends to 

be iterative, and therefore, time consuming. 

3.2.3 Blending Functions 

The benefits offered by employing parametric descriptions and functions are more 

intuitively appealing to the designer when their exact role is predictable. This, in 

the case of Bezier splines, means that a direct relationship between the parametric 

curve description and the polygonal (both control and knot) points is required. 

A common way of achieving this is through the application of blending 

functions. These are functions that "blend" the effects of the given geometric 

constraints, such as polygonal points, to generate a curve description. 

Coons and Ferguson employed the use of Hermite blending functions in their 

modelling of curves and surfaces [Y AMA 88]. Bezier, on the other hand, chose 

a family of functions called Bernstein polynomials to create a formulation for 

describing contours of shape [FAUX 79, FORR 90, MORT 85]. Given a set of 

polygonal points Po, PI"'" P" (as in Fig 3.1), Bezier's general (non-rational) 

parametric equation takes the form: 

" 
pet) = :E P,Bi,1l (t), ... (3.2) 

i-o 

where: t is normalised to range from 0 to 1. 

The Bi".(t) are a set of Bernstein blending functions, defmed as follows: 

n! Bi,1l (t) = t i (l-t)"-i. 
i!(n-i)! 
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It should be clear from equation (3.2) that the blending functions act as weights 

for each of the given polygonal points. These functions therefore are the key to 

the behaviour of Bezier curves. To analyse and understand their role further, the 

blending functions that the Bezier cubic curve exhibits are closely examined. 

Equation (3.2) can be rewritten specifically for the cubic case, n=3, as follows: 

... (3.3) 

The first point to note is that there are four blending functions, one for each of 

the polygonal points. Each function has an influence on the shape of the 

generating curve. Fig 3.3 gives an illustration of the amount of influence each 

function exhibits as the parametric variable t is incremented [MORT 89]. The 

blending functions (as expected, and mentioned in section 3.2.1) facilitate the 

interpolation of (knot) points Po and P3• at t=0 and t=1 respectively. 

o Parametric interval t 1 

Fig 3.3 Depicts the behaviour of the blending functions associated 

with each of the respective polygonal points. 

The amount of bias each blending function exerts varies as the value for the 

parametric variable is increased. The maximum "pull" of each function (ie knot 
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and control point) occurs for Po, PI' Pz and P3 at 1=0, 1/3, 2/3 and 1 respectively. 

In general, the maximum influence of a Bezier control point Pj will occur when 

the parametric variable t becomes i/n, where n+ 1 are the number of polygonal 

points. This fact can be used to assist designers working with an interactive 

design system: Chasen [CHAS 78] assesses the influence of moving the control 

points of a Bezier cubic polygon. He gives examples of how an experienced 

designer may use the polygonal nature, with its blending functions, of Bezier 

cubics to achieve desired results. 

The parametric variable tis nonnalised to lie in the interval of zero and one. This 

is done because it is convenient, not because it is necessary [F ARI 90]. The 

variable can take on arbitrary values (as used in section 3.6.3), so that the shape 

of an entire curve can be sketched. In other words, the parametric interval (in 

conjunction with the defining polygonal points) is used to return a section of a 

complete curve. 

.. .. .. .. .. .. .. 
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Fig 3.4 Demonstrates possible curve shapes a Bezier cubic spline can 

generate: a) an arc, b) a cusp, c) a loop, and 

d) an arc containing one inflection point. 

3.0 Capture by Bezier Splines page 32 



The Bezier cubic spline, as Fig 3.4 manifests, can be set-up to return a number 

of different shape curves. A single spline can represent either a straight line, an 

arc with zero, one or two inflections, a cusp and a loop. Stone and DeRose 

[STON 89] show how by re-positioning a knot point of a given Bezier cubic 

polygon, the spline can be made to return any of the above curve shapes. As they 

mention, the knowledge of whether a cubic curve segment contains inflection 

points or a cusp or a loop can highlight unwanted features of a modelling 

scheme. Patterson [PATT 88] makes use of an algebraic fonn to detennine 

various properties of the Bezier cubic curve. He extends his work beyond the 

parametric (variable) interval of zero and one. 

In concluding, it should be mentioned that the use of Bernstein blending 

functions limits the flexibility of Bezier splines in two ways: Firstly, the number 

of polygonal points (knots plus control) fixes the order (degree) of the resulting 

Bezier spline. This means, for example, a cubic spline has to be defined by four 

polygonal points, a quartic by five, and so forth. It is therefore not possible to 

increase the order of a spline without increasing the number of polygonal points, 

and conversely, the only way to decrease the degree of a spline is to make a 

reduction in the number of polygonal points. 

The second limiting factor is due to the global nature of Bernstein blending 

functions. As Fig 3.3 demonstrates, all of the blending functions within the 

parametric interval of zero to one, have values which are non-zero. This means, 

as indicated in sections 2.2.3 and 2.2.4, a small change in the location of the 

control points is "felt" throughout the entire modelled outline. This situation, as 

mentioned in section 2.2.3, can be catered for, but it involves the process of 

subdivision. 

(In passing, it should be mentioned that by employing the rational parametric 

form for the Bezier cubic, the shape of the basis functions, and thus the amount 

of bias they exert, can be controlled. Each polygonal point has associated with 

it an additional parameter called a "weight". The value taken by this variable 

gives a measure of the "pull" that each polygonal point exerts. Rational Bezier 
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forms are discussed in the literature; a geometrical introduction is given by Piegl 

[PIEG 86].) 

The two limitations, of the Bernstein basis, can be overcome by employing 

blending functions that are nonnally non-global within a curve segment, and 

whose order of curve is not set by the number of polygonal points. The types of 

mathematical curve descriptions which embody these properties are called B­

splines. Discussion of these splines is left to the references listed in section 2.3.1. 

3.2.4 Applications of Cubic Splines 

Some of the features of the Bezier cubic spline have already been presented in 

this chapter. Because of its widespread use in industry, and the fact that it will 

be employed to solve the problem outlined in section 3.3, further elaboration on 

its applications and characteristics are given in this section. 

In section 2.2, it was mentioned that the cubic spline is the mathematical 

analogous of the physical spline used to model outlines of ship hulls, aircrafts 

etc. It can provide second-order continuity between segments, and has 

discontinuities only in the third derivative. As it is difficult for the human eye to 

distinguish the latter, the resulting spline appears reasonably smooth [PA VL 82]. 

Furthermore, the cubic spline is the lowest degree space curve which has the 

ability to twist through space [ROGE 76]. These two properties have contributed 

mainly to their successful employment in a variety of applications. 

Apart from their role in the motor vehicle manufacturing industries, cubic splines 

have been applied to model an extensive range of objects: Font characters used 

in laser printers often employ Postscript. The outlines of these characters are 

modelled by Bezier cubic splines [GROS 90]. Traditional chinese calligraphy and 

paintings require the finest skills in executing brushstrokes. Chua [CHUA 90] 

illustrates the use of Bezier cubic splines in modelling these brushstrokes. In the 

field of dentistry, a common requirement is to model the outlines of dental 
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arches. Various mathematical descriptions are normally used, including cubic 

splines [BEGO 79]. 

The use of cubic splines, as can be gathered from the diverse applications cited 

above, is a popular means of describing shape outlines. As it might be expected, 

various forms and types of cubic splines (including Bezier) exist. An extensive 

survey in respect of this has been carried out by Boehm [BOEH 82]. He 

introduces the various representations, their differences and relationShips. For a 

more general look at the various mathematical descriptions and methods, Faux 

and Pratt [FAUX 79], Boehm et al [BOEH 84], Yamaguchi [Y AMA 88] and 

Farin [F ARI 90] give an instructive introduction. 

3.3 Outline of Problem 

Having presented some of the properties and features that have made the use of 

Bezier splines popular, this section describes the nature and type of 

approximation required: 

The lKARUS design system, as mentioned in chapter one, requires to model 

mathematically outlines of font characters. It employs a number of descriptions, 

including the use of Bezier cubic sections. The problem therefore is to develop 

techniques that will efficiently capture the character contours. The efficiency is 

judged mainly by the speed of capture (conversion), although the number of 

Bezier curve segments used are also observed. The problem can be summarised 

as follows: 

Given a set of data points (Qi) describing an outline, whose directional tangents 

at each point are known, a mathematical model of the outline is required which 

uses the minimum number of Bezier cubic segments. The resulting model needs 

to represent the given data points within a predefmed tolerance. 

The tangents for each of the data points are not provided by the designer, but are 

evaluated in the preparation stage for all digitised contour points. As mentioned 
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by Karow [KARO 87], the best way of achieving this is to employ an algorithm 

which interpolates the given data points. They base this algorithm on the methods 

discussed by Spath [SPAT 74]. The use of tangents in the capturing scheme 

should ensure that the resulting Bezier cubic CUIve segments possess at least first 

order (tangent) continuity at the (curve) knots. 

Two approaches for finding an acceptable solution to the given problem are 

developed: The first, in section 3.4, takes a look at the 'traditional' (non-rational) 

parametric approach. Some of the concepts involved are highlighted and a 

method is developed which meets the given specifications. The performance of 

this method is assessed and possible improvements investigated. 

In section 3.5, a non-parametric solution to the problem is presented. The 

parametric form of the Bezier cubic formulation is transformed into a 

corresponding non-parametric form. An ill condition in the representation is 

highlighted and its possible consequences illustrated through an example. 

3.4 Capture by Parametric Form 

The use of parametric curves for modelling outlines can be split into three 

distinct areas: The first area provides the initial values for the parametric variable, 

the second evaluates the corresponding Bezier control points, whilst the third 

stage both assesses the goodness-of-fit of the resulting curve and, if necessary. 

updates the parametric values. The way these are employed to form a capturing 

algorithm is shown in Fig 3.5. Detailed discussion of each of the three primary 

stages is given in the subsequent sections. The performance of the algorithm is 

presented in section 3.4.4. 

3.4.1 Parametrisation of Outline 

The given data points (hereinafter referred to as IK points) reflect the outline of 

a character to be mathematically modelled. Each IK point has been digitised with 

a view to the type and form of the outline being captured. The various guidelines 

for digiti sing outlines to provide suitable IK points has been addressed by Karow 
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[KARO 87]. The important point here is that the IK points have been supplied 

with some insight to the nature of the character outline. The resulting values for 

the parametric variable tj must therefore share, and be seen to reflect, this. The 

process which gives initial values for tj is called parametrisation. 

Evaluate initial 
values for 

parametric variable 

Calculate Bezier 
control points 

Determine 
point-to-curve 

deviation 
and 

update values for 
parametric variable 

Has 
desired fit no 

being gained --------7~ 

yes 

Fig 3.5 Shows the various steps necessary to perform an IK to 

Bezier cubic deSCription using the parametric approach. 
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There are a number of methods that can be employed to return suitable 

parametrisations. Farin [F ARI 90] discusses some of these and assesses their 

performance through examples. Like he points out: "There is probably no "best" 

parametrisation, since any method can be defeated by a suitably chosen data set". 

A common and popular approach is to use the relative distances between given 

points [FAUX 79]. This is known as the chord length method. Fig 3.6 illustrates 

the approach. 

", 

,,' 

,,' 

, ' . 
.' .. ' 

Fig 3.6 Gives an illustration of the chord length method for estimating 

initial values for the parametric interval tif for a set of 

IK points Qi' using the 't approximations. 

It is apparent from Fig 3.6, that the chord length approach consists of providing 

an initial approximation based on line segments. The amount of line segments 

used is directly related to the number of IK points supplied. As the parametric 

variable requires to range from zero to one, each chord length needs to be 

expressed in terms of the total chord length. Mathematically, the method can be 

described as follows: 

i-I 

L 'to 
J 

ti = j- 0 ... (3.4) 
11-1 

L 'tj 
j- 0 
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where: 'tj = I Qj+l - Q j I , 

n = total number of IK points. 

Although the chord length method is an effective way of attaining initial values 

for the parametric variable ti , an approach based on the actual curvature tends to 

give better results [CORE 89]. This, however, leads to the practical problem of 

how to determine the curvature information about a given set of IK points, whose 

tangents at each point are known. A solution which has been adopted at URW, 

is to compute circular arcs between two IK (curve) points. The mathematics for 

this approach are given by Karow [KARO 87], and further details and discussion 

can be found in the following references: [BOLT 75, RUTK 79, ALIA 87, 

THOM 89]. This technique of gaining curvature data allows the initial values for 

ti to be based on arc lengths, rather than the chord approach. 

The main purpose of this routine is to introduce additional (help) points that 

would make the resulting modelled (by Bezier cubics or otherwise) outlines 

aesthetically acceptable. In section 3.4.4 (results section), this routine has been 

employed for the following two purposes: Firstly, it has been used to analyse and 

assess the effects (if any) of evaluating the initial values for ti through the arc 

lengths returned by the circular arcs and those calculated using the chord length 

approach. Secondly, the effects of introducing additional curve points at various 

locations along a given character outline are observed. In both cases, the 

performance of the algorithm is judged in terms of speed and accuracy. 

3.4.2 Evaluation of Control Points 

Having gained initial values for ti which correspond "best" with the given IK 

points, a process for evaluating the control points is considered in this section. 

For this purpose, the given conditions, such as tangents, are utilised to develop 

a reasonably compact form for the unknown variables. A numerical approach, 

similar to that used by Engels [ENGE 86], is employed to solve for the control 

points. The process in detail is as follows: 
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Looking at the Bezier cubic form expressed in equation (3.3), it is clear that in 

general the solution to eight unknowns is required. As the knot points are given 

(ie Po and P3) through which the resulting curve must pass, this leaves the 

determination of the two control points, that is PI and P2• Since the tangents at 

the knot points are also known, this reduces the overall problem to calculating 

the 'control lengths' 11 and ~. In other words, the two control points take on the 

following expressions: 

PI = Po + TIll ' 

P 2 = P 3 + T2 12 • 

where: Tl is directional vector at start knot, 

T2 is directional vector at end knot, and 

ITII = IT21 = 1. 

... (3.5) 

Substituting the expressions of equation (3.5) into (3.3), and by collecting 

common terms, equation (3.3) then takes form: 

... (3.6) 

where: Sj = I-tj • 

It is clear from equation (3.6) that the only unknowns are the control lengths 11 

and ~. The solution to these has to be such that it minimises the distances 

(residues) of all the given IK data points Qj (xi,y) to their corresponding curve 

points P(t
i
). A simple way, in principle, of achieving this is to set-up initially a 

function that returns the square of the residue values at each IK point. That is: 

/1-1 

r=L d;, 
... (3.7) 

i-I 

where: di = Qi - P(tJ 
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The best values for the control lengths are then gained when r is a minimum. 

This, in mathematical terms, occurs when: 

ar = 0 
ar ' 

1 

ar = 0 d4 . ... (3.8) 

An analytical approach to solve for the control lengths can be used by combining 

the terms generated via equation (3.8). Although this forms an approach, a better 

way is to apply a numerical method. This has a matrix form which attracts 

computation efficiency, and as section 3.4.4 shows, has a faster IK to Bezier 

conversion rate when compared to the analytical approach. The numerical method 

being employed is a frequently used technique (see [ENGE 86], for example), 

whose solution process can be summarised as follows: 

Given a solution matrix of the form[A] [x] = [b], where the size of A is n x m 

(n=total number of observations, m=number of unknowns). The corresponding 

least squares solution is obtained by reducing the matrix A to be of size m x m. 

This is achieved by multiplying each side of the solution matrix by the transpose 

of matrix A (AT ). That is: 

... (3.9) 

To solve for the two unknowns, the expressions of equation (3.7) are formulated 

with those required by equation (3.9). The tangents at the start and end knots are 

expressed in terms of their components: ~, tyo and txll , tyll respectively. After 

combining and simplifying terms, the solution matrix takes the following form: 

... (3.10) 
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where: 

As is apparent from equation (3.10), relatively little computation is required to 

solve for the functional expressions (ie h' h, gI etc). Indeed, as the two knot 

points are supplied, the given IK curve points can be translated to start from an 

origin (0,0). This will make the expressions for hI and h2 (in equation (3.10)) 

simpler, and thus further enhance the conversion rate. 

The solution for the control lengths that best fit the given IK points (with the 

assigned parametrisation), is then gained by employing a suitably fast numerical 

subroutine, such as that developed by Lewis [LEWI 86]. Once the control lengths 

have been evaluated, equation (3.5) can be employed to calculate the 

corresponding Bezier control points. 

3.4.3 Calculation of Curve Deviation 

With the computation of the control points, the given set of IK curve points have 

been modelled by a corresponding Bezier cubic spline. The next task is to 

evaluate whether this spline matches the desired goodness-of-fit. If this is in the 

affirmative, then a best-fitting mathematical description has been gained; 

otherwise the values of tj require adjusting, and new control points need to be 

calculated. 

To assess the goodness-of-fit, the shortest distance between the generated curve 

points P(tj) and the corresponding IK points Qj needs to be measured and 

compared with the desired tolerance. Equation (3.7) can be employed to return 
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the corresponding deviations. Once these have been computed, it is necessary to 

calculate the worst deviation produced by the curve. If this is found to be greater 

than the desired tolerance, re-parametrisation of the given IK points needs to be 

performed with reference to the existing values of ti and also to the resulting 

deviations. 

For the purposes of successive improvements to the values of ti , two techniques 

are employed: The first approach is the Newton-Raphson method. This a 

frequently used technique to locate roots of an equation of the formitx)=O. Plass 

and Stone [pLAS 83] elaborate on its application in providing successive ti 

values. As they point out, the Newton-Raphson approach can be formulated to 

solve for itt)=O as follows: 

itt) 
t. = t. - _ , 

I I f'(ti) 

where: 

itti) = x'(ti)[x(ti)-xa + y'(ti)[y(tj)-Yi] , 

f(ti) = x'(tY+y'(ti)2+x"(tj)[X(ti)-Xi]+y"(ti)[y(ti)-Yi] , 

x'(ti) and y'(ti) are respective first derivatives with 

respect to t of equation (3.3), and 

x"(t;) and y"(ti) are respective second derivatives with 

respect to t of equation (3.3). 

The second approach, which has been employed in the IKARUS system, makes 

use of tangent vectors [MEIE 89]. Fig 3.7 gives a graphic illustration of the 

technique, the basic concept of which is as follows: The distance di , as expressed 

in equation (3.7), yields the deviation of the curve point P(ti)' based on the value 

of ti , to the given IK point Qj. Describing the deviation as a tangent vector D j, 

we can gain its (local x and y) components; namely the tangent vectors DXj and 

DYi' The values for these components, as Fig 3.7 shows, are with reference to the 
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gradient of the curve at ti· Adjustments to ti are made via the vector Dyi; resulting 

in a new value shown as t/ in Fig 3.7. 

Fig 3.7 Depicts the vector approach for making successive 

improvements to the values of ti • 

Improvements to the values of ti are made, using either approaches, until a 

desired fit results or when the adjustments to the ti values are not significant. In 

the latter case (and also when the convergence is slow so that it demands a high 

number of iterations) the given IK data points are subdivided and represented by 

two Bezier cubic splines. 

3.4.4 Analysis and Observations 

Having described an approach for each of the primary stages of the Bezier 

conversion algorithm, its performance is analysed in this section. For this 

purpose, the'S' character from URW's typeface codename an201215.ik (antiqua) 

is selected. As Fig 3.8 depicts, the body of this character is mainly described by 

two, rather lengthy, curve sections. Each contains two points of inflection, 

marked with an asterisk (lie) in Fig 3.8. It is apparent from the location of these 

points that the minimum number of Bezier cubic segments required to capture the 

two given curve sections is four. Furthermore, the positioning of the knot points 

3.0 Capture by Bezier Splines page 44 



needs to be such that only one of the inflection points appears within the 

solution. 

+ -+ 

Fig 3.8 Gives the IK defined outline of the'S' character, 

points of inflection shown with an asterisk (*). 

In order to make a thorough assessment of the conversion process, each of the 

three stages shown in Fig 3.5 are realised through two respective approaches (as 

discussed in the relevant sections above). This means that the initial values for 

the parametric variable are either gained via the chord or arc length method, the 

control lengths are either analytically obtained or through the approach outlined 

in section 3.4.2, and the process of successive improvement is made using either 

the Newton-Raphson method or by the vector approach depicted in Fig 3.7. In 

addition, the help-point routine is used to examine further the effects, if any, of 

describing the character outline through a varied number of IK points. 

To enhance the clarity of the results, the following abbreviations are used to 

represent the corresponding approach: 
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Stage 

Parametrisation: 

Control Lengths: 

Deviation: 

Approach 

Chord 

Arc 

Analytic 

Numerical 

Vector 

Newton 

Abbreviation 

PC 

PA 

CA 

eN 

DV 

DN 

In addition, the amount of help-points introduced between the two given IK 

points varies from 1 to 4. These are denoted respectively as HPl, HP2, HP3 and 

HP4. 

The first combination for a conversion algorithm is P A, CA, and DV. Utilising 

this, it is possible to develop the results table of Fig 3.9. The observations which 

are being noted include the number of iterations necessary to convert the IK 

defined character'S' to a corresponding Bezier cubic description. Each iteration 

amounts to the employment of the three primary stages. It does not include the 

recursive process of evaluating the deviation and making successive 

improvements to t j • In Fig 3.9, the worst deviation refers to the least acceptable 

value incurred by any of the arcs used in the representation. The desired accuracy 

ensures that the modelling arcs are within a tolerance of 15 units (where each 

unit corresponds to l/10Omm for a character bodysize of 15cm). The resulting 

average worst deviation of all these arcs is also listed. 

It is clear from Fig 3.9 that the fastest conversion rate is returned by HPl, where 

only one help-point is introduced between two given IK points. This also uses 

the greatest amount of iterations to yield an acceptable representation. Although 

it appears that these two results are incompatible with each other, the fact that the 

conversion stages are working (in the case of HP2, HP3 and HP4) with greater 

amount of data points, accounts for this apparent disparity. This point is further 

highlighted in the case of HP3, where 84 less iterations are used than for HPl, 

yet it takes 36.6 seconds of additional CPU time to convert the given'S' 

character. 
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PA,CA,DV HPI HP2 HP3 HP4 

Total No of 15 14 13 15 
Bezier Arcs 

Conversion 
Rate 73.1 97.5 109.7 152.0 
CPU sees 

No of 377 345 293 353 
Iterations 

Worst 14.2842 14.8591 14.6518 14.6566 
Deviation 

Average 
Worst 10.7637 11.1445 11.4893 9.6564 
Deviation 

Fig 3.9 Table of results for the IK to Bezier cubic conversion algorithm using 

the PA, CA, and DV combination. 

Introducing three help-points, ie HP3, returns a Bezier description which employs 

the minimum number of CUlVe segments. It uses one less than for HP2, and two 

less than for both HPI and HP4. The placement of the knot and control points 

for all four cases are depicted in Fig 3.10. It is clear from this that the CUlVe 

segments employed by HPI and HP4, though the same in number, represent 

different parts of the given outline. This point is emphasised further by the 

average worst deviation value for both, as shown in Fig 3.9. Further analysis of 

this quantity highlights the fact that HP4 yields the most accurate approximation, 

with only an average of 9.6564 units of deviation between CUlVe and the given 

set of IK points. Although this is desirable, it falls more than 5 units below the 

specified tolerance, resulting in more arcs being used than necessary. In other 

words, a Bezier description which has an average deviation close to the upper 

limit of the specified tolerance will employ the least number of CUlVe segments 

(a fact indicated by HP2 and HP3). 
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Fig 3.10 Depicts the outputs returned by the PA, CA, and DV conversion 

combination, employing a varied number of help-points: 

a) 1, b) 2, c) 3, and d) 4. 
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The next conversion blend consists of PA, CN, and DV. Here, the analytical 

approach for evaluating the control positions is replaced by the numerical method 

discussed in section 3.4.2. The results obtained through this set-up for an IK to 

Bezier conversion are shown in Fig 3.11. 

PA,CN,DV HPI HP2 HP3 HP4 

Total No of 15 14 13 15 
Bezier Arcs 

Conversion 
Rate 65.4 89.1 97.6 l38.9 
CPU sees 

No of 377 339 291 358 
Iterations 

Worst 14.2839 14.8592 14.6517 14.6570 
Deviation 

Average 
Worst 10.7637 11.1444 11.4893 9.6566 
Deviation 

Fig 3.11 Table of results for the IK to Bezier cubic conversion algorithm 

using PA, CN, and DV combination. 

As expected, the observations listed in Fig 3.11 are much similar to that gained 

through the analytical approach (Fig 3.9), the key difference being the rate of 

conversion. The numerical method returns a Bezier description in about 10 (CPU) 

seconds less than its analytical counterpart. Although this may not seem a 

considerable improvement, the fact is that if this was true for each of the 

characters in a font, then this would accumulate to a saving of about 15 to 20 

minutes. 

Changing the conversion combination to PA, CN, and DN, where the successive 

improvements to tj are made using the Newton-Raphson method, leads to the 

observations tabulated in Fig 3.12. 
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PA,CN,DN HP1 HP2 HP3 HP4 

Total No of 15 14 13 15 
Bezier Arcs 

Conversion 
Rate 105.9 111.4 171.3 239.3 
CPU sees 

No of 449 369 352 413 
Iterations 

Worst 14.5140 14.0847 14.7043 14.4712 
Deviation 

Average 
Worst 10.5591 11.4139 11.1862 9.7357 
Deviation 

Fig 3.12 Table of results for the IK to Bezier cubic conversion algorithm 

using PA, CN, and DN combination. 

The Newton-Raphson method, as shown in Fig 3.12, does not effect the number 

of arcs employed in the Bezier description. As Fig 3.13 highlights, however, the 

location of the respective knot points are different from that shown in Fig 3.10. 

Further comparison of the tabulated results of Fig 3.9 and 3.11 shows that the 

solution rate of the Newton-Raphson is considerably slower than the vector 

approach. In the case of HP4, for example, it takes another 100 CPU seconds 

before a conversion is complete. Looking at the number of iterations necessary, 

the PA, CN, and DN combination requires on average 60 iterations more to yield 

a satisfactory outcome, a 15 per cent increase on both the previous combinations 

using the vector (DV) routine. Apart from these rather less desirable features, the 

use of the DN procedure does not seriously change the worst point-to-curve 

deviations, whether average or otherwise. 

The next, and final, combination analyses the effect (if any) of using the chord 

length technique for evaluating the initial values for the parametric variable ti• 

The conversion algorithm uses the procedures PC, CN, and DV. The results 

returned by this are recorded in Fig 3.14. 
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Fig 3.13 Shows the respective outputs gained through employing the PA, CN, 

and DN conversion combination for the following help-points: 

a) 1, b) 2, c) 3, and d) 4. 
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PC,CN,DV HP1 HP2 HP3 HP4 

Total No of 15 14 13 15 
Bezier Arcs 

Conversion 
Rate 68.3 92.4 101.5 142.5 
CPU sees 

No of 371 338 289 362 
Iterations 

Worst 14.3000 14.4706 14.7183 14.6634 
Deviation 

Average 
Worst 10.1177 11.1543 11.5049 9.6526 
Deviation 

Fig 3.14 Table of results for the IK to Bezier cubic conversion algorithm 

using PC, CN, and DV combination. 

The results tabulated in Fig 3.14 when compared with those of Fig 3.9 show that 

it takes slightly longer for a solution to be realised; otherwise, there is little to 

choose from both set of results. This appears to indicate that the form of 

parametrisation (whether based on arc or chord length) does not effect the nature 

of the captured outline. Although this is valid in this case, for more diverse 

circumstances such as a high curvature contour (described in terms of a few data 

points), the results would have been drastically different (see [MANN 74]). In 

other words, the'S' character (like all IKARUS fonts) is IK defined such that 

between two adjacent curve points the curvature does not vary significantly. This 

leads to the fact that any difference between the tj values gained through the 

normalised chord length approach and, those acquired via the circular arcs, occurs 

only in the third decimal place. As the recorded results of Fig 3.13 show, this 

does not profoundly alter the solution parameters. 

In order to summarise the many observations achieved through utilising the 

various conversion combinations, Fig 3.15 lists these with regards to possible 
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design specifications. Dearly, the tabulated results are in a form which would 

assist a designer in using a particular IK to Bezier algorithm. 

Design Parameter Number of help Conversion 
Specification Value points combination 

Employs Least 13 arcs HP3 All 
Number of Arcs 

Returns the 65.4 CPU HPI PA,CN,DV 
Fastest seconds 

Conversion rate 

Uses the 289 HP3 PC,CN,DV 
minimum amount iterations 

of iterations 

Exhibits the least 14.0847 HP2 PA,CN,DN 
IK to curve units 

deviation 

Yields the closest 9.6526 units HP4 PA,CA,DV 
fit to given IK per arc 

points (average) 

Utilises the most 15 arcs HPI and HP4 All 
number of arcs 

Takes the longest 239.3 CPU HP4 PA,CN,DN 
time for a seconds 
conversion 

Requires the 449 HPI PA,CN,DN 
greatest number iterations 

of iterations 

Produces the 11.5049 HP3 PC,CN,DV 
largest IK to units per arc 

curve deviation (average) 

Fig 3.15 lists the acquired observations in terms of 

possible design specifications. 

With respect to the lKARUS requirements, discussed in section 3.3, it is apparent 

from Fig 3.15 that the most suitable conversion algorithm needs to employ the 

PA, CN, and DV procedures. This will ensure, depending on the number of help 

points used, a Bezier description which has the fastest rate of conversion and 

applies the minimum number of cubic splines. 

3.0 Capture by Bezier Splines page 53 



3.5 Capture by Non-Parametric Form 

In the previous section, the capturing algorithm employed a (non-rational) 

parametric form to model the given set of IK data points. Although this tends to 

be an acceptable way of gaining a Bezier cubic representation, working with a 

parametric variable ti adds, as implied in section 3.4.3, to the computation costs. 

In addition, the iterative nature of the parametric approach (updating control 

positions and ti values until a desired solution is gained) burdens further the rate 

of conversion. As an alternative to this approach, a method which incorporates 

the non-parametric form for the Bezier cubic is developed in this section. 

The basic attraction of the non-parametric approach is that for a given set of data 

points, the control points are only evaluated once. The resulting Bezier spline 

would yield the "best" model for the data points. If it is found that the curve-to­

point deviation is above a desired tolerance then the given IK points are 

subdivided and represented by two Bezier arcs. 

In the following sections, the process of converting the non-rational parametric 

form for the Bezier cubic curve to the corresponding non-parametric is looked 

at: After an introduction, the process is utilised to produce a non-parametric 

representation for the Bezier cubic spline. The way this new form could be 

employed to capture mathematically the given IK points is also discussed. 

Finally, an ill-condition is highlighted which limits the application of the 

developed form. Possible solutions and consequences are presented through an 

illustrative example. 

3.5.1 Introduction to the Form 

A non-parametric formation can either be expressed as explicit or implicit. The 

explicit case takes the form y=f(x). In this form, there exists only one y value for 

each given x value. For this reason, multi-valued curves (such as loops) cannot 

be represented by the explicit form. This limitation can be overcomed by 

employing the implicit form, which is expressed as ftx,y)=O. Although this 
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involves the calculation of roots to determine a point on a describing curve, it 

does provide a convenient way of evaluating whether a given point lies on a 

curve. Furthermore, the task of finding intersections, between curves and lines (a 

common requirement in the field of computer animation and graphics) can be 

simplified if implicit forms are available. 

The process of transforming a parametric description into an implicit form is 

called implicitisation (and the process in reverse is termed inversion). Recent 

contributions to this field have been made by Sederberg: Some of the benefits of 

employing algebraic forms in describing curves and surfaces are given in [SEDE 

83, 87]. He makes the point of utilising the implicit form as a tool for the 

Computer-Aided-Geometric-Design field. Together with Anderson, Sederberg 

elaborates on the way parametrically described curves and surfaces might be 

transformed into an implicit form [SEDE 84]. An example of converting the 

parametric form of a quadratic curve (ie a parabola) is given. An interesting 

article on the techniques of implicitisation and inversion with reference to rational 

cubic curves can be found in [SEDE 85]. An implicit representation which assists 

in locating double points of cubics is developed. (Double points are discussed in 

section 3.6.3). 

The next section provides a derivation of an implicit representation for the non­

rational parametrically describe Bezier cubic curve. Having produced this, a new 

(compact) implicit form is developed which yields a better insight to the 

geometrical nature of the defining Bezier polygon. 

3.5.2 Process of Implicitisation 

The mechanism for performing implicitisation makes use of elimination theory: 

The polynomials in t (parametric variable) are represented by a single equation 

f(x,y)=O, which is a polynomial in x and y. For the cubic case, the implicit 

equation, generally, consists of ten terms. However, with the application of 

scaling, there are in practice nine coefficients that need to be solved. 
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The first step in implicitisation is to formulate the parametric expression as a 

polynomial in t. That is, we require to translate the Bezier cubic expression given 

in equation (3.3) to the form used by Ferguson as in equation (3.1). By 

performing this translation, the coefficient vectors (ao to aJ can be expressed in 

terms of the Bezier positional vectors (Po to P3) as: 

ao = Po ' 
a l = 3(Pl - Po ) , 
a2 = 3(P2 - 2Pl + Po ) , and 

a3 = P 3 - 3P 2 + 3P 1 - Po . . .. (3.11) 

To simplify the terms of equation (3.11), the Bezier curve can be translated such 

that its starting knot is at the origin (ie Po=O). This will mean that the resulting 

values for the control points are gained with reference to this origin. The 

expressions for the parametric functions x(t) and yet) describing the Bezier curve 

then take the form: 

x(t) = ax
l 

t + ax
2 

t2 + ax
3 

t 3 
, 

yet) = ayl t + ay2 t2 + ay3 t3 
, 

where: ax!, ayl' ~, ay2' ~ and ay3 are the 

respective (translated) x and y components 

of the al , ~ and a3 vectors expressed in 

equation (3.11). 

... (3.12) 

Having prepared the parametric equations, as in (3.12), the following 

transformation determinant (see [SEDE 87] for a general description) is then 

established: 

ax3 ax2 axl -x. 0 0 
I 

ay3 ay2 ayl -yj 0 0 

0 ax3 ~ axl -x. 0 
I 

= 0 . f(xj,y) = 
0 ay3 ay2 ayl -yj 0 

0 0 ax3 ax2 axl -x 
I 

0 0 ay3 ay2 ayl -Yj 
... (3.13) 
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Computing the detenninant given in equation (3.13) yields the following implicit 

fonn for the Bezier cubic: 

where: 
WI = W I2 - W I3 ' 

w 2 = WI3 - W 23 ' 

W3 = wxYj - WyXj - W I2 ' 

w4 = wxYj - WyXj - W I3 ' 

Ws = 3(Xz - 2xI )Yj - 30'2 - 2y1)xj , 
= (x3 - 3xI )Yj - 0'3 - 3yl )x; , 
= 90'IX2 - XIY2) , 

= 30'IX3 - XIY3) , 
= 30'2X3 - XzY3) , 
= X3 - 3x2 + 3xI ' 

Wy = Y3 - 3Y2 + 3YI . 

... (3.14) 

(It is worth noting that if all the W tenns are substituted in f(x;,y) then a factor 

of (wl-wz) emerges. Dividing equation (3.14) by this factor, therefore, simplifies 

the implicit equation for the Bezier cubic; a fact which is used to gain equation 

(3.16» 

By examining the nature of the tenns employed in equation (3.14), it is apparent 

that the coefficients of the implicit fonn can be computed from the coefficients 

of the parametric expressions by only using the arithmetic operators of addition, 

multiplication and subtraction. This, thus, ensures that the process of conversion 

is perfonned in exact integer arithmetic, with no numerical errors being 

introduced. 

As mentioned earlier, the implicit fonn (as of equation (3.14» can be used to 

compute whether a given data point (xj,y) lies on the defining curve. If it does, 

then f(xj,y;) will equal zero; otherwise f(x;,y) will return a non-zero value. The 

size of this residue gives an indication of how far the given data point is from 
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the curve. (This feature is made use of in chapter four for the general quadratic 

case where it is employed to return the curve-to-point deviation). 

To calculate the "best-fitting" Bezier spline for a given set of data points (xi,y), 

values for the two respective control points are required that will result in 

equation (3.14) returning the smallest residue values for each data point. In other 

11 

words, we need values for the control points that make L f(xi,yi a minimum. 
i-l 

Rather than solving for the four unknowns (ie Xl' Yl' Xz and Y2)' the problem is 

reduced to finding solutions for two unknowns: With similarity to the parametric 

case (see section 3.4.2), the given tangents at the two knot points are used to set­

up an implicit equation in terms of control lengths rather than control points. As 

illustrated in Fig 3.16, this then reduces the problem to finding the "best" values 

for the control parameters rand s. The control points for the Bezier cubic curve 

in terms of r and s can then be expressed as: 

Xl = ru , 

Yl = rv , 
x2 = X3 - s(x3 - u) , 

Y2 = Y3 - S(Y3-V) . 

(u,v) 

r" 

r 

.......... 

Po(O,O) 

... (3.15) 

". 

. ... 

Fig 3.16 Depicts the role of the two control parameters, r and s. 
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The control parameters are nonnalised with respect to the intersection point (u,v) 

of their tangents. This results in them ranging from zero to one up to (and 

including) the intersection point. Within this range (see section 5.4.3 for 

illustrative examples), elliptic, parabolic and hyperbolic curve shapes can be 

produced. Taking values for both r and s beyond the intersection point will result 

in extreme hyperbolas, two inflection point curves, cusps and loops being 

generated. When one of these parameters has negative values with respect to the 

other, a Bezier curve containing one inflection point will result. 

In order to work with the control parameters, the implicit equation for the Bezier 

curve is transfonned to work with rand s rather than with the control points (Xl' 

YI' and ~,y:J. In undertaking this, it is found that the resulting (new) implicit 

fonn is more compact (than equation (3.14)) and, more importantly, it expresses 

the control parameters explicitly so that a better acquisition of the mathematical 

fonn in relation to the resulting Bezier curve can be made. If we denote ej as the 

new implicit fonn which returns the residue for a given set of IK data points 

(xj,Yj), then it can be shown that this takes the form: 

e. :::: X3 + A [3~ ~.r2 - ~23(1-S) - 3~.r2(A-~3)] 
I I I I 

- Jl [~(2-r-2s) + ~j(s-r)] , 

where: 

X :::: 2~3 (2-3s) + 6~j(s-r) , 

A :::: 72~(3s-3s2-r) , 
Jl :::: 216~ ~;Cs-r)2 , 

... (3.16) 

The condition for r and s to acquire "best" values is then achieved through 

minimising the respective residues for the IK points. This is gained when: 
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II dee? 
L d; = 0 , and 
i-O 

II dee? L I = O. 
i-O dS ... (3.17) 

Having perfonned and organised the expressions as required by equation (3.17). 

we are then in a position to solve for the two unknowns. As the resulting tenns 

are non-linear in both r and s, a software routine which returns the roots of the 

non-linear expressions is needed. For this purpose, a standard NAG routine such 

as (coded) C05NBF, which applies a technique developed by Powell [PO WE 70], 

is used. 

3.5.3 Analysis and Observations 

If an attempt is made to gain the "best" values for the control points using the 

approach described in the previous section, it will be found that the algorithm 

converges to different solutions depending on the starting values for r and s. This 

might be as expected, but for the fact that even for seemingly simple data, the 

solutions which are converged to tend to be out of range. Only after further 

investigations and tests with some experimental data, did it become apparent that 

the reasons the algorithm is "mis-behaving" should have been obvious all along. 

"though it never is": 

The problem lies with the implicit fonn for the Bezier cubic curve. Although it 

is not obvious looking at equation (3.14), the compact fonn as given by equation 

(3.16) highlights an ill-condition for, when r = S = 2{3, the corresponding 

variables X, A and J.l (of equation (3.16)) all become zero. This makes the entire 

expression, and thus the residue ei , zero as well; implying therefore that a 

solution exists for this case. As chapter five (section 5.4.1) demonstrates, the 

resulting Bezier curve for r = S = 2/3 is a parabolic arc. The first conclusion 

which can be made, therefore, is that the implicit fonn for the Bezier cubic 

cannot represent the quadratic case of a parabolic curve. 
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The consequence of this ill-condition are rather severe. These are not just limited 

to the parabolic case, but affect all approximations which employ the implicit 

form. This is illustrated through an example: Given a Bezier polygonal 

(triangular) set-up as shown in Fig 3.17, a solution is desired that passes through 

the two knot points «0,0) and (28,17) respectively) and approximates (or even 

inteIpolates) the two curve points, (9,7) and (19,13). It is expected, in this case, 

that the "best" values for both r and s will be positive. 

(0,0) 

s 
(10,14) __ -~ 

r - - - (19,13)./ 
I 1/" 

,1 ./ 
I /' 

I 

r /' (9,7) ././ 

,/ 

/' 

./ 

1/ 
,,/ 

(28,17) 

Fig 3.17 Shows the Bezier framework required for 

the given set of four data points. 

If we trace-out the locus of the minimum values for the residue (e;) for the two 

given curve points (as r and s are stepped from -0.6 through to 1.0), a graph 

similar to that shown in Fig 3.18 will result. Curves A and B provide the actual 

respective solutions; whilst curves C and D are due to the ill-condition and, 

therefore, amount to unwanted respective solutions. If a point on curve A is 

chosen, for example, this would ensure that the resulting Bezier curve will pass 

through the data point (9,7). Choosing a point on curve B, will guarantee the 

Bezier curve inteIpolates the given point (19,13). 

3.0 Capture by Bezier Splines page 61 



s 

-- -- -- ------------

------- ----~~ --- curve A - - o . ..g-- - -- curve C-------~------- ____ -:--_~ __ _ 

~0.., / '" A~""~~... -- _______________________ '~ __ ------~~-_x~~~-. ~~h _u -------.-

..... /" ,b . " ~, -------- - - '---- -- ------------

-------------------- - ~~.--J_ -j/~--------------- _~ __ -- - " ,!' i'" ' 

-~.................. __ ~ _,L~ ___ ___ ~~__ - ----\~------------
-------. - -- - --T-~ ... ·-'--.< /h '1~ - --------- --- -;\- --
---------- curveB--:----- -- -{). --...... -' -~------:-- -9 ~ 

- - uu f --/!:~-, ~~,,- - u __ -.: ____________ H /~ t--. -: --.-
----, -,------- ""_a _-- j-:- --- --------- ---- ----------- - t.~- 1- -~~-_ ---: ---;,i'L' ;:..,.------

-------------1 - ~I _n -------- \ ,,- d: -: .,t' oL:-:'\:-
----------------- ---,Cf---,-u _d ____ .u --------- ',:-':, .. r~- _---,£--_-.. curveD--

. - . \ill ., - .-. __________ . _______ /-__ 1 __________________ - ~ "i{ r ~~ _-....:...: --.::---~: _~ 
-0." -0." -0.2. ,- 0.1 - - o.~, -_~ 0.' __ ~~$_ - r 

-------,----.----- --

f­
--f-- --- -..a.$-

Fig 3.18 Highlights areas of minimum residue (potential 

solutions) for the given set of data points. 
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If we decide to select a point from curves C or D, this will result in the 

intetpolation of the respective given data point, but not in the manner nor by the 

expected shape of the Bezier curve. Developing this subject matter a little further 

by requiring that the resulting Bezier arc intetpOlates the two given curve points, 

it is found that there are eight possible combinations for r and s that can be 

interpreted as a solution. These occur where the curves of point (9,7), A and C, 

intersect with the curves of data point (19,13), B and D. The eight possibilities 

are indicated in Fig 3.18, and the resulting solution values are tabled in Fig 3.19. 

The desired solution is found to be where curves A and B intersect; the 

remaining intetpolate the data points, but not with the expected Bezier curve 

shape. 

IK to Bezier Respective Values for 
cubic (non the Control Parameters 

parametric) 

Solution r s 
Number 

a 0.2696328 0.2799311 

b 0.6666667 0.6666667 

c 0.1172791 0.4562553 

d 0.4793482 0.1193226 

e -0.2181235 -0.2285905 

f -0.1208993 -0.1281465 

g 0.4362405 -0.0007040 

h 0.0094888 0.4170311 

Fig 3.19 Lists the numeric values for the eight possible 

solutions returned by the non-parametric Bezier 

algorithm, for two given data points. 
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Fig 3.20 Gives an illustration (with reference to Fig 3.19) of 

how the eight solutions capture the given set of data points. 
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In Fig 3.20, a graphical illustration of the shapes listed in the table of Fig 3.19 

is given. It is apparent from this that the shape of the Bezier curve depends 

directly on which of the solutions are converged to. If, for example, we look at 

the intersection points of curve A with curve C (Fig 3.20c and 3.20g), it is 

observed that the resulting Bezier curve (as expected) goes through the point 

(9,7), but interpolates the data point (19,13) either with very large negative or 

positive values for the parametric variable (that is, for t«O or t» 1). Comparing 

the graph of Fig 3.18 with the corresponding shapes for the Bezier curve given 

in Fig 3.20, it is possible to gain some insight into the form of the Bezier curve 

from the location of the various solutions. With reference to Fig 3.21, the shape 

of the possible solutions can be summarised as follows: 

a) The desired solution is found at (1), where the given data is 

interpolated for parametric range O<t<l , 

b) A solution at (2) will mean that the curve will pass through 

one of the points between O<t< 1 and interpolate the other for 

t<<O , 

c) A solution at (3) will result in the Bezier curve passing 

through one of the points for O<t< 1 and interpolating the 

other for t»1 , and 

d) A solution at (4) will interpolate one of the data points 

for t«O and the other for t»1. 

It is clear from the detailed analysis presented, that if we wanted to employ the 

implicit form for the Bezier cubic, the initial approximation for rand s needs to 

be quite near the final solution for an acceptable outcome. Possible initial values 

could be constrained to lie between the unwanted solutions, as in (1) in Fig 3.21. 

This will only cater for shapes that can be termed elliptic. Other shapes such as 

hyperbolic will normally require that rand s be greater than 2/3, implying that 

if the initial values are similar to the elliptic case then we are bound to get an 
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unwanted solution. As an alternative, the given set of data points could initially 

be described in tenns of a general quadratic fonn in order to quantify the given 

outline, but this will limit the flexibility of the Bezier deSCription to representing 

outlines which do not possess points of inflections. 

s 
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Fig 3.21 Highlights four areas of potential solutions. 

In passing, it should be pointed out that this unwanted behaviour of the 

conversion algorithm is avoided if the two control parameters are constrained to 

be the same. This means that r and s take on similar values, resulting in the 

Bezier cubic being able to represent only conic-like shapes (see [PITI 91], a 

paper written by Pitteway and myself). Although this assists in that the 

conversion process is no longer inhibited by the parabolic ill condition, gaining 

a Bezier description which can only represent conic shapes is rather 

unsatisfactory. If the cubic spline is to be limited in such a manner, then clearly 

an approach which gives a Bezier cubic description through the general conic 
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could be employed (see section 5.4, where algorithms for converting general 

conic to Bezier cubic are presented). This at least has the advantage of removing 

some of the non-linearities encountered in the above approach. 

Finally, it needs to be emphasised that the ideal solution to the problem is to 

develop an implicit form for the non-rational Bezier spline that does not contain 

the ill-condition. The approach discussed in this section gives a basis for such 

implementation. It requires further development to remove and/or limit the effects 

of the unwanted parabolic solutions. 

3.6 Displaying Cubic Arcs 

Thus far, most of the discussion has concerned itself to the process of capturing 

the given IK data points in an acceptable Bezier cubic form. Some general 

remarks in section 2.4.4 were made regarding the aspect of displaying contours 

of outlines. In this section, the case of representing Bezier cubic arcs on a digital 

display is examined. The aim is to have a working algorithm that could be 

employed in the IKARUS system. Discussion is confmed to analysing two 

approaches, one based on the parametric form and the other on the non­

parametric form. In each case, an algorithm is developed whose performance is 

analysed through given examples. A condition where the non-parametric 

algorithm "misfires" is highlighted, and possible solutions discussed. 

In the next section, the parametric algorithm is presented. The non-parametric 

algorithm is discussed in section 3.6.2. 

3.6.1 Parametric Algorithm 

The parametric form has, as part of its characteristics, the ability to return a curve 

point (x(tj),y(tj» for a given tj value. An outline could simply be generated by 

computing the curve points for various values of tj ranging from zero to one. This 

approach will not suffice as different types of outlines will require a different 

amount of curve points. For example, a low curvature outline (one approaching 

a straight line) will require few curve points, whilst on the other extreme, a high 
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curvature curve (such as a semi-circle whose governing radius is relatively small) 

will require a large number of curve points so that its accurately displayed. 

Deciding on the precise number of curve points forms the bases of most of the 

techniques that are used: Pavlidis [PA VL 82] conjectures about employing a 

curvature dependent approach. He also discusses the effects of rounding errors 

that occur when translating the curve points, returned by the parametric variable, 

into integer (grid) values. Mortenson [MORT 89] proposes the use of line 

segments to approximate the curved outline. Again, how many lines to use is the 

critical choice. He suggests the amount of lines employed should be based on the 

relative change in slopes. This further emphasises the point that an approach 

which adapts to the changing nature of the given contours is required. 

The technique which is presented here is based on representing the given curve 

outline in terms of line segments. These lines are then drawn (ie rasterised) by 

an algorithm pioneered by Bresenham [BRES 65]. The characteristics of the 

polygon defining the Bezier arc are incorporated in the rasterisation process. The 

number of lines employed is based on a distance criterion. The algorithm in 

detail is as follows: 

To convert the curved outline into line segments, the process of subdivision is 

used on a recursive basis. Subdivision has been introduced in section 2.2.3. It 

was originally looked at by De Castaljau. He formulated a scheme for the 

defining polygon which used repeated linear interpolation to return (Bezier) curve 

points. These principles are applied (and those of more recent authors such as 

[CORE 80, PA VL 82 and Y AMA 88]) to develop a subdivision algorithm. Fig 

3.22 illustrates the technique. By using this geometric set-up, it can be shown 

(see the above cited references) that for a given parametric variable value for 

splitting t." the following expressions for the resulting two Bezier arcs can be 

derived: 
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=P +t(P -P) 
2 3 3 2' 

P 2 I I I 
2 = PI + ta (P2 - PI ) , 

P 2 I I I 
3 = P2 + t3 (P3 - P2 ) , 

P3 p2 2 2 
3 = 2 + ta (P3 - P2 ) , 

where: P I 2 3 
0' PI' P2 , P3 fonns 1st half of Bezier arc, 

pI 
I 

3 3 3 
P 3 , P 2 , PI' P 3 fonns 2nd half of Bezier arc . 

..... ..... 

P 2 ... ········ .... ~33 
2 ... ::: .. -::-.................•.......... 

Fig 3.22 Illustrates De Casteljau's algorithm for 

subdividing a Bezier cubic spline. 

... (3.18) 

It is apparent from equation (3.18), that the value of ta can be chosen (ranging 

between zero and one) to split the defining curve at a desired point The strategy, 

which the rasterising algorithm incorporates, is bisecting the Bezier curve at its 

mid-point (ta=0.5). This process is repeated on a recursive basis (as and when 

necessary) until a desired approximation of the curve outline is achieved using 

line segments. 
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In order to have some control over the number of line segments being employed, 

a mechanism for determining when a desired approximation has been achieved 

needs to be developed. For this purpose, the polygonal set-up of the Bezier curve 

is used. The convex hull property of Bezier curves ensures that the generated arc 

always lies (for the parametric interval zero to one) within its defining polygon. 

It is, therefore, reasonable to assume that if the two control points of the Bezier 

curve are within a desired distance from the approximating line segment, then an 

acceptable fit has been gained. The main benefit offered by this approach is that 

it is relatively simple, but effective, and does not computationally burden the 

rasterisation process. 

Although the performance of this algorithm is assessed together with that of the 

implicit approach (described in the next section), it is worth noting the fact that 

subdividing the curve into line segments results in non-integer knot positions. 

The algorithm is, therefore, liable to rounding error effects. Furthermore, the 

continuity between adjacent line segments is of zero order, that is, they are 

constrained only to touch each other. The consequence of these factors are 

analysed in section 3.6.3. 

3.6.2 Implicit Algorithm 

The approach described in the last section provides a solution to the problem of 

digiti sing an outline modelled by Bezier cubic arcs. The use of non-integer knot 

points (as mentioned) can lead itself to the effects of rounding errors. An 

algorithm is, therefore, required which will "track" the curve, returning the "best" 

pixel (integer) positions along the curve's outline. In this section, such an 

algorithm is developed that uses the implicit form to describe the defining Bezier 

cubic spline [HUSS 91]. The algorithm initially calculates the coefficient values 

for the nine (implicit) terms and then rasterises the curve outline based on similar 

principles as those employed by Bresenham for the case of digiti sing line 

segments [BRES 65]. The method in detail is as follows: 
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It is accepted that Bresenham's algorithm fonns the best approach for drawing 

straight line segments of arbitrary gradients. The basis of this technique is to 

choose the closest mesh-point (ie pixel) to the line being generated. Pitteway 

applied the principles of this technique to develop algorithms to cater for 

rasterising outlines described by general quadratic splines [pITT 67, PITT 85]. 

He together with Botting, extended the approach to cater for cubic splines [BOTT 

68]. Their algorithm at each stage chooses either to make a square-move or a 

diagonal move. By a square-move, it is understood that either the x or the y 

position is stepped by one; a diagonal-move requires both the x and y positions 

to be incremented by one. The algorithm is geared to work with eight octants. 

The quest for an effective rasterising algorithm for the cubic curve is re­

addressed in this section. In order to reduce some of the computational 

overheads, the algorithm presented here works with four quadrants rather than the 

eight octants. Furthermore, by making square-moves only, the algorithm ensures 

that all the pixels intersected by the Bezier cubic curve are visited. 

In line with the implicit forms used by both Bresenham and Pitteway, the Bezier 

cubic curve can be expressed as follows: 

d(x,y) == k + 2vx - 2uy - ay2 - ~X2 - 2yxy 
rx3 sy3 

- _ - _ - pX7 - qxy2 == 0 . 
3 3 

... (3.19) 

The coefficients of equation (3.19) can be found from either of the two implicit 

forms given by equations (3.14) and (3.16). Appendix A3.1 gives the expressions 

for the coefficients in terms of equation (3.14). 

The concept of the rasterising algorithm can be summarised as follows: If we 

denote the current (pen) position as i and j respectively, then the value of d (of 

equation (3.19)) is evaluated at the mid-point of the next possible square-move, 

that is at i+~ and j+~ . If d < 0 at this point the curve passes below, and a x­

step is called for; otherwise d > 0 so that the curve passes above, and therefore 

a y-step is required. If, in the rare case, d(i+~J+~) happens to be zero, then 

either move will suffice. 
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Incorporating these basic concepts results in the working algorithm shown in Fig 

3.23. As is apparent from this, the algorithm includes two further tests that enable 

it to track cubic cUlves which might require quadrant changes. The two tests, 

therefore, detect and take appropriate action to ensure that the algorithm 

continues to follow the contours of the given outline. If we take the example of 

a circle with its four extreme points (top, bottom, left and right), then the "a-test" 

detects the left and right occurrences; whilst the "b-test" caters for the top and 

bottom incidents (for a detailed discussion see [PITT 85]). 

The cubic algorithm in its inner (main) loop requires just six add operations for 

each x or y move. The code for a quadrant change is made modest by carefully 

choosing (as shown in Fig 3.23) the place where it re-joins the main loop. The 

algorithm is geared to stop when the end knot positions (for a given Bezier cubic 

curve) have been reached. It can be seen that as a whole the algorithm has the 

attraction of employing simple algebra which should make it computationally 

efficient. 

The initial conditions for the algorithm can be gained by means of finite 

differences. It can be shown that for the Bezier cubic case, these can be 

expressed as follows: 

Ll = 2r , 
L2 = 2p , 
L3 = 2q , 
L4 = 2s , 
Kl = 2~ - r + p , 
K2 = 2y , 
K3 = 2a - s + q , 

a = 2u + Y + ~ + p , 
12 4 
r q 

b = 2v - Y - - - - , 
12 4 

d=k-!!:" - ~ +1 
442 
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START 

Initial Conditions 

yes Is 
no 

d<O 

Is 
yes 

yes 

Change sign: 

d, b, K I , L 1, L3, Ystep 

K3 = -K3 -L4 K 1 = -K 1 -Ll 

l 1 
CD 

K.:----- CD 
K 1 = K 1 + L2 

d=d+b d=d-a 

no 

Finished 

STOP 

Fig 3.23 Depicts the rasterisation algorithm for the Bezier 

cubic, which pennits square-moves only. 

As mention in section 3.5.3, the implicit fonn of the Bezier cubic curve (as given 

by equation (3.16)) does not cater for the parabolic case. This, therefore, requires 
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detection before attempting to use the cubic rasterising algorithm. If, and when, 

a parabolic arc is detected then the cubic terms p, q, r and s need to be set to 

zero, and the values for u, v, a, ~ and 'Y will require calculation. The control 

point for the parabolic (ie u and v) can be gained via the tangents at the two knot 

points, and the other three variables by using the relevant expressions of equation 

(4.4) of section 4.2.3. Once these have been evaluated then the cubic rasterising 

algorithm can be employed. (Note: The general conic rasterising algorithm of Fig 

4.9, section 4.4, could be used to gain exactly the same results). 

Finally, it should be realised that the cubic rasterising algorithm is developed in­

view of the demand for representing outlines of font characters. These, on 

average, use Bezier curves that are slow-moving (low curvature), and which 

normally do not employ sharp-cornered arcs that might lead to the cubic 

algorithm getting "confused" and losing its way. The algorithm, as given, forms 

the basis of rasterising cubic outlines, and as will be highlighted in the next 

section, requires further development for it to be commercially viable. 

3.6.3 Analysis and Observations 

To assess the performance of the two rasterising algorithms presented in the 

previous two sections, various curve shapes (generated using a Bezier cubic 

polygonal framework) are supplied as input. The effectiveness of each algorithm 

is evaluated in terms of the amount of (CPU) time consumed and, probably more 

importantly, the way the distinct features (smoothness and curvature) are digitally 

represented. A problem case for the implicit (tracking) algorithm is highlighted. 

A novel method for detecting such occurrences is presented, and possible ways 

of solving the problem are discussed. 

Before discussing the results, it is worth noting that these were produced using 

a SUN 3/50 workstation, with a screen resolution of 900 by 1152 pixels. The 

corresponding hard-copies were obtained by means of a screen-to-postscript 

(suntops) routine, making the screen output suitable for a (APPLE) laser printer. 

The point to realise is that the laser printer exhibits a resolution which is about 
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three times greater than the screen display. This has a "damping" effect, 

therefore, on the respective hard-copies of the rasterised outlines. 

The digitised outlines using the parametric (line) approach are depicted in Fig 

3.24. These are produced using a control point to line tolerance (as discussed in 

section 3.6.1) of 0.1 units. This value appears to be most suitable in tenns of 

conversion rate and effectiveness. The corresponding implicit (track) algorithm's 

performance is shown in Fig 3.25. 

a) 
b) 

d) 

c) 

Fig 3.24 Shows given outlines digitised by the parametric (line) algorithm: 

a) an elliptic curve, b) a hyperbolic arc, c) a "circular" CUIve, and 

d) an arc containing an inflection point. 
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a) 

c) d) 

Fig 3.25 Depicts the rasterised output returned by the implicit (track) 

algorithm for the respective cases of Fig 3.24. 

Comparing the two outputs, it is evident that the tracking approach, as far as 

representation is concerned, perfonns much better than the line method: The 

elliptic and hyperbolic arcs (Fig 3.24a and 3.24b respectively) show an apparent 

"uneasiness" of the parametric algorithm to render curves of both low and high 

curvature. This is highly visible when the hyperbolic output of Fig 3.24b is 

compared with that of Fig 3.25b. The implicit approach yields a "digitally 

smooth" outline, whilst the same Bezier curve appears much more rugged in the 

case of the line algorithm. Figs 3.24c and 3.24d (together with their counterparts 

of Fig 3.25) illustrate the efficiency of the algorithms in representing Bezier 

curves which are circular in appearance and, those containing a point of 

3.0 Capture by Bezier Splines page 76 



inflection. Clearly, both approaches are able to rasterise these types of arcs, the 

track method, again, producing the most aesthetically acceptable output. 

As far as conversion rates are concerned, Fig 3.26 lists the CPU times consumed 

by each of the examples depicted in Figs 3.24 and 3.25. Also tabulated are the 

number of line segments used by the parametric algorithm. 

Respective 
curve of Fig 
3.24 & 3.25 

a 

b 

c 

d 

Implicit Algorithm Parametric Algorithm 

Conversion rate Conversion rate 
CPU seconds CPU seconds 

28.9 28.9 

29.2 29.0 

28.9 29.5 

29.4 29.3 

Fig 3.26 Table of results for the two Bezier 

cubic rasterisation algorithms. 

Number of 
line segments 

42 

50 

74 

52 

The obselVations recorded in Fig 3.26 clearly show that both approaches utilise, 

on average, similar conversion times. This verifies the fact, therefore, that for the 

parametric algorithm a distance of 0.1 units between the Bezier control points 

and the approximating line leads to conversion rates which are comparable to the 

implicit approach. Changing the distance value will alter both the speed of 

conversion and, also, the number of line segments employed. Although more line 

segments results in a closer approximation, it does not, necessarily, improve the 

appearance of the rasterised outline. As mentioned earlier, rounding errors make 

the digitised contour look rather coarse. For this reason, the tracking algorithm 

tends to be more acceptable, as it chooses the nearest mesh-point to the actual 

cUlVe. 

Although the implicit approach appears to be ideally suited for rasterising Bezier 

cubic arcs, it tends to get "lost" for what seems to be (as far as the Bezier 
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polygonal framework is concerned) a simple, straight forward, looking curve. The 

problem is illustrated through the example shown in Fig 3.27: Given the elliptic 

looking arc of Fig 3.27a, the algorithm starts following the curve in the direction 

of A. At a point C, it gets "confused" and loops back to give the illustration of 

Fig 3.27b. If the start and end knots are reversed, so that the algorithm now 

follows the direction of B, it again loses its way at point C. Fig 3.27c depicts this 

situation graphically. A closer examination of the cubic curve (Fig 3.27d) shows 

that this contains a self-intersecting point (point C, called a crunode in the field 

of mathematics). The algorithm, as given in section 3.6.2, fails to track the given 

Bezier curve properly, and performs an unwanted quadrant change at point C, 

resulting in the two cases shown in Fig 3.2Th and 3.27c. 

The reason for this failure can be easily understood: It is well known that a 

general cubic equation in an unknown in x has at least one and at most three real 

roots [PATI 88]. It follows, therefore, that the cubic curve in x and y described 

by equation (3.16) will cross any given straight line either once, or three times. 

The relevant straight line here extends from the start knot and finishes at the end 

knot (ie the baseline of the Bezier polygon). The cubic is known to cross this line 

at both knot points, so there has to be a third crossing. This, as shown in Fig 

3.27d, occurs at a relative distance tc measured along the baseline, where: 

... (3.20) 

In the case shown in Fig 3.27d, r=0.19444, s=0.58333, so tc=0.34374. Any values 

of tc ranging between zero and one will result in the third crossing of the baseline 

confusing the cubic, in the manner described above. 
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Fig 3.27 Gives an example of how the tracking algorithm gets 

confused and subsequently loses control at point C: 

a) the given arc, 

b) following direction of A, 

c) following direction of B, and 

d) shows that at point C, the cubic self-intersects. 
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To use the implicit algorithm of Fig 3.23, it is necessary, therefore, to scan all 

the given Bezier described outlines in order to detect (by using equation (3.20)) 

whether any arcs will confuse the tracking process. If such an arc exists, then the 

following possible remedies are available: The first consists of making small 

adjustments to rand s until the third crossing point occurs outside the hannful 

range for te of one and zero. This approach, however, leads to an iterative process 

for fmding suitable values for the control parameters. Furthermore, as Fig 3.28 

manifests, unless the r and s values are close to the unshaded (safe) areas, 

considerable adjustments have to be made to the values of either r, or s, or both; 

resulting in the Bezier spline changing its shape. 

t~ 0, r 3s(1 _~ _:~ -~~_~----~~::~~~~_/:) _ 
:L - -

" : --
--' -

:: -- ; : : ~-:::- ~--ft::::-~ :: ~ _ : _ :~_< ::: : t < 0 - / - ... 

3r (1 r) 

Fig 3.28 Illustrates safe areas (shown unshaded) for the implicit 

rasterisation algorithm, based on equation (3.20). 

3.0 Capture by Bezier Splines page 80 



The second solution involves the employment of the line algorithm. This has the 

advantage of rasterising Bezier arcs based on the defining polygon. Any 

"troublesome" arcs could, therefore, be handled by the line algorithm. 

The third, and probably the best, approach consists of subdividing the given 

Bezier curve at its self-intersecting point. By taking this point as a (new) knot 

point, the resulting two arcs will not contain any self-intersecting points within 

their respective parametric intervals, removing, therefore, the likely state of 

confusion for the rasterising algorithm. The calculation of the two values for the 

parametric variable which give the same curve point (double point), t
d

, can be 

made through the following expression developed by Pitteway and myself [pITT 

91]: 

t = r(3s-2) ± V3rs(3rs-4r-4s+4) 
d 2(3rs-r-s) 

... (3.21) 

By choosing the value of td which lies between zero and one, it is possible to 

subdivide the supplied Bezier curve into two arcs. As this will effectively change 

the double point into a knot point, the algorithm would then be in a better 

position to perform the rasterisation without getting lost. 

A closer examination of equation (3.21), in fact, leads to further classification of 

the type and form of the self-intersecting cubic. By using the expression 3rs-4r-

4s+4 of equation (3.21), a rectangular hyperbola can be incorporated in the r and 

s graph (of Fig 3.28) to quantify safe areas for the implicit rasterisation 

algorithm. This, as Fig 3.29 shows, has the effect of "fine-tuning" the existing 

boundaries and adding a new (cusp) region to the graph. In other words, the 

graph of Fig 3.29 represents all the possible Bezier cubic shapes, including that 

of the loop (a case not catered for by equation (3.20) as it does not intersect the 

baseline). This fact is verified by Fig 3.30, which depicts the corresponding self­

intersecting cases for the cubic in relation to Fig 3.29. 

In short, both the parametric and the non-parametric approaches can be employed 

to digitise contours, mathematically described by Bezier cubics. The 
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representation returned by the implicit fonn, however, has a number of benefi ts, 

including that of giving a superior rasterisation. Although this approach suffers 

from the self-intersecting property of a cubic spline, it is shown that through a 

simple process of quantification, this problem can be resolved. 

- . --. -- - ... -'- . ---== .. ~ . .J:-.. --:-: .. -:-.:-. ~r.7~'-=,o!,~~~~ 
.... .... .. _. -. .. _- -

. --.-... - - .. - - .. .. -- .-.- -- .-.----~~______J( 

---- .. - . ... - - - '- ----'---------,-,O-x-----'---F'~_¥~"" 
. - - : ="1 .... 

. _----_._---- -=----,----

~V_.~r_.I~~---- - . . -

. - . - --------:---..:......".-:-::::-:::::..:..:.,--'-'---'~~-
. . 

~ -- . . - -:.::...::.: :-~:::...:- ::~:.=.- . 

---:---= : .-:--.....:== =-: :::: ::-. 

--- f) 
-----'--~~~ 

- -- - .-.---Bf----:-:+"' 

- -_. - .. . . - ... ---
- - . - ~ - ---- : :-:~ =- . , . 

Fig 3.29 Highlights safe areas (shown unshaded) for all 

the Bezier cubic CUNe shapes. 

3.0 Capture by Bezier Splines page 82 



-~>« ... ~ 
....... "" / ................. . 

'\ / ............... ,. 
f -'\t.4'''''' 

"'\'" / ""10."""" .... 

a) b) 

e) 

" 

~---- ' 
....... . ........... . -................. ~' 

-.-.. , ... , ..... _ ......... -... . .. ' ...... . 

g) 

.-
.~" -?/-""---- ---~, 

, 

i) 

/ 

,// 
,­

./:' 

c) 

'. 

f) 

/ .............................. -.--.. -.~/ 
. .'----------_.,.,-_.-" 

f} , . 
II: 

{ := 
! .: 
L: 

t 
.. 

j) 

h) 

Fig 3.30 Depicts various shapes for a self-intersecting cubic, based on the 

points marked in Fig 3.29; splitting cases are: 

a), b), d), e), g), h) and j). 
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3.7 Summary 

The primary task of this chapter has been to present the Bezier cubic spline. In 

attempting to achieve this, a detailed discussion of the flexibility and versatility 

offered by Bezier splines is given. Some of the factors and reasons for its 

attraction to designers has also been presented. 

Two approaches for fitting Bezier splines to a given set of constraints are looked 

at. The first employs the parametric form. Its performance is analysed in a 

number of ways, including the introduction of additional curve points and using 

parametrisation based on arc and chord lengths. A non-parametric form for the 

Bezier spline is then developed. Possible benefits resulting from this are 

discussed, and an ill-condition which "haunts" the technique is highlighted. 

Finally, two ways for rasterising the Bezier described outlines are presented. The 

first approach uses a subdivision procedure to approximate the curved outline in 

terms of line segments. These are then rasterised using a method based on 

Bresenham's algorithm. The second approach makes use of the implicit form 

developed for the Bezier spline. It yields the "best" pen (integer) positions. It is 

compared with the first approach. A limiting case in the implicit approach is 

highlighted and suggestions to cater for such occurrences presented. 
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Appendix A3.1 

CoefflCients for equation (3.19) 

In what follows, the 'w' variables are as given by equation (3.14). 

If we let: 
~I = x2-2x1 ' 

X3I = X3 -3xI ' 

Y2I = y2-2YI ' 
Y3I = Y3 -3YI 

Then it can be shown that: 

Hence: 

2 
a = WyCWI-W2)(3Y21-Y31) , 

2 
b = -WX(W1 -w2)(3~1 -X31) , 

2 2 
VI = WIY31-WIY31(6w2Y21-WyWI2) , 

2 2 
V2 = WIWyWI3(Y3I-6Y21)+9w2Y21 , 

V3 = W2WyCWIi3Y2I-2Y31)+3wIiY21) , 
c = -(VI +V2+V3) , 

2 2 (6 ) VI = -WIX3I +W1X3I WzX21-WxW12 ' 
2 2 

V2 = WIWxWI3(6x21-X31)-9w2~1 , 

V3 = W2Wx(W12(2x3I-3x21)-3wl:rt21 ' 

d = VI +V2+V3 ' 

e = -(WIWI3-W2WI2)(WI2Y31-3wliY21) , 

1 = (WIWI3 -W2WI2)(WlzX31-3wl:rt21) , 

g = -(WyCWI-W2)(Wx(6Y2I-2Y31)+wyC3x21-X31))) 

h = Wx(WI-W2)(wx(3Y21-Y31)+w/6.:s1-2x31)) 

VI = WI(y31(2wIX3I-6wzX2I)-6w1Y21~1) , 

V2 = WIWx(WI1Y31-WI3(6Y21-Y31)) , 

V3 = WIWyCWIzX31-WI3(6.:sI-X31)) , 

V4 = w2(l8wzX2IY2I +wx(wI/3Y2I-2Y31)+3wIiY21)) , 

Vs = w 2w/3wI:rt2I +wl/3.:sI -2x31)) , 

i = VI+V2+V3+V4+VS • 

e 
V = _, 

2 

a = -d , 

u = _I , 
2 

~ = -c , 
i y = --, 
2 

r = - 3a, s = -3b, p = -g, q = -h . 
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4.0 Capture by Conic Sections 

4.1 Introduction 

The previous chapter has analysed, developed and explored some of the methods 

and techniques which the mathematical contemporary of the physical spline 

employs. In particular, the properties of the Bezier cubic curve (both parametric 

and non-parametric fonns) has been investigated. One of the main observations 

regarding the cubic spline is its inherent need for iterative procedures. Whether 

attempting to gain a desired mathematical description or seeking to rasterise the 

modelled outline, the best and most suitable approach requires the use of some 

recursive routines. This need has a detrimental effect on the rate of converting 

IK-defined characters to Bezier described outlines. With there being thousands 

of fonts, each on average comprising of at least one hundred characters, there 

exists a demand for describing contours using a simpler modelling scheme based 

on the quadratic spline. 

This chapter focuses on the capturing capabilities and shortcomings of the curves 

belonging to the conic (quadratic) family. After presenting their various 

characteristics and features, two approaches for mathematically describing a given 

set of data points using conic sections are given. The first method provides a 

desired fit based on the tangents at the knot points; whilst the second works 

within a more relaxed environment and yields the "best" possible quadratic 

section which will model the given outline based entirely on the location of data 

points supplied. The perfonnance of both approaches are then analysed and 

compared. Through this, the advantages and limitations of the two capturing 

algorithms are highlighted. Finally, in section 4.5, a technique for rasterising the 

quadratic curve segments is presented. 

4.2 Characteristics and Properties 

Conics, and conic splines, have a number of features and characteristics which 

make them suitable for modelling contours of shape. Although conics have a rich 

background in terms of the literature available discussing their properties, this 
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section limits itself to presenting their capabilities for the purposes of design. 

This leads to the introduction of the curves belonging to the conic family. 

Through this, some of their properties are highlighted. Both the parametric 

(including rational and non-rational) and implicit forms for the quadratic spline 

are looked at. Some applications employing conic splines are also presented. 

4.2.1 Historical Perspective 

One of the main attractions of conic, quadratic, sections is that they have been 

studied for centuries and, therefore, there is a wealth of mathematical results 

about them. Of the relevant literature, the book by Sampson [SAMP 79] gives 

a classic introduction to conic sections and their properties. Coolidge [COOL 45] 

provides a historical input to the subject. A number of books give a 

comprehensive, although at times rather complex, treatment to the geometric 

aspects of conic sections [ASKW 47, BAIL 36, SMIT 26, TODD 47, TUCK 18]. 

The employment of conic sections for the purpose of design, and representing 

outlines of shape, was looked at in the early forties by Liming [LIM! 44]. His 

work in the aviation industry required mathematical modelling of contours 

forming components of mechanical parts, as well as accurate approximations of 

the cross-sections of aircraft fuselages. Although the methods developed were 

exclusively for the aviation industry, the principles which evolved were 

applicable to other manufacturing industries. 

The benefit of having the possibility of algebraic and geometric solutions has 

played a part in the successful employment of conic sections for modelling 

outlines. As mentioned in the previous chapter, the use of cubic curves and 

splines did not really materialise until the advent of computers. With this, it was 

possible to develop computerised techniques which enabled the simulation of the 

physical spline. Even with the latest algorithms, the modelling of shape using 

cubic splines is still a demanding task. The use of conic sections for purposes of 

computer-aided-design, on the other hand, can be viewed as automating the 
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traditional approach; thereby, enhancing and improving an acceptable fonn of 

representation. 

The fact that it is possible to manually construct conic sections from a given set 

of constraints has been dealt with best by Liming. Although the above cited 

reference highlights some of these techniques, his later publication gives a more 

comprehensive insight on the topic [LIMI 79]. This, apart from others, includes 

the (manual) construction of a conic section from three points and two tangents, 

four points and one tangent, and five points. (In chapter six, a procedure for 

manually constructing a parabolic arc is given). 

With the development of parametric representation for fonnulating curve 

descriptions, the mathematical fonn for defining conic sections has been 

parameterised. Whereas, Liming [LIMI44] described how the theory of pencils 

of conics can be used to defme a general conic segment, Faux and Pratt [FAUX 

79] have dealt with its parametrisation. Both Ball [BALL 74] and Forrest [FORR 

68] link the use of a rational cubic fonn to gain a rational quadratic (parametric) 

form, Forrest evolving the parametric parabola to gain representation for various 

conic sections [FORR 68, FORR 80]. In section 4.2.3, the conic spline and its 

mathematical forms are discussed. The next section, gives an introduction to the 

family of curves which come under the heading of conic sections. 

4.2.2 Family of Conic Curves 

Before analysing and discussing the characteristics of the conic spline, this 

section gives a summarised introduction to the nature of the conic shapes and 

their classical definitions. The section focuses on properties which are relevant 

in understanding some of the concepts that are later developed relating to 

quadratic splines. 

The term "conic sections" is derived from the fact that all the shapes can be 

obtained from intersecting a plane, at various orientations, with the surface of a 

cone. As Fig 4.1 shows, depending on the way the cone is intersected, it is 
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possible to gain a family of curves including circles, ellipses, hyperbolas and 

parabolas. All of these curves can be described by a second order (quadratic) 

equation. This, in general, takes the form: 

Ax2 + Bxy + Cy2 + Dx + Ey + F = 0 . ... (4.l) 

Equation (4.1) is expressed in terms of six coefficients. The shape and type of 

conic generated by such an expression does not depend on the absolute values 

of these coefficients, but is a function of their ratios to each other [SAMP 79]. 

This means we could divide equation (4.1) by anyone of the six coefficients, 

leaving just five coefficients which uniquely define a conic shape. Furthennore, 

for the purposes of capture, five input constraints are required either in tenns of 

data points or a mixture of points and derivatives. 

a) b) 

I 

/ 

c) d) 

Fig 4.1 Illustrates how the intersection of a plane with 

a circular cone defines a particular conic section: 

a) an ellipse, b) a circle, c) a parabola, and d) a hyperbola. 
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The most frequently used "curved" shape is the circle. In just about every design 

system, the employment of circles and respective arcs is found in one fonn or 

another. The general conic equation (4.1) can be transfonned to represent circles 

by realising that in this case the coefficients of r and I will be equal, and that 

the orientation coefficient B will be equal to zero (this is explained in the next 

paragraph). Thus, A = C and B=O, and by completing the squares the well-known 

equation for circles can be derived (see [eRAS 78] for a detailed analysis). 

The desire to have an elliptic curve tends to be a little more involved than the 

circular case, even though the circle is a particular type of ellipse. For conic 

equation (4.1) to represent an elliptic shape, it is necessary for coefficients A and 

C to have similar signs irrespective of the magnitudes. The ellipse is described 

in terms of a major and a minor axis. If these axes are at some angle to a 

reference axis system, then the tenn xy (sometimes called the cross product or 

orientation term) of equation (4.1) exists; otherwise, B=O. For design simplicity, 

the tendency is to work with the standard ellipse, where the axes of the ellipse 

are made parallel to those of the defining coordinate system [CHAS 78, ROGE 

76]. 

The equation of the general conic can also be fonnulated to describe the shape 

of a parabola. For the standard case, where B=O, the requirement is that either A 

is zero or C is zero, but not both. This will result in either term r or I, and by 

means of simple algebraic manipulation, the standard form for describing a 

parabolic shape can be gained. (Chapter six investigates, and presents, the 

parabolic spline as an alternative means for mathematically describing outlines). 

In similar fashion to the elliptic case, the general conic equation of (4.1) can be 

transformed to return a hyperbolic shape. The coefficients of r and I, in this 

case, require to have opposite signs irrespective of the magnitudes. Again, based 

on similar reasons as for the ellipse, a standard form for the hyperbola can be 

realised. 

4.0 Capture by Conic Sections page 90 



In passing, it is worth mentioning the fact that it is always possible to rotate the 

general conic in order to eliminate the B coefficient (of equation (4.1)). This can 

be done by rotating the given conic through a angle defined by cot(28) = A -C 
B 

[ROGE 76]. This combined with the option of translating the resulting general 

conic to eliminate the coefficients D and E, fonnulates a typical approach for 

gaining standard mathematical fonns for the conic sections. 

Based on some of the observations made in this section, it can be shown (see 

[YEFI 64] for a detailed proof) that the expression B2 - 4AC provides a means 

of quantifying the shape of a conic section. If this is less than zero, then the 

resulting curve is an ellipse (including the special case of a circle); if its greater 

than zero, then a hyperbolic curve shape is expected, and if it is equal to zero, 

then the resulting arc is a parabola. This is a useful property, and lends itself 

conveniently for purposes of interactive design where quadratic curves sometimes 

need to be classified for capture or rasterisation purposes. 

Finally, it should be stressed that the material covered in this section yields only 

a brief insight to the family of conics. For thorough examination of these curves, 

some of the cited references give a good introduction, including the necessary 

mathematics. Two other books which provide a classical review of conic sections 

are by Protter and Morrey [PROT 75], and Vasilyev and Gutenmacher [VAS I 

80]. The first devotes a complete chapter (chapter six) to developing and working 

with standard fonns, whilst the other gives an illustrative presentation of 

geometric properties including that of the quadratic sections. 

4.2.3 Classification of Conics 

The term "conic sections" is also frequently used to describe curved outlines 

which can be modelled by part of a defining conic shape. This in the case of an 

ellipse, for example, might result in less than half of its entire outline being used 

to describe a given set of data points. When only a portion of a conic is being 

employed, it will hereafter be referred to, in general, as an arc or a segment or 
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simply as a conic section. The expression "conic splines" then refers to a series 

of conic arcs patched together, with given constraints, to fonn a desired outline 

of shape. The conic spline, therefore, has similar properties to the Bezier spline 

in that it facilitates the construction of a desired shape using localised segments. 

This, as mentioned in sections 2.2.2 and 2.2.3, is an important and necessary 

property for purposes of interactive design work. 

To capture outlines by means of conic splines, a suitable mathematical fonn is 

required where a conic arc can be generated between given knot points. A 

common approach to achieve this has been to develop a rational quadratic fonn 

for Bezier CUNes. A detailed derivation of this is given by Lee [LEE 87]. He 

uses the derived fonnulation to detennine the characteristics (such as centres and 

foci) of the resulting conics. Faux and Pratt [FAUX 87] gain the same result 

through a derivation based on a specific parametrisation for the conic. The 

resulting rational fonn for the general conic case is expressed as follows: 

where: t is nonnalised to range from zero to one, 

Po, PI and P2 fonn the defining polygon, and 

Wo, WI and W2 are their respective weights. 

... (4.2) 

The resulting quadratic polygon takes the triangular set-up shown in Fig 4.2. It 

is clear from this that the control point, PI' is gained from the tangents at the two 

knot points, respectively at Po and P 2' The CUNe that is generated, therefore, 

starts at the knot point Po and tenninates at P 2' and it is tangential to PoP I at Po 

and to PIP2 at P2• 

The weights of equation (4.2) are similar to those employed in the rational Bezier 

form in that they pull the CUNe towards them. The greater the value, the greater 

the pull (see [FARI 90] for an illustrative example). The weights, thus, control 

the type of quadratic arc to be generated. Although values for the weights can 
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range between zero and infinity, the ratio Wo~z remains a constant for a conic 
4WI 

arc [PA VL 83, LEE 87]. The tendency, therefore, is to set the weights of the two 

knot points (that is Wo and wz) to equal one. The weight of the control point, WI' 

is then varied to gain the complete spectrum of conic arcs. 

PI 
'~" · , ... · , . · , · , .... · , · , · , · , , , , , , 

b ... , . , , , , , , , , 
P(O.5) \ 

'. 

'. 

----­, , , , 
. a .. 

... . ........ Pz .. ' 
\ ..... , ..... . ~ .......... . 

.......... .. ' ......... Po +Pz 
2 

Fig 4.2 Depicts the guiding triangle set-up for describing 

conic sections, where the sharpness value S = a/b. 

The control weight, WI' is more commonly referred to as the stiffness or 

sharpness value for a conic arc, and denoted by S. In line with the above 

considerations, and as employed by Pratt [PRAT 85], the value of S detennines 

both the type and the shape of a conic section. As Fig 4.2 illustrates, the value 

for the sharpness is based on the lengths a and b; where a is the length of the 

Po+Pz line extending from the point to the mid-point of the curve P(O.5), and 
2 

b is the corresponding length from this mid-point to the control point. 
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Referring to Fig 4.2, when S equals zero then the arc is the line connecting the 

two knot points, between zero and one it returns elliptic segments, at one a 

parabola results, and for values of S between one and infinity, hyperbolic arcs are 

realised. Close to infinity, or in practice for very large values of S, the arc returns 

the two line segments connecting the control point (ie lines Po --> PI and PI __ > 

P2 respectively). In addition, for positive sharpness values, the resulting arc is 

contained within the convex hull of the defining triangle. If S is allowed to have 

negative values, then the arc will lie outside the convex hull. This will in the case 

of S ranging between 0 and -1, for example, result in a curve which complements 

the elliptic shape contained within the convex hull. 

Applying these considerations to equation (4.2) results in the following rational 

parametric form for describing quadratic splines: 

... (4.3) 

It is clear from equation (4.3) that for the parabolic case, where S equals one, the 

term in the denominator equals unity, and the resulting parabola is generated by 

the expression in the numerator. In other words, when the weights of the three 

points (defining the triangle) are made equal, the non-rational parametric form for 

quadratics results, which is a parabola. This means that for a three-point guiding 

(Bezier) triangle, the generated curve segment is always a parabolic arc. 

Having considered the parametric form to illustrate some of the conic splines 

properties, its implicit (algebraic) form is considered next. This mathematical 

scheme is employed in the two capturing approaches discussed in section 4.4. In 

order to use the implicit form of equation (4.1), its coefficients need to be 

expressed in terms of the conic spline considerations mentioned above. For this 

purpose, the workings of Pitteway and Banissi [PIIT 88] are used to gain the 

following expressions in terms of control point PI(u,v) and end knot PiC1<'Cy): 
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d == 2vx - 2uy - ay2 - ~X2 - 2yxy - k , ... (4.4) 

where: 

~ = 
(C -2v? + C2S y y p 

4~ 
(C -2v)(C -2u) + C C S 

Y % % Y p 

4L\ 
Y= 

I-S2 S = __ , 
P S2 

A = vC% -uCy 
Ll 2 ' and is the area of the triangle. 

For convenience, the residue at the origin d(O,O) is taken to be zero, so that the 

constant tenn k will also be zero. The expressions of equation (4.4) are such that 

apart from the conic curve starting at the origin, it is required to interpolate the 

end knot, resulting in zero residue, so that d(C%,Cy) = O. The control point PI 

defines the initial gradient ~, so, by taking advantage of the arbitrary scale, the 
u 

control positions u and v are made equal to the respective x and y coordinates of 

the control point PI' 

Although equation (4.4) gives an implicit fonn for the general conic, a more 

"visual" fonn can be realised by substituting the expressions for the coefficients 

a, ~ and y into the main equation. This results in a fonn which is solely in tenns 

of u, v, C% and Cy • By collecting tenns, a new expression results that is based on 

the triangular scheme as manifested in Fig 4.3. This expresses the implicit fonn 

for the general conic in tenns of four triangles. By using this, it can be shown 

that equation (4.4) can be transfonned to take on the following fonn: 

... (4.5) 
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where: 

Po(O,O) 

L\ = area of triangle P P P = vCx -ucy 
<t 1 2 2 

A ,I' • I C v.-c X. 
Uk = area oJ tnang e P QP = "';, y 1 

0,2 2 

L\J' = area of triangle P1QP = L\-L\ -L\ and 
1 2 i k' 

S = 0 to 00, depending on conic shape. 

QlXi'Yi~.'·-···""" 
.. - ........ . 

". 

Fig 4.3 Shows how a given point Qlxi,y) results in a 

general conic description which uses four triangles. 

The parametric fonnulation as given by equation (4.3), and the implicit forms of 

equation (4.4) and (4.5), are mathematical representations which can be used for 

purposes of conic splining. Both mathematical descriptions have their usefulness, 

and are applied when and where necessary. The implicit form as given by 
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equation (4.5) is employed in the first conic conversion algorithm discussed in 

section 4.4.1, whilst the other implicit form (equation (4.4)) is used in the method 

presented in section 4.4.2. 

The next section looks at the various applications that have employed conic 

sections to describe contours of shape. Through these, some methods and 

techniques used to conic-fit a given set of data points are also discussed. 

4.2.4 Applications and Techniques 

As mentioned in section 4.2.1, conic sections have been employed in the aviation 

industry to model components, parts and sections of aircraft fuselages. This 

constitutes an important development in employing conics for designing shape 

outlines. The use of quadratic sections extends to other fields where a 

requirement to model shape outlines exists: In the field of human biology, a 

common need is to represent the shape of cells (and its contents) for purposes of 

analysis. Paton [P A TO 70] proposed the use of conic sections for representing 

individual chromosomes. His development aided the investigation of properties 

and characteristics of individual chromosome. 

Albano [ALBA 74] presents an algorithm that captures digitised contours in 

terms of conic arcs and line segments. He employs the method of weighted least­

squares to gain "best-fitting" conic representation. He extends the approach to 

rmding the minimum number of quadratic arcs that can be employed for a given 

set of data points, and which lie within a desired tolerance. 

Like cubic curves, conic arcs have also be used to model dental arches: 

Biggerstaff [BIGG 72] provides a brief inclination towards employing the family 

of conic curves for representing shapes of human dental arches. A more rigorous 

and detailed method is given by Bookstein [BOOK 79]. He develops an approach 

that attempts to represent scattered data. His algorithm returns the optimum 

conic-fit by minimising the curve-to-point deviation expressed as a ratio of two 

squared distances along rays through the centre of a conic. An approach which 
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endeavours to make improvements to Bookstein's algorithm has been developed 

by Sampson [SAMP 82]. He employs an iterative subroutine which yields better 

approximations, and is based on minimising the sum of the squared orthogonal 

distances of data points from the fitted conic. (Two other references by this 

author, where he discusses the shape of dental arches in relation to conic 

sections, are [SAMP 81] and [SAMP 83]). 

The employment of conic arcs and splines for modelling the outlines of font 

characters has been presented by both Pavlidis [PAVL 83] and Pratt [pRAT 85]. 

Both conjecture and develop techniques which use quadratic splines rather than 

cubic. The paper by Pavlidis [PA VL 85] discusses in detail the development of 

the guiding triangle for the conic arc (see section 4.2.3). Having proposed a 

criteria for evaluating the point-to-curve deviation, he develops an algorithm for 

modelling the contours of shape (including outlines of font characters). Pratt 

[PRAT 85], in contrast, looks at how it might be possible to use quadratic splines 

to capture shape outlines which, traditionally, have employed cubic curves. He 

also develops an approach for making Pitteway's conic generating algorithm 

[PITT 67] exact, and fixes an aliasing problem which has plagued it since its 

introduction. 

It can be seen from this that conic arcs and splines are applied in a number of 

different, and diverse, fields where a given shape outline requires to be modelled. 

The fact that the conic family can mathematically be represented through either 

a parametric form or via the implicit formulation leads itself to greater 

applications. 

In passing, it should be emphasised that when it comes to modelling a given 

shape outline (for a particular application), each capturing process is formulated 

to return a desired type of "best-fit". The process is termed quadratic 

normalisation and is used to "customise" the conic-fit to meet some specified 

objectives. Bookstein [BOOK 79], for example, uses the expression A2 + B2{2 + 

(!l to gain conic approximations which are invariant under normal 

transformations. He develops the desired normalisation by observing that both the 
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terms A + C and B2 - 4AC are invariant His algorithm is, therefore, 

normalised to encompass this property. Different authors have applied different 

normalisations. Pratt [PRAT 87] gives a detailed discussion of some of the 

normalisations that have been used in capturing outlines, with regards to both 

CUNes and surfaces. He highlights their objectives and possible side-effects. 

Furthermore, he provides some useful concepts for fitting mathematical 

descriptions to data. 

It is clear, therefore, that different applications may employ different 

normalisations in order to ensure that the resulting quadratic approximation meets 

some given design specifications. Further discussion of this concept is made in 

the relevant sections manifesting the solutions to the problem outlined in section 

4.3. 

4.2.5 Point-to-Conic Deviation 

Before giving details of the problem to be solved, this section presents a method 

for evaluating the quality of any conic approximation. The approach is based on 

calculating the perpendicular distance of a point from a straight line. For this 

purpose, the implicit form for the conic as given by equation (4.5) is utilised. 

Unlike the parametric form, equation (4.5) has the attraction of returning residue 

values directly, rather than through an iterative process. 

The approach makes the assumption that in the vicinity of a given IK point, the 

corresponding conic CUNe is slow moving (low cUNature) so that it can be 

approximated by a line segment This, for the defining IK CUNe points, tends be 

the norm rather than the exception. 

If for clarity we let ~. denote the residue as given by equation (4.5), and Ai as 

being the corresponding point-to-cuNe deviation, then using the graphical 

illustration of Fig 4.4, it can be shown that: 
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where: 

ad. 2S2[~.(2v+C )-v~ ]+C ~ !!1 = '= 2v - ___ ' __ ;;...Y.,,-..-_k __ Y:.....:.:..k 

% dx 1lS2 

ad. 2S2[~.(2u+C)-u~ ]+C ~ 
!!1

y 
= -:h-,' = 2u - ___ ' __ ~ __ k _.:.:..%...:.:,k 

V.Y 1lS2 

Best-fitting curve 
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::: .......................... .'~ 

Fig 4.4 Highlights the method for evaluating 

the point -to-conic curve deviation Aj • 

· .. (4.6) 

Equation (4.6) forms a means of assessing the quality-of-fit. Although this 

measurement is an approximation, it does in practice conform to being an 

acceptable way of gauging the resulting conic-fit. 

4.3 Outline of Problem 

Having described some of the characteristics and properties of conic sections and 

conic splines, this section gives an outline of the nature and type of 

approximation which is required: 

As mentioned in section 3.3, the lKARUS system requires to model outlines of 

font characters. One of the mathematical descriptions it employs is based on 
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conic splines. The requirement. therefore, is to develop conversion approaches 

which can be used by lKARUS. It defines the problem as follows: 

Given a set of data points (Q) describing a character outline, whose directional 

tangents at each point are known, a "best-fitting" conic approximation is required. 

The quality-of-fit is assessed in terms of a predefined tolerance. The number of 

conic segments used are also observed. 

The "best" approximation is quantified in terms of two approaches: The first 

technique uses the given tangential information. The resulting conic-fit is ensured 

to exhibit at least first order (gradient) continuity between adjacent curve 

segments. The second technique is made more flexible in that it is not 

constrained to employ the given tangents. It returns the conic-fit which deviates 

the least from the given IK data points. Both approaches use techniques which 

are non-iterative and are expected, therefore, to yield acceptable conversion rates. 

Although the approaches have been developed with specification to the lKARUS 

system, both algorithms lend themselves to general curve-fitting applications. 

4.4 Algorithms for Capture 

The first method for gaining a general quadratic description is discussed in the 

following section. In section 4.4.2, the second approach is detailed. A comparison 

of both techniques is made in section 4.4.3. 

4.4.1 Capture Through Knot Tangents 

This method caters specifically for the case where the tangents of all the data 

points, and not just of the knot points, are supplied. Although the method only 

uses the knot tangents, tangential information for the curve points is necessary 

for the process of subdivision. This takes place when either the desired conic-fit 

is found to be unsatisfactory or when a given outline cannot be modelled by a 

single conic arc. The latter occurs (taking a circle outline for example) when the 

knot tangents span more than, or at least, 180 degrees so that the desired control 

point for a guiding triangle is not possible. The process of subdividing the given 
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outline is achieved through choosing a suitable data point which lies close to, or 

is, the mid-point of all supplied data points. 

For the purposes of mathematically modelling the given set of IK points Q(x;,y) , 

the implicit form as given by equation (4.5) is utilised. The conic arc as 

expressed by this equation is in an ideal form for capturing data with given 

tangent constraints. It is apparent from this equation that, in general, an approach 

is required to solve for the three unknowns: the control points u and v, and the 

sharpness S. The "best-fining" control position is gained from the intersection 

point of the two knot tangents, leaving only the sharpness value to be determined. 

In an attempt to gain a corresponding "best-fitting" value for the sharpness, 

equation (4.5) is employed. As this does not go through any further process of 

normalisation, the sharpness value endeavours to minimise the residue d(x;,y) for 

each given data point. Similar to the discussion for the implicit Bezier case 

outlined in section 3.5.2, for a perfect conic-fit, the residue will equal zero; 

otherwise it takes on a small none zero value which can be quantified (in the 

manner discussed in section 4.2.5) to assess the quality of conic fit. 

The residue given by equation (4.5) is minimised by choosing the best values for 

S2. This mathematically is achieved through evaluating the following: 

If we take the partial derivatives as instructed, and collect common terms, then 

it is not too difficult to show that the sharpness value which "best-fits" the given 

conditions can be gained through the following: 

S2 = _;-_1 __ 
,. 
~4dA. L..J I J 
i-I 
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It is clear from equation (4.7) that a "best-fitting" conic approximation is gained 

without having to resort to iterative means. The approach, when compared with 

that for the Bezier cubic case, uses relatively modest amount of computation and, 

thus, highlights a feature which has attracted designers to employ conic splines 

to capture outlines. 

Fig 4.5 gives a graphic illustration of the steps necessary to gain a conic 

description using this approach based on knot tangents. As it shows, if any of the 

given IK data points returns a deviation value (calculated through equation (4.6)) 

which is above an acceptable tolerance, then the IK points are subdivided and 

modelled by two or more conic sections. 

Evaluate 
control point 

Calculate best value for 
the sharpness parameter 

desired no 

Split 
data 

fit being 
~--------------

, gained 

Fig 4.5 Depicts the steps necessary to gain a general conic description 

which ensures gradient continuity at joining knot points. 
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The conversion algorithm's perfonnance is analysed in-relation to the second, and 

alternative, approach given in the next section. This, as manifested in section 

4.4.3, is achieved through assessing their capturing capabilities for a given outline 

of character. 

4.4.2 Capture with Least Deviation 

In section 4.4.1, an approach for modelling outlines using conic sections is given 

which has the attraction of ensuring gradient continuity between joining arcs. In 

addition, the computation necessary for a solution is relatively little compared to 

that needed for the Bezier cubic case. The method employed, however, is 

restricted by the tangent constraints and does not return the conic curve which 

would deviate the least from the given IK data points. As the goodness-of-fit is 

assessed through the worst-case deviation, it gives additional incentive to develop 

an approach which reduces this and, therefore, minimises the number of conic 

arcs employed. 

Before giving the mathematical insight, it is worth noting that this was developed 

whilst experimenting with the approach described in section 4.4.1. Having found 

a conic-fit, it was observed that if the three parameters (the u and v of the control 

point and the sharpness value S) were each iterated with small increments, then 

at times there was a significant reduction in the overall residue. In other words, 

a better conic-fit resulted. This iterative process lead to the following 

mathematical development, which offers a non-iterative solution: 

The approach uses the implicit representation of equation (4.4), and is based on 

the guiding triangle scheme discussed in section 4.2.3. Looking at the implicit 

form, it is clear that there are (in general) five coefficients to solve: u, v, a, ~ 

and 'Y. A conversion procedure is required which will give the "best" values for 

all these coefficients. As the two knot points (the starting knot being at the 

Origin) are given, a possible approach could substitute the expressions for a, ~ 

and 'Y, and gain an implicit fonn in tenns of the desired three parameters u, v and 

S (as undertaken in the previous section). This approach, however, leads to a 
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non-linear equation with respect to the three unknowns; resulting in a iterative 

means for a solution. 

A better approach (which leads to a linear set-up) is to develop an implicit 

equation based on a, ~ and y, instead of u, v and S. In order to achieve this, 

equation (4.4) needs transfonning such that it is expressed solely in tenns of the 

three unknowns (n, ~ and y). The requirement, therefore, is to cultivate 

expressions for the control coordinates (u and v) such that they are expressed in 

terms of the three unknowns. This process of transfonnation is initiated by 

formulating an expression for the gradient at any point on the conic curve. Using 

equation (4.4). this takes the fonn: 

dy = v-~x-'YY 
dx u + "(X + ay 

... (4.8) 

The control point, apart from detennining the initial gradient, also defines the 

gradient at the end knot. The corresponding gradient at this point (using equation 

(4.8)) takes the following fonn: 

v - ~Cx - yCy = _C~y_-_v ... (4.9) 
u + ""' + aC C - u l""'x y % 

The conic equation at the end knot is given by d(C%,Cy) = O. By utilising this fact 

and combining expressions with that of equation (4.9), it can be shown that the 

control coordinates can be expressed as follows: 

u = 
C - ""' - aC x l""'x y 

2 
C + ~C + yC y x y 

2 
... (4.10) v = 

Substituting the expressions for u and v in equation (4.4), a new implicit fonn 

(describing all conic sections) results: 

d(x;,y) == a(yCy _y2) + ~(xC% -x2) + ),(xCy +yC% -2.xy) + (xCy -yC) . 

... (4.1l) 
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Again, the quantity d(Xi'Yi) yields the residue of a given IK point to a resulting 

conic curve. Although the conversion algorithm minimises this residue by 

choosing the "best" values for a, ~ and y, as an alternative approach, equation 

(4.11) could be normalised such that it is in a fonn which represents the shortest 

distance from the resulting conic curve to IK point. In other words, use the 

formulation of equation (4.6), where the corresponding parameters (such as d;) 

are based on equation (4.11). If an attempt is made to develop such an approach 

then we will find that the resulting equation becomes, not just more complicated, 

but leads to non-linear expressions which require iterative methods for a solution 

to the three unknowns. Since the conversion process based solely on the equation 

(4.11) attempts to minimise the residue, looking at equation (4.6), this would also 

lower the corresponding point-to-curve deviation. In short, the residue 

formulation as given by equation (4.11) appears to be the most attractive both in 

terms of its effectiveness and, also, for its computation needs. 

The "best" possible conic approximation to a IK defined character outline is 

gained by choosing the "best" values for the three unknowns. The solution 

required, therefore, needs to minimise the summation of the squared residue (as 

given by equation (4.11)) at each data point, that is: 

a II 

_~ d(x.,yY = 0 , aa1=t I I 

a II -L d(xi,y/ = 0 , 
a~i-o 
a II -r.:-:L d(xi,y/ = 0 . 
°Yi-o 

... (4.12) 

For a solution to equation (4.12), the computationally fast routine developed by 

Lewis [LEW! 86] is employed. The routine returns the corresponding values for 

a, f3 and y, and also the total value of the squared residue. The latter could be 

used if, for example, we were interested in evaluating the average residue of a 

given outline. 

Having gained values for a, f3 and y, equation (4.10) is used to calculate the 

respective "best" values for the control coordinates. The sharpness value for the 

4.0 Capture by Conic Sections page 106 



"best-fitting" conic arc is acquired by the utilising the following expression 

(evaluated with reference to the forms of a., ~ and yas given in equation (4.4»: 

1 
o.~-f = _-1 

S2 

so that 

1 
S = ----;:::=== 

J1+o.~-f 
... (4.13) 

The quality of the resulting conic-fit is then assessed in the manner discussed in 

section 4.2.5. If it is found that this is not satisfactory, then the given IK defined 

outline is split near its centre and approximated by two conic curve segments. 

This alternative approach for capturing outlines using conic sections is 

graphically illustrated in Fig 4.6. Again, if a single conic does not suffice, then 

two or more conic arcs are used so that the point-to-conic deviation (as given by 

equation (4.6» is below a desired value. 

4.4.3 Results and Observations 

Having described two approaches for modelling a given set of IK defmed 

outlines of characters, this section analyses their performance. For purposes of 

demonstration, the character'S' of typeface an201215.ik is, again, chosen. This 

employs four additional points between each two of its digitised IK points (as 

discussed in section 3.4.4). Because this character contains four inflection points 

(in the manner shown in Fig 3.8), it is clear that at least six conic sections will 

be required for a quadratic description. It is expected that additional arcs will be 

necessary for parts of a given outline which do not contain an inflection point, 

but are shaped such that an appropriate guiding triangle cannot be formed (as 

explained in section 4.4.1). 

The performance of each algorithm is tabulated in Fig 4.7. These results are 

gained with a maximum allowable point-to-conic deviation of 15 units. Analysing 

the recorded results of Fig 4.7, it is clear that the second approach, which is 
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Calculate a., ~, and 'Y 

Evaluate u, v and S 

desired 
fit being 
gained 

? 

no 

Split 
data 

Fig 4.6 Shows the stages necessary to perform an IK to general conic 

conversion which deviates the least from the given set of data points. 

allowed to take on "best" values for u, v and S, uses the least number of arcs. It 

employs seven less conic sections than that needed for the tangent approach. The 

amount of deviation exhibited by the modelling arcs is, on average, remarkably 

little. With an acceptable tolerance of 15 units (where each unit equals 1/l00mm 

for a character bodysize of 15cm), the two algorithms both approximate the given 

"S' character with a high degree of accuracy. Since the second approach uses a 

significantly lower number of arcs, it is not surprising to note therefore that its 

average deviation value is slightly higher. Fig 4.8 depicts the corresponding conic 

deSCriptions, returned by both approaches, for the given letter'S'. It is worth 
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noting that (as expected) the four points of inflection have all been translated into 

respective knot points. 

IK to Conversion Conversion 
General Conic through tangents through deviation 

Results (Fig 4.5) (Fig 4.6) 

Number of Arcs 23 16 

Rate of 
Conversion 9.3 8.7 

CPU seconds 

Maximum 
IK -to-conic 7.5307 13.3483 
deviation 

Average deviation 
per arc 1.3270 2.0169 

Maximum 
variation of knot 0 10.1912 

tangents 
degrees 

Average 
variation of knot 0 2.9933 

tangents 
degrees 

Fig 4.7 Shows tabulated results for the two approaches used to convert the 

given IK data points to a corresponding general conic description. 

The conversion rate of the two algorithms is considerably high, especially when 

compared to the results for the Bezier cubic case (section 3.4.4). Although the 

conic algorithm of Fig 4.6 yields a somewhat faster rate, the amount of 

processing necessary in each approach is relatively small. Both algorithms have 

the attraction, therefore, of efficiency in terms of speed. 

The tabulated observations of Fig 4.7 highlight also the "price" for allowing the 

control point to take on the most optimum position, regardless of the given knot 

tangents. On average, the two respective tangents meeting at a knot point are 
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about 3° out. In other words, a correction of about 3°, on average, in the direction 

of the tangents is necessary to ensure a gradient continuous description. This, as 

Fig 4.8b shows when compared to Fig 4.8a, does not seriously "damage" the 

appearance of the captured outline. (Further thoughts and discussion of this point 

are deferred until chapter five, section 5.3.5, where a closer examination between 

the amount of deviation exhibited by two joining arcs and their corresponding 

tangents is presented). 

J 

~~ 
I 

i , 

I 
I 

Ll 

\ 

-~ !J~ , I-~-- , 

a) b) 

Fig 4.8 Shows conic outputs gained through the 

algorithms of a) Fig 4.5 and b) Fig 4.6. 

In short, it can be concluded that both the algorithms output conic descriptions 

which are of acceptable qUality. The fact that the conversion algorithm of Fig 4.6 

(which chooses optimum values for S and, also, for the control point) uses 

considerably less conic sections gives it added appeal. This is gained, however, 

at the expense of first-order continuity, a feature that the conic algorithm of Fig 

4.5 guarantees. 
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4.5 Rasterising Conic Sections 

Having developed methods for modelling a given outline in tenns of quadratic 

splines, this section focuses on representing the outline on to a digital display. 

With similarity to the Bezier cubic case (see section 3.6), the aim is to develop 

a working algorithm that could be employed in the IKARUS system. This section 

concentrates on producing a general conic algorithm, therefore, which works for 

all given (quadratic) curve segments. The discussion is limited in that it considers 

an approach based on the original work carried out by Pitteway [PITT 67]. This 

has attracted much attention since its introduction, and can be employed to yield 

the "best" possible grid positions for a given conic section. 

4.5.1 Development of Algorithm 

Pitteway originally chose to employ the mid-point criterion for sampling a point 

along the curve [PITT 67]. He extended the concepts used by Bresenham [BRES 

65] for drawing lines to that required for displaying quadratic sections. The 

elegance of this algorithm lies in its simplicity of employing simple add 

operations to update the control and numerical components. 

Although the algorithm works well in rasterising frequently used quadratic 

curves, it fails when the given curve, for example, is a thin ellipse. In this case, 

it is possible to cross both sides of the ellipse in one move and, therefore, miss 

the region in between. When this happens, Pitteway's algorithm generates either 

a horizontal or vertical line whilst attempting to track the given conic curve. 

In order to simplify and "dampen" these effects, an algorithm which worked with 

four quadrants, rather than the eight octants, was developed [PITT 85]. This 

facilitates square-moves only, and operates in a similar manner to the implicit 

algorithm developed for the Bezier cubic case (section 3.6.2). Although this 

copes better than the original algorithm, there are cases where even this gets 

"lost", and as a consequence misses the end knot. 
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Banissi analyses both algorithms and suggests an "improved" version of these 

[BANI 90]. His technique utilises global control coupled with local control to 

ensure that the new algorithm does not get "lost". Although he highlights their 

performance through some chosen examples, the fact that his approach requires 

a number of algorithms to represent fully all cases, makes the whole process of 

rasterising conic sections rather complicated. Furthermore, the similarity of 

computational operations between the x and y branches (as presented by 

Pitteway) is at times not reflected in the resulting algorithm. 

The improvements suggested by Pratt [PRA T 85] to Pitteway's original algorithm 

appear to be more in line with what's required here. He develops a "cure" for 

Pitteway's algorithm by constraining it to work within a quadrant. In other words, 

the given conic arc is assumed to require no quadrant changes and, therefore, 

problems of continuous quadrant changes do not arise. 

In addition to the above restriction, the control component of the algorithm is 

modified to deal with special conic shapes such as thin and sharp-cornered arcs. 

For this purpose, two tests are introduced within the main loop of the algorithm. 

As Fig 4.9 depicts, the tests are located on only one branch. The branch which 

requires these depend on the shape of the conic arc and also on the direction 

(octant) in which the arc resides. If an elliptic curve is to be drawn in the first 

octant, for example, the two extra tests will be incorporated within the "y" 

branch. If it happens that either of these tests is found to be on the affirmative 

then a "safe" x-move would result rather than the "risky" y-move. In short, the 

tests are conditioned to identify and rectify potential getting "lost" situations. 

Before giving details of the initial conditions, it is worth emphasising the fact 

that this algorithm (and those developed by Pitteway) can be conditioned to work. 

with integer arithmetic. The conic spline has two knot points which are supplied 

as integers. Its control point is, normally, rounded to the nearest grid-position. 

The only other parameter left is the sharpness value. As mentioned by Pratt, this 

can be rationalised in terms of two integers [PRAT 85]. The implicit form (as 
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expressed by equation (4.4)) can be scaled to return integer coefficients for the 

conic arc. 

yes 

CD 

x = x + Xstep 

d=d+b 

Initial Conditions 

no 

no 

STOP 

d=d-a 

yes 

yes 
)----+~CD 

yes 

Fig 4.9 Shows the implicit rasterising algorithm for the first octant, 

where the additional tests are located in the y branch. 
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4.5.2 Initial Conditions 

As mentioned in the previous section, the rasterising algorithm requires to 

identify "no lost" states in order to track the given conic spline correctly. These 

can be determined for the elliptic curve, for example, by evaluating the residue 

de at its centre. The algorithm, as given by Fig 4.9, will not get lost as long as 

the sign of its residue d corresponds with that of de. For the implicit equation 

(4.4), the residue at the centre of the ellipse can be expressed as follows: 

, ~ ......................................... .. .. .. ........ ...... .......... .................... -, 

. . .... .... ...... .. .. .. .. .. ........ .. .... .. ...... . ~ 

Fig 4.10 Illustrates octant symmetry which is employed 

in the implicit rasterising algorithm. 

.. . (4.14) 

For the elliptic case, the denominator term of equation (4.14) is always positive 

[BANI 90] . This, therefore, means that the sign of the residue depends on the 

numerator term. If we take the eight oct ants as depicted by Fig 4.10, then the 

residue de is negative for the first octant and positive for the second. The sign for 

the other octants are gained by means of reflection, where the first quadrant is 

reflected onto the second, and both are reflected onto the third and fourth 

quadrants respectively. Fig 4.10 illustrates this feature through using the circle 

marker for negative de and a triangle for positive dc' 
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In equation (4.14), the tenn in the denominator in fact yields the type of conic 

arc being rasterised. (Compare the denominator with the sharpness expression of 

equation (4.13)). This tenn vanishes (ie equals zero) for a parabolic arc and is 

negative for hyperbolic curves [BANI 90]. For the hyperbolic case, equation 

(4.14) returns the residue at its origin (that is, where the asymptotes intersect 

each other). Again, the rasterising algorithm is "not lost" whilst the sign of its 

residue d follows that of dc. The residue de for parabolic splines is made equal 

to the corresponding value returned by the numerator of equation (4.14). This 

will generate, therefore, similar signs as those produced for the elliptic case. The 

"no lost" states for the various conic sections are summarised in the table of Fig 

4.11. 

No Lost States Ellipse Parabola Hyperbola 

dCII negative negative negative 
1st, 4th, 

ded positive zero negative 5th and 8th 
Octant de negative negative positive 

dell positive positive positive 
2nd,3rd, 

ded positive zero negative 6th and 7th 
Octant de positive positive negative 

Fig 4.11 Gives the signs of the parameters for detecting no lost states: 

d returns direction (octant) of flow, ell 

ded yields type of conic section, 

d = d /d d and highlights no lost states. e ell e' 

4.5.3 Results and Observations 

To demonstrate that the algorithm of Fig 4.9 (employing the initial conditions as 

given in the previous section) can cater for all conic curves lying within a single 

quadrant, it was supplied with various sharpness values for a specified guiding 

triangle framework. In addition, the algorithm was adapted to work with integer 

values, so that each of the given sharpness value was translated into a rational 
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fonn. The chosen values for sharpness were 0.1 (1110). 0.2 (l/5), 0.5 (112). 1 

(1/1) and 3 (311), where numbers in brackets give respective rational fonn. 

The guiding triangle, initially, used started at the origin (0,0), with a control point 

at (200,0), and an end knot at (200,-200). For this arrangement, the output 

produced by the rasterising algorithm is given in Fig 4.12. This illustrates that the 

algorithm can, as expected, generate pen positions for all the quadratic curves 

supplied. In addition, the rasterising process maintains the conic symmetry about 

its mid-point. 

(0,0) (200,0) 

(200.-200) 

Fig 4.12 Shows the rasterised output as given by the conic 

rasterisation, for various values of sharpness. 

. al ·thm th . ding triangle is modified, To analyse the effectIveness of the gon , e gul 

whilst retaining the given set of values for the sharpness: In Fig 4.13, the position 

of the control point is changed; the u (x coordinate of the control point) is 
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subdivided in each case to result in Figs 4.13a, 4.13b and 4.13c respectively. As 

these diagrams depict, the algorithm does not get confused or lost, and generates 

an acceptable digitised output. Fig 4.14 highlights the case where if, instead of 

the control position, we decide to change the position of the end knot. Clearly, 

the rasterising algorithm performs on an equal merit to the other cases. 

a) b) c) 

Fig 4.13 Depicts the performance of the algorithm when the given 

control point for the conic sections is varied. 

In short, it can be concluded that the algorithm of Fig 4.9 is robust enough to 

cater for all conic arcs not requiring a quadrant change. Furthermore, the 

rasterising process has the attraction of capturing the conic's symmetry about its 

mid-point, as Fig 4.12 and 4.14b, clearly, demonstrate. 
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c) 

b) 

a) 

Fig 4.14 Shows outputs for the case when the end knot 

of the supplied conics is re-positioned. 

4.6 Summary 

This chapter begins by giving an historical background to the use of conic 

sections in mathematically representing contours of shape. After introducing the 

family of conics, their characteristics and features are then analysed. The 

mathematical form for representing conic sections is introduced. Both the rational 

form and the implicit form are given. 

Having presented a detailed analysis, two methods for modelling outlines with 

conic splines are developed. The first approach guarantees gradient continuity 

between joining arcs. The second method works within a more relaxed 

environment and returns conic arcs which deviate the least from the given set of 
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data points. A technique for calculating the point -to-curve deviation is also 

presented. 

Finally, an algorithm for rasterising conic curves is outlined. The method is based 

on the work carried out by both Pitteway [pITT 67, PITT 85] and Pratt [PRAT 

85]. An approach for locating "no lost" states is also given. Through an example, 

the algorithm is shown to cater for all conic arcs that lie within a quadrant. 
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5.0 Algorithms for Bezier-Conic Conversions 

5.1 Introduction 

It is clear from the discussions and methods developed in chapter three and four 

that both the Bezier cubic and the general conic are capable of modelling 

contours of a given shape. Each mathematical form exhibits certain features and 

properties which are attractive for the purposes of interactive design work. In 

order to gain the maximum benefit from each modelling form, conversion 

routines are often employed which translate one mathematical deSCription to 

another. These might take the task of converting Bezier cubic curve segments to 

a corresponding quadratic form or, on the other hand, transform a conic spline 

description to a respective cubic form. Whatever conversion is required, it is a 

fact of commercial life that these are needed often for no other reasons than for 

the sake of portability of design systems. 

This chapter focuses on the conversion techniques required in relation to Bezier 

cubics and general conics. A detailed comparison of the two mathematical forms 

is presented. Both their attractions and restrictions are highlighted. Two 

algorithms for converting outlines, originally described in terms of Bezier cubic 

splines, to quadratic curve segments are developed. Their performance is analysed 

and assessed through a working example. Techniques for translating conic splines 

to a Bezier cubic representation are also presented. Their capacity for converting 

outlines is examined and possible limitations outlined. 

5.2 Splines: Cubics versus Conics 

When attempting to model mathematically a given character outline, the critical 

question of which description to employ often arises. Various factors such as the 

form of the supplied data, the type of continuity desired between joining arcs, the 

method of evaluating quality-of-fit and so forth, are common considerations made 

before incorporating a capturing routine in a design system. The decision to use 

Bezier cubic or conic splines is made with similar thoughts and observations. 

This section outlines the features and characteristics of both the Bezier cubic and 
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the conic spline. It attempts to highlight these with a view to practical and 

commercial requirements. 

Many of the features of both representations have already been presented. In 

chapter two, the Bezier spline was presented as a versatile CUIVe which exhibits 

inherent flexibility to represent difficult outlines of shape such as those 

containing points of inflection. Cusps and loops can be handled by Bezier splines 

without too much difficulty. This fact that the cubic spline can model CUIVe 

outlines which can twist through space has greatly enhanced its popularity 

amongst designers from a variety of backgrounds. The application of this in the 

lKARUS system, for example, is restricted to modelling character outlines 

containing at most one inflection point within a defining Bezier cubic segment. . 

Even in this situation, the designer is expected to supply the location of the 

inflection point as an input [KARO 87]. (In fact, the modelling stage frequently 

takes this as a knot point rather than a CUIVe point.) Cusp, double inflection and 

loop exhibiting outlines are seldom captured by a single Bezier cubic spline; they 

are normally split and modelled by two or more splines. 

Employing cubic splines in a design system offers the possibility of CUIVature 

continuity at the knot points of joining CUIVe segments. Although this (and higher 

ordered continuity) might improve the aesthetic outlook of mathematically 

described shape contours, it also increases the computation necessary to gain an 

acceptable representation. As discussed in section 3.2.1, CUIVature continuity is 

a function of the two control points associated with each of the two Bezier 

polygons requiring second-order continuity. This, in practice, means that given 

a set of data points describing an outline, the "best-fitting" Bezier cubic spline 

will, not necessary, be the one which deviates the least from. the given data. In 

other words, CUIVature (like gradient) continuity is gained at the expense of 

increasing the worst-case point-to-cuIVe deviation. As the latter, no nn ally , 

determines the quality-of-fit, more cubic segments may be needed to achieve a 

desired fit with second-order continuity as a constraint than otherwise. 
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Comparing the characteristics of a conic spline with that of the Bezier cubic, it 

is apparent that it (the quadratic arc) does not inherently exhibit the two 

properties discussed above, namely curvature continuity and points of zero 

curvature (ie inflection points). Pratt [PRA T 85] proposes a solution to this based 

on the sharpness value of a conic spline. His fmdings can be summarised as 

follows: 

a) Curvature continuity using conics. 

A fonnula for evaluating curvature at the knot points of a conic is 

derived by using the fact that, as the sharpness value increases from zero 

to infmity, the corresponding curvature at the knot points decreases from 

infinity to zero. This property could be exploited to return curvature 

continuous quadratic splines. 

b) Zero curvature for inflection points. 

As points of inflection are non-existent within a conic spline, an approach 

based on the curvature expression used in a) is developed. The principle 

of this is to make the curvature at the knot (where the inflection point is 

located) such that it is much smaller than any prevailing curvature at 

some distance away from this point. This can, therefore, enable piecewise 

conic curve segments to approximate zero curvature at a point of 

inflection. 

If a design system required the application of curvature continuous conic splines 

then the method developed by Farin [F ARI 89] can be incorporated. He uses the 

concepts outlined in a) to evolve an approach which uses the rational (parametric) 

fonn for describing conics. The method is based on a recursive technique that 

yields sharpness values which are "close" to the gained conic-fit, and which have 

been processed to ensure curvature continuity. 

The above discussion again indicates the fact that curvature continuous splines 

are produced through compensation of the "best-fitting" mathematical description, 

which strays the least from the given set of data points. For the conic case, the 
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"best-fitting" sharpness value is adjusted to yield a desired conic-fit with second­

order continuity. 

In the field of typography, it is paramount that the modelled outline should 

preserve the unique features of a given font type. This, therefore, means that 

gaining a desired fit might not be enough if the resulting character outline fails 

to achieve aesthetic acceptability. Although the IKARUS system converts the 

given outlines of characters to various mathematical forms (including Bezier 

cubics), the modelling stage ensures that the continuity of arcs is only first order. 

This implies, therefore, that restricting the arcs to be only gradient continuous 

does not seriously hinder the quality of the captured font. 

The IKARUS system is not alone when it comes to preferring computational 

simplicity for capturing outlines of fonts. The C curve, developed by 

Conographic Corporation (Irvine, USA), is based on the conic fonn rather than 

the cubic description. Villalobos [VILL 87] discusses the reasons for preferring 

the C curve as basis for a design system, and highlights computational 

practicality and efficiency as being the main attractions. 

In passing, it should be mentioned that since a Bezier cubic curve segment can 

represent (at least) one inflection point within its description, it is able to capture 

more of a given outline than a corresponding quadratic arc. This might be 

important for reasons of storage compactness. In practical tenns, however, the 

hardware memory available in modem design systems tends to make this a minor 

consideration rather than major. 

The rate at which each character's outline can be mathematically described fonns 

an integral component of a capturing process. It is clear from the discussion and 

methods developed for the Bezier cubic spline in chapter three that it employs 

recursive techniques for returning mathematically described outlines. These are 

rather time-consuming, especially, when there are thousands of fonts (with 

hundreds of characters) in the field of typography to convert. It takes 

approximately 30 minutes (of CPU time) to transfonn an IK font type to a 
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corresponding Bezier cubic fonn (see section 3.4.4). For a similar conic spline 

conversion, it takes only about 5 minutes. Oearly, one advantage of employing 

the quadratic description is the speed of conversion it offers. 

The Bezier cubic, expressed parametrically, offers eight degrees of freedom. Its 

algebraic counterpart returns nine degrees of freedom [SEDE 85]. These are 

reflected in their mathematical fonns where, in the case of the non-rational 

parametric fonn, the two knot and the corresponding two control points fully 

describe a Bezier cubic set-up. For the algebraic form, as expressed by equation 

(3.19), nine coefficients are required for a complete deSCription. Conic splines, 

in general, offer seven degrees of freedom: two knot points, a control point and 

the sharpness parameter. It is apparent, therefore, that the non-rational parametric 

cubic spline offers one degree of freedom more than the general quadratic spline. 

This accounts for the fact that shapes such as a cusp and a loop can be modelled 

by a single Bezier cubic spline. These, as discussed in section 5.3.1, can be 

represented by employing two (or more) conic splines. 

Although the polygonal set-up of the Bezier cubic arc gives some indication (as 

mentioned in section 3.2.1) of the resulting curve outline, in some cases 

(especially for loops and cusps) it is difficult to predict the nature of the shape 

from the polygonal framework. If we limit the locations of the two control points 

so that they do not cross (by setting both r and s less than one for the implicit 

fonn derived from Fig 3.12), we will then restrict the Bezier form to capturing 

"conic-like" shapes and those that contain a single point of inflection. This might 

assist in gaining a better appreciation about the fonn of the described outline, but 

this limitation also prevents the representation of extreme hyperbolic shapes (such 

as those possible for conic splines when the sharpness value tends towards 

infinity). 

The triangular framework for the conic spline, on the other hand, appears to be 

a better set-up for gaining an insight to the type of shape being described. As 

cusps, inflection points and loops do not occur within a quadratic curve segment, 

the shape modelled by the guiding triangle is either a part of an ellipse, a 
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parabola or a hyperbola (depending on the value of the sharpness). Given a conic 

spline, with its respective sharpness parameter, the corresponding shape outline 

can be constructed through the evaluation of the shoulder point Oearly, the 

triangular framework for the conic splines has attractions when it comes to the 

manual construction of curve shapes (a point illustrated through graphical 

examples by Liming [LIMI 79]). 

When it comes to rasterising cubic and conic arcs (a topic discussed in sections 

3.6 and 4.5 respectively), the best approach for both is via the corresponding 

tracking algorithms. In the case of the cubic algorithm, it requires an additional 

preparation stage to safeguard it from getting into a "state of confusion". These 

type of problems do not occur for the conic case since it does not exhibit the 

property of self-intersection. Problems of representing sharp ellipses, in the case 

of the latter, are resolved through employing the technique developed in section 

4.5. 

Pavlidis [P A VL 83] prefers to employ conic splines for the fact that they have 

a longer and solid historical background, and more importantly, they are much 

simpler to work with then cubics when it comes to finding the intersection of a 

line with a curve. The solution for this problem is required in many applications 

of computer graphics (for example, hidden surface removal) and its demand has 

led to the development of recursive subdivision techniques for cubic splines. 

In summary, it can be seen that both the cubic and the conic spline offer features 

and properties that make them suitable for capturing and representing contours 

of shape. The fact that most of the benefits in using Bezier cubics can be 

approximated by conic splines, makes the latter a real and practical alternative 

to replacing the iterative and time-consuming methods of the Bezier cubic. 

5.3 Bezier to Conic Algorithms 

Having presented a comparison of the two most used mathematical descriptions, 

this section considers the transformation process necessary to approximate Bezier 
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defined outlines with general conic sections. The mechanism employed for a 

degree reduction of a Bezier spline (as discussed in section 2.2.4) is utilised here. 

Converting a Bezier cubic to a quadratic form, through the use of only control 

points, results in a parabolic curve. In other words, a Bezier quadratic (expressed 

solely in terms of its single control point) represents a parabola. Although this 

might be required in some cases (see chapter six), this section considers and 

develops techniques which convert the Bezier cubic outline to any of the curves 

belonging to the family of conics. 

5.3.1 Concept of Conversion 

Before presenting the techniques for conversion, it is worth considering the form 

and nature of the Bezier cubic spline in terms of its general quadratic 

representation. If a Bezier cubic curve was allowed, for example, to generate a 

cusp and a loop within its polygonal set-up, then these could only reasonably be 

approximated by using two or more conic sections. This would require splitting 

the Bezier shape to accommodate a quadratic representation. Possible conic 

modelling of such shapes is illustrated in Fig 5.1. (Note the zero-order (conic) 

continuity for the cusp) . 
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Fig 5.1 Gives an illustration of how a quadratic representation could 

be gained for the case of: a) a loop and b) a cusp. 
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As mentioned in the previous section, the Bezier cubic spline is normally used 

to represent at most one point of inflection. This reduces, therefore, the problem 

of conversion to three possibilities: The first case is where the Bezier spline 

contains an inflection point. This will need, at least, two conic splines, joined 

together at the occurring point of zero curvature. The second case is where the 

two knot tangents of the Bezier curve cannot return an acceptable control point 

for the approximating conic. This again will require two or more conic sections. 

In the third (and ideal) case is where a single conic-fit will suffice. This will 

occur for Bezier arcs whose tangents can directly yield the corresponding position 

for the conic control point. Fig 5.2 gives a graphical illustration of the three 

possibilities. 

. ............................................... . , . 
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. 
, 

. 
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Fig 5.2 Shows three types of Bezier curves that will require a conic solution: 

a) and b) will require two or more quadratic arcs, whilst 

in c) a single conic approximation is possible. 

5.3.2 Preparation for Conversion 

In view of the discussion made in the previous section, the Bezier cubic curve 

needs to be processed such that its in a form which will enable a satisfactory 
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conic approximation. The Bezier spline is required, therefore, to have tangents 

which do intersect in the manner depicted in Fig 5.2c. This means a method for 

locating the point of inflection, and a strategy for fmding a suitable point to 

subdivide the Bezier spline (when necessary) needs to be developed. 

When deciding where to split the given Bezier cubic curve of the type shown in 

Fig 5.2b, two considerations are necessary: The first is that the given curve can 

be subdivided at its mid-point (t-=O.5), using the approach presented in section 

3.6.1. This will yield two Bezier curves which are in the required form of Fig 

5.2c. Although this method is satisfactory and is employed in the algorithms 

presented later in this chapter, an alternative approach is to subdivide the given 

Bezier cubic curve at various points and, at each point, determine the 

corresponding conic-fit. By comparing the worst-case point-to-curve deviations 

(based on the method outlined in section 4.2.5), the "best" possible approximation 

can then be made. This approach leads to a graph similar to that shown in Fig 

5.3. In practice, however, this approach tends to return the "best" splitting values 

which lie close to the given curve's mid-point, enforcing the opinion that the first 

(non-recursive) approach suffices for most situations. 

Residue 86 
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Fig 5.3 Depicts a typical graph of how the residue returned by a conic 

approximation varies for a Bezier curve split at specified values of t. 
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In passing, it should be emphasised that the situation as depicted in Fig 5.2b 

requires an efficient approach for its detection. If its allowed to be modelled by 

the method outlined in section 5.3.3, for example, then a "best" fitting conic 

spline will result which would be the complement of the given Bezier shape. The 

situation is shown in Fig 5.4. The detection process, therefore, should be based 

on the tangent directions of the knot points. The principles of such an approach 

are discussed by Hu and Pavlidis [HU 91]. 
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Fig 5.4 Highlights the case where the conic representation 

returns a shape which complements the given Bezier curve. 

For purposes of finding a point of inflection in the given Bezier cubic curve 

segment, various approaches could be applied: The recursive approach for 

locating the most suitable place to subdivide the given curve (as discussed above) 

can be used for this purpose. Implementation of such a technique will yield that 

the "best" place to split the Bezier curve is at its point of inflection. The 

technique is thus being used indirectly to locate the point where the curvature of 

a Bezier cubic curve goes to zero. Although this approach can be used, it is 

neither the most elegant nor the fastest way of achieving the desired result. 
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A technique based on the work of Stone and DeRose [STON 89] could be 

developed to detect any points of inflection. As mentioned in section 3.2.3, they 

characterise the Bezier cubic to determine whether the resulting shape contains 

a cusp, a loop or any inflection points. By computing the corresponding 

characteristic point and testing it against the region boundaries, it is possible to 

detect whether a Bezier CUlVe exhibits a point of inflection. Although it is not 

made clear in [STON 89] exactly how to use this to locate the point of inflection, 

a possible approach would be to subdivide the given Bezier CUIVe and then to 

characterise the two Bezier arcs to evaluate which contained the point of 

inflection. This process would continue until for a specified t value, neither of the 

two resulting Bezier arcs displayed an inflection point; implying CUIVe point pet) 

is the desired solution. 

The technique employed for detecting and locating the point of inflection, for the 

Bezier to conic algorithms, is based on attaining CUIVature information through 

a frequently used mathematical expression. This returns the appropriate signed 

CUIVature value k(t) for a CUlVe defined parametrically by t. The equation for the 

CUlVature has been given by various authors including Faux and Pratt [FAUX 79] 

and Roulier [ROUL 88]. This is expressed in terms of the corresponding first and 

second parametric derivatives (that is, x(t), y'(t), x'(t) and y"(t) respectively) for 

the CUlVe: 

x'(t)y"(t) - x"(t)y'(t) 
k(t) = _-:---::------:-~:-::-­

[X'(t)2 - y'(t? ]3(2 ... (5.1) 

The way equation (5.1) is used to detect an inflection point is by checking if the 

sign of the cUlVature value k(t) changes within a Bezier CUIVe segment. If there 

is no change of sign then the CUIVe does not contain a point of zero cUIVature. 

If, on the other hand, a change of sign in k(t) is discovered than there exists an 

inflection point between the points where the sign change has taken place. By 

means of successively subdividing this inteIVal and testing for a sign change in 

equation (5.1), it is possible to converge quickly to the point where k(t) will 

equal zero; returning the location for the "best" point to split the Bezier CUIVe. 

(Alternatively, an analytical approach could be used to fmd the point of 

inflection, see Patterson [PATT 88] for a general discussion). 
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5.3.3 Conic Capture Through Tangents 

With the Bezier cubic curve initially processed to have knot locations which 

make it possible to have a suitable conic approximation, this section presents the 

first conversion algorithm. The method has similarities with the approach used 

to model IK data using general conic arcs (section 4.4.1) in that it ensures that 

the quadratic approximation exhibits, at least, first-order continuity. From this, 

it is clear that the IK to conic algorithm could be employed to gain a conversion 

between Bezier cubic to conic sections. In this case, the Bezier described outline 

would then need to be expressed in terms of discrete data points in the manner 

highlighted in section 4.4.1. Although the parametric nature of Bezier arcs makes 

it relatively simple to attain data points describing the outline, each arc shape will 

require a different number of data points to fully represent it. This will lead to 

problems of either having too many, or not enough, points for gaining a conic-fit 

which is accepted aesthetically. Furthermore, it is desirable to have a direct 

conversion algorithm, based on the polygonal framework of Bezier splines, rather 

than on a process of summing the individual data points. 

In line with the IK to conic algorithm (of section 4.4.1), the "best" location for 

the quadratic control point is evaluated using the knot point tangents. The 

intersection point of these returns the desired control coordinates u and v. This 

then leaves the calculation of the corresponding "best" value for the sharpness. 

To gain an expression for the sharpness value S, the steps outlined in section 

4.4.1 are utilised. The principal difference is the fact that the discrete summation 

of data points is replaced by an integral, which implies that a conic-fit is acquired 

for a mathematically described outline. Making use of the implicit form for the 

general conic as given by equation (4.5), a solution is desired which minimises 

this through yielding the "best" values for 52. In other words, a solution to the 

following is required: 

... (5.2) 
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The curve points Xi and Yi are expressed as a function of the Bezier cubic 

parametric variable t, as given by equation (3.13). If we perfonn the partial 

derivatives as instructed by equation (5.2), and compile similar terms, then it can 

be shown that the "best-fitting" sharpness value for the given constraints can be 

evaluated through the following: 

... (5.3) 

The integration, with respect to t, is computed just once, at the beginning of the 

conversion process. As the limits for the integral are zero and one, the resulting 

expressions for the numerator and denominator of equation (5.3) are found to be 

compact, and whose values are gained through the sole use of u, v and the given 

Bezier cubic polygon. Clearly, the "best-fitting" conic approximation is made 

without having to resort to any iterative or recursive procedures. 

The goodness-of-fit is assessed through the employment of equation 4.6. This 

appeared to be the simplest way of gaining the worst-case point-to-curve 

deviation. The "best-fitting" conic curve was compared with some discrete data 

points acquired through the parametric fonn for the Bezier cubic as given by 

equation (3.1). 

To summarise this conversion process, the complete algorithm is depicted in Fig 

5.5. As is apparent from this, if the resulting conic-fit fails to satisfy either a 

desired accuracy value or is not accepted on grounds of aesthetic appeal, then the 

given Bezier arc is subdivided in the manner discussed in section 5.3.2 and 

represented by two conic sections. Fig 5.5 does not show the processing of line 

segments. These nonnally are not expressed in terms of a Bezier "arc" (where it 
P 2P3 I' is necessary to set the control points P l at _3 and P2 at _ re atlVe to start 
3 3 

knot Po), but as a line segment described completely by the two knot positions. 
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The conic representation of this is simply attained by setting the sharpness value 

equal to zero. 

Initial 
Preparation 

Evaluate 
control point 

Calculate best value for 
the sharpness parameter 

no 

Split Bezier 
curve 

Fig 5.5 Shows the Bezier to general conic conversion 

algorithm which maintains first-order continuity. 

The next section presents an alternative approach for converting Bezier cubic arcs 

to general quadratic splines. In section 5.3.5, the performance of both the 

conversion algorithms are analysed. A comparison is presented which leads to 

highlighting further the capabilities of both approaches. 
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5.3.4 Conic Capture with Least Deviation 

The method outlined in the previous section has the attraction of safe-guarding, 

at least, first-order continuity between joining conic arcs. Because of this, the 

approach confines itself to evaluating the "best" value for the sharpness. As the 

Bezier described outline is initially processed to be conic-like, the respective 

conversion process should then return the "best" possible conic-fit Using the 

knot point tangents as a basis for the control point, however, means that the 

resulting conic-fit will not necessarily be the one which deviates the least from 

the given Bezier curve. This section presents a conversion algorithm which has 

the attraction of providing general conic approximations that deviate the least 

from the supplied curve. Furthermore, the equations developed are of a linear, 

non-iterative, type. 

With analogy to the previous section, the method developed for IK data to 

general conic representation (section 4.4.2) could be used for the purpose of 

converting Bezier cubic curves to conic splines. Details of its employment can 

be found in the paper written by the author [RUSS 89]. Although the approach 

is acceptable, it has the drawback (as mentioned in section 5.3.3) of either 

introducing too many, or not enough, points in describing the Bezier outline. In 

[RUSS 89], for example, each Bezier curve segment was represented through 

1001 curve points. Clearly, this originates redundancy in the conversion process, 

and leads to an algorithm which cannot be described as being computational 

efficient. Even if fewer data points were employed, a decision (or better still, a 

criteria based on curvature) will be needed to evaluate the number of data points 

which will suffice. In short, the method of section 4.4.2 is ideally suited for 

capturing a given set of data points, and requires "improving" to represent a 

mathematically described outline. 

In order to avoid working with non-linear expressions, equation (4.11) is utilised 

such that the solution to the three unknown a, ~ and 'Y is required. Unlike 

equation (4.12), however, the "best" values for these parameters is gained through 
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minimising the integral of the squared residue (as given by equation (4.11». This 

can be expressed as follows: 

... (5.4) 

With analogy to section 5.3.3, the Xj and Yj are expressed in terms of the 

parametric variable t of equation (3.13). The integration, again, is performed once 

in the beginning of the conversion algorithm. Although this, and the computation 

of the partial derivatives, can be carried-out manually, the expressions tend be 

rather lengthy and ideally require the use of an algebraic manipulation package 

(such as REDUCE). Having performed the evaluations as instructed by equation 

(5.4), a three by three (linear) matrix is set-up, which can be solved by using the 

process of Gaussian elimination. 

The solution of the conic parameters a, ~ and 'Y makes it possible to use equation 

(4.10) to calculate the coordinates for the control point. The corresponding 

sharpness value and, therefore the type of conic section being employed, is 

obtained via equation (4.13). 

The steps involved in performing the conversion are graphically outlined in Fig 

5.6. If a single conic-fit does not suffice, then the given Bezier spline is 

subdivided and represented by two "best-fitting" conic splines. This process of 

subdivision continues until a desired conic approximation results. 
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Fig 5.6 Gives the steps for a Bezier to general quadratic 

conversion which yields the closest approximation. 

5.3.5 Analysis and Performance 

The effectiveness of the two Bezier cubic to general conic conversion algorithms 

is assessed through their capture of a given'S' character. Developed by Osland 

[OSLA 86], the character fonns part of a font which uses Bezier cubic arcs for 

its description. The outline of the'S' character is shown in Fig 5.7. This is 

produced by using the parametric fonn as given by equation (3.3). The output 

shown in Fig 5.7 is gained through rounding respective x and y values to their 

nearest mesh points. It is clear from the location of the knot points that. the 
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character consists of six (Bezier) curves, labelled A, B, C, D, E and F, in Fig 5.7. 

Although it is necessary to split curves C and F (because each contains a point 

of inflection), the remaining four curves were also subdivided to facilitate an 

acceptable conversion, resulting in arcs AI,A2 for curve A, Bl,B2 for curve 

B, .... , Fl,F2 for curve F. Apart from curves C and F (which are split at their 

respective point of inflection), the other four curves are subdivided at their mid­

point (t=O.5). 

B 

F 

Fig 5.7 Depicts outline of the'S' character, used as an 

input for the Bezier to conic conversion algorithms. 

The Bezier described character is then processed by the two conversion 

algorithms. Their respective output is shown in Fig 5.8. This is gained by 

utiliSing the parametric form for the general conic as expressed by equation (4.3). 

In a similar fashion to the output of Fig 5.7, each x and y curve point returned 

by this equation is rounded to the nearest integer. 

If a visual comparison is made between the given Bezier outline and the two 

generated conic approximations (that is, Fig 5.7 with Figs 5.8a and 5.8b, 

respectively), it can be seen that most of the distinct features have, to a good 

degree, been captured. The fact that all the Bezier curves had been split (resulting 

in non-integer mesh points that required rounding), and the conversion process 

5.0 Algorithms for Bezier-Conic Conversions page 137 



having to employ two conic arcs for each Bezier curve, has not seriously 

handicapped the quality of the two approximations. 

A closer examination of the output is manifested in Fig 5.9. This illustrates the 

difference in terms of the respective integer versions being exclusively OR-ed. 

Although, in theory (that is, if floating-point values for the x and y positions were 

being used to both evaluate and represent the respective outputs) there would be 

negligible differences, the output of Fig 5.9 demonstrates that both algorithms do 

yield a few integer positions which are out of step with the given Bezier version. 

This shows the accumulative effect of rounding to integers the split points and 

the respective curve points, a effect which is most apparent for given curve E, 

where splitting at its mid-point results in a floating point value of 56.5 (for the 

y-axis). 

a) b) 

Fig 5.8 Shows the output from the two conversion algorithms: 

a) tangent continuous and b) most accurate. 

Comparing the difference output produced by the conversion algorithm of Fig 5.4 

with that generated by the steps of Fig 5.5 (that is, Fig 5.9a with Fig 5.9b), it is 

clear that the closest fit, as expected, is returned by the latter process. This fact 

is verified by the tabulated results shown in Fig 5.10. Allowing the position of 

the control point to vary independently of the given knot tangents results in a 
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conic approximation which is a factor three to four times closer than otherwise. 

In other words, the obseIVations noted in Fig 5.10 show that first-order continuity 

is maintained at the expense of increasing significantly the point-tO-CtiIVe 

deviation. Since the quality-of-fit is measured in terms of this deviation, more 

quadratic CUIVes will result for a gradient continuous description than an 

approach (such as of section 5.3.4) which is allowed to convert within a more 

relaxed constraints. (This point has already been verified in section 4.4.3 through 

the capturing process of IK data to general conic format) . 

+ 

• ,.".... I,., 
~ , 
, , 

, 

, 

.. 

" 
."" , 

. . , 

,+ ... "'. 

a) 

, 
, , , 

~ , . 
~ 

. 
" , 

) 

,- ,-' 

< 
" ~' . 

, 

-",. " , , ., 
, ' 

--, , , . 
I,,, ., 

b) 

, 
I 

• , . . 
" " .-

-" " 

Fig 5.9 Highlights the difference between the given outline and the 

resulting outputs: a) tangent continuous and b) most accurate. 

Fig 5.10 also shows the amount of "discontinuity" between joining arcs for the 

conversion algorithm described in section 5.3.4. The least acceptable value is 

3.03313 degrees, occurring at the joining knot of CUIVes Al and A2 and, of 

CUIVes D 1 and D2. Although this appears to be relatively higher than desired, it 

is acquired through increasing the accuracy of the conic approximations; a point 

demonstrated by Fig 5.9b when compared to Fig 5.9a. 
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In short, it can be concluded that both the Bezier cubic to general conic 

conversion algorithms are suitable approaches, which return an acceptable output 

The algorithm illustrated in Fig 5.4 has the attraction of yielding a first-order 

continuous description, whilst the second approach (Fig 5.5) dispenses with 

gradient continuity and returns conic approximations which deviate the least from 

the supplied outline. 

Bezier to Algorithm Algorithm 
Conic of of 

Conversion Fig 5.4 Fig 5.5 

Input Worst Worst Difference in 
Curve point -to-curve point -to-cUlve joining tangents 

Al 

A2 

B1 

B2 

C1 

C2 

D1 

D2 

E1 

E2 

F1 

F2 

deviation deviation degrees 

0.19544 0.06206 
3.03313 

0.32054 0.07757 
0.73976 

0.03365 0.01125 
0.64190 

0.05321 0.01697 
0.05202 

0.03634 0.00804 
0.66219 

0.16060 0.03446 

0.19545 0.06206 
3.033l3 

0.32054 0.07757 
0.76096 

0.03283 0.01043 
0.67603 

0.05335 0.01735 
0.05663 

0.03727 0.00856 
0.65490 

0.14748 0.03247 

Fig 5.10 Shows tabulated results for the two Bezier to 

general conic conversion algorithms. 

5.4 Conic to Bezier Conversion 

The techniques developed, in chapter 3, for employing Bezier splines to describe 

contours of shape have highlighted the fact that these require considerable 

processing time to compute. Converting IK data to conic splines, on the other 
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hand, takes relatively little computation and is, therefore, perfonned at a much 

faster rate than its Bezier cubic counterpart. This section explores the possibility 

of converting general quadratic splines to Bezier cubic curve segments. Two 

approaches are developed. Their benefits and limitations are discussed in detail. 

5.4.1 Concept of Conversion 

The process of transfonning the conic triangle to a respective Bezier cubic 

polygon involves replacing the single weight parameter (ie the sharpness value) 

by two control points. These are located on the corresponding tangents of the 

knot points. Unlike the general conic (except for the parabolic case), the 

positioning of the control points governs the resulting Bezier shape (see section 

3.2.3). The process, therefore, can more precisely be described as attempting to 

position the control points on the guiding triangle (of the conic) such that it 

matches the shape and, thus, the influence of the sharpness value. 

Obviously, the Bezier cubic spline is restricted to modelling shapes which are 

conic-like. If given outlines contain inflection points, cusps or loops, then these 

will require splitting in order to facilitate a conic approximation. Each resulting 

quadratic arc will then be captured by a corresponding Bezier curve segment 

The next section presents an algorithm which is based on the sharpness parameter 

for the general conic section, and employed as a subroutine in the IKARUS 

system. In section 5.4.3, an alternative method is developed. This uses the 

curvature at the knot points to gain a corresponding Bezier cubic approximation. 

Performance analysis of both approaches can be found section 5.4.4. 

5.4.2 Approximation Through Sharpness 

Since the requirement for the conversion process is, basically, to translate the 

sharpness value into the two control points for the Bezier cubic, this section 

presents a method for perfonning a direct translation. The method develops a 

conversion fonnulation which uses the mid-point of the conic arc to evaluate the 

corresponding "best-fitting" Bezier cubic control points. 
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Using the illustration of Fig 5.11, the values of r and s are required such that 

they yield a desired Bezier approximation to the given conic enclosed within the 

triangle Po, PI and P2• The parameters r and s have the same meaning and 

significance as discussed in section 3.5.2. For simplicity, it is assumed the given 

conic arc starts from an origin (0,0) so that Po can be taken as being equal to 

zero. The mid-point expression (where 1==0.5) for a conic curve can be gained by 

using equation (4.3). This takes the fonn: 

... (5.5) 

, . 

r 

.. ' 
.' 

Fig 5.11 Depicts the relationship between the conic guiding triangle 

(Po, P l and P~ and the corresponding Bezier 

polygon (Po, r, s and P~. 

In the case of the Bezier cubic curve, a corresponding mid-point fonnulation can 

be developed in tenns of r, s, P l and P2 (where these are as manifested in Fig 

5.11) by utilising equation (3.3) with the respective substitutions of equation 

(3.16). Combining common terms and simplifying leads to the following 

expression: 

3P1(r+s) + P2(4-3s) 
P(':) = 

2 ------~8~-----
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By letting r=s, equation (5.6) then takes the form: 

1 3r(2PI-P2) + 4P2 P(-) = 
2 ------~8------

... (5.7) 

By equating equations (5.5) and (5.7), the following conversion formulae evolves: 

r = 4S 
3(S+ 1) 

... (5.8) 

It is apparent from equation (5.8) that relatively little computation is required to 

translate a given conic description to a corresponding Bezier representation. 

The positioning of the Bezier controls is such that for elliptic arcs, as the 

sharpness value S is increased from zero to one, r (as well as s) takes values 

from zero to 2/3. The conic spline yields a parabolic curve for S equals one. 

From equation (5.8), this for the Bezier case occurs at r = s = 2/3. Values of S 

greater than one and tending towards inftnity generate hyperbolic arcs. These are 

converted to r (and s) values which range between 2/3 and one respectively. 

Further discussion of this approach is deferred until section 5.4.4, where its 

performance is analysed together with the alternative approach. The next section 

outlines this alternative approach for converting general quadratic splines to a 

Bezier cubic curve format. 

5.4.3 Conversion Through Curvature 

As mentioned by Pratt [PRAT 85] and discussed in section 5.2, the curvature at 

the knots of a conic curve is directly related to its sharpness value. This section, 

as an alternative to the approach outlined in the previous section, presents a 

conversion method which matches the curvature at the knots of a conic arc with 

that for a Bezier cubic curve. The discussion here is limited to gaining 

appropriate values for the Bezier control parameters r and s. Development of 

implicit cubic forms resulting from these constraints are given in [PITI 91], a 

paper which is jointly written by myself and Pitteway. 
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With reference to [pRA T 85], the curvature at the two knots for a conic spline 

defined by a guiding triangle (such as that shown in Fig 5.11) can be expressed 

as follows: 

at origin: k = il 
C.J S2

C
3' 

at end: k = il 
ce S2a3 ' 

where: il as given in equation (4.5), 

c is length of line from Po to PI' and 

a is length of line from PI to P2• 

... (5.9) 

Corresponding curvature equations for the Bezier cubic curve can be gained in 

terms of the control parameters r and s. These take the form: 

at origin: k = 4il(1-s) 
b.r 3r2c 3 ' 

at end: k = 4il(1-r) 
be ... (5.10) 

Letting r=s, and matching curvatures at respective knots (by equating equations 

(5.9) and (5.10), results in the following conversion expression: 

2S .r:::-: 
r = _(VS2+3 - S) . 

3 . .. (5.11) 

Compared with equation (5.8), the curvature conversion expression (equation 

(5.11» requires a little more computation; the use of a square-root makes it 

unattractive. This, however, does ensure that the resulting Bezier spline captures 

more than just gradient continuity, the effect of which would be more apparent 

if the modelling process for the general conic is constrained to embody second 

order continuity. 

5.0 Algorithms for Bezier-Conic Conversions page 144 



As the sharpness values goes from zero towards infInity, the corresponding 

curvature at the knots goes from infinity to zero. Equation (5.11) is expected, 

therefore, to yield acceptable approximations for the elliptic, parabolic, and for 

hyperbolic arcs which have S values close to one. As the sharpness tends towards 

infinity, the resulting arc has more curvature at its centre than at its knot points; 

implying that conversions for such extreme quadratic curves may not be suitable 

through equation (5.11). This point, together with the approach of 5.4.1, are 

analysed and discussed further in the next section. 

5.4.4 Analysis and Performance 

Having presented two approaches for converting outlines employing general conic 

sections to a corresponding Bezier cubic deSCription, this section assesses the 

merits of both techniques. Each is supplied with an array of conic sections. For 

this purpose, sharpness values of 0.25, 0.5, 1, 2, 4, 8, and 16 are used. The 

coordinates for the guiding triangle are (0,0), (100,200), and (280,30) 

representing the starting, control, and fInishing points respectively. This results 

in the conic shapes depicted in Fig 5.12, which are supplied as input to the two 

converting algorithms. 

The output from both approaches is depicted in Fig 5.13. A visual comparison 

of the two outputs shows that the curvature approach behaves reasonably for the 

elliptic and parabolic arcs, but fails to represent hyperbolic curves within an 

acceptable level. This fact is further highlighted by Fig 5.14, where the respective 

outputs have been exclusively OR-ed with that of the input (that is, Fig 5.13 with 

Fig 5.12). As Fig 5.14a manifests, the conversion process based on the sharpness 

(section 5.4.2) returns the best of the two outputs. Like the curvature approach, 

its major diffIculty lies with the representation of the hyperbolic arcs. But, since 

it uses the mid-point of the conic as a basis for a conversion, the Bezier 

approximation maintains the overall shape of the given quadratic arcs (as Fig 

5.14a clearly demonstrates when compared to Fig 5.14b). 
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Fig 5.12 Gives an illustration of the quadratic shapes supplied 

as input to the conic to Bezier cubic conversion algorithms. 

Fig 5.14 shows also the effectiveness of both approaches in capturing the 

curvatures at the two knots. In the case of the curvature matching approach of 

section 5.4.3, this is embodied in its conversion process, and the results at the 

knot points are satisfactory. Although the conversion method based on the 

sharpness is not constrained to match curvatures at the knots, it appears to have 

fulfilled this requirement through its accurate approximation of the given conic 

sections. 

It is apparent from Fig 5.14 that the two approaches yield a perfect parabolic 

conversion. For sharpness value of one, both equations (5.8) and (5.11) give the 

corresponding value for r (=s) = 2/3. 

In conclusion, therefore, it can be said that the best approach for converting 

outlines from a general conic fonn to a Bezier cubic description is through the 

sharpness approach (discussed in section 5.4.2). This returns acceptable 

approximations for all the conic sections, especially for the elliptic and parabolic 
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b) 

Fig 5.13 Gives the output versions of both conversion 

algorithms: a) sharpness based and b) curvature based. 
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Fig 5.14 Shows the corresponding differences between the given outline and 

the Bezier converted outputs: a) sharpness based and b) curvature based. 

5.0 Algorithms for Bezier-Conic Conversions page 148 



5.5 Summary 

This chapter gives a detailed comparison of the two most popular schemes for 

mathematically modelling outlines, namely the Bezier cubic and the conic spline. 

Both benefits and limitations are presented. It is acknowledged that most of the 

attractions of Bezier splines can, to a good degree, be approximated by a 

corresponding conic arc. 

Two approaches for converting Bezier cubic curves to conic sections are 

presented. Both methods are based on an integral approach, which works with the 

control points rather than with discrete Bezier curve points. The first approach 

ensures the capturing process maintains the specified gradient continuity between 

conic arcs. As an alternative, the second method yields conic arc approximations 

which deviate the least from the given Bezier curve segment. 

Finally, this chapter considers techniques for transforming a general quadratic 

spline to a respective Bezier cubic form. Two methods are developed. The first 

is based on the sharpness value of the conic. This is used to yield a direct 

conversion by placing the Bezier control points on the given guiding triangle. 

The second method matches the curvature at the knots to gain a corresponding 

conversion. It is shown that this works well for the elliptic and parabolic case, 

but not for the hyperbolic curve. 
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6.0 Capture by Parabolic Arcs 

6.1 Introduction 

Thus far, the discussion has concerned itself with either employing the Bezier 

cubic or the general conic form for mathematically modelling a given outline of 

shape. Although these are sufficient for representing contours efficiently, some 

design systems have incorporated the parabolic arc as part of their main spline 

routine. System 7.0 developed by Apple™, for example, uses this form to model 

character outlines for its True-Type font. This has lead to other systems, such as 

IKARUS, to include a mechanism for capturing outlines with the parabolic arc. 

This chapter considers the parabolic spline in terms of its modelling capabilities. 

An introduction to the nature of the spline is given in section 6.2. Both the 

advantages and limitations it exhibits are highlighted. The chapter then describes 

two algorithms for capturing shape contours using the parabolic spline. Through 

this, a unique approach is developed which demonstrates that it is much easier 

to gain a parabolic solution via the general conic than directly. This fmding is 

somewhat surprising as there are five parameters to solve for the general conic, 

compared to just four for the parabola. 

6.2 Characteristics and Properties 

This section presents some of the properties and features of the parabolic arc. As 

the parabola belongs to the conic family, some of its characteristics have already 

been presented, especially in section 4.2. The attributes discussed here, therefore, 

form an extension of this, and are presented in relation to the parabolic arc. 

6.2.1 Manual Construction of a Parabolic Arc 

In section 4.2.1, the point of being able to gain a conic arc through a manual 

construction is made. Much of its introduction to the design process is attributed 

to Liming [LIM I 44, LIMI 79]. To investigate and highlight some of the 
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properties of a parabolic curve, it is necessary to consider the way it is manually 

constructed: 

Fig 6.1 illustrates one approach for gaining a parabolic arc. It is apparent from 

this, that the curve is defined through two knot points and their respective 

tangents. The guiding triangle formed by such an arrangement is, therefore, 

enough to result in the complete description of the curve. Points on this arc are 

gained by, initially, subdividing the lines resulting from the two tangents and 

their respective point of intersection. The subdivision process partitions the lines 

into a number of desired parts. By joining these lines, in the manner depicted in 

Fig 6.1, it is possible to generate a parabolic curve. 

Po 

. . 
·-······:··:···::=:,.·····~P-(t-m-) -: 

Fig 6.1 Gives an illustration of a manual 

construction for a parabolic arc. 

6.0 Capture by Parabolic Arcs 
page 151 



Through this construction, it is possible to realise that the shoulder point for the 

parabolic arc lies half-way between the intersection (control) point PI and the 
. Po + P2 • 

pomt at . This means that, as expected, the resulting sharpness value 
2 

equals one. The line 2-2 highlights the fact that the tangent at the shoulder (mid) 

point (t".) is parallel to the line made by Po and P2• This is an important property 

which simplifies the mathematics, and is applicable to all the conic sections 

described in terms of the guiding triangular framework as used by Pratt [PRA T 

85]. 

6.2.2 Applications of Parabolic Form 

Like most of the mathematical forms used for capturing shape outlines, the 

parabolic arc is employed in a variety of applications. These include modelling 

of dental arches, heels of shoes and contours of characters. The focal properties 

of the parabola are employed in transmission systems, where the "dish" is 

appropriately shaped to receive or transmit signals [VASI 80]. 

Since the parabola belongs to the conic family, it is not surprising to realise, 

therefore, that it is applied together with the other quadratic forms. The parabolic 

arc has the attraction, however, of requiring less information for a description 

than the general case. This is reflected in Fig 6.1, where a parabolic arc is 

defined through the two knots and the control point. 

In the field of typography, piecewise parabolic arcs have been employed to 

model outlines of font characters. Their simplicity of description makes them an 

ideal candidate for such applications. Apple TM have capitalised on this by 

defining an entire font on the parabolic spline. This has lead to other design 

systems, such as IKARUS, developing suitable conversion routines. 

Although the parabolic curve offers some benefits over the other quadratic curves 

(ie elliptic and hyperbolic), it does open itself to some practicalllmitations. This 

will be highlighted through the two algorithms developed for parabolic capture, 
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described in the latter sections of this chapter. The next section presents the 

mathematical fonns used for describing parabolic curves. 

6.2.3 Mathematical Forms 

In similar fashion to the Bezier cubic and the general conic descriptions. the 

mathematical fonn for the parabolic case can either be in tenns of a parametric 

variable or expressed solely in tenns of a quadratic equation in x and y. In other 

words, both parametric and implicit fonns exist for the parabola. 

The three-point Bezier triangle always returns a parabolic arc [BEZI 72]. It can 

be shown, therefore, that for such an arrangement a parametric fonn for the curve 

point pet) can be gained through equation (3.2) by setting n equals to two. The 

corresponding coordinate expressions can readily be fonnulated (for a Bezier 

starting from its origin) as follows: 

x(t) = 2t(l-t)u + t2C" ' 
yet) = 2t(l-t)v + t2C , y 

where: u and v denotes control position, 

C" and c.y denotes end knot position, and 

t ranges between zero and one. 

... (6.1) 

The respective implicit fonn for representing parabolic arcs can be gained using 

equation (4.5), where the sharpness value S is set appropriately to equal one. This 

then leads to the following fonnulation for the parabolic case: 

2 
4~~. - ~Ic 

d(x.,y.) = __ ' ~J __ 
, , tl 

... (6.2) 

In passing, it is worth noting that the parametric fonn for the parabolic spline can 

also be gained through the rational representation for the general quadratic. as 

given by equation (4.3). This leads to equation (6.1) by setting S=l, highlighting 

the fact that the Bezier quadratic set-up yields a parabolic arc. 
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6.2.4 Point-to-Curve Deviation 

With reference to the general conic case of section 4.2.5, a convenient way of 

evaluating the quality-of-fit of a parabolic arc to a given set of data points is 

through calculating the point-to-curve deviations. For this purpose, the implicit 

form, as given by equation (6.2), is used. By letting Aj denote this deviation for 

a given data point (xj,Yj), then it can be shown that this takes the form: 

... (6.3) 

where: dj is as given by equation (6.2), 

ad. (~k +2~.)(C -2v) 
Il = I = 2v + I Y 

% dx ~ 

Il = adj = 2u + (~k+2~)(C% -2u) 
Y ay Il 

Il, Ilj and Ilk are as given by equation (4.5). 

For each parabolic approximation, equation (6.3) provides a means of estimating 

the goodness-of-fit. The deviation returned by each IK point is compared with 

a given, and desired, accuracy. If it happens that the worst-case deviation is 

above this, then two or more arcs are required for an acceptable fit. 

6.3 Outline of Problem 

Having presented some of the properties and features of the parabolic spline, this 

section gives a description of the type and form of the approximation that is 

required. Although the techniques developed can be employed for capturing any 

outline, the parabolic algorithms have evolved with view to the lKARUS system. 

The problem in this case can be summarised as follows: 

Given a set of data points (Q;) describing a character outline, whose directional 

tangents at each point are known, a parabolic description is required that yields 

the "best" possible approximation. The goodness-of-fit is measured in terms of 
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a predefined accuracy. The number of arcs employed and the rate of conversion 

are the other two factors which determine the efficiency of an algorithm. 

The term "best" is characterised, in a similar manner to the general conic case 

(see section 4.3), to mean either an approximation which deviates the least from 

the given IK data points or one which maintains gradient continuity between 

joining arcs with acceptable accuracy. Three possible solutions to this problem 

are considered. The first, discussed in the next section, is shown to have 

characteristics that make it unattractive for commercial use. The other two 

approaches for a parabolic solution are given respectively in section 6.4.1 and 

6.4.2. 

6.4 Elements of Parabolic Conversion 

When considering how to convert the given IK outline points to parabolic curve 

segments, a choice has to be made whether to use the parametric or the implicit 

form. Both forms have their advantages and limitations. Meier [MEIE 88], for 

example, chooses to employ the parametric form (as given by equation (6.1)). 

Although he does not elaborate why the parametric form was used, it is clear 

from the capturing process that his selection was influenced through his 

association with the Bezier cubic case. In other words, techniques developed (by 

him) for the cubic spline were translated to the quadratic case. This, obviously, 

resulted in an approach which embodied all the recursive, and time-consuming, 

stages linked with the Bezier cubic. In order to avoid unnecessary iterations in 

the capturing process, the implicit form of equation (6.2) is used here. 

In view of the problem outlined in the previous section, a parabolic solution can 

be gained either directly through the specified tangents, or by allowing some 

flexibility in the location of the control points, or via another mathematical 

description which either maintains first-order continuity or is made less restrictive 

and returns control positions which give the least point-to-curve deviation. 
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The first possibility is easily realisable. The given tangents at the knot points can 

be used to construct a guiding triangle which in return will yield a parabolic arc. 

Although this approach guarantees first-order continuity between joining arcs, it 

does not take note of the IK curve points between the two (defining) knots. In 

other words, the process assumes a parabolic-fit without considering the given 

outline shape. This does not appear, therefore, to be the most suitable way of 

gaining the "best" possible parabolic-fit. 

To "improve" the situation, two parabolic arcs can be used: The splitting point 

(ending knot for the first arc and starting knot for the second) is nonnally 

constrained to lie half-way between the two control points of the resulting arcs. 

The point of subdivision is either gained through "designating" one of the IK 

points as being the most suitable, or by applying a more complicated procedure 

where it is obtained through a recursive mechanism. This approach has the 

advantage that it maintains gradient continuity and its method of solution is based 

on the given IK points. It employs, however, at least two parabolic arcs (for a 

given outline) to sustain such continuity. Furthennore, and more importantly, its 

mechanism for capture is based entirely on a recursive set-up. This has a 

detrimental effect, therefore, on the rate of conversion. 

The second and third possibilities for a parabolic solution are presented 

respectively in section 6.4.1 and 6.4.2. Their perfonnance in capturing outlines 

is analysed and compared in section 6.4.3. Through this, it is shown that the 

fastest (and most convenient) way of gaining a parabolic-fit is via the general 

conic, a result which is somewhat surprising as the parabola requires fewer 

parameters for its description. 

6.4.1 Capture With Least Deviation 

Having discussed an approach that exhibits some form of continuity, this section 

presents an algorithm which yields a parabolic spline that deviates the least from 

the given set of IK points. The gradient continuity is compromised to enable the 

capturing process to take on the "best" value for the control point, and not just 
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the point where the knot tangents intersect. It is expected that this would lead to 

fewer curve segments being employed. The process in detail is as follows: 

If we consider the capturing process of the general conic as manifested in section 

4.4.2, it is clear that this leads to a linear solution for the three unknowns a, ~ 

and 'Y , resulting in the "best" possible values for the control point Cu, v) and the 

sharpness parameter S. In the parabolic case, S equals one, implying that an 

additional constraint of a~-f = I needs to be introduced in the capturing process. 

This leads to a non-linear solution, requiring iterative routines. 

Employing equation (6.2), the implicit form for the parabolic spline, also leads 

to a formulation which is non-linear in both u and v. This highlights further the 

basic problem of fitting a parabola to a given set of data points. Although it 

requires four parameters (one less than the general conic), it is well known in the 

field of Mathematics that given four data points, two parabolic solutions can 

result [GRIE 34, LIM! 79]. The situation is depicted in Fig 6.2. 

I 

\ 
QI I 

. / 

I 
I 
I 

Fig 6.2 Shows that there are, in general, two parabolas which can 

be drawn through four given data points (Qo' Ql' Q2 and Q3)' 
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The iterative solution, though not desirable does fionn h fi . 
, an approac or convertmg 

the given IK data points to a corresponding parabolic representation. Using 

equation (6.2) for this purpose, the "best" values for u and v can be gained 

through minimising the sum of the squared residue at each of the given data 
points. That is: 

a 11 2 "'"LL d j = 0 , 
au i-1 

a 11 2 
~Ldi =0. 
av i-1 . .. (6.4) 

For a solution to the two unknowns, expressed in terms of equation (6.4), the 

NAG routine coded C05NBF [POWE 70] is used. If this returns an 

unsatisfactory parabolic-fit, the given set of IK points are subdivided and 

approximated by two or more arcs. 

The various stages of this approach are expressed graphically in Fig 6.3. Its 

performance is analysed in section 6.4.3. The next section presents a unique non­

iterative algorithm. 

6.4.2 Capture Through the General Conic 

As an alternative to the algorithm presented in the previous section, an approach 

is described in this section which does not employ an iterative mechanism for a 

solution. Furthermore, this approach is more adaptable in that the resulting 

parabolic-fit can either be the one which deviates the least from the given set of 

data points or, be the most optimum to ensure gradient continuity between 

joining arcs. The method uses a two-pass capturing mechanism, where the first 

pass captures the given IK data points using general conic sections and the 

second pass translates these into parabolic arcs. The method in detail is as 

follows: 
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IK data 

Evaluate control point 

Split data 

Update values for 
control parameter 

desired fit 
being gained 

? 

yes 

STOP 

no 

yes 

solution being 
converged to 

Fig 6.3 Depicts the technique for a parabolic solution which 

returns the closest approximation to the given outline. 

As discussed and presented in chapter four, the process of mathematically 

modelling the outline of a shape using general quadratic curves can be 

accomplished without resorting to iterative and recursive techniques. Both the 

methods described respectively in sections 4.4.1 and 4.4.2 yield expressions 

which are linear in terms of their solution variables. Since the parabola forms a 

special curve within the conic family, an approach based on this relationship 

appears to be the best way to gain a parabolic solution. 

The primary stages of such an approach are shown in Fig 6.4. After receiving a 

set of IK curve points, the algorithm yields an output using a two-pass 

conversion system. The first stage quantifies the data points in terms of a "best-
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fitting" general conic section. This could be in the manner described in section 

4.4.1, where gradient continuity is guaranteed, or be in the form of section 4.4.2, 

where a conic approximation is gained which deviates the least from the given 

set of data points. As far as the parabolic description is concerned, either 

approach could be employed, though its clear that for first-order continuous arcs, 

the conic quantification must maintain the given tangent information. 

IKdata 

Conven to a general 
conic description 

Is 
conve~lon no 

within tolerance '>-_______ --1 

? 

yes 

Translate conic curve 
to a parabolic arc 

Has 
desired fit 

being gained 
? 

no 

Split conic 
curve 

Fig 6.4 Shows the parabolic conversion process which 

uses the general conic representation. 
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The second pass, as depicted in Fig 6.4, takes the general conic section and 

translates it to a parabola. This is acquired by using the guiding triangle (as 

provided by pass one) and setting the sharpness value to equal one. In other 

words, a parabolic-fit is gained through the triangular framework for a general 

conic description. In the case of an elliptic or a hyperbolic spline, some deviation 

between these and the resulting parabolic arc will result. An expression for 

measuring this deviation can be derived using respectively equations (4.3) and 

(6.1) for t=0.5. With reference to the graphical illustration of Fig 6.5, where Am 

denotes the corresponding deviation, and taking S as the "best-fitting" sharpness 

value for the general conic, the following formulation can be devolved for ~: 

A = (1-S) V(0.5u-0.25C)2 + (0.5v-0.25C)2 . 
III (1 +S) % 

. .. (6.5) 

......... , .•.....•.•....••.• 

---- --
.............................................................................................................. 

Po(O,O) P,£CxC) 

Fig 6.5 Gives a graphical representation for the mid-point deviation Am 

for a general conic curve (shown with long dashes) 

and a parabolic arc. 
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Clearly, equation (6.5) is providing a means of evaluating how close the 

parabolic-fit is to the "best-fitting" conic description. An alternative way of 

assessing this could be based on the parameters a, ~ and y for the general conic. 

The equality a~ = f manifests that the general quadratic section is a parabola; 

otherwise if a~>f or a~<f it is respectively an ellipse or a hyperbola. This fact 

could be used to replace the term g :~ with an appropriate proportional tenn 

in a, ~ and y. 

Equation (6.5) provides a useful way of detennining whether, or not, the resulting 

parabolic curve will return a satisfactory approximation that meets a desired 

specification. If Am is found to be above this, then the given set of IK data points 

would need two (or more) parabolic arcs for a solution. Otherwise, equation (6.3) 

will be employed to evaluate the worst-case deviation. If this is found to be 

larger than desired, the conic curve would need to be subdivided and represented 

by two (or more) parabolic splines. 

As depicted by Fig 6.4, the second phase of the conversion algorithm is not 

activated until an acceptable conic-fit has been obtained. The given IK data is 

subsequently partitioned so that two or more general quadratic arcs describe it 

accurately. If it is then found that the resulting parabolic-fit is not satisfactory, 

the conic curve is subdivided in the manner shown in Fig 6.6. For the case where 

a single new knot point is sufficient (Fig 6.6a), the conic spline is split at its mid­

point (ie at t=0.5). The new knot positions are calculated by applying the 

parametric form for the general conic as given by equation 4.3. The 

corresponding tangent at this new knot is parallel to the line from the (conic) 

start and end knots. Furthermore, the location for the resulting two control points 

of the parabolic splines is such that the new knot lies half-way between them 

(Liming gives an illustration of this general conic property [LIMI 79]), thus 

fulfilling the desire to minimise the amount of storage required (see previous 

section). 
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t = 1/2 

a) 

PoCO. 0) 

b) 

........ ...... 

Fig 6.6 Demonstrates the subdivision of the general conic curve, to yield: 

a) two parabolic arcs, and b) three parabolic curves. 
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Although general expressions in tenns of tangents can be derived, the fonnulation 

for the two control points (for the parabolic splines) can be expressed solely as 

a function of the defining guiding triangle for the conic: 

uS u = 
I S+ 1 ' 

vS v = 
I S+ 1 ' 

uS+C 
% 

U2 = ---=S:-+~l-
vS+C 

V 2 = """""S""'+"""l--J' ... (6.6) 

where: S is the sharpness value for the "best-fitting" general conic, 

u and v fonn the control point for the general conic, 

ul and VI constitute the control point for the 1st parabolic arc, and 

~ and v2 constitute the control point for the 2nd parabolic arc. 

If a single subdivision still does not yield an acceptable parabolic approximation, 

the conic cUlve can be further subdivided in the manner shown in Fig 6.6b and 

approximated by using three parabolic arcs. Two new knot points are placed, on 

the "best-fitting" conic section, at t = 1/3 and t = 2/3 respectively. The 

mathematics for solving for the three parabolic control points is based on similar 

principles used for the single split case. In order to simplify the computation, it 

is worth noting that the tangent at t = 1/3 is parallel to the line from the (conic) 

start knot to the second new knot point at t = 2/3. Similarly, the tangent at this 

point is parallel to the line from the first new knot point to the (conic) end knot. 

In passing, it is worth mentioning the fact that the process of subdivision is 

greatly eased by the initial conic capture. Unlike the non-linear approach (of 

section 6.4.1) where each time the given IK defined outline is nonnally 

partitioned, this alternative approach makes use of the geometric properties of the 

general conic. Furthennore, the precise location of the point for subdivision can 

be selected and, as indicated above, an appropriate number of parabolic arcs 

employed. 
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Having described this linear approach for a parabolic solution, the next section 

assesses its perfonnance through a specified example. The results are compared 

with that of the non-linear method (discussed in the previous section). 

6.4.3 Analysis and Observations 

To evaluate the perfonnance of the two approaches adopted for describing 

outlines with parabolic arcs, the contour of the'S' character shown in Fig 5.7 is 

used. Each curve segment is subdivided, in the manner discussed in section 5.3.5. 

The input to both algorithms is in the fonn of a "best-fitting" general conic, 

gained through the gradient continuous method of section 5.3.3. 

Fig 6.7 depicts the capturing capabilities of using the non-linear approach (of 

section 6.4.1). For examination purposes, conversion is performed at various 

levels of fitness. Looking at the various outputs of Fig 6.7, it can be observed 

that most of the distinct features of the given'S' outline have, to a good degree, 

being captured. Fig 6.8 demonstrates this fact by highlighting the differences in 

the integer positions between the supplied character shape and the corresponding 

parabolic fit (that is, between Fig 5.7 and Fig 6.7 respectively). 

Applying the non-iterative procedure (of section 6.4.2) to the given outline results 

in the outputs shown in Fig 6.9. Again, these are gained through similar levels 

of fitness as for the non-linear approach. The respective differences in the integer 

positions between the given outline and the corresponding converted versions is 

depicted in Fig 6.10. The worst-case, shown in Fig 6.9a and corresponding 

difference in Fig 6.10a, gives an illustration of the margin between the (given) 

general conic sections and its (unique) parabolic arc. Like Fig 6.7a, all the CUlve 

segments (of Fig 6.9a) have been approximated using respective single parabolic 

arcs, but in this case by setting S equals to one rather than by an iterative least­

squares fit. It is apparent from Fig 6.10a, that the two curves which return the 

greatest difference are A2 and D2 (both ellipses). Subdividing these curves (in 

the manner illustrated by Fig 6.6) results in the output shown in Fig 6.9b and 

their respective difference in Fig 6.l0b. It is quite evident from this that the 
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subdivision procedure works effectively. Figs 6.9c, 6.9d and 6.ge highlight this 

point further, where curves Al-Dl, B l-E1 and B2-C2-F2 have been respectively 

subdivided. The corresponding difference outlines are shown in Figs 6.1Oc, 6.1Od 

and 6.1Od. 

a) b) c) 

d) 
e) 

Fig 6.7 Shows the parabolic representation gained through the non-linear 

approach for various levels of accuracy (units): 

a) 10, b) 5, c) 2, d) 1, and e) 0.5. 
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Fig 6.8 Highlights the corresponding differences in integer positions between 

the given outline and the resulting parabolic outputs of Fig 6.7, for various 

levels of tolerances (units): a) la, b) 5, c) 2, d) 1, and e) 0.5. 
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a) b) c) 

d) e) 

Fig 6.9 Depicts the outputs achieved through the non-iterative parabolic 

algorithm, for various levels of acceptability (units): 

a) la, b) 5, c) 2, d) 1, and e) 0.5. 
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Fig 6.10 Gives the difference in integer positions between the supplied 

outline and the outputs of Fig 6.9, for various levels of deviation 

(units): a) 10, b) 5, c) 2, d) 1, and 0.5. 
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To gain a better understanding of the effectiveness of the two conversion 

algorithms, their respective observations have been tabulated: Fig 6.11 shows the 

recordings for the non-linear approach, whilst the corresponding results from the 

non-iterative approach are listed in Fig 6.12. 

IK to Parabolic, Point-to-Parabolic Deviation 
Non-Linear 

Method 0.5 1.0 2.0 5.0 10.0 

Total Number of 12 12 12 12 12 
Arcs 

Total Number of 223 140 74 44 12 
Iterations 

Rate of 
Conversion 50.0 34.2 18.3 10.9 3.4 
CPU sees 

Average 0.1690 0.3359 0.4650 0.7760 0.8290 
Deviation per Arc 

Fig 6.11 Shows tabulated results for the parabolic conversion 

using the non-linear approach of section 6.4.1. 

IK to Parabolic, Point-to-Parabolic Deviation 
Non-Iterative 

Approach 0.5 1.0 2.0 5.0 10.0 

Total Number of 21 18 16 14 12 

Arcs 

Rate of 
Conversion 2.8 2.2 2.0 1.5 1.5 

CPU sees 

Average 0.0789 0.2745 0.4387 0.6783 0.9044 

Deviation per Arc 

Fig 6.12 Shows tabulated observations for the parabolic conversion 

using the non-iterative approach of section 6.4.2. 
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Comparing the table of results of Fig 6.12 with that of Fig 6.11, it is clearly 

apparent that the non-iterative approach exhibits a decisive advantage when it 

comes to choosing the algorithm for reasons of conversion speeds. It takes, on 

average, about one fifth of the time to yield a parabolic solution. This factor 

decreases as the accuracy of the approximation is enhanced. In other words, the 

non-iterative yields a parabolic description at a faster rate, when compared with 

the non-linear method, as the point-to-curve deviation is decreased (highlighted 

by the respected CPU times for 0.5 and 10.0 in Fig 6.11 and 6.12 respectively). 

As the two tabulated results highlight, speed of conversion for the non-iterative 

algorithm is gained at the expense of introducing more arcs for its deSCription. 

Unlike the non-linear case, the non-iterative approach applied more than one 

parabolic arc (where necessary) to return an approximation within the given 

tolerance. This, as Fig 6.12 shows, results in the algorithm employing 21 arcs 

(about two parabolas for each given curve segment) for the case where the point­

to-curve deviation falls below 0.5 units. The non-linear method returns a solution 

for this threshold by iterating until the desired outcome is reached. This, as Fig 

6.11 shows, has the effect of increasing the time taken for a conversion. 

As far as quality-of-fit is concerned, both methods give outputs which are 

acceptable. The recorded observations of the two approaches indicate that the 

most accurate conversion is performed by the non-iterative algorithm. This, 

however, is only true when more than one parabolic arc is being used to model 

each supplied curve segment. Indeed, when both methods employ a single 

parabola for an input curve (when the point-to-parabolic deviations is set at 10 

units), the non-linear yields a better fit. 

Although it was not necessary to employ three parabolic arcs for a supplied CUNe 

segment (as illustrated by Fig 6.6b), investigations on other character outlines 

highlighted a deficiency in this approach. The main problem is that once the 

three (parabolic) control points have been evaluated, the corresponding new knot 

points do not, as desired, lie half-way between respective control points. It turns 

out that for a parabolic solution, it is better to subdivide the given set of data 
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points and approximate them using two general conic sections before employing 

the non-iterative conversion algorithm. 

In concluding, therefore, it can be said that both the approaches discussed 

respectively in sections 6.4.1 and 6.4.2 provide a means of capturing the given 

set of data points. The fact that it takes longer to gain a solution directly adds 

weight to the non-iterative approach. This yields an acceptable output at a much 

faster rate than the non-linear method. Furthermore, the process of gaining a 

solution through the general conic leads to an efficient subdivision process. The 

price for employing the non-iterative approach, however, is in the number of arcs 

used for its description. 

6.5 Summary 

This chapter looks at the possibilities of employing the parabolic spline as means 

of gaining a mathematical description. Its properties and features for 

representation are expressed, mainly, through its process of manual construction. 

The attraction that it requires one less parameter than a general conic description 

is highlighted. 

Two algorithms for modelling outlines using parabolic arcs are given. The first 

attempts a "direct" approach, where the general quadratic equation is expressed 

in terms of the unknowns. This results in a non-linear expression, which requires 

recursive means for a solution. 

An alternative approach is based on a two-pass conversion system. The first-pass 

converts the given IK data to a general conic format. This is taken as an input 

for the second phase, where it is translated into a corresponding "best-fitting" 

parabolic spline(s). This approach is shown to have benefits of simplicity and 

speed over the iterative "direct" approach. 
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7.0 Conclusions and Further Work 

A number of algorithms are presented in this dissertation that assist the designer 

to process outlines of shape. Although consideration is generally limited to aid 

typographers (employing the lKARUS software package), most of the concepts 

and methods developed are applicable to stylists and proficient artisans working 

in other fields. The fact that many design systems incorporate a spline routine, 

which models a desired outline, enhances the possibility of including many of the 

described algorithms in such systems. 

The algorithms, which are developed, can be categorised in terms of three, 

distinct, types: Firstly, there are those which capture a given set of data points. 

These take a supplied outline of shape and yield an appropriate mathematical 

description, resulting in either a Bezier cubic, or a general conic, or a parabolic 

representation. The second type of algorithms are those which enable conversion 

between the three mathematical descriptions. Translating a Bezier cubic described 

outline to a general quadratic form, for example, are undertaken by these 

algorithms. The third classification caters for the methods and techniques 

developed to facilitate the rasterisation of the mathematically described contours. 

These take the modelled outline and output a digitised version, where this 

conforms to the grid positions of the resulting display. 

With reference to Fig 1.1, where the various types of algorithms are portrayed 

graphically, Fig 7.1 gives the number of algorithms developed in each case. It is 

clear that six methods facilitate a mathematical description. Each description is 

achieved through two respective approaches (the second approach for the 

parabolic case is via the general conic). Five methods are shown which allow 

conversion between the three mathematical descriptions. Four of these are used 

to convert between the Bezier cubic and the general quadratic. As far as 

algorithms for rasterisation are concerned, Fig 7.1 shows that four techniques 

have been presented for this purpose. The parabolic case, although depicted as 

a separate process, is catered for by the general conic. In short, about twelve 
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algorithms have been developed in total which enable the designer to 

mathematically capture a given outline (whether IK described or otherwise), 

allow conversion between these descriptions, and facilitate a digitised output 

CD 

CD 
Parabolic General Conic Bezier Cubic 

CD 
CD 

Fig 7.1 Depicts the number of algorithms developed for the cases shown. 

In chapter three, the procedures and methods associated with modelling and 

rasterising outlines using the Bezier cubic are presented. It is apparent that this 

mathematical description has the attraction of representing a point of inflection 

within a curve segment and encompasses the necessary properties to allow a 

curvature continuous (piecewise connected) outline description. Although these 

features are similar to those exhibited by the physical spline, the Bezier cubic is 

shown to forfeit some of its appeal when it comes to using it for purposes of 

both capture and rasterisation: In section 3.4, a method for modelling outlines 
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using the parametric form (of the Bezier cubic) is given. This is shown to have 

an inherent tendency to employ recursive means for providing a solution, 

resulting in rates of conversion which are expensive in tenns of time. For the 

example used in section 3.4.4, the best capturing rate is 65.4 CPU seconds. In 

other words, the least amount of time required to convert the given • S' outline 

is over one minute. The fact that most fonts consist of more than a hundred 

characters gives an appreciation of how slow the process of gaining a Bezier 

cubic deSCription can be. Clearly, employing such an approach for the 

commercial sector, where in the field of typography (for example) thousands of 

fonts regularly require such a conversion, is not viable as far as costs are 

concerned. 

Although methods of improving the speed of conversion (as well as, enhancing 

the quality-of-fit) are assessed in section 3.4.4, it is apparent that the parametric 

approach will always lead to an iterative, and time consuming, solution. In order 

to remove some of the overheads of this approach, the implicit fonn for the 

Bezier cubic is employed. This has the attraction of being non-iterative (though 

still recursive as the unknown expressions are non-linear) and, more importantly, 

does not use the parametric variable. The implicit fonn has the advantage, 

therefore, of returning a residue value directly for each given data point, without 

having to relate it to the parametric variable (as in the case of the parametric 

form). 

The algebraic fonn developed for the Bezier cubic, however, has an undesired 

and unwanted attribute. This leads to a number of solutions which, as addressed 

in section 3.5.3, interpolate the given data in a rather unacceptable way. The 

reason for this behaviour is due to the implicit fonn exhibiting an instability for 

the case of a parabolic arc. Possible ways of overcoming these problems are 

discussed in the above cited section. The best solution in this case is to limit the 

capturing perfonnance of the algorithm to representing conic-like shapes. In this 

case, the methods for converting a general conic section to a corresponding 

Bezier cubic form, as discussed in section 5.4, can be used to gain an initial 

estimate for the Bezier control points. Clearly, the cubic spline employed in such 
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a manner would not be allowed to capture an outline with a cusp or a loop, or 

one which contains a point of inflection. Restricting the Bezier cubic in this way, 

therefore, does not appear to be the ideal solution. A better approach would be 

to limit, or remove, the effects of the instability by normalising it, an approach 

which certainly needs to be explored. 

When it comes to rasterising the Bezier described outlines, the traditional 

approach has been to convert the curve segments in to a number of line 

segments. A method based on this technique, which uses a novel way of 

determining how many line segments to employ, is presented in section 3.6.1. 

This has the advantage of computational simplicity. The main drawback of this 

technique is its zero-order continuity between joining line segments. This leads 

to a rasterised outline that appears to lose its overall smoothness. An alternative, 

and aesthetically acceptable, method is developed in section 3.6.2. This uses the 

implicit form to describe the Bezier cubic spline. It has a clear advantage over 

the previous approach in that it tracks the given curve segment. In other words, 

it follows the curve by choosing the nearest integer grid point at each stage; 

maintaining, therefore, the general appearance of the described contour. 

Although the tracking approach is better, it has one serious handicap: It tends to 

get confused and loses its way if it encounters a self-intersecting point (for the 

Bezier cubic) within the parametric interval of zero and one. The consequence 

of this are manifested in section 3.6.3. As discussed in this section, there are a 

number of ways to overcome this problem. Each solution requires that all given 

Bezier cubic splines be quantified in terms of whether or not an intersection point 

exists within the normal parametric interval. If it does, then it is necessary to split 

the Bezier point at its point of self-intersection. From the discussions made in 

section 3.6.3, it is apparent that a given Bezier cubic curve can be mapped on to 

an r and s graph. This will then give an indication of the form for the resulting 

curve. By subdividing the graph into regions, it is possible to distinguish the 

curves which require splitting and those that do not. The conditions for these 

regions need still to be developed. 
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In a quest for a simpler and more efficient mathematical description, techniques 

are developed which employ the general quadratic form. These, as discussed in 

chapters four and five, cannot represent within a single curve segment an outline 

containing points of inflection, a cusp or a loop. Furthermore, the conic spline 

is restricted to capturing outlines whose knot tangents can intersect in such a 

manner as to form a guiding triangle. Although it appears that the capturing 

capabilities of the general conic are rather limited when compared to the Bezier 

cubic, in fact the opposite tends to be the case in practical situations. This is 

especially the case in the field of typography, where a given outline is normally 

modelled through extrema points acting as knot points [KARO 87]. As far as 

outlines containing cusps, loops and points of inflection are concerned, these can 

easily be represented through employing two or more conic arcs. 

One of the main attractions of employing conic splines is their speed of 

modelling a given set of data points. Compared with 65.4 CPU seconds for the 

Bezier cubic, a general conic description can be gained for the given'S' 

character at about 9 CPU seconds. This is achieved through the non-iterative and 

non-recursive techniques developed for the general quadratic case. The two conic 

algorithms, in addition, require relatively small amount of computation to yield 

an approximation, enhancing further the rate of conversion. 

For the given set of IK data points, both the conic capturing approaches return 

a satisfactory goodness-of-fit. Constraining the modelling process to maintain 

first-order continuity between joining conic arcs results in more curve segments 

being employed than otherwise. Indeed. as shown in section 4.4.3, up to seven 

more conic arcs are required (for the supplied'S' icon) to retain the given 

gradient continuity. In other words, the conic approach of section 4.4.2 (which 

relaxes on the tangent constraints and chooses values for the control and 

sharpness parameters such that the resulting conic arc deviates the least from the 

given data) employs significantly less curve segments for its description. The cost 

for this achievement is that each two joining arcs exhibit a discontinuity of, on 

average, about three degrees. This does not appear to be too great, and opens up 

the possibility of devising a capturing scheme for the conic which approximates 
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the given data within a desired tolerance and which maintains, also, "gradient" 

continuity within an acceptable discontinuity. This way a compromised conic 

approximation will result that uses a minimum number of curve segments and 

which exhibits some form of first-order continuity. 

Although the two conic algorithms appear to be ideally suited for modelling 

outlines of font characters, their performance on other types of data, such as the 

situation where the given points are scattered, still needs to be assessed. It is 

expected that the algorithms will return a suitable conic-fit as long as the given 

data can be described within a guiding triangle. In addition, the effects of 

normalising the conic expression to gain a particular type of "best-fitting" 

approximation needs further exploration. 

When it comes to rasterising a contour described by conic sections, the algorithm 

presented in section 4.5 appears to suffice for all the cases considered. This has 

the attraction that it follows (that is, tracks) the given conic arc, returning the 

nearest mesh-point at each stage. Unlike the cubic case, the conic curve does not 

exhibit "states of confusion" except for extreme curves such as ellipses. Even for 

these rare cases, the algorithm developed in section 4.5 is made robust enough 

to perform satisfactory for all forms and shapes of conic arcs which lie within a 

quadrant. 

The process of converting between Bezier cubic and the general quadratic splines 

is considered in chapter 5. With similarity to gaining a general conic description, 

two algorithms are presented for translating a Bezier curve into a corresponding 

conic arc. The difference in this case is that the discrete summation of data points 

is replaced by an integral representing the complete Bezier curve within its 

parametric interval of zero and one. Both algorithms use non-iterative and non­

recursive methods for providing a conversion. 

As demonstrated in section 5.3.5, the closest approximation is returned by the 

conversion algorithm which does not maintain gradient continuity. Again this is 

gained through relatively little discontinuity between joining arcs. With analogy 
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to the general conic case, the expressions for the residue could be nonnalised to 

yield a specific type of solution. The process of normalisation, however, will not 

necessarily lead to a more efficient algorithm as far its usage of computation (and 

rate of capture) is concerned. 

Two algorithms are developed for the purposes of converting a general conic 

section into a respective Bezier cubic spline. Apart from the parabolic case 

(which is an exact solution), both the elliptic and hyperbolic curves can only be 

approximated by the cubic representation. It is clear from section 5.4.3, that the 

Bezier description finds it easier to model elliptic arcs than hyperbolic sections. 

Indeed, the algorithm which yields a conversion through matching curvatures 

fails to return a good approximation for the hyperbolic case. This clearly is due 

to fact that most of the curvature is near its mid-point; implying that an approach 

based on the sharpness value might be better. The second algorithm uses this fact 

to return the two control points for the Bezier cubic which best approximate the 

given conic at its mid-point. This appears to give better results, especially for the 

hyperbolic curve, when compared to the first algorithm. 

Both the algorithms are useful for gaining initial values for rand s, the control 

parameters for the Bezier cubic. These can then be employed together with the 

non-parametric form (of section 3.5) to gain a corresponding best-fit. It would be 

interesting to evaluate how well the r and s values returned by the conversion 

algorithm (which is based on the sharpness value) compare with those resulting 

from the non-parametric Bezier algorithm constrained so r = s. 

In chapter six, two algorithms are given for modelling a given outline via 

parabolic arcs. The first attempts to gain a direct solution through using the 

general conic equation, by setting the sharpness value to equal one. This leads 

to an algorithm, however, which becomes non-linear in the two unknown 

variables, requiring recursive means to gain values for the control parameters. To 

remove some of these time costly procedures, an alternative algorithm is 

developed which gives a parabolic description through using the capturing 

capabilities of the general conic. It is found that this returns a rate of conversion 
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which is, on average (depending on the accuracy of approximation), about ten 

times faster. Furthennore, this approach leads to a simpler process of subdivision. 

The employment of parabolic arcs for modelling outlines of font characters (or 

of any shape) appears to have little basis when compared to the general conic: 

As discussed earlier, the general conic leads to capturing techniques which are 

linear in tenns of the unknown variables, resulting in fast rates of capture. 

Attempting to gain a parabolic description, however, leads to either an approach 

which is recursive, or one that is based on another mathematical form (such as 

the general conic, see section 6.4). The simplicity of description for the parabolic 

when compared to the general conic, as highlighted in section 6.2.1, in requiring 

one less parameter, does not result in a similar reduction in the amount of 

computation necessary for capturing purposes. Furthermore, the general conic 

form appears more appropriate for cases where two curve segments are necessary 

to model accurately a given outline. It can apply any of the curves belonging to 

the quadratic family, and not just the parabolic arc. The effect of this, in general, 

would be a marked reduction in the number of curve segments required for a 

description. 

In short, this thesis has presented a number of algorithms which are aimed at 

assisting the modem designer in mathematically modelling outlines of a given 

shape. The designer is at ease to choose either a Bezier cubic or a general conic 

or, even, a parabolic description. Each representation has its advantages, as well 

as some drawbacks. It is important, therefore, that these are considered before an 

attempt is made to incorporate a particular type of mathematical description in 

a design system. 
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